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PREFACE

The purpose of this work is to provide a better understanding
of the separation of a gas stream into regions of high and low stagna-
tion temperatures in a vortex field. Its motivation is the Ranque-
Hilsch tube, which produces from a single source of compressed air, a
hot stream and a cold stream of widely different temperatures.

The Ranque-Hilsch effect is a fairly recent discovery, having
been first/reported in 1931. Its history follows the familiar pattern
of initial enthusiasm, then apathy, and later, renewed interest. As a
phenomenon, relatively little is known concerning it, except for its
spectacular effect of producing hot and cold air simultaneously. De-
spite various hypotheses advanced, there is to date, no general agree-
ment as to its theory of operation. Consequently, there is need for a
systematic study of the phenomenon from the ground up. The current
work represents such a study. It is hoped that it will be of help in
the understanding of the Ranque-Hilsch tube and of vorticity in general.

The author wishes to.express his thanks to the Doctoral Committee
for its interest, encouragement, and suggestions. He is particularly
grateful to Professor F. N. Calhoon, Chairman, who, despite the pressure
of many duties, was always available for consultation and advice.

The author also wishes to express his appreciation to the people
who have been of help in the accomplishment of the project. To Mr. W.
Salva, of the Mechanical Engineering Machine Shop, for constructing the
model from the detailed plans. To Drs. R. Leite, M. Uberoi, and Mr. K.
Raman, of the Aeronautical Engineering Department, for initiation to the
technique of hot wire anemometry. To Messrs. C. Ronsdahl and A. Menner,

of the Mechanical Engineering Laboratory, for their help in erecting the
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test installation. To Mr. J. Davenport, of the Photography Department,
for taking pictures of the model and test installation. To Miss M.

Runkel and Mr. R. Harrell, of the Engineering Library, for their court-

eous service. And to the College of Engineering Industry Program, for

the typing and printing of the thesis.
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ABSTRACT

The present investigation 1s an experimental and analytical
study of viscous compressible flow in a uniflow vortex tube. There
is need for such a study from the ground up, for to date, no general
agreement on the theory of the vortex tube has yet been reached.

The problem is first approached from the experimental stand-
point. A large, multi-purpose vortex tube is designed and built of
lucite. Design features enable traverse measurements of pressure,
temperature, and velocity to be taken at six different stations through-
out the length of the tube. The pressure and temperature probes are of
the hypodermic type with minimum flow disturbance. The velocity probe
is a miniature hot wire anemometer which is revolvable for measurement
of direction as well as magnitude. Data is taken for five runs of
different inlet preésures.

The analytical approach consists of a mathematical treatment of
vorticity in general. It begins with potential vortex flow in the plane.
This is characterized by the existence of sonic or limit circles. An
axial velocity is theﬁ added to yield the solution in space. The effect
of viscosity is considered, and the potential or free vortex is shown to
change intc a forced vortex. The general solution is arrived at by super-
posing a viscous compressible sink with the vortex flow. Performance or
energy separation 1s expressed as a function of the ratio between vortex

strength and sink strength.

xvii
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INTRODUCTION, DEFINITION OF PROBLEM,

AND REVIEW OF PREVIOUS WORK



CHAPTER 1

DEFINITTON OF PROBLEM AND REVIEW
OF PREVIOUS WORK

1.1 Introduction

The initial motivation for this work is the perplexing phenom-
enon of separation of a gas stream simultaneocusly into hot and cold
streams known as the Ranque-Hilsch effect. The beautiful and alto-
gether extensive characteristics of vorticity, however, have also been
a factor in the attempt to give the work an engineering and mathemat-
ical unity.

The vortex, or Ranque-Hilsch, tube is a remarkably uncompli-
cated device which simultaneously produces hot and cold streams from
a single source of compressed gas. The device has no moving parts,
but merely consists of a straight length‘of tubing with a tangential
entry for the supply air, and a smaller tube for tapping off the cold
stream that is produced (Fig. 1-1); the hot stream leaving through
the larger tube. By throttling the far end of the larger tube, vari-
ous proportions of hot and cold gas may be cobtained with various de-

grees of temperature difference.

HOT STREAM
TANGENTIAL ENTRY

\ [ [ |
CO:REAM > // —Z THROTTLE
T
/]

Figure 1-1. Simple Counterflow Vortex Tube
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As a phenomenon,irelatively little is known concerning its
details or performance laws except that the effect occurs when a gas
expands in a centrifugal field such as exists in cyclone separators,
or when it flows through valves such as nozzles. Despite various
hypotheses advanced, there is to date no general agreement or treat-
ment as to its theory of operation (39). It thus represents a most
interesting item to be studied.

1.2 The Problem

One of the most spectacular facts concerning the vortex tube
is the wide spread in the temperature of the hot and cold stream
temperatures that can be obtained under certain conditions. Experi-
menting with a simplified form of Hilsch's original device, Blaber
(11) obtained hot stream and cold stream temperatures of 88°C ana
-20°¢ respectively from a source of compressed air at 4 atm. and room
temperature (15°C). Hilsch (50) has claimed hot stream temperatures
as high as lShOF and cold stream temperatures as low as lOOF in experi-
ments involving tubes of approximately .3" diameter and 18" long.

The device thus separates air into two streams: one, as if it were
heated by compression near the wall, and the other, as if it were cool~-
ed by expansion near the axis. Hilsch termed the device a wirbelrohr,
or vortex Eggg.

A hypothesis on the Ranque-Hilsch tube must explain not only
the cooling of the one stream from expansion of the supply stream,
but also the mechanism by which the energy abstracted from the other
stream is added to the portion of gas that becomes the hot stream.

An energy balance indicates that such an exchange exists (56), but
does not show how it is done. Since 1946, writers of widely varying

backgrounds have undertaken to explain the phenomenon, but with little
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success. There is at present an almost complete lack of agreement as
to the mechanism of flow (59). The following quotation from Fulton
(40) sums up the present status of affairs: "At least ten theories

have been proposed....some of them turn out to say nothing at all...in
some others, equations have been tortured to show two different temper-
atures, while in still others the mass of manipulations has grown so
great as to be incomprehensible."

The author is in agreement with Webster, Scheper, and Fulton
(130,100,40, ) that there is need to fall back to the beginning aﬁd
sfart in the right fashion with a traverse of pressures, temperatures,
and velocities inside the vortex tube. This is not only the most down-
to-earth starting point for an understanding of the phenomenon, but it
is also good-scientific procedure in that relatively fewer assumptions
need then be made for the analysis that is to follow. Heretofore, the
usual tubes tested have been too small to contemplate making traverses.
The original Hilsch apparatus consisted of a 6 mm hot tube, a 1 mm entry
tube, with a 1.5 mm orifice opening to tap off the cold air. Under
such conditions, it was well nigh impossible to take data inside the
device.

It is the object of the present investigation to provide for
a direct attack of the problem by constructing a set of lucite tubes
bilg enough to enable traverses to be taken. Temperature and pressure
~traverses are obtained by means of hypodermic probes unobtrusively
inserted, while velocity traverses are obtained by means of very
small sized hot-wire probes so constructed as not to disturb the flow.
From the data thus taken, correlation with theory is attempted and the

laws of vortex flow evolved in terms of pertinent parameters.



Another object of the investigation is to study the uniflow
type of vortex tube. There are essentially two types of vortex tubes:
uniflow and counterflow.z While the counterflow type shown in Fig. (1-1
has been the more often studied by writers, the uniflow type, shown
in Fig. (1-2) has not been extensively investigated heretofore (73,131,
39). To establish a proper balance between the two types of vortex
tubes, the present investigation concentrates on the uniflow type,

inasmuch as the author believes that a more basic study of the vortex

TANGENTIAL ENTRY HOT STREAM
‘ 4
// COLD STREAM
& L L
N

Figure 1-2. Simple Uniflow Vortex Tube
phenomenon should start with the uniflow type, since it is the one
that occurs more often in nature as compared with the counterflow type
which is based on an arbitrary subdivision of the directions of flow,
and thus is more artificial.

1.3 Historical Background

The vortex tube is a relatively recent discovery, having been
first reported by George Ranque in 1931. Its history follows the
pattern of many inventions of the past two centuries, namely that
of initial interest, then skepticism and apathy, and later, renewed

interest. Ranque was a metallurgist at a steel works in Moutlugon,
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Central France, and he may have noticed the vortex cooling affect in
connection with cyclone separators. He constructed a device to dupli-
cate the effect and applied for a French patent in December, 1931.

The invention was called "an apparatus for obtaining from a fluid under
pressure two currents of fluids at different temperatures" and the
patent was assigned to the company of "La Giration Des Fluids." A
similar patent was applied for in the United States in December, 1932,
and was granted in March, 1934 (91).

In the patents, Ranque gave ﬁarious arrangements of the
counterflow and parallel flow types of vortex tube, along with an
explanation of the phenomenon which is not commonly accepted theory
at present. Ranque realized later that his explanation was incorrect,
and presented a revised version in form of a paper (90) read to the
Societe Frangaise de Physique. Considerable skepticism was expressed
in the Societe Frangaise de Physique, and in a discussion (14) E. Brun,
a member of the Society and an aerodynamicist, dismissed Ranque's dis-
covery on the grounds that he had confused static temperature with
total temperature. Ranque did not reply to the criticism and did not
demonstrate his device to convince the skeptics. It may have been
that he desired to maintain secrecy in order to further his invention,
for the company to which he assigned his patent was none other than
the one he himself had formed. Subsequent developments,however, pro-
bably brought the disappointing realization that the vortex tube was
inefficient as a refrigerator, for nothing more was heard concerning
the device in Europe or in the United States until 1946, when Rudolph
Hilsch (76,50) of the Physikalischen Institute, Erlangen, Germany,

published a paper concerning his work with the device.
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Hilsch became interested in the vortex tube after reading
Ranque's paper, and he proceeded to build some counterflow-type tubes
which he tested (50). Hilsch's purpose was to design a tube of max-
imum efficiency for cooling underground mines and shafts. He did not
realize his goal, but did succeéd in using the vortex tube as a sub-
stitute for the ammonia precooler in his laboratory's air liquifying
machine (Fig. 1-3).

HEAT EXCHANGER

-V

——————
— A
L ——————
GAS TO BE
COOLED
-— 2
— =
e
. N

VORTEX TUBE

Figure 1-3. Vortex Tube in Gas Liquefaction Process

In June, 1945, at the end of the war in Europe, C. W. Hansell,
an investigator for the United States and British Technical Industrial
Intelligence Committee, visited Erlangen University and rediscovered
the vortex tube (47,48). Aboutvthe same time, R. M. Milton, of Johns
Hopkins also visited Erlangen and brought back a model and a thesis
by Hilsch. The thesis was translated by I. Estermann, of Carnegie
Institute of Technology, and the translation was circulated through
Wright Field. Hilsch's original paper was published in Germany in
April 1946 (50,108),and gave performance data and some optimum dimen-
sions for two vortex tubes. Hilsch's translated paper was printed

unabridged in "The Review of Scientific Instruments" of February, 1947.



Widespread American interest- has been given the vortex tube
ever since Milton published a short descriptive article in "Refriger-
ating Engineering," May, 1946. The extreme simplicity of the device
suggested that it might replace many of the more complicated refriger-
ation designs. However, subsequent investigations showed that the
power required to operate the vortex tube was many times that required
by a conventional refrigerator, and that, in spite of its simplicity,
it would not be practical as a regular refrigerator. Nevertheless,
the vortex tube has presented a new and intriguing phenomenon in fluid
dynamics, and interest in the device continues.

1.4 Review of Past Work

Relatively little information is known on the working process
of the vortex tube, despite the vast amount of literature bofh tech-
nical and non-technical that has been written on the subject. Many
theories have been advanced to explain the operation of the tube, but
none has been accepted with any widespread agreement. In passing, it
shouid be mentioned that some writers have, facetiously or otherwise,
resorted to the "Maxwell Demon" explanation for the device to the ex-
tent that the vortex tube is sometimes classified as a Maxwell Demon
Device. Maxwell, of course, once suggested that in the fealm of
molecular motion, it would conceivably be possible to tap energy from
a gas by utilizing the non-uniformity of the velocity or kinetic
energy of its molecules. According to this scheme, a chamber filled
with gas would be envisioned to be divided into two portions by a
partition. Fast and slow molecules would then impihge on this part-
ition. Now, the random distribution of molecules can be changed by

permitting the fast molecules to accumulate on one side of the part-

ition and the slow molecules to accumulate on the other. For changing
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the random distribution into one of higher degree of order, Maxwell
facetiously pictured a small gate with a doorkeeper (the demon)
opening the gate and allowing the fast molecules to pass in one direct-
ion, and the slow ones in the opposite direction. Thus, a temperature
gradient is established without addition or subtraction of energy to
the system. MaxWell's demon, of course, is of no help in explaining
the vortex tube, since the latter is neither a molecular sorting
device, nor a device that violates the Second Law of Thermodynamics.

An attempt to explain the vortex effect on the basgis of the Joule-
Thomson effect was disproved by Milton when he showed that the effect
could be observed in the same direction when pure nitrogen and hydro-
gen were used, whereas the Joule-Thomson effect would show an inversion
on hydrogen.

Following Hilsch's paper, the next contribution to the subject
were in six theses (Th,4k,92,46,21,32), mainly experimental, which
were completed at the Massachusetts Institute of Technology. Mayer,
Hunter, and Greene (Th,4k) gave performance data on the effects of
inlet air pressure, cold orifice diameter, and nézzle diameter. Reed
(92) gave results on internal flow, and Corliss and Solnick (21) over-
all data, along with sediment flow pictures and static pressure distrib-
ution over the cold outlet plate. Fattah and Sweeney (32) used con-
vergent-divergent nozzle for the flow entry, and their investigation
. included pressure and temperature measurements on the inside surface
of the vortex tube.

Johnson (56), of the University of Toronto, also initiated
experimenfal investigation of the vortex tube, and his results were

published in September, 1947. He confirmed Hilsch's work in its
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general aspects and gave brief results when COp and Hy were used as
the working fluid in place of air. Samples of ailr were also taken
from the two ends of the vortex tube and analyzed. The results gave
no indication of any separation of the air into its components in
passing through the device.

Until the end of 1947, explanation of the vortex process had
only been suggested in general terms; there was no universal agreement
or confirmation. The first important theoretical work was published
in November, 1947, by Kassner and Knoernschild (58), of Wright Patter-
son Air Force Base. The analysis assumes that a free vortex is initially
formed inside the tube due to the tangential position of the nozzle with
respect to the tube. This vortex complies with the law of constant
angular momentum ( m %f rv = 0, rv = const.), i.e., the velocity times
the radius of any particle is a constant. A radial velocity gradient
thus exists in the fluid (vr = const., rdv + vdr = O, %% = - % ), with
the inner layers at high tangential velocity and the outer layers at
low tangential velocity. This is a characteristic of irrotational
flow. A radial pressure gradient is likewise established (%% =p %?),
which causes the air to expand on its spiral inward path. With suf-
ficient pressure gradient acting, the velocity of the air in the
center of the tube would increase to supersonic speed. Viscous shear
stress, however, take over in this region with a resulting tendency
to equalize velocity distribution. The irrotational character of the
flow changes to rotational flow (constant angular velocity or forced
Vortex), with the normal velocity gradient tending to disappear. The
higher velocity layers of the center accelerate the lower velocity

layers at the periphery, causing a transfer of kinetic energy outward

from the tube axis. This kinetic energy transfer raises the temperature



-11-

of the outer gas layers and lowers the temperature of the inner layers.
Now, however, a temperature difference exists in the gas, and a heat
transfer results,whereby the heat flows from the hot outer layer to

the cold inner layers. The pressure of the gas near the axis increases,
and a pressure gradient towards the cold orifice (at atmospheric pressure )
appears. The innermost layers separate under the influence of this
axial pressure gradient and the remaining gas under conditions of
rotational flow, progress axially along to the end of the tube. The
resulting difference in temperature of the two streams of gas is due

to the fact that the overall kinetic energy flux outward is greater
than the heat flux inward. By making these various assumptions,

Kassner and Knoernschild calculated the velocity and temperature in

the resultant vortex, and an estimate of the tube's performance was
made and compared with Hilsch's results.

Such explanation did not appear entirely satisfactory to some
writers (5,13), who contended that the ideal free vortex of the math-
ematician (VR = const.) does not exist in a real gas that has the
three transport properties of diffusion, viscosity and thermal con-
duction. It called for radial velocity gradients that are very large
and cannot exist in a gas with viscosity. It also called for radial
static temperature gradients that resulted in high rates of radial
heat transfer, and it furnished no rational solution near the center
when an actual gas is considered.

Still in 1948, this time in Norway, attention was drawn on
the vortex tube by Haar and Wergeland (45) who published a brief
theoretical analysis based on the assumption that the process was

simply adiabatic cooling in passing through the pressure gradient
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caused by the centrifugal field (%% - oofr, pp7 = constant ). Haar

and Wergeland's presentation is an oversimplification: the radial
temperature variation does not coincide with that of an adiabatic
line (due to viscous forces near the axis), for with air entering the noz-
zle at TO°F a temperature of -T4°F would have to be attained in an ex
pansion to atmospheric pressure (13), and no such gradient has been
experimentally reported. Burkhardt (15), of Germany, also presented
a simplified theoretical investigation of performance without analysis
of the internal flow by calculating the hot and cold stream temperatures
as functions of the fraction of cold air flow rate, and a coefficient &
(the separating factor).

rulton (38,39) began his theoretical investigation by endeavor-
ing to solve the equations for a three dimensional compressible vortex
subjected to viscous or turbulent shear with an approximate expression
for the temperature drop across the vortex. However, he concluded
that Kassner's and Knoernschild's analysis (which did not consider
compressibility) involved fewer uncertainties and that it appeared
to agree satisfactorily with experiments. Fulton also pointed out
that if the hot air from the vortex tube is deliberately wasted,
then the power required to drive a vortex refrigerator would be of
the order of 100 times that of a conventional refrigerator.

The first report to be concerned solely with the appiication
of the vortex tube came from Knoernschild and Morgensen (61). It
discussed the cooling of high-speed aircraft or missiles, and com-
pared the performance of the vortex tube with that of the expansion
turbine. For small requirements of cooling, the vortex tube oper-
ating on ram intake or jet-engine pressure bleed would be a very good

means because it -has superior efficiency with respect to an expansion
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turbine of very low specific speed.

On the experimental side, Corr (23) carried out some tests at
the General Electric Research Division by using a multi-nozzle inlet
chamber. Pressure measurements taken at the hot tube outlet and cold
outlet diaphragm were then chosen as parameters of performance. Corr
also made brief tests on a supersonic inlet nozzle, but the results
indicated a decrease‘of the temperature drop. Other aspects of his
investigation included the use of a glass tube to observe flow and a
spectrograph analysis of hot and cold air samples to test for separa-
tion of component gases. None was observed. Humidity measurements
also revealed negligible increase of water vapor in the hot air.

Barnes (6), in another of M.I.T.'s theses on the subject,
assumed that the flow in the tube was that of a two-dimensional
symmetric and compressible vortex with small radial flow with cases
of both laminer and turbulent shear being considered. Mathematical
difficulties prevented the completion of the laminar flow analysis,
whereas additional assumption had to be made for the turbulent flow
case. Nickerson (79) attempted completion of Barnes' work by making
several assumptions and by using a somewhat different approach to the
equations of two-dimensional compressible turbulent flow. An approx-
imate solution wag obtained for the temperature distribution which
agreed fairly well with the experimental results of Fattah and Sweeney
(32). Nickerson, however, expressed the opinion that in view of the
assumptions made, the agreement may be somewhat of a coincidence.

Scheper (lOO,lOl), of Union College, investigated the internal
flow of the vortex tube by means of short silk threads. He also pro-
posed a theory by which heat transfer occured radially from‘the core

outward by virtue of static temperature gradients in that direction.
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The heat sink is provided by the outer gas layers which are at lower
static temperature due to the nozzle expansion. This heat transfer
raises the stagnation temperature of the outer gas which produces the
hot flow, while at the same time the stagnation temperature of the
core is lowered, thus producing a cold flow through the orifice.
Scheper's theory is original in that it is based on forced convection
due to static temperature gradients whereas previous investigators
used the principle of energy transfer due to shear stress. Other
academic contributions during this period (1949) were those of Sochor
(113), of Syracuse University, and of Levitt (65), of Rensselaer
Polytechnic Institute.

1.5 From 1950 to Present

Webster (130) carried out an investigation of vortex tubes at
the Engineering Research Laboratory of E. I. du Pont de Nemours and
Co. Inc., and presented a paper to the L45th Annual Meeting of the
American Society of Refrigerating Engineers which wag published in
Refrigerating Engineering in February, 1950. He reviewed most of
Hilsch's work énd he also gave an explanation which was very lively
and critically commented upon (5,13,43).

Lustich (69), of Syracuse University, reviewed previous work
on the vortex tube and gave a theory based on thermodynamic consider-
ations. He also pointed out that the efficiency of the vortex tube
could be considerably increased if the availability of the energy of
the higher pressure hot gas could be realized instead of being rejected
through the throttling valve.

In the same year, MacGee, of Boston University, reviewed work
on the vortex tube and reported on his experimental investigations

concerning the pitch of the vortex along the hot tube. He also, with
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Curley (72,25), completed a comprehensive list of works and papers on
the subject.

Dornbrand (28) meanwhile, wrote a report Qf the work done at
the Republic Aviation Corporation under U. S. Government contract.
The report included experimental data on the effects of such parameters
as inlet temperature and the pressure ratio across the vortex inlet
and the cold outlet. Internal investigations included pressure,
velocity and temperature traverses and visual flow pattern on the
internal walls. A theory was developed for the case of a two-dimen-
sional laminar compressible vortex formed between two rotating
cylinders. Attempts were also made to improve the tube's performance
by adding an internal guilde vane.

In England, one of the first attempts to use the vortex de-
vice was given in a report by De Havilland Aircraft (27). The re-
port listed the applicability of the vortex tube for the cooling of
a Vampire cockpit with air, under pressure, to be supplied from the
Jet engine to the vortex tube. A tube was developed, but it was not
considered adequate in view of all the cooling requirements.

Although immediately after the publication of Hilsch's paper
most of the vortex work was carried out in the United States, by 1951,
however, the European contribution began to appear. In January 1951,
Elser and Hoch (31) described experiments in which various gases and
gas mixtures were used as the working fluid. Samples of gases leav-
ing the hot and cold outlets were analyzed, and it was found that
separation differences of about one percent could occur between the
hot and cold mixtures. Elser and Hoch also tried to ascertain if a

centrifugal field was necessary for the Ranque effect. They reported
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a similar but smaller effect to be observed in the temperature dis-
tribution across four parallel air jets when placed in echelon.

In March 1951, Williamson and Tompkins (135) stated in a
Technical note that an inlet chamber with multi-inlet nozzles and
with a diameter larger than that of the hot tube would give improved
performance. Their experimental results, however, were difficult to
compare with those of other investigators because the usual hot valve
had been replaced by a fixed orifice which had the same diameter as
that of the cold outlet.

Sprenger (114), in July 1951, gave an account of several
qualitative studies which were carried out at the E.T.H., Zurich.
Hilsch and other investigators had commented on the loud noise which
was produced in the vortex tube. To investigate this effect, Sprenger
attached a tube, containing lycopodium powder, to the hot tube and
detected an uitrasonic standing wave. Sprenger's tests included the
verification of Hilsch's results, and the measurement of the temp-
erature distribution along a simple vortex tube which had no hot
flow and was without a cold diaphragm. Other features were the use
of temperature indicating points, comparison of internal flow pattern
when the working fluid was air or water, and the effect of rotating
the hot tube while the inlet nozzle remained at rest. OSprenger ob-
served that previous explanations of the vortex device did not appear
to be completely satisfactory, and in a later paper suggested that
the cooling and heating phenomenon was due to an ultrasonic effect which
was not solely restricted to circular flow. The heating and cooling
effects experienced in a modified Hartmann type generator were cited

as an example.
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From around 1952-53, interest on the Hilsch tube has centered
on its practical applications, especially as regards to high-speed
aircraft. Vonnegut (127,128), of General Electric Co., developed a
vortex tube which measured free air temperatures for aircraft speeds
up to 250 mph. More elaborate developments by Ruskin, Scheter, Merrill,
and Dinger (96,97), increased the speed to 500 mph.

In February 1952, Packer (80,81), of Cornell Aeronautical
Laboratory, issued-a progress report on work being carried out for
the Navy Department (Project Vortex), the object of which was to
develop a free air thermometer for use on aircraft over the range of
Mach numbers 0.3 to 0.95. The report dwelt on/an experimental design
to investigate vortex tube flow and performance characteristics. A
1ist of references was also included.

Further application of the vortex tube was discussed at a
"Proceedings of the Conference on Cooling of Airborne Electronic
Equipment," held at the Ohio State Uhiversity (3). A vortex tube
for cooling and pressurizing an airborne, 400 amps, 70 volt generator
was described. The vortex device consisted of a bank of 20 tubes
located between an air to air heat exchanger and the generator. Pres-
surized air was bled from the engine and precooled by ram air passing
through the heat exchanger. This precooled air was then passed through
the bank of vortex tubes to the generator. Preliminary experiments re-
vealed that increased efficiency was obtained by cooling the outsides
of the hot tubes, and this effect was therefore incorporated in the air
to air heat exchanger.

