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ABSTRACT

R. Godement has obtained [Thébrie des faisceanx, Hermann Paris, 1958] a
theory of sheaves which is more general than that of H. Cartan [Seminaire, 1950-
51], by considering flabby sheaves and ¢-soft sheaves. We consider here a
category of sheaves where satisfies a certain condition. We call this a C-
category. The category of flabby sheaves, and that of ®-soft sheaves where ¢
is a paracompactifying family are C-categories. And we show that most of fund-
amental theorems in sheaf theory are valid in this general set. Besides these,
we also obtain Mayer-Vietoris cohomology sequences, and a characterization of

the transposed homomorphism of a continuous map.



I. A CERTAIN TYPE OF CATEGORY OF SHEAVES

INTRODUCTIQN

N. Steenrod's concept of a local coefficient [7] system has been generalized
by J. Leray to that of sheaf [5]. H. Cartan has simplified the theory of cohom-
ology based on sheaf theory, and put it into a more accessible form [1]. But he
considered the cohomology with supports in a paracompactifying family. Quite
recently, R. Godement generalized the support family to obtain a more general
cohomology theory [3]. Meanwhile, Grothendick obtained a homological algebra of
sheaves which is an analogue of that of modules [4]. ' All these works, consider
a property of a sheaf, or rather a category of sheaves which is required to nul-
1ify the cohomology. More specifically, Cartan takes the category of fine sheaves,
Godement takes the category of flabby and soft sheaves, and Grothendick takes
the category of injective sheaves.

The objective of this paper is to put these theories into a categorical form
to obtain a more general theory of cohomology based on any category of sheaves
which are required to nullify the cohomology. In Section 1, we describe some of
the notations, and preliminary remarks to be used in the subsequent sections. In
Section 2, we obtain the existence and uniqueness theorem. In Section 3, we
establish cohomology sequence for closed set, and Mayer-Vietoris sequences for
open pair and closed pair. 1In Section L4, various spectral sequences are estab-
lished. 1In Section 5, we obtain a characterization of a transposed map of a

continuous map of a space into another.



1. PRELIMINARIES

We shall recall the definitions and basic properties of sheaves and related
terms. We shall always denote by X a space, and by K a principal ideal ring,
the basic ring for modules. A presheaf F over X is a contravariant functor of
the category'z;cﬁ'all open subsets of X and the inclusion maps into the category
" of modules (always over K) and homomorphisms (always K-invariant). We cén con-
sider a homomorphism of a presheaf into another presheaf. For the definition of
a sheaf, we shall use that of H. Cartan [1]. A presheaf induces the unique sheaf
and vice versa. Hence if we denote byxg' and_g the category of presheaves and

that of sheaves, respectively, we have the functors T': 48' +,8 and T: 4X-+<gh

It follows from a theorem of Godement [3] that

T' T ~1and (T |f") = 1,

where‘g" is the subcategory of<g', consisting of presheaves F satisfying the con-
ditions F-1 and F-2 in [3]. We further note that T and T' are covariant. A
sheaf F(over X) is flabby if and only if for any open subset U of X, F(X) - F(U)
is surjective where F(U) = I'(F, U) the module of all sections over U. This is
obviously equivalent to saying that any section over U can be extended to a sec-
tion over X. A sheaf F is soft if and only if for any closed subset X' of X,
F(X) » F(X') is surjective. A sheaf F is fine if and only if given any locally
finite open covering (Uj} of X, there exists a family (¥;} of endomorphisms of

F such that (1) o(y;)C Ui where o(¥i) = the closure of the set of the point x
with Vi (Fy) # 0; and (2) Lyi(Q) = a for any QeF. The reader will note that the

definitions of flabby sheaves and soft sheaves are those of Godement, whereas



the definition of fine sheaves is that of Cartan. Ore can easily show that

any fine sheaf is soft if X is paracompact, and that any flabby sheaf is soft

if X is paracompact. Injective sheaf may be defined in the same way as in the
case of homological algebra of modules (see [2; 3]. Injective sheaf is always
flabby and does not have any property more useful than just being flabby. Hence
we shall not be concerned with injective sheaves. A family ¢ of closed subsets
of X is called a paracompactifying family (p-family) if ¢ satisfies the following
conditions; (9-1) each element e¢® is paracompact, (6-2) ® is closed under the
operation of finite union, (¢-3) any closed subset of an element of & is in o,
(¢-4) any element of ¢ has a nbd €d. Following A. Borel, we shall call a family
® of closed subsets of X a family of supports if ¢ satisfies only ¢-2 up to o-k4.
Given a family of supports, we define @¢-soft sheaves am o-fine sheaves. Recall
that, if F is ¢-fine, then FoG is ¢-fine for any sheaf G and a p-family ¢. We
refer the reader to [1, 3] for more definitions, and further properties of

sheaves and related terms.

2. COHOMOLOGY THEORY

As before, we fix a space X and a sheaf means a sheaf over X. Let T be a
covariant functor: /g +3ﬁ3(8ee Section 1 for the definitions of,g and?%ﬁ.

