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ABSTRACT 

 

In the retina of adult teleosts, stem cells are sustained in two specialized 

niches: the ciliary marginal zone (CMZ) and the microenvironment surrounding 

adult Müller glia. Recently, Müller glia were identified as retinal stem cells 

responsible for neuronal regeneration. In a screen to discover secreted 

molecules that regulate neuronal regeneration in the retina, we identified 

midkine-b (mdkb). Midkine is a highly conserved pleiotropic, heparin-binding 

growth-factor. The zebrafish genome encodes two midkine genes: midkine-a 

(mdka) and mdkb. Expression and function of Midkines in the vertebrate retina 

are largely unknown. My research shows that zebrafish mdka and mdkb are 

expressed in distinct patterns in developing, mature and regenerating retina, 

suggesting different functions for the two molecules. In the developing zebrafish 

retina, mdka is expressed in the CMZ and mdkb in newly postmitotic cells, 

suggesting these molecules may sequentially regulate aspects of retinal 

neurogenesis. In the juvenile/adult retina, mdka is expressed in presumptive 

Müller glia at the retinal margin, cells at the origin of the rod photoreceptor 

lineage, and in horizontal cells. Following selective death of photoreceptors in the 

adult retina, mdka and mdkb are co-expressed in horizontal cells, proliferating 

Müller glia and their neurogenic progeny.  

The retina entrains the circadian clock to changes in the light/dark cycle 

and is characterized by numerous biological processes that follow a circadian 

rhythm. Expression of Mdka in horizontal cells is regulated by the circadian clock, 

with increased expression during subjective day. Expression of mdkb is weakly 

modulated by the circadian clock, increasing during subjective night in horizontal 

cells. The two midkin



 

 xi 

es show therefore asynchronous circadian regulation, suggesting different 

biological activities at distinct circadian times. Expression of mdkb in horizontal 

cells during the subjective night, similar to the regenerating retina, suggests a 

role in persistent neurogenesis.  

In conclusion, Mdka and Mdkb are molecular components in the retinal 

stem cell compartments during developmental, regenerative and growth-

associated neurogenesis suggesting they function as autocrine/paracrine 

signaling molecules and sequentially regulate different aspects of neurogenesis 

in the zebrafish retina.  These data establish the foundation for future studies to 

investigate functional roles of these molecules in retinal neurogenesis. 
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CHAPTER 1

INTRODUCTION 
 

Recent advances in biology point to a fascinating emerging concept, that 

fundamental processes such as cell division, migration, differentiation and tissue 

integration are guided by signaling pathways that employ the same molecular 

players during development and injury-induced regeneration and these same 

pathways, when disrupted, lead to cancer formation (Beachy et al., 2004). In 

mammals, regeneration following injury is possible in some organs like skin, 

bone or liver but is largely absent in critical organs like the central nervous 

system and the heart, where injury results in irreversible tissue degeneration, 

scar formation and loss of function. In lower vertebrates, examples of remarkable 

regenerative capacity are abundant: newts and salamanders can regenerate 

limbs and hearts, spinal cords and jaws, lenses, retinas; frogs can regenerate 

tails and limbs as larvae but not as adults; zebrafish can regenerate fins, hearts, 

nerves, and also retinas (Kumar et al., 2007, Nye et al., 2003a and 2003b, Neff 

et al., 1996, Chernoff et al., 2003, Butler and Ward, 1965, Mitasov, 1996, Slack 

et al., 2004, Poss et al., 2002, Poss et al., 2003, Bernhard, 1999,  Vihtelic and 

Hyde, 2000).  Amazingly, urodele salamanders, when exposed to carcinogens 

will generate ectopic limbs rather then develop tumors (Gardiner, 2005). 
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The zebrafish retina, having a simple, and extensively described structure, 

offers a wonderful model to uncover mechanisms of regeneration in the CNS, a 

tissue with complex cyto-architecture that poses challenges for analytical pursuit. 

Several groups of scientists are intensely studying regeneration in the zebrafish 

retina, and this effort has lead to remarkable advances in the field.  The cellular 

players in retinal regeneration have been identified, and numerous molecules 

involved in retinal development have been shown to be re-expressed in injury-

activated stem cells, suggesting that regenerative events largely recapitulate 

developmental steps. Still missing is knowledge on the initial triggers of 

regeneration, the first signal or combination of signals that initiate the 

regenerative cascade.  

In the mammalian olfactory epithelium, it has been shown that olfactory 

bulb ablation (OBX) results in increased expression of leukemia inhibiting factor 

(LIF) in the injured neurons themselves. LIF is responsible for the proliferation of 

the neuronal progenitors that will regenerate the olfactory sensory neurons, since 

in LIF knock-out mice, OBX fails to elicit a proliferative response (Bauer et al, 

2003). We have hypothesized that similar to the olfactory bulb, in the zebrafish 

retina, secreted molecules are critical for regulating the regenerative response.  

To start the search for these critical signals in the retina, we took 

advantage of recent high-throughput gene-chip array technology, of the 

increasingly well characterized and annotated zebrafish genome, and also of an 

elegant, non-invasive light-injury paradigm in albino zebrafish, developed by Tom 

Vihtelic (University of Notre Dame), a paradigm that selectively kills 
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photoreceptors while leaving the rest of the retina intact. We analyzed gene 

expression changes between light-lesioned and control retinas at the time of 

maximum proliferation, and looked for secreted molecules that are differentially 

expressed between normal and lesioned retinas. This analysis identified seven 

secreted molecules, potential candidates that could satisfy our hypothesis. 

Midkine-b was one of the seven. My goal was to uncover its biological roles in 

the zebrafish retina. In zebrafish there are two midkine paralogs, mdka and 

mdkb. As a first step towards my goal, I described in detail the cellular 

expression of both mdka and mdkb during retinal development and also during 

photoreceptor regeneration, using a modified light-lesion paradigm that we 

developed for pigmented fish.  Whereas we found mdkb in our unbiased gene-

array screen, my expression analysis has shown Midkine-a is also an extremely 

intriguing candidate signaling factor to regulate retinal development and 

regeneration. 

In the following introductory chapter I present a brief summary of current 

knowledge on retinal development and injury-induced retinal regeneration, and I 

expand on knowledge about Midkines, their expression patterns in different 

animal models and humans, known receptors and signaling pathways activated 

by them and, finally, brief perspectives on Midkines in cancers and injury-induced 

repair. In the second chapter I present data on expression of mdka and mdkb 

during two neurogenic events, retinal development and injury-induced 

regeneration. This chapter is a largely unabridged version of the manuscript 

submitted to the Journal of Comparative Neurology: “The Cellular Expression of 
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Midkine-a and Midkine-b During Retinal Development and Photoreceptor 

Regeneration” by Anda-Alexandra Calinescu, Thomas S. Vihtelic, David R. Hyde 

and Peter F. Hitchcock. In the third chapter I present data on the circadian 

regulation of Midkines. This chapter is a manuscript in preparation. Finally, in the 

fourth chapter I present concluding insights from my work on Midkines, 

summarize a few functional approaches I attempted, present several intriguing 

questions that result from my in depth expression analysis and propose a few 

possible projects that may help answer these questions. 
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1.1 NEUROGENESIS IN THE DEVELOPING AND GROWING ZEBRAFISH 
RETINA 

 

The neural retina in all vertebrates develops from a sheet of 

neuroepithelial cells that line the inside of the optic cup. The cells on the outside 

will differentiate to form the retinal pigmented epithelium (RPE). The space 

between the neural retina and the RPE, which initially communicates with the 

ventricular system in the CNS, collapses so that the RPE and neural retina are 

closely apposed early in development. The retinal polarity thus corresponds to 

the CNS polarity with the ventricular (apical) side facing the RPE and the pial 

(basal) side facing the vitreous cavity. The neuroepithelial cells of the primordium 

of the neural retina are fusiform and radially oriented with endfeet connected to 

the ventricular and pial surfaces. Retinal progenitor cells undergo mitosis at the 

ventricular side, similar to the cortex, and migrate radially, toward the basal side 

during the other stages of the cell cycle. As they leave the cell cycle, retinal 

neurons, except photoreceptors, lose contact with the ventricular side and 

migrate to their final laminar position (Dyer et al, 2003). Cellular birthdating 

experiments (labeling cells undergoing their last S phase with [3H] thymidine) 

have established that retinal neurons and Müller glia, while originating from the 

same precursors, are generated sequencially in an order that is largely 

conserved between all species analyzed. Two "waves" of cell genesis have been 

described in mammals: an early phase when retinal ganglion cells are "born", 
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followed by horizontal, amacrine and cone photoreceptors, in a largely 

overlapping manner, and a late phase when rod photoreceptors, Müller glia and 

bipolar cells undergo their last mitosis (Cepko et al., 1996, Rapaport et al, 2004). 

The developmental time of the last mitosis is therefore a strong predictor of 

cellular identity of the newly born cell.  

Similar to other vertebrates, the zebrafish retina develops at the end of 

gastrulation from anterior neural plate cells specified to form the eye fields, which 

are separated by diencephalic precursors into bilateral eye primordia that form 

the optic cups (Varga et. al.1999, Schmitt and Dowling, 1994).  By 24 hours post 

fertilization (hpf) the eyecups are well developed and consist of proliferating 

neuroepithelial cells with apico-basal polarity. Neuronal differentiation in the 

retina begins at 28-32 hpf within a precocious patch, ventro-nasal to the optic 

stalk, where the first neurons born are retinal ganglion cells (Burrill and Easter, 

1995, Hu and Easter, 1999, Schmitt and Dowling, 1994, Schmitt and Dowling, 

1999). The subsequent differentiation and lamination proceed at a fast pace in a 

wave that emerges from the ventro-nasal patch and sweeps dorsally and then 

temporally, such that by 72hpf the retina has acquired most of its mature 

characteristics (Schmitt and Dowling, 1999, Easter and Nicola 1996, Hu and 

Easter, 1999). As in the cortex (Bystron et al, 2008), there is an inside to outside 

direction of differentiation, with retinal ganglion cells (RGC’s) in the basal, inner 

or vitreal side of the retina born first, and rod photoreceptors, at the apical, outer 

or scleral side of the retina last. In the zebrafish retina there is also a ventral to 

dorsal gradient of differentiation, such that the dorsal retina develops later than 
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the ventral retina and continues to grow at a slightly faster rate after the zebrafish 

larvae have achieved vision. Therefore the emergence of the optic nerve is 

always closer to the ventral retinal margin.  

The continual growth of the zebrafish retina provides an excellent model to 

study neurogenesis. Unlike terrestrial animals, which limit their growth to 

accommodate the effects of gravity, aquatic animals have the ability to 

continually grow, given availability of food and swimming habitat. The growth of 

the retina is yoked to the overall growth of the animal and, in order to maintain 

adequate visual sensitivity, new neurons are added to the retina continuously, at 

a higher rate in rapid-growing young animals. This addition of new neurons 

occurs at two different sites, at the retinal margin, the circumferential marginal 

zone (CMZ), where all retinal cell types are formed, with the exception of rods, 

and in the central, inner retina, where intrinsic stem cells generate exclusively rod 

photoreceptors (Johns, 1982, Raymond and Rivlin, 1987, Otteson et al., 2002, 

Hitchcock et al., 2004, Bernardos et al., 2007). Within the CMZ, developmental 

time is spatially recapitulated, such that pluripotent stem cells are located 

peripherally in the CMZ, adjacent to the iris, and progenitors with increasingly 

restricted competence are located more centrally. This spatial pattern is 

evidenced by a regionalized expression of genes that sequentially specify cellular 

identities (Raymond et. al. 2006, see also Harris and Perron, 1998). This 

remarkable system has enabled researchers to characterize the molecular 

makeup of retinal progenitors at different stages in their development, and even 
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more remarkable is that these molecular components are largely the same in 

different vertebrates.  

The CMZ can be divided into three rather distinct zones, based on the 

classes of genes expressed, as elegantly described for the frog retina (Harris and 

Perron, 1998) and recently comprehensively detailed for the zebrafish retina 

(Raymond et al., 2006). At the distal periphery of the retina lies the zone of 

proliferation and retinal specification, harboring undifferentiated retinal stem cells 

which co-express pax6, vsx2(chx10),  rx1, six3, Ncadherin, ascl1a ( the zebrafish 

ash homologue) and members of the Notch/Delta family and their downstream 

molecular targets. The middle or proneural and neurogenic region represents the 

location of cells that express proneural genes is found (delta, notch, ascl1a, 

pax6a). The central, cellular determination region is where cells express markers 

according to their specific cell type committment (rx1, rx2, neurod).  

This detailed characterization of the cellular and molecular components of 

the retinal stem niche yields an understanding of the sequence of events in 

retinal neurogenesis and also has potential therapeutic implications. Recently, 

retinal repair by means of stem cell transplantation has been shown to be a 

possible therapeutic direction for treating retinal blinding diseases (MacLaren et 

al., 2006). However functional integration of transplanted cells is possible only 

with donor retinal precursor cells at a very specific stage in their development 

(i.e. immature rod progenitors characterized by expression of Nrl, a b-ZIP 

transcription factor). 
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In central retina, intrinsic stem cells in the inner nuclear layer, recently 

identified as Müller cells (Bernardos et al., 2007, Fimbel et al., 2007, Fausett & 

Goldman, 2007), give rise to a lineage of cells that proliferate, migrate to the 

outer nuclear layer (ONL) where they proliferate a few more times, and 

differentiate exclusively into new rod photoreceptors (Johns, 1982, Raymond and 

Rivlin, 1987, Otteson and Hitchock, 2003, Hitchcock et al, 2004, Bernardos et al., 

2007). These new rods are integrated in the retinal circuitry such that, as the fish 

grows, visual sensitivity is maintained (Powers et al, 1988). 
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Fig. 1.1 Growth-associated neurogenesis in the zebrafish retina 
In the retina of zebrafish neurogenesis persists in two regions, the 

circumferential marginal zone (CMZ), at the boundary between the retina and iris, 
region where all retinal neurons are born, except rod photoreceptors, and in 
central retina, where intrinsic stem cells are at the origin of the rod photoreceptor 
lineage. Panel a illustrates a cross-section through the eye of a zebrafish (1Mo 
old), dorsal side up, immunostained with antibodies against PCNA and 
counterstained with DAPI, to visualize the retinal laminae. Panel b is a magnified 
view of the central retina (white rectangular insert in panel a). Note the clusters of 
PCNA positive, fusiform cells in the INL, representing stem cells and INL 
progenitors, and the numerous proliferating cells in the ONL, representing rod 
precursors.  CMZ, circumferential marginal zone, ONL, outer nuclear layer, INL, 
inner nuclear layer, GCL, ganglion cell layer, PCNA, proliferating cell nuclear 
antigen, DAPI, nuclear stain 4,6-diamidino-2-phenylindole dihydrochloride. 
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The addition of new rods into the retina is under the control of growth-

associated endocrine factors, such as members of the growth hormone/insulin-

like growth factor family (GH/IGF-1) (Otteson and Hitchcock, 2002, Mack and 

Fernald, 1993, Zygar et al., 2005). IGF-1 production by cone photoreceptors in 

the cichlid H.burtoni has been shown to regulate the proliferation of rod precursor 

cells (Zygar et al., 2005). In some rapidly growing fish, like cichlids and rainbow 

trout, the proliferation of rod precursors in the ONL has been shown to follow a 

diurnal rhythm, with increased proliferation during the night compared to the day 

(Julian et al, 1998, Chiu and Fernald, 1995). Also, IGF-I production in H.Burtoni 

has been shown to increase during the night (Zygar et al., 2005). However, 

administration of exogenous IGF-I to organotypic cultures of goldfish retinas 

increases proliferation only in the CMZ, and does not significantly change the 

size of the rod precursor population (Boucher et al, 1998a). Radio-labeled ligand 

binding of IGF-I has shown that IGF-I, in the goldfish retina, binds only to the 

CMZ and inner plexiform layer (Boucher et al, 1998b). Whether these data reflect 

differences between different teleost species, or whether alternative explanations 

can reconcile these findings is not yet known. It is however indisputable, that 

young, healthy, fast growing fish will have a high number of rod progenitors in the 

retina, and growth is yoked to the GH/IGF-I axis. 

Within the rod lineage, Müller cells and their neurogenic offspring in the 

INL express some of the same molecular markers as cells the CMZ : pax6 

(Otteson and Hitchcock, 2003), members of the Delta/Notch family and their 



 

 12 

downstream targets hes1, 5  (Raymond et al., 2006). As these cells migrate to 

the ONL they express genes characteristic of their rod cell fate: crx, rx1, neuroD, 

Nr2E3 (Raymond et al, 2006, Bernardos et al, 2007, Hitchcock and Kakuk-Atkins, 

2004, Ochocinska and Hitchcock, 2007, Morris et al, 2008). Thus, within the 

growing, adult zebrafish retina, the peripheral to central gradient of neurogenesis 

and differentiation found in the CMZ transforms into an inside-out pattern, similar 

to the developing retina and cortex.   

 

1.2  INJURY INDUCED NEUROGENESIS IN THE ZEBRAFISH RETINA 
 

The retina of teleosts can regenerate neurons following a wide variety of 

injuries. Surgical excision of an entire segment of the retina leads to complete 

regeneration of the retinal histo-architecture and regeneration of all retinal types 

(Hitchcock et al., 1992). Other methods of lesion: laser ablation (Braisted et al, 

1994, Wu et al., 2001), metabolic poisons or neurotoxins (Raymond et al., 1988, 

Braisted and Raymond, 1992, Fimbel et al, 2007), thermal injury (Raymond et al, 

2006), surgical injury (Yurco and Cameron, 2005, Fausett and Goldman, 2006) 

or, less invasive, selective photoreceptor damage with intense light  (Vihtelic and 

Hyde, 2000, Bernardos et al, 2007) have shown that the teleost retina has robust 

mechanisms that respond to injury by engaging intrinsic stem cells to regenerate 

lost neurons.  Recent studies have identified the stem cells at the origin of both 

growth-associated and injury-induced neurogenesis to be the Müller glia 

(Bernardos et. al, 2007, Yurko and Cameron, 2005, Raymond et al., 2006, 

Fausett and Goldman, 2006).  
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Following the death of extant retinal neurons, Müller glia de-differentiate, 

reenter the cell cycle and give rise to multipotent progenitors that proliferate, 

migrate, differentiate and replace the missing neurons. Genes that guide retinal 

development and growth, such as rx1, vsx/Chx10, pax6, members of the 

Notch/Delta signaling pathway and downstream molecules, apolipoprotein E 

(apoE), brain lipid binding protein (BLBP), ascl1a, Ncadherin are re-expressed in 

these Müller cells and progenitors (Raymond et. al., 2006 and the references 

therein). The microenvironment surrounding Müller glia thus constitutes an active 

stem cell niche where mechanisms that regulate development and growth at the 

CMZ are re-employed during regeneration. Little is known, however, about 

secreted signaling factors that regulate these regenerative events. In a 

microarray screen for genes regulated by the selective death of photoreceptors, 

we uncovered midkine-b, a member of the heparin-binding growth-factor family.  
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Fig.1.2 Injury-induced regeneration in the zebrafish retina. 
Cellular players of injury-induced regeneration originate with Müller glia, the stem 

cells that give rise to the rod lineage during growth-associated 
neurogenesis.Müller cells de-differentiate, proliferate and generate inner nuclear 

layer (INL)  progenitors, which migrate into the outer nuclear layer where they 
divide a few more times and generate photoreceptors in the intact retina, or 
regenerate all retinal cell types following injury. Still unknown are signaling 

molecules that trigger regeneration. 
(adapted from Hitchcock et al., 2004)
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1.3 MIDKINES 
 

1.3.1 EXPRESSION PATTERNS AND FUNCTIONAL CORRELATES 

 
Midkines and pleiotrophin are members of a distinct family of heparin-

binding growth/differentiation factors, highly conserved in the animal kingdom 

with numerous biological activities (Winkler et. al, 2003, Kadomatsu and 

Muramatsu, 2004). Midkine (MK) was identified in a screen of retinoic acid-

inducible genes in embryonic carcinoma cells (Kadomatsu et al. 1988, 

Kadomatsu et. al. 1990). It is a small protein (13kDa), rich in basic amino acids, 

with two distinct domains C-terminal and N-terminal, joined by a hinge region 

(Iwasaki et al., 1997).   The C-terminus is highly conserved between various 

species, harbors the two amino-acid clusters important for heparin binding, and 

represents the most important functional domain (Muramatsu 1994, Kojima 

1995).  

In mammals, MK is widely expressed during embryonic development in 

numerous tissues, most prominently in the developing neural tube and at sites of 

epithelial–mesenchymal boundaries (Kadomatsu et al., 1990, Muramatsu et al, 

1993, Mitsiadis et al., 1995, Fan et al., 2000). Expression strongly decreases in 

the adult where it is found only at low levels in the kidney and brain (see also 

Table 1.1). In chicks, Midkine is expressed in the tail-bud at the time of 

mesenchymal-epithelial conversion during the formation of the secondary neural 

tube. This expression can be inhibited by exogenous administration of retinoic 

acid, in contrast to the mammalian MK which is induced by retinoic acid (Griffith 

and Zile, 2000).  In Xenopus, XMK is expressed in the neural tube and its 
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derivatives, neural crest derivatives and at intersomitic junctions (Sekiguchi et al, 

1995). XMK is strongly neurogenic: ectopic XMK induces the formation of 

hypertrophic neural tissue, increases expression of head specific neural markers 

(XANF-1 and Xotx2), and reduces expression of activin-induced mesodermal 

markers (Yokota et al, 1998). 

The zebrafish genome encodes two distinct midkine genes: mdka and 

mdkb, translated into the secreted heparin-binding proteins: Midkine-a (Mdka) 

and Midkine-b (Mdkb), which share 68% identity at the amino acid level (Winkler 

et. al., 2003). Chromosomal localization studies by Winkler and collegues 

(Winkler et al, 2003) have shown that the two zebrafish midkine paralogs map to 

different linkage groups, on different chromosomes, mdka on LG7, closely linked 

to eng2a and shh, and mdkb on LG25. Both linkage groups display extensive 

synteny to human chromosome 11, where the human midkine ortholog is 

encoded. In addition, the ratio of synonymous to nonsynonymous substitutions 

shows that the two genes have evolved separately, under purifying selection 

(Winkler et. al., 2003). This is underscored by the distinctly different expression 

patterns of the two genes and, as so far described, different biological activities. 

 In zebrafish, mdkb is expressed shortly after the onset of gastrulation in 

the presumptive neural plate, primarily in the dorsal regions of the developing 

nervous system. This expression is modulated by retinoic acid (RA) in a dose-

dependent manner, inhibited by BMP and stimulated by FGF and canonical Wnt 

signaling (Winkler and Moon, 2001, Winkler et al, 2003, Liedtke and Winkler, 

2008).  Ectopic expression of mdkb promotes dorsal neural fates (increased 
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expression of hoxC10) and represses formation of anterior neural structures 

(decreased expression domain of emx1), which is in contrast to XMK. mdkb 

defines the neural plate border, regulates specification of premigratory neural 

crest cells (increases expression of pax3,  foxd3, snail1b, sox10, sox9b), and is 

required for the formation of Rohan-Beard sensory neurons (Winkler and Moon, 

2001, Winkler  et al., 2003, Liedtke and Winkler, 2008).  Ectopic expression of a 

C-terminal truncated form of Mdkb can neutralize the gain-of-function effects of 

ectopic full length Mdkb, suggesting that the C-terminal half of Mdkb represents 

the active part of the molecule, and that the truncated form acts as dominant 

negative molecule  (Winkler and Moon, 2001). 