The application of the vortex tube, this time, to cooling vent-

ilated suits in aircraft, was discussed by Westley in 1953 (134) in a

technical note. It was reported that under certain conditions, the
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vortex device represented a very simple method for cooling ventilated
suits. The vortex tube, however, was not as efficient as the more
conventional and more complicated expansion turbine, inasmuch as the
latter had a usually larger temperature drop.

Back to the theoretical side, a significant contribution to
the literature on the vortex tube was that of Van Deemter (124) of
the Royal Dutch Shell Laboratory, Amsterdam. His paper combined the
concepts of Hilsch (20) and Prins (88) on the subject. Van Deemter
adopted an approach similar to that of Fulton (39), in which the
temperature distribution was determined by the ratic of the work
flux to heat flux, but he pointed out that the heat flux in turbulent
circular flow was not solely proportional to the temperature gradient,
but included a term which was proportional to the radial acceleration.
More recently, pressure and temperature measurements have been made
inside the vortex tube with the aid of miniaturized versions of NACA
probes, and this, in conjunction with the trend of using larger vortex
tubes, seems to represent the thinking of the day. As of the writing
of this work, two research papers along these lines have been deliver-
ed (30,129) and will be available in journal form in thé near future.
In common with these efforts, the present work aims to synthesize and

extend the knowledge of vorticity in general.
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CHAPTER 2

TEST PROGRAM

2.1 Basic Design

The main consideration in the test program is the design of a
vortex tube of sufficient size and flexibility as to allow velocity,
temperature and pressure traverses to be taken without causing major
disturbances in thé flow field. There are inherent limitations to the
experimental study of vortex flow, and until recently they have kept
the systematic investigation-of'the vortex tube from progressing very
far. Both Ranque's and Hilsch's original models were of very small
diameters (4 mm to 18 mm tubes with 2 mm to 7 mm orifices) wherein
fairly impressive effects were obtainable with relatively low or
moderate supply pressures. Such small size models, however, are
not suitable to any basic study of the vortex phenomenon, since they
do not lend themselves to any velocity, pressure, or temperature tra-
verses. To perform these operations, considerably lafger size models
have to be designed, and this in turn requires very high pressures and
very high flow rates of supply air. In addition to all this, great
care must be given to the fact that whatever probes are to be inserted
in the tube, the flow pattern must not be disturbed.

With these considerations in mind, 1t was decided to design a
2 inch diameter vortex tube (Figs. 2-1, -2, -3, =L, -5, -6, -7) made
of lucite. This is considerably larger than the majority of previous-
1y reported designs, and just about taxes the limit of most available
sources of compressed air. The choice of lucite, of course, is to per-

mit flow visualization studies in addition to the systematic probe

traverses.
-20-
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2.2 Apparatus

The installation evolved is flexible for many kinds of traverses
at different stations along the length of the vortex tube; nevertheless,
it has been kept simplc and devoid of unnecessary apparatus. Compressed
air at room temperature is fed tangentially into a nozzle block (Figs.
2-1, -2, -3) from which it spirals downward along a tube (Figs. 2-1, -4)
of any desired length. Stagnation temperature, stagnation préssure,
static pressure, and velocity traverses are taken at various stations
down the length of the vortex tube (Fig. 2-7). The exit end of the tube
is fitted with a cone-shaped valve (Figs. 2-1, -5, -6) which is movable
in and out.

The flow circuit is the following. Referring to Figs. (2-8)and
(2-9), compressed air from the University Power House 1s supplied by
means of Valve #1 to a New Jersey constant head, variable area flow.
meter of the multiple orifice, cylinder and piston type. It then passes
through a DeVilbiss (type HB) Regulator and drier, from whence it is fed
by a simple flexible hose to the nozzle block of the vortex tube. Pres-
sure Gage #1 and Thermocouple #1 are installed between the Jersey flow
meter and the DeVilbiss drier, and a mercury U-tube is installed at
the outlet of the drier so as to record the pressure of the air at en-
trance to the vortex tube. ILater on, when it came to running the in-
stallation at those relatively high pressures and high rates of flow
which eﬁceeded the capacity of the DeVilbiss drier, a by-pass circuit
(Valve #3) was used, and Pressure Gage #3 was used to record the entry
pressure to the vortex tube, since continued use of a U-tube would have
necessitated a mereury tube of ceiling height. It was felt that the
use of a low-pressure range diaphragm gage more then gained in conven-

ience what it might have lost in accuracy had a U-tube been maintained.






wPb

Figure 2-2. Center Block and Probe
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No further instrumentation than the above is needed for the study
of the uniflow type of vortex tube. For the counter-flow type of vortex
tube, a specially constructed miniature Pitot tube (Fig. 2-17) is used
to traverse the cold tube, and thus measure its outflow; the outflow
of the hot tube being obtained by difference between the supply flow
and the cold tube flow, since it is ineffectual to directly measure the
flow through a conical area.

2.3 Instrumentation

For the experiments described in this report, special velocity,
pressure, and temperature probes were designed. The key feature is a
"probe assembly" (Figs. 2-10, -11) which can be inserted at any station
along the length of the vortex tube, and constructed in such a way that
a hypodermic needle probe may be raised, lowered, or even completely
revolved within the flow field. Referring to Fig.(E—ll), a hypodermic
needle probe is raised or lowered by means of a Brown and Sharpe 605 Depth
gage and a slider and bearing assembly (Figs. 2-12, -13) which is mounted
on a stand (Fig. 2-14). This stand is itself lightly clamped by means
of adjusting screws to another stand (Fig. 2-15), with the latter being
glued in place to the probe tube (Fig. 2-4). Thus, the hypodermic needle
is free to move to any radial position within‘the vortex tube, and it
may also be revolved so as to be sensible to direction as well as to
magnitude of velocities. (Fig. 2-10, -11) show a probe assembly design-
ed for insertion along stations 1, 2, 3, etc., Fig.(2-7), whereas Fig.
(2-2) shows a probe assembly for insertion at the nozzle block itself.

The wvelocity, pressure, and temperature probes are shown in

Figs.(2-15, -16). Velocity measurements are made by means of a hot

wire anemometer, the theory, electric circuit, and control panel of

which is described in the Appendix section of this report. The hot
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wire anemometer itself is a special miniature version of the more
bulky types made by the University Aerodynamic Laboratory or by
commercial houses. Referring to (Fig. 2-15), it consists of in-
serting two insulated copper leads through a small (#18 gage) stain-
less steel hypodermic tubing, and soldering two sewing needles to
these leads. The needles are held apart and in rigid position by
binding them with fine thread and then carefully coating the whole
with shallow layers of electrical insulation which are allowed ample
time to dry and harden. Next, the hardened base is reduced to proper
size by means of a grinding wheel, and finally i£ is given several
coverings of aircraft "dope" alternated with sanding operations to
smooth the surface. Across the sewing needles is soldered a very
fine Wollaston or Tungsten wire ranging in size from .0001l5 in.
diameter to .00035 in. diameter. Depending on occasions, different
wires and different sizes are used. Also, for extreme sensitivity to
velocity changes, the center portion of the wire is etched to a still
finer diameter by means of a nitric acid solution and an electric
circuit.

The pressure probes (Fig. 2-16) consist of a static pressure
probe, which is simply a stainless steel hypodermic tubing (#18 gage)
well polished and left open at the end, and of a stagnation pressure
probe. The static probe is always inserted in such a way that it is
perpendicular tc the direction of flow. The stagnation pressure probe
is more elaborate, but essentially, it consists of a stainless steel
hypodermic tube of similar size as the one for static pressure measure-
ment, except that the open end is soldered closed, square cut, and

polished. Near the tip of this hypodermic needle, there is drilled a



robe Assembly

1’)

Figure 2-10.
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small hole perpendicularly to the axis of the tube. This opening, being
always in the direct line of flow (since the axis of the tube is per-
pendicular to the line of flow), serves as an impact tube for the meas-
urement of total pressure. By difference, the velocity head is obtain-
ed from the total and static pressure readings and thus serves as a
check on the velocity readings as obtained by means of the hot-wire
anemometer probe. Where space permitted it, such as at the "cold"

exit of the counterflow vortex tube, a miniature Pitot tube (Fig. 2—17)
is also used to measure velocity. The smallness of its size may be

seen when compared to a cigarette and a packet of matches photographed
next to it.

As for the stegnation temperature probe, it consists of a
stainless steel hypodermic tubing of similar size (#18 gage) as those
used for wvelocity and pressure probesg, this time with two dissimilar
but insulated leads (iron and constantan, or copper and constantan)
inserted through it. The ends of the leads are bared and fused to-
gether by acetylene torch or carbon arc, then pulled back close to
the end of the tube to make the assembly compact. Since all probes
had to be kept as minute as possible so as not to disturb the flow
field, no further elaboration (such as shielding for radiation, ete. )
was included in the manufacture of the probes. All the probes used
were calibrated and typical calibration curves are included in the
Appendix.

2.k Test Configurations

The primary objective of the experimental program was to ob-
tain basic knowledge of the velocity, pressure and temperature dis-

tributions in the vortex field of flow. The emphasis of study was
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directed to a vortex which is generated at the nozzle cross section,
and which proceeds in one direction down the tube to be discharged
through the exit at the far end of the tube. This is the so-called
"uniflow" flow type of vortex tube which heretofore has not been
extensively reported upon in the literature. A secondary, though
interesting part of the study, was devoted to the "counterflow"

" vortex tube, which is commonly known as the Ranque-Hilsch tube.

To adequately cover most of the geometry of flow, the test
cases were subdivided into various flow configurations based on the
selected length of tube. These were denoted as "Uniflow Configurat-
ion A", "Uniflow Configuration B," . . . . and "Counterflow Config-
uration A," "Counterflow Configuration B ", etc. These configura-
tions are shown in Figs.(2-18, -19). Within each geometrical con-
figuration, quantitative measurements were obtained for inlet pres-
sures of 10, 15, 20, etc. psig; maintained by the pressure regulator
valve. These quantitative measurements included flow rates, velocity,
pressure, and temperature traverses taken at the various stations (1),
(2), (3), etc. All of the runs were made at a given opening of the
cone shaped discharge valve in the case of the "uniflow" vortex tube,
and at the "optimum" opening in the case of the "counterflow" vortex
tube; the optimum opening being that which corresponds to the largest

temperature difference between hot and cold streams.
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Figure 2-18. Uniflow Vortex Tube Configuration
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CHAPTER 3

TEST RESULTS

This chapter is primarily concerned with the presentation of
test data. Comments and explanations are included wherever necessary,
but analysis and discussion are deferred to chapters 8, 10, 11, and 12.

3.1 Velocity, Pressure, Temperature Traverse

Quantitative measurements of velocity, pressure, and temperature
were obtained by placing, respectively, a velocity-hypodermic-probe, a
pressure-hypodermic-probe, and a temperature-hypodermic-probe at vari-
ous distances from the axis of the vortex tube. OSpecifically, begin-
ning with a probe placed near the wall, readings were taken for every
tenth of an inch that the probe was moved toward the axis of the vortex
tube. The radial movement was controlled by means of the micrometer
depth gage and slider assembly described in Chapter 2. The traverse of
velocities, pressures, and temperatures was performed at each station
along the length of the vortex tube, with the inlet pressure maintained
at a constant value throughout a given run.

The results are plotted in the form of velocity, stagnation or
total temperature, static temperature, stagnation or total pressure,
and static pressure curves in Figures (3-1) through (3-6, and (3-8)
through (3-13). The measured quantities are stagnation temperatures,
hot-wire velocities, and stagnation pressures. The computed quantities
are static pressures and static temperatures.

Each run consisted of the following operational procedures. i)
The valves of the flow circuit Figure (2-9) were cracked open and the
inlet valve to the vortex tube adjusted for the desired pressure of

the run. ii) The exit cone was turned all the way in, then backed out

46—
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fairly slow until the greatest Ranque-Hilsch effect is obtained,; and
left in that position for the remainder of the run. iii) After allow-
ing time for steady-state conditions to be reached, the procegs of
traversing the tube was undertaken. Beginning with the probe assembly
Figure @FlO) placed in position at station 1, the hypodermic probes
for velocity, pressure, and temperature were introduced, one at a time,
into the vortex tube and positioned at every tenth of an inch along thé
radius. The reason for introducing only one probe at a time was to
’keep the disturbance of the flow field to a minimum. For each radial
position of a probe, two readings were taken, one corresponding to the
probe on its way from the tube wall to the center of the tube, and the
other corresponding to the probe on its way back from the tube center
to the tube wall. The two readings were a&eraged, and this is tle
value that was recorded as being the probe reading at a given radial
position. Since the vortex tube had a radius of one inch, twenty read-
ings were thus taken per item, and ten averages were recorded for that
item in the table of results. With the existance of the three items of
velocity, pressure, and temperature, this meant sixty readings per trav-
erse per station. With six stations along the length of the vortex tube,
a given run involved no less than three hundred and sixty readings or a
hundred and eighty averages to be entered in the tabulation of results.
With the additional factors that time had to be allowed for readings to
stabilize, and ambient conditions to be fairly uniform throughout, it
can be seen that it is not easy to make a good run. At that, five de-
cent runs, corresponding to inlet pressures of 10, 15, 20, 25, 30, and
35 psig were obtained. The results of the first two runs have been

plotted in the form of curves in the aforementioned Figures (3-1) to
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TABLE 3-1. Traverse Data; P;, ;.. = 20 psig
Station 1
r(inches) V(fps) TT(OF> pT(psia) VA(fPS)
.2 300 8- 15.1 L5
.3 405 17 14.¢ 15
b 505 27 15.3 -8
.5 606 b1 18.8 -1h
.6 695 55 20.3 10
T 760 70 21.7 125
.8 795 80 22. 4 250
.9 770 8l 22.5 293
Station 2
r(inches) V(fps) TT(OF) pT(psia) VA(fps)
.2 350 21 15 25
.3 430 29 15.4 -8
. 510 Lo 16 -14
.5 580 51 16.9 -10
.6 635 63 17.8 L2
T 660 75 18.8 150
.8 650 82 19.7 254

.9 615 85.5 20 272




-63-

Station 3
r(inches) V{fps) TT(OF) pT(psia) VA(fps)
.2 375 38.5 15 12
.3 Lho 43 15.2 -7
b L95 50.5 15.8 -11
-5 5L5 58.5 16.4 -2
.6 575 68.5 17 52
T 290 7 7.7 151
.8 575 82 18.3 213
.9 530 8L 18.7 2L6
Station b
r(inches) V(fps) TT(OF) pT(psia) VA(fps)
.2 410 56 15 3
-3 k55 58 15.2 -8
b 490 61.5 15.7 -9
.5 525 66 16.1 2
.6 540 71.5 16.5 63
T 540 7.5 17 150
.8 520 82 17.3 208
-9 L75 85 7.7 252
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Station 5
r(inches) V(fps) TT(OF) pT(psia) ' VA(fps)
.2 405 6L.5 1h.9 6
3 LL5 67 15.1 -2
b L5 69 15.3 -12
.5 500 72 15.7 -2
.6 510 7 16.1 50
7 505 80.5 16.5 149
.8 485 83 16.9 206
.9 450 85.5 17.1 212
Station 6
r(inches) V(£ps) TT(OF) pp(psia) V,(fps)
.2 395 69 14.8 2
.3 430 70 15 -2
b L55 T1.5 15.2 -3
.5 475 73 15.6 2
.6 ~Loo 76 - 15.9 175
7 480 79 16.3 159
.8 L65 82 16.7 : 200

.9 435 8L 16.8 201
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TABLE 3-2. Traverse Data; P, . . = 25 psig
Station 1
r(inches) V(fps) TT(OF) pp(psia) v, (fps)
.2 355 -1.5 15.7 65
.3 413 L 16.8 6
o 500 16 8l -20
.5 525 30 20.5 -30
.6 745 L5 22.6 L5
T 824 62 2Lk.5 150
.8 858 78.5 26.1 270
.9 849 86 26.3 340
Station 2
r(inches) V(fps) TT(OF)_ pT(psia)l v, (fps)
2 385 15 15.5 35
.3 180 22 16.5 -10
b 575 30 1r.7 -30
.5 655 39.5 18.9 -10
.6 715 51 20.4 60
T 82l 65 21.8 165
.8 859 78 _ 23.3 260

.9 845 85 23.2 325
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Station 3
r(inches) V(fps) T (°F) pp(psia) v, (fps)
.2 k30 L3 15.3 20
.3 530 L3 16 -1k
b 604 52 16.9 -25 |
.5 655 58.5 17.9 0
.6 715 6L.5 18.9 70
7 Th1 71 20.2 160
8 40 79 2l.L 260
.9 715 85 21.5 315
Station k4
r(inches) V(fps) TT(OF) pTstia) VA(fps)
.2 450 56 15.2 15
.3 516 59 15.7 -20
A 575 62 6.4 -20
5 608 66 17.1 25
.6 626 71 7.9 100
.7 627 55.5 19 195
.8 608 80.5 20 270

.9 575 8L.5 20.1 300




_67_

Station 5
r(inches) V(fps ) TT(OF) pT(psia) VA(fps)
.2 165 63 1h4.9 10
.3 510 6h.5 15.4 -20
iyt 549 68 16 -17
5 575 71 16.6 30
.6 590 4.5 17.54 104
T 586 78.5 18.1 180
.8 560 81.5 18.5 255
.9 540 8L 19 286
Station 6
r(inches) V(fps) TT(OF) pT(psia) VA(fpS)
.2 450 65.5 14.8 5
.3 480 66 15.2 -18
iy 525 70 15.7 -16
.5 550 T2 , 16.3 27
.6 560 75 16.9 92
T 555 79 17.5 NG
.8 540 81 18.3 245

.9 511 83.5 18.2 272
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TABLE 3-3. Traverse Data; Pinlet = 30 psig

Station 1
r(inches) V(fps) TT(OF) pT(psia) VA(fps)
.2 385 -9 16.8 85
-3 435 -3.5 18.4 25
536 7 20. 4 ~15
-5 675 21 22.6 -32
.6 800 Lo 25.2 25
LT 877 60 27.8 145
.8 900 78.5 30 275
.9 872 88 30.9 365
Station 2
r(inches) V(fps) TT(OF) pT(psia) VA(fps)
.2 410 3 16.5 65
.3 512 10 17.8 10
o 640 19.5 17.2 -30
.5 750 31 20.8 -15
.6 775 L5 2.4 55
T 790 63 2h.2 170
.8 775 79 26.2 285

9 740 87 27.3 352
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Station 3
r(inches ) V(fps) 7, (F) o (psia) v, (gps)
2 450 33 16.h L5
3 550 305 17.5 -b
L 635 L5 18.7 -25
.5 6878 53.5 19.9 -10
.6 706 61.5 21.3 65
7 705 71 22.7 165
.8 681 80.5 2.1 270
-9 638 87 2l.6 340
Station L
r(inches ) V(fps ) TT(OF) b (psia) v, (£ps)
.2 480 52 16.3 35
-3 560 55 17.2 -5
610 60 18.1 -2k
-5 650 65 17.1 -8
6 665 T1 20.1 62
" 655 7 El.h' 165
.8 630 83.5 22.5 280
.9 592 86.5 23.1 334
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Station 5
r(inches) V(fps) TT(OF) p,(psia) v, (fpe)
.2 480 60 16.2 25
.3 530 62 6.9 -1l
585 66 17.6 -23
) 615 70 18.4 L
.6 627 4.5 19.3 8L
.7 620 80 20.2 175
.8 598 8L 21 270
.9 560 86 o 2L 330
Station 6
r(inches ) V(£ps) TT(OF) pT(psia) VA(fpS)
.2 450 65 16.1 15
3 535 68 16.6 -18
n 565 , 70 17.3 -23
5 59k 3.5 17.9 1h
.6 598 76 18.6 80
T 586 80.5 19.3 160
.8 564 8.5 20 250

.9 530 86 20.3 305
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(3-13), and the remainder left in tabular form in Tables (3-1,2,3) for the
sake of economy of labor. No runs were made above 35 psig because of

the large consumption of air and of the noise involved. It should be
noted that the readings near the center of the tube and near the wall

of the tube were very erratic, and for that reason, neither traverse
curves nor traverse data are drawn or given for radial distances less

than 0.3 inches or more than 0.9 inches. The explanation for this
condition is found in chapters 8 and 12.

3.2 Axial Distribution

The variation of velocity, pressure, and temperature with axial
distance is shown by cross plotting the data as in Figures (3-7), (3—1#),
(3-15), and (3-16). The former figures are a Jjuxtaposition of the
velocity traverses, and shows not only how the whirl velocity decreases
as flow progresses down the vortex tube, but that there is actually a
sort of leveling off, indicating that flow becomes more and more axial
as it moves down the tube. This means that the strength of the vortex
filament (Chapter 4), unlike the situation for a perfect fluid, is no
longer constant, but decreases as flow progresses along the tube. The
latter figures show the variation of maximum values of total temperature,
total pressure, and velocity in the axial direction. It is seen that
the maximum Ranque-Hilsch effect occurs near the inlet of the vortex
tube rather than farther down the tube.

The axial length of the tube did not appreciably affect the
character of the flow. Several runs were made at various configurations
other than A. Except for axial gradients that are somewhat.larger for
the shorter configurations, i.e., pressures and velocities dropping

over a smaller axial distance, the results have the same general appear-

ance as those for configuration A, and for the sake of economy, they are
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Table 3-4. Axial Distribution of Pressure, Temperature
and Velocity; Py 1.t = 20 psig.

Axial Max. T Min.Tnp Max. P Max. V
Station Distance (°F) (°F) (Psia) (fps)
1 2 86 9 22.9 780
2 10 86 22 20 660
3 18 85.5 Lo 18.6 590
4 26 85 56 17.6 5k5
5 3L 8k.5 66 17.1 510
6 Lo 83.5 69 16.8 L9o
Table 3-5. Axial Distribution of Pressure, Temperature
and Velocity; Py j.¢ = 25 psig.
Axial Max.Tr, Min. T Max. Py Max. V
Station Distance (°F) (°F) (Psia)” (fps)
1 2 87 -4 26.9 860
2 10 87 15 23.5 760
3 18 86.5 Lo 21.8 690
i 26 86.5 56 20.3 630
5 3k 85.5 63 19.3 590

6 b2 8L 65.5 18.4 560
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Table 3-6. Axial Distribution of Pressure, Temperature
and Velocity; Pipjet = 30 psig.

Axial Max. T Min. Ty, Max. Pr Max. V
Station Distance (°r) (°r) (Psia) (fps)
1 2 88 -11.5 30.5 890
2 10 88 2 27.5 780
3 18 87.5 33 25 710
L 26 87.5 51.5 23 765
5 3k 86.5 60 21.6 730

6 Lo 85 65 20.4 605
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not included here.

3.3 Axial Velocity

The velocities concerned up to this point represent the magni-
tude of the velocity vector. The velocity probe, however, can detect
directioﬁ. It can be rotated 360 degrees on its stand(Figufes 2-10)
and 2-14), so that in its postion of maximum reading, that direction
perpendicular to the hot wire indicafes the direction of the velocity.
With this information, it is possible to resolve velocities into axial
and tangential components. Figure (3-17) shows the flow angle and the
axial velocity traverses at a typical station, namely, 2. Traverses
at other stations show curves of similar shape, and hence are not drawn.
For convenience, the stagger or tangential angel (90-q) is plotted,
rather than the flow angle itself. Incidently, it was found that the
flow angle is rather independent of changes in inlet pressure over the
range of values tested. Figure (3-18) shows that the axial velocities
are uniformly small when compared to tangential velocities or to total
velocities of Figures (3-7) and (3-15). As for distribution, the pre-
dominant axial velocities are concentrated in a small annular region
near the wall of the vortex tube. The axial velocity falls off sharply
toward the center of the tube, and actually indicates a reverse flow
near the center. This explains partly how the hot stream travels in
one direction, and the cold stream in the other in the case of previous
investigations of the vortex tube (50, 108).

A reasoning concerning the wall friction throws considerable
light on the tangential velocity distribution. Inspection of the dats
reveals that the tangential or total velocity peaks do not coincide with

the axial velocity peaks, but are located more toward the center of the
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tube. This can be explained on the basis that wall friction causes a
decrease in both the axial and tangential velocities near the wall as
the flow moves along. From continuity considerations, this results in
an increasge in axial and tangential velocities in regions farther away
from the wall., It indicates that some air must move in toward the
center as flow progresses down the tube. In so doing, the air tends
to conserve its angular momentum, thereby resulting in an increase in
angular velocity in those regions farther away from the wall. The
tangential velocity, however, drops off at the center of the tube, for
as shown in Chapter 8, there is theoretically no flow "in the plane",
but only axial flow.

It is interesting to compare the axial velocity distribution
with that obtained by superposition of a vortex flow and a longitudinal

flow. From the relations to be developed in Chapter 5, Euler's equation

becomes vV dv vV av
dp + T T + B8 8 -0 (3-1)

where p denotes pressure, and VT, Va denote tangential and axial vel-
ocities respectively. The differentiation is with respect to radial

distance r. The pressure gradient relation becomes

i 2
de - T (3-2)
dr gr
while the "free" vortex condition is
r V. = constant (3-3)
From Equation (3-2), dp/p = VTQ dr/gr, and from Equation

(3-3), dr/r = - 4 VT/VT. Substituting these into Equation (3-1) yields
vV, av, = O (3-1)

Rejecting the trivial solution V, = O (no flow), Equation (3-L4) yields

Vg, = constant for the combination of "free" vortex flow with longitudinal

flow.
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The wvelocity distribution in the vortex tube, however, is more
characteristic of the "forced" vortex type than of the free vortex type.
Therefore, combining a '"forced" vortex flow with a longitudinal flow,
the Euler equation, the pressure gradient equation are the same as
Equations (3-1) and (3-2), but the vortex condition is now
- = constant = w (3-5)
Equations (3-5) and (3-2) give dp/p = «Pr dr/g, while Equation (3-5)
becomes d Vp = @ dr. Substitution of these into Euler's equation,
however, no longer result in a constant Vg, but a Vg = £(r) which is
more complex, having nevertheless the general character of the

distribution curve shown in Figure (3-18).