Definition. A categoryg?T of sheaves is called a C-category if it satisfies
the following conditions:

C-I. Any sheaf F is injected into a sheaf C(F)e®,, such that

T

(a) the assignment: F + C(F) defines a covariant and exact functor:
A4,

(b) Im(Fx » C(F)x) is a direct summand of C(F)y for each xeX.



C-II. Let 0> F -+ F > F" > O be an exact sequence of sheaves

(a) If F'e&’T, then
0~ T(F') » T(F) » T(F") » O

is exact.
(b) If F' and F are both in @, then F'e 6{T,

Remark. It follows from Godement that given a family ¢ of supports the
category of flabby sheaves, and that of ¢-soft sheaves if ¢ is a p-family, are
C-categories with respect to the functor T = T

We shall construct a cochain complex over X with the coefficients in a

sheaf F, or cohomology resolution of F, as follows,
0—F S>c0-% 05 .. 0% 99 a4l .

such that the sequence is exact and each qué&. For this, first note that we

have an exact sequence,
0 — F —£5C(F)

given by the condition C-I such that C(F)efkp. Let c® = ¢(F), and assume we have

already constructed the sequence,

dq.
0—> 7 -Escodo, . _ a1 91,

q+l

with the required properties. Let Z = Coker (dg-1) = c%/tm(c%™t > c?). et

CQ+1 = C(Zqul)° Then we have the following commutative diagram:



‘_l

A

41— — ¢t

zd+l

?
d? \\%

such that the diagonal sequences are exact; hence the horizontal sequence 1s
easlly seen to be exact., This then completes our inductive construction of a
cohomology resolution of F.

We shall often write ZCq = 0% = C*(F). We have proved the first half of
the following.

Lemma. Given a sheaf F, there exists a cohomology resolution of F,

do d
0—3F -5 0r—s ... 500 ol |

such that (1) Cq€§&, and (2) the assignment F » C*(F) defines an exact functor
(covariant).
Proof. We need to show only that the construction given above satisfies

the condition (2) in the lemma. For this, let
O+F'>F~>F"~>0

be an exact sequence of sheaves. Then there exists the following commutative

diagram of sheaves,



0 0 0
! | !

0 — F' —> F —> F'—>0
y y |

0 —C(F') — C(F)—C(F")™ 0
J | \l

o-—-vzl(lf"'>-——»zl(F)—>zl(£")—-vo
0

o
o«

where the exactness of the first two horizontal sequences follows from C-I-a,

the exactness of all the vertical sequences follows from our construction, and

the exactness of the last horizontal sequence follows from C-I-b. Since CO(F') =

C(F'), CO(F) = C(F) and C°(F") = C(F"), this proves the exactness of

0+ C*¥(F') » C*¥(F) > C*(F") » 0

at the degree 0. One may use the induction on the degree to show the exactness

in general. For this one must replace the above diagram by

0 0 0
U y V

0— 2&4(F') — 29(F) — 2%4(F")—> 0
J ! ¥

0— C&(F')—> cd(F) — c¥(F")—>0
\" V] v

0— Zq‘j(F’ )—za*tL(p)—> ZQ+1(F")—> 0
0 0 0

Definition. Given a sheaf F, a covariant functor T, and a C-category;ﬁT,

we define

where TC*(F) = 2Tc(F).



For further properties of the functor H% (a dervied functor of T in a
certain sense), we observe the following.
Lemma. Suppose we have a commutative diagram of modules or more generally
sheaves:
0 0 0 0
\\NA%//Z \§A%+é/z
ce— Aq{__> Aq-——> Aq+l—-> Aq'+2__>

/ﬂ x‘c%ﬂ/l \N

A

7N

0 0

If the diagonal sequences are exact, then so is the horizontal sequence. Con-
versely, any exact sequence may be decompased into this form with the diagonal
ones all exact. The proof 1s left to the reader.

Lemma. Given an exact sequence
O+A"»>A->A">0

of graded differential modules and differential homomorphisms, there exists an

exact sequence induced by the above sequence,
. > HY(A') » EY(A) » HY(A") » HIFL(A') > ...

such that this last sequence is natural with respect to any Homomorphism of
0+ A"+ A~ A" > 0 into another such exact sequence. Proof of this lemms
may be found in any standard reference. Now we are ready to prove our main

theorem of this section.



Theorem (Existence and Uniqueness). Given a left exact covariant functor
T and a C-category&T, there exists a unique functor (up to isomorphism) g
J > r¢satisfying the following conditions for each q > O.

H-I. H% is covariant for each q 2 0 such that

(a) HO(F) = T(F), and

1]

(o) HY(F) = 0 for n > 0 and Fel.

H-II. Given an exact sequence of sheaves,
O+F'>F~>F"~»0
there exists a homomorphism:
B(r") » 13 (F)

such that

() ... » BY®') » 5Y(F) » 2% 7") > 8% (F') » ... is exact, and

(b) given a commutative diagram of sheaves,

O+F'>F~>F"~>0

bod

0+G'>G~>G"~>0
the following diagram is commutative:

HA(F") » EAHL(F")

d(g") » g9*tl(gr) .

Proof. Existence: Define HY(F) = HY(X;F) for all g > 0. To show that

this functor has all the property H-I stated above, we need only to consider



the following commutative diagram.