Expression of mdka begins later than mdkb, at the tailbud stage, in the 

paraxial mesoderm, and is expressed later in somites and the central part of the 

neural tube. mdka is excluded from the dorsal neural tube, where mdkb is 

expressed. Ectopic expression of mdka has no effect on head development, in 

stark contrast to mdkb, but specifically promotes medial floorplate formation and 

blocks somitogenesis  (Winkler et. al. 2003, Schäfer et. al. 2005). Both midkines 

are strongly expressed in adjacent domains at the forebrain/midbrain and 

midbrain/hindbrain boundary, important organizing centers in the developing 

head (Winkler et. al. 2003). Taken together these findings show that the two 

zebrafish Midkines serve different functions, possibly through different receptors 

and likely act as molecular determinants of neural induction and patterning. 

Persistence of mdka and mdkb expression in the adult brain of the zebrafish, 

specifically of mdka in the subventricular zone of the optic tectum (Winkler et. al. 
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2003), a region where neurogenesis continues in the adult (Marcus et. al., 1999) 

suggests additional roles for this secreted molecule, possibly in regulating the 

neural stem cell pool.  

 

1.3.2 MIDKINE RECEPTORS AND DOWNSTREAM SIGNALING FACTORS 

 

Whereas there are numerous publications reporting in vitro binding of MK 

to several receptors and activation of several signaling pathways upon MK 

administration in tissue culture conditions, a comprehensive and clear 

understanding of the cellular and molecular mechanisms of MK function in vivo is 

largely lacking.  

One of the MK receptors more extensively studied is the chondroitin-

sulfate proteoglycan receptor-type protein-tyrosine-phosphatase ζ (PTPζ). 

Midkine can bind with high affinity to PTPζ. (Kd=56nM). This affinity is decreased 

after chondroitinase digestion or after mutating Arg78, one of the basic amino 

acids in the first heparin-binding domain of the C-terminal half of MK (Maeda et 

al, 1999). Also, migration of cortical neurons is decreased when neurons are 

grown on membranes coated with MK in which Arg78 has been mutated (Maeda 

et al, 1999). Migration of osteoblasts in culture is also dependent on MK 

activation of PTPζ , and is decreased by pharmacologic inhibitors of the PI3K and 

MAPK pathways (Qi et al, 2001). Binding of MK to PTPζ increases survival of 

embryonic neurons in culture (Sakaguchi et al., 2003) and MK-induced inhibition 

of caspase-dependent apoptosis is downstream of the PI3K and MAPK pathways 
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(Owada et al, 1999). Recently, Neuroglycan-C, known as a part-time 

transmembrane proteoglycan, has been shown to bind MK as well, and this 

interaction is important in cell attachment and process extension of 

oligodendroglial precursor cells (Ichihara-Tanaka et al, 2006). 

Syndecans are a family of cell surface heparan-sulfate proteoglycans that 

can bind, by means of their heparan-sulfate chains, a variety of molecules like 

growth factors, cytokines, proteinases and extracellular matrix components.  

These interactions are important in regulating events in embryogenesis, tissue 

injury and inflammation (Bartlett et al. 2007). During development, an important 

mechanism of organ formation is represented by interactions between different 

types of tissues, particularly epithelial and mesenchymal tissues (Gurdon, 1992). 

In the developing mouse embryo, MK and syndecan-1 are localized at epithelial-

mesenchymal boundaries and MK can bind syndecan-1 in a heparan-sulfate 

dependent manner (Mitsiadis et al., 1995a). Also syndecan-1 and syndecan-3 

isolated from the brain and spinal cord of developing rats can bind MK, 

suggesting a functional role of MK-syndecan interactions during CNS 

development (Nakanishi et al., 1997).  
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Table 1.1 Expression of Midkine genes and their functional correlates 
 Embryonic Adult Functional correlates Citation 
Humans -fetal liver and kidney 

-fetal astrocytes 
-Oligodendrocyte progenitor cells derived from 
human ES cells 

-Kidney, low levels in the 
brain 
-increased following injury 
in numerous tissues 
-hallmark of various 
carcinomas 

-Malignant progression of astrocytomas 
-Stimulates neurite growth in adult rat sensory 
neurons 

Mishima et al., 1997 
Zhang et al., 2006 
Kato et al., 2000 
Kadomatsu and 
Muramatsu, 2004 

Mouse -ubiquitous expression in the 7-13d embryo, 
progressively restricted to brain and ventricular 
neuroepithelium, anterior pituitary, lung, gastro-
intestinal epithelia, metanephros. In the 15d 
embryo only in the kidney. 
-Interface between developing epithelium and 
mesenchyme as well as in proliferating 
mesenchymal cells (truncated form of MK) 

Low levels in the kidney 
and brain 

-role in secondary embryonic induction and 
epithelial-mesenchymal interactions (inferred 
from expression pattern) 
-epithelial–mesenchymal interactions, blood 
vessel signaling, the decision of proliferation vs 
differentiation (functions inferred from 
expression) 
 
 

Kadomatsu et al., 
1990 
Muramatsu et al, 
1993 
Mitsiadis et al., 1995 
Fan et al., 2000 
 
Chen et al., 2005 

Chick tailbud,  
lateral plate mesoderm. 

 Mesenchymal-epithelial conversion during 
secondary neurulation 

Griffith and Zile, 2000 

Xenopus Brain, spinal cord, branchial arches, optic and 
otic vesicles, intersomitic junc-  
tional area between adjacent myotomes 

 -Ectopic expression induces expression of head 
specific neural markers (XANF-1, Xotx2) and 
reduces trunc/tail neural markers (XlHbox6 and 
F-spondin) and mesodermal markers 
-Binds agrin and modulates clustering of Ach at 
the NMJ 

Sekiguchi et al., 1995 
Yokota et al, 1998 
Zhou et al, 1998 

Gibel carp  
 

Neural keel, midbrain/hindbrain boundary, 
hindbrain,diencephalons, spinal cord 

  Yin et al., 2007 

Zebrafish 
mdka 

Paraxial mesoderm and somites, central neural 
tube, midbrain/hindbrain boundary, 
forebrain/midbrain boundary 

Telencephalon, 
Hypothalamus, 
subventricular zone of the 
optic tectum, lobus vagi 

required for the formation of the medial 
floorplate (shh) 

Winkler et al, 2003 
Schäfer et al., 2005 

Zebrafish  
mdkb 

Presumptive neural plate, presumptive neural 
crest and sensory neuron domain, 
midbrain/hindbrain boundary, forebrain/midbrain 
boundary 

Telencephalon, 
hypothalamus, Crista 
cerebellaris (Purkinje 
cells) 

Ectopic expression enhances neural crest cell 
fates (fox3d, pax3, sox10, sox9b) and 
represses anterior structures (enhances emx1, 
decreases hoxC10), promotes formation of 
Rohan-Beard sensory neurons 

Winkler et al, 2003 
Winkler and Moon, 
2001 
Liedtke and Winkler, 
2008 

Drosophila 
 

miple1 and miple2 
(MK and pleiotrophin homologues) 
miple1 in the CNS, miple2 in the midgut 
endoderm 

  Englund et al., 2006 
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Low density lipoprotein (LDL) receptor-related protein (LRP) is a member 

of a family of related transmembrane proteins that includes, among others, 

Brushin/megalin, LRP6 and ApoE receptor2 (ApoER2), with primary role in 

regulation of lipid homeostasis via receptor-mediated endocytosis and also in 

signal transduction during neurodevelopment (May et al., 2007). MK binds LRP 

from mouse embryonic homogenates with high affinity, and this affinity is 

decreased by receptor-associated protein (RAP), a protein known to interfere 

with the action of LRP (Muramatsu et al., 2000, Hertz et al., 1991). Moreover, 

RAP inhibits MK-induced survival of embryonic neurons, suggesting that the MK 

activation of the LRP receptor complex is needed for this function (Muramatsu, et 

al., 2000).  Also, the binding of MK to LRP has been shown to mediate nuclear 

targeting of MK, via nucleolin, a nucleo-cytoplasmic shuttle protein that strongly 

binds MK (Take et al., 1994). Nuclear targeting of MK is important for survival of 

embryonic neurons in culture (Shibata et al., 2002). Other members of the LRP 

family, specifically apoER2 and LRP6, components of the Reelin receptor 

complex, have been shown to bind MK as well, yet with lower affinity than LRP 

(Sagakuchi et al., 2003), but the functional importance of this interaction is not 

known.  

 Anaplastic lymphoma kinase (ALK) is a receptor-type protein kinase in the 

insulin receptor superfamily, first identified in chromosomal translocations in 

anaplastic large cell lymphomas (Morris et al, 1994).  ALK is considered a bona 

fide oncogene, since translocations of ALK, identified in some lung cancers and 

lymphomas, yields the production of proteins with constitutive tyrosine kinase 



 

 22 

activity, which can induce cell transformation in vitro and in vivo (see Chiare et al, 

2008 and the references therein). MK can bind and induce phorphorylation of 

ALK and activate the PI3K and MAPK signal transduction pathways downstream 

in several cell lines that express ALK (Stoica et al., 2002). Furthermore, ALK 

function-blocking antibodies disrupt receptor binding of MK and MK induced 

anchorage-independent growth of SW-13 cells, a cell line derived from human 

adrenal adenocarcinomas (Stoica et al, 2002). Also, forced expression of ALK 

and insulin-receptor-substrate-1 (IRS-1) renders IL-3- dependent 32D murine 

myeloid cells independent of IL-3; growth of these transformed cells is dependent 

on endogenous MK production, and subsequent activation of IRS-1, PI3K, MAPK 

and NF-κB (Kuo et al, 2007). Taken together these data show that ALK activation 

by MK results in growth and survival of transformed cells. 

 Integrins are a large family of transmembrane proteins constituting the 

principal receptors on animal cells that bind extracellular matrix proteins (ECM) 

and signal to the cell information on the composition of the surrounding ECM. MK 

was found to bind α4β1- and α6β1-integrins from 13 day-old mouse embryos, 

and antibodies against α4 integrin inhibit migration of osteoblastic cells, whereas 

antibodies against α6 integrin inhibit MK induced neurite outgrowth of embryonic 

neurons (Muramatsu et al, 2004). Also, MK treatment increases phorsphorylation 

of paxilin, a molecule associated with integrins, which suggests that integrins are 

part of the MK receptor-binding complex (Muramatsu et al, 2004). In addition, MK 

binds to a 37-kDa laminin binding protein precursor (LBP), and this interaction 
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leads to nuclear translocation of both LBP and MK, showing that interactions of 

MK to ECM linked molecules are functionally important (Salama et al., 2001). 

 Interesting insight comes from a recent report that shows MK can induce 

cross-talk between the Notch2 and Jak2/Stat3 signaling pathways and this 

interaction is dependent on MK binding to the Notch2 receptor (Huang et al., 

2008). In this report Huang and colleagues have elegantly shown that MK 

induces epithelial-to-mesenchymal transition (EMT) in immortalized human 

keratinocytes (HaCaT) as evidenced by increased proliferation, cytoskeletal 

changes, disruption of the cadherin network, decrease in epithelial markers (E-

cadherin, β-catenin, γ-catenin) and increase in mesenchymal markers 

(fibronectin, vimentin and smooth-muscle actin). Further, MK induces nuclear 

accumulation of Notch2, activation of Jak2/Stat3 and binding of Hes1, a signaling 

molecule in the Notch pathway, to activated Jak2 and Stat3. Finally, knockdown 

of Notch-2 inhibits MK-induced proliferation and disruption of the cadherin 

network (Huang et al., 2008). Given that both MK and Notch are expressed at 

epithelial-mesenchymal borders during development (Mitsiadis et al, 1995a and 

1995b), and both play a role in cancer progression  (Leong et al., 2006, 

Kadomatsu and Muramatsu, 2004), and tumor invasion and metastasis is 

characterized by epithelial-mesenchymal transformation (EMT, Baum et al, 

2008), it is particularly important to understand the mechanisms by which these 

two signaling molecules cooperate to function at the molecular level.  

 The diversity of receptors that MK can bind, illustrates how versatile this 

molecule is and likely explains the pleiotropic nature of this growth/differentiation 
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factor.  Biological activities described for Midkine, such as neurogenic, 

neurotrophic, mitogenic, transforming, anti-apoptotic, angiogenic, chemotactic 

and fibrinolytic, are fundamentally dependent on the specific characteristics of 

the biological system where these activities occur. One can easily recognize that 

circumstances like developmental time, the nature of the specific tissue and 

presence of tissue-interactions, specific compositions of the extracellular matrix, 

the presence and state of cell surface receptors and available downstream 

signaling molecules and environmental factors can profoundly influence the 

specific action of this molecule. Needless to say, this complexity introduces 

challenges when trying to understand the function of this molecule in a complex, 

three-dimensional, homeostatic in vivo environment. However, describing and 

understanding in detail the cellular players in a particular system brings valuable 

information that can lead to the understanding of critical elements and to devising 

strategies for successful functional experimental approaches.  
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Table 1.2 Midkine receptors and signaling pathways 
Receptor Substrate Biological activity Signaling pathways  Citation 

Chondroitin-sulfate proteoglycan 
receptor- type 

PTPζ 
(binding to Arg78) 

 

-in vitro coating with MK 
followed by ELISA  
-embryonic neurons in culture 
-osteoblasts 
-oligodenrocyte precursor cells  

-neuronal migration 
-survival of embryonic neurons in 
culture 
-osteoblast migration 
-adhesion of oligodendrocyte 
precursor cells 

PI3K 
MAPK 
src protein kinase 
G-protein linked signaling 

Maeda et al. 1999 
Sakaguchi et al., 2003 
Owada et al., 1999  
Qi et al., 2001 
Rambsby et al., 2001 

 
Heparan-sulfate proteoglycans 

N-syndecan 

Solid phase binding assay 
 
Binding of Syndecans from 
mouse fetal brains 

-neurite outgrowth 
-differentiaion 
and morphogenesis at epithelial-
mesenchymal boundaries (suggested 
by expression) 

 Mitsiadis et al. 1995 
Nakanishi et al. 1997 

 
LRP 

low-density lipoprotein   
receptor-related protein   

 

MK affinity chromatography 
with membrane glycoproteins 
from embryonic mice (E13) 
 

-survival of embryonic neurons 
-nuclear targeting of MK  
-antiapoptotic activity 
-anchorage-independent cell growth  
 

 Muramatsu et al. 2000 
Shibata et al, 2002 
Chen et al, 2007 

 
ALK 

anaplastic lymphoma kinase  

-human SW-13 cells 
-WI-38 human fibroblasts 
-HUVEC  cells  
-neuroblastoma (SH SY-5Y)  
-glioblastoma (U87MG) cells 
-IL-3 dependent myeloid cells 

-colony formation (tumor growth) 
-transformation and tumor cell growth 
and survival 
-anchorage independent cell growth 
 

PI3K 
MAPK 
IRS-1 and NF-κB 

Stoica et al. 2002 
Bowden et al, 2002 
Powers et al, 2002 
Kuo et al., 2007 

integrins 
α4β1- and α6β1 

-osteoblastic cells MK induced migration of osteoblastic 
cells 

Tyrosine phosphorylation of 
paxilin 

Muramatsu et al. 2004 

 
Neuroglycan C 

oligodendroglial precursor-like 
cells 

Process elongation of oligodendroglial 
precursor-like cells 

 Ichihara-Tanaka et al., 2006 

Notch-2 Immortalized human 
keratinocytes 

MK promotes epithelial-to-
mesenchmal transition 

cross talk of Notch2/Jak2/Stat3 
signaling 

Huang et al., 2008 

Unknown receptors -3T3-L1 preadipocytes and 
adipocytes 
-G401 rhabdoid kidney tumor 
cells 

-mitotic clonal expansion of 
preadypocytes 
-autocrine mitogen of G401 cells 

Jak1, Jak2 
Stat1, Stat3 
 

Cernkovich et al., 2007 
Ratovitski et al, 1998 
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1.3.3 MIDKINES IN CANCER 

One of the more notable characteristic of Midkine is its abundant presence 

in a variety of cancers (Kadomatsu and Muramatsu, 2004 and the references 

therein), whereas normal expression in the adult is minimal (Kadomatsu et al., 

1990, Mitsiadis et al, 1995c). One of the first cancers in which increased 

expression of MK has been described (Tsutsui et al., 1993) is the Wilms tumor, 

an embryonic kidney malignancy in infants.  Histopathologically this 

nephroblastoma has three components: a blastema, that proliferates, 

mesenchymal cells with different degrees of differentiation, and an epithelial 

component. This is indicative of a developmental defect during kidney formation. 

WT1 is a zinc-finger transcription factor that acts as a tumor suppressor gene 

and when mutated is the cause of Wilms tumors in numerous patients (Haber et 

al., 1990). Midkine has been shown to be a target of WT1, with WT1 binding 

elements in its promoter (Adachi et. al., 1996). Binding of WT1 to the midkine 

promoter suppresses its expression (Adachi et. al., 1996) and truncated forms of 

MK have been described in Wilms tumor (Mitsumoto et al., 2001). Furthermore, 

MK induces proliferation and inhibits apoptosis of Wilms tumor cells (Qi et al., 

2000, Qiu et al., 2000).  

These findings, and numerous similar others, linking Midkine to a variety 

of cancers in which local expression and serum levels of MK are a marker of 

poor prognosis (Shimada et al., 2003), have led the way towards devising novel 

therapeutic strategies for cancer therapy. The Midkine promoter represents a 
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convenient shuttle to target cancer cells for adenoviral suicide gene therapy 

(Adachi et al., 2002, Hattori et al., 2006). Cancer cells can be targeted with 

chemotherapeutic agents fused to MK antibodies (Inoh et al., 2006) and MK 

translation can be specifically inhibited with beneficial therapeutic effects by 

means of non-toxic morpholino oligonucleotides (Takei et al., 2005).  While these 

approaches are still in their infancy, any information that enhances our 

understanding of the biology of Midkines will bring us closer to successful stories 

of cure. 

 

1.3.4 INJURY-INDUCED EXPRESSION OF MIDKINE: 

IMPLICATIONS FOR REGENERATION AND REPAIR 

Injury increases expression of MK in several tissues: transient forebrain 

ischemia and spinal cord injury induces MK expression in reactive astrocytes 

(Mochizuki et. al. 1998, Sakakima et. al. 2004a), sciatic nerve injury is followed 

by expression of MK in motor neurons of the anterior horn (Sakakima et. al. 

2004b), myocardial infarction and skeletal muscle necrosis induces expression of 

MK in myocytes (Horiba et.al. 2006, Obama et. al. 1998, Sakakima et. al. 2006), 

and bone fractures induce MK expression in spindle-shaped mesenchymal cells 

and chondrocytes at the fracture site (Ohta et. al 1999).  Increased expression 

following injury is thought to indicate a role for midkine in tissue regeneration and 

repair. Knockout mice lacking the midkine gene, while showing no gross 

abnormalities, have decreased liver regeneration following partial hepatectomy, 

as evidenced by reduced number of proliferating cells and by the smaller weight 
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of regenerated livers (Ochiai et. al, 2004).   

Recently, the availability of high throughput gene profiling technology and 

increasing knowledge of the genome, has made it possible to analyze global 

changes in gene expression during regenerative events in zebrafish, an animal 

that can naturally regenerate various tissues to full functional integration. Two 

such screens performed on regenerating zebrafish hearts and fins identified 

mdka as one of the secreted factors with increased expression in the 

regenerating tissue, for the fin, as early as 12 hours after the lesion, and for the 

heart for as long as 14 days post lesion (Schebesta et al., 2006, Lien et al., 

2006). This shows that, similar to mammals where Midkine is induced in a variety 

of tissues, fish respond to injury similarly. We don’t know if functions of the 

mammalian Midkine are common with the zebrafish Mdka, or Mdkb or a 

combination of both. In light of the fact that injury induces regeneration in fish and 

mostly scar formation and loss of function in mammals, uncovering the particular 

details of Mdka and Mdkb function and regulation would enhance our 

understanding of regenerative biology and may open doors towards new 

therapeutic approaches of degenerative diseases.
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CHAPTER 2 

THE CELLULAR EXPRESSION OF MIDKINE-A AND MIDKINE-B 

DURING RETINAL DEVELOPMENT AND PHOTORECEPTOR 

REGENERATION 

 

2.1 INTRODUCTION 

Midkine is a secreted heparin binding growth factor that is highly 

conserved throughout the animal kingdom (Kadomatsu et al. 1988, Kadomatsu et 

al. 1990, Winkler et al., 2003, Kadomatsu and Muramatsu, 2004). Midkine was 

identified in a screen for genes in embryonic carcinoma cells that are inducible by 

retinoic acid (Kadomatsu et al., 1988, Kadomatsu et al., 1990). Numerous 

functions have been ascribed to this molecule: neurogenic, mitogenic, 

neurotrophic, chemotactic, angiogenic, fibrinolytic and anti-apoptotic (for review 

see Muramatsu 2002, Kadomatsu and Muramatsu, 2004). In mammals, Midkine 

is expressed in many tissues during embryonic development, most prominently in 

the developing neural tube and at epithelial–mesenchymal boundaries (Mitsiadis 

et al., 1995).  

Injury increases expression of Midkine in several tissues including nervous 

tissue, muscle, bone, skin and liver (Obama al. 1998, Sakakima al. 2006; Ohta 

1999; Iwashita 1999; Jochheim-Richter et al., 2006). Increased expression 

following injury indicates a role for Midkine in regeneration and repair (Ohta et al. 

1999). Supporting this idea, mice that are homozygous for a midkine null 
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mutation show decreased regenerative capacity following partial hepatectomy 

(Ochiai et al. 2004). Also, intravitreal injection of recombinant Midkine promotes 

survival and preserves function of photoreceptor cells following light-induced 

injury (Unoki et al., 1994, Masuda et al. 1995). 

 The zebrafish genome contains two midkine genes, mdka and mdkb, 

whose encoded proteins share 68% amino acid identity (Winkler et al., 2003). In 

early embryos, the two midkines have distinct patterns of expression and appear 

to serve different functions. The mdka gene is initially expressed at the tailbud 

stage in the paraxial mesoderm and is later observed in somites and the central 

neural tube (Winkler et al., 2003, Schäfer et. et al. 2005). The mdkb gene, 

however, is expressed shortly after the onset of gastrulation in the epiblast, 

presumptive neural plate, neural crest, the diencephalon and dorsal regions of 

the neural tube (Winkler and Moon 2001, Liedtke and Winkler, 2008). Also, the 

two midkines are expressed in adjacent domains at the forebrain/midbrain and 

midbrain/hindbrain boundaries, which serve as important organizing centers in 

the developing brain (Winkler and Moon, 2001, Winkler et al., 2003). Gain and 

loss-of-function experiments demonstrated mdka specifically promotes medial 

floorplate formation and regulates aspects of somite formation, whereas mdkb 

promotes dorsal neural fates and is required for the formation of neural crest 

cells and Rohon-Beard sensory neurons (Winkler and Moon, 2001, Schäfer et 

al., 2005, Liedtke and Winkler, 2008). Together, these data show that the two 

midkine paralogs serve different functions, perhaps through yet unidentified 
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receptors and mechanisms and may act as molecular determinants in defining 

different cell classes during neural induction and patterning.  

