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Bidding Strategies for Simultaneous
Ascending Auctions∗

Michael P. Wellman, Anna Osepayshvili, Jeffrey K. MacKie-Mason, and Daniel
Reeves

Abstract

Simultaneous ascending auctions present agents with various strategic problems, depend-
ing on preference structure. As long as bids represent non-repudiable offers, submitting non-
contingent bids to separate auctions entails an exposure problem: bidding to acquire a bundle risks
the possibility of obtaining an undesired subset of the goods. With multiple goods (or units of a
homogeneous good) bidders also need to account for their own effects on prices. Auction theory
does not provide analytic solutions for optimal bidding strategies in the face of these problems.
We present a new family of decision-theoretic bidding strategies that use probabilistic predic-
tions of final prices: self-confirming distribution-prediction strategies. Bidding based on these is
provably not optimal in general. But evidence using empirical game-theoretic methods we devel-
oped indicates the strategy is quite effective compared to other known methods when preferences
exhibit complementarities. When preferences exhibit substitutability, simpler demand-reduction
strategies address the own price effect problem more directly and perform better.

KEYWORDS: auctions, mechanism design, game theory
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1 Introduction
A simultaneous ascending auction (SAA) [Cramton, 2005] allocates a set of m
related goods among n agents via separate, concurrent English auctions for each
good. This is characteristic of a variety of related but not identical real-world auc-
tion mechanisms, such as concurrent independent auctions on eBay, power markets,
spectrum auctions in many countries, and other explicitly designed trading environ-
ments [Milgrom, 2003]. Some of the key strategic issues presented by SAAs apply
whenever there are concurrent markets for interrelated goods, even if those markets
are not formal auctions.

Simultaneity is significant only if demands (or supplies) for the various goods
are interrelated. We address here some of the challenges bidders with such de-
mands face when formulating their strategies for participation in SAAs. Interre-
lated demands generally exhibit complementarity or substitutability (or both), each
of which induces characteristic bidding problems.

To study bidding strategies in the face of the strategic challenges presented by
complementarity or substitutability, we intentionally abstract from any single ap-
plication. There are features specific to spectrum auctions, for example, that we do
not address, just as there are unaddressed features specific to simultaneous eBay
auctions and other particular SAA environments. In hope of producing results gen-
eralizable to a range of applications, we analyze a generic SAA exhibiting a few
important characteristics that are common across most specific settings.

Complementarity manifests when an agent’s value for a good is greater if it
also obtains one or more other goods [Lehmann et al., 2006]. For example, an
airline passenger may wish to obtain two connecting segments to complete a trip.
Goods exhibit complementarity from the perspective of an agent when her valuation
for those goods is superadditive. Let X , Y , and Z be sets of goods such that
Y ∪ Z = X and Y ∩ Z = ∅. Given a quasi-linear valuation function, v : 2|X| → R,
that assigns value to possible subsets of X , superadditive preference for Y and
Z means that v(X) > v(Y ) + v(Z). In other words, the combined bundle X is
worth more than the sum of its parts. As a special case, if goods in a set are each
worthless without the others, they are perfect complements. We say that a valuation
exhibits complementarities if there are some subsets of goods for which preference
is superadditive.

When the inequality is reversed, the valuation is subadditive, which occurs for
example when goods are substitutes. Flights on the same route by different air-
lines would typically be considered substitutes, as would flights to two candidate
vacation destinations. Technically, goods are substitutes when raising the price of
one does not decrease demand for others—that is, for any optimal bundle before
the price increase there is an optimal bundle post-increase that includes at least as
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much demand for all goods that did not increase in price. Substitutability is a strictly
stronger condition than subadditivity [Lehmann et al., 2006]. An important extreme
case of substitutability is perfect substitutes or single-unit demand [Gul and Stac-
chetti, 1999], where for all Y ⊆ X , v(Y ) = maxi∈Y v({i}). If, in addition, goods
are (for this agent) homogeneous then they are 1:1 perfect substitutes.