3.4 Interrelationship of Internal Data

The experimental study of the vortex tube "from the inside", as
is the case in the present investigation, affords some interesting
cross checking of data. It was previously pointed out that the plot
of axial velocities showed some negative values in the neighborhood
of the axis, indicating the existence of a backward flow. This may

be verified by considering the pressure relation for circulatory flow:

dps - o yn?
ir y VT (3-6)

Figures (3-8) through (3-14) show an increase in tangential veloci-
ties near the center of the tube. Since Equation (3-6) must be sat-
isfied, it follows that there must be an increase in the ﬁ}essure
differential between the center line and the region immediately away
from it as flow progresses down the tube. Now; static pressure meas-
urenents along the center line itself showed fairly constant values
along the length of the vortex tube. Therefore, the static pressure

in the neighborhood of the center line must increase from station 1 to



station 6. Such a pressure gradient explains the tendency for back-
ward flow near the center of the tube, especially in the case of the
counterflow vortex tube (50, 108).

Nor is the foregoing the only case of data cross checking. The
axial velocity distribution may be used in conjunction with the local
values of the density to determine by integration, the mass rate of
flow down the tube. This mass rate can then be compared with the
mass rate obtained from the flowmeter. Similarly, an energy balance
may be performed by taking the product of the meter flow rate, the
specific heat, and the inlet temperature, and comparing with the
integrated energy flow at various cross sections along the tube
length. This was done on several occasions, and the results agreed
well enough for peace of mind. This is one of the many advantages
occurring from the "internal' approach to the study of the vortex tube.

3.5 Flow Visualization

Construction of a vortex tube of lucite afforded good oppor-
tunity for the study of flow patterns by means of visual methods.
Accordingly, a smoke chamber was first constructed and connected to
the inlet hose. The injected smoke showed up well at low speeds, but
at moderate or high speeds, it became invisible. Also, thererwas
considerable difficulty in getting the smoke into the vortex tube
center block. The pressure in the smoke chamber being low compared
to the air supply pressure and to the vortex tube pressure, the smoke
had a tendency of flowing out of the tube rather than into the tube.

After smoke, balsa sawdust was tried, but it did not show up
well at high speeds, and it was messy to work with, since it covered

everything in the vicinity with a coat of dust. Next, fine confetti
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was tried, with a laundry bag covering the vortex tube exit cone to

prevent the confetti from blanketting the adjacent laboratory space.
It worked for short bursts of speeds, but then the confetti, in rub-~
bing against the lucite, developed static electricity, and it simply
clung to the walls of the tube to no avail.

The final and most successful method of flow visualization was
the injection of clear or:-colored water into the vortex tube. fhe
injections were.made by means of a horse syringe, and clear water was
first used, because it kept the installation clean. Later on, for
the sake of taking photographs, colored liquid was used. This en-
tailed washing and cleaning the entire installation after an injection,
hbwever, it was not too high a price to pay for the obtention of good
photographes. Figure (3-18) shows the flow pattern immediately after
entry into the vortex tube. The circle in the field of flow is the
limit circle, and represents the inner boundary of the vortex flow.

Its existence i1s a characteristic of compressible flow, and its theory

is developed in Chapter 8. Figure (3-19) shows the same condition,

but for the case of the counterflow vortex tube. These are interesting
pictures, for the existence of limit circles (circles beyond which the
flow does not penetrate) has not been discussed in previous investigations.

Figure (3-20) shows another example of limit line in plane flow5
It was, however, obtained by injecting a trace of clear water, and it
represents one of the few cases where a "clear" trace photographed well.
Figure (3-21) shows a spiral streamline in three-dimensional flow. It
was obtained by means of clear liquid, but using a short configuration,
namely configuration D. A similar streamline in space, but using a

longer configuration is shown in Chapter 9, where it was included to

correlate the theoretical study with some of the experimental results.
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PART IIT

THEORETICAL STUDY



CHAPTER 4

VORTEX FLOW IN THE PLANE

b1 Potential Vortex

Consider the flow of air upon its entrance into the vortex
tube. Its motion is circulatory, and is as shown in Figure (4-1)-
The analytical treatment of the problem will proceed along the follow-
ing line of thought. The instrinsic equations of compressible fluid
flow, if tackled head-on in their most general form, i.e., three-
dimensional, with viscosity and heat transfer included, involve mathe-
matical difficulties beyond the power of present-day methods of
analysis. It is, therefore, only natural that simpler solutions be
sought from simpler, if more restricted models of flow, and by super-
posing these individual solutions, to arrive at the general solution.

Using Prandtl's concept of the boundary layer, it is possible

to ignore friction and heat transfer for the region of potential flow

ocoutside the boundary layer. Shearing stresses and heat transfer are
small compared to dynamic effects, except in a thin film near the
solid boundaries, and the flow can be considered as frictionless
adiabatic within a space the outline of which 1s displaced by an
amount equal to the thickness of the boundary layer. Shock waves
do not occur in regions where the flow is entirely subsonic. 1In
transonic and supersonic flow, they are present, but even so, the
flow patterns upstream and downstream of the shock can be treated
as shock-free,.

In the present work, the fluid is treated as a continuum,
which is equivalent to working with macroscopic properties of the
fluid, rather than with the instantaneous states of its innumerable

-87-
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molecules. This assumption is valid, since the mean free path of the
molecules ( 3.5 x lO"6 in. for air) is nowhere of comparable size
with the smallest significant dimension of the problem. Bécause of
most problems in compressible flow, the concept of irrotational,
frictionless, adiabatic, shock-free motion of a perfect gas permits
great mathematical simplifications with scarcely any sacrifice in
accuracy, the present study begins with the flow in the vortex tube
being expressed as irrotational or potential. Viscosity effects are
taken intc account in Chapter 10.

4.2 Irrotational Flow

This is one instance when the flow is amenable to exact solution,
for the differential equations of flow reduce to systems of quasi-linear
partial differential equations of the first order for functions of two
independent variables. Advantage is taken of this fact, and the flow,
upon entry of the compressed air into the vortex tube is then expressed
as follows.

Consider, in that region excluding the boundary layer, a per-

fect fluld moving in a circular path with no external torque applied:

\JE\DC‘\‘ N

(a) (b)

Figure 4-1. Flow in Circular Path
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T=m E% (rvV) = 0
Integrating:

rV = constant = K
or

V =

BN

(4-1)
The significance of this equation will now be developed.

Equation (4-1) is characteristic property of a free vortex;
the velocity distribution being of the type (hyperbolic) shown in

Figure (4-2).

(o) (b)

Figure 4-2. Velocity Distribution and Irrotational Motion of Free Vortex

The flow 1n a free vortex is also irrotational, i1.e., an infinitesimal

fluid particle does not rotate about i1ts own axis. As shown in Figure
(4-2), it has but translatlonal motion, even though it travels a cir-
cular path.

The pressure distribution in a free vortex is determined by
considering the force balance in Figure (4-1). The centrifugal force
on the fluid element is balanced by the resultant force due to pres-
sures over the surfaces. Neglecting infinitesimals of higher order

than the first, the force balance in the radial direction is
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H|<i\)

dpdA = (dm) %é = (p dr dA)

or

V2

dp = & ar (4-2)

Substituting K/r for V into Equétion (4-2) results in

dr
dp = p K°
b p ;3
or
dp _g2 dr
o r3 (4-3)
Integrating: (,2 2
‘ do _ A &
i P I‘3
71 1
2 1
2 2
® | € a1 1. N T2
0 o ~ 2 ( 2 2)= 2 r
r T
0 0 1 2
1 2
Vv 2 Vv 2
dp 1 dp 2
= 4 —==z] == 4 —
p 2 o 2
0 ¢ (4-4)

For a perfect gas, p = ﬁ% , and Equation (4-3) becomes

dp = 2 k2 dr
T r3
or
2
dp _ K dr
D RT r3

which integrates into
(4-5)
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Equation (4-4) shows that the total energy in any stream tube is the
same as that in any other stream tube. No energy is added to the
vortex by torque, and no energy is dissipated by friction.

Having established the existance of a '"free vortex" inside
the tube, the characteristic properties of such a flow field will
now be developed. To this end, and also for the sake of continuilty,
a certain amount of mathematical derivation is included.

k.3 Circulation of Free Vortex

The potential, or free vortex, is a case of irrotational flow;
it describes the motlon in whirlpools and tornados, and in its simplest
form, is a two-dimensional motion in which the streamlines are con-
centric circles, with the tangential velocity along any streamline
being inversely proportional to the radius of the streamline. The
circulation of an area enclosing and not enclosing the origin will
now be evaluated for this type of flow.

By definition, the circulation is the line integral of the velo-
clty field around any closed curve. It is the sum of the products of
elements dl of a curve drawn in the plane of the flow and the corres-

ponding component of velocity tangent to the curve.

- <

N

L
i

N
%

™
!
2

(a) (b) {c)

Figure 4-3. Circulation for Free Vortex
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Referring to the closed curve c of Figure (h—3), the circulation

is / -

-—)

[-= fcvcosad]_:: iC vV dl ("""6)
/

where'ﬁrdenotes the velocity vector and dl the displacement vector.

If u and v denote respectively the velocify components in the x and y

directions, then the Cartesian form of Equation (4-6) is

[=0 (uax + v dy) (4-7)
Equation (4-6) is now applied to the free vortex. First, consider the
circulation around a closed curve enclosing the origin, such as a
streamline of radius r in Figure (4-3p). Noting that cos @ = cos O = 1,
2 25
I' = V rde = Kdo = 27K (4-8)
0 0
Next, consider the circulation around a closed curve not enclosing the
origin, such as element ABCD in Figure (4-3b). Noting that the line

integral is zero along the sides AB and CD, (cos a = cos ﬁ/2 = 0), the

circulation is '

r = (V+av) (r + dr) do - V rde

ABCD _ (v gr + rav) do - [a (/)] ae
But from the definition of the free vortex, Vr = const. = K, or d(Vr) = O,
and f_ _ _

ABCD [d (Vr):l ©=0 (4-9)

The circulation for an element of area not enclosing the origin is
thus zero. The ciréulation for a finite area Figure (h-3c) not en-
closing the origin is also zero, since the line integral around the
bounding curve of the finite area is the algebraic gum of all the line

integrals around the elementary elements comprising the finite area:

dv  du
[—= (udx + vdy) = (3x " Jy) dx dy =0
A (4-10)
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Equation (4-10) represents Green's Theorem for the transformation from

line integral to surface integral in two-dimensional space, and its truth
is evident from the fact that each interior line of each element’is
traversed twice but in opposite directions, and hence only the exterior
line of the elements contribute to the circulation.

It may be noted that the generalization of Equation (4-10) to

three dimensional is

(=0 (udx + Vay + waz) = ¢ V + dl
ow ov
- - o> _ 2L dz M _ MY gz ax
# d.xdy+( aZ)dy +( ]

j{ﬂ,}( (4-11)

By Fquation (4-8), the circulation for any closed curve enclos-
ing the vortex center is 2xK. The rotational properties of the vortex
are thus concentrated at its center, a "singular point", where the
velocity is infinite and the radius is zero, while the product of the
two is the constant K. The circulation [— about a vortex is é constant,
and is a measure of its strength. A vortex may thus be designated by
the shorthand rotation [_-<?\ to indicate its strength and direction
of rotation, and the velocity at any radius may be expressed in terms
of it by [

e (h-12)

Figure (4-4) shows the circulation for any closed curve in a

field of flow where several vortices are present. It is readily seen

how the shorthand notation can be used to advantage.



Figure 4-4., Circulation for a Multiple-Vorticity Field

Physically speaking, each particle of fluid in a free vortex
undergoes a shearing deformation, but the rotation of each particle is
zero. The free vortex 1s irrotational, except for a singularity at the
origin, and is therefore called potential vortex. This is illustrated
in Figure (4-2b). An element of fluid will travel in a circle, but if
a straight line AB were to be painted on the element, it would be ob-
served that this line has a rectilinear motion, i.e., the line always
remains parallel to its original direction and consequently has zero
angular velocity.

L4 Circulation per Unit Area

It is convenient at this point to employ the concept of circu-
lation to define an important kinematical property of the velocity field,
namely the curl. Consider the circulation dlr around a small element in
the x,y- plane as shown in Figure (4-5).

y

‘ u+-g—‘;—dy
v’ dy ‘\ rv+%dx
dx

o X

Figure 4-5. Circulation for Element of Area
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Using Equation (4-7), and proceeding counter-clockwise, the circulation

amounts to:

ov

Al = udx + (v + 3 dx) dy - (u + é& dy) dx - vdy
X
_(ov Au _ (Ov  du
= (-a—}z——a'y—)dXdy = (g}z—é;) dA

The circulation per unit area in the Xy plane is thus

i[:z (BV

v
dA ox oy

(4-13)
Similar expressions may be found for the circulation per unit area in
the (yz), and (zx) planes by rotation of indices. This serves to define

the curl of a velocity field: it is a vector whose component in any

direction n is defined as:

A A5 O (4-1k)

where A A is the area enclosed by the path about which the line integral
is taken, and o is the direction of the normal to the surface. The

sense 1s given by the right hand rule. It is seen that in vectorial

rotation:
0 0 0 o o 0
curl V = (gy vo- 5V ) T+ (BE u - 5w )3+ (5§ vVo- 3pu ) K
- —
=V x V (k-15)
where
- _ =3 - 93 s)
v- i—a-;+‘]§-y—+k§£

is the usual vector differential operator "del" or "nabla".
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4.5 Fluid Rotation at a Point

The fluid rotation at a point is the mean angular velocity of
two infinitesimal and mutually perpendicular fiuid lines instantaneous-
ly passing through the point.

To find an analytical expression for the fluid rotation at a
point, consider the infinitesimal and mutually perpendicular fluid

lines OA and OB in Figure (4-6).

k

Figure 4-6. Fluid Rotation at a Point
During an infinitesimal time interval dt, OA rotates to position

OA', and the vertical displacement 1is
AA = éX dx dt
ox

The angle AQOA', positive when measured counter-clockwise, is

‘éZLAOA' = g
ox
and its time rate of change or angular velocity is thus %X .
X
Similarly, it may be shown that the angular velocity of the

fluid line OB is - %% . The average rotation of the fluid element

1s therefore:

e
il
N
Y

|
Ag

(4-16)
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Referring to Equation (h-l3), it is seen that the circulation
for unit area is twice the average rotation of the fluid particle:
=
o Ccur1 Vo (¥ -y _
X Oy z

A
(4-17a)

vorticity =w, = 1 curl 7

no

For a free vortex, it was found from Equation (4-10) that the

circulation for an area excluding the origin was zero. Therefore,

v du v

from Equation (4-17a), (&£ . %) must be zero, or & - M, which is
ox dy '
the condition for irrotational flow.
For a rotation in space, the x and y components of the rotation

vector w may be found from Equation (L4-17a) by rotation of indices, 1.e,

a - _
dy Oz (4-17v)
and
- M
Y dz X (4-17¢)

In vectorial notation, the general expression for the "vorticity" or

angular velocity vector is thus

BTG -F) TG -5 R G -F)xT (19)

4.6 Shear Deformation Rate and Angular Velocity

Before leaving Figure (4-6), it is of interest to note that
the rate of shear deformation in a fluld is defined as the rate of
change of the angle between two mutually perpendicular fluid lines.
Thus, for the angle between lines OA and OB, the change in angle

during a time interval dt 1is

g% at + %% dt
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<

and its rate of change is (— + —%). Consequently,

X

v éu)

Pl 8; (4-19)

Rate of shear deformation = (

There is a parallel between these expressions and the corre-
sponding expressions for the deformation of elastic solids. In the
case of a fluid particle, velocity is the quantity dealt with, whereas
for a deformable solid, it is the displacement. The average rotation
of a fluid particle corresponds to the average rotation of a solid

particle, and the rate of shear deformation of a fluid particle

corresponds to the shear strain of an elastic solid body.
A physical picture of Equations (4-17a) and (4-19) is provided

by considering the following two cases;

<

y du ] u
/Wdt /aydt
—
o/
ﬂdt 3
/o DI[ "
X /‘crmmﬂ—D X
20

JA

/n—-

- ox
/.‘_
L

(a) (b)

Deformation Rotation

Figure 4-7. Shear Deformation and Rotation

ov du

In Figure (4-7a), let — and == have equal positive values.

ox
From Equations (4-17a) and (4-19), the angular velocity vanishes, and

the fluid element is undergoing pure shear deformation.

In Figure (4-7b), let éz and g? have equal magnitudes, but

ox
opposite signs. For this case, Equation (4-19) gives zero strain,
and Equation (4-17a) gives a finite value for the rotation. The fluid
element undergoes pure rotation. Use of the foregoing will be made

in Chapter 10 when viscosity effects are taken into account in the

flow field.
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b7 Rotation in Natural Coordinates

It is advantageous, whenever possible, to express the angular
velocity or vorticity in terms of the natural coordinates of a system.
Referring to Figure (4-8a), let the streamlines and the radius lines

(normal) comprise a system of curvilinear coordinates.

(a) (b)

Figure 4-8. Circulation and Rotation in Natural Coordinates

The circulation of element ABCD is

ov

al -'-(V+—a—-d.n) (r +dn) @0 - V r @0

193

=(r§Y+V)dndQ
Is}

and the rotation is
oV '

r + V) dn de

dA r dn do om r (4-20)

The condition of irrotationality in curvilinear coordinates

then becomes

NV
X tr-o
or
v
on - T T (k-21)

This relation is the restriction that potential flow places upon the

flow field in order to achieve mathematical solution.
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4.8 Dynamic Equation Normal to Streamlines

This is the statement of Newton's second law of motion in the
direction I normal to the streamlines. Referring to Figure (4-8b), the
mass of the element is p rde dn, and its acceleration toward the center
of curvature of the streamline is the expression for the centrifugal
acceleration Ve/r. In the absence of friction and body forces, the
only forces acting are those owing to pressure. The net force along
the normal drawn through the center of the element is thus:

(p+ % dn) (r +dn) @0 - pr do - 2 p dn 49
on 2

or, after simplification:

%g r dO dn

This force must, by Newton's law, be equal to the product of

V2

mass and acceleration prdoe dn —= Thus

2
%rd@dn: o rdo dn ¥_
r
or 2
P = p v
on r (4-22)

In the case of the free vortex, the condition of irrotationality

as given by Equation (4-21) is V.. X , and this can be used in.Equa-
r

tion (4-22) to integrate it:

=—-oVa

2
v__pa v
on <= on 2

=3Le}

and since this relation is true regardless of the normal that was chosen,
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[ ap
P

/

which agrees with the previous result provided by Equation (4-3) that

V2
t 3

— ‘constant | (J—I--23)

the total energy in any stream tube is equal to that in any other stream
tube.

k.9 Crocco's Theorem

This theorem provides the connection between the rotation and
the thermodynamic properties of the flow. Consider the stagnation or

total enthalpy ho‘ It is related to the velocity and the static

enthalpy by 2
hy=h+ L
2 (4-24)
or, differentiating in the n-direction.
dhy _n W
v —on ' On (k-25)

The first law of thermodynamics and the definition of enthalpy yield

Tds = du + pdv
dh = du + pdv + vdp
Hence
Tds = dh - vdp
= - % dp (k-26)

and this may be differentiated to give

pE _3 1%

m o pon
or

1% __qp0s ok

b on dn  on

and, replacing h in terms of h, as per Equation (4-25):
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1 dp ds 0O ov
pam T T I Y
or
1 %% __ T ,10, _X
oVoan Von Von © ©On (4-27)
The rotation, as given by Equation (4-20) is
20>=§y: + Y
on r
which, with the aid of Equation (4-22), can be written as
2w= .éY + L éE
on oV on (4-28)
Finally, replacing the second term of the right hand side of this
expression by 1ts equivalent as given in Equation (4-27) yields
op= N Tds , 10, &
" on T V on Von © " n (4-29)
oh
-1 (2. X (4-30)
\ on on

which is the special form for Crocco's Theorm in two dimensional flow.
Equation (4-30) enables the calculation of the thermodymamic properties
of the flow field within the vortex tube.

k.10 Velocity Induced by Vortex Filament

The two-dimensional velocity field previously described is a
vortex flow in the xy-plane, with the point vortex at the origin of
coordinates. This means that the flow pattern is identical in all
planes parsllel to the xy-plane from - o to + » . The point vortex is
duplicated in every parallel plane, the configuration of the points

forming a straight line perpendicular to the xy-plane and extending

from - » to + ©« . In space, such a line is called a vortex filament,
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and it may be visualized as the line around which successive fluid
elements travel.

It is of interest to detemine the velocity induced in a region
surrounding the vortex filament by an element dz of the filament.
Figure (4-9) shows a vortex filament of infinite length normal to the

Xy-plane.

-0

Figure 4-9. Velocity Induced by Vortex Filament

The velocity induced at point P by an element dz of the filament 1s
determined from the Biot-Savart law, which states that an element dz of

a vortex filament of strength [ induces at a point P the velocity

av = L 8lngd,,

b (4-31)
where r is the distance from the element to P, and ¢ 1s the angle between
the radius vector from the element to P and the filament. The induced
velocity lies in a plane through P perpendicular to the element of fil-
ament. It is seen that Equation (4-31) is analogous to the law con-
cerning the strength of a magnetic field induced in a region surround-
ing a wire that is carrying a current.

The velocity at P indiced by the entire filament is obtained

by integrating Equation (4-31)
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,+ro
~ [ sina
V = J-l.jt —-—;2— dz
oo (4-32)

To solve Equation (4-32), express everything in terms of h and B:

z =htanB; dz =h sec2 g ds:

r

h sec B

sin ¢ =cos B

Thus:
Tt
-l
V = [ cosB __ n 3602 B dp
T p2 sec? B
Tt
2
+§‘_ g *3
cos
= E; h ap= L sth [sin 51 x
/% 2
)
r
= 41— L-
o (4-33)

This is precisely the velocity induced at P due to a point
vortex at the origin as given by Equation (4-12); this is a necessary
agreement for consistency between the two and three-dimensional cases.

h.11 Vorticity Theorems

It is of interest to include in the present study of vorticity
fields several important theorems which govern their behavior. These

theorems are:

Helmholtz's First Theorem: In a perfect fluid, the strength

of a vortex filament is constant along its length.
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The proof of this statement is shown by the following device.
Enclose a segment of the vortex filament with a sheath from which a

slit has been removed, as shown in Figure (4-10).

R

\T@/

Figure 4-10. Demonstration of Helmholtz's Theorem

The cylindrical surface enclosed by the perimeter ABCD con-
tains no vortex points, hence the curl of the velocity at every point
on the surface is zero, and it follows by Stokes' Theorem that the
line integral of the velocity along the perimeter is also zero. -In
traversing the perimeter, the constributions to the total circulation
of the line integrals from B to C and fro% D to A are of equal magnitude
and opposite sign, assuming the slit to be narrow. This means that for
the total circulation to be zero, the remaining line integrals from A
to B and C to D must also be of equal magnitude and opposite sign.

The consequence of this is that the vorticity enclosed by the top and
bottom perimeters of the cylinder is the same, which means that the
vortex filament stays constant in strength.

Helmholtz's Second Theorem: In a perfect fluld, a vortex fila-

ment can neither begin nor end; it must extend to the boundaries of
the fluid, or form a closed path, or extend to infinity.
To prove this, simply revert to the demonstration of Figure

(4-10): assume the split sheath so placed that the filament ends
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midway between the top and bottom edges. The line integrals around
the sheath from A to B and from C to D are then no longer of equal
magnitude and opposite sign, and the condition of zero circulation
around the perimeter can no longer be maintained. Since this violates
the state of irrotationality of the cylindrical flow surface, the
ending of the vortex filament within the sheath cannot hold.

Helmholtz's Third‘Theorem (Kelvin's Theorem): In & perfect

fluid, in the absence of rotational external forces, a fluid that is
initially irrotational remains irrotational.

A simple proof of this is obtained from Crocco's Theorem,
Equation (h-30). If the fluid is originally in parallel motion with
uniform properties, and if the fluid along'each streamline undergoes
adiabatic, reversible changes, it follows from Equation (4-30) that
the flow 1s everywhere irrotational since both terms of the right
hand side of the equation are zero. But the stipulation of reversible
flow is precisely equivalent to the statement that there is no frict-
ional forces in the fluid.

Finally, a corollary may be added to these vorticity theorems.
From Stokes; theorem, it can be stated that: In a perfect fluid, in
the absence of rotational forces, if the circulation around a closed
path enclosing a definite group of fluid particles is initially zero,
it will remain zero.

These theorems apply to perfect fluids, or fluids with small
viscosity. The effect of frictional forces on the "free-vortex" field

will be considered in Chapter 10.