 The zebrafish retina develops from cells of the anterior neural plate that 

evaginate, migrate laterally and form the optic cups (Varga et al.,1999, Schmitt 

and Dowling, 1994, Hitchcock and Raymond, 2004).  By 24 hours post-

fertilization (hpf), the eyecups are well developed and consist of proliferating 

neuroepithelial cells. Neuronal differentiation begins at 28-32 hpf within a 

precocious patch that is ventro-nasal to the optic stalk (Burrill and Easter, 1994, 

Hu and Easter, 1999, Schmitt and Dowling, 1994, Schmitt and Dowling, 1999). 

Retinal cell differentiation and lamination proceed at a fast pace in sequential 

waves that originate in the ventro-nasal patch and sweep dorsally and then 

temporally through the different layers. By 72 hpf, the retina is fully laminated and 

functional (Schmitt and Dowling, 1999, Easter et al. 1996, Hu and Easter, 1999).  

After the initial differentiation of the retinal neuroepithelium, new neurons 

continue to be added to the retina throughout the life of the animal. This 

neurogenesis persists in two regions, specialized niches that harbor stem cells 

and their immediate progeny: the circumferential marginal zone (CMZ), at the 

border between differentiated retina and the iris, and the central retina, where 

resident stem cells in the inner nuclear layer (INL) give rise to a lineage of cells 

that generates exclusively rod photoreceptors (Raymond et al., 2006, Hitchcock 

et al., 2004). Within the CMZ, developmental time is spatially recapitulated, such 

that stem cells are located peripherally in the CMZ, adjacent to the iris, and 

progenitors with increasingly restricted competence are located more centrally. 
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This spatial pattern is evidenced by a regionalized expression of genes that 

sequentially specify cellular identities (Raymond et al., 2006, see also Harris and 

Perron, 1998).  

The teleost retina can regenerate in a process that generally recapitulates 

cellular and molecular events occuring during late retinogenesis (Raymond et al. 

2006, Otteson and Hitchcock, 2003, Hitchcock et al., 2004).  Recent studies 

identified Müller glia as the stem cells responsible for both the persistent rod 

genesis and neuronal regeneration (Bernardos et al,, 2007, Yurco and Cameron, 

2005, Kassen et al., 2007, Raymond et al., 2006, Fausett and Goldman, 2006). 

Following the death of retinal neurons, Müller glia de-differentiate, reenter the cell 

cycle and give rise to multipotent progenitors that proliferate, migrate and 

differentiate to replace the missing neurons. Genes that guide developmental 

neurogenesis are re-expressed in regenerative Müller glia and their progeny 

(Raymond et al., 2006 and references therein). Little is known, however, 

regarding the secreted signaling molecules regulating these regenerative events. 

We identified mdkb in a screen for genes whose expression is regulated 

by the selective death and regeneration of photoreceptors. As a first step to 

understand the role of Midkines in the retina, we analyzed the expression of 

mdkb and its paralog, mdka, during both retinal development and adult 

photoreceptor regeneration. During development, midkines are expressed in 

patterns that change temporally and spatially with the wave of retinal 

differentiation. The mdka gene is expressed in stem cells and progenitors, 

transiently expressed in developing Müller glia and constitutively expressed in 
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horizontal cells. In contrast, the mdkb gene is transiently expressed by newly 

postmitotic cells and constitutively expressed by retinal ganglion and amacrine 

cells. During retinal regeneration, in addition to their constitutive expression 

patterns, both midkines are expressed in horizontal cells and proliferating Müller 

glia and their neurogenic progeny. This study describes for the first time the 

expression of these two secreted factors in the developing, adult and 

regenerating retina and establishes the foundation for future studies to 

investigate the function of these molecules in retinal development and 

regeneration. 
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2.2 MATERIALS AND METHODS 

Care of zebrafish and embryos 

 Wild-type zebrafish (Danio rerio) were purchased from a local supplier 

and maintained in aquaria at 28.5oC with a 10/14-hour dark/light cycle. Embryos 

were generated by natural mating at light onset and reared in embryonic rearing 

solution (Westerfield, 2000) at 28.5oC. Zebrafish transgenic for the glial fibrillary 

protein (GFAP) promoter driving GFP Tg(gfap:GFP)mi2000 ( from Dr. Pamela 

Raymond) were used to facilitate the identification of Müller glia. All animal 

procedures were approved by the University of Michigan Committee for the Use 

and Care of Animals in Research Committee. 

Light treatments 

Two light-lesion paradigms were used in this study. Each of these 

manipulations selectively kills photoreceptors and induces proliferation, which 

follows a common time-course (Calinescu and Hitchcock, unpublished 

observations).  First, for the gene chip analysis, retinal lesions were induced in 

albino zebrafish (University of Oregon, Eugene, OR) as described (Vihtelic and 

Hyde, 2000; Vihtelic et al., 2006). Second, to induce photoreceptor cell death in 

pigmented fish, animals were dark adapted for 8 days, followed by constant 

exposure to intense fluorescent light (26000-31000 lux). Light intensity was 

measured with a Reed LX-105 Digital Light Meter (Calright Instruments, San 

Diego, CA).  
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Microarray analysis: 

Oligonucleotide microarrays were used to identify genes that were 

differentially expressed in the retinas after light-induced death of photoreceptors 

(see above). For these experiments, retinas were sampled at a single time point, 

72hrs after light onset, which is after the death of photoreceptors and at a time 

when the retina is replete with injury-induced photoreceptor progenitors (Vihtelic 

and Hyde, 2000). Control animals were maintained in normal light conditions. 

After the animals were sacrificed, retinas were dissected from the surrounding 

ocular structures, and retinal RNA was isolated and processed in 8 separate 

pools (4 control, 4 experimental; 12 retinas each). From each pool of RNA, 

probes were synthesized and hybridized to a single chip. Briefly, total RNA was 

amplified to yield double-stranded antisense RNA (αRNA), which was 

biotinylated using the Affymetrix GeneChip Expression IVT Labeling Kit 

(Affymetrix, Santa Clara, CA). Ten micrograms of labeled aRNA were 

fragmented and hybridized to Zebrafish Genome Arrays (Affymetrix). Chips were 

scanned using the GeneChip Scanner 3000 (Affymetrix). The fluorescence 

intensity readouts were sorted into CHP files with the Affymetrix Microarray Suite 

v5.0.  

 A false discovery rate confidence interval (FDR-CI) was used to identify 

statistically significant changes in fluorescence intensity as described (Benjamini 

and Yekutieli, 2005, Hero et al., al. 2004). This approach employs robust 

multiarray averaging (RMA) to normalize the data, assigns fold-intensity 

differences and utilizes a statistical method that provides a false discovery rate-
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adjusted confidence interval (FDR-CI) for each differentially-labeled probe set 

(Hero et al., al. 2004; see also Yoshida et al., 2002). This analysis generated a 

rank-ordered list of probe sets that showed 2-fold or higher changes in 

fluorescence intensity on the chip images. Analysis of gene ontologies was 

performed using the Database for Annotation, Visualization and Integrated 

Discovery (DAVID) (Dennis et al., 2003; http://david.abcc.ncifcrf.gov). MAIME 

compliant array data will be posted at the National Center for Biotechnology 

Information Gene expression omnibus 

(http://www.ncbi.nlm.nih.gov.proxy.lib.umich.edu/geo/).  

Tissue preparation, in situ hybridization and immunohistochemistry 

At selected developmental times, embryos and larvae were fixed by 

immersion in 4% paraformaldehyde in 0.1M phosphate buffer (2h to overnight), 

cryoprotected in 20% sucrose, frozen and cryosectioned. At set times following 

light treatment, adult fish were anesthetized in 0.05 % 3-aminobenzoic acid-ethyl 

ester (Sigma), eyes were enucleated, lenses removed and eyecups were 

processed identically to the embryos and larvae. 

Sense and antisense riboprobes for mdka or mdkb were synthesized from 

plasmids containing the full-length mdka and mdkb cDNAs (gift from Dr. 

Christoph Winkler, Winkler et al., 2003). Plasmids were linearized and 

digoxigenin (DIG)-labeled riboprobes were generated by in vitro transcription 

using the DIG RNA Labeling kit (Roche Diagnostics, Indianapolis, IN).  In situ 

hybridization was performed as described previously (Hitchcock and Kakuk-

Atkins, 2004) using DIG- labeled probes and Fast Red (Roche Diagnostics, 
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Indianapolis, IN) as the enzymatic substrate. The enzymatic reaction was 

monitored using a fluorescence microscope and stopped after 2-5 hours, when 

the signal was distinct and the background low. Fresh Fast Red staining solution 

was prepared and added to the slides each hour.  

To combine in situ hybridization with immunohistochemistry, the Fast Red 

color reaction was first allowed to develop, then slides were processed 

immediately for immunohistochemistry using standard procedures. Primary 

antibodies used were: anti-Proliferating Cell Nuclear Antigen-P8825 (ascites fluid 

from mice immunized with recombinant rat PCNA-Protein A fusion protein, 

Waseem and Lane, 1990, Sigma-Aldrich, St. Louis, MO) (1:1000), anti-Green 

Fluorescent Protein (1:1000), ab6556 (polyclonal antibody raised in rabbit 

against highly purified recombinant Green Fluorescent Protein made in 

Escherichia Coli, Abcam Inc., Cambridge, MA), or anti- Prox-1, AB5475 

(polyclonal antibody raised in rabbits against a synthetic peptide from the C-

terminus of mouse Prox-1 with the following sequence: EIFKSPNCLQELLHE, 

Chemicon International, al. Temecula, CA) (1:2000). Prox-1 is a homeodomain 

protein expressed in horizontal cells (Dyer et. al., 2003, Edqvist and Hallbook, 

2004).  Zebrafish Prox-1 is 84% identical at the amino acid level with the mouse 

homologue (Glasgow and Tomarev, 1998), and this antibody has been shown to 

specifically label Prox-1 in zebrafish (Ober et. al., 2006). In all sections, nuclei 

were stained with the fluorescent DNA binding dye 4,6-diamidino-2-phenylindole, 

dihydrochloride (DAPI, Invitrogen-Molecular Probes, Eugene, OR). Prior to 

PCNA immunostaining, sections were processed for antigen retrieval as 
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previously described (Raymond et al., 2006). The secondary antibodies, were 

either goat, anti-rabbit or goat, anti-mouse and were used at a dilution of 1:500  

(Invitrogen-Molecular Probes, Eugene, OR).  

Histological  analysis and measurements 

 For histological analysis, eyecups were fixed overnight at 4oC in 2.5% 

glutaraldehyde and 2% paraformaldehyde in 0.1M Phosphate Buffer, rinsed in 

Phosphate Buffered Saline (PBS), dehydrated in ethanol and embedded in JB-4 

compound (Polysciences Inc., Warrington, PA). Sections (4µm thick) through the 

optic nerve along the dorso-ventral axis were mounted on glass slides, stained 

with 0.25% toluidine blue, cleared in Citrisolve (Fisher Scientific) and 

coverslipped. Images were taken with a Nikon DMX 1200 digital camera with the 

40x objective from the dorsal quadrant of the retina, corresponding to the region 

with the most photoreceptor damage. For quantification, six images were taken 

from the dorsal quadrant of six different central sections for each eyecup, three 

different eyecups per time-point (except the 48h and the 28day time-point for 

which only two eyecups were analyzed). Twelve measurements were taken for 

each parameter for each eyecup using the linear measurement tool in Image Pro 

Plus 5.0 (Media Cybernetics). The three parameters measured were:  thickness 

of the photoreceptor layer (PL), measured from Bruch’s membrane to the outer 

plexiform layer (OPL), thickness of the Outer Nuclear Layer: from the sclerad 

limit of the cone nuclei to the outer plexiform layer (OPL), the thickness of the 

Rod Nuclear Layer: from the outer limiting membrane (OLM) to the OPL. These 

measurements were normalized to the thickness of the inner nuclear layer (INL), 
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measured from the OPL to the inner plexiform layer (IPL), to account for 

individual size differences between fish (Fig. 2.5a).  The mean values obtained 

for each time-point were compared for statistical significance (*p<0.05 or 

**p<0.01) by one-way ANOVA with LSD correction for multiple comparisons 

using SPSS software. 

Photographic images 

Images were taken with a Nikon DMX 1200 digital camera mounted on a 

Nikon Eclipse E800 epifluorescent compound microscope. Adobe Photoshop 

CS2 (Adobe Systems, San Jose, CA) was used to construct the figures. The 

layer tool was used to generate overlays, and the channel mixer tool was used to 

change the red signal to magenta. In some images, the clone stamp tool was 

used to remove unwanted scale bars. Images in Figure 2 and Supplemental 

Figure 1 were taken with an AxioCam RM digital camera and a Zeiss Axio 

Imager epifluorescent compound microscope (Carl Zeiss Microimaging, 

Thornwood, NY). Images were false colored using the Zeiss AxioVision 4.0 

software and exported into Adobe Photoshop CS2 (Adobe Systems, San Jose, 

CA) and treated as described above. 

RNA extraction and real time reverse transcriptase  

polymerase chain-reaction (QRTPCR): 

 Adult zebrafish  (6-8 months old, 2-3 cm long) were anesthetized in 0.1% 

3-Aminobenzoic Acid-Ethyl Ester (Sigma) for 10 min. Eyecups were removed 

and retinas dissected and carefully separated from the retinal pigment epithelium 

with fine forceps. Four retinas per sample from 3-4 different zebrafish were 
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pooled yielding 7-16 mg of tissue. Retinas were homogenized and RNA 

extraction was performed according to the manufacturers instruction 

(RNAqueous-Micro RNA isolation kit, Ambion, Austin, TX). RNA was quantified 

with a spectrophotometer, and RNA quality was assessed on ethydium bromide 

stained agarose gels. 500 ng of total RNA was used to synthesize cDNA 

following the manufacturers protocol (Superscript II, Invitrogen, Carlsbad, CA). 

The resulting first-strand reaction was diluted 1:4 and used as a template for the 

subsequent QRTPCR reaction (iQ™ SYBR® Green Supermix Bio-Rad, 

Hercules, CA) in the iCycler Real-Time PCR detection system (Bio-Rad). The 

following amplification and melt curve analysis protocol was used: 95oC 3min, 

40x(95oC: 20s, 57oC: 20s, 72oC: 30s), 95oC: 1min, 90X55oC: 10s. The following 

primers were used: rhodopsin forward- agcccatacgaatacccaca; rhodopsin 

reverse- agcttcttgtgctcgatgg, opsin-1 forward- aaaccacaagggaagcaatg; opsin-1 

reverse- ttgtgctggcaaacagagtc, proliferating cellular nuclear antigen (PCNA) 

forward- catccagacacttagagctgaaga; PCNA reverse- ctggtctgtgagagcttgatgtt, 

connexin 52.6 forward- tggacagatggtacctttgcc; connexin 52.6 reverse- 

gttgtctggaatggaccttcg (Zoidl et al. 2004). The threshold cycle (Ct) was 

determined by the iCycler using the maximum curvature approach and then 

maintained constant for subsequent runs.  Relative value of gene expression was 

determined by the ΔΔCt method using connexin 52.6 as endogenous reference. 

This value was then divided by the relative expression in the control retina and 

represented graphically as fold change. Specificity of the amplification products 

was verified by agarose gel electrophoresis of sample wells, evidencing single 
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bands with the expected size. Statistical significance (*p<0.05 or **p<0.01) was 

calculated by one-way ANOVA with LSD correction for multiple comparisons 

using SPSS software. 

2.3 RESULTS 

2.3.1 MICROARRAY ANALYSIS 

 The RMA/FDR-CI identified 671 probe sets from experimental chips that 

showed a 2-fold or greater difference in fluorescence intensity (hereafter referred 

to as ‘gene expression’) in the microarray images when compared to controls 

(Table 2-2 in the Appendix). To characterize the global changes in gene 

expression, the differentially expressed genes were submitted to DAVID (Dennis 

et al., 2003) to determine the most significantly overrepresented gene ontologies. 

Table 2-1 lists gene ontology biological process terms that were statistically 

significantly overrepresented within this dataset. In addition, functional categories 

were identified from the gene ontology analysis, and after removing those genes 

lacking annotation, the direction of change for genes within each category was 

determined (Fig. 2.1). Finally, genes known to control the cell cycle, regulate 

photoreceptor physiology or encode growth factors were separately evaluated. 

As anticipated, the expression of each of the cell cycle control genes is 

increased, reflecting the accretion of mitotic photoreceptor progenitors, whereas 

the expression of each of the photoreceptor-specific genes is decreased, 

reflecting the selective death of this cell type. Genes encoding seven 

differentially-expressed growth factors (midkine b [see below], granulin a, 

granulin 1, granulin 2, dickkopf 1, galectin 1-like 2, matrixmetalloproteinase 9, 
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follistatin) were also identified. The direction of change in the expression for four 

of these genes was independently validated by in situ hybridization (see next 

section, data not shown). 

 

 

 

Figure 2-1. Differentially-expressed genes between light-lesioned and control 
retinas. This graph illustrates functional gene categories and the number of 
genes in each category showing increased (+) or decreased (-) expression. 
Genes within the left-most six categories resulted from the analysis of gene 
ontologies, whereas right-most three categories, cell cycle, photoreceptor, growth 
factors, were selected by hand based on predicted experimental outcome. 
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Table 2.1. Gene ontology (GO) process terms with increased frequency 
(p<0.05) in the dataset of differentially expressed genes 
 
 

GO Biological Process Term 
Rank order by 

p-value 
intracellular part   1.80E-06 
intracellular  5.20E-05 
enzyme regulator activity   1.30E-04 
DNA-dependent DNA replication   3.60E-04 
DNA replication initiation  6.10E-04 
protein polymerization   1.30E-03 
cysteine-type endopeptidase activity  2.00E-03 
DNA replication  2.80E-03 
intracellular non-membrane-bound organelle   6.40E-03 
non-membrane-bound organelle  6.40E-03 
chromosomal part   6.70E-03 
calcium-dependent phospholipid binding   7.20E-03 
DNA metabolic process  8.60E-03 
enzyme inhibitor activity  1.00E-02 
intracellular organelle  1.40E-02 
chromatin  1.40E-02 
DNA-dependent ATPase activity  1.60E-02 
nucleosome  1.70E-02 
chromosome  2.30E-02 
cysteine-type peptidase activity  2.50E-02 
nucleoside-triphosphatase activity   2.90E-02 
microtubule-based movement  2.90E-02 
cytoskeleton-dependent intracellular transport  2.90E-02 
translation elongation factor activity   3.30E-02 
lipid binding  3.30E-02 
deoxyribonucleotide metabolic process   3.50E-02 
pyrophosphatase activity  3.90E-02 
protease inhibitor activity  4.10E-02 
GTPase activity  4.10E-02 
response to stress   4.10E-02 
hydrolase activity  4.20E-02 
hydrolase activity, acting on acid anhydrides  4.30E-02 
sensory perception of light stimulus   4.50E-02 
visual perception  4.50E-02 
ATPase activity 4.50E-02 
biogenic amine metabolic process   4.80E-02 
nucleosome assembly  4.90E-02 
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2.3.2 mdka AND mdkb ARE EXPRESSED IN DISTINCT POPULATIONS 
OF CELLS DURING RETINAL DEVELOPMENT 

 
To determine the cellular pattern of expression of mdka and mdkb in the 

developing retina, in situ hybridization was performed on tissue sections from 

embryos and larvae between 24 and 120 hpf (Fig.2.2).  Neither mdka nor mdkb 

transcripts are detected in the eye at 24 hpf (data not shown), consistent with 

previous observations (Winkler and Moon, 2001, Winkler et al., 2003). However, 

retinal expression of mdka is detected at 30 hpf. At this time, a low level of 

expression is present throughout the retinal neuroepithelium and more intense 

expression is observed at the retinal margin, presaging the site of the CMZ 

(Fig.2.2a). At 48 hpf, mdka is expressed at the retinal margin and more broadly in 

the INL (Fig.2.2b), but mdka is not expressed in the ventral and central retina 

where differentiated cells and laminae are present. Between 48 hpf and 72 hpf, 

mdka expression becomes progressively restricted to the retinal margin. At 72 

hpf, mdka expression appears centrally in columnar cells spanning the INL with 

morphology suggestive of Muller glia (Fig. 2.2c). These radial columns persist 

through 120 hpf (Fig.2.2c-e), but are not prominently observed in the adult retina 

(see below). At 120 hpf, mdka transcription begins in presumptive horizontal cells 

(Fig.2.2e see below). Interestingly, in addition to this dynamic pattern of 

expression in the neural retina, mdka is strongly expressed in cells within the 

nascent optic nerve (Fig.2.2d) and the lens epithelium.  

The spatial pattern of expression for mdkb is distinctly different from mdka, 

and suggests this gene is transcribed in postmitotic cells only. mdkb is first 
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expressed at 48 hpf  in the ventro-nasal patch and more broadly in the laminated 

central retina (Fig.2.2g, See also Appendix Fig.1). At 72 hpf, mdkb is expressed 

in differentiated ganglion and amacrine cells, which straddle the inner plexiform 

layer (IPL) (Fig.2.2h) and in a broad annulus of cells central to the CMZ (Fig. 

2.2h). Between 96 hpf and 120 hpf, expression within the inner nuclear and 

ganglion cell layers persists, whereas the annulus of mdkb expression becomes 

progressively restricted to the cells just central to the CMZ (Fig. 2.2h, i, j). In 

contrast to mdka, mdkb is not expressed by retinal progenitors in the CMZ (Fig. 

2.2h, i). These data suggest that mdkb is transiently expressed by cells as they 

differentiate and constitutively expressed by mature ganglion and amacrine cells. 

This pattern of expression is maintained in the adult (see below).  
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Fig.2.2 Cellular expression of mdka and mdkb during retinal 

development. Panels a-e are in situ hybridizations that illustrate the retinal 
expression of mdka at 30-120 hpf, respectively. The white arrowheads identify 
mdka-expressing cells in the circumferential marginal zone and retina. The white 
arrows in panels c-e identify the columnar cells within the inner nuclear layer that 
express mdka. The yellow arrowhead in panel d identifies the optic nerve. The 
yellow arrowheads in panel e identify presumptive horizontal cells. Panels f-j are 
in situ hybridizations that illustrate the expression of mdkb at 30-120 hpf, 
respectively. The arrow in panel g identifies the ventronasal patch. The arrows in 
panels g-j demarcate regions of transient mdkb expression. The arrowheads in 
panels h and i identify the circumferential marginal zone, which does not express 
mdkb. Note the prominent expression of mdkb within the gcl and inl in panels h-j. 
onl, outer nuclear layer; inl, inner nuclear layer; ipl, inner plexiform layer; gcl, 
ganglion cell layer. Scale bar equals 50µm.
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Specificity of the mdka and mdkb probes used for in situ hybridization was 

verified by repeating the experiment for selected time-points (96hpf and adult) 

with sense and antisense digoxigenin riboprobes (Fig.2.2’). 