0] 0] 0
Ny v
VARY /"

0— T(F)—> T(c°)

Since T is left exact, 0 » T(F) » T(C®) - T(Z') is exact. This implies
HAQ(X;F) ~ T(F). If Felp, then, by C-II, Z'e Inductively, z%elt, for all
o(X; . T , by , Z'¢@p. Inductively, Zle or a
g =21, Hence all the diagonal sequences in the above diagram is exact. By
our lemma, the horizontal sequence is exact, implying H-I-b. H-II follows from
the fact that O »~ T(C*(F')) » T(C*(F)) » T(C*(F")) -~ 0 is exact.

For the uniqueness, suppose we have two functors HY and {Hq which satisfy
H-I and H-II. We shall use an induction on the degree q. For q = O, by H-I-a,

we have
VO (F):HO(F) =~ “HO(F)(the identity map).

Suppose V3(F) exists for all F and all g < a positive integer. Consider the

exact sequence
O+F~=>C0>2Z">0

where C° = C(F)e@p. By H-II, we have the following commutative diagram:

v

19(c0)— 82" ) — E¥H(F)—> 0
— ANz ) — AT (F)—s 0 .

H4(co)

10



Obviously, there exists an isomorphism V3+1(F):He™1(F) +4Hq+l(F) such that
the diagram commutes. This completes the proof.

Remark. Glven a C-category'@T with respect to a left exact covariant
functor T, the above theorem shows that there exlsts a unique cohomology theory,
namely H%(X;F). Now let(ii be the category sheaves F such that H%(X;F) =0
for all q > 1. Evidently@11 is a subcategory of(ﬁi. Now we clalm that @é is
also a C~-category. ©Since the condition C-I is already satisfied by'é&, we need
only to show C-II for @%u Let 0O+ F' > F > F" + 0 be an exact sequence of

sheaves. If F'e@j, then Hé(X;F') = 0, implying that
0 > Hp(XF') » Ha(XF) » B(XF") » 0

is exact. Since H@(X;F) = T(F) etc., this shows C-II-a. If F' and F are both
jll&%, then by the exactness of the cohomology sequence shows that H%(X;F) =0
for all q > 1, implying F"eﬁ%u Henge there exists a cohomology theory'ﬁT with
respect to(ié, One can easily modify the uniqueness theorem to shOW'that’HT
and Hp are the same cohomology theory. In this connection we note that the
category of flabby sheaves 1s a subcategory of the category of ¢-soft sheaves

if ¢ is a p-family.

3. VARIOUS COHOMOLOGY SEQUENCES

Let F be a sheaf (always over a fixed space X). We shall use the conven-
tion that the module over the empty subset of X is trivial. If X' is a sub-
space of X, then ijl is defined in the obvicus way (see [ 3] for details).
Suppose now that X' is a subset of X, either open or closed and F' is a sheaf

over X'. Then there exists a unique sheaf F over X such that F\Xr = X and

11



Fy = 0 for xeX-X', because such a set F is unique and the topology on F is also
unique to make the projection p: F -» X a local homeomorphism and p]X: agree
with the projection map: F' + X'. For a more explicit description of the top-
ology of F, we refer the reader to [1]. To avoid a notational complication,
we shall denote by the same F' the sheaf extended over X from F'. In particular,
given a sheaf F over X, FIX' shall denote both the sheaf F restricted to X' and
the extension of the restricted sheaf.

Now let X' be an open subset of X, and let F be & sheaf over X. Then there

exlsts the followlng exact sequence,
O+ F

Since F is an open subset of F and F

% ~ F/Fy: by the above argument, the

X-X'
existence and the exactness of the sequence follows immediately. If(?T is a

C-category with respect to a left exact functor T, we have the exact sequence

g+l

HKE") > i (XGE) - .

. > H%(X;va)'+ H%(X;F) > Hyp

This is called the cohomology sequence for the pair (X,X') or (X,X-X'). To
study the nature H%(X;FX') and H%(X;FX_Xl)p we set up another condition C-I-c
for the category(QT to satisfy.

C-I(c): Given a sheaf, C(F)[X'GG& for each open subset X' of X.

Note that the category of flabby sheaves satisfies this condition with re-
spect to the functor T = Tg.

Let GT|X' be the subcategery of G%, consisting of the sheaves C‘X' where

Celtp and C[X'eéﬁo From this condition and C-II, it also follows that Clx-x'eé%

12



by the exact sequence 0 - Cng - C - C|X~X’ + 0. Again then we define similarly
aT|X—X" and may show that this category is a C-category. One may also easily
observe that the assignment F' - H%(X,F’) defines a zohomology furctor, and hence

by the uniqueness theorem,
Ha(XF |y1) ~ HE(X'5F |x0) for all q.
Similarly, we have

HR(XGF |y_xr) ~ HA(X-X'; ) all q.

For simplicity we shall denote these modules by
Hi(X';F) and Hi(X-X';F),

respectively. Then we may write the cohomology sequence,

q 4
ceo > HA(XF) » HR(GF) - Ha(X-X'E) » Bo (X5GF) > ...