CHAPTER 5

INTRINSIC EQUATIONS OF COMPRESSIBLE FLOW

5.1 Differential Equations of Fluid Motion

Before attempting the mathematical solution for the flow field
inside the vortex tube, it is necessary to express in differential form
the physical principles which the flow must satisfy in order to possi-
bly exist. The equations of fluid dynamics can be expressed in two
different forms, Lagrange's form, and Euler's form. The Lagrangian
method describes the motion in terms of the paths of the individual
particles of gas, i.e., the coordinates x, y, z of the particles as
functions of the time t and three parameters a, b, ¢, which character-
ize the individual particle. The Eulerian method directs attention
to definite points (x,y,z), and to what happens in the course of time
t. The motion is then described by giving as functions of x, y, z,
and t the velocity components u, v, and w of the particle that happens
to be at the point (X,y,z) at the time t. It is Euler's representation
which is adopted in the present work.

The basic relatlons which govern the motion of a fluid medium,
except at discontinuities, are i) the equation of continuity, ii) the
equation of motion, iii) the reversible-adiabatic change of state re-
lation, and iv) the equation of state of the medium.

These equations, together with the condition of irrotationality,
form the basis upon which a mathematical solution is built, and because

of their importance, they will be developed in some detail.

-107-
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5.2 Equation of Continuity

To express the principle of conservation of mass, consider the

infinitesimal cube of fluid shown in Figure (5-1).

z

A
dpw
(Pw+ap_z dz ) dxdy
pvdxdz
pudydz ] (pU‘F‘aPU dx) dydz
e o
/ dx N
v
(pv+gp dy) dxdz
y pwdxdy
X

Figure 5-1. Interpretation of Divergence

Let dx, dy, dz be the dimensions of ﬁhe cube. The fluid mass
entering the cube in-the x direétion is then (p u dy dz), and the fluid
mass leaving the cube in the same direction is (pu + 993 dx)(day dz).

X
The mass flux in the x direction is thus

pudy dz - (pu + §%§ dx) dy dz = - §%§ dx dy dz

Similarly, the mass flux in the y direction is - é%§ dx dy dz,

and the mass flux in the z direction is - égz dx dy dz. The mass flux
3

through the entire cube 1s thus

_ [: a(gi) N a(g;) N 5(22) ] dx dy dz (5-1)

which, per unit volume, becomes
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_(é(pu) L 9lpv) 5(Ow)j] = - div(py) (5-2)
L Xx dy dz

where a?is the flow velocity.
The mass flux must, of course, equal to the change of density g% at

the point in question: Thus:

- daiv (pq) = %
or
. dp
div (paﬁ +—==0 (5-3)

ot

Equation (5-3) is the continuity equation, and in Cartesian form, is

written as

olpu) , ev) , olpw) . % .

Ox dy oz ot (5-4)

For steady—flow, the field properties are not functions of time, and

Equation (5-4) reduces to

opu) , olpv) , olpv) _ 4

X dy dz (5-5)

Finally, if the flow is both steady and incompressible, then

+ +

du PT
== =0 -6
= (5-6)

o
oz

&|¥

5.3 Equation of Motion

In this section, the application of Newton's second law of
motion to a fluid flowing without friction is considered. This assump-
tion is wvalid since at present, the boundary layer is excluded from
the reglon of flow.

Newton's second law states that the time rate of change of
momentum of a mass particle is equal to the sum of the external forces

acting on the particle in both magnitude and direction. In Figure (5-2),
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let dx, dy, dz be an incremental volume of fluid.

z (p+ 22 4 7)dxay

0z
dxdz
/ ’

pdydz dz (p-&——g;> dx) dy dz

et

»_dx ay

(p+ g—;dy)dxdz

p dxdy

y
Figure 5-2. Pressure Forces on Fluid Element

The mass of the fluid element being (p dx dy dz), Newton's second law,
namely that the time rate of change of momentum equals the sum of

external forces becomes

=2 D

TF = dx dy dz) g -
= (o y dz) q (5-7)

The symbol %% represents the substantive or total derivative with re-
spect to time, and denotes that the differentiation is to be carried
out while following the fluid particle. This is because in general,
the velocity a?(x, y, z, t) is a function of time as well as of the
coordinates of the field. Because a fixed mass (p dx dy dz) is being

dealt with, Equation (5-7) is more convenienfly written as

- D -
LF = (p dx dy dz) —
(o y dz) = q
which, in Cartesian coordinates becomes
LF, = (p ax dy dz) 22
Dt (5-8a)
LF = (p dx dy dz) v
y e (5-8v)
LF, = —
z = (p dx dy dz) ot (5-8¢c)
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where
u -u
Du x +dx, y +dy, z + dz, t + 4t X,¥,2,t
Dt dat
= T &X+—dy+—dz + —dt

(5-%a)

The first three terms of the right hand side of Equation (5-9a) form

the convective acceleration, whereas the last term is the local accel-

eration. Likewise,

v, ¥, X, XX
Dt X Y St
% i (5-90)
v oy My Oy W oL W
Dt x  dy dz St (5-9¢)

As for the forces, the resultant pressure force in the direction of

each of the x,y,z axes is

pdy dz - (p +-§§ dx) dy dz = - gg dx dy dz  (5-10a)
dx dz - (p + i ) dx dz = - R 4 ay a (5-10b)

p z Pty W z 3 y dz 5

pdx dy - (p + gg dz) dx dy = - %g dx dy dz  (5-10c)

Equations (5-10a,b,c) show that the resultant pressure force on the
fluid is seen to be the negative of the pressure gradient multiplied
by the incremental volume. Thus:

pressure force = - (grad p) dx dy dz (5-11)

In the absence of body forces, such as gravity, electromagnetic, etc.,
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Equation (5-11) or its equivalent, Equation (5-10) represents all the
external forces acting on the fluid particle. Inserting the expressions

for 2 Fx’ % Fy, and 2, FZ from equations (5-10a,b,c) and the expressions

Day, DV, and ¥ from equations (5-9a,b,c), and simplifying, the
Dt Dt Dt '

following is obtained:

for

WO o, % L, %, %, 10p _

ox dy oz ot p X (5-12a)
u éz + v EY + w éz + éz + 1 92 =0

ax dy dz 3t o dy (5-120)
u éE, + v éﬂ +w éﬂ + éﬂ + = ég =0

ox dy oz ot p Oz (5-12¢)

Equations (5-12a, b, ¢) are the Euler's equation of motion,

and in vectorial notation, may be written simply as

+ 1 grad p = O (5-13)
0

ot
Dt
where the derivative 2 represents the substantive or total derivative.
There are two sets of clrcumstances for which the system of
Equations (5-12) can be integrated: first, along a streamline; and
second, throughout the entire flow field, provided that the flow be
irrotational.
To integrate along a streamline, consider the fact that at
each instant, the velocity vector being tangent to thevstreamline,
the equation for the latter is then given by

&y _ v, dz
dx = u ’ dy

W dx u
T &S (5-14)

Multiplying Equations (5-12) by dx, dy, snd dz respectively, assuming
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steady-state conditions, and meking use of Equations (5-14), there is

obtained:
_%%dx=u—§-u}-(-dx+v%;-dx+wg—};dx=u%dx+u-§y—udy+ug—a:dz
_%%dyzu%;dy+v§yy-dy+w%dy=v%dx+v§-v—dy+v§—:-dz
= §2 dz = u éﬂ dz + v éﬂ dz + w éﬂ dz = w éﬂ dx + w éﬁ dy + w QE dz
° & dy d - oy >

Adding the three equations results in

1 (R gy Rg By X Su Su
( ~ ax+ S dy+ > dz)=u ~ dx + u 5 dy + u > dz
+ v éz dx + v éz dy + v é! dz
ox oz
+ W éﬂ dx + w éﬂ dy + w QE dz
ox oy oz

which can be written as

1l

- L dp = udu + vdv + wdw
P

or 5
P, a (L) =0
e . (5-15)
2 2 2 1/2
where g = (u +Vv +Ww ) is the magnitude of the flow velocity.

Equation (5-15) is integrated to

2
j@+g_
o} 2

1

constant (along a streamline)

2
Amax

—5  (5-16)
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The integration constant in Equation (5-16) is the Bernoulli constant,

and it has the same value from any point to another point of a given
streamline. For different streamlines, it will assume different values,
unless, of course, all streamlines are from a region of uniform
velocity, in which case the same constant would prevail throughout
the flow field.

For the general case, Bernoulli's constant, % qzax may, of
course, have different values along different streamlines. The same
is true of the entropy s, which is also constant along each streamline.
The rates of change of the Bernoulli constant and the entropy across
the streamlines are coupled with the vorticity of the flow. For,
Equation (5-13) may be rewritten with the use of the enthalpy equation

dh = d (u+ pv) = Tds + vdp = Tds + dp
(5-17)

into the form of

d(53 + grad h = T grad s (5-18)

Expanding and rearranging terms, there is obtained

= -
%% ;2 grad q2 -Txcurl g+ grad h =T grad s (5-19)
5 :

Now, the adiabatic change of state relation in its vector form

Js
> + T - grads = 0; g - grad s = O (steady-state) (5-20)

yields, with the use of Equation (5-18)

T-4(@) +q - grad h = gz ( % q2 +h) =g - Tgrad s = 0

from which

1 2 2
fhnd + = =
5 q h = constant qm (5-21)

Nj
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Equation (5-21) is known as the Bernoulli law, and is a particular
form of the energy relation. With it,Equation (5-19) may be written

as

2
grad 1 q
m

> Do T grad s = ¢ x curl g (5-22)

An immediate conclusion to be drawn from this equation is that
in the case of steady flow which is irrotational (curl a?= 0), and

isentropic (grad s = 0), the Bernoulli constant 1 q2 is the same on

every streamline in the region. This is the stringmﬁzrm of Bernoulli's
law. A similar conclusion is arrived at by integrating Euler's
equation throughout the flow field, provided that irrotational flow
(curl §?= 0) be assumed. For, again multiplying Equations (5-12) by
dx, dy, and dz réspectively, assuming steady-state conditions, and
making use of the irrotationality conditions
_ % N, X
dy oz

instead of restricting to a streamline, results in

-1 dx = u Su dx + v ég dx + w §5 dx = u éE dx + v 92 dx + w éﬁ dx
p Ox ox dy dz dx ox ox
-1l dy = u ov dy + v ov dy + w ov dy = u du dy + v ZX dy + w éﬂ dy
p dy Jx dy 3z dy Sy
g QE dz = u I dz + v éﬂ dz + w éﬂ dz = u éﬂ dz + v QX dz + w éﬂ dz
p Oz ox oz oz z oz

Adding the three equations yields
- 1% ax +9 ay+ 9P az-
5 [éz 55 Y 32 2= udu + vdv + wadw

- 2
- A )+ )
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which integrates into

2
59.13. + 9 = constant through the flow field
o) 2
2
= Ymax (5-2k)
2

where q = (u2 + v2 + W2)l/2. For irrotational flow, the Bernoulli con--
stant is the same for all streamlines, and Equation (5-24) may be

used for relating the flow properties between any two points in the
field of flow. The assumption of irrotationality is thus an import-

ant simplification.

5.4 Reversible Adiabatic Change of State

Unless discontinuities exist in the flow field, it is possible
to assume that the specific entropy has the same value throughout the
medium for irrotational flow, and that it retains this value through-

out the medium for all time. Thus:

ds Js B ds - D
S tuss + v 5 v 0 (5-25)

This simplifies the mathematical situation by thinking of s as a
constant, and thus eliminating one equation and one unknown.

More important yet, is the fact that such an assumption en-
ables the solution of the flow without reqguiring an energy relation
in addition to Euler's equation. This is because an integral of Euler's
equation involves only those energies which are associated with inertia
forces and pressure forces. If thermal energy is added to a flow
either by direct application of heat from an outside source or by
dissipation of the fluid's kinetic energy through viscous effects,
8 more general energy relation, one which includes thermal effects,

is needed. Equation (5-21), when written in the form
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1/2 q2 +u + B = constant (5-25)
e

does represent the energy equation, however, in the case of revers-
ible adiabatic flow. For, by using the equation of state and re-

placing u by e, T, it may be written as
2
1/2 ¢~ + (cv + R)T = constant
i +R) =
or, since (cV ) cpT,

1/2 q2 + c, = constant = cPTO (5-26)

Although shear stresses have been neglected in obtaining
Equation (5-26), +the usefulness of the latter may be vastly in-
creased by the following consideration. The dissipation of kinetic
energy 1/2 q2 of the fluid in overcoming friction is accompanied by
the generation of an equivalent amount of heat. If the process is
adiabatic, this heat remains in the £luid element and produces a
temperature rise which is reflected in the temperature dependent
term cpT. Thus, the sum 1/2 q2 + cPT remains constant even though

shearing stresses may be present.

5.5+ Equation of State

Except where the motion is discontinuous, the fluid medium’
may be idealized, and viscosity, heat conduction, and deviation from
thermodynamic equilibrium may be neglected. At each insﬁant and each -
point of the fluid, there is a definite thermodynamic state defined
by: p - the pressure, t - the temperature, v - the specific volume,

p - the density, s - the entropy, u - the internal energy, and h - the

enthalpy.
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From thermodynamics, it is known that for any given medium,
only two of these parameters are independent, i.e., only two properties
are required to specify the state of the system. In fact, they may all
be considered as functions of v and s. The functions giving p in terms

of v or p, and s, occur frequently in fluid flow; they are noted by

p=t(v, s) = alp, s) (5-27)

and are often labeled as the caloric equation of state of the medium.

When viscosity and heat conduction are neglected, Equations (5-27) be-
come functions of only v and p respectively, since the entropy remains

fixed, and the equations

p = £(v) = g(p) (5-28)

then become the reversible adiabatic equation.

It is a fundamental property of all actual media that, entropy

remaining constant, the pressure increases with increasing density, i.e.:

—58'5 g(p,s) >0; % £(v,8) <O (5-29)

except in the limiting case p = 0, for which gi g(p,s) = 0. Equation
: P

(5—29) defines a positive quantity c, with the dimension of speed, by

setting 5 5 3
c sy el =y (5-30)
p2c2 R f(v,s) = - op
ov ov (5-31)

The quantity c is the speed of sound, and the quantity pc is often

labeled the acoustic impedence.
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As for the definition of a perfect gas, it is in two parts.
First, in practically all applications, the medium may, with sufficient
accuracy, be assumed to obey the laws of Boyle and Gay-Lussac as ex-
pressed by the equation of state

v = % = RT (5-32)

In an ideal gas the internal energy is a function of the temperature
alone. If, in particular, the internal energy is simply proportional
to the temperature, the gas is called polytropic, and the internal

is a constant.

energy is expressed as u = c,T where c,

The second part of the definition of a perfect gas involves
gases which obey Equation (5-32), but have specific heats varying
with temperature. These gases are labeled "semi-perfect" gases.

The assumption of a polytropic gas is adopted in the present
work. It leads, together with Equation (5-32), to the entropic equa-

tion of state
p = glp,s) = Ap? (5-33)

in which the coefficient A depends on the entropy s, and the adiabatic

exponent y is a constant ( = 1.4 for air), and

A

) (5-34)

It is of interest to note that in gases, the pressure depends

-1
(- 1) exp oy (s - s

noticeably on the specific entropy, whereas in liquids, the influence

of entropy change is negligible, so that p may be considered as a

function of density alone, i.e., p = g(p) = f(v), and as a consequence,

the internal energy relation

i

du = Tds - pdv (5-35)
becomes an equation of the variables separable type. The internal

energy may be then written as

u = u(v) + u(s) (5-36)
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Conversely, separable energy, as expressed by Equation (5-36), implies
the entropic equation of state p = f(v) = g(p). Similarly, the con-
dition that T depends only on s is equivalent to that of separable
energy. The most noteworthy example_of medium with separable energy

is water. TIts caloric equation of state is

p=a(2) -8 (5-37)
o}

where P is the density at 0° Centigrade, A, B, y are independent of
entropy, and have the values of A = 3001 atm, B = 3000 atm, and y = 7.
Assuming a perfect gas, the following relations will be of

future usefulness.

dh = ¢ dT; ¢ = éﬁ) -9 (u + pv) = L c, + R
P p r'p T aT 4T (5-38)
c
- P - X - R }
7 "cV 3 CP—}'-l R; cv—y-l (5 39)
Cv
dS:.d_u+PEX=CV.d_?+Rg.Y=Cv£—R—d--£=dlnL
T T T v T R
° P (5-140)
-1 Cv
s - 85 = ¢y 1n T 4+Rmm Y = cy 1n (L) (_V_)7 =in I °
To Vo s Vo ot (5-41)

Alternately, either T or v may be eliminated with the aid of pv = RT

to obtain
4
s -8,=c¢C In 2 +c_ In Y =c 1n (EL) (ELJ (5'42)
v P v
pO vo pO 0

or

7 D 7 p - (7-1) D
s - 8 = In — - R In = = In (— = = 1n =

o = p M3 I (T0> (po) MY
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Equations (5-40) to (5-43) enable entropy changes to be calculated in
terms of end properties. If the entropy remains constant, then T and v;
p and v; and T and p are connected with each other during the process

by the relations

-1
Tv = constant (5-kk)
pv7 = i% = constant (5-45)
P
1., L
5 T %-1 = constant (5-46)

The foregoing relations represent the contribution of thermo-
dynamics to the treatment of irrotational, frictionless flow. With
the possibly additional second law statement of As > O, it is the

only contribution required.



CHAPTER 6

ISENTROPIC FLOW PARAMETERS

6.1 Choice of Parameters

The equation of continuity, the three coordinate-equations of
Euler's equation, the reversible adiabatic change of state relation,
and the equation of state developed in the preceeding chapter form
six equations in the six unknowns u, v, W, p, p, and s. The number
of equations is equal to the number of unknowns, and this completely
describes the flow, without recourse to any further physical principles.
Thus, irrotational, frictionless flow represents a conservative system
which can be dealt with almost solely by Newton's law of motion and
the principle of conservation of mass. The only contribution required
of thermodynamics is to provide the relation between pressure and
density for the reversible adiabatlc process so that Euler's equation
may be integrated into useful form. For, in the preceding chapter,

the equation of motion was integrated to

oy dp 4+ q = constant throughout flow field.

It can be rewritten with the aid of the isentropic relation

P __°
o’ oo’ (6-1)
to
P -1 2
2o + 2 _ constant 6-2
(7-1 7) P 2 (6-2)
Po

The constant in Equation (6-2) may be evaluated by using the known

values of g, p and p at any station. In particular, for the stagnation

-l22-
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yel

station O, q = 0, and the constant in Equation (6-2) becomes —ZL— 2.
7-1 o,
Thus Equation (6-2) is finally written as
2 p 7-1 P
a 2 2 i - X °
* = - (6-38)
2 Ly-1 vy 7-1
P 0
o
or 1/
2 P Y
0 1-1/7 o)
L[ IE 1 2 2o
2 71 e, 7-1 e, (6-3b)

Equation (6-3) is Bernoulli's equation for a compressible isentropic

flow; p_ 1is the stagnation or total pressure, and corresponds to the

rof T

(p + p L) of incompressible flow. Equation (6-3) is sometimes called
the weak form of Bernoulli's equation because it 1s based on the con-
dition of isentropy, Equation (6-1).

Bernoulli's equation and the energy equation are equivalent

when isentropic flow is assumed. This is readily seen from the fact

that the energy equation was previously integrated to

2
T+4. =c¢T -26
opl + 2 coTo (5-26)
Employing the relations T = p/gr and e, = 7%1 R, Equation (5-26) be-
comes: 5 5 o b1 2
2 R+ = 2 P42 - 2 (_g)p + L = constant
7-1 2 9y-1p 2 7-1 Py 2
or
2 P 1 P
2, XL 2 572 constant= L= =2
2 y-1 7 7-1p
P o}
o

which is identical to Equation (6-3). Thus, Bernoulli's equation is
in fact an energy relation when heat transfer and viscous dissipation

are not taken into account.
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To determine a network of p, p, q, and T for the flow field,
it is convenient to form the parameters %—, %—, %—, and %—, and to
evaluate them in terms of an independent gariagle. OThe inde%endent
variable selected here will be the Mach number. However, before
evaluating the flow parameters, it is useful to introduce the concept

of a reference speed.

6.2 Reference Speeds

Equation (5-26) is used to define the flow velocity

Q= \/2 o (oM =\[Zr(m -1 (6

From this it is seen that for a fixed stagnation temperature
TO, all states with the same temperature have the same velocity.
Referring to Figure (6-1), lines of constant velocity are horizontal,
and the vertical distance between To and T.is proportional to the

square of the velocity

Tg————f————— —_——

Figure 6-1. Isentropic Flow Process

From Equation (6-4), it is evident that the maximum velocity
corresponding to a given stagnation temperature is when T = 0 (corre-

sponding to expansion into a vacuum). Thus

N
= ;:% RTO (6-5)

Umax
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may be used as a reference velocity.
Another reference velocity is the speed of sound at the stag-
nation temperature

e = \/ 7R, (6-6)

Finally, a third reference velocity is tﬁe critical velocity, 1.e.,

the velocity of the fluid at which the sound speed and the fluid speed
are equal. Using an asterisk * to denote the conditions for which

g =c =9¥ = c¥ , the temperature at which critical speed is attained

is given by Equation (6-4)

|
a¥ =\/-31R (T -T%) = \/7RT* (6-7)
7-1 o
from which
*:_ 2
Ty 7¥1 (6-8)
and
a* =\ [ 2L RT
y+l (6-9)

From the foregoing equations, the following relations for
the three reference speeds, together with the numerical values for

y = 1.4 are obtained:

c* 2

- = [T - .913 (6-10)
Ynax 3

= =71 * 2.24 (6-11)
qma,x _ Z+l _ .

=~ 2.h5 (6-12)

The local speed of sound decreases from (c02 = 7RTO) at v =0

to zero at the maximum speed attainable by the fluid ( = %ZER O).
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The variation of ¢ with g 1s shown in Figure (6-2).
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Figure 6-2. Variation of Sound-Speed with Velocity

The energy equation for adiabatic flow

2
9 4+ ¢ T = constant
2 P
c 2
becomes, with ¢ T = -2 jRT = S
p ¥R y-1
2 2
9 + & _ = constant (6-13)
2 7-1

The constant in Equation (6-13) may be evaluated at the three reference
conditions of: zero speed, zero temperature, and sonic or critical

speed. Thus

2 2 c 2
a ., & _ _ o
2 y-1 y-1 (6-13a)
2
= Ypax (6-13b)
2
= _J; Z_‘*‘_l 0*2 (6-130‘)
2 .



-127-

6.3 Mach Number

Dimensional analysis leads to the dimensionless number

M = (6-14)

o e

the usefulness of which is seen by introducing the speed of sound

2 _ 7Po

0] po

c

into Bernoulli's equation, Equation (6-3b), and solving for P_
b
7o

2
1% 2 y1d®
2 2 .2

Po

(21)7‘1/7 -1 -
Po

e

© (6-15)

Multiplying and dividing the last term by c2, and noting that

2 -
e . L () (2)- (E_)7 M
2 T "'p P/ D
Co o 0 ) o
Equation (6-15) becomes
- -(7/7-1) (6-16)
P =!_l+ ZiM2‘|
P, 2 .
Similar operations yield : -(y/y-1)
.
e =[l+ 271 M
Ps . (6-17)
— - -1
T - Ll + 21 M?
T S (6-18)
-1/2
o _ 221 2|
Cy - [i T3 M? (6-19)

The Mach number thus uniquely determines the static to stag-
nation ratios of all the flow parameters. Curved of the static to

stagnation ratios versus Mach numbers are drawn in Figure (6-3).
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They will serve as work curves throughout the present analysis.

4 6 8 10 12

-——

N+

2 3 a s 0
MACH NUMBER MACH NUMBER

Figure 6-3. Parameter-Curves for Isentropic Flow



CHAPTER 7T

POTENTTAL EQUATION AND STREAMLINE EQUATION

T.1 Preliminary Statement

The kinematical problem of finding the flow pattern for the
vortex tube is eased by developing a single differential equation of
flow in terms of the velocity potential and the stream function respec-
tively. Since the tangential components of velocity in the vortex tube
are appreciably greater than the axial and radial components, the flow
outside the wall boundary layer 1s considered as two dimensional in the
present chapter. The solution for the general spatial flow pattern is
deferred to Chapter 9.

7.2 Existence of Potential Function

With the assumption of irrotational motion, the circulation,
as calculated in Chapter 4 turns out to be zero. From this, it
follows that the line integral of the velocity between any two points
of the flow field depends‘only on the location of the points, and not
on the path of integration. Referring to Figure (7-1), and to the fact
that the circulation around a closed curve is zero, the existence of a

velocity potential is established in the following manner.

A

Figure T7-1. Existence of Point-Function for Irrotational Flow
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Consider the closed curves (A-1-B-2-A) and (A-2-B-3-A) respec-

tively. The circulation for a closed curve being zero:

B A
- = - -
1 4 dl+gsq-dl=0
A B
B A

from which results

w
oe]

'._I
2y

- R i
. dl =j/2 g - al (7-1)

=
=

Since paths (1) and (2) may be arbitrarily chosen, it follows that

- ->

q + dl is an exact differential, and may therefore be considered as the
differential of a point function whose value depends only on x and Yy.