 

Fig.2.2’ Testing specificity of mdka and mdkb riboprobes 
 Panels a and c are in situ hybridizations that illustrate the retinal 

expression of mdka at 96 hpf, and in the adult retina respectively. The white 
arrowheads in a identify mdka-expressing cells in the circumferential marginal 
zone. The white arrows in panel a identify the columnar cells within the inner 
nuclear layer that express mdka. White arrowheads in panel c identify 
presumptive horizontal cells expressing mdka. Panels b and d represent sections 
through the retina of a 96hpf larva and an adult fish, probed with a digoxigenin-
labeled mdka sense mRNA probe. Panels e and f are in situ hybridizations that 
illustrate the retinal expression of mdkb at 96 hpf, and in the adult retina 
respectively. The white arrowheads in e and g identify mdkb-expressing cells in 
the ganglion and amacrine layer on both sides of the retina. Panels f and h 
represent sections through the retina of a 96hpf larva and an adult fish, probed 
with a digoxigenin-labeled mdkb sense mRNA probe. ONL outer nuclear layer; 
INL, inner nuclear layer; IPL, inner plexiform layer; GCL, ganglion cell layer.  
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To analyze the expression of mdka and mdkb relative to proliferating cells, 

we combined in situ hybridization with immunohistochemistry for PCNA, a 

cofactor of DNA polymerases, expressed during the late G1, S and early G2 

phases of the cell cycle (Kurki et al., 1986; Moldovan et al., 2007). We examined 

retinas at 72hpf, because at this age they contain both mature and proliferating 

cells. mdka is expressed in PCNA-positive cells within the CMZ  (Fig. 2.3 a, b, c).  

In contrast, mdkb is co-expressed with PCNA only in a few cells at the interface 

between the CMZ and the differentiated retina (Fig.2.3 d, e, f).  

Together, these data show that, during early retinal development, mdka is 

expressed in mitotic retinal progenitors, whereas mdkb is expressed in newly 

postmitotic cells. In addition, mdka is transiently expressed in presumptive Müller 

glia (see next section). Finally, both genes are constitutively expressed in 

subsets of neurons within the inner retinal layers.  
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 Figure 2.3. mdka is expressed by retinal progenitors and mdkb is 
expressed by differentiated cells. Panel a is an in situ hybridization that 
illustrates the expression of mdka at 72 hpf. Panel b is the same section as in 
panel a, but immunostained with antibodies against proliferating cell nuclear 
antigen (PCNA). Panel c is the digital overlay of panels a and b. Panel d is an in 
situ hybridization showing the expression of mdkb at 72 hpf. Panel e is the same 
section as in panel d, but immunostained with antibodies against PCNA. Panel f 
is the digital overlay of panels d and e. The white arrows identify the 
circumferential marginal zone in each panel, whereas the arrowheads identify 
cells expressing mdka (panels a and c) and mdkb (panels d and f) within central 
retina. onl, outer nuclear layer; inl, inner nuclear layer; ipl, inner plexiform layer; 
gcl, ganglion cell layer. 
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2.3.3 mdka IS TRANSIENTLY EXPRESSED IN MÜLLER GLIA AND 

CONSTITUTIVELY EXPRESSED IN HORIZONTAL CELLS 
 

 During larval development, mdka-expressing cells in the INL have 

centrally located large nuclei with mdka mRNA in processes that extend radially, 

from the nuclei (Fig.2.2 c, d, e; Fig.2.3 a; Fig.2.4 a). This morphology suggests 

mdka is expressed by Müller glia. To test this speculation, we combined in situ 

hybridization with immunostaining for green fluorescent protein (GFP) on retinal 

sections from Tg(gfap:GFP)MI2001 transgenic zebrafish (Bernardos and Raymond, 

2006). These fish express GFP under the control of glial fibrillary acidic protein 

(gfap) regulatory elements, which in the retina selectively marks Müller glia. The 

mdka-positive cells in the INL (Fig.2.4 a, c, d, f) overlay precisely with GFP-

positive cells  (Fig.2.4 b, c, e, f), confirming mdka transcription in Müller glia.   

To test our inference that mdka is expressed by horizontal cells, we 

combined in situ hybridization and antibodies against Prox-1.  Prox-1, a 

homeodomain transcription factor required for horizontal cell development (Dyer 

et al., 2003), is expressed in chicks and mammals by horizontal, AII amacrine 

and bipolar cells (Dyer et al., 2003; Belecky-Adams et al., 1997; Edqvist and 

Hallbook, 2004). At 72 hpf, Prox-1 expression identifies horizontal cells in the 

outer INL, although mdka expression in these cells is not detected at this time 

(Fig. 2.2c and 2.4g-i).  At 120 hpf, however, mdka expression co-localizes with 

Prox-1 in horizontal cells (Fig. 2.4 j-l). Note that mdka expression is reduced or 

absent in the dorsal retina, which is less mature than ventral retina, showing that 
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mdka is not expressed by newly differentiated horizontal cells. In the adult retina, 

mdka is constitutively expressed in Prox-1-positive horizontal cells (Fig. 2.4 m-o). 

 

Figure 2.4a. mdka is transiently expressed in Müller glia (see legend 

next page) 
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Figure 2.4 a and b. mdka is transiently expressed in Müller glia and 
constitutively expressed in horizontal cells. Panels a and d illustrate in situ 
hybridizations of mdka expression in Tg(gfap:GFP)Mi2001 fish at 120 hpf. Panels b 
and e illustrate Müller glia immunostained with antibodies against green 
fluorescent protein. Panel c is the digital overlay of panels a and b; panel f is the 
digital overlay of panels d and e. In each panel, the three arrows identify the 
same three Muller glia. In panel d, the asterisks identify mdka expression in 
presumptive horizontal cells. Panel g is an in situ hybridization showing the 
expression of mdka at 72 hpf. Panel h is the same section as in panel g, but 
immunostained with antibodies against Prox1. Panel i is the digital overlay of 
panels g and h. Note that at 72hpf, horizontal cells synthesize Prox1, but do not 
yet express mdka. Panel j is an in situ hybridization showing the expression of 
mdka at 120hpf. Panel k is the same section as in panel j, but immunostained 
with antibodies against Prox1. Panel l is the digital overlay of panels j and k. Note 
the co-localization of mdka mRNA and Prox1 protein. Panel m is an in situ 
hybridization showing the expression of mdka in the adult retina. Panel n is the 
same section as in panel j, but immunostained with antibodies against Prox1. 
Panel o is the digital overlay of panels d and e. Arrows in j-o identify horizontal 
cells that express mdka and are immunostained for Prox1. onl, outer nuclear 
layer; inl, inner nuclear layer; gcl, ganglion cell layer; DAPI, nuclear stain 4,6-
diamidino-2-phenylindole dihydrochloride. Scale bar equals 50µm; onl, outer 
nuclear layer; inl, inner nuclear layer; ipl, inner plexiform layer; gcl, ganglion cell 
layer; ipl: inner plexiform layer. Scale bar in o equals 50 µm. 
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Figure 2.4b. mdka is constitutively expressed in horizontal cells 
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2.3.4   EXPOSURE TO INTENSE FLUORESCENT LIGHT INDUCES 
PHOTORECEPTOR LOSS, FOLLOWED BY REGENERATION IN 

PIGMENTED ZEBRAFISH 
 

To analyze expression of midkines during photoreceptor regeneration we 

employed a similar light injury paradigm as previously described for albino 

zebrafish (Vihtelic and Hyde, 2000, Kassen et. al. 2006) adapted for pigmented 

fish. After 24h of exposure to intense fluorescent light, the rod outer segments 

(ROS) are swollen, irregular and damaged and numerous pyknotic nuclei are 

observed in the outer nuclear layer (ONL), in the region below the outer limiting 

membrane (OLM) that harbors the rod nuclei (Fig.2.5b and 2.5.1b’ white 

arrowheads) as well as above the OLM, where the cone nuclei reside (Fig.2.5b 

and 2.5.1b’ black arrowheads), indicating that rods as well as cones are dying. 

After 72h of light exposure, most of the outer segments have been destroyed, the 

ONL is visibly smaller, particularly below the OLM, Müller glia are intensely 

stained with Nissl stain, and their processes visible in the inner plexiform layer 

(IPL) (Fig.2.5c, white arrows). Measurements of the photoreceptor layer, outer 

nuclear layer and rod outer nuclear layer (Fig.2.5 f, g, h) indicate that there are 

significant decreases in the thickness of these retinal parameters, starting at 72h 

of light lesion; damage to the rod nuclear layer is more severe and does not fully 

recover by 28d (See also Table 2.1). Analysis of opsin gene expression by 

quantitative real time PCR (rhodopsin and red opsin, Fig.2.5 i, j) reveals marked 

decrease in the expression of these genes, as early as 24h after light onset. This 

drop in expression is not fully recovered by 28d, when the retina displays an 

orderly array of outer segments and a seemingly regenerated ONL (Fig. 2.5e). 
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PCNA expression during this light lesion time-course peaks at 72h (Fig.2.5 k) 

and proliferation gradually declines by 14d (See also Table 2.2).  Taken together 

these data show that this light lesion paradigm induces photoreceptor loss 

(primarily rods but also cones) in pigmented zebrafish, elicits a regenerative 

response and the time-course of cell death and proliferation resembles other light 

lesion paradigms (Vihtelic and Hyde , 2000, Kassen et. al. 2006, Bernardos et. 

al., 2007).  
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Fig.2.5 Exposure of pigmented zebrafish to intense bright fluorescent light 
induces photoreceptor loss followed by regeneration. Panels a-e illustrate 
Nissl-stained sections from control retina (a) and retinas exposed to bright, 
constant light for 24hrs (b), 72hrs (c), 10 days (d) or 10 days intense bright light 
followed by 18 days of recovery (e). Panels f-g illustrate quantitative 
measurements of the photoreceptor, outer nuclear and rod nuclear layers, 
respectively (see panel a), normalized to the thickness of the inner nuclear layer. 
Note that there is a significant decrease in the thickness of the various layers 
starting at 72h of light exposure. Panels i-k illustrate analysis of rhodopsin, red 
opsin and PCNA expression by quantitative real-time PCR. ROS, rod outer 
segments; OLM, outer limiting membrane; OPL, outer plexiform layer; IPL, inner 
plexiform layer; ONL, outer nuclear layer; INL, inner nuclear layer; GCL, ganglion 
cell layer; PL, photoreceptor layer; rod ONL, rod outer nuclear layer. Scale bar 
equals 50µm, * p<0.05, **p<0.01. 
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Fig. 2.5.1 Exposure of pigmented fish to intense fluorescent light induces primarily rod, but also cone 
photoreceptor loss-Magnified view of the outer retina. 
Panels a’-c’ represent retinal sections stained with toluidine blue at representative time-points during the light-lesion time-
course. Panel a’ is section through a normal, control retina, representing a magnification of panel a in Fig. 2.2. The red 
arrow points to the outer limiting membrane that separates the rod outer nuclear layer from the cone outer nuclear layer. 
Rod nuclei stain darker blue with toluidine blue than cone nuclei. Panel b’, represents a magnification of panel b in Fig. 
2.2, showing the histological appearance of the outer retina following 24h of exposure to intense fluorescent light. Black 
arrowhead points to a pyknotic nucleus in the cone nuclear layer and white arrowheads point to  pyknotic nuclei in the rod 
nuclear layer. Note the disorganization of the rod outer segments and of the retinal pigmented epithelium. Panel c’ 
represents a magnification of panel e in Fig. 2.2. showing the histological appearance of the outer retina recovered for 18 
days in normal aquaria lighting conditions, after exposure for 10 consecutive days to intense fluorescent light. Note the 
orderly array of cones and rod outer segments.
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Table 2.2  HISTOLOGICAL MEASUREMENTS OF CHANGES IN THE   
  OUTER RETINA DURING THE LIGHT-LESION TIME-COURSE    
 
 

PL/INL= Photoreceptor layer (µm)/ Inner Nuclear layer (µm) 

N=3  contro
l 

24hLL 48hLL  72hLL 5dLL 7dLL 10d 14d 21d 28d  

Mean  3.58 3.505 3.665 2.491 2.999 2.383 2.259 2.843 2.896 2.753 

Std. 
Dev.  

0.761 0.421 0.491 0.268 0.203 0.245 0.308 0.346 0.230 0.030 

Std. 
Error  

0.439 0.243 0.347 0.154  0.1172ccccccc 0.117  
 

0.141 0.177 0.199 0.163 0.021 

 
 
 

ONL/INL= Outer Nuclear Layer (µm)/ Inner Nuclear layer (µm) 

N=3  control 24hL
L 

48hLL  72hLL 5dLL 7dLL 10d 14d 21d 28d  

Mean   1.119 0.969  0.918  0.81 0.819 0.983 0.875  0.994 1.096 1.031 

Std. 
Dev.  

0.123   0.132 0.115 0.066 0.076 0.047 0.104 0.145 0.129 0.052 

Std. 
Error  

 0.071 0.076 0.082 0.038  0.04400.076hihi 0.044 0.027 0.060 0.084 0.091 0.037 

 
 
 

(OLM-OPL)/INL= Distance from the Outer Limiting Membrane  to the Outer 
Plexiform Layer (Rod ONL[µm])/ Inner Nuclear layer (µm) 

N=3  control 24hL
L 

48hLL  72hLL 5dLL 7dLL 10d 14d 21d 28d  

Mean   0.577 0.534 0.477 0.415 0.432 0.388 0.377 0.471 0.399 0.434 

Std. 
Dev.  

0.17    0.08 0.038 0.046 0.084 0.03 0.076 0.083 0.007 0.492 

Std. 
Error  

0.098   0.046 0.027 0.026 0.048 0.048 0.017 0.044 0.048 0.005 0.034 
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TABLE 2.3 CHANGES IN RODOPSIN, RED OPSIN AND PROLIFERATING 
CELL NUCLEAR ANTIGEN GENE EXPRESSION DURING THE LIGHT LESION 
TIME-COURSE. DATA OBTAINED WITH QUANTITATIVE REAL-TIME 
REVERSE TRANSCRPTASE POLYMERASE-CHAIN-REACTION (QRTPCR). 

RELATIVE VALUES COMPARED TO CONTROL 
   

 
Light-lesion time-course of rodopsin gene expression   

N=3  Control 
N=6 

24hLL 
N=6 

48hLL 
N=6  

72hLL 
N=6 

5dLL 
N=4 

7dLL 
N=4 

10d 
N=4 

14d 
N=4 

28d 
N=4  

Mean  1 0.107 0.1693 0.1748 0.4020 0.384 0.515 0.301 0.253 

Std. 
Dev.  

0 0.047 0.097 0.137 0.138 0.243 0.255 0.093 0.041 

Std. 
Error  

0 0.019 0.039 0.056  0.069 0.069 0.121 0.127 0.046 0.02 

 
 
 

Light-lesion time-course of red opsin gene expression   

N=3  Control 
N=4 

24hLL 
N=4 

48hLL 
N=4  

72hLL 
N=4 

5dLL 
N=4 

7dLL 
N=4 

10d 
N=4 

14d 
N=4 

28d 
N=4  

Mean  1 0.027 0.084 0.049 0.144 0.215 0.192 0.043 0.021 

Std. 
Dev.  

0 0.023 0.13 0.023 0.068 0.172 0.064 0.02 0.021 

Std. 
Error  

1 0.011 0.065 0.011 0.034 0.086 0.032 0.01 0.01 

 
 

Light-lesion time-course of pcna gene expression   

N=3  Control 
N=5 

24hLL 
N=5 

48hLL 
N=5  

72hLL 
N=5 

5dLL 
N=4 

7dLL 
N=4 

10d 
N=4 

14d 
N=4 

28d 
N=4  

Mean  1 1.609 1.8128 4.0744 2.3699 1.903 1.572 0.498 0.467 

Std. 
Dev.  

0 0.849 1.182 2.626 1.084 1.285 0.995 0.208 0.118 

Std. 
Error  

0 0.379 0.528 1.174  0.542 0.542 0.642 0.497 0.104 0.059 
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2.3.5 DURING PHOTORECEPTOR REGENERATION mdka and mdkb ARE 

EXPRESSED BY PROLIFERATING MÜLLER GLIA AND 
PHOTORECEPTOR PROGENITORS 

To investigate the expression of the midkine genes during retinal 

regeneration, we compared their expression patterns in normal adult retinas to 

adult retinas following the selective death of photoreceptors. The patterns of 

midkine expression in the adult retina are similar to 120 hpf larvae: mdka is 

selectively expressed in horizontal cells (Fig. 2.6a), while mdkb is transcribed by 

cells in the vitreal aspect of the INL and the GCL (Fig. 2.6e).  

Light-induced photoreceptor death is clearly evident following 24 hrs of 

intense light exposure, and the subsequent cell proliferation nears its maximum 

at 72 hrs after initiating light treatment (Fig. 2.5). During the proliferative phase of 

photoreceptor regeneration, the expression of mdka in horizontal cells persists. 

In addition, mdka is expressed by the PCNA-positive photoreceptor progenitors 

in the inner and outer nuclear layers (Fig.2.6b, c, d). In comparison, mdkb 

transcription is also actively upregulated following photoreceptor death, validating 

the change in expression first detected with the gene arrays. The expression of 

mdkb expands throughout the INL, including the horizontal cells.  In addition, 

mdkb transcripts are detected in the PCNA-positive photoreceptor progenitors 

(Fig.2.6f, g, h). Intense light treatment of the Tg(gfap:GFP)MI2001 zebrafish 

confirmed the proliferating cells expressing mdka and mdkb are Müller cells and 

their progeny (see Appendix Fig. A3). These data show that in contrast to the 

expression of mdka and mdkb in separate cell populations in the developing and 
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adult retina, both genes are induced in a common set of cells in the regenerating 

retina:  horizontal cells and injury-induced photoreceptor progenitors.  
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Figure 2.6. In the light-lesioned retina, mdka and mdkb are expressed by 
horizontal cells and injury-induced photoreceptor progenitors. Panel a is an in 
situ hybridization showing the expression of mdka in a control retina. The white 
arrow identifies mdka-expressing horizontal cells. Panel b is an in situ 
hybridization showing mdka expression in a retina following 72 hrs of light 
exposure. Panel c is the same section as in panel b, immunostained with 
antibodies against PCNA. Panel d is the digital overlay of panels b and c. 
Arrowheads and arrows in panels b-d identify double-labeled cells in the ONL 
and INL, respectively. Panel e illustrates an in situ hybridization showing the 
expression of mdkb in a control retina. Panel f is an in situ hybridization showing 
mdkb expression in a retina following 72 hrs of light exposure. The arrowhead 
and arrow identify mdkb-expressing cells in the inner and outer nuclear layers, 
respectively. Panel g is the same section as in panel f, immunostained with 
antibodies against PCNA. Panel h illustrates the digital overlay of panels f and g. 
In panels b-d and f-h, arrowheads and arrows identify double-labeled cells in the 
ONL and INL, respectively. ONL, outer nuclear layer; INL, inner nuclear layer; 
GCL, ganglion cell layer; PCNA, Proliferating Cellular Nuclear Antigen; DAPI: 
nuclear stain 4,6-diamidino-2-phenylindole, dihydrochloride. Scale bar equals 
50µm. 
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DISCUSSION 

 
We used oligonucleotide microarrays in an initial experiment to identify 

genes that are differentially expressed in the retina of the zebrafish after a light 

lesion. The light-lesion model was selected, because, 1) it selectively kills 

photoreceptors; 2) we infer that degeneration of only two cell types (rods and 

cones) will result in less complex changes in the retinal transcriptome, thereby 

simplifying the array analysis; and 3) the selective death of photoreceptors, while 

sparing the rest of the retina, closely resembles photoreceptor degeneration in 

mouse genetic models of human disease. The specific goal of the array 

experiment was to identify novel growth factors that we hypothesize function to 

regulate aspects of retinal and/or photoreceptor regeneration. 

Following the microarray screen, we characterized the expression of the 

two midkine genes, mdka and mdkb, during two neurogenic events: retinal 

development and photoreceptor regeneration. This analysis revealed that during 

retinal development the expression of mdka and mdkb is differentially regulated, 

and each gene has a pattern of cellular expression with distinct temporal and 

spatial features. mdka is expressed in the CMZ, transiently expressed in Müller 

glia, and constitutively expressed in horizontal cells. In contrast, mdkb is 

transiently expressed by newly postmitotic cells in the INL and constitutively 

expressed in differentiated ganglion and amacrine cells. During photoreceptor 

regeneration, the expression of both midkines is markedly upregulated in 

proliferating Müller glia and their progeny. Additionally, mdka expression persists 

in horizontal cells while mdkb expression expands to include all INL neurons, 
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including horizontal cells. These results suggest that both Midkines function in 

signaling pathways to direct stem cells and progenitors to regenerate retinal 

neurons and photoreceptors (Fischer and Reh, 2003, Fischer et al, 2004, Ooto et 

al., 2004, Osakada et al., 2007). Further, these results add Midkines to the 

molecular signature of Müller glia when they exhibit features of neural stem cells 

(Raymond et al., 2006). 

During retinal development, two cell populations transiently express the 

midkines in non-overlapping domains, which are progressively restricted to 

adjacent annuli at the retinal margin. Double labeling with antibodies against 

PCNA indicate that mdka is expressed by retinal progenitors, whereas mdkb is 

expressed in newly postmitotic cells. The adjacent expression of these 

paralogous genes is similar to the developing neural tube at the 

forebrain/midbrain and midbrain/hindbrain boundaries, where mdka and mdkb 

are also expressed in contiguous, non-overlapping domains and function to 

pattern the early neural tube (Winkler et al., 2003). Our data suggest that the two 

Midkines may function to pattern the developing retina by acting on signaling 

pathways with separate domains of gene expression among progenitors and 

newly post-mitotic neurons (see Harris and Perron, 1998, Raymond et. al., 2006).  

The initial and persistent expression of mdka in the peripheral-most 

portion of the CMZ suggests that Mdka is a molecular component of the retinal 

stem cell niche (Raymond et al., 2006) and may serve to regulate proliferation of 

retinal progenitors. In adult zebrafish brain,  mdka transcripts are detected in the 

subventricular zone of the optic tectum (Winkler et.et al, al. 2003), a site of 
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persistent neurogenesis (Marcus et al., 1999). During tissue repair following 

chemical lesion of fetal rat brains, mitotic neuroepithelial cells at the ventricular 

surface of the cerebral cortex express Midkine (Kikuchi-Horie et al., al. 2004), 

and it was speculated that Midkine served to maintain proliferation. Indeed, 

neurospheres generated from Midkine deficient mice remain small, and 

derivatives of the neural precursors proliferate less than wild-type cells (Zou et. 

al. 2006).  This function is consistent with the expression of mdka in retinal 

progenitors within the CMZ and regenerative Müller glia. These data indicate that 

expression of Midkine is associated with neural progenitors, in both the normal 

and injured brain, and may promote proliferation of neural stem and/or progenitor 

cells.  