Next we shall establish the Mayer-Vietorix sequence. As before let F be
a sheaf over X, and X = U;U Us the union of two open subsets of X. Write Y =

U\ Us. Consider the injective homcmorphisms

Ji k .
FY = \FUi 1 \F" (l =l; 2)n

One may show easily that we have the following exact sequence

Jitda ky-ko
0 7FY FUJ_ ('BFU’2 > F ,‘O

where (Jji+j2)a = (J1(@),j2(@)) and (ki-ko)(@,B) = k1(@)-kz(B). By the condition



H-II, this sequence induces the exact sequence,
oo > BY(XFy) » BY(XFy, @ Fy,) > BHXGF) » B (XGTFy) » ...

Using the same argument as before, one notes that

BEH(X;Fy) =~ ER(LF) .
We claim

HY(X;Fy, @ Fy,) ~ Ef(UL;F) @ Hf(Uz;F).
For the verlfication, consider the decomposition maps,
Py, —1s By, ® Py, Fy,
i 1 2 3

where qj o Py 1s the identity mep for 1 = j, and the triviel mep for i + J.

These maps induce
p¥ a%
Hp(Uy3F) —25 B3 (GFy, @ Fy,) —Ls Bp(Uy5F)

such that qg o} p? =1 for i = j, and = 0 for 1 % J. Hence these are decomposi-

tion maps which would verify our claim. Hence we have the exact sequence
1
. > HY(YV;F) » HH(ULF) @ B (UzsF) > BE(OGF) » B (GF) » ...

This is called the Mayer-Vietoris sequence for (U;,Us).

With a slight modification of this argument, we can obtain the Mayer-

Vietoris sequence for a closed pair (Xi,Xz). Let X = X;U Xz with Xj being a

closed subset of X, (i=1, 2). Write Y = X3N X>. Define the surjective maps,

1k



Ji ky
F—>F,—>F, (i<, 2).
l e

Then we obtain the exact sequence,

Jitde ki-ko

O—F — FXl':BFXg A,FY 0

where the maps are defined in the same way as for a open pair. Again by H-II,

and by the similar argument as for an open pair, we obtain the exact sequence,

co > E{(XGF) > BX(X0F) @ BXXesF) » BM(GF) » BEH(GF) > ..

This is called the Mayer-Vietoris sequence for the closed pair (Xi,Xs).
Remark., Incidentally, we have shown that the cohomology functor is an

additive functor, simply because the cohomology functor was a covariant functor.

L. EXISTENCE OF VARIOUS SPECTRAL SEQUENCES
As before, let X be a space and F a sheaf over X. Suppose that we have

a sequence of sheaves such that the composition of any two maps is trivial.
0+FSF+F > .., »rFd>pd™,

Again let G% be a C-category with respect to a left exact covariant functor T.
Then we have the double complex A = TC*(F*) = 2TCP(FY), and we have as usual
two distinct filtrations associated with the double graduation of A: namely,

there are 'F and "F defined by

FeA = LAPY ana 'ra = 2 AP0d
p2r q=>r
g0 p=0

15



where AP»Q = mcP(F2), Ther correspondirg to 'F and "F, respectively, there

exlst the spectral sequences {'E,} and {"Er)} such that
'Eg’q‘ ~ IHP "Hq(A>, ”Eg’q ~ an IHq(A)

and both 'E, and "E, are assoclated with proper filtrations of the derived

module H*¥(A) with respect to the total degree. More details may be found in

(3]
Lemma. "H(A) ~ ZT(CP(F%)) and 'EZ’? ~ #R(x;HA(F)).

Proof. There are two exact sequences:

0+ BHF) » 2%4(F) » EY(F) » O

0~ z3(F) » 74 » 3%%(F) » 0

where Z&(F) = Ker(F% » pdtly o Im(Fq'l + 74), These then induce the following

exact sequences:

0 » T(c*(BY)) » T(c*(z4)) » T{c*(HY)) » 0

0+ m(cx(z3)) » m(ex(Fd)) > m(cx(83)) » o.

Hence we have the following commutative diagram with all the diagonal sequences:

\\N ////)7 O\\¥ ///70

T(c*(B4)) (cx(89H))
///;i \\\\J (///;7 \\\\s
o —s (e*(FLL)) —5 Tlo*(FY)) — T(cx(FIHL) )
7
T(Cc*(z%))

S

16



An examination of this diagram shows that the following sequence is exact.

0+ T(c*(BL)) » 7(cx(zd)) » "EID(C*(F*)) > O

This then easily completes our procf.

Theorem 4.1, For any complex F¥ = F4 of sheaves, there are two spectral

Z
90

sequences {'Ep} and ("Er} such that

Y = mouEt), "Bt = PP(El(uE),

end both 'Ew and -"Ex are assoclated with the suitable filtrations of H¥(A).
This theorem follows immediately from the preceding lemma.

Theorem 4.2, Let F* = ng FL ve a complex of sheaves such that the sequence
> B3(GFY) - B3(GET) - L
is exact. Then there exists a spectral sequence (E.) such that

e - Hg(X;HqF*)

and Ew is associated with a suitable filtration of H(TF*).
Proof. Consider the spectral sequences {'E,)} and {"Ey)} in Theorem L.1.