This point function is called the velocity potential, ¢, and is defined

by the relation

- =

q - dl = do (7-2)

Equation (7-2) indicates that the derivative of the velocity
potential in a given direction represents the component of velocity in

that direction. In Cartesian coordinates, it means that

)
v o= 8% = Py (7-32)
_ %0 _ )
v o= Sy - @y (7-3Db)

%
where u and v are the x and y components of the velocity q.
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Equations (7-3) show that the condition of irrotationality is
automatically satisfied by the existence of a velocity potential ¢. For,

the order of differentiation being immaterial,

2 2

o) 3 _Oov _ ou _

sty Sygx_g)z 5-5* =0 (7_4)
which is precisely the condition for irrotationality developed in Chap-
ter L. 'Nor is the existence of a potential function confined to

-
two-dimensional flow, for, if g = ¢, then

20 = VX q= VXV =0 (7-5)
since the last term becomes zero because the cross product of two
parallel vectors is zero.

Equations (7-3) indicate that ¢ is a number having magnitude,
but not direction, which is assigned to each point in the flow field
so that, at every point, the change of this number in unit distance in
a8 given direction is equal to the component of velocity in that direc-
tion. This is the concept of velocity potehtial, and the purpose is
to find such number-distributions. The concept of velocity potential
derives historically from the conqept in mechanics of the potential of
a force. It is recalled that for conservative systems, the work, or
line integral of the force, is zero around a closed curve, and hence a
force potential exists whose derivative in any direction is the force
in that direction. Because a velocity potential always exists for ir-
rotational flow, the terms "potential flow" and "irrotational flow"
are used interchangeably.

7.5 Potential Equation

To derive a single differential equation of flow in terms of

the velocity potential, the equation of continuity and Euler's equation
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are combined as follows. Starting with the équation of continuity,
Equation (5-5), it is written in two-dimensional form in terms of the

velocity potential as

2 (ow) + & (ov) = 3 (og) + 3 (bw) = 0
or, expanding |

o(p _ + ny.y) oL, top = 0 (7-6)

XX

where the subscripts denote partial derivatives.
Euler's equation, Equation (5-23), becomes, in terms of the

velocity potential:

' 2 2
2 2 2 Q. +

< %
dp = - p A(F) = - p AEFET) = - p a(F—L)  (7-7)

The velocity of sound, being given by c2 = %2 , its use in

Equation (7-7) results in
2 2
0. + 0
dp---%d(————--L2 )

c

from which

= - B2

Px ~ 2 <®xmxx * q)yq)xy)
=- P

oy 5 (0,0, + 99,

c

Substitution of these into Equation (7-6) then yields

- L e -
P 0y + 0yy) 2 % (0P * PP ) 59 (P, * OP0) =0

and, upon simplification
b® § ¢ g
S - X -2 5 - -
(L -2) 0+ (L) 9 - 5000, =0 (7-8)
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where

2

2 2 2 2 g1, 2 2
Farw ) =g +o ) = - L (9 + 9 ) (7-9)

y (0] 2

Equation (7-8) is a single differential equation which is

equivalent to the two equations

(c2 - ug)uX - uv(uy + vx) + (c2 -Vv)v =0 (7-10)

v, -u_ =0 (7-11)

in the two unknowns u and v of the independent variables x and y. Equa-
tion (7-8) is an equation which simultaneously satisfies the continuity

principle, Newton's second law of motion, and the laws of thermodynamics.

" Existence of Stream Function

Just as the condition of irrotationality can be satisfied by
the introduction of the potential function ¢, so can the equation of
continuity for steady, two-dimensional flow be satisfied by the intro-

duction of a function ¥, the stream function.

For steady, two-dimensional flow, the equation of continuity

is
% (ow) + & (ov) =0 (1-12)
and it is obviously satisfied if
pu = %§ (7-13a)
pv = - gﬂ (7-13b)
X ,

For, if ¥(x,y) is a point function, then the order of differentiation

is immaterial, and
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/.

2 2
d d 9V . -
(pu) + (ov) = dxd S%X 0
dx dy oyo

Equations (7-13) define the stream function, though it is

¢

usually more convenient to alter them into

P

u =2 éi (7-1ka)
p Oy
P

v =._0 Oy (7-1k4b)
o Ox

where p 1s the density at the stagnation point.
o
The magnitude of the velocity vector at any point is given

in terms of the stream function by

s P. 5 2 2
Ve v = (2 (v Ty ) (7-15)
P X y

The physical interpretation of the stream function is the

following. ©Since § is a point function, it may be written as

o
ay = 8% dx +~g% dy = g; (p udy - p v dx)
0

In Figure (7-2), let dm denote the mass rate of flow across any surface
AB connecting two neighboring lines ¥ and ¢ and dy.

Y,

= X

Figure T7-2. Stream Function in Two-Dimensional Flow
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— o
Let q be the velocity and dn the normal. Then

> P P
dm = p 5?- dn = p(u dy - v d&x) = p(_9 oy dy + =2 oy dx)
Py ox

and

B

5 J

m=pof(g¥ydz>f+a—id}c) =pofdﬂf=po (g - ¥,) =0, (C,-C))  (7-16)
7 A

Equation (7—16) shows that the mass flow rate between two neighboring

¥'s is constant. Since the mass flow rate is also constant between
streamlines, it follows that lines of constant ¥ are streamlines, and

is thus termed the stream function.

7.5 Stream Function Equation

~Just as a single differential equation of flow was developed

in terms of the velocity potential, so will a single differential equa-
tion be developed in terms of the stream function.

First, the equation of continuity is automatically satisfied

with the introduction of the point function V:

o] |OD
<
i
c

° |o°

whence

k] 3 _ v ¥ |
9% (pu) + ay (pV) = pO (—a?(—é; —gyj‘;) =0 (7"—1-7)

Second, the condition of irrotationality takes the form

du v 3 o d . Pody
FEOTH G &
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which, after differentiation and rearrangement, becomes

p (Vo *+ ¥

) " (e L r v 2 =0 (7-18)

Third, Euler's equation, and the expression for the velocity

of sound
2 2
d
_P+d(£_+_‘_’_)=o
2
C2=g—P—
dp
yield, upon elimination of dp:
dp = é% = - _EE a (u2 + Ve
c 2c

or

-

Po,2 2 2, Foy2 q
D g ) - wfevd 7R (g

B = -2 | (

L
2 !
C o

Equation (7-19) now ensbles the formation of the partial derivatives

P

< and py' Upon substitution of these derivatives in Equation (7-18)

and simplifying, there results

1l Po2 2 1 Po2 . 2 2 P02 _
[— z () wawXX+[-—2- o) |yt ) v, =0
(7-20)

where
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and
o R S
M=) I It (_9)2 XY

0= (1 4+ 2t S (7-22)

Substitution of Equations (7-21) and (7-22) into (7-20) yields a single
differential equation of the second order for ¥ in terms of x and y
which is completely equivalent to thé differential equation of flow in
terms of the velocity potential. However, the differential equation

in terms of ¢ are simpler in form than that in terms of {, and hence
Equation (7-8) will be the one to work with.

7.6 Relation Between Streamlines and Equipotentials

The velocity potential and stream function are related

through Equations (7-3) and (7-14):

Since ¥ is a point-function, it can be written as

ay = ax + N gy (7-23)
ox dy

For a constant Y, Equation (7-23) is set to zero, and the slope of a

line of constant ¥ is thus found to be

- L v
[¢]
9'_2) = - .\.E = - ._.__9__ = —E (7—2)4-8.)
dx” constant ¥ vy ﬁL u
. o

But, by definition, the slope of a streamline is

dy
)streamline

-2hb
= (7-2kp)

cl<
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Equations (7-24a) and (7-24b) show that the lines of constant { and

streamlines are identical.

As for the equipotential lines, the total differential

_ % 3
deo x dx + ay dy

when set to zero for ¢ = constant, yields with the aid of Equation (7-3)

o~ I (7-25)
dx’ constant ¢ @y v
Comparison of Equations (7-24) and (7-25) reveals that
dyy _ _ 1 -
dx” ¥

Thus, the lines of constant ¢ and the lines of constant ¥ are normal to
each other, i.e., equipotential lines and streamlines form an orthogenal

network.

.7 Spacing of Net Lines

To investigate the relative spacing of the network, it is
noted that the gradient of the potential in any direction is the velo-

city component in that direction.

Figure 7-5. DNetwork Spacing
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Referring to Figure (7-3), the gradient of ¢ along the stream-

line gives the magnitude of the velocity vector,

4= (7-27)

On the other hand, the gradient of ¢ in a given direction is related to

the velocity component normal to that direction:

©

%
P n
If, for convenience, equal numerical magnitudes for Ap and Ay

are selected between neighboring lines in the grid, then Equations (7—27)

and (7-28) yield

Bls

- (7-29)

o
Eqﬁ;tion (7-29) shows that for incompressible flow, each element of the
net is, in the 1limit, a square. However, for compressible flow, the
ratio z/n becomes proportional to the density ratio between Ap and Ay.
Since p/po cannot be greater than unity, it follows that the potential
lines are more closely spaced than the streamlines. Also, p/po being
close to unity at low Mach numbers, and a great deal less than unity at
high Mach numbers, the difference bgtween the spacings will be most
marked in those regions of high Mach numbers.

For incompressible flow, the conditions of irrotationality
and steady-flow are purely kinematic, and only these conditions enter
into ‘the derivation of Laplace's equation for the velocity potential
or stream function. The dynamic conditions repreéented by Bernoulli's

equation are not involved in the determination of the streamline pattern.
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Two-dimensional, incompressible, irrotational flow may thus be considered
as a problem in pure geometry with ¢ and ¥ lines interchangeable, so
that any single flow pattern embodies two possible sclutions.

For compressible flow, the situation is different, and it is
not possible, in general, to use superposition. For, although the condi-
tion of irrotaticnality remains kinematic, the equation of continuity -
contains the density, which in turn is related to the pressure and,
therefore, to dynamic requirements. Thus, the ¢ and ¥ lines, when
interchanged, do not represent a solution.

Having obtained Equations (7-8) and (7-20), what technique
mey be employed for their solution? Mathematically speaking, Eguations
(7-8) and (7-20) are nonlinear differential equations. A differential
equation is linear when the dependent variable and its derivatives
appear only in linear form. Such, unfortunately, is not the case with
the aforementioned equations. This complicates tremendously the treat-
ment of the problem. However, the situation here is not as hopeless as
it seems. For, although the differential equations for ¢ and ¥ are still
nonlinear, they are now in terms of only two space coordinates. For
this condition, they are amenable to exact solution by means of the hodo-

graph transformation which follows in the next chapter.



CHAPTER 8

EXACT SOLUTION OF INVISCID FLOW IN THE PLANE

8.1 Nature of Solution

The exact solution applies to that region of flow outside the
boundary layer. By excluding the latter from the field of flow, the
behavior of the fluid becomes irrotational, and it becomes possible to
use superpositién to obtain the general solution.

Although the solution applies essentially to a perfect gas, it
nevertheless describes very aptly the flow of a gas of low viscosity
(such as air) as it enters a vortex tube. For, starting with this
"idealized" solution, the viscous forces transform it in Chapter 10
into the "real® solution which is to provide comparison with the experi-
mental results. Lastly, the solution has the merit of being exact in
that it is free of any assumption of small perturbations or other suc-
cessive approximations required for linearization. This exactness is
achieved by a transformation from "physical" coordinates to "velocity"
coordinates, the mathematical theory of which is briefly sketched in
the following section.

8.2 Hodograph Transformation

In the general theory, denote by u and v the dependent vari-
ables, and by x and y the independent variables. Then the general

form of the system of differential equations, Equations (7-8) and

Al u + B u +C v, +D vyt El =0 (8-1)
Ayu +B, u, + C, v, + Dy vy +E, =0 (8-2)

-1h1-
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where Al’ As, « o o, E2 are known functions of x, y, u, and v. Let it
be assumed that all functions occurring are continuous, and possess as
many continuous derivatives as may be required.

If E. = E_ = 0 (homogeneous system), and the coefficients

1 2

A, A2, . . oy D2 are functions of u, v alone, the equations are called

reducible. In this case, for any region where the Jacobian
J=u, v, ~-u v (8-3)

is not zero, the system of Equations(8-1) and (8-2) can be transformed
into an equivalent linear system by interchanging the roles of dependent
and independent variables.

In such a case, x and y may be considered as functions of u

and v, and from

Jx, = Vs = Jx, = uy (8-4)
IV =V, JVy m (8-5)

it is seen that x(u,v) and y(u,v) satisfy the linear differential

equations

1]
o

ALy, - By x, - Cl vy, + Dy x (8-6)

]
(@]

Ay ¥y = By x, - Cy ¥, +Dy x, (8-7)

Vice versa, every solution x, y of Equations (8-6) and (8-7)

leads to a solution of Equations (8-1) and (8-2) if the Jacobian
J=x y -%x_y (8-8)
does not vanish.

The described transformation of the (x,y)-plane into the

(u,v)-plane is the hodograph transformation. The term stems from the
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choice of the velocity coordinates»u and v as the independent variables
in place of the physical coordinates u and y. The advantage gained is
that the differential equations for ¢ and § as functions of u and v are
linear, thus allowing solutions to be formed by superposition. If, in
addition, a fictitious gas is introduced by replacing the isentropic
pressure-density relation by a tangent-gas relation, the hodograph equa-
tions are reducible to the Laplace equations, and solution may then be
obtained by making use of analytic functions of a complex variable.
Equations (8-4) and (8-5) give the derivatives of x and y in
terms of u and v. With them, Equations (7-10) and (7-11) are trans-

formed into two linear differential equatilons

X, - ¥, =0 (8-9)
2
(c2 - ug)y& +uv(x, + y,) + (02 -V )xu =0 (8-10)

The first equation implies that a function ¢ = ¢ (u,v) exists such
that
X =9, (8-11)

Yy =9, | (8-12)

and the second equation then takes the form

Yo =0 (8-13)

2 2 2
- + -
(c u )wvv +2uv Py (e V)P

Equation (8-13) is now linear for ¢ (u,v) as against Equation (7-8)

being nonlinear for ¢ (x,y). Provided the Jacobian

J=9._ 0 =-0Q =Xy - XY (8-14)



-1hk-

does not vanish, every solution ¢ (u,v) defined in the (u,v)-plane leads
to a flow pattern given by u and v as functions of x and Y.

Actually, a slightly different procedure is found to be more
convenient. In it, ¢ is retained as dependent variable, together with
the stream-function ¥, and the magnitude q and direction © of the velo-
city are used as independent variables instead of u = q cos @ and
v = q sin ©.

8.3 Relation Between Physical Plane and Hodograph Plane

Since at every point on the physical plane there exists a def-
inite velocity vector, g, the coordinates x and y can be considered as
functions of g and ©. This is a point to point correspondence (but not
& unique one), and it transforms the physical plane (x,y) into the hodo-
graph plane (q,8). A streamline in the physical plant thus describes
a continuous sequence of end points and velocity vectors (g,8) and will
appear as a curve on the hodograph plane. This curve is called the

hodograph of the streamline.

4
K3
S
™.
Y X ¢
PHYSICAL
< STREAMLINE
A
"°°°en4p"
av e
L
x 76054

Figure 8-1. Correspondence Between Physical Plane and Hodograph Plane
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It should be noted that, while the physical streamlines, by their defi-
nition, generally do not intersect, their hodographs can do sc, since it
is entirely possible that the same velocity vector (q,8) may occur at
more locations than one, either on the same streamline or on others,
i.e., different points on the physical plane may have same velocities.
Hence, there is the possibility that the hodograph plane may consist of
several layers or leaves.

The nature of the transformation between the physical and hodo-
graph planes is illustrated in Figure (8-2) by considering the flow past

the symmetrical profile.

_—-

Figure 8-2. Streamlines in Physical and Hodograph Planes

Two streamlines have been sketched: the boundary streamline
1-2-3-4-5, and an external streamline 6-7-8-9.

8.4 Hodograph Equation

Let x and y be the coordinates of the physical or actual flow
plane, and g and © be the polar coordinates of the hodograph or velocity
plane. The differential equations of flow will now be derived in terms

of q and © as independent variables.
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|
q i q

l

! *

1 x ‘ u

Figure 8-3. Velocity Coordinates
From Figure (8-3) it is seen that

u =q cos @ (8-1ka)
v = q sin © (8-1kp)

The condition of irrotationality is satisfied through the

introduction of a velocity potential:

_ % .
u = (8-15a)
v = ¢ (8-15b)
qy

The equation of continuity is satisfied through the intro-

duction of a stream function:

u = —2 BJ{ (8-16&)

<
]
|
|

(8-16D)



~147-

Since

oy oy
dy = — dx d
v ox ¥ oy 7

these may be written with the aid of Equation (8-15) and (8-16):
dp =udx + vdy =q (cos 8 d&x + sin 6 dy) (8-17)

dy = - & vax + & uway =& q(- sin © dx + cos 6 dy) (8-18)
Py Po Po

Equations (8-17) and (8-18) can be considered as two simul-

taneous equations for dx and dy, thus obtaining

p .
dx = cos © g - "o sin e v | (8-19a)
q P q
Sy - sin 6 1o+ Po cos 6 ay (8-19b)
Y5 Tg ®*5 q

Now, considering ¢ and ¥ as functions of q and ©, their

total differentials may be written as

Substituting these into equations (8-19) results in

cos ©
aq

9 04+ X 4g) - Do sin 8 (A gy 4 A g
(5q %0 * 56 %) o T a et ®

B (co: e %Q ) Po sin @ éy) aq (cos ) %Q Po sin 6 oy

+ - e
4 p g 9q g % e g 59)



-148-

_ cos 8 Po sin © cos 8 Po sin ©
S (Tq 9% Ta vt Ty e -5 ¥g) 40 (8-208)
sin & 0 dp Po cos 8 ¢ Jel's
dy =~ (5% dg + 34 ae) + T T q (aq dq + % ae)
sin 6 dp Po cos © Oy sin 8 3¢ . Po cos 6 Jy
- P2 S22y g, (2RO 20, 10208 99y 4
( a o1 p g Bq) a+ ( a % p q 89)
_ (sin 6 . Po cos 6 ya (sin a) N 29 cos © v.) a8 (8-20b)
=g %t T Y o p 0
from which
ox L o Cos® _ Sg sin & (8—21&)
3 =*""q %" " q Yq
ox cos © Po sin ©
%% ="q % 75 g Y (8-21b)
and
Jy sin © Po cos 6
= - == = 4+ — 8-225,
3q =Yg T %t —q Y ( )
oy _ _sin 8 o cos @ 8-2op
ge-—ye————q CP9+p g \lfe ( )

The objective is to obtain ¢ and ¥ in terms of q and ©. To
this end, x and y are eliminated from Equations (8-21) and (8-22) by

making use of the independence of order in partial differentiation:

Px % 3%y 3y

363q 3q% " 3/oq 3908

resulting, after simplification (and noting that p depends only on q):

sin © po cos © cos © po sin © sin @ | d Po
- 9, - =2 et S22y, - 5 ¥

o B}

= + -
7 a P a4 Yq 2 % "% 2 Yo q

(8-23a)
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cos © Po sin © sin @ _ Sg cos © , , cos @ g;(fg v
o 2 e ] e

v = -
d
q a ap

e %" a g 1 %
(8-23b)
Multiplying Equation (8-23a) by sin 6, Equation (8-23b) by cos 6, sub-
tracting, and similarly, multiplying Equation (8-23a) by cos 6, Equation

(8-23b) by sin 6, and adding, there results the equation for ¢ in terms

of g and o:
4 1%
% =<1qu_<a p>] A (8-24a)
Po (8-24D)

Equations (8-24) are the equivalent of the Cauchy-Rieman equations for

incompressible flow.

Using Euler's equation 92 + q dg = 0 and the expression for
o)
2 dp .
the speed of sound ¢~ = 3q to form the relation

4 (39) __Podo_ _Podpap
dg ‘P p2 dq p dp dq
P P
1
2y e -20L  (82)
P c P ¢

Equation (8-25) is substituted into Equation (8-2ka) to result, after

rearrangement

ol o

0 2 P
o =-9L@a-2yy .01 @a )y (8-26)
o q 02 2] o a]

Finally, ¢ is eliminated from Equations (8-26) and (8-24b) by setting
@eq = @qe. Thus, noting that p and M depend only on g, and making use
of Equation (8-25) there is obtained:
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3 (Lo % Poq
%o =35 (5 av) = (av  +v) rav (=)

and, equating Poq to @qe and simplifying:
2 2 2
+q(l +M + (1 -M =0 8-2
Chgg + AL+ M)y (- M)y (8-27)

Equation (8-27) is the hodograph equation giving ¥ as function

of the new variables q and 6. It is linear in the dependent variable

V¥(q,0) since M = % is a function of q only.

~ An alternate form may be given Equation (8-27) by replacing
2
M2 by'EE and eliminating 02 through the Bernoulli relation
c

This results in

\V)

2 -1 ¢
g (1- Z§‘ e 20V,

o
N
o
o
o
Q
no
o
N

(8-28)
Equations (8-28) and(8-27) are also known as Chaplygin's equa-
tion. They represent the differential equation of flow in the (q,0)-
plane as against the physical (x,y)-plane.

8.5 Obtainment of Streamline

The general procedure for the solution of Equation (8-27) is
as follows: 1) assuming that a number of simple functions Wl’ Wg,
have been found to satisfy Equation (8-27), more complex solutions are

found by linear superposition:
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¥(a,0) = €y ¥ (a,8) +Cyv,(a,8) + o .. (8-29)

ii) the derivatives Wq and Wg as functions of q and @ are found by
partial differentiation of the solution ¥ = ¥(q,®8), i1ii) using the

Cauchy-Rieman equations for compressible flow, Equations (8-24):

P

2
(p:—_o
P

(L - M)y (8-24a)

ol o

]
o == qV (8-21p)
°© p q
Py and g are found as functions of ¢ and 6, iv) knowing ¢ and Py
q
the partial- derivatives Xq’ X, yq, and yé of the physical variables

2]
are found by use of Equations (8-21) and (8-22)

cos © Po sin ©
X == @ -— "y (8-21a)
q d q p q q
cos 9 Po sin © v (8 21b)
X =" - — -
2} q %o o q e}
and
sin 8 Po cos 8 (8 -
= +— -22a
sin © Po cos 6
- == §—_ 8-22b

v) the derivatives xq, Xg’ yq and yé are then integrated to yield x and
vy as functions of g and 6. This maps the streamlines V¥(q,8) from the
hodograph plane (q,8) back to the original physical plane (x,y), thus
obtaining a streamline ¥(x,y).

8.6 Solution for Vortex Tube

The solution for the streamline pattern in the vortex tube is

obtained by combining a "free" vortex flow with a "sink"™ flow. The
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respective solutions of these individual flows, however, is first
presented.
8.7 Vortex Flow

For this case, a particular solution of Equation (8-27) is
sought, in which ¢ depends only on q. Then we = Wee = 0, and the dif-

ferential equation becomes
Ty +al+d) v =0 (8-30)

or
2 —l 2 _5 2
7-1 q Y q
1 - = = 1 - =0 8_ 1
a ( P) COg)qu + q( o Og)Wq (8-21)

0

Equation (8-31) cannot be integrated in closed form except for
certain values of y. For the particular value of y = 1.4, a closed

solution, however, is possible. It is

] 7=3 q2
- 2
C

\'
i

O
@ |8

which integrates to

( 1-_1_32_)1/2
1-(0Q-"7 "3 o
-1

v=c | 1/21n fo l/2+(1 7_2”0'1—'2')1/2

2 c

1-(1L+2223) ©
5 T ?
C
O
-1 g2 3/2 2 g5/o
+1/3 (1--7-—q—2-)5/ +1/5 (1 2L 4 )5/ +C (8-32)
C 2 02 2
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Equation (8-32) is more conveniently written in the form of

¥=C TG (8-33)
where
-4, . 3 5
J=1/21n + 3+ 1/35 +1/53 (8-3k)
1+j
and
-1 ¢° 1/2 1
J=(l-z'2‘9“2)./ N I (8-35)
c Po
0
From this, and Equations (8-24), it is seen that
Cy .5
= l i = -
Wq ra J s We 0 (8-36a)
9 =C 24 ¢ =0 (8-360)
5] 1 0 ? q

Substitution of Equations (8-36) into Equations (8-21) and (8-22)

yields

sin © (8 )

X =~-C -37a
2
q 1 g
cos ©

xg = C T (8-37b)
cos @

y =¢C (8-38a)

q 1 q? .
sin ©

y@ = Cl q (8;58b)

Integrating Equations (8-37) and (8-38), and omitting unessential addi-
tive constants, the equations for the streamlines in the physical (x,y)-

plane are finally obtained.



X = Cl ‘“:;" (8-39a)
y = Cl cos © (8—59b)
q

Choosing the constant to be Cl = rq = r¥c¥ where r¥ is the radius corres-

ponding to a Mach number of unity, Equations (8-39) may be rewritten in

the form
X sin ©
=="q (8-Loa)
c¥
L - cos® (8-10b)
r* aq
c¥x

The streamlines ¥ = constant of this flow are lines of constant velo-
city; they are also concentric circles in the physical plane. The velo-
city variation is that of a potential or free vortex, i.e., qr is con-
stant. The flow pattern shows the velocity tc increase with decreasing
radius to a maximum of M¥ = f%%i .