The strong and distinct expression of mdka in horizontal cells in the adult 

retina is intriguing. The presence of this secreted molecule, which acts in a 

paracrine manner (Schäfer et. al. 2005), in close proximity to the proliferating rod 

progenitors in the ONL, suggests that Mdka may regulate the persistent rod 

genesis in the zebrafish retina. Dynamic change in expression that leads to the 

presence of both mdka and mdkb in horizontal cells during retinal regeneration 

indicates that horizontal cells may also play a role, as yet unknown, in 

orchestrating the regenerative response.  Their laminar position is ideal for 

influencing proliferation, migration and differentiation of photoreceptor precursors 

through signaling molecules, which may be distributed over large areas through 

their complex network of intercellular junctions. It has been proposed that 

horizontal cells play a pioneering role in the postnatal development of 
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photoreceptors (Messersmith and Redburn, 1990, Hagedorn et. al, 1998). It is 

possible that Midkines, secreted by horizontal cells, regulate aspects of 

persistent (Mdka) and regenerative neurogenesis (Mdka and Mdkb). 

mdkb expression begins in the precocious ventro-nasal patch and follows 

the wave of retinal differentiation in the INL. The tight coupling of mdkb 

expression and the location of new neurons suggests it may regulate aspects of 

neuronal differentiation. In the zebrafish retina, sonic hedgehog (shh) initiates 

and sustains the circumferential waves of neuronal differentiation that pass 

through the inner layers (Neumann and Nuesslein-Volhard, 2000, Shkumatava et 

al., 2004). The expression of mdkb appears to follow the wave of shh and, 

thereby, may serve as an additional molecular component of signaling cascades 

that regulate early differentiation. Alternatively, mdkb could regulate events 

associated with neuronal maturation. Studies of mammalian neurons in vitro 

show that Midkine promotes neurite outgrowth (Muramatsu and Muramatsu, 

1991).  Similarly, we found the expression of mdkb is coincident with neurons 

that are elaborating axons and dendrites into the nascent plexiform layers, which 

suggests Mdkb may promote process formation and elongation from newly 

differentiated retinal neurons. 

The constitutive expression of mdkb in ganglion and amacrine cells is 

maintained throughout adulthood. In rat retina, midkine expression is detected in 

the ganglion cell layer, in the inner INL and in the retinal pigmented epithelium 

(RPE) (Miyashiro et. al., 1998). The zebrafish mdkb expression pattern is similar 

to the mammalian homologue, although zebrafish lack RPE expression. The two 
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zebrafish midkine paralogs map to different linkage groups, although both 

chromosomal regions display extensive synteny to human chromosome 11, the 

location of the unique human midkine ortholog (Winkler et al., 2003). This 

suggests mdkb is more likely to serve similar functions as the mammalian 

midkine compared to mdka, which is expressed in different cell populations. 

During photoreceptor regeneration both midkines are expressed in 

horizontal cells, and mitotic Müller glia and their progeny.  Expression of mdka 

and mdkb in the same cells is not observed during retinal development 

suggesting the two growth factors act together to regulate regenerative events.  

The mammalian Midkine forms dimers in vitro and its biological activities are 

dependent on the crosslinking status of ligand molecules (Kojima et al., 1997, 

Iwasaki et al., 1997, Qiu et al., 2000). When produced by the same cells, the two 

zebrafish Midkines may form heterodimers which may bind different receptors to 

activate regeneration-specific signaling pathways. Alternatively, the functions of 

each Midkine could be preserved to differentially regulate proliferation and early 

photoreceptor differentiation during regeneration.  

In summary, the expression of the mdka and mdkb, which encode 

secreted heparin-binding neurogenic factors, is dynamically regulated during 

retinal development and injury-induced retinal regeneration.  The two midkine 

genes are expressed in distinct populations of stem cells, retinal progenitors and 

mature neurons, suggesting these secreted molecules subserve different 

functions. Following retinal injury, mdka and mkdb transcription is upregulated in 

Müller glia and their neurogenic offspring to regenerate the lost photoreceptors. 
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In vertebrates, midkines are upregulated following injury in numerous tissues 

(see Introduction and Results), and in humans midkine is integral to the growth of 

transformed cells.  An emerging concept in biology is that the same regulatory 

proteins control common cellular events during development, tissue repair and 

carcinogenesis (Beachy et al., 2004, Gardiner, 2005). Our studies reinforce this 

concept and add Midkine-a and Midkine-b to the family of signaling molecules 

involved in both development and regeneration of the vertebrate retina.  
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CHAPTER 3 

IN HORIZONTAL CELLS OF THE ZEBRAFISH RETINA  
EXPRESSION OF MIDKINES  

IS MODULATED BY THE CIRCADIAN CLOCK 
 

3.1 INTRODUCTION 

The circadian clock maintains intrinsic rhythmical changes in biochemical 

and physiological processes, which provide optimal adaptation to environmental 

changes, such as light, temperature and access to food. The retina is the primary 

tissue that entrains the circadian clock to changes in the dark/light cycle in 

animals with eyes (Nelson and Zucker, 1981). This occurs through direct 

projections to the suprachiasmatic nucleus, the master circadian pacemaker, 

indirect projections to the pineal gland (Moore et al., 1995, Reppert and Weaver, 

2002), as well as through synthesis of endocrine/paracrine factors, such as 

melatonin and dopamine (Wiechmann and Summers, 2008, Ribelayga et al., 

2004). Numerous processes that occur in the retina are dependent on circadian 

rhythms, such as retinomotor movements (Pierce and Besharse 1985), disc-

shedding of photoreceptor outer segments (Matthew LaVail, 1980), visual 

sensitivity (Li and Dowling, 1998), dopamine release (Ribelayga et al., 2004), 

expression of the interphotoreceptor retinoid binding protein (Rajendran et al, 

1996) and photoreceptor input to cone horizontal cells (Wang and Mangel, 1996, 

Ribelayga et al., 2002). 

Midkine (MK) is a member of the family of secreted heparin-binding 

growth/differentiation factors that also includes pleiotrophin (Obama et al, 1994, 
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Kadomatsu and Muramatsu, 2004). Identified in a screen of retinoic acid 

inducible genes in embryonic carcinoma cells (Kadomatsu et al.,1988, 

Kadomatsu et. al. 1990), Midkine is highly conserved throughout the animal 

kingdom, and has numerous functions: neurogenic, transforming, neurotrophic, 

chemotactic, mitogenic, and anti-apoptotic (Muramatsu 2002, Kadomatsu and 

Muramatsu 2004, Winkler et. al, 2003). In mammals, MK is expressed in 

numerous tissues during embryonic development, most prominently in the 

developing neural tube and at epithelial–mesenchymal boundaries (Mitsiadis et 

al., 1995).  The zebrafish genome encodes two distinct midkine genes, midkine-a 

(mdka) and midkine-b (mdkb), which, during early zebrafish development have 

distinct patterns of expression and have different biological functions (Winkler 

and Moon 2001, Winkler et al., 2003, Schäfer et al., 2005, this study).  

In zebrafish, cells of the retinal stem cell compartments (retinal stem and 

progenitor cells in the CMZ and injury-activated Müller glia) express midkines 

during developmental and regenerative neurogenesis (Chapter 2). In the 

developing retina, mdka and mdkb are expressed in distinct, adjacent domains at 

the boundary between the CMZ and the newly differentiated retina, as well as in 

distinct subtypes of retinal neurons in the adult retina: mdka is constitutively 

expressed by horizontal cells and mdkb is constitutively expressed by ganglion 

cells and cells in the amacrine layer of the INL. In addition, during the 

proliferative phase of photoreceptor regeneration both mdka and mdkb are 

expressed by proliferating Müller glia, their neurogenic progeny in the INL and 

photoreceptor precursors in the ONL (Chapter 2).  
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During the light-lesion experiments described in Chapter 2, I consistently 

observed a decrease in the expression of mdka in horizontal cells at 12 hours 

following light onset. I followed up on this observation, and here I report that 

expression of Midkine-a in retinal horizontal cells, is regulated by the circadian 

clock, resulting in robust changes in expression during a 24h period at both 

mRNA and protein levels. The expression of mdka increases during subjective 

day and decreases during subjective night. Similarly, the cellular expression of 

mdkb appears also to be regulated by the circadian clock, with expansion of the 

expression domain during the second half of the subjective night, to include 

horizontal cells. The functional significance of the circadian expression of mdka 

and mdkb in horizontal cells is yet to be determined. 
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3.2 MATERIALS AND METHODS 

Animals 

Wild-type zebrafish (Danio rerio), mixed strains and strain AB, 4.5 to 7 

months old, were purchased from Aquatica Tropicalis (Plant City, Florida) and 

acclimated for at least 2 weeks in aquaria at 28.5oC with a 14/10 hour light/dark 

cycle, lights on at 8am (or 9am during daylight savings time) and lights off at 

10pm (or 11pm during daylight savings time).  For circadian experiments, fish 

were maintained in complete darkness for 24hrs and sacrificed at 4-hour 

intervals (six time-points), starting at either 12am or 4am. All animal procedures 

were approved by the University of Michigan Committee on the Use and Care of 

Animals.  

Light treatments 

 Wild-type zebrafish were housed in complete darkness for 7 days and then 

exposed to intense fluorescent light (30,000 lux) for 12 hours as described 

(Chapter 2). 

Tissue preparation, in situ hybridization and immunohistochemistry 

 At selected times, adult fish were anesthetized in 0.05% 3-aminobenzoic 

acid-ethyl ester (Sigma-Aldrich, St. Louis, MO), eyes were enucleated, lenses 

removed and eyecups fixed by immersion in 4% paraformaldehyde in 0.1M 

phosphate buffer with 5% sucrose. Eyecups were cryoprotected in 20% sucrose, 

embedded in 2 parts 20% sucrose 1 part Tissue-Tek® O.C.T. Compound 

(Electron Microscopy Sciences, Hatfield, PA), frozen in Tissue-Tek® OCT and 

stored at -80oC. Ten micron cryosections through the dorso-ventral axis of the 
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eyecups were mounted on Superfrost Plus microscope slides (Fisher Scientific, 

Pittsburgh, PA) and processed for in situ hybridization with riboprobes encoding 

mdka and mdkb labeled with digoxigenin (DIG)-labeled riboprobes, as described 

(Chapter 2). Nitro-blue tetrazolium chloride/5-Bromo-4-chloro-3-indolyl phosphate 

(NBT/BCIP) or Fast Red (Roche Diagnostics, Indianapolis, IN) were used as 

enzymatic substrate.  For comparison of mdka and mdkb expression between 

circadian samples, four or five cryosections from eyes harvested at each of the 

six time points were mounted on the same slide, for each of the two midkine 

probes in three independent experiments. This ensured that sections from all 

time points were identically processed and allowed comparison of expression 

levels based on the intensity of the color reaction. Proliferating cells were 

identified on retinal sections using antibodies that recognize Proliferating-Cell 

Nuclear Antigen (p-8825, Sigma-Aldrich, St. Louis, MO) used at a dilution of 

1:1000 following antigen retrieval (Raymond et. al., 2006). Goat anti-mouse 

Alexa-Fluor 555, used at a dilution of 1:500 (Invitrogen-Molecular Probes, 

Eugene, OR).   

Photographic images 

 Images were taken with a Nikon DMX 1200 digital camera mounted 

on a Nikon Eclipse E800 epifluorescence microscope equipped with a differential 

interference contrast filter. Adobe Photoshop CS2  (Adobe Systems, San Jose, 

CA) was used to construct the figures. The layer tool was used to generate 

overlays. For any given composit figure, brightness and contrast were adjusted, if 

needed, identically for all panels of each figure. Images presented in Fig.3.6 were 
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taken with an AxioCam RM digital camera and a Zeiss Axio Imager 

epifluorescent compound microscope (Carl Zeiss Microimaging, Thornwood, 

NY). Images were false colored using the Zeiss AxioVision 4.0 software and 

exported into Adobe Photoshop CS2 (Adobe Systems, San Jose, CA) and 

treated as described above. 

Western Blot Analysis 

Affinity purified polyclonal antibodies against C terminal peptides of 

zebrafish Mdka and Mdkb were generated in rabbits (Invitrogen, Carlsbad, 

California). Peptides were selected with a protein toolbox plot (Invitrogen, 

Camarillo, CA), from the amino acid sequences of the proteins available in the 

NCBI database (accession numbers NP_571145 for Mdka and NP_571791 for 

Mdkb) based on antigenicity, hydrophilicity, flexibility and surface probability. C-

terminal peptides composed of 16 amino acid residues were chosen as 

immunogens (for Mdka amino acids 131-145: KVKNKPKGKKGKGKGC, and for 

Mdkb amino acids 132-147: CKPKGGEKKKGKGKEN).  

Specificity of the antibodies was tested using recombinant Mdka-MYC and 

Mdkb-MYC proteins. To generate Mdka-MYC and Mdkb-MYC proteins, 293T 

human embryonic kidney cells were plated on 100mmx20mm tissue culture 

dishes, transfected at 70% confluency with 2-4µg of plasmid: pCS2mdka-myc 

and pCS2mdkb-myc (gift from Dr. Christoph Winkler) using Lipofectamine 2000 

(Invitrogen, Carlsbad, CA). Three days after transfection, supernatants were 

collected and proteins purified with aMYC-coated agarose beads, following the 

manufacturer’s recommendations (Medical and Biological Laboratories 
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International, Woburn, MA). 2µl of purified protein, 10µl of supernatant and 125 

ng of human recombinant Midkine (R&D Systems, Minneapolis, MN) were 

separated by electrophoresis on a 12% Sodium-Dodecyl-Sulphate 

Polyacrylamide Gel (SDS-PAGE) and transferred onto nitrocellulose membranes 

(Schleicher and Schuell, Keene, NH).  Membranes were incubated at 4oC for at 

least 4 hours in Blocking Buffer (Phosphate-Buffered-Saline with 0.5% Tween 

[PBST] and 5% Non-Fat Dry Milk) followed by overnight incubation in primary 

antibodies, αMdka or aMdkb, diluted 1:500 in Blocking Buffer. Membranes were 

washed for one hour in PBST with 4-5 changes of the washing buffer, then 

incubated for one hour in secondary antibodies (goat anti-rabbit IgG conjugated 

to horse-radish peroxidase [Amersham Biosciences, Arlington Heights, IL]).  

Following 4-5 vigorous washes in PBST, proteins were visualized with the 

enhanced chemiluminescence (ECL) detection system (ECL- Amersham 

Biosciences, Arlington Heights, IL) and radiographic film.  

To test the specificity of the antibodies, 293T cells were transfected with 

pCS2mka-myc or pCS2mdkb-myc (as described above), supernatants were 

collected and cell lysates were prepared in L-RIPA lysis buffer (150mM NaCl, 

50mM Tris, 0.1% TritonX, 2mM EGTA, pH 7.5) supplemented with protease 

inhibitors (Complete-mini EDTA free, Roche, Indianapolis, IN). Supernatants 

(10µl/ from a total of 7ml) and cell lysates  (20µl of 150 µl) from pCS2mdka-myc 

and pCS2mdkb-myc transfected 293T cells were separated by SDS-PAGE, 

transferred onto nitrocellulose membranes, and immunoblotted with affinity 

purified Mdka and Mdkb antibodies diluted 1:500 in blocking buffer or anti-c-myc 
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antibodies (9E10, Santa-Cruz Biotechnology, Santa-Cruz, CA), diluted 1:1000 in 

blocking buffer, washed, incubated in secondary antibodies (anti-mouse or anti-

rabbit IgG-HRP) and specific bands were detected by ECL. 

To assay expression of endogenous Mdka and Mdkb in the zebrafish 

retina, 5 retinas were dissected from 5 different fish for each selected time-point 

of the circadian cycle.  The retinal pigment epithelium was carefully removed 

using Dumont #55 fine forceps (Fine Science Tools, Foster City, CA), and retinas 

homogenized with a Kontes pellet pestle (Fisher Scientific, Pittsburgh, PA) in 

75ml of lysis buffer (Phosphate Buffered Saline with 1% Triton X and protease 

inhibitors (Complete-mini EDTA free, Roche, Indianapolis, IN). Lysates were 

centrifuged for 5 minutes at 5000 rpm at 4oC to pellet nuclei, and transferred to 

fresh tubes.  The amount of retinal protein was determined with a BCA protein 

assay kit (Pierce, Rockford, IL).  Equal amounts of protein were loaded onto a 

12% SDS-PAGE and processed for immunoblotting, as described above. Equal 

protein loading was verified by reprobing membranes with a monoclonal antibody 

recognizing α, β and γ-actin in a broad range of species, used at a dilution of 

1:3000 (JLA20, Calbiochem, San Diego, CA), followed by incubation with the 

secondary antibody conjugated to HRP conjugate, at a dilution of 1:7000 and 

ECL detection of specific bands as described above.  

To quantify proteins detected on the radiographic film, the film was 

scanned using a flatbed scanner (Epson expression 1600) to obtaine a digital 

image that had both the Mdka and the actin band for each circadian time point. 

Adobe Photoshop CS2 (Adobe Systems, San Jose, CA) was used to invert the 
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image, the magic wand or lasso tool to select the specific bands, and the 

expanded histogram tool to measure the number and intensity of the pixels within 

each band. The product of these numbers, for the Mdka band was divided by the 

number obtained for the actin band at each time point.  The resulting value was 

compared to the value obtained for the 8pm time-point, in each circadian 

experiment; values were averaged between experiments and plotted on a graph 

as fold-change.  The 8pm time-point was chosen as reference, in order to 

compare relative expression values between experiments. 

 

RNA extraction and  Quantitative Reverse Trascriptase Real-Time PCR 

(QRTPCR) 

 To obtain retinal RNA, at selected times during the circadian cycle, adult 

zebrafish were anesthetized in 0.1% 3-Aminobenzoic Acid-Ethyl Ester (Sigma-

Aldrich, St. Louis, MO). Eyecups were removed and retinas dissected and 

carefully separated from the retinal pigment epithelium with fine forceps. Three to 

four retinas per time-point (7-16 mg) were pooled and homogenized with a sterile 

pestle (Kontes Pellet Pestle, Fisher Scientific) in 200 ml lysis buffer from the 

Ambion RNAqueous-Micro RNA isolation kit (Ambion, Austin, TX). RNA 

extraction was performed according to the manufacturer’s instruction. RNA was 

quantified with a spectrophotometer and RNA quality was assessed on ethydium 

bromide stained formalin-agarose gels.  0.5 or 1 mg of total RNA was used to 

synthesize cDNA using the Superscript II First-Strand Synthesis System for RT-

PCR (Invitrogen, Carlsbad, CA) following the manufacturers protocol. The 
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resulting first-strand reaction, diluted 1:4 was used as a template for the 

subsequent QRTPCR reaction performed with the iQ™ SYBR® Green Supermix 

(Bio-Rad, Hercules, CA) in the iCycler Real-Time PCR detection system (Bio-

Rad). The following amplification and melt curve analysis protocol was used: 

95oC 3min, 40 cycles (95oC: 20s, 57oC: 20s, 72oC: 30s), 95oC: 1min, 90X55oC: 

10s. Gene specific primers (0.4mM) were as follows: for mdka (NM_131070) 

forward:  tgaagttttgttactgagctttgtg, and reverse:  agccagtgtacataagtgtgtgtgt; for 

mdkb (NM_131716) forward: gctgttgtaatttgtagcaggtttt, and reverse: 

cattcaatctcgttgtcatttacag; for connexin 52.6 (NM_212819) forward: 

tggacagatggtacctttgcc and reverse: gttgtctggaatggaccttcg. (Connexin 52.6 

(Cx52.6) is a gap junction protein expressed exclusively in horizontal cells [Zoidl 

et. al. 2004]). Serial dilutions of the first strand reaction were run for efficiency 

calculations of each primer using the Pfaffl method (Pfaffl, MW, 2001). The 

threshold cycle (Ct) was determined by the iCycler using the maximum curvature 

approach and then maintained constant for subsequent runs. For each time-

point, relative gene expression values were determined using the calculated 

primer efficiencies and threshold cycle with the formula: E-Ct (Pfaffl, MW, 2001) 

divided by the expression at 8pm and represented graphically as fold-change. 

Specificity of the amplification products was verified by agarose gel 

electrophoresis of sample wells showing single bands with the expected size. 

Values obtained were averaged for 3-6 independent experiments and statistical 

significance (*p<0.05 or **p<0.01) was calculated by one-way ANOVA with 

Bonferroni correction for multiple comparisons using SPSS software. Samples 
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within one experiment (6 time-points collected at 4 hour intervals within one 24h 

period) were generated identically, enabling comparison within one experiment. 

Normalizing results to one timepoint (8pm) allowed comparison between 

experiments. Independently,   to verify that equal amounts of RNA were used for 

the circadian samples within one experiment, QRTPCR was performed with 

specific primers for  ribosomal protein L-19 (rpl19, accession number: 

NM_213208, primers forward: gagtatgctcagacttcagaagagg and reverse: 

atcaaaccatccttcaccaacttac), showing no difference in expression between the 

different time-points.
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3.3 RESULTS 

3.3.1 EXPRESSION OF mdka  IN HORIZONTAL CELLS DECREASES AT THE 
END OF THE DIURNAL LIGHT CYCLE 

 
I have previously shown that the secreted growth factors, Midkine-a and 

Midkine-b are present in the zebrafish retina and that their cellular expression is 

actively modulated in the retinal stem cell niche during two neurogenic events: 

retinal development and photoreceptor regeneration following photoreceptor 

death induced by exposure to intense fluorescent light (Chapter 2). Intriguingly, 

time-course analysis of mdka expression in the light-lesioned retina consistently 

showed a marked decrease at twelve hours after light onset. This time 

corresponded in each experiment  with approximately 9pm in the evening.  To 

pursue this observation and determine if this decrease is a consequence of light-

induced injury or a diurnal phenomenon that normally occurs in the retina, I 

analyzed mdka expression in parallel, in control retinas collected in the morning, 

15min after light onset, retinas from animals exposed for 12h to intense 

fluorescent light, and retinas from animals kept in normal aquaria lighting 

conditions, 12 hours after light onset, at the end of the day. This revealed that 

shortly after light onset in the morning, mdka is strongly expressed in horizontal 

cells, as well as in a few columnar cells in the INL, cells with morphology 

resembling Müller glia (Fig. 3.1 panel a). Following 12 hours of exposure to 

intense fluorescent light, mdka expression in the retina decreases markedly, to 

levels undetectable by in situ hybridization  (Fig.3.1, panel b).  Similarly, 

decreased expression of mdka is observed at the end the day, 12 hours after 
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light onset, in retinas of animals kept under normal lighting aquaria conditions 

(Fig. 3.1, panel c). 

 

 

 

 

 
 
Fig. 3.1 Expression of mdka in horizontal cells decreases at the end of the 
diurnal light cycle.  
In situ hybridizations that illustrate mdka expression in the adult zebrafish retina 
at the beginning of the diurnal light cycle (panel a), following 12 hours of 
treatment with intense fluorescent light (panel b) or at the end of the diurnal light 
cycle in normal aquaria conditions (panel c). Sections for all conditions were 
processed on the same slide. ONL; outer nuclear layer, INL, inner nuclear layer; 
GCL, ganglion cell layer. Scale bar in panel c equals 50 µm. 
 

 



 

  
101 

3.3.2  THE CIRCADIAN CLOCK REGULATES EXPRESION OF mdka 
mRNA AND PROTEIN IN HORIZONTAL CELLS 

 
 

 To more fully characterize mdka expression and its putative regulation by 

the circadian clock, I maintained zebrafish in total darkness for a period of 24 

hours and collected retinas at four-hour intervals. Retinas were divided into three 

groups, and mdka expression was evaluated by in situ hybridization, quantitative 

real-time PCR (QRTPCR) and Western blot analysis. In situ hybridization 

revealed that expression of mdka in horizontal cells is dynamically modulated in 

the absence of light during the circadian cycle.  Maximum expression is observed 

at 8am (Fig.3.2, panel c), one hour prior to the normal time of light onset (9am). 