Concurrent auctions with interdependent goods are strategically challenging be-
cause agents bid separately in auctions for each item, but willingness-to-pay de-
pends nontrivially on which combination of items the agent ultimately wins. When
bids represent non-repudiable offers, submitting bids to separate auctions entails an
exposure problem. With complementarities, if an agent bids on a set of items based
on her willingness-to-pay for the set, she may pay more than her valuation for the
subset she actually wins. With substitutes, an agent bidding based on willingness-
to-pay for individual goods risks paying more for a set than it is worth. The SAA
mechanism makes it easy for agents to avoid exposure in the case of substitutes.
Since a price increase for one good cannot decrease demand for others, the agents
can manage their bids to ensure they are never winning more goods than they want
at the current prices. With any violation of substitutability, however, a bidder cannot
in general obtain a desired package without incurring some exposure risk.

The exposure problem motivates mechanisms that take complementarities di-
rectly into account, such as combinatorial auctions [Cramton et al., 2005, de Vries
and Vohra, 2003], in which the auction mechanism determines optimal packages
based on agent bids over bundles. Although such mechanisms may provide an
effective solution in many cases, there are often significant barriers to their applica-
tion [MacKie-Mason and Wellman, 2005]. Indeed, SAA-based auctions are often
deliberately adopted, despite awareness of strategic complications [Milgrom, 2003,
McAfee and McMillan, 1996].

A second strategic problem for bidders is accounting for own price effects: the
impact of their own bids on resulting prices. For example, a bidder winning q units
may find that bidding her incremental value for the q+1st unit results in an increase
in price paid for the first q units. The strategy of shading bids to take account of this
inframarginal surplus loss is known as demand reduction [Ausubel and Cramton,
2002, Weber, 1997].

Given exposure and own price effects, it is clear that bidding willingness-to-pay
is generally not optimal. Worse for designers, researchers, and bidders, auction
theory to date [Krishna, 2002] has little to say about how one should bid in simul-
taneous markets with substitutes or complements. There exists no useful analytical
characterization of equilibria for SAA games. Moreover, the best-response strate-
gies to even simple specified bidding policies can be surprisingly complex [Reeves
et al., 2005]. Simulation studies shed light on some strategic issues [Csirik et al.,
2001], as have accounts of strategies employed in specific auctions [Cramton, 1995,
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Weber, 1997], but the game is too complex to admit definitive strategic recommen-
dations. We cannot emphasize this point enough: there is a striking gap in the
literature, and the main motivation for the novel empirical methods we employ is
that analytically deriving equilibrium strategies appears intractable for nontrivial
SAA games.

We employ a different approach to analyze bidding strategies, which we else-
where describe as a computational reasoning [MacKie-Mason and Wellman, 2005]
or empirical game-theoretic methodology [Wellman, 2006] for analyzing mecha-
nisms and strategies. We begin with an explicit formulation of the resource alloca-
tion problem, generate a set of candidate parametrized strategies, then simulate the
game for various profiles of strategy parameters. Through simulation, we in effect
convert an extensive-form game of incomplete information with high-dimensional
strategy space into a normal-form game over the restricted set of strategies defined
by the instances of strategy parameters explored. We then use standard tools to
solve the restricted-strategy (yet often still quite large) normal-form games, and an-
alyze the results. For the families of candidate strategies we study, we are able to
characterize those which participate in equilibria of the transformed game, and the
quality of the resulting outcomes.

One advantage of this fundamentally empirical method is that if others believe
they have superior strategies, it is straightforward to apply the method incrementally
to evaluate the new candidates with respect the best-performing strategies known
to date. This is important because the SAA environment is so complex, and in any
SAA the specific rules may call for variations on the basic strategy family we study.
For example, some auctions impose activity rules, which introduces an eligibility
management problem into the design of bidding strategies. Budget constraints may
also affect the design of bidding strategies. We do not claim that our present analysis
covers the entire space of bidding-strategy design for SAAs. We do claim that we
provide some of the first systematic evidence for a successful family of strategies in
a generic SAA. We also claim that strategic lessons from this generic environment
will be a useful starting point for those designing strategies for the rules of particular
SAA environments they face.