Figure (8-L4) shows the velocity distribution for the vortex
flow. It is of interest to note that the flow is not limited by a

"sonic" radius r*, but by a smaller radius rmin corresponding to a maxi-

mumAattainable velocity of qﬁixa= \/6, a zero density, and a zero tem-
perature. In terms of the strength of the vortex, this minimum or

"limit" circle is

r Z N
rse— [ - (8-k1)
min nex J 7+l T ax
At any radius r, the radius ratio is given by
2
r 1
G—) = - (8-42)
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Figure 8-4. Velocity Distribution for Vortex Flow

The density (and similarly the pressure) decreases from the
stagnation value at infinity, to zero at radius Toin® The variation of

density, pressure, and speed with radius is shown in Figure (8-5).
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Figure 8-5. Solution-Curves for Vortex Flow
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8.8 Sink (Source) Flow

Let a stream function ¥ which depends only on © be sought
for Equation (8-27). Then wq = qu = 0, and Equation (8-27) becomes
simply

wee =0 (8-43)

the solution of which is

¥ =C, 6 +C, (8-4k)

where C_L and 02 are constants of integration. The streamlines
¥ = constant are lines of constant flow direction, and therefore are
straight lines passing through the origin.

Th¢ derivatives of ¥ as obtained from Equation (8-44) are now
Wq = 0, W@ = Cl’ and substituting these values in the Cauchy-Rieman

equations, Equations (8-24), results in

P

= -2
cPq" 5

2 _ o

Q-
O
2| =
N
}__
1
E%)
~—
]
o
°lo
Q-
TN
I,_..
]
l@

©

@]
=2 =0
% =5 LY

The partial derivatives xq, xg,
means of Equations (8-21) and (8-22).

cos © Po sin © Py cos © q?
‘- _osme _ _, Togse O 8-45a
x = Cos © 0. - Sg sin 6 ¥ =-C po sin 9 (8-45b)
o 9 ® o q '® 1o q
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and

. P P : ‘
_sin® o 4 2 808 ) ¢ =-¢c 2 51n29 (1 - M2) (8-46a)
q ¢ 94 p a4 4 Lo ¢
sin © + Eg cos 9 ¥y =¢C 89 cos O (8-46b)
e="q %75 Ta Y%T1, Tgq

Equations (8-45) and (8-46) must now be integrated to obtain
x and y as functions of q and ©. To obtain x(q,8), it is easier to

work with Equation (8-45b):

x = -C Eg sin ©
e 1 0 a
which gives
po cos ©
X = Cl i + £(q) (8-47)
p q

To determine f(q), Equation (8-47) is differentiated with respect to g

and the result compared with Equation (8-45a). Thus,

X=i|:(:._o_cos@]+f,(q)
4 dgLip g

©

< P o) .
cos O d e} o cos 8
= = (—) - — + !

€1 4@ da <o) Lo q2 ()

a Po Po q
recalling that — (—) = — =% this become

ecalling aq (p ) 5 2 s becomes
Po cos @ Po cos @
x =C = 5 -0 5 —75 +£f'(d (8-48)
q 1P c P g

Comparison of Equation (8-48) with Equation (8-45a) shows that f£'(q) = O.
It follows that f(q) = Cj’ and the complete expression for x as obtained

from Equation (8-47) is thus

x =G 2288, (8-49)
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In the same manner, integration of Equation (8-46b) and com-
parison with Equation (8-46a) results in

p

o sin ©
v = cl-B— . +C, (8-50)

Iy

the entire streamline pattern, and without loss of generality can be

The constants 02, C,, and C, merely involve displacements of
2

set to equal zero. The parametric equation for the streamiines is thus

o)
O cos ©
X =0, — 8-51a
1l p q , ( )
0] .
y =0 — 2= ° (8-511b)
P q

Equations (8-15) show, by division of y by x, that the lines of con-
stant flow direction © are also lines of constant %. The latter are
radial lines through the origin on the (x,y)-plane, and the former were
previously shown to be lines of constant {. Therefore, the physical
streamlines are those of a two-dimensional source or sink. The constant

C_L is determined in the following manner. From Equations (8-51):

2 2.1/2 P
lpa
If Cl is set to satisfy the equation of continuity
p T q=p¥%r¥ck (8-53)
it is seen that its value must be
p*
C. = ck ¥ (8—54)

1 Py
where the * superscript denotes the condition where the Mach number is

unity.
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q

The graph of —
c*

versus %& as plotted in Figure (8-6) shows

that there are two branches for the curve.

_____ UM P [ [F+l
'''''' R e =1
2
//
*
32 ////
[}
\%
0 \ 2 3 r/l‘*

Figure 8-6. Velocity Distribution for Compressible Sink (Source)
One branch tends to zero, and the other tends to (%%%)1/2 = \[g-as fi
tends to infinity. There is no value of g& for r < r¥. Thus, source,
or sink flow cannot exist inside the "sonic" radius r¥*, which is the
l1imit line. This is in.contrast to incompressible flow whose stream-
lines come to a point at the origin.

For any r > r*, there are two possible values of q, one repre-

senting supersonic or "diverging" flow, and the other representing sub-
sonic or "converging" flow. Physically, of course, only one curve

may exist at a time, which means that the velocity may either be sub-

sonic or supersonic, but not both. The minimum radius is given by

g

T = ——
2rg* (%9.)

min

(8-55)

2nrq

Po

ence of speed, density, and pressure upon radius is shown by the curves

where ¢ = is a measure of the sink (source) strength. The depend-

in Figure (8-7).
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Figure 8-7. Solution-Curves for Sink (Source)

The portions corresponding to subsonic conditions are drawn in full
lines, and those, corresponding to supersonic conditions in dotted lines.
They represent the two cases of inward and outward flow. Regardless

of the type of flow, however,’if p > p*, the speed is everywhere sub-
sonic, and if e < p*, the speed is everywhere supersonic.

The occurrence of a minimum radius is a characteristic prop-
erty of compressible flow, nameliy the existence of limit lines or sur-
faces across which the fluid does not penetrate. This is most acutely
evident in the case of an inward flow starting from the stagnation pres-
sure at infinity, and continually accelerated until it arrives at the

limit circle. The acceleration at the limit circle is found from

dq dq
a = Tt =q rE (8_56)
Usi s . 2 2 2
sing Eguations (8-51) and the relation (dr)< = (dx)° + (dy)<, and

recalling that
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pO
d(p-) Po q 8
i TP 2 (e-on-

Equation (8-56) becomes

5 1
p g
a =+ p* rc* q2 (8_58)
-1
(% -1
2
and it is seen that the fluid acceleration at the sonic line (EE =1)
c

becomes infinite.
8.9 Spiral Flow
The compressible vortex flow and the compressible sink flow
of the previous sections are now combined for the final solution of
the spiral flow in the vortex tube.
Let the mass rate of sink flow be denoted by PP = 2np*r¥*c*
where Q 1is the corresponding volume rate of flow at the density Pye The

several results for sink flow as derived from the previous section then

become
=9 ' -
vo=5-9 (8-59)
x = —2 €05 © (8-60a)
2re 0 9
Po ?o
_ @ =sino®
y = (8-60D)
enc, R 4
°s S5
r=_9 _1 (8-61)




For the vortex flow, let 2xc¥r¥* =

tion for any closed curve enclosing the origin.

vortex flow may be written as

Superposing the vortex
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[T where [  is the circula-

Then the results for

r
—J 8-62
™ (8-62)
™ sin © _ ‘
2xce q (8-632)
o =
c
o
_ [ coso® -6%b
e2ncy Q. (8-65v)
c
o
1
e T (8-64)
c
)

flow with the sink flow results in

r
¢=%Q+ZJ (8-65)
x =2 cos® " sin © (8-66a)
2nco L 9  2nc 9
Po %o o
y = Q sin © _ '— cos © (8-66D)
onco p 4 amc g
Po %o - o
2nco
R = r (8-67)
Q+r

where the constants @ and r~ may be regarded as the strengths of the

sink and vortex,\/Q2 + r'2 as the strength of the combined flow, and R

the radius of curvature of streamline.

(8-67) may be rearranged into

Equations (8-65), (8-66), and
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any - ) + J (8-68)
ETTE e @ i@

2ne .

¢] . X = cos © . + sin © - . (8—69a)
Voo +T CRICRRVARS @ o+ @

EJTCo y= sin © o cos ©
V& (e () \/1 FOF (@)L (IS>d (8-69b)
R - L [ L + 1 (8-70)

s 2 2 _ Q 2

VO e O] 2+ @

To plot a physical streamline for selected values of Q and [ ,
a value of ¥ is chosen and corresponding pairs of values for q_/cO and
© are solved for from Equation (8-68). These are then substituted into
Equations (8-69) to determine the corresponding values of x and y on the
streamline. The general streamline pattern is shown in Figure (8-8).

Or, a corresponding pair of values of q/q) and © may be deter-
" mined from experiment and substituted into Equations (8-68) and (8-69)
to give a streamline ¢ corresponding to a certain strength of vortex
and sink. The streamlines ¥ = constant are spirals which meet the limit-
ing circle rmin at the angle sin_l %. The physical plane is mathematic-
ally covered twice by the streamline pattern. Physically, however, only
one set of streamlines at a time is poséible. At the limit line, the
two streamlines meet in a cusp. One set bf streamlines is purely super-
sonic, whereas the other set is partly subsonic and partly supersonic.
The fluid acceleration is infinite, and the component of velocity in the

radial direction is equal to the local speed of sound.
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Figure 8-8a. Spiral Flow Pattern

It is interesting to note that the limit circle, being

smaller than the sonic circle, deceleration from supersonic speeds to
subsonic speeds is possible without shocks. The relation between q/c*
and r/r¥ for various strength ratios Q/r is shown in Figure (8-9).

| For each direction of flow, inward or outward, there are two
possible régimes. In one, the density tends to zero at infinity, and
the speed is everywhere supersohic. In this case, the resultant velo-
city becomes more and more nearly radial as r increases. In the other,
the density is P ét infinity, and the radial component of the velocity
is everywhere subsonic. In this case, the flow 1s spiral, and the stream-

lines approach equiangular spirals (r a exp %9) as r 1ncreases.
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Figure 8-9. Dimensionless Speed for Spiral Flow

A plot of the streamlines i1s more conveniently determined by

introducing the variable

A== (8-71)
O

and expressing the stream function ¢ in finite termé. The result is

5 5 5
-9 LA Hh A A B}
q;_gn [:9+tan, G:, o [J./ElnL_A A 3 5] (8-72)
102 2
2 1 A
A e Rt (8-73)
hra” o (1-A7) A
N._py__ 1T o _
.aI‘ po V= 2nr pO (8 YLI'a)
BW o) _ G
BT, g (8-7kv)



g =u + Vv (8-75)

Elimination of A between Equations (8-72) and (8-73) enables the stream-
lines to be drawn. As p/po -0, ¥ —a%? and X - ®, so that the stream-
lines become asymptotically radial. This is the first flow regime. As
p/po >1, r 5w, and (0@ - [Mln r) constant, so that the streamlines ‘
become asymptotically the equiangular 8&pirals r o exp o@/f' . This is
the second rééime, and the one tﬁat exists 1in the vortex tube. Figure
(8-10) shows the detailed construction éf a streamline for both flow

regimes. The full line corresponds to the type of flow that exists in

the vortex tube.

Figure 8-10. Construction of Streamline



CHAPTER 9

THREE-DIMENSIONAL SOLUTION BY ADDITION OF AXTAL VELOCITY

9.1 Preliminary Statement

The solution presented in the preceding chapter is an exact
solution in that it became mathematically solvable after transformation
of coordinates. But it was achieved at the expense of adopting one
restriction, namely, that the third velocity component be relatively
small, and is thus neglected. When a more general solution in terms
of three space coordinates i1s sought, however, the mathematical diffi-
culties become so great that formal solution is not possible. It is
the purpose of the present chapter to circumvent this difficulty.

9.2 Potential Equation in Space

In the preceding chapter on two-dimensional flow, the equation
of continuity, the equation of motion, and the relations for the exist-
ence of a velocity potential were combined to yield the differential

equation of flow

which, being in terms of two space coordinates, was solved by means of
a hodograph transformation.
For three-dimensional flow, similar proceedings yield the dif-

ferential equation in Cartesian coordinates:

2 2 2
L. oY _Z — (cont'a)
(1 2 ) Py t+ (1 2 ) Pyy + (1 Zg-) ?,.

_169_
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5 Q. T 25 9 - 5 9, =0 (9-2)

2 2
¢ = f(u2 +V o+ W)

In cylindrical coordinates, the three coordinates, u, v, and

w are the velocity components in the r, 8, and z directions as shown in

Figure (9-1).

531}

A

/

Figure 9-1. Cylindrical Coordinate System

With x = r cos 9, y =r sin 8, z = z, the flow relations become the

folloﬁing:

ou o(Vr o(Vr ow ow  Ju
36'1%—1“% z "% -9 ¥ % (9-3)

(Condition of irrotationality)

d 19 AP
N - (9-4)
(Definition of velocity potential)
d )
S (owr) + 55 (ov) + v 2 (ov) = 0

(Equation of continuity)
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2 1 2 2
= -Lale, + 3o, *to,) (9-6)

(Equation of motion)

T == (9'?)
(Velocity of sound)

Combination of these equations ylelds the differential equation for

three-dimensional flow in cylindrical coordinates.

¢ : 2 % 2

r o
e+(l'2)cp

r ¢}

(1 - >@rr+<1-T—>

2
2 2 Pr CPg
- _ =N BES = -8
22 (9296920 = %PP0z) = B V0, T (1 + = ) = 0 (9-8)

Neither Equation (9-2) nor Equation (9-8) is linear, and there
is no possibility of rendering them so. What recourse then? The answer
lies in bypassing Equations (9-2) and (9-8), and adding to the exact
solution of two-dimensional flow, a velocity component such that it does
not disturb the initial equation. It is in the nature of & trick, but
it is imminently successful.

9.3 Addition of Axial Velocilty

The technique for the successful solution of flow in three-
dimensional space consists in starting with the two-dimensional flow
previously solved, and superposing upon it, a velocity of constant mag-
nitude and direction along the axis of the vortex tube, while at the
same time leaving the pressure, density and temperature of the fluid

unchanged (85).
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The three-dimensional flow thus obtained is labeled the modi-

fied flow, and that it obeys the same set of equations as the flow previ-
ously solved in Chapter 8 may be shown in the following manner. Let

w = constant (in time and space) be the velocity component which is added
to thé two-dimensional flow. The question is: Does the resulting velo-
city field represent a physically possible flow? The answer lies with,
the equations déveloped in Chapter 5 governing steady-state compressi-
ble flow, namely

i) the continuity equation

ii) the dynamical equations

a

o

u 5— + v 5_ + WS + % gﬁ =0 (9-10a)
u 5— + v 5_ + W gz + % %% =0 (9-10Db)
ow ow ow , 1 dp _ _

u&+va}+w§+5&_0 (9-10c)
and iii) the isentropy relation
Y

=~ 0’ (9-11)
PO

For the case of two-dimensional flow, the last term in Equa-

tion (9-9) does not exist; for the modified flow, it becomes

oo g oo (5-12)

since the w = constant, and since the addition of the component w was

done without changing p, thereby leaving p independent of z. The
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continuity equation is thus the same for both the two-dimensional flow
and the modified flow.

For the case of two-dimensicnal flow, the third relation in
Su L Ov
3z ° Oz

two relations are zero. For the modified flow, the third relation in

Equation (9-10) does not exist, and the terms w in the first
Equation (9-10) vanishes due to the independence of w(= constant) with
respect to x, y, Z, and the independence of p with respect to z. The

ou ov

terms w 3, w.a.E in the first two relations likewise vanésh because
neither u nor v are dependent of z. Thus, the two-dimensional flow and
the modified flow obey a common dynamical equation.

Lastly, the isentropy equation, Equation (9-11) remains un-
changed since p, p, and T are not affected by the addition of a constant
axial velocity, and since an observer traveling uniformly with the gas
would not be aware of the axial velocity.

| Thus, the same set of differential equations describe both
flows,'which 1s equivalent to saying that these equations represent a
family of flows, of which the foregoing two are examples of particular
interest here. Since these equations were linearized and solved in
Chapter 8; what remains then 1s simply to superpose the stream func-
tion of the two-dimensional flow with the stream function of the axial
flow to obtuin the general solution in space.

Nor does the addition of a constant velocity in the axial

~direction alter the conditions of irrotationality. For, if the original

two-dimensional flow possesses a velocity potential ¢ such that

u = “138
=5 (9-13a)
v = 90 _ (9-13b)

oy
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then the addition of a constant velocity w still leads to an irrotational
flow field with |

P+ Wz (9-14)
as its velocity potential.

On the other hand, if the flow possesses vorticity so that no
scalar velocity potential exists, then the addition of a constant velo-
city w does not affect the vorticity either in magnitude or direction.

The only change involves the stagnation pressure: while the
same (p, p)-curve represents both the two-dimensional and the modified
flow, the stagnation or total pressure po is different for the two

cases, since the velocity-square term in the Bernoculli relation

O

IR (9-15)

2
. 1
differs by the constant %?. Thus, for a given (p, 5) on the pressure-

specific volume diagram of Figure (9-2), the stagnation pressure 1 of
the modified flow is greater than the stagnation pressure of the two-

dimensional flow. The areas to the left of the (p, %)—curve represent

2
the values of %T for the two-dimensional flow and the modified flow.
The shaded area, being the difference between the two cases, is equiva-
2
lent to .
2

Py ——— ——— %/—/f/{/ —————— MODIFI

ED FLOW
[’ Sl sfeald e ittt TWO - DIMENSIONAL FLOW

|-

Figure 9-2. Stagnation Pressures for Two-Dimensional and Modified Flow
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The plot of the resultant flow pattern shows spiraling stream-
lines whose proJjections on a transverse plane are logarithmic spirals,
and whose pitch along the axial direction is constant. The helix angle,
however, increases with decreasing radius, so that the flow pattern is
very much of a spiral near the wall of the tube, but becomes more and
more axial as the center of the tube 1s approached. Figure (9-5) shows
the theoretical streamlines; Figure (9-4) shows a streamline as actu-
ally obtained from an experimental run by injection of colored liquid.

The correspondence between theory and experiment is rewarding.
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Theoretical Streamlines for Vortex Tube

Figure 9-3.
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CHAPTER 10

VISCOUS EFFECTS IN VORTEX TUBE

10.1 General Stress System

In the general case of fluld motion in space, let the velocity
field be specified by
- - .

- -
qQ =ul + vj+ vk (Lo0-1)

Then the equations of motion can be written in vector form as

T o o
p-D-%=F+p (10-2)
Dt
where

— — - -
F=Xi+7Y]+Zk = body force
= o - = .
p=p.i + pyg + pzk = surface force

D 0 ) ) )
-t T 'y TPt :

The body forces are to be regarded as given external forces, but the sur-
face forces depend on the state of strain (velocity field) of the fluid.
The system of surface forces determines a state of stress, and a relation-
ship between stress and strain rust thus exist,/ In the case of elastic
solid bodies, this relation is given by Hooke's law, and for liquids
and gases, it is given by Stokes' law of friction.

Let a cube (dx, dy, dz) be isolated from the fluid continuum.
There are nine stress components which are in evidence, and they act as
shown in Figure (10-1). Normal stresses are indicated by o, and shear
stresses by 1. The first subscript indicates the direction of the normal

to the plane over which the stress acts, and the second subscript

~178-~
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Figure 10-1. Stress System for Fluid Continuum

indicates the direction of the stress. The stress system requires nine
scalar quantities for its description, and these nine guantities form a

stress tensor of rank two:

9% Txy Txz
II = e Oy Tyz (10-3)
Tzx Tzy Oz
Equilibrium conditions, however, require that Txy = Tyx> Txg = Toxs
Tyz = Toy and the stress tensor is thus symmetric with respect to the
principal diagonal:
% Txy Txz
II = vy 9% Tyz (10-4)
Txz Tyz %

By considering each column as representing the stress in the directions
X, ¥, and z, Equation (10-4) enables the surface force per unit volume

to be calculated:
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p—

- ‘aox BTXy Oz | -
P = | Ox * oy Tz _ *
(31,0 da, dry, | ]
- axy + ay + ayz 7 (10-5)
S y z |
Oy,  OTy, . 0y
_ Yz Z =
=== Ty Tl K

From this, it is seen that the presence of shear stresses causes the pres-
sure to be different in different directions. Introducing Equation (10-5)
into Equation (10-2), and resolving into components, the three equations

of motion become

do. oT or
Du X Xy XZ
opt Xt Ty Yz (10-62)

i

Dv Y+ aTXy + aUy + aTyZ

P ot = 3% 3y T oz (10-6b)
OTy oT o0
Dw _ Xz yz z
Pt > Ty T (10-6c)

For a frictionless fluid, all shearing stresses vanish, and only the
normal stresses remain. These are, moreover, equal, and their negative

is defined as the pressure at the point (x,y,z).

Txy = Tyz = Tgx = 0 (10-7a)

0y = 0, = 0, = -p = 1/3(0y + o, + UZ)

=0 _ (10-7b)
The system of Equations (10-6) contains the six stresses 9> Gy’ 9, Txy?

and Ty The next task is to determine the relation between then

Tyz, x*

and the strains so as to enable the introduction of the velocity compo-

nents u, v, and w into Equations (10-6).
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10.2 Relation Bebtween Stress Tensor and Rate of Strain Tensor

The strain system of any continuum, whether elastic solid, li-
quid, or gas, can be described in two alternate wuys. The first method
is to describe the deformation of a given volume by three elongations
Ex> gy, £, and by three angular displacements Yy Yyzr Vzxo i.e., by six

strains. The quantities g, gy, ¢, denote changes in length along the

denote changes in angle

coordinate axes, and the quantities Yxyr Yyzs Yox

between the (x-y), (y-z), and (z-x) axes. The second method of describ-

ing the state of strain consists in the use of the displacement vector

>

- - -
S =¢ti+nJ+ ¢tk (10-8)

of a point. If the coordinates of a point before deformation are (x,y,z)

)

after deformation they become (x + £, y + n, z + ). The state of strain
is fully determinéd if for every point the displacement vector is given,

i.e., if

E =& (X;y;z)5
The six strain parameters g, €y

the three displacement parameters

tE +t_+ &t =e =volume dilatation =
X Ng z

The six stress parameters ¢

X2 .

y)

the three displacement parameters

n=1 (x,y,z); t =¢ (XﬁyJZ)'
2 Vxys vz and y _ are related to

£, n, and { by

%

€, = (10-9)
0 o . o) d
= 82 * 5% 5 Vox = Bé * 5% (10-10)
-
div S (10-11)
g and T are related to

Z’ Txy) Tyz) ZX

£, N, and { by
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o, =T+ 2G %}% -2/3Gdiv ¥ (10-10a)
_ = 9 @ R
cy-c+2Gg;lr—2/5Gd1vS (10-10b)
g, =0+ G g% - 2/3 G div g " (10-10c¢)

Txy = G(%% + %%); Tyz = G(%g + %%); Tyx = G(%é + g%) (10-11)

where G is the modulus of elasticity in torsion.
Equations (10-10) and (10-11) can be written in better form by

use of matrix notation from Equation (10-4)  The result is

Oy Txy Txz c o] 0
Txy Oy TyZ =3 0 o) 0
Tyy Tyz a, 0 0 o}

ANy ¥
Ny U
2y HY
Ay X

Y
o
AN
A
N
AN
N

div § 0 0
-2/3a6| o div § 0
_>
0 0 div S (10-12)

Equation (10-1i2) is the general form of Hooke s law for an elastic solid
body. It is based on the stresses being proportional to the strain. In
the case of the flow of liquids and gases, Stokes' law of friction can by

derived readily from Equation (10-12) by meking the stresses proportional
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to the rate of strain. Therefore, in Equetion (10-12), G is replaced by

) - -
u, 0 is by -p, (E,U:C) by (U‘)VJW)J and S by q:

O xy Tz -p 0 0
TXy Oy ’Tyz = 0 -p 0
Tys Tyz o, 0 0 -p
du du ou § Ju ov ow
> 3 o > = X
ov ov ov N du ov ow
S S VA, A 2
v ow ow ou ov ow
> oy oz | % % %
-
div g 0 0
-2u/3 0 div @ 0 (10-13)
0 0 div @

Equation (10-13) is the general relation between the stress tensor and the
rate of strain tensor. Using the summation convention that repetition of
& suffix in & single term or in & product is to imply summation over all

values of the suffix, it is sometimes rewritten as

) )
Pyp = - (p + 2/3 ph) B + a%: + £E (10-1L4)

(04
where
%
A = div g = volume dilation
a,p = 1)2J5
By = Kroneker delta = 1 when & = B, O when ¢ £B.
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10.3 Navier Stokes Equations

It is convenient to subtract the pressure from the normal

stresses by putting

o, = 0! - p; 0, = 0& - P; 0, =0, -D (10-15)

so that the frictional terms of the stress components can be written as

ol = (2 —g;—l - 2/3 div ) (10-16a)
Coy (2 & 2/3 div q) (10-16b)
O'y = M ay - iv g
v , |

o) =p (25, - 2/3 div ?) (10-16c)

Txy = W (%—; + %% (10-17a)
oV . ow .

T =B (52 + 55) (10-17p)
) du .