We evidently have

2%~ pP(Ed(X;F%)) = 0, all p, and all q > 1.
Also
nge’C = pP(TE),
Hence
"g2°% = 0 for ¢ > 1, and EB)C - EE’O .

17



Thus
HP(A) = mP(rFH).
By taking E,. = 'k,., we obtain the desired gequence.

4+l

- - Wl .
Corollary. Ilet O+ F ~» FO > B oo ... > Fl oo + ... be an exact sequene

of sheaves with ﬂg(X;Fq) = 0 for any {(p,q) > (1,0). 'Then
b Do
HE(X;F = HY(TF*),
T( ;F) T( )

Remark. This last corollary shows that the resolution (¥(F) specifically
constructed earlier may be replaced by any other resolution 'C*(F) of F with
each 'Cq(F)®ﬂ¥ or more generally ’Cq(F)eﬁ& in defiring the cohomoclogy functor
HT over the space X. This also reveals some possibility of weaking the condi-
tions C-I and C-II.

Theorem k4.3. Let the following sequence be a resolution of F.

0 3 F 3 FO—3 Pl ., s Fdomy FAHL

Then there exists a spectral sequence (Ep} such that

g2’ = HP(HA(X;F*))

and E. is associated with a suitable filtration of H%(X;F).

Proof, Consider the spectral sequences {'Ep} and {"E,} in Theorem k4.1.

Then

0 for (p,a) = (0,1)
‘iEpJq
2

P (X;F) for q = 0

18



It easily follows that HP(A) = H%(X;F)° E,. = "E, is the desired spectral se-

gquence.

5. CONTINUOUS MAPS

Let X, T, and,QT be as before. Suppose that we have another space Y and f:
X » Y a (continuous) map. Let T' be a left exact covariant functor on the
sheaves over Y, and let T be a C-category with respect to the functor T'.
For any sheaf G over Y, denote by G - D(G) the functor for Y, which corresponds
to F »~ C(F) for X. Denote by D¥(G) the resolution of G, corresponding to C*(F).
Then first observe that £~1(G), a sheaf over G (see [1,3] for the notation
f-1). Let F = £~1(G) require that there is a natural homomorphism T'(G) -+ £-1G

for any G, and consider the spectral sequence in Theorem 4.3. Then we have
HY(TF*) = EB/O > ERC -+ ... » ERC = PO BR(XF)
where F*¥ = £-1 D¥(G). Hence we have a homomorphism

B (v;¢) = HT'(D*) > HYT(F*)

Tl

by means of the following commutative diagram,

o> (%) > () - L

coo> T(FY) > T(FATL) > L.
Consequently, we obtain the homomorphism induced by f

£%; H%,(Y;G) > H%(X;f-lG)

19



by taking the composition of the following meps,

H%,(Y;G) + HAT(F*) > H,%(X;F).

Let .d' Dbe the category of sheaves over Y, and let ¥#{be the category of
graded modules (and homomorphisms of homogeneous degree 0). Then we have the

following covariant functors,

](:Ai->xh’and39}:zYe-7?{

defined by H(G) = H%1(Y;G) andﬁf(e) = H%(X;f‘l(}). Consequently,oz/(zq) andﬂf(J)
are subcategories of #. Given any integer ¢ > 0, G - H%:(Y;G) and G - H%(X;f'lG)
are covariant ;f‘unc’(:orséyQL and;q%, respectively, and we may consider JV: ZJﬁ and
He - 2.

Theorem 5.1. Using the same notations as above, there exists a unique

functor (up to isomorphism)

e ) - Ho )

satisfying the following conditions:
(1) £% is covariant.
(2) £°(¢) agrees with T'(G) » T(£-1G) induced by G » £~1¢G.
(3) Given any exact sequence O - G' » G » G" » O of sheaves over Y, the

following diagram is commutative:



Proof. To show that there exists at least one such a functor, we take ¥
which we constructed earlier. We shall first show (3). For this, observe that

Y;G) > HY(X;£-1G) comes from the following maps,

the homomorphism gd T

2, (

T'D*(G) + TE-1D*(G) + TC*£~1D*(G) 4 TC*f~1G

where the extreme right homomorphism induces an ismorphism in the derived mod-
ules. Hence we have the commutative diagram as follows where the horizontal

sequences are exact:

0 —=>T'D*¥(G') — T'D¥(G) —> T'D¥(G") —> 0
0 —>TC*ED¥ (G ') ——> TC¥E D% (G) —— TC*E ™~ 1D*(G") ~——> 0

|
0 —> Te*f~1g! ——> mexe~la —— mo*e-ig" —> 0

From a general argument of homological algebra, (3) follows. (1) also follows
easily from the same type of argument. For (2), consider the commutative dia-

gram:

T(G) —> TFT1g —— TC*f-1G

|

T'D*(G)— Tf~1D*(G)— TC*F~1D*(G).