Expression is high during the first half of the subjective day (Fig.3.2 panels d, e) 

and gradually decreases during the second half of the subjective day (Fig.3.2 

panel f) reaching a minimum at 12am, the beginning of the subjective night, one 

hour after the usual end of the light cycle in our zebrafish facility (Fig.3.2 panel a). 

 To confirm this circadian rhythm of expression using a rigorous 

quantitative method I performed quantitative real-time reverse-trascriptase 

polymerase chain reaction (QRTPCR) with mdka specific primers. I collected 

RNA from zebrafish retinas, at selected time-points during the subjective day and 

night, as described above, in three independent experiments. These quantitative 

data parallel the in situ hybridization data and confirm the circadian rhythm of 

mdka expression, showing maximum expression at 8am, one hour prior to the 

usual onset of the light period and minimum expression at 12 am, one hour after 
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the usual onset of the dark period (Fig. 3.2 a).  Analysis of variance with 

Bonferroni correction for multiple comparisons shows that the changes in mdka 

expression levels are strongly statistically significant  (Table 3.1). 
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Fig. 3.2 The circadian clock regulates expression of mdka and mdkb in the 
zebrafish retina.  
Panels a-f are in situ hybridization that illustrate retinal epression of mdka during 
subjective day (panels a-c) and subjective night (panels d-f). Panels g-n are in 
situ hybridizations that illustrate retinal expression of mdkb during subjective day 
(panels g-i) and subjective night (panels l-n). Arrows in panels a-n point to the 
location of horizontal cells. Arrowheads in panels g-n point to the location of 
amacrine and ganglion cells respectively. Sections for all time-points for each 
probe were processed on the same slide. ONL; outer nuclear layer, INL, inner 
nuclear layer; GCL, ganglion cell layer. Scale bar in f equals 50 µm. 
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Fig. 3.3 Quantitative analysis of circadian variations of mdka and mdkb    
Graphical representations of QRTPCR analysis of circadian expression of mdka 
(panel a), mdkb (panel b). Gene expression is represented as fold change 
compared to expression values at the end of the subjective day (8pm). Data 
represent average values from 3 experiments with standard errors represented 
for each time-point. Statistical significance was determined through one-way 
ANOVA with Bonferroni correction for multiple comparisons using SPSS (** 
p<0.01, * p<0.05). Descriptive statistics are presented separately in tables 3.1 
and 3.2.  
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I next asked whether this rhythm in mdka mRNA expression results in 

dynamic changes in levels of Mdka protein. To answer this question, antibodies 

that recognize Mdka protein were generated. To determine the specificity of the 

antibodies I transfected 293T cells with plasmids encoding mdka-MYC and 

mdkb-MYC (gift from Dr. Christoph Winkler), I collected lysates and supernatants 

from cell cultures and purified Mdka-MYC and Mdkb-MYC proteins from their 

respective supernatants. On immunoblots the Mdka antibody recognized the 

Mdka-MYC proteins in the cell lysate, supernatant and the purified protein as well 

as the human recombinant MK (hrMK), but not the purified Mdkb-MYC protein 

(Fig.3.4-1 panel a), showing that, the antibody is specific for Mdka.  

Western blot analysis of retinal lysates, from fish sacrificed at the same 

selected circadian time-points during a 24h period revealed that the circadian 

rhythm in Mdka protein expression mirrors the mRNA rhythm. Maximum 

expression is found at 8am and minimum expression at 12am (Fig. 3.4-2 a). This 

rhythm was consistent over two independent experiments. Taken together, these 

data show that the expression of Mdka in horizontal cells of the zebrafish retina is 

regulated by the circadian clock and both the mRNA and the protein follow the 

same dynamic changes with maximum expression prior to the onset of the 

subjective day and minimum expression at the beginning of the subjective night. 
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Fig. 3.4-1 Specificity of zebrafish αMdka and αMdkb antibodies 
Panel a. Lanes 1-4 represent immunodetection with αc-myc antibodies (lanes 1 
and 2) or αMdka antibodies (lanes 3 and 4) of Mdka-MYC protein separated by 
SDS-PAGE from the same supernatants (lanes 1 and 3) and cellular lysates 
(lanes 2 and 4) of 293T cells transfected with pCS2mdka-myc. Lanes 5-8 
represent immunodetection of Mdka with αMdka antibodies of human 
recombinant midkine (hrMK, lane 5), purified Mdka (lane 6) and supernatant from 
293T cells transfected with pCS2mdka-myc (lane 8). Note that the antibody does 
not detect the purified Mdkb (lane 7). 
Panel b. Lanes 1-4 represent immunodetection with αc-myc antibodies (lanes 1 
and 2) or αMdkb antibodies (lanes 3 and 4) of Mdkb-MYC protein separated by 
SDS-PAGE from the same supernatants (lanes 1 and 3) and cellular lysates 
(lanes 2 and 4) of 293T cells transfected with pCS2mdkb-myc. Lanes 5-8 
represent immunodetection of Mdkb and Mdka with αMdkb antibodies of human 
recombinant Midkine (hrMK, lane 5), purified Mdka (lane 6), purified Mdkb 
(lane7) and supernatant from 293T cells transfected with pCS2mdkb-myc. Note 
that the antibody detects the purified Mdka (lane 6).  
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Fig. 3.4-2 The circadian clock regulates the expression of Mdka protein 
Panel a shows an immunoblot with antibodies against Mdka and actin of retinal 
lysates obtained from zebrafish at specified times during the circadian cycle and 
separated by SDS-PAGE. Lower bands represent the Mdka protein and upper 
bands represent actin, used as loading control. 
Panel b illustrates the quantification of circadian changes in retinal Mdka protein 
expression, normalized to expression of actin, average of 2 experiments. Results 
are shown as mean fold change compared to the expression at 8pm. 
Panel c shows an immunoblot with antibodies against Mdkb and actin of retinal 
lysates obtained from zebrafish at specified times during the circadian cycle and 
separated by SDS-PAGE. Lower bands (approximately 15 and 20 kDa) likely 
represent Mdka and Mdkb proteins and upper bands (approximately 40kDa) 
represent actin, used as loading control. 
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3.3.3 THE CIRCADIAN CLOCK MAY MODULATE  

CELLULAR EXPRESSION OF mdkb IN HORIZONTAL CELLS 

 
To test if expression of mdkb is modulated by the circadian clock, we 

performed in situ hybridization with specific probe against mdkb, on retinas 

collected during the subjective day and night, as described above. This analysis 

reveled that during the day, expression of mdkb is confined to the inner (vitreal) 

retina, where mdkb is expressed in the ganglion cell layer (GCL) and the 

amacrine region of the inner nuclear layer (INL) (Fig.3.2, panels l and m). At the 

end of the subjective day and the beginning of the subjective night, expression of 

mdkb in the INL increases (Fig.3.2 panels n and g). Midway through the 

subjective night (4am and 8am time-points) mdkb is distinctly expressed in 

horizontal cells in addition to the GCL and cells of the vitreal INL (Fig. 3.2, panels 

h and i).  

To test if there is a quantitative change in the circadian expression of 

mdkb, similar to mdka, we performed QRTPCR analysis with primers specific for 

mdkb on retinal RNA samples collected at circadian time-points, as described 

above. Three independent experiments revealed a trend for increased 

expression of mdkb at the end of the subjective day (8pm) and beginning of the 

subjective night (12am), and decreased expression during the day (12pm and 4 

pm, Table 3.2), these quantitative changes in expression are more variable, and 

do not reach statistical significance (see Table 3.2). 
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To analyze expression of Mdkb protein in the retina we generated 

antibodies against a C-terminal peptide of Mdkb. This antibody appears to 

recognize both Mdka and Mdkb, since it detects bands not only in the lanes with 

lysates, supernatant from mdkb-myc transfected cells or purified Mdkb-MYC 

protein, but also in the lane with Mdka-MYC purified protein (Fig. 3.4-1b). On 

immunoblots with retinal lysates collected at the specified circadian times, the 

Mdkb antibody reveals two distinct bands, at approximately 15kDa and 20kDa.  

The higher molecular weight band appears to follow the same circadian rhythm 

as Mdka (Fig. 3.4-2c).  According to their amino-acid composition (146 amino-

acids for Mdka and 147 amino-acids for Mdkb), both Midkines are 13 kDa 

proteins.  In our gel conditions, Mdka runs approximately with the 15kDa marker 

(Fig.3.4-2a), and Mdkb should run very similarly. We cannot determine whether 

the lower molecular weight bands in the circadian lysates immunoblotted with 

Mdkb antibodies represent Mdkb or Mdka or both, or the identity of the protein 

approximately 20kDa in size.  Thus we cannot conclude whether Mdkb protein is 

modulated during the circadian cycle.  
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3.3.4 mdka IS EXPRESSED IN PRESUMPTIVE MÜLLER GLIA AT THE 

RETINAL MARGIN 
 

 The rod lineage in zebrafish retina has been described to have at the 

origin Müller cells in the INL which divide asymmetrically, give rise to rod 

progenitors that migrate in the ONL, where they divide a few times more to 

generate rod precursors that differentiate into rods (Johns, 1982, Bernardos et al. 

2007, Otteson and Hitchcock, 2003). Young Müller cells at the periphery of the 

zebrafish retina have been shown to express numerous molecules characteristic 

of neural stem cells, such as Brain Lipid Binding Protein and apo-lipoprotein E 

(Raymond et al., 2006).  We observed that at the time when mdka expression in 

horizontal cells is lowest (12am, Fig. 3.5a), cells with Müller cell morphology at 

the retinal margin express mdka (Fig.3.5b).  In addition, at both times, mdka is 

expressed in a few cells at the periphery of the retina, the location of pluripotent 

undifferentiated retinal stem cells (Raymond et. al., 2006).  
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Fig.3.5 At the retinal margin, mdka is expressed in the CMZ and 
presumptive Müller glia  
Panels a and b are in situ hybridization that illustrate epression of mdka  at the 
retinal margin at the circadian time of maximum mdka expression (8am, panel a) 
and minimum mdka expression (12am, panel b). Black arrow  in panel a points to 
horizontal cells that strongly express mdka at this time. Blue arrows in panels a 
and b point to the location of peripheral-most cells in the CMZ that express mdka. 
Red arrows in panel b point to the presumptive Müller glia that express mdka at 
the time when expression of mdka in horizontal cells is minimal. Sections were 
processed on the same slide. ONL, outer nuclear layer, INL, inner nuclear layer; 
GCL, ganglion cell layer. Scale bar in f equals 50 µm 
 
 
 
 

3.3.4 ROD PRECURSORS IN THE OUTER NUCLEAR LAYER DO NOT 
EXPRESS mdka or mdkb 

 
 
 In the course of the experiments described in Chapter 2 we observed that 

photoreceptor precursors in the ONL of light-lesioned retinas, express both mdka 

and mdkb. To test if expression of mdka and mdkb in photoreceptor progenitors 
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is a regeneration specific event or if it is characteristic of growth-associated 

neurogenesis I performed in situ hybridization in combination with proliferating 

cell nuclear antigen (PCNA) immunohistochemistry, on retinas from zebrafish 

collected at 12pm, a time during the circadian cycle when mdka shows high 

expression. This analysis revealed that neither mdka nor mdkb are expressed in 

rod precursors, identified as such, by their laminar location in the ONL, and 

expression of PCNA (Fig.3.6). 

 

 

Fig.3.6 Rod precursors in the ONL do not express mdka or mdkb  
Panels a and d are in situ hybridization that illustrate expression of mdka and 
mdkb respectively in the retina of a zebrafish collected at 12pm. Panels b and e 
are the same sections as in a and d, immunostained with antibodies against 
PCNA. Panels c and f are are digital overlays of panels a and b, and d and e 
respectively. Arrowheads identify rod precursors that express PCNA but not 
mdka or mdkb. PCNA, Proliferating Cell Nuclear Antigen. 
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Table 3.1    CIRCADIAN EXPRESSION OF mdka IN THE ZEBRAFISH RETINA 
 

Data obtained with Quantitative Real-Time Reverse-Transcriptase Polymerase 
Chain Reaction (QRTPCR) 

Relative values compared to 8pm. 
 
 

Experiment 12 am 4 am 8 am 12 pm 4 pm 8 pm Min Max 

1 0.6599 0.8043 1.6980 1.2189 1.1373 1 0.6599 
(12am) 

1.6980 
(8am) 

2 1.0282 1.0572 1.6504 1.6875 1.1493 1 1.0282  
(12 am) 

1.6875 
(12pm) 

3 1.2099 1.1042 1.8055 1.5799 1.5501 1 1.1042  
(4am) 

1.8055 
(8am) 

Mean 0.9660 0.9886 1.7180 1.4955 1.2789 1   

Std. Dev. 0.2802 0.1613 0.0794 0.2455 0.235 0   

Std. Error 0.1618 0.0931 0.0458 0.1417 0.1356 0   

95% CI 
lower bound 

0.2698 0.5879 1.5207 0.8856 0.6952 1   

95% CI 
upper bound 

1.6623 1.3893 1.9153 2.1054 1.8627 1   

 
One way ANOVA with Bonferroni correction for multiple comparisons 

Pairwise 
compari-

son 

Mean 
differenc

e 

 
p value 

Pairwise 
compari-

son 

Mean 
differenc

e 

 
p value 

Pairwise 
compari-

son 

Mean 
difference 

 
p 

value 
12am vs 

4am 
-0.02253 1.000 8am vs 

12am 
0.75197 0.007** 4pm vs 

12am 
0.31290 1.000 

12am vs 
8am 

-0.75197 0.007** 8am vs 
4am 

0.72943 0.009** 4pm vs 
4am 

0.29037 1.000 

12am vs 
12pm 

-0.52947 0.089 8am vs 
12pm 

0.2225 1.000 4pm vs 
8am 

-0.43907 0.255 

12am vs 
4pm 

-0.3129 1.000 8am vs 
4pm 

0.43907 0.255 4pm vs 
12pm 

-0.21657 1.000 

12am vs 
8pm 

-0.03397 1.000 8am vs 
8pm 

0.71800 0.01* 4pm vs 
8pm 

0.27893 1.000 

4am vs 
12am 

0.02253 1.000 12pm vs 
12am 

0.52947 0.089 8pm vs 
12am 

0.03397 1.000 

4am vs 
8am 

-0.72943 0.009** 12pm vs 
4am 

0.50693 0.115 8pm vs 
4am 

0.1143 1.000 

4am vs 
12pm 

-0.50693 0.115 12pm vs 
8am 

-0.22250 1.000 8pm vs 
8am 

-0.718 0.01* 

4am vs 
4pm 

-0.29037 1.000 12pm vs 
4pm 

0.21657 1.000 8pm vs 
12pm 

-0.4955 0.132 

4am vs 
8pm 

-0.01143 1.000 12pm vs 
8pm 

0.49550 0.132 8pm vs 
4pm 

-0.27893 1.000 
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Table 3.2    CIRCADIAN EXPRESSION OF mdkb IN THE ZEBRAFISH RETINA 
 

Data obtained with Quantitative Real-Time Reverse-Transcriptase Polymerase 
Chain Reaction (QRTPCR) 

Relative values compared to 8pm. 
 

Experiment 12 am 4 am 8 am 12 pm 4 pm 8 
pm 

Min Max 

1 0.6127 0.1035 0.2938 0.4176 0.2846 1 0.1035  
(4 am) 

1  
(8pm) 

2 1.5518 0.9176 0.834 0.9625 0.8120 1 0.8120 
(4pm) 

1.55  
(12 am) 

3 0.8471 0.8083 0.8227 0.5001 0.4856 1 0.4846 
(4pm) 

1  
(8pm) 

Mean 1.0039 0.6098 0.6502 0.6242 0.5274 1   
Std. Dev. 048878 0.44186 0.30867 0.29642 0.26617 0   
Std. Error 0.2822 0.25511 0.17821 0.17114 0.15368 0   

95% CI lower 
bound 

-0.2103 -0.4878 -0.1166 -0.1121 -0.1338 1   

95% CI upper 
bound 

2.2181 1.7074 1.4170 1.3605 1.1886 1   

 
One way ANOVA with Bonferroni post-hoc correction for multiple comparisons 

Pairwise 
comparison 

Mean 
difference 

 
p 

value 

Pairwise 
comparison 

Mean 
difference 

 
p 

value 

Pairwise 
comparison 

Mean 
difference 

 
p 

value 
12am vs 4am 0.39407 1.000 8am vs 12am -0.35370 1.000 4pm vs 12am -0.47647 1.000 
12am vs 8am 0.35370 1.000 8am vs 4am 0.04037 1.000 4pm vs 4am -0.08240 1.000 

12am vs 
12pm 

0.37967 1.000 8am vs 12pm 0.02597 1.000 4pm vs 8am -0.12277 1.000 

12am vs 4pm 0.47647 1.000 8am vs 4pm 0.12277 1.000 4pm vs 12pm -0.968 1.000 
12am vs 8pm 0.00387 1.000 8am vs 8pm -0.34983 1.000 4pm vs 8pm -0.4726 1.000 
4am vs 12am -0.39407 1.000 12pm vs 

12am 
-0.37967 1.000 8pm vs 12am -0.00387 1.000 

4am vs 8am -0.4037 1.000 12pm vs 4am 0.0144 1.000 8pm vs 4am 0.39020 1.000 
4am vs 12pm -0.1440 1.000 12pm vs 8am -0.2597 1.000 8pm vs 8am 0.34983 1.000 
4am vs 4pm 0.08240 1.000 12pm vs 4pm 0.0968 1.000 8pm vs 12pm 0.37580 1.000 
4am vs 8pm -0.39020 1.000 12pm vs 8pm -0.37580 1.000 8pm vs 4pm 0.47260 1.000 
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DISCUSSION 

The two zebrafish midkine paralogs, evolved following a genome-wide 

duplication in fish (Winkler et al 2003), are encoded by genes located on different 

chromosomes, have different expression patterns in the developing zebrafish, 

and appear to subserve different functions (Winkler and Moon, 2001, Winkler et 

al, 2003, Schäfer et al., 2005, Liedtke and Winkler, 2008). In the developing and 

adult retina, mdka and mdkb are expressed in different types of retinal cells 

(Chapter 2), and likely have distinct biological functions. Here we show that the 

circadian clock regulates expression of Mdka in horizontal cells, which results in 

changes in expression that follow the same time-course at both mRNA and 

protein levels, expression being higher during the subjective day than during the 

subjective night. In horizontal cells, expression of mdkb appears also to be 

modulated by the circadian clock, since in situ hybridization consistently shows 

expression of mdkb in these cells only during the second half of the subjective 

night. Since mdkb is expressed by other retinal cells (ganglion and amacrine 

cells), and we observe circadian changes in horizontal cells, quantitative analysis 

of mdkb expression in the whole retina didnʼt reveal a statistically significant 

change in the circadian expression of mdkb. This analysis showed only the 

existence of a trend for lower expression during the subjective day compared to 

the subjective night.  

The dynamic and selective changes in expression of mdka and mdkb in 

the zebrafish retina during the circadian cycle indicate that expression of these 
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genes is regulated by different mechanisms. From these observations I infer that 

the two proteins primarily exert their biological actions at different times during 

the circadian cycle. This reinforces the suggestion that mdka and mdkb have 

developed independently, under purifying selection (Winkler and Moon, 2001), 

because they have different patterns of expression and have so far been 

described to subserve different functions during early embryogenesis (Winkler 

and Moon, 2001, Winkler et al., 2003, Schäfer et al, 2007, Liedtke and Winkler, 

2008).  

In the adult retina, midkines are expressed in very distinct populations of 

cells: mdka in horizontal cells and mdkb in ganglion cells and in the amacrine 

layer of the INL. There is, however, a period during the diurnal cycle, the second 

half of the subjective night, when expression of both midkines coincides within 

horizontal cells (Fig. 3.2 panels b,c,h,i). This is similar to the expression of both 

midkines in horizontal cells in the regenerating retina, following photoreceptor 

apoptosis induced by exposure to intense light (Chapter 2). Thus, circadian 

events that occur in the retina during this period of the circadian cycle, may be 

similar to events in the regenerating retina, and these events may be linked to 

growth-associated neurogenesis in the retina.    

No information exists to date as to receptors through which Mdka and 

Mdkb exert their function in zebrafish. Also unknown are the signaling pathways 

and downstream targets of Mdka and Mdkb. In mammals, Midkine (MK) can form 

dimers and its biological activities are dependent on the crosslinking status of 

ligand molecules (Kojima et al., 1997, Iwasaki et al., 1997, Qiu et al., 2000). It is 
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possible that zebrafish Midkines can dimerize as well, since the two glutamine 

residues responsible for ligand dimerization by tissue-type 2 trans-glutaminase 

(Kojima et al., 1997) are conserved in both mdka and mdkb (Winkler et al., 

2003). It may also be possible that mdka and mdkb, when expressed in the same 

cells, heterodimerize to activate different downstream targets, than when they 

are expressed in different cells. Alternatively, the functions of each Midkine in 

horizontal cells could be distinct, and they may independently regulate different 

cellular events. 

Since I have previously shown that Midkines in the zebrafish retina are 

actively modulated during retinogenesis and photoreceptor regeneration, I 

wanted to know if there is any evidence for involvement of Midkines in growth-

associated neurogenesis. In this chapter I showed expression of mdka in 

presumptive Müller glia at the retinal margin, cells that we know are at the origin 

of the rod photoreceptor lineage (Bernardos et al., 2007). I also showed that, 

unlike the regenerating retina, when both mdka and mdkb are expressed in 

proliferating photoreceptor precursors in the outer nuclear layer, in the intact 

retina, rod progenitors do not express mdka or mdkb. This suggests that 

expression of Midkines in photoreceptor precursors is a regeneration-specific 

event, possibly restricted to cone photoreceptors precursors, which are not 

present in the central retina of growing fish. 

The consistent and robust circadian rhythm of mdka expression in 

horizontal cells is very intriguing but its function is unknown. In zebrafish, 

horizontal cells produce GABA (Sandell et al, 1994, Connaughton et al, 1999) 
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and expression of GABA is influenced by the light/dark cycle, with more GABA 

produced in the light adapted retina compared with the dark adapted retina 

(Dominic Lam, 1972, Connaughton et al., 2001). Aside from its roles as an 

inhibitory synaptic neurotransmitter, non-synaptic, non-vesicular release of GABA 

has been shown to inhibit proliferation of GFAP-positive progenitors in the sub-

ventricular zone (Liu et al., 2005). In some teleost fish a diurnal pattern of rod 

genesis has been described, with increased numbers of proliferating cells in the 

ONL during the night than during the day (Chiu et al, 1995, Julian et al., 1998). I 

found a similar trend in the retina of zebrafish, with increased expression of pcna 

during the subjective night compared to the subjective day, but variability is high 

and this trend does not reach statistical significance (see Appendix, section A4). 

It is possible that diurnal proliferation of rod precursors in the ONL of the fish 

retina is inhibited through a similar mechanism as in the subventricular zone of 

mammals, by means of GABA secreted by horizontal cells or maybe Mdka. 

These inferences are purely speculative, based on the presence of GABA in 

horizontal cells in increased amounts during the light phase of the diurnal cycle, 

similar to Mdka, and a trend for decreased proliferation in the zebrafish retina 

during the subjective day. 