T =R (.5;1 + 52) (10-17c)

Equation (10-15) enables the non-viscous pressure terms to be separated

in the equations of motion, so that Equations (10-6) become:

Du _ v _ Op ( ooy OTyy OTyy > )
pD—t X g}Z+ X+ ay + 32 (J_O 18a)
;. OT do! o7
Dv _  _ Op , { yx y vz (10-18b)
e T Tl Tyt )
- OT oT dc'
Dw _é}_) : 7ZX zZy Z \1
P oE =2 o Wl Sy + S,/ (10-18c)

Equations (10-16) and (10-17) enable the surface forces in Equation (10-5)

to be calculated:
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x*t x| oy | oz
=-2—§+§;[u (223-2/5@5’)}
P e G ST e e L (G ) (10-199)
d1xy o, O

Py= 3% T oy T o

op o) _
- y+§;,[u (2%331,-2/””3)]

d ov  dw ov |
+ SE,[“ (g; + 5&)] 35 (B (5y S ] (10-19b)

5 5 ow Lo
=- Sﬁ +35; [ (2 5% - 2/3 div Q)]
B ow , du _é Qv ow
* 5 [u (ax +35,)1+ 3y m ( ay)] (10-19c¢)

F’inall‘y, when Equations (10-19) are introduced into the equations of

motion (10~6), there is obtained

o 2 -x - ap

- ;[u N o3 aiv Q)

3+ 0 o) 5] dw . O .
tyy e (5-1;; + a—l)] t (5] (10-20a)
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p-g—*;-=y-§§+a~m (2L - 25 aiv 9]
g @) (10-200)
pg%:z-§+éa—z[“ (22 - 2/5 aiv )]
+§[p CRE IR CRE ) (10-20¢c)

Equations (10-20) are the Navier-Stokes equations of fluid motion. They,
along with the equation of continuity, the equation of state, the energy
equation, and the viscosity-temperature relation constitute seven equa-
tions for the seven unknowns, u, v, w, p, p, T, and u.

10.4 Change of Circulation

As stated in Chapter L, the circulation, in a frictionless
fluid, is constant along a vortex filament, and remains constant with
respect to time.

In the case of a viscous fluid, however, the circulation

.9
r=§q>'d'l=§qadxa5a:l; 2)5

changes with time, so that

D
Dr Y D
Dt bt_dxoz+§qa']3~tdxa
_ L P
§ (Xa * P Xop ) g
_gilom (10-21)
- § =2 ax, -
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After some rearrangement, this can be written as
1 - ~>
—="9%3 [dp + p(ecurl w) - dr + 2/3 A du

‘ - -, -
- 4/34daA - 2(grad p) - dg+ (grad p x @) - dr]  (10-22)

Equation (10-22) is the general expression for the circulation around a
closed curve in a viscous compressible flow field. It reduces to Kel-.
vin's Theorem of Chapter 4 when viscosity is neglected and flow is
isentropic. Unfortunately, neither Equation (10-20) nor Equation

(10-22) is linear. Both defy present day methods of mathematical anal-
ysis, and instead of working with them, the method of Kassner and Knoern-
achild (58) will be adopted.

10.5 Shear Stress in Circular Flow

While the laws of Newton and Prandtl have yielded well estab-
lished methods for determining shear stresses in straight laminar and
turbulent flow, there is, in the case of circular flow, no general
agreement as to theory. One theory is that, in accordance with the con-
cept of laminar fluid friction, shear stresses are proportional to shear
velocity. The other theory, based on the concept of momentum-transfer,
holds that shear stresses are proportional to the rotation of the fluid.

According to the first theory, which is applicable to straight
laminar or circular laminar flow, the stresses caused in the fluid by
friction correspond to the stresses caused by elastic deformatiorn in a
solid, differing only in that, instead of the deformation themselves,
the rates of change of deformations are considered. This means that the
shear stress, which in solid bodies is proportional to the shear angle,

in viscous flow, is proportional to the so-called shear velocity, i.e., the
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rate of change of the angle between two surfaces of an originally rec-
tangular element of fluid.

According to the second theory, the shear stress in circular
motion is proportional to the rotation, i.e., to the mean angular velo-
city of the rotating fluid eiement. This i1s the so-called momentum-
transfer theory.

Neither theory contradicts the other, so long as théy are
applied to straight flow. However, if applied to circular flow, the
first theory means that there would be no shear stresses in a fluid ro-
tating according to the law q = w r (forced vortex), because there is
no relative gliding or shearing, whereas the second theory means that
shear stresses would occur in rotational flow (g = @ r), but not in
irrotational flow (q r = constant).

The notion that frictional stress in turbulent circular flow
is proportional to rotation is ascribed to Prandtl. Taylor, however,
has pointed out that the results of Prandtl's Theory do not confirm
with experience, and has advanced a vorticity transport theory, accord-
ing to which turbulent friction is determined by shear velocity. Re-
cently, Kassner (58) modified Prandtl's theory to yield results which,
in the laminar case, are consistent with the general theory of laminar
friction, and which, in the turbulent circular case, are in égreement
with Taylor's results.

Adapting Kassner's concept, the shear stress for the type of
flow occurring in the vortex tube is now determined. It was established
in Chépter L that, in terms of the natural coordinates, the fluid ro-
tation is given by

(10-23)

o
e
]

Ele
+

2] el
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In the case of irrotational flow, the concept of shear stress being pro-
portional to rotation would lead to no shear, since %% = ~ % for irrota-
tional flow. On the other hand, in the case of rotational flow, the same
concept would lead to considerable shear stress. These conclusions are
incompatible with experience, which shows that an irrotational flow is
unstable, and that it converts to a rotational flow. 1In consequence of

all this, Kassner considers the shear gtress to bte a function of
dg g
(dr - ?). Thus
dg g ,
romu (G- (10-21)
for laminar flow. And for turbulent flow:
d
T o=e(m-d (10-25)
turb.
where ¢ is the "turbulent exchange rate", or virtual viscosity, and the
ratio of the turbulent shear stress to the laminar shear stress is in
the order of the Reynold's number.
Applying Equations (10-24) and (10-25) to the case of irrota-

tional flow (g r = constant), the result is

rdg + g dr =0
da . .4
dr r
and Equations (10-24) and (10-25) become
a a
. =u(-;-;)=-2u% (10-26)
lam,
rooce(-2-d=-2e7 (10-27)
r T r
turb.

The distribution of shear stress is shown in Figure (10-2).
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Figure 10-2. Shear Stress Distribution in Irrotational Flow

It is seen in the following that irrotational flow represents flow with
constant moment of shear stresses, as against rotational flow which
represents flow with no shear stresses,

10.6 Conversion of Irrotational to Rotational Flow

The experimental results of Part III indicate that there is a
sort of energy transfer from one part of the flow to the other, thus
decreasing the total temperzture of the one part, and increasing the
total temperatufe of the other. The shear stresses occurring in circu-
lar flow furnish an explanation for this.

When the compressed air enters the vortex tube, a velocity pro-
file is built up inside the tube, which complies with the law of constant
angular momentum (irrotational flow). Coupled with this velocity profile,
is a pressure and temperature profile as shown. The question is whether
or not these profiles caﬁ be maintained. To answer this, consider the
shearing force which acts on an annular element of fluid at a distance

r from the center, and which tends to reduce the velocity difference
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Figure 10-3. 1Initial Flow in Vortex Tube
between two neighboring elements. From Equation (10-24) the shearing

force for laminar flow is

dg g
F.=p(a—;)2ﬁr

and the moment of the shearing force about the center is

dg g 2
Ml = Fl r = v (dI‘ - 'E) 2 wnr v (10'28)
Similarly, for turbulent flow
- - (X9 _ g 2 10-
M, =F, r=¢ (3 ;) 2 nr (10-29)

Now, in the case of irrotational flow: ¢ r = K, hence

rdqg + q dr = 0, and

(10-30)
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Substitution of Equation (10-30) into Equations (10-28) and

(10-29) then results in

My = (- D) (2r%) =hmi (10-31)

for laminar flow, and

M, =€ (- g%) (2nr2) s = UneK (10-32)
r ,

for turbulent flow.

Equations (10-31) and (10-32), in addition to being independent
of r, show that for both laminar and turbulent flow, the moment of the
friction forces is of a finite and constant amount for each annulus.

In the case of rotational flow: gq = w r, dq = w dr, hence

49 - = % (10-33)

and substitution of Equation (10-32) into Equations (10-31) and (10-32)
results in the moment of the friction force being zero.

Thus, while irrotational flow is stable for a frictionless
fluid, for a viscous fluid, it is unstable, for, in the latter case,
the summation of internal moments of friction forces must be zero, sincé
there is no external moment that i1s acting. The relationship between

the internal moments of friction forces and the external moment being

To

\jf Mi dr = Mexternal =0

e

This can be satisfied only if M; is zero everywhere, since by Equations
(10-31) and (10-32), no summation of quantities of like sign can be zero

unless all the quantities are zero individually. But the latter case
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represents precisely the condition for rotational flow, which means that
after a time, the flow, initially irrotational, becomes rotational.

The conversion from irrotational to rotational flow starts
from both sides of thé vortex tube, i.e., from the inner radius of the
tube outward, from the outer radius of the tube inward, so that the
variation of vélocity profile with time is as shown in Figure (10-4).

Here, three transient velocity profiles are sketched out.
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Figure 10-4. Velocity-Profile Conversion

Figure (lO—Ma) shows the velocity change neglecting wall
effect, whereas Figure (iO—Mb) shows the velocity change with the wall
effect taken into account. Here, there is a force by wall friction,
which tends to decelerate the fluid in its vicinity, and the velocity

profile is "rounded out" instead of being sharp.
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With the flow establishing itself as rotational in the steady-

state, the temperature and velocity profiles become those of rotational

flow, and they are shown in Figure (10-5).

A

A i
< N
- N 2
a Qf.) @@
N\ s
<9 &t
o P L =
r r r

Figure 10-5. Temperature, Pressure-Profile for Rotational Flow

A noteworthy feature of these curves 1s that they are in
marked agreement with the experimental curves of Chapter 3, thus
attesting to the soundness of the theory.

10.7 Velocity Relation

A comparison of the magnitudes of velocity before and after
conversion i1s afforded by determining the moment of momentum for both
irrotational and rotational flow, and equating them to each other,.

First the moment of momentum for irrotational flow is

Mirrot. =L/ﬂw ar (10-35)
where
@ = angular velocity = 5% = fé
dI = moment of inertia of annular element = r2 dm = r2(2nrp dr)
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Thus: T

K 2
Mirrot. =k/F 5 (&%) (2nrp dr)

2

2
=npK (r2 - rl)

(10-36)

For the case of rotational flow, the moment of momentum is

o
2
= \/pm (r") (2nrp dr)
1
_rpw b L .
=—5— (v, -1)) (10-37)

Setting Equations (10-36) and (10-37) equal to each other

results in

2 Tow , L I
K (r, - r]) =75 (r2 - rl)
and, with K = rq,
irrot.
W = Lot
r
this becomes
2r
drot. =272 Yrrot, (20-26)
+ rl

From Equation (10-38), it is seen that as r -0, g Y
Irov.

-2 q This not only checks with the steady-

and as r r
e Aoy irrot.

state velocity profile of Figure (lO—M) but gives the velocity of the
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converted flow at the wall to be approximately twice the velocity of the
original flow at the same location.

10.8 Energy Relation

The energy possessed by the flow can be obtained by taking
summation of kinetic energies of the annuli. Thus, for the initial

irrotational flow,

=xp K I1n r_2_ (10-39)

Similarly, for the steady-state rotational flow,

T2
1 2
Erot =J/ 54 dm
1
T2
=\jf % o r2 2nprdr
1
2
. 8- HOay Sy (10-k0)
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Equations (10-38), (10-39), and (10-40) afford a comparison
of energies possessed in rotational and irrotational flow. Letting

r = r, in Equations (10-38), this yields

2 4 .2 (10-41)

Replacing w by this value in Equation (10-40), the latter becomes:

m ,_ 2K 2 L
Erot, =% (2 o) (rp-r
I'2 + I'l

2 2

np K (rg - ry)
2 2 (10-42)
2 1

Comparison of Equations (10-42) and (10-39) shows that the
energy possessed by rotational flow is less than that possessed by irro-
tational flow. In fact, of all possible velocity profiles, that of
rotational flow has the minimum kinetic energy. The difference between
the energies of irrotational and rotational flow represents the energy

lost from one configuration to another. Thus, from Equations (10-39)

and (10-42): 2 2
o -

=z K2 in fg 7 K2 2

loss P ry . e + e

2 l

Il
=~
\V]
Iwm

I—ln% - (r 2:] (10-L3)
1+ (3)

To
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The kinetic energy given up by the fluid in transforming itself
rom irrotational flow to rotational flow goes to heating up the fluid
as a whole, and the increase in temperature 1s superimposed upon the tem-
perature distribution of the resultant rotational flow.

The efficiency of the vortex tube may be expressed as

2 r2
22" 1N
E i 2+ 1P
n(r) = 1 _ rot - 1 - 2 1
irrot. ﬂng 1n ig
r
1

Il

I,_J

\

S

-

N

! .
=

[

= (10-14)
A 2 2
J— + l 1n T
rl 1

the plot of which is shown in Figure (10-6).
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Figure 10-6. Efficiency Curve for Vortex Tube

It is seen that the coldest portions of the flow lie near the
center of the tube, and that the optimum diameter of the diaphragm for
tapping cold air is around a radius ratio of .2. This not only checks
well with the experimental results in Chapter 5, but also gives the

performance of the vortex tube to be calculated.



CHAPTER 11

THREE-DIMENSTONAL VISCOUS-COMPRESSIBLE SOLUTION

11.1 Preliminary Statement

The latter part of Chapter 10 gave the solution of the vis-
cous vortex flow in the plane. A consideration of the shear stresses
showed that the initial free vortex of inviscid compressible flow was
transformed into a forced vortex of viscous compressible flow. What
remains then in way of general solution is to superimpose the forced
vortex flow of the preceding chapter to that of a viscous compressible
sink. The forced vortex was developed in Chapter 10; the viscous
sink will now be developed prior to adding it to the vortex for the
general solution.

11.2 Viscous Compressible Sink

The solution for the inviscid compressible sink was presented
in Chapter 8. It contained a limit circle (the sonic circle) to the
exterior of which the solution had two branches, one having its stagna-
tion point at infinity (the subsonic branch), and the other having its
maximum velocity at infinity (the supersonic branch). Both branches
terminate at the limit line with theoretically infinite velocity
gradient.

The problem of viscous compressible sink (source) flow, be-
cause of its cylindrical symmetry, is one of the few nonlinear flows in
more than one dimension which can be described by only one independent
variable, the radial distance. Consequently, it is solvable, though not

without pains, and has attracted the attention of a number of writers

(136) .

-199-
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The momentum equation for viscous compressible sink, as evolved

from the Navier-Stokes equation of Chapter 10 is

du dp 4 dq 2 L d ,q
P -t leugt3E-n)7dlad]+2u—(3) (11-1)

where p, q, r, p, u, and ¢ denote respectively density, radial velocity,
radial distance, pressure, coefficient of shear viscosity, and coeffi-
cient of bulk viscosity.

The energy equation for viscous compressible sink, as evolved

from the general expression of the energy equation is

2 > - 2
d - 1 dg
d[32—+cT]— [rk-c-lg+ r%L+2r(§ (5 =— +

2
& -8 I
dr “ptd T dr ar ~ M 3 2 dr

par (11-2)

where cp, T, and k denote respectively specific heat at constant pres-
sure, absolute temperature, and thermal conductivity.

The equation of continuity for viscous compressible sink flow
is

2 prq=-m (11-3)

where m denotes the. sink strength.

Lastly, the equation of state is

p=pRT | (11-4)
where R is the gas constant.
Equations (11-1) to (11-4) form a system of nonlinear differen-
tial equations in the four variables g, P, p, and T. They are solved

after Wu (136) by reducing to non-dimensional form by the introduction of
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_ T - D= - L - L
rl =T n=1logr ; ws= =% 0 = Tx
(11-5)
=B . = 2. = K. - = £

where the ¥ quantities are those occurring at the local Mach number of
unity for inviscid gas.

Eliminating p and p in Equation (11-1) by use of Equations
(11-3) and (11-4), and introducing the non-dimensional quantities with

n as the independent variable results in

2
aw 1 4 ,6 ) , ad“w
an 7 [ an ) -5 1=- 2CXEH_(l + 1) (Egg - W)
a a
dw “H1 My
+ (1 + 2) an an + AW _Eﬁ} (11-6)

where

Q= (Re)-l-—.—-——E—gTIn*; e = <l+ 5}\)|-1

Thus, @ denotes the inverse of the Reynolds number, and is smaller than
unity throughout, whereas )\ expresses the relation between the two vis-
cosity coefficients.

| Using Equation (11-3), the energy Equation (11-2) is inte-

grated to yield

2 -1 2
W ) Pr ~ 4o dw 2 1
S+t ==+ |[—— =+ 1+ E 2w |=Lt= 11-
2 -l 1 [7-1 am * ) dn 2(7-1) (11-7)
Mcp
where Pr = _E— = Prandtl's number.

Equations (11-6) and (11-7) are two equations for the two un-
knowns w and 6. The boundary conditions for them are determined by

requiring that they tend to their respective inviscid solutions as
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N - «. As a check, setting & = O in these equations gives the solution

for the inviscid compressible sink flow. The result is

(Z%i ) Z%i Wg)‘(7/7‘l) _r (11-8)

S o

This solution is plotted in Figure (1l-1) and it is seen that it checks

with that of Chapter 8.

w
2
/////
) \\\\ -
o ] 2 3 r/e*

Figure 11-1. 1Inviscid Solution for & =0

The inviscid solution is now used as a guide to solve the
sink flow of a real fluid described by Equations (11-6) and (11-7) by
ascribing the limit of the viscous solution for vanishing viscosity to
approach the inviscid solution as r tends to infinity. By continuing the
viscous solution backwards in r, the viscous effects become more and more
prominent, and it is found that the case of a real fluid flow does cross
the sonic circle. By means of this technique, Wu (13%6) obtained several
solutions corresponding to both the subsonic and supersonic regimes dis-
cussed in Chapter 8. However, only the subsonic solution need be of
interest here. Its plot and comparison with the inviscid solution is

shown in Figure (11-2).
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r
> 7 = log -

Figure 11-2. Viscous Sink Flow Solution

It is seen that at every n = 1ln L, the velocity is slowed
r*

down from its inviscid solution due to viscous effect. The viscous solu-
tion for subsonic flow is, nevertheless, very close to the inviscid
solution. There is no single expression available for the solution
throughout the entire flow region, but the calculation is performed in
three different ranges of r. The present work proceeds from Wu's solu-
tion curve, but substitutes an exponential for it, thus obtaining a single
expression throughout the flow region froﬁ fi >> 1 to fﬁ = 1. The

least squaresvcalculation for doing this is shown in Appendix C

with the solution as an exponential function.

11.5 Superposition of Rotational Flow and Sink Flow

The superposition of the rotational flow of Chapter 10 with
the sink flow calculated in the preceding section results in the general

solution for the flow in the vortex tube. The technique'being the same
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as that presented in Chapter 8, its details are not repeated here.

The flow pattern in the plane is shown in Figure (11-3).

Figure 11-3. Viscous Flow Pattern

It is seen that the general appearance is similar.to that of the invis-
cid flow pattern of Chapter 8, except that the free vortex of inviscid
flow has been replaced by the forced vortex of viscous flow. In fact,
the rotational characteristics of the latter flow make it somewhat easier

to plot the streamlines.

To obtain the flow pattern in space, the technique of Chapter
9 is again employed, i.e., an axial velocity is added to the two-
dimensional flow pattern of Figure (11-3). The magnitude of this axial
velocity is gotten from the experimental data of Chapter 3, The
streamlines are similar in character to the solution obtained in Chap-
ter 9 except that the particles of fluid now possess rotational prop-
erties. Because of the latter reason, neither potential function ¢
nor stream function ¥ technically exists here, and the streamlines in
in Figure (9-3) are therefore iabeled lines of "pseudo Y" in compli-

ance with mathematical language.
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Chapter 12

BOUNDARY LAYER AND ENERGY SEPARATION

12.1 Nature of Solution

The current work represents an analytical and experimental
study of compressible flow in & uniflow vortex field. It consists.
of a mathematical treatment based on expérimental facts, and requires
no special assumptions or elaborate models for comparison. The ex-
planation of the phenomenon is in the solutions of the flow and energy
equations, and it is the simplest and best explanation. The alterna-
tive to the mathematical approach would have involved various conjectures
as to the mechanism of energy transfer, and as to the apparent alter-
ation of the Maxwell-Boltzmann velocity distribution. With such
assumptions, the study would have taken on an artificial character.

The mathematical results arrived at are dependable, because
the initial assumptions are few in number, and the physical laws upon
which the equations are written are those of classical physics. The
assumptions made were that the fluid be a continuum, and that the flow
field be divided into two regions, the one outside the boundary layer,
and the other the boundary layer itself. The physical laws upon which
the equations were based are non other' than the principle of continuity,
Newton's law of motion, the isentropic change of state relation, and
the equation of state for the medium.

The assumption of a continuum is equivalent to working with
the macroscoplc properties of the fluild rather than with its molecular
properties. This 1s valid, since the mean free path of the molecular

( 3.5x lO-6 in. for air) is nowhere comparable in size with the
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smallest significant dimension of the problem., The division of the
flow field into two regions enables the problem to be solved. For,

in the region outside the boundary layer, the viscous forces being
very small compared to the inertia forces, the flow can be treated

as potential, and the equations can be greatly simplified. The method
of isolating the boundary layer is due to Prandtl, and it is appropriate
to the present work, for in subsonic flow, the presence‘of a boundary
layer influences the potential flow only in a secondary manner (110).
True, viscous stresses within the boundary layer do shearing work on
the fluid particles, and this shearing work tends to alter the temper-
ature distribution, thus leading to heat conduction and changes in
viscosity and density. However, for the flow of most liquids and gases
at low Mach numbers past an insulated surface, such heat transfers are
relatively unimportant, inasmuch as the internal heat transfers within
the boundary layer are then of the same order of magnitude as the vis-
cous shearing work, and the latter 1is not very large, except at high
Mach numbers.

12.2 Boundary lLayer

To illustrate the events taking place withing the boundary
layer, consider the high-speed boundary layer next to an insulated
wall. Because of the condition of no-slip, the outer layers of fluid
do viscous shearing work on the inner layers, and consequently, the
internal energy and temperature of the fluld in the inner layers tend
to rise. When there is no heat conduction from the wall (case of in-
sulated wall), the inner layers and the wall become progressively
hotter. However, the temperature gradients now created by the viscous

shearing work lead to a conduction of heat through the gas, and away
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from the wall which ultimately counterbalances thé effects of the

viscous shearing work. The resulting steady-state temperature dis-
trubution is as shown in Figure (12-1). Here, the temperature dis-
tributions for the three cases of insulated, hot, and cold wall are

shown.

~

i T

THERMAL
BOUNDARY
LAYER
f 7777777777777 §77 >
e Tow— [
a1] - 9yl y=0
dy ly=0

Figure 12-1. Temperature Distribution within Boundary Layer

The adiabatic wall temperature (T...) is greater than the free-

aw

stream temperature T . However, the temperature gradient at the wall

is zero, in accordance with the Fourrier heat conduction equation

T

(Q = - k =) and the assumption of zero heat flux for an insulated
wall. In gases, the adiabatic wall temperature is always less than
the free stream stagnation temperature TT‘ For practical purposes,
it is convenient to express the temperature at the wall in terms of
a "recovery factor", defined by the relation

2
u

00
12-1
Engp ( )

aw = Lo T

where 1 is the recovery factor. Incldently, Ty, is the temperature

attained by the thermocouple and hot-wire probe if the latter were
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also used to check temperatures. The value of 7 may be determined
experimentally, but the commonly accepted value for the type of ex-
periments involved in the present work is around .65.

Another feature ié that since the wall temperature is less
than the free-stream stagnation temperature, it follows that the dis-
tribution Qf stagnation temperature within the boundary layer is of
the form shown in Figure (12-la), with some portion of the boundary
layer having a stagnation temperature greater than the free-stream
stagnation temperature. When the wall 1is uninsulated, the temperature
distributions within the boundary layer are as shown in Figures (12-1p,

lc). The slope of the curve is given by the value of é@ at the wall

dy

(y=0).

12.3 Energy Separation and Prandtl's Number

In connection with the discussion of the boundary layer, it
is of interest to note that whereas in steady, inviscid, isentropic
flow, the total temperature remains constant, the situation is rather
different in cases of fluids with viscosity and conductivity, even
when there is no energy flow through the wall. ZEckert and Hartnett
(30) have studied several such cases of possible energy separation in
terms of the Prandtl number. Some of the cases are summarized and
discussed here for purposes of comparison with the vortex.tube phenomenon.

i) Couette Flow

In the simple Couette flow between two parallel plates,

one of which is at rest, the velocity distribution'is

u = up % (12-2)
and the energy equation is 5 5
arT du
k—r = - — 12-
5 W (dy) ( 3)
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Referring to Flgure (12-2), if the plate at y = O is assumed adiabatic,
and that at y = p is cooled to a temperature Tl, then the following

boundary conditons exist

T -0 at y=0 (12-k4a)
dy
T=T at y=¢ (12-4v)
The static temperature field, obtained by integration, is
r=T “__)_1_[1_2 (12-5)
l k 20 2

Noting that the stagnation or total temperature is related to the

static temperature by

T
2ep (12-6)
the expression for the difference between the total temperature at y

and the total temperature at y =.O is finally obtained:

2

- o)y o= oL (1-p,) &) (12-7)

T
( 2
cp

T)

y =4

The velocity and temperature distribution is shown 1n Figure
(12-2). The temperature distribution is that due to heat generated by

friction when the lower wall is non-conducting (thermometer-plate pro-

blem). y y
'y \
¥/ul TT,
-
X —rrrrrrrrrrr X

Figure 12-2. Velocity and Temperature Distribution for Couette Flow
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Equation (12-7) indicates that for a Prandtl number of unity,
the total temperature is constant across the flow, but that for all
other Prandtl numbers there will be a "separation", i.e., a region of
high total temperature and a region of low total temperature.

ii) Laminar Channel Flow

Consider the Poiseuille flow through a channel formed
by two parallel flat walls a distance q apart. The velocity distribu-

tion is

)] (12-8)

where w denotes the mean velocity. The energy equation is

o _ x Fr 2

pc.u — =k —— + H(EE)

P on aye dy

If the boundary conditions

oT
— =0 at y=0
dy
,§E =0 at y = £
dy 2

are imposed, Equation (12-9) is solved by setting T = Ax + g(y) and

integrating to yield

u 2 2
T- 12 HE k- 7o () [1-4(2)"] 2 (12-10)
pCpE CP
and the difference of total temperatures becomes
u . 2,2
T T
( T)y:!— - ( T)y:O = (E_C‘-)(l'pr) [l"h‘ (%) ]
2 Cp
(12-11)
where u, is the center-line velocity. The velocity and temperature

distribution is shown in Figure (12-3).
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Figure 12-3. Velocity and Temperature Distribution for Channel Flow

Equation (12-11) indicates that a variation in total temper-
ature occurs only for Prandtl numbers differing from unity.