Now simply take H® of the modules in the diagram, and obtain the following

commutative diagram:

T (¢)— P76 ———> HO(TC*f™MG)

J/

HO(D*G ) — HO(£71D*G ) —> HO(TC*£™1D%(G))
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Then we have the isomorphisms indicated in the diagram. Since H%,(Y;G) >

H%(X;f-lG) was defined by means of
HO(T'G*) » HO(TE-1D*G) + HO(TC*-1D¥*G) — HO(TC*£-1¢),

we obtain the desired result.
To show the uniqueness, observe that fO is already unique. Assume that
£l is unique for all i < g where ¢ > 0. Given a sheaf G over Y, take an exact

sequence
O0-+-G~-»D~->D'~> 0

of sheaves with De&bl. Then we have the commutative diagram with the horizontal

sequences exact,

H3, (4;D') —— H%Tl(Y;G)————e 0

BY(X;£-1D') —> B (X £-16)—> H%H%X;f'lD)

This evidently shows the uniqueness of f4, completing the proof.

Remark. If, in particular, X = Y and T = T', then our theorem describes
a relation between two cohomology theories, one based on @& and the other one
based on(}T. which may differ from.&&. If, further,@?,T = é%,, then our theorem
shows that the identity maps of X induces the identity map of H%. Next, suppose
that X is a closed subspace of Y and f is the inclusion map XCY. Suppose also
that (3, satisfies the condition C-T-(e), T = T' and @y - (g |X. Then the in-
duced homomorphism f*:H%,(Y;G) -> H%(X;f"lG) is the one in the cohomology se-

quence for (Y,X).
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5.1. An Application of Theorem 5.1.

Let X,Y and f be as before. Let ¢ and ¥ be p-families for X and y respec-
tively, such that f-1 yC¢. Let ﬁ% andlBW be the categories of ¢-soft sheaves
over X and y-soft sheaves over Y, respectively. Then we have the corresponding
cohomology functors H%(X;F) and H%(Y;G), and the induced map f*:H%(Y;G) ->
H%(X;f‘lG). Recall that we denoted by K the ground ring for modules. With
Cartan [1], we may consider K as the constant sheaf K x X (resp. K x Y) over
X(resp. over Y). Then we have the following commutative diagram of the
Alexander-Spanier cochain sheaves D¥ over Y and C¥ over X, and of the induced

homomorphisms D¥ - C¥ of f, with the horizontal sequences exact.

0+K+>D°+>D"> ... »DP > pPtl » |
y ool l
o+£+c0+c'+...+\lép+cp+l+.

Given a sheaf G over X, we have the commutative diagram,

0—>G 7G\T’DO — G\Cj/D‘ — ... ———>ijDP————> GopPt — ...
0 —> £71G —>F~1GoC%—> £-1GoC'— -3 ...—> £-1GoCR—> £-1gocPHl— ..,

with the horizontal sequences exact.
Since D¥ and C¥ are y-fine and ¢-fine, respectively, so are GoD¥ and
f-1GoC*, Hence GoneﬁQ and f'lGGCeég for all p and q. Hence by the Unique-

ness Theorem, we have the natural isomorphism

BPr(GoD*) = H§(Y;G)

HPp o(£-1GoC*) ~ HY(X;£-1G)
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whose detailed proof is left to the reader. Using Theorem 5.1, one may easily

see that the homomorphism
Hprw(GoD*) + HPP o (£-1GoC*)

agrees with the homomorphism HE(Y;G) + HR(X;£-1G).
This implies that, if we have p-families ¥ and ¢ for supports, one can con-
struct the induced map in the cohomology modules, of a map, much more directly

without going through a spectral sequence argument as in the general case.
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ABSTRACT

In his paper [Trans. Amer. Math. Soc. 72 (1952), 138-147], E. E. Floyd
shows that if (Zp, X), p prime, is a transformation group, then the Euler char-
acteristic relation x(X = x(F) + px(X/Zp - F) holds where F is the fixed point
set of (Zp, X) and X is assumed to be of finite covering dimension and of finite
type. We generalize this formula to the case where the group action is not re-
quired. More specifically, we show that if (i,f) is a singular covering space
of a space X with the singular set F, then the Euler characteristic relation

x(i) = x(F) + nx(X - F) holds where i, X, and F are assumed to be of finite

cohomology dimensions and of finite types.
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II. EULER CHARACTERISTIC RELATIONS IN TRANSFORMATION GROUPS

Let (G,X) be a finite transformation group acting on & space X (always
assumed to be locally compact and Hansdorff). Denote by F(G,X) or simply by
F the fixed point set of (G,X). We shall be concerned here with "What can one
say about the Euler characteristic relations between X, F, and the orbit space
X/G when they have finite Euler characteristics?" 1In this connection, E. E.
Floyd has shown gl,u] that, if G = Zp, p prime, dimZp X < o and dim H*(X;Zp)
< o, then dim H*(F;Zp) and X(X;Zp) = X(F;Zp) mod p. He also shows that, if G
is a solvable group acting freely on X where dimy X < « and H¥(X;Z) is finitely
generated, then H¥(X/G;Z) is finitely generated and X(X) = (order G) - X(X/G).
In Section 1, we give a new and substantially simpler proof to a theorem which
shows both above theorems. In Section 2, we shall establish a concept of
covering spaces with singularities. This is a generalization of the concept
of finite transformation group (G,X) in which each point of X is either fixed
by every element of G or fixed only by the identity element of G. This certainly
is the case of the theorems of E. E. Floyd quoted above. And we shall establish
an Euler characteristic formula for the total space, base space, and singular
set. The proof shall depend only on the construction of a suitable covering.