An alternate possibility for a functional significance of the increased levels 

of Mdka during the subjective day is that Mdka has a neuroprotective effect on 

photoreceptor cells during the time when they are exposed to increased amounts 

of light. In mammals Midkine has been shown to have antiapoptotic effects on a 
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variety of transformed cells, and this effect is exerted by activation of the PI3K 

signaling pathway or reduction of active caspase-3 (Owada et al, 1999, Tong et 

al., 2007). In albino rats, intravitreal injection of Midkine has been shown to 

promote survival and preserve function of photoreceptor cells following light-

induced injury (Unoki et al., 1994, Masuda et al., 1995). These studies were done 

with no evidence that Midkine is normally expressed in the retina. In zebrafish, 

Mdka in horizontal cells may protect photoreceptors from deleterious effects of 

light during the light phase of the circadian cycle. 

In conclusion, our data show, for the first time, that the circadian clock 

regulates quantitative expression of Mdka and cellular localization of mdkb in 

horizontal cells the zebrafish retina, with increased expression of Mdka in 

horizontal cells during the subjective day and increased expression of mdkb in 

horizontal cells during the subjective night. The two midkines therefore show 

asynchronous circadian regulation in horizontal cells, suggesting different 

biological activities for these molecules, at distinct circadian times. Expression of 

mdkb in horizontal cells during the subjective night, similar to the regenerating 

retina, suggests a role in persistent neurogenesis. The robust circadian rhythm of 

Mdka expression in horizontal cells is intriguing, and we have yet to determine its 

functional importance. 
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CHAPTER 4 
CONCLUSIONS AND PERSPECTIVES 

 

4.1 MIDKINES JOIN THE FAMILY OF MOLECULAR COMPONENTS IN THE 

NEURAL STEM CELL NICHE OF THE ZEBRAFISH RETINA 

 

This project was initiated from an unbiased screen to identify secreted 

molecules in the regenerating retina, with increased expression following 

photoreceptor cell death, which we hypothesized trigger, sustain or regulate 

important regenerative events. Several candidate molecules were identified from 

a gene array experiment analyzing differential gene expression in lesioned and 

control retinas, and my work has focused on mdkb and its paralog mdka. Given 

that no information about these signaling molecules in the zebrafish retina 

existed prior to this work, I first set out to describe in detail their cellular 

expression, during both retinal development and regeneration. mdkb is 

expressed in postmitotic neurons in the developing retina, ganglion and amacrine 

cells in the intact retina, and Müller cells, photoreceptor precursors and horizontal 

cells in the regenerating retina. Unlike two other gene-chip array screens that 

analyzed gene expression changes during heart and fin regeneration in zebrafish 

(Schebesta et al., 2006, Lien et al., 2006), which identified mdka, our analysis of 

regenerating retina identified mdkb. This suggests that mdkb is a molecule more 

involved in retina and, by extension, CNS regeneration. Its expression in early 

postmitotic neurons suggests it may be important in neuronal differentiation, 

possibly in the earliest steps of differentiation or neuronal process elongation.  

Independently, I identified mdka as a molecular component of the retinal stem 
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cell niches in both the developing and regenerating retina and this, together with 

the evidence that mdka is induced in the regenerating heart and fin, suggests 

that mdka is a component of more general regenerative events, and that its 

actions are more general and not limited to specific tissues. Expression of mdka 

in the peripheral-most region of the CMZ, the location of pluripotent retinal stem 

cells (Raymond et al., 2006), further underscores that mdka exerts its biological 

activities during early phases of retinogenesis and/or injury-induced regeneration 

and that mdka specific actions may be common in different tissues.   

The transient expression of mdka in Müller cells during retinal development 

as well as in young Müller cells at the retinal margin and also in proliferating 

Müller glia during photoreceptor regeneration shows that Mdka is a consistent 

and important component of the molecular signature of Müller cells when they 

exhibit features of neural stem cells. Young Müller cells at the retinal margin 

express the radial glia/astrocyte marker brain lipid binding protein (BLBP 

[Raymond et. al, 2006]), which is associated with neurogenic stem cell niches 

and immature astrocytes (Raymond et al., 2006, Campbel and Gotz, 2002). 

BLBP has been shown to be a target of Notch signaling (Anthony et al., 2005) 

and Midkine has been reported to bind the Notch2 receptor and activate target 

molecules downstream of Notch (Huang et al., 2008). Similar to BLBP, mdka is 

expressed in young Müller cells at the retinal margin and induced upon light-

lesion distinctly in proliferating Müller glia at the site of the lesion (Raymond et 

al., 2006, this report Chapter 2 and Appendix section A3). Numerous members of 

the Notch signaling cascade are expressed in the circumferential marginal zone 
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of the zebrafish. Notch signaling is important for maintenance of the neural stem 

cell pool and differentiation of Müller cells (Gaiano and Fishell, 2002, Bernardos 

et al, 2005). It is possible that Mdka expressed in the CMZ and in young Müller 

glia activates members of the Notch signaling cascade contributing to the 

aforementioned functions. 
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  Fig. 4.1 Midkines in the retinal stem cell niches 
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Analyzing mdka and mdkb expression patterns shows that these molecules 

are complementary in the timing and location of their expression: mdka is 

expressed in the CMZ, mdkb is expressed in postmitotic neurons; mdka is 

expressed at the outer rim of the INL, mdkb is expressed in the inner retina; 

mdka expression in horizontal cells is increased during the day, mdkb expression 

is increased during the night in horizontal cells. It is tempting to speculate that the 

two Midkines exert their actions through different receptors at different times of 

the day. If their actions are different, which I believe they are, the presence of just 

one Midkine paralog in the extracellular milieu would increase its specificity and 

prevent unwanted crosstalk.  

Mammalian Midkine can form dimers and multimers, in vitro and in vivo 

through the crosslinking activity of tissue type-2 transglutaminase on glutamines 

(Gln42, Gln44 and Gln95 [Kojima et al., 1995, Kojima et al., 1997, Iwasaki et al., 

1997, Qiu et al., 2000]). Dimer and multimer formation alters the biological 

activities of MK (plasminogen activator activity and neurite outgrowth promoting 

activity [Kojima et al., 1995 and 1997]). Two of the glutamines responsible for 

dimerization of the Midkine ligand (Gln43 and Gln95) are highly conserved across 

species, and are present in both zebrafish mdka and mdkb (Winkler et al., 2003).  

Whereas in the normal adult retina mdka and mdkb are largely expressed in 

different cells at different times of the day, there are instances when they are co-

expressed in the same cells at the same time: during retinal regeneration mdka 

and mdkb are present in proliferating Müller glia, their progeny and in horizontal 
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cells, and during the normal circadian cycle, at the end of the subjective day, 

both midkines are expressed by horizontal cells. This suggests that co-

expression of Midkines in horizontal cells may regulate aspects of neurogenesis 

during retinal regeneration and that similar events may occur during the latter half 

of the subjective night. I hypothesize these events are linked to growth-

associated neurogenesis. It is possible that during the times when the two 

Midkines are expressed by the same cells, they heterodimerize to activate 

neurogenic-specific signaling pathways.  

Alternatively, in the normal retina, during the circadian cycle, mdka and mdkb 

may regulate each other, and increased expression of mdka during subjective 

day, could be initiated by the transient expression of mdkb in horizontal cells prior 

to the onset of the subjective day, or increased expression of mdka may down-

regulate mdkb.  Given that during retinal development mdka and mdkb are 

expressed sequentially in subsets of cells with different degrees of differentiation, 

it is easy to envision a mechanism by which turning one midkine on results in 

turning off the other.   

To test this prediction one could use an in vivo or an in vitro approach. This 

would require generating reporter constructs that drive, for example, GFP under 

the control of mdka or mdkb promoter elements, and expressing these constructs 

in a cell line that responds to Midkine or in transient transgenic zebrafish. The 5’ 

promoter sequence used for generating the reporter constructs could be 

determined by analyzing 1000-2000 base-pairs upstream of the translation 

initiation site, for both genes, and identifying important putative regulatory 
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elements. We know that mdkb can be modulated by retinoic acid in a dose 

dependent manner (Winkler and Moon, 2001). This information could be useful to 

test promoters in vitro, to see if treatment with retinoic acid (RA) can modulate 

the expression of the reporter. It can be assumed that if the promoter directs (in 

transient transgenics) expression of the reporter (for example GFP) to the 

appropriate cellular location in the retina, then it likely harbors many, if not all, 

necessary regulatory elements required for proper function. Several constructs 

could be generated encoding various segments from the 5’ upstream genomic 

sequence, and tested in vitro for modulation of the reporter signal upon RA 

administration in a cell line that is likely to respond to MK or in vivo, in transient 

transgenic zebrafish, for appropriate cellular localization. 

Müller cells may harbor receptors and intracellular signaling molecules 

needed for the biological actions of both Midkines, since they express mdka and 

mdkb during retinal regeneration. Zebrafish Müller cells could be isolated by flow-

cytometry from the gfap:GFPMI2001 transgenic zebrafish line generated by 

Rebecca Bernardos (Bernardos and Raymond, 2006), cultured in vitro, 

transfected with the reporter constructs and reporter activity measured following 

addition of RA, Mdka or Mdkb. Also, since Müller glia are able to synthesize both 

Mdka and Mdkb, endogenous production of Mdka and Mdkb can be tested by 

Western blot analysis of supernatants in cells treated with RA, Mdka or Mdkb. 

This system could be useful in uncovering other factors that regulate expression 

of Mdka and Mdkb.  
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A caveat of this experiment would be that dissociating the retina may alter the 

composition of the receptors presented on cell membranes.  If this should be the 

case, a similar experiments could be performed in organotypic retinal cultures, 

which could be electroporated with the reporter constructs (Kusterman et al., 

2008), or endogenous production of Mdka or Mdkb could be assayed following 

administration of Mdka-MYC or Mdkb-MYC.   In vivo, this question could be 

addressed using transgenic fish that conditionally express a dominant negative 

form of Mdka or Mdkb (see section 4.4). 

 

4.2 HORIZONTAL CELLS 

One of the important findings in my work is that it revealed a potential and 

unexpected role of horizontal cells in retinal regeneration and possibly in growth 

associated rod photoreceptor production. Their laminar position is ideal for 

influencing the proliferation, migration and differentiation of photoreceptor 

precursors. Horizontal cells can form large networks by means of their complex 

intercellular junctions, and thus may distribute cytoplasmic molecules over large 

areas and potentially alter the makeup of the extracellular milieu, to make it 

permissive for the proliferation, migration and functional integration of newly 

formed neurons. In mammals, horizontal cells are among the first retinal neurons 

to differentiate. It has been proposed that they play a pioneering role in the 

postnatal development of the outer plexiform layer (OPL) (Messersmith and 

Redburn, 1993) and in the development of rod photoreceptors (Hagedorn et. al, 

1998). Selective destruction of type A horizontal cells results in a reversal of the 
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normal complement of photoreceptor cells with an abnormally high rod/cone ratio 

and abnormal synaptic connections in the OPL (Messersmith and Redburn, 

1990). Zebrafish horizontal cells have been less studied compared to other 

retinal cell types (Song et al., 2008), but their function is largely similar to the 

mammalian retina.  It is possible that Mdka and Mdkb in horizontal cells regulate 

the cone/rod ratio and/or synaptogenesis of the newly generated neurons during 

photoreceptor regeneration.  

The strong circadian regulation of Mdka in horizontal cells is a very 

intriguing finding, the functional importance of which is not known. I identified 

mdka as a component of the neural stem cell niche during neurogenic events, 

and in other teleosts neurogenesis follows a diurnal rhythm, so I hypothesized 

that the circadian expression of mdka may be linked to circadian neurogenesis in 

the zebrafish retina. I therefore analyzed proliferation in retinas from fish kept in 

constant darkness, over a period of 24 hours.  This revealed a trend for 

proliferation to be higher at the beginning of the subjective night than at the end 

of the subjective day, similar to other teleosts, yet with high variability (Appendix 

section A4). I also hypothesized that the decrease in expression of mdka at the 

end of the subjective day is linked to the circadian rhythm of proliferation and 

that, if the rhythm of mdka expression is perturbed by injecting exogenous MK at 

the time of its minimum endogenous expression, the rhythm of proliferation in the 

retina would be altered. Initial experiments have shown, by QRTPCR, that 

following exogenous intra-peritoneal administration of human recombinant MK 

pcna expression increases and the circadian rhythm in pcna expression is 
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altered. However, attempts to replicate these results have produced inconsistent 

results. Moreover, analyzing retinal sections by PCNA immunohistochemistry did 

not reveal an increase in PCNA+ cells in the ONL of hrMK injected fish. Finally, 

intravitreal injection of hrMK showed no difference in proliferation between MK 

and PBS injected fish.  In both of these groups expression of pcna was increased 

over the uninjected fish, suggesting the effect of the injection itself was to induce 

proliferation.  

Similar experiments, with intravitreal injections of recombinant Mdka-MYC 

produced in 293T cells as described in Chapter 2, showed no difference in 

proliferation between MK and PBS injected animals, over a time-course of three 

days. These experiments indicate that Mdka is likely not a direct mitogen for 

retinal stem cells or rod precursors cells of the zebrafish retina, although we 

cannot exclude alternate explanations for these negative data. Mdka may induce 

limited proliferation, lower than the injury-induced response generated by the 

injection itself. To address this possibility I injected hrMK intraperitoneally, but 

found no consistent changes in proliferation between the control and MK injected 

group. Since I have no independent evidence that systemic administration of MK 

makes the protein available in the retina, it is difficult to interpret these data.  

These experiments have led me to believe that the circadian expression of 

mdka in horizontal cells is not directly linked to growth-associated rod genesis. 

Also, during the light-injury induced retinal regeneration I have observed 

expression of mdka and mdkb in proliferative photoreceptor precursors in the 

ONL (Fig. 2.6).  In the uninjured retina, I have not observed mdka expression in 
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PCNA+ rod precursors in the ONL. (Fig. 3.6). I cannot exclude that due to the 

small number of rod precursors in the uninjured retina, the likelihood of finding 

co-expression of mdka and PCNA is lower, and therefore, such examples may 

escape observation. Nevertheless, expression of mdka in rod precursors in the 

ONL may be an event exclusively related to regeneration. However, mdka is 

expressed in presumptive Müller glia at the retinal margin (Fig.3.5) and we know 

that these cells are at the origin of the rod photoreceptor lineage (Bernardos et 

al., 2007). Therefore, while mdka in horizontal cells may not be linked to the rod 

genesis, mdka in Müller cells may be. Further, expression of mdka in horizontal 

cells does not decrease with increase in age, though this question has not been 

systematically addressed. However, labeling of presumptive Müller glia with 

mdka is increased in younger animals compared with older ones. In the zebrafish 

retina, neurogenesis decreases with age and adult fish grow at a very slow rate. 

If mdka in horizontal cells is linked to rod genesis, expression therefore would be 

expected to decrease with age, which was not observed.  

The question remains, what does Mdka do in horizontal cells? There is 

little information to build upon, since expression of Midkines in the zebrafish 

retina is novel and so is its circadian regulation. Although mice engineered to 

lack functional MK protein are grossly normal (Nakamura et al, 1998), a striking 

finding from the analysis of transcriptional profiles in aortae from Mk -/-  and 

wildtype mice is  the robust elevation of key enzymes of the catecholamine 

biosynthesis pathway, specifically of tyrosine hydroxylase, DOPA decarboxylase 

and dopamine β-hydroxylase, suggesting that Midkine negatively regulates the 
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norepinephrine synthesis pathway in  the aorta of mice (Ezquerra et al., 2006). In 

the retina of goldfish, dopamine release is regulated by the circadian clock, 

increasing during the subjective day and decreasing during the subjective night 

(Ribelayga et al., 2004). Horizontal cell responses are also under the control of 

the circadian clock and this is dependent on dopamine release (Ribelayga et al., 

2002). Both Mdka and dopamine are increased in the retina during the light 

phase of the dark/light cycle, and if Mdka negatively regulates dopamine in the 

retina, we would expect the opposite relationship. Alternatively, this function 

could be a property of mdkb, which shows a mild trend of increased expression 

during the subjective night compared to the subjective day.  

In the teleost retina, cone retinomotor movements, the adaptive 

positioning of outer segments within the optimal focal point of the eye, are 

controlled by endogenous clocks and mediated by dopamine (McCormack and 

Burnside, 1992). MK has been shown to promote migration of osteoblastic cells 

in culture by binding to integrins (Muramatsu et al., 2004). It is possible that in the 

zebrafish retina Mdka facilitates motility of photoreceptor outer segments, 

possibly by regulating extracellular matrix components. This hypothesis could be 

tested by analyzing retinomotor movements in transgenic zebrafish in which the 

function of Mdka is disrupted by means of a dominant negative form (see section 

4.4). 

Interesting to note is that dopamine in the retina is made by interplexiform 

cells, with cell bodies in the amacrine section of the INL, where Mdkb is 

synthesized, and cell processes in the outer plexiform layer and surrounding 
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horizontal cells, the location of Mdka expression. It would be interesting to 

investigate if there is a functional connection between Midkines, dopamine and 

melatonin, given their robust circadian rhythms and their location in the retina.  

 

4.3 MIDKINES IN THE RETINA AND DOWNSTREAM TARGETS 

 

As reviewed in the introduction to this dissertation, MK exerts its biological 

functions through many receptors or receptor complexes and activates several 

signaling cascades. Given that none of the receptors for zebrafish Midkines have 

been yet identified, it will be challenging to parse out the molecular players 

regulated by Mdka and Mdkb, and to decipher the specificities for the two 

paralogs. One possible place to start would be analyzing the effect of Midkines 

on identified molecular components in the retinal stem cell niches that are 

induced in the regenerative retina. 

For example, light-injury induces increased expression and activation of 

the Signal transducer and activator of transcription-3 (Stat3) in proliferating 

Müller glia (Kassen et al, 2007). In mammalian pre-adipocytes in culture, MK has 

been shown to be an autocrine activator of Stat3 and this MK-dependent 

activation of Stat3 is required for the mitotic clonal expansion of preadipocytes 

and their subsequent differentiation into adipocytes (Cernkovich et al, 2007). I 

attempted to show that Mdka can induce expression of Stat3 in the zebrafish 

retina, by injecting either Mdka-MYC (produced as described in Chapter 3) or 

PBS into the vitreous of zebrafish and analyzing expression of Stat3 by 
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immunohistochemistry with Stat3 antibodies (gift from Tom Vihtelic). While I was 

able to reproduce the results of Kassen and colleagues, showing that in the light-

lesioned retina there is increased expression of Stat3 in cells with Müller cell 

morphology, both control injected and Mdka-Myc injected retinas showed 

increased Stat3 expression as compared with uninjected, indicating that the 

injection itself activates the Stat3 signaling pathway. An alternate approach to 

test the hypothesis that Mdka or Mdkb can activate Stat3 in Müller cells, would 

be to use an in vitro organotypic culture system of zebrafish retinas, as recently 

described (Kusterman et al, 2008). This system allows for culturing zebrafish 

retinas up to 7 days in vitro, after which the histology of the retina becomes 

compromised. To analyze the effect of Mdka and Mdkb on Stat3 in the retina, 

only a short period of culture would be required, since MK can directly activate 

Stat3 in cultured cells within minutes (Cernkovich et al, 2007). Using this system, 

I anticipate that depriving the culture medium of serum for up to one day, will 

render the retinas quiescent and make the specific actions of MK more 

discernable.  

In the same system, other potential targets of Midkines, selected from the 

molecules described in the retinal stem cell niches (Raymond et al, 2006) could 

be tested. In human keratinocytes in culture, MK has been shown to induce 

epithelial-to-mesenchymal transition and this transition occurs via binding the 

Notch2 receptor, activating the Jak2/Stat3 pathway and binding Hes1 (Huang et 

al., 2008). These molecular players are present in injury-activated Müller cells, 

though the Notch receptors are different (Notch1a, 1b, 3). Mdka or Mdkb or both 
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may be regulating their activity. During development, MK is expressed at sites 

where epithelial-to-mesenchymal transitions (EMT) occur (Mitsiadis et al., 1995) 

and also at sites of mesenchymal to epithelial transition during secondary 

neurulation (Griffith and Zile, 2000). EMT is a complex biological process during 

which epithelial cells loose their polarity, their adhesions to neighboring cells and 

begin to migrate and divide. It is a developmental process involved in generation 

of numerous tissues and also characteristic of metastatic invasions (Baum et al, 

2008). The process of Müller glia de-differentiation and generation of retinal 

progenitors that proliferate and migrate to the ONL can be regarded as EMT. A 

hallmark of EMT is loss of adherens junctions, and in the regenerating zebrafish 

retina, proliferating Müller cells show a redistribution of N-cadherin, from the 

localized adherens junctions in the outer limiting membrane and plexiform layers 

to a diffuse distribution in the entire plasma membrane (Raymond et al., 2006). 

Mdka or Mdkb or both could be responsible for regulating aspects of EMT, 

possibly in a sequential manner.  

To test this hypothesis, the same in vitro system described above 

(Kusterman et al, 2008) could be used in combination with immunohistochemistry 

and biochemical techniques to assay known molecular players of EMT following 

addition of Mdka-MYC or Mdkb-MYC. It is expected that, similar to the study on 

keratinocytes, addition of Mdka and/or Mdkb will lead to disruption of adherens 

junctions, decrease in epithelial markers, increase in mesodermal markers and 

cytoskeletal rearrangements. Addition of specific Mdka or Mdkb antibodies may 

block these effects and confirm specificity of the changes observed. 
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4.4 TRANSGENIC ZEBRAFISH TO ASSAY MIDKINE FUNCTIONS 

While in vitro assays are extremely useful and offer a high level of control 

over experimental parameters, in vivo analysis is always more gratifying when 

proposed mechanisms are confirmed in live animals. Winkler and colleagues 

have shown that a C-terminal truncation of Mdkb functions as a dominant 

negative molecule that can rescue the effects induced by over-expression of 

mdkb RNA. I used truncation mutants (gift from Dr. Christoph Winkler [Winkler 

and Moon, 2001]) to generate plasmids that encode a Mdkb (full length or 

truncated form) heatshock-inducible full length or truncated Mdkb fused to GFP, 

driven by the heat-shock promoter Hsp70 (gift from Dr. John Kuwada). I 

expressed this construct in P19 cells and transiently in zebrafish.  Similarly, 

dominant negative constructs with a C-terminus truncation of Mdka can be 

generated. I hypothesize that Midkines, when expressed in different cell types 

exert different functions. To investigate these functions, cell type specific 

promoters are available. The connexin 52.6 promoter (Shields et al., 2007) drives 

specific expression of the GFP reporter in horizontal cells. The gfap promoter 

(Bernardos and Raymond, 2006) enables specific expression in Müller cells. The 

mifepristone-inducible LexPR system (Emelyanov and Parinov, 2008) could be 

used to generate transgenic zebrafish that can be induced to express the full-

length or truncated forms of Mdka or Mdkb in horizontal cells or Müller cells. With 

this conditional expression system, effector gene activation can be induced at 

any time in zebrafish embryo, larvae or adults. This timed expression can be 
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combined with light lesion to investigate the role of Mdka and Mdkb in injury 

induced photoreceptor regeneration. These fish would be instrumental in 

answering numerous questions. Being able to turn Mdka or Mdkb on or off in 

Müller cells or horizontal cells, at specific times prior or during retinal 

regenerative events following light lesion, would allow one to monitor closely 

gain- and loss-of-function effects of Mdka or Mdkb produced in horizontal or 

Müller cells on photoreceptor survival, Müller cell dedifferentiation, proliferation 

and migration of newly generated retinal progenitor cells. In addition, these fish 

could be used to analyze the function of Mdka and Mdkb during retinogenesis. 