1ii) Poiseuille Flow in Circular Tube

The velocity distribution for laminar flow in a

circular tube is 2
u = 2w [ 1-(2)°] (12-12)

where R 1s the radius of the tube, and u, is the mean velocity. The

energy equation is

' _k 9 oT duy 2 -
popgu = = = = [(r&:)} p(Z2) (12-13)

If the boundary conditions imposed are

=0 at r=20

=0 at r =R

vy ¥

the static temperature integrates into

2
po 88 o Py ) (@R
o 2c k R
pepR P

(12-14)
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and the total temperature into

u?
(o) - (o) = GE)Q-PI-GFT (10-15)

where u, is the center-line velocity. Equation (12-15) is essentially
the same as that of channel flow. Again variation in total temperature
occurs only for Prandtl numbers different from unity.

- iv) Solid Body Rotation

Consider a laminar solid-body rotational flow with

the velocity distribution

V==V (12-16)

iR

Since there are no shearing stresses present, the
energy equation becomes 3

2 [ % )|= o (12-17)

Imposing the boundary conditions of

T =T

W at r =R

Loy

Il
(@]

= O0at r
results in no heat flowing across the wall, and in a total temperature
difference of 2

(e o n - (D 2 0= GI0-E)) (12-18)
where Vl is the peripheral speed. Equation (12-18) shows a marked
difference from the cases of rectilinear flow; namely that the
"separation" effect is independent of the Prandtl number, i.é., there
is energy spearation even for a Prandtl number of unity. Thus, fof
gases which have a Prandtl number close to unity (.7 for alr), the
separation effect, while small for rectilinear flow, becomes consid-
erable for rotational flow. This is precisely what happens in the

vortex tube, where it was shown 1n chapter 10 that the flow is indeed

rotational. Equation (12-18) furnishes a check on the theory of the
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vortex tube developed earlier. It shows that the central total temper-
ature is the lowest, a situation which is analogous to that found in
the vortex tube.

v) Solid Body Rotation - Turbulent Flow

The same situation prevails in the case of turbulent
solid-body rotational flow. Consider the turbulent flow with velocity

and pressure distributions given by

V= % vy (12-19)
X, ¥ (12-20)
or r

Substituting the value for V from Equation (12-19) into Equation (12-20)
and separating variables yields

R R 5
dp -
f 2 —J vy —% ar (12-21)
(o) e o . R

It is commonly accepted hypothesis that the equilibrium
temperature distribution in a highly turbulent gas flow in which pressure
gradients exist normal to the flow direction should correspond to the
isentropic variation with pressure. That is, if a small mass of fluid
at temperature Tl and pressure p, moves to a new position where the
pressure is p,, the small mass will take up a temperature Tp which is
;%) Zii . If the temper-

ature of the fluid at the new position already corresponds to this

given by the isentropic relation T2 = Tl (

temperature TE’ no heat transfer will occur, but if it is different,
then a heat transfer will result and tend to establish the temperature

Tpr. Thus, introducing the isentropic relation
D p P

-1
y
p
1 (12-22)

o

7
p P

0 R
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and the perfect gas relation

D = PRT (12-23)
into Equation (12-21), the latter integrates into

Y Vi°

~ [R(T, -T) ]=—

y-1 1 o) 2 (12-24)

and, in terms of total temperatures, this may be expressed as

Cp (12-25)
Fquation (12-25) indicates not only an energy separation in-

dependent of the Prandtl number, but an amount of separation even

greater than that obtained in the case of laminar rotation. The re-

sults of the solid-body rotation case are summarized in Figure (12-4)

for the entire region of r = R to r = 0.

W v <% Trw
|

VELOCITY TOTAL TEMPERATURE
Figure 12-4, Velocity and Energy Distribution
for Solid-Body Rotational Flow
It can be seen that except for "end effects" at r = 0 and r = R, the
computed profiles have the same shape as the experimental profiles
previously obtained. The "separation factor" in Equations (12-18) and

(12-25) is theoretically .5 for laminar flow, and 1.0 for turbulent
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flow. The experimental separation factor turns out to be between .7 and
.9, a value greater than that for laminar flow, but somewhat lower than
that for turbulent flow. Since the flow in the vortex tube is mostly
turbulent, the result is consistent. The presence of an axial component
of velocity prevehts the separation factor from reaching its maximum
obtainable value under pure rotation.

12.h Conclusion

The conclusion of the study on the vortex tube is summarized by
the following statements.

i) Upon entrance into the tube, the motion of the gas is that
of a "free" vortex, having the characteristics of irrotational flow.

ii) By isolating the thin boundary layer from the flow field
proper, the problem of the vortex tube becomes amenable to exact solu-
tion through the superposition of a vortex and a sink. The compress-
ible nature of the flow gives rise to the existence of limit or sonic
circles, inside which there is no flow "in the plane".

iii) Under the influence of viscous shearing forces, the free
vortex "locks" itself, and changes to a "forced" vortex. The character
of the flow changes from irrotatlional to rotational. This in agreement
with the experimental traverses obtained at various stations along the
tube.

iv) A more realistic solution is obtained by superposing a
viscous rotational flow to a viscous compressible sink flow to replace
the superposition under ii). The performance of the vortex tube is
obtained in terms of a parameter representing the ratio of the strength

of vortex to sink.
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v) The threé-dimensional solution for the flow pattern is
obtained by the additon of an‘axial veloclty to the combination of
vortex and sink flows in the planes.

vi) The results are in agreement with the circular shear
théory of Kassner and Knoernschild (58), and the energy separation
case studies of Eckert and Harnett (30).

12.5 Applications of Vortex Tube

The vortex tube is a relatively new device, having been in-
vented in 1932, and re-discovered in 1945. For this reason, its
knowledge and application are not widespread. Although its efficiency
is lowlcompared to a standard refrigerating machine, it has several
possible advantages. First, the construction is very simple, involving
no moving or wearing parts. Second, it starts functioning immediately
with no warm-up period required. A vortex tube has been built into
a small air liquefier of 3.5 liters per hour capacity (78). °‘The tube
is of small dimensions, and is fed by laboratory air supply at about
10 atm. pressure. The cold stream emerges at -40°C and joins the
upward-streaming air from the expansion valve and liquid air chamber.
It thus serves as a precooler and as part of the steady eooling of the
high pressure stream at 200 atm. going down through the heat exchanger
to the expansion valve. The entire liquefier is &ery quick to get into
operation. Starting at room temperature, liquid air is produced three
minutes after the air supply is turned on and continues thereafter at the
rate of 3.5 liters per hour. The cold air from the vortex tube is used
to make up the volume of air liquefied. This has the advantage that
water vapor is held to a minimum, since the alr entering the vortex

tube has already been through the laboratory compressor where the water
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vapor is mostly removed.

Another application of the vortex tube is the temperature con-
ditioning of parts or sections of high-speed aircraft. Its extreme
simplicity makes it very attractive for this purpose. This is partic-
ularly true when the airplane speed is high (in the sonic range), but
the altitude is not too excessive (under 20,000 feet). In such cases,
the aerodynamic heating which is caused by the skin friction reaches
temperatures in excess of 1000°F. Cooling for the sake of human
comfort and in the interest of strength cénsiderations of structural
parts or equipment thus becomes necessary. The use of the vortex tube
is indicated, since it can take advantage of the ram air (61).

Still another application of the vortex tube is the measure-
ment of true air temperature in high-speed flight. If a conventional
type thermometer is used on the aircraft, the aerodynamic heating
would cause a much higher reading on the thermometer than that corre-
sponding to the true air temperature. It is therefore desired to have
a cooling effect around the thermometer pick-up that will compensate
for the heating effect. The vortex tube accomplishes this purpose.
Suppose the inlet nozzle of the vortex tube is in the direction of
motion of the airplane such that the air is rammed through the nozzle.
If the airplane is flying at a Mach number M relative to the air, then
the stagnation temperature Tp is related to M and the free air temper-
ature Ty by the relation

T, = (1+0.2 )T, (12-26)

In the case of an airplane flying at sonic speed M=1), a

thermocouple placed at the entrance of the nozzle would réad a temper-

ature of 1.2 Tp. Now, if the stagnation probe is located in the cold
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portion of the vortex tube, the cooling effect of the tube would com-

pensate for the aerodynamic heating, and the temperature of the thermo-

couple can be made to read Tf. The extent of the compensation and the

design of the vortex-thermometer installation are under current study

(127, 59, 81).
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APPENDIX A

HOT WIRE ANEMOMETRY

1. Hot Wire Realtions

The relation between the rate of heat loss from a heated wire
immersed in a fluid and the speed of the fluid has been developed by
Boussinesq, King, et al., to

H=1L(T - TO)(A+BV1/2) (1)
where H = heat loss per unit time
L = length of wire
T = temperature of wire
To= temperature of airstream
V = velocity of airstream normal to wire
A,B = constants

1/2
In the velocity dependence relation (A + B V / ), the constant
A represents the loss of heat due to free convection and radiation, and

BV 1/2 represents the forced convection heat loss.

HOT WIRE

AIRSTREAM ao
et ——————

Figure A-1. Hot-Wire Anemometer and Linearity of
Resistance Versus Temperature

If a current of I amperes is made to flow in the wire of re-

sistance R, a second expression for the heat loss may be written:

-222-
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H = I°R (2)
since the rate of heat loss from the wire is equal to the rate at which
electrical energy is being converted into heat in the wire. Equation (1)

and (2 ield
)y R = L(T - T )(A+ B vi/2) (3)

If . denotes the temperature-coefficient of resistivity at Ty, then
O -
R =R, [1+0y(T-T))] - (&)

where Ry 1s the wire resistance at To’ and R is the wire resistance at
T (Figure A-1). Equation (4) shows that the product aoRO is the slope
of the resistance-temperature curve at T,. This slope is very nearly

constant over a wide range of T, for most wire materials, and (T-TO)

may be replaced by its value of (g—go) from Equation (4) to put into
oRo
Equation (3), thus resulting in
R-
2R = &Ry + B Vl/g)
0oRo
or
I asRe R/Ro 1/2
( : )]=A+BV/
L (r/R,) -1 (5)

Equation (5) is the fundamental hot wire anemometer relation between wire
current, wire resistance, and stream speed.

Suppose that the resistance ratio R/RO is held fixed; then as the
velocity of the stream changes, the current through the wire must be
changed in order go preserve equality in Equation (5). This means that
at any fized resistance ratio, there is a definite relationship between
I and V which may be determined by calibration, and subsequently used
to measure unknown velocities. Note that it is not necessary to measure
stream temperature, since it does not appear'in Equation (5).

There are two ways in which the hot wire may be operated: 1)

keeping R(or T) constant, and measuring I, so that V is proportional
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h
to I, or ii) keeping I constant, and measuring R, so that V is propor-

R )2

The present work uses the first method.

tional to (
R-Rg

2. Wire Calibration

Equation (5) suggests a linear calibration curve in which

a~R4. R/R
I2 © 0o / © ] is plotted versus Vl/a. Such a plot will be a
L (B/Rg)-1 aoRo. R/Rg
straight line having a slope B/ ( T ) [(R/R ) 1]and a y-intercept
0)-
o.R R/R
A/ ( ° o) / ° ]. Incorporating these as new constants C and D,

L [(R/Roﬁl

the calibration curve simply becomes the straight line 12 versus V

1/2

of Figure (A-2).

Figure A-2. Hot Wire Constants

Before calibration, 1t is convenient to decide at what constant
temperature level (or R) the wire is to be operated. This is usually

expressed as the overheating ratio, a, defined as
— =1+a (6)
The higher the overheating ratio, the greater the sensitivity of the

wire, but also the greater the danger of burning the wire. Common over-

heating ratio for platinum wire is between 0.5 and 1.0 while those for
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tungsten wires are approximately 1.0 and 2.0. After a has been decided
upon, and Ro determined, Equation (6) serves to determine the value of
R. At this constant R setting, the hot wire is placed in the airstream,
and for various values of the velocity V, the current I, necessary to
keep the wire at the constant temperature (corresponding to the constant
R) is measured. The velocity is measured with a pitot tube in conjunc-
tion with a precision manometer. From these resﬁlts, a calibration
curve similar to the curve of Figure (A-2) is plotted for each partic-
ular wire that is used. Figure (A-M) shows the calibration curves of
some of the wires that were used in the present work.

3. Measurement Circuit

The basic circuit for measuring the current through the hot wire
is shown in the simplified diagram of Figure (A-3). The actual circuit

is boxed in, and operates from a panel Figure (A-S).

oF,

Figure A-3. Measurement Circuit
The bridge is used to measure the resistance and the current of the hot
wire. The potentiometer measures the voltage drop between the ends of the
hot wire, and since thils voltage drop is the product of the constant re-

sistance and the current, the reading is proportional to the current.
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The sequence of operations is the following. 1) The hot wire is placed
in the airstream. 2) Switch s1 is closed, and the rheostat Rl adjusted
until theﬂWheatstone bridge shows balance. This makes the resistance

of the hot wire equal to b. 3) The potentiometer contacts P3 and p), are
brought to the ends Py and Pos switch S5 is brought to the standard cell
¢, switch s

is closed, and the rheostat R, is adjusted till the voltage

3 2
drop from pl to p2 balance the voltage of the standard cell Clye L) Switch
S5 is brought to N, and the contacts p3 and p) moved to give balance.

This gives the voltage drop across the hot wire and completes the reading.

5) Switch 54 is opened before retracting the hot wire from the airstream

so as to avoid burning the wire.
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APPENDIX B

TEMPERATURE CORRECTION

After calibration of the‘thermocouple by comparison with a
Bureau of Standards certified thermometer, the readings of the thermo-
couple must be corrected to indicate true temperatures of the airstream.
The present purpose is to develop the necessary corrections.

1. Sources of Errors

If, when a thermocouple 1s placed in a gas at a given temperature,
the heat transfer between it and the gas ceases, the couple will be at
the same temperature as the gas, and the corresponding voltage of the
couple will represent the temperature of the gas. Thus, the true temper-
ature of the gas would be measured only under the following idealized
conditions: 1) The walls of the enclosure have the same temperature as
the gas. 2) The gas temperature is uniform in all.directions. 3) The
gas is stagnant or moving very slowly. 4) No temperature gradient exists
along the thermocouple wires. Under these conditions, thermal equilib- |
. rium then exists between the wall, the gas, and the thermocouple meas-
uring Jjunction.

In practice, however, these conditions are never met, and the
Junction does not measure the true gaé temperature. The principal

sources of errors are shown in Figure (B-1).

ql’

GAS STREA t
q w5 JUNCTION

h .qk

Figure B-1. Heat Transfers 1n Gas Temperature Measurement
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2. Evaluation of Errors

The walls of the enclosure are at a different temperature from
the thermocouple junction. The jﬁnction then "sees" the wails, and
heat is exchanged by radiaﬁion, with the result that the junction
assumes a temperature between that of the gas itself and the walls that
it "sees". This heat exchange is shown schematically as q,. in Figure
(B-1), and it is evaluated by

4 4
Q. =€ oA (TT - T ) (1)

5
o
=
o
+Q
R
1

net rate of heat transfer by radiation
e = emissivity of Jjunction:

o = Stefan-Boltzmann constant

Al = exposed area of Jjunction
TT = thermocouple temperature
T,, = wall temperature

A temperature gradient may exist along the thermocouple wires,
the temperature being higher at the junction than where the wires enter
the enclosure. Consequently, heat is lost by conduction (qk in Figure
B-1), and the junction will assume a lower temperature than that of the
gas, other things being equal. The heat copduction is evaluated by

kA

_ 55T
P = —1 — (2)

where q = rate of heat transfer by conduction

k

thermal conductivity

L

Ao

Il

length of wire from junction to inlet

cross sectional area of thermocouple wires

Convectlive heat transfer (qh) occurs from the gas to the junc-

tion, and its general expression is
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q, = b A(T, - Tq) (3)

where q, = rate of heat transfer by convection.

h = Convection coefficient, computed from the cross-convection
equation (fu) = 0.3 (Re)o'57
TG = gas tewmperature

In the case of static-temperature measurements, a fourth and
final ;rror is present: that due to the velocity of the gas stream
However, this is usually taken care of by means of the adiabatic-temper-
ature-rise (chapter 12), and will not be considered further here. Thus,
when thé Junction reaches a constant temperature, which lies between
that of the gas and of the walls, a heat balance may be written to the
effect that the heat lost from the Jjunction by radiation and conduction
is balanced by convective heat transfer from the gas to the Jjunction:

QL+ =gy (&)

Making use of Equations (1), (2) and (3), this can be written as

T_-T
eoAl(TTl+ - TW“) + __g_ﬁig__ﬂl = hAl(TG - Tp)

and, solving for (TE—TT) results in

L L
_eG(TT - 1, ) + kA ( Tp - Tw)

G T h hA, L (5)

Equation (5) is the basic equation for the difference between the true
gas temperature and the thermocouple reading, and thus represents the
"error" in gas temperature measurement. The working curve of error

versus Jjunction temperature is plotted in Figure (B-2).
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APPENDIX C

COMPUTATION FOR VISCOUS SINK SOLUTION

BY METHOD OF LEAST SQUARES

It was stated in Chapter 11 that Wu (136) obtained mathematically
the viscous compressible sink solution in three parts, since it was
found that there was no single expression available for the solution
that was uniformly valid. in the entire flow region.

The present work proceeds from Wu's solution, and obtains a
single expression for the viscous solution, uniformly wvalid in the
range of values of r for the vortex tube. It is the purpose here to
give the details of calculation by least squares that were not in-
¢luded in Chapter 11.

1. =~ Method of Least Squares

Viewed in general terms, the method of least squares is simply

a process for finding the best possible values of a set of m unknowns

Xy Xpyeeros X0 connected by n(>m) linear equations
817 ¥} t 85 X5+ = = = = - ta, X = bl
a X + a X + - == - = + a X =D
2l 1 22 2 2mn m 2
a_ X +a X 4+ =--=-= =~ +a X =D
nl 1 n2 2 nm m n

Since the number of equations exceeds the number of unknowns, the fore-
going system does not admit an exact solution, i.e., there is no set
values Xj, Xp,.....Xy, for which each equation is exactly satisfied.

Therefore, consider the discrepancies
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AC=(a x +8 X + ===~ a x -b )
1 11 1 12 2 Im m 1
2 2
A S = + a - - - - - a x -b_)
2 ( 21 22 2 2n m
A= (a_x +a X +----- a, x b )°
i il 1 i2 2 im m 1
and let it be attempted to find the values of Xl’ Xg’ ..... X for which
the sum of the squares of the errors
n n :
2 2
E = ) éf =) (& x +a x +---a x -b)
i=1 1 i=1 il 1 i2 2 im m 1

is as small as possible.
To minimize E2, the conditions for minimizing a function of
several variables, namely that the first partial derivatives of each

variable be zero is applied. Thus,

2 n
JE -
—é;— Z E(all Xl + aig X.2+"' - - -ajm Xm —bi)(ail) =0

1 i=1

n
2
OE° _ % 2(a

5% BT N B T~ L by )(a;,) =0
which can be rewritten as
X > a X + X > a a + + 2 a = ¢ a b
1.0 241 %1 T % L % Fp T T T X %1 % TN %1 %y
i=1 i=1 i=1 =1
n n n n
X)) Lo8yp Xy T Xy LoBp8,t - - -4 X, N 8,8, = L 8,0



-235-

n . n n n
D L T S D W S S N T
=1 i=1 =1 i=1

The above represents a system of m linear equations in the m unknowns
Xy XDyooons Xy, whose solution is now a routine matter. These equations

are labeled normal equations, and they can be written down instantly

from the following rule: Let each of the original equations be multi-
plied by the coefficient of X, in that equation, and let all the result-
ing equations be added. The sum represents the ith normal equation.

2. Equation for Viscous Sink Flow

From Figure (11-2), it is seen that the best expression to select
for the viscons sink flow is that of decaying exponential:

- a ln 4%
w=cy e r

where cq and a are unknown constants to be determined. However, it is
more realistic and convenient to simply work with the radius ratio r/r¥.

Thus, without loss of generality, and with the understanding that a new

set of constants is involved: T

W= cje & X _ (1)

From chapter 11, the data is

r/r¥ .5 l 1.
w |.80 l .

\J1
o
N
S
O\
-
(@)
S

From Equation (1):

178 f;) (2)

and the conditions to be satisfied by the unknowns cq and a become

In w= 1nc



1n .80

In .55

In .25

1n .16

1n .10

ln .06 =

or

-0.223

-0.598
-1.386

-1.833

-2.303

-2.813

Equations (3) to (8) represent
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In cq
In
In c
In c
In c

ln c

1n
1in
1n
1In
1n

In

c
1

.5a

1.5a
2a
2.5a

3a

- 1l.5a

- 2.5a

- 3a

(3)
(4)
(5)
(6)
(7)
(8)

six equations of condition for the two

unknowns c; and a. The normal equations, as obtained by the rule set

forth in the preceeding section are:

- 0.223 - .598 - 1.386 - 1.833 - 2.303 - 2.813

6 1n cy - (0.5 + 1 + 1.5+ 2+ 2.5+ 3) a

or

-9.156 = 6 1n c

1.115 + 0.598 - 2.08 + 3.666 + 5.76 + 8.439

- (0.5 +1 + 1.5+ 2+ 2.5+ 3)1n ¢

1

- iO.Sa

l+

(0.25 +1+2.25 + k4 +6.25 +9) a

or

21.658 = - 10.5 ln ¢ + 22.75a

The solution of the two normal equations (9) and (10) is

(9)

(10)
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1n cq 753 (11)

a 1.301 (12)

Replacement of Equations (11) and (12) into Equation (2) results in

1n w

r
753 - 1.301 (;;)
or -1.301(r/r*)

w = 2.1k e / (13)
which is the expression for the viscous compressible sink flow in the
vortex tube. Its plot is shown in Figure (C-1). It corresponds to the

convergent branch of the inviscid solution.
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APPENDIX D

PERFORMANCE CALCULATION

The performance of the vortex tube can be evaluated by super-
posing a rotational flow with an axial flow, i.e., by combining cases
iii) and iv) of Chapter 12.

1. Solution for Superposed Flow

For mathematical simplicity, consider a rotaticnal flow being
superposed with a Poiseuille flow in a circular tube. For such a case,

the Navier-Stokes equations reduce to

3 V@

-—:p_——

or r

& 1 d'p VT

—_— F T —= . = - 0

(1) dr2 T ar T

2

TVa 1d%a 13
are r ar B odz

where VT, VA are the tangential and axial velocities respectively.

The boundary conditions imposed on VT and VA are

VT = 0 at r =20
(2) V = V_at r =R
T T1
v
d'A - 0 at r=20
dr
VA = O at I‘=R

The velocity components as obtained by solution of the équations are
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<
=
1l
n
<1
=
'_l
]
—
5
no

The energy equation is

N _ kD 37 a'a\2

with the imposed boundary conditions of

§2 = 0 at r =0
or
§E = 0 at r =R
or
The solution is
- - 2
v Va e
T8 2 g M—q(&%[Lgﬁﬁ
pch 2cp k

which can be rewritten in terms of the total temperature as

T e - ERR - G2 @R )
VAQ R Vp R
2ep

where 'I'Tw is the total temperature at the wall.

2. Performance Curve

Equation (8) is the performance equation of the laminar case
of superposition. It was chosen because it is amenable to solution,
whereas the turbulent case is not. The solution for the turbulent
case, however, may yet be evaluated from the discussion in Chapter 12

by multiplying the laminar solution by a factor of 1.8.

(3)

(&)

(5)

(7)

(8)
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Experimental results indicate that the factor is closer to 1.6,
and this is the value that is adopted for the plot of the performance
curve in Figure (D-1). It is seen that the performance or energy
separation of the vortex tube is the higher when the ratio of whirl
velocity to axial velocity is the higher, and when the ratio of the
cold tube diameter to hot tube diameter is the lower. In actual
practice the ratio of whirl to axial velocities is controlled by
the exit cone valve, whereas the ratio of the cold to hot tube diameters

is controlled by the size of the cold outlet.
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