1. We Dbegin with establishing notations and terms. Recall that we always
assume X to be locally compact and Hansdorff. Denote by A(X) = 2a%(X) the
Alexander-Spanier grating over X with compact supports and with coefficlents
in a field K. If dim H¥(X;K) is finitely generated, then the Euler character-

istic X(X;K) is defined by 4(-1)%im HY(X;K). Suppose Zp (p;prime) acts on a
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space X. Then we assume K = Zp. Let 7 = 1-g and o = 1l+g+g2+ ... +gp'l where
g is a (fixed) non-trivial element of Zp. Derote by p one of 7 and o, ard by
P the other. p has the induced action on A which shall be dencted by the same
P.

Theorem 1. There exists ar exact sequence:
. > B3 (x-F) > BY(x) > 5(x-F) @ rXF) » BN xE) > L

where H_E(X—F) = HP(pA(X-F)) and F is the fixed point set of (Zp,X).

This sequence is called Smith cohomology sequernce [1,4]. A proof for this
may be found in [1]. Another proof may be obtained using the following lemmas,
again due to E. E. Floyd (unpublished), which shall be used in the proof of our
main theorem in this section.

ILemma 1. There exists an exact sequence:

0 — PA(X-F) <20 2 (x7) 2y pA(X-F)— 0

Lemma 2. If QeA with doeA(X-F), then o = ay + Op +dB with qzA(X)%,

OpcA(X-F) and PBeA(X).

Now we are ready to state and prove our main theorem.

Theorem 2. Let (Zp, X) be as before, dimZp X < o and dim H*(X) < w. Then
we have

1. dim HS(X-F) < 0, and dim H¥(F) < o ,

2. X(X) = %X(F) + pX(X/Zp-F).

For the proof, we depend on the following.
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Lemma 3. If we have a finlte exact sequence of finitely generated vector

spaces over Zp,

TG YL S S A

s 0 e

then
x(cx) = x(cx) + x(C¥)
where
x(c*) = 2(-1)% aim c%,
and dim €% < dim ¢ + dim 2 for all q. The proof for this lemma is straight-
forward.
Now we prove our Theorem 2. The first part of the theorem follows easily
from Theorem 1 and Lemma 3. For simplicity, write pA(X-F) = A(p) and HY(pA(X-F))

Hq(p)w From Lemma 1, we obtain the exact sequence,
O-———)A(TQ+1)-EEE£§ A(’r'q)-I-Ii—_-E:g A(TP-1)—s 0
by Lemma 3, and the exact sequence:
o> BI(rTH) 5 gA(eT) > HO(APL) 5 gAFL(LTHL) 5
We obtain
X(Bx(1)) = x(Ex(rF*L)) + x(m(+P-1)).

Hence

X(E*(T)) = x(E¢(72)) + x(m*(TP-1))

X(H*(13)) + 2x(H*(rP-1))
= (p-1)x(mx(rP71)).
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Again by Theorem 1 and Lemma 3, we have

X(X) X(E*(T)) + X(H*(7P-1)) + X(F)
= px(E*(TP-1)) + x(F)

= pX(X/Zp-F) + X(F). QED.

From this theorem, the first theorem of E. E. Floyd, quoted previously,
follows immediately. For the second theorem, one must depend on an earlier re-
sult of Floyd [2,5] to the effect that if G is a finite group acting on a space
X with dim X < o and H¥(X;Z) finitely generated then H¥(X/G;Z) is also finitely
generated. Then by the universal coefficient theorem, H¥(X,Zp) is also finitely
generated and dimZp X < w. Use our theorem to obtain the second theorem of
Floyd, when G = Zp. If G is a solvable group, one can use the induction on the
order of G.

2. In [6], we generalize the definition of covering spaces. We shall
further generalize it to covering space with singularities, or singular covering
space. As in Section 1, we only restrict spaces to be locally compact and Hans-
dorff. We do not require spaces to be locally connected as was the case of the
conventional theory of covering spaces [3].

Definition. A map £3;X + X is called a covering map and (%; f) a covering
space of X if and‘only if f(§3 = X, and each point x of X has an open nbd U in
X such that £-1(U) = LJ%& a disjoint union of a collection of open sets ﬁ& in
X with each'ﬁ& mapped homeomorphically onto U under f.

We refer the reader to [6] for termirnologies used henceforth. If each
point has the finite inverse set under the covering map then the map is called

a finite covering map. It may be seen easily that if the total space X of a
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finite covering space (i,f) of a space X 1s connected, ther each point inverse
set has the same number of points. Let n be the number. Then we say the
covering space has n leaves or n decks.
~
Definition. A map f£;X -+ X 1s called a covering map with singularities and
(3§f) a singular covering space of X if and only if there exists a closed sub-

set F of X such that le-f-l( is a covering map (as defined above) and

F)
fif—l(F) is a homeomorphism of f-1(F) onto F.