Given that zebrafish larvae are transparent and amenable to live imaging of 

developmental events, these fish could be used to elegantly analyze the specific 

functions of Mdka and Mdkb in Müller and horizontal cells during late 

retinogenesis.  

 My work presented in this dissertation describes for the first time the 

dynamic expression of Mdka and Mdkb in the zebrafish retina during 

development, photoreceptor regeneration and the circadian cycle. Numerous 

fascinating questions arise from this thorough analysis. Why are these two 

paralogs so different in their cellular expression in the developing and the adult 

retina? Why are they so similar during photoreceptor regeneration when 

expressed in stem cells, their progeny and in horizontal cells? What role do they 

play during regenerative events?  Why is Mdka so robustly controlled by the 

circadian clock and what is its role in horizontal cells? Are horizontal cells critical 

players during photoreceptor regeneration? What is the function of Mdka in the 
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circumferential marginal zone? Are Midkines important regulators of growth-

associated neurogenesis? Approaches to analyze the function of these 

molecules will not be trivial, particularly in vivo, however, my work has 

established a reliable foundation of knowledge, which enables one to formulate 

clear hypotheses.  

 Midkine is a highly conserved pleiotropic molecule with increased 

expression during midgestation, tumorigenesis and following injury in a variety of 

tissues in many animal models. It is therefore, similar to the Wnt, BMP, Notch 

and Hedgehog families of signaling molecules which function during 

development, cancer and injury-induced regeneration to regulate fundamental 

processes such as cell division, migration, differentiation and tissue integration 

(Bailey et. al., 2007, Beachy et al., 2004). Understanding how Mdka and Mdkb 

are regulated in the zebrafish retina, identifying their specific molecular targets 

and the particular cellular processes they modulate, will bring important 

contributions to the fields of developmental, regenerative and cancer biology and 

may open doors towards novel therapeutic approaches. 
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A1   LIGHT-INJURY INCREASES EXPRESSION OF mdkb IN THE  
  RETINA OF ALBINO FISH. 

 
 
 
 
 
 
 
 
 
 
Fig.A1. Light injury increases expression of mdkb in the retina of albino 
zebrafish.  
Albino zebrafish were dark-adapted for 7 days and then exposed for 72h to 
intense fluorescent light (8000lux). Panel a is an in situ hybridization showing 
mdkb expression in a control retina from a fish maintained in normal aquaria 
conditions. Note expression of mdkb in the ganglion cell layer (GCL) and the 
basal inner nuclear layer (INL). Panel b is an in situ hybridization showing mdkb 
expression in a retina from an albino zebrafish exposed to intense fluorescent 
light for 72h. Note increased expression of mdkb throughout the INL and 
expression of mdkb in horizontal cells, at the outer rim of the INL. Panel c 
illustrates a quantitative real-time RTPCR (QRTPCR) reaction with specific 
primers for mdkb, presenting triplicate samples from control fish (green curves) 
and from light-lesioned fish (red curves). The threshold cycle difference is 4.1, 
indicating an increase in expression of mdkb of approximately 16 fold in the light-
lesioned retina compared to control. Panel d illustrates a QRTPCR reaction with 
specific primers for connexin 52.6 (cx52.6) presenting triplicate samples from 
control fish (green curves) and from light-lesioned fish (red curves). Note that 
there is no difference in the threshold cycle between the two groups of curves, 
indicating that expression of connexin 52.6 does not change following light 
lesion.
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A2 IN THE DEVELOPING ZEBRAFISH RETINA EXPRESSION OF mdka 
 BEGINS AT THE SITE OF THE FUTURE CIRCUMFERENTIAL 
 MARGINAL ZONE (CMZ) AND EXPRESSION OF mdkb BEGINS IN 
 THE  PRECOCIOUS VENTRO-NASAL PATCH 
 
 

 

 
 
Fig. A2 Expression of mdka begins in the future CMZ and 
expression of mdkb begins in the precocious ventro-nasal patch. 
Panel a is an in situ hybridization showing expression of mdka in the retina 
of a 48hpf zebrafish embryo. Panel b is the same section as in panel a, 
but immunostained with antibodies against PCNA. Panel c is a digital 
overlay of panels a and b. Arrows point to the future site of the CMZ where 
mdka is first expressed. Panel d is an in situ hybridization showing 
expression of mdkb in the retina of a 48hpf zebrafish embryo. Panel e is 
the same section as in panel a, but immunostained with antibodies against 
PCNA. Panel f is a digital overlay of panels d and e. Arrows point to the 
precocious ventro-nasal patch where mdkb is first expressed, and where 
PCNA is not expressed. PCNA, proliferating cell nuclear antigen. 
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A3  IN THE LIGHT-LESIONED RETINA mdka IS EXPRESSED IN 
 PROLIFERATING MÜLLER GLIA AT THE SITE OF THE LESION. 
  
Transgenic zebrafish expressing GFP under the control of glial fibrillary acid 
protein (GFAP) regulatory elements Tg(gfap:GFP)MI2001 were exposed to ultra-
high intensity light (as described, Bernardos et  al., 2007)  for 30min. Three days 
after the light-lesion zebrafish were sacrificed, enucleated and retinas were 
processed for immunohistochemistry and in situ hybridization, as described in 
Chapter 2. Panel a. represents a low magnification view of a section through the 
light-lesioned retina processed for in situ hybridization with mdka specific probe. 
Arrows point to the region where mdka is expressed in columnar cells in the INL 
in addition to the expression in horizontal cells. Panel b. is the same section as in 
a, but immunostained with antibodies against PCNA. Panel c. is the digital 
overlay of panels a. and b. Panel d is a higher magnification view at the site of 
the lesion processed for in situ hybridization with mdka specific probe. Panel b. is 
the same section as in a, but immunostained with antibodies against GFP. In 
these transgenic fish, in the retina, GFP is specifically expressed in Müller glia. 
Panel f. is the digital overlay of panels d. and e. Arrows point to Müller cells 
expressing mdka. Panel g is a high magnification view at the site of the lesion 
processed for in situ hybridization with mdka specific probe. Panel h. is the same 
section as in g, but immunostained with antibodies against PCNA. Panel i. is the 
digital overlay of panels g. and h. Arrows point to proliferating cells expressing 
mdka. Arrowheads point to photoreceptor precursors in the outer nuclear layer. 
PCNA, proliferating cell nuclear antigen, GFP, green fluorescent protein. 
Scalebar in c equals 200µm. Scalebar in i equals 50µm. 
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Fig. A3 In the light-lesioned retina mdka is expressed in proliferating Müller glia 

restricted to the site of the lesion
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A4  IS GROWTH-ASSOCIATED NEUROGENESIS IN THE ZEBRAFISH 
 RETINA REGULATED BY THE CIRCADIAN CLOCK? 
 

A4.1  INTRODUCTION 
 
 A fundamental biological process regulated by the circadian clock is the 

cell cycle (see Levi et al., 2007 and the references within).  In zebrafish larvae it 

has been shown that light regulates cell cycle in several tissues, such that 

increased number of cells pass through S phase in a narrow time-window at the 

end of the light cycle/beginning of the dark cycle, and this rhythm is maintained in 

constant darkness (Dekens et al., 2003).  In other species, as diverse as algae 

and humans, DNA replication has been shown to occur preferentially during the 

dark phase (Levi et al., 2007) and this is thought to prevent DNA damage from 

the harmful effect of ultraviolet light  (Vallone et al., 2005, Tamai et al., 2004).  

In adult fish, new neurons are continuously added to the retina and brain 

as the fish grow. In the retina, cells divide within two neurogenic zones, the 

circumferential marginal zone (CMZ) that generates all retinal cell types, except 

rod photoreceptors, and within the central retina, where stem cells located in the 

inner nuclear layer (INL) divide giving rise to a lineage of cells that proliferate, 

migrate to the outer nuclear layer (ONL) and differentiate exclusively into rod 

photoreceptors (Johns, 1982, Otteson and Hitchock, 2003, Hitchcock et al, 2004, 

Bernardos et al., 2007). In some teleost fish, rainbow trout (Onchoryncus mykiss) 

and cichlids (Haplochromis burtoni), a diurnal pattern in rod genesis has been 

described, with higher numbers of proliferating cells present in the ONL during 

the night than during the day (Julian et al., 1998, Chiu and Fernald, 1995). No 
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data as to the presence of a rhythm of rod precursor proliferation exists to date 

for zebrafish. 

A 4.2  MATERIALS AND METHODS 

Animals 

 Wild-type zebrafish (Danio rerio), mixed strains and strain AB, 4.5 to 7 

months old, were handled as described in Chapter 3.  

Tissue preparation, in situ hybridization and immunohistochemistry. 

 These procedures were performed as described in Chapter 2.. Proliferating 

cells were identified on retinal sections using anti-Proliferating-Cell Nuclear 

Antigen antibodies (p-8825, Sigma-Aldrich, St. Louis, MO) at a dilution of 1:1000 

following antigen retrieval, as previously described (Raymond et. al., 2006). As 

secondary antibodies goat anti-mouse Alexa-Fluor 555 were used at a dilution of 

1:500 (Invitrogen-Molecular Probes, Eugene, OR).  Nuclei were stained with 4,6-

diamidino-2- phenylindole, dihydrochloride (DAPI, Invitrogen-Molecular Probes, 

Eugene, OR). 

 

A 4.3  RESULTS AND DISCUSSION 
 
 

To examine circadian rhythm of proliferation in the zebrafish retina I 

analyzed expression of proliferating cell nuclear antigen (pcna), a co-factor of 

DNA polymerase, expressed during the late G1, S and early G2 phases of the 

cell cycle (Kurki et al, 1986, Moldovan et al., 2007).  QRTPCR revealed that pcna 

expression is highest at the beginning of the subjective night (12am) and lowest 
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at the end of the subjective day (Fig. A4a). However, there is a high variability 

between animals and this trend does not reach statistical significance (Table A4). 

Increasing the sample size may render this trend statistically significant. Also 

analysis of younger fish, which have robust proliferation in the retina, may show 

different results. Analysis of proliferating cells by immunohistochemistry with 

antibodies against proliferating cell nuclear antigen (PCNA) shows an increased 

number of PCNA positive cells in the outer nuclear layer (ONL) of retinas at 

12am compared to 8pm (Fig.A4.1 panels b and c), however there is high degree 

of variability between different animals. This variability is probably a result of 

zebrafish growing at a much slower rate than the other teleosts studied (cichlids, 

and rainbow trout). This results in decreased numbers of proliferating cells in the 

retina at any one time, and increased variability due to other factors such as 

intake of food and other growth-associated endocrine factors. Also in cichlids the 

amplitude of the daily rhythm of proliferation in the ONL decreases when the fish 

are maintained in constant darkness (Chiu and Fernald, 1994). 
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Fig. A4 Proliferation in the zebrafish retina follows a circadian trend, being 
increased during the subjective night and decreased during the subjective 
day.  
Panel a represents a graphical representations of QRTPCR analysis of circadian 
expression of pcna. Gene expression is represented as fold change compared to 
expression values at the end of the subjective day (8pm). Proliferating cell 
nuclear antigen (NM_131404) specific primers used were: forward: 
catccagacacttagagctgaaga and reverse: ctggtctgtgagagcttgatgtt. Reactions and 
analysis was performed identical to Chapter 3. Data represent mean values from 
3 experiments with standard errors represented for each time-point. Descriptive 
statistics are presented separately in table A4.    
Panels b and c represent immuno-histochemical detection of proliferating cells  
with antibodies against proliferating cell nuclear antigen (PCNA) in retinas 
collected at the beginning of the subjective night (panel a) and the end of the 
subjective day respectively (panel b). Sections were counterstained with the 
nuclear dye 4,6-diamidino-2-phenylindole dihydrochloride (DAPI) to evidence the 
retinal layers. ONL; outer nuclear layer, INL, inner nuclear layer; GCL, ganglion 
cell layer. Scale bar in b equals 50 µm.
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Table A4   Circadian expression of pcna in the zebrafish retina. 
 

Data obtained with Quantitative Real-Time Reverse-Transcriptase Polymerase 
Chain Reaction (QRTPCR) 

Relative values compared to 8pm. 
 
 

Experiment 12 am 4 am 8 am 12 pm 4 pm 8 
pm 

Min Max 

1 5.6225 3.9662 4.0142 3.0806 2.6029 1 1  
(8pm) 

5.6225 
(12 am) 

2 1.4513 0.8416 1.1639 1.4714 1.5126 1 0.8416 
(4am) 

1.5126 
(4pm) 

3 1.6864 1.3753 1.3929 1.8204 2.0417 1 1 
(8pm) 

2.0417 
2(4pm) 

Mean 2.92 2.0610 2.1903 2.1241 2.0524 1   
Std. Dev. 2.34334 1.67136 1.58369 0.84646 0.54523 0   
Std. Error 1.35293 0.96496 0.91435 0.48871 0.31479 0   

95% CI lower 
bound 

-2.9012 -2.0909 -1.7438 0.0214 0.6980 1   

95% CI 
upper bound 

8.7412 6.2129 6.1244 4.2269 3.4068 1   

 
One way ANOVA with Bonferroni post-hoc correction for multiple comparisons 

Pairwise 
comparison 

Mean 
difference 

 
p 

value 

Pairwise 
comparison 

Mean 
difference 

 
p 

value 

Pairwise 
comparison 

Mean 
difference 

 
p 

value 
12am vs 4am 0.859 1.000 8am vs 12am -0.72971 1.000 4pm vs 12am -0.86762 1.000 
12am vs 8am 0.72971 1.000 8am vs 4am 0.12929 1.000 4pm vs 4am -0.00862 1.000 

12am vs 
12pm 

0.79589 1.000 8am vs 12pm 0.06618 1.000 4pm vs 8am -0.13791 1.000 

12am vs 4pm 0.86762 1.000 8am vs 4pm 0.13791 1.000 4pm vs 12pm -0.07173 1.000 
12am vs 8pm 1.92 1.000 8am vs 8pm 1.19031 1.000 4pm vs 8pm 1.05240 1.000 
4am vs 12am -0.859 1.000 12pm vs 

12am 
-0.79589 1.000 8pm vs 12am -1.92 1.000 

4am vs 8am -0.12929 1.000 12pm vs 4am 0.06311 1.000 8pm vs 4am -1.061 1.000 
4am vs 12pm -0.6311 1.000 12pm vs 8am -0.6618 1.000 8pm vs 8am -1.19031 1.000 
4am vs 4pm 0.00862 1.000 12pm vs 4pm 0.07173 1.000 8pm vs 12pm -1.1243 1.000 
4am vs 8pm 1.06102 1.000 12pm vs 8pm 1.12413 1.000 8pm vs 4pm -1.05240 1.000 

 
 

  
It is possible that zebrafish have a diurnal rhythm of rod precursor 

proliferation, which becomes more variable when fish are kept in total darkness. 

This could be easily tested by QRTPCR with pcna specific primers on retina RNA 

samples from fish at different times during the diurnal cycle, under normal lighting 
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conditions.   Similar to pcna, expression of mdkb is also higher during the 

subjective night than during the subjective day, and more variable than mdka.  It 

would be useful to know if the same trend is found in the retina of fish maintained 

under normal lighting conditions, during a diurnal cycle. In the retinas from fish 

maintained in constant darkness maximum expression of mdkb precedes and 

overlaps the maximum expression of pcna, at the end of the subjective day and 

beginning of the subjective night (Chapter 3). I do not yet have evidence for a 

functional significance of this temporal correlation. Since I have shown that mdkb 

is expressed in photoreceptor precursors in the ONL during retinal regeneration 

(Chapter 2) and mdkb is expressed during the subjective night in horizontal cells 

(Chapter 3), similar to the expression during photoreceptor regeneration (Chapter 

2), I can speculate that quantitative changes of mdkb in the INL may influence 

aspects of growth-associated rod genesis.  
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A5  CONNEXIN 52.6 IS REGULATED BY THE CIRCADIAN CLOCK 
 
     
 In the course of the experiments described in Chapter 3, serendipitously, I 

consistently observed that expression of connexin 52.6,  (cx52.6) also follows a 

circadian rhythm, with statistically significant maximum expression in the middle 

of the subjective day and minimum expression in the middle of the subjective 

night (Fig. A5 and Table A5). Cx 52.6 is a gap-junction protein, specifically 

expressed in the zebrafish retina by horizontal cells (Zoidl et al., 2004, Shields et 

al, 2007).  Previously, during light-lesion experiments, I have observed that, 

unlike other common ubiquitous genes used as a reference to normalize amount 

of RNA in QRTPCR assays (actin, gapdh, hgprt, rpl19), expression of cx52.6 did 

not vary with the intense light treatment (Chapter 2 and Appendix section A1). 
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Fig. A5 Quantitative analysis of circadian variations of cx52.6    
Graphical representations of QRTPCR analysis of circadian expression of 
cx52.6 Gene expression is represented as fold change compared to 
expression values at the end of the subjective day (8pm). Primers used for 
connexin 52.6 (NM_212819) were  forward: tggacagatggtacctttgcc and 
reverse: gttgtctggaatggaccttcg. QRTPCR reaction was performed as 
described in Chapter 3.  Data represent average values from 6 
independent experiments with standard errors represented for each time-
point. Statistical significance was determined through Analysis of Variance 
with Bonferroni post-hoc correction for multiple comparisons using SPSS 
(* p<0.05). Descriptive statistics are presented separately in Table A5.  
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Table A5.    Circadian expression of cx52.6 in the zebrafish retina. 
 

Data obtained with Quantitative Real-Time Reverse-Transcriptase Polymerase 
Chain Reaction (QRTPCR) 

Relative values compared to 8pm. 
 
 

Experiment 12 am 4 am 8 am 12 pm 4 pm 8 
pm 

Min Max 

1 1.0428 1.3594 2.3104 2.5833 1.7477 1 1.0428 
(12am) 

2.5833 
(12pm) 

2 0.8468 0.7034 1.2751 1.6260 1.3594 1 0.7034 
(4am) 

1.6260 
(12pm) 

3 0.6581 0.7566 1.3217 1.3796 1.3945 1 0.6581 
(12am) 

1.3945 
(4pm) 

4 0.8286 0.7143 1.2310 1.0301 1.0301 1 0.7566 
(4am) 

1.2310 
(8am) 

5 0.8605 0.7120 1.2165 1.4231 1.1102 1 0.7120 
(4am) 

1.4231 
(12pm) 

6 0.8449 0.6118 1.0430 0.9454 1.2344 1 0.6118 
(4am) 

1.2344 
(4pm) 

Mean 0.8469 0.8096 1.3996 1.4979 1.3127 1   
Std. Dev. 0.12207 0.27353 0.45612 0.5896 0.25495 0   
Std. Error 0.04984 0.11167 0.18621 0.2407 0.10408 0   

95% CI lower 
bound 

0.7188 0.5225 0.9209 0.8791 1.0451 1   

95% CI upper 
bound 

0.9750 1.0966 1.8783 2.1167 1.5802 1   

 
One way ANOVA with Bonferroni post-hoc correction for multiple comparisons 

Pairwise 
comparison 

Mean 
difference 

 
p 

value 

Pairwise 
comparison 

Mean 
difference 

 
p 

value 

Pairwise 
comparison 

Mean 
difference 

 
p 

value 
12am vs 4am .03733 1.000 8am vs 12am 0.55270 0.139 4pm vs 12am 0.46577 0.388 
12am vs 8am -0.55270 0.139 8am vs 4am 0.59003 0.087 4pm vs 4am 0.5031 0.252 

12am vs 
12pm 

-0.65098 0.04 8am vs 12pm -0.09828 1.000 4pm vs 8am -0.08693 1.000 

12am vs 4pm -0.46577 0.388 8am vs 4pm 0.08693 1.000 4pm vs 12pm -0.18522 1.000 
12am vs 8pm -0.15308 1.000 8am vs 8pm 0.39962 0.800 4pm vs 8pm 0.31268 1.000 
4am vs 12am -0.3733 1.000 12pm vs 

12am 
0.65098 0.040* 8pm vs 12am 0.15308 1.000 

4am vs 8am -0.59003 0.087 12pm vs 4am 0.68832 0.024* 8pm vs 4am 0.19042 1.000 
4am vs 12pm -0.68832 0.024* 12pm vs 8am 0.09828 1.000 8pm vs 8am -0.39962 0.800 
4am vs 4pm -0.50310 0.252 12pm vs 4pm 0.18522 1.000 8pm vs 12pm -0.49790 0.268 
4am vs 8pm -0.19042 1.000 12pm vs 8pm 0.49790 0.268 8pm vs 4pm -0.31268 1.000 
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 Expression of Cx52.6 in the zebrafish retina is restricted to horizontal cells 

and has been shown to localize to the gap junctions between them (Zoidl et al, 

2004, Shields et al, 2007). Gap junctions in horizontal cells are highly permeable 

to small molecules and ions, enable chemical and electrical coupling of horizontal 

cells and allow the formation of receptive fields across the retina that can spread 

beyond the reach of their immediate dendritic fields (Bloomfield et al., 1995). Gap 

junction coupling between horizontal cells, and thus the extent of the resulting 

receptive fields can be drastically reduced by light and the presence of 

extracellular neuromodulators such as dopamine, retinoic acid and nitric oxide 

(Mangel and Dowling, 1985, John Dowling, 1991, Pottek et al, 1997, Weiler et al., 

1998).  The responses of cone horizontal cells to light are influenced by the 

circadian clock (Wang and Mangel, 1996, Ribelayga et al, 2002), but gap-junction 

coupling has been shown to be independent of the circadian clock (Ribleayga et 

al, 2004, Ribelayga and Mangel, 2007). We find that the expression of cx52.6 

mRNA is regulated by the circadian clock, and peaks during subjective midday. 

This finding is intriguing for two reasons. First, since horizontal cell coupling is 

independent of the circadian clock (Ribleayga et al, 2004, Ribelayga and Mangel, 

2007), we would expect not to see a circadian variation in the synthesis of a 

protein expressed specifically in gap junctions between horizontal cells (Shields 

et al., 2007). Second, since gap junctions are used primarily during the dark 

phases of the day/light cycle, we would expect to see more mRNA synthesized 

during the subjective night. I did not examine whether the rhythm of cx52.6 
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mRNA production is paralleled by the same dynamic changes at the protein level. 

If it does, then perhaps increased levels of Cx52.6 inhibit the formation of 

hemichannels between cones and horizontal cells, since immuno-electron 

microscopy shows the presence of unpaired connexin channels composed of 

Cx52.6 on horizontal cell lateral dendrites and spinules in the proximity of cone 

synaptic terminals (Shields et al., 2007). During the day, increased ambient light 

allows for a heightened spatial sensitivity through narrow receptive fields, and 

light responses to cone horizontal cells are modulated by the circadian clock 

(Wang and Mangel, 1996).  Circadian changes of Cx52.6, with increased levels 

during the day, may be required for modulating connections between cones and 

horizontal cells.  
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