This 1s a covering space version of a singular filtration.

If X is a space with HX(X, K) (the Alexander-Spanier cohomology of X with
compact supports and with the coefficients in a field K) finitely generated
then the Euler characteristic Xc(X, K) is defined by Xo(X,K) = 2(-1)% aimHI(X,K).
Now we are ready to state our main

Theorem 3. Suppose that (%,f) is a covering space of a locally compact

Hansdorff space X with the singular set ¥, and with n leaves on X-F. If Hé(ﬁ,K),

H%(X,K) and HX(F,K) are finitely gererated, then

~nJ
Xo(X,K) = oX(X-F,K) + X (F,K)

where K is any coefficient field.

Proof. We shall use the easily proven fact that if C¥* = 0% is a cochain

complex with coefficients in K such that dim C¥ < o, then X(C¥) = X(H*¥(C*)).
~
If U is an open subset of X-f-*(F), evenly covered by the covering space

(% - £-1(F), f1y where f; = f|%_f_l( then we shall denote the family of all

F)
~ ~
even portions by {Uy, ... Un}.

First suppose thatli is compact, and that F consists only of one point.
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We can find a finite open covering B which refines a given open covering B'
of X, satisfying
(1) there exists exactly one element U°zB containing F,
(2) each element U of B other than U° is evenly covered by (X-£-1(F),fi).
Now take a star refinement &' of B-{U°} which is an open covering of X -
~
UU where U ranges over B-{U°}. Let & = a'\U {U°)}. Denote by & the open
~ ~ ~
covering £-1(a) of X. Take the nerves N(T) and N(Q) of @ and @, respectively,
~ . ~ o] 0
and define fy by fo(Ui) = U for each Ue and i, and £q(UC) = U° where T° =
£-1(U°). Then for each U distinct from U®, the O-simplex o® = [U] has exactly
n O-simplices in £~1(o°), and [U°] has exactly one O-simplex in £-1[U°]. For

g > 0, let VA...AvE 4 ¢ and VO,,M,quOL° Then there exist exactly n(q+l)-

-~ ~
tuples (Vg,,..;§§) with @ﬁ?h.uﬂv% 1 4, implying 5+ v°,...,v%] consists of
exactly n g-simplices. Hence we conclude that if dim c%(N(a),K) = p, for each

q then

dim c%(N(®),K) = n(po-1) + 1

dim c3(N(Y),K) = np, for all q > O.

Since Hé(ﬁ;K) and Hy(X;K) are finitely generated by assumption, we could take
B' small enough to have isomorphisms in the rows of the following commutative

diagram,

H*{N(Q);K) — H*(X;K)

'~
H*(N(Q) ;K) — 5% (X;K)
It then follow that
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X(TK) = mx(X-F;K) + X(F;K).
This completes the proof for X compact and F consisting of a single point.
Now delete the conditions on X and F, but add the condition that F be
empty. Then (%if) is a covering space (without singularities) with n leaves.
Teke the point-compactifications XUw and XUw" of1% and X, respectively, and
extend f to a map; /)‘(jt)oo + XUwo' by defining f(w) = ©'. Then (’}\(/Uoo, f) is a
compact covering space of XUw' with the singular set F = {o'}. By the pro-

ceeding consequence, we may conclude
X(XUoo;K) = nX(X;K) + X(F;K).

ae
Then obviously X(X) = nX(X).
Finally, consider the general case. Then the exactness of the cohomology

n/
sequence for the pair (X,F),

+1,~
He

~
.. > Ho(¥F;K) » Ho(X3K) » Ho(F;K) » He ' (ReF3K) » ...

shows that
X(GK) = X(K-F;K) + x(F).

Since (%LF,fl) is a covering space of X-F with n leaves and without singular
point, we have X(?ﬁF;K) = nX(X-F;K). This produces the formula stated in the
theorem.

As a corollary, we obtain

Theorem 4. Suppose that (G,X) is a finite transformation group of a (locally

compact and Hansdorff) space X such that any singular point of (G,X) is a fixed
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point. If Hé(X;Z) is finitely generated and dim, X < o then HX(X;K), HX(X/G;K)
and Hg(F;K) are finitely generated for any field K of characteristic dividing

the order of G, and we have
Xe(X3K) = Xe(F;K) + 0rd(G) - Xe(X/G;K)

Proof. We need only to show that Hg(X/G;K) and HX(F;X) are finitely gen-

erated, since then the formula follows immediately from Theorem 3. By a theorem
of Floyd [5], Hé(X/G;Z); hence H@(X/G;K) by the universal coefficient theorem
is finitely generated. Let p be the characteristic of K. Then G contains a
subgroup Zp. Since any singular point is a fixed point, F(Zp,X) = F(G,X) = F.
By Theorem 2, H%(F;K) is finitely generated.

Remark. If in Theorem 4 there is no singular point, that is, i1f G acts
freely on X, then we can 1ift the condition imposed on the characteristic of

K. Hence Theorem 4 generalizes both theorems of Floyd quoted previously.
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