We next proceed with a formal specification of the problem and of the generic
SAA mechanism we study.
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2 The Simultaneous Ascending Auctions (SAA) Do-
main

The formal specification of the SAA game includes a number of agents, n, a number
of goods, m, a type distribution that yields valuation functions vj for the agents
j ∈ {1, . . . , n},1 and a specification of the SAA mechanism rules. In general the
SAA mechanism comprises m separate auctions, one for each good, that operate
over multiple rounds of bidding. In the generic SAA version we study, bidding is
synchronized so that in each round each agent submits a bid in every auction in
which it chooses to bid. At any given time, the bid price on good i is βi, defined to
be the highest bid bi received thus far, or zero if there have been no bids. The bid
price along with the current winner in every auction is announced at the beginning
of each new round. To be admissible, a new bid must meet the ask price, i.e., the bid
price plus a bid increment (which we take to be one w.l.o.g., allowing for scaling
of the agent values): bnew

i ≥ βi + 1. If an auction receives multiple admissible
bids in a given round, it admits the highest, breaking ties randomly. An auction is
quiescent when a round passes with no new admissible bids, i.e., the new bid prices
βnew = β which become the final prices p. When every auction is simultaneously
quiescent they all close, allocating their respective goods per the last admitted bids.

An agent’s current information state, B, comprises the current bid prices, β,
along with a bit vector indicating which goods the agent is currently winning. Let
B denote the set of possible current information states. A local bidding strategy is a
mapping B → b, where the bid vector b specifies a bid for each of the m auctions.
More generally, an agent’s bidding strategy maps the history of information states
to bids. For the present work, we limit consideration to local bidding strategies.
This is a substantive limitation, ruling out, for example, methods that infer other
agents’ types from dynamic price patterns, or strategies that punish others’ behavior.
Nevertheless, the strategic issues we consider primary can be addressed at the level
of local bidding strategies, and thus we take the simplification achieved through
ignoring history to be worthwhile.2

Submitting an inadmissible bid (e.g., bi = 0) is equivalent to not bidding. An
agent’s payoff—also referred to as its surplus—is defined by the auction outcomes,

1We may include in the type distribution Nature’s type which determines the random tie-breaking
when agents place identical bids.

2Assuming that agents submit bids for a subset of goods at the minimum increment, the size of
the strategy space is |B|2m. Conditioning on a history of length t would expand this space by a
factor of 2mt.
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namely, the set of goods it wins, X , and the final prices, p:

σ(X, p) ≡ v(X)−
∑

i∈X

pi. (1)

In the next section we describe a broad characterization that encompasses many
SAA bidding strategies in the prior literature, as well as a new category of strategies
we propose subsequently. Then we describe two bidding methods from the prior
literature that are special cases of the general class. One of these extant methods is
itself a strategy family, with bidding behavior that varies dramatically depending on
the choice of a continuous parameter, so these prior strategies we analyze represent
substantial variation. In Section 4 we propose a new bidding approach, which falls
into the same broad characterization, but represents yet another substantial variation
on the range of strategies we evaluate. This new, price prediction-based strategy
family itself encompasses a wide range of methods for generating and using price
predictions, which we explore in subsequent sections.

Heuristic strategies are sometimes motivated by bounded rationality [Gigeren-
zer and Selten, 2001], in which case the primary concern is behavioral realism. Our
appeal to heuristics is in the spirit of Rosenthal’s approach to defining games over
“rule-of-thumb” strategies [Rosenthal, 1993a,b]. Given the intractability of exhaus-
tive consideration of the full strategy space, we rely on heuristics to represent key
strategic ideas in our domain. Behavioral models may be one source of heuristic
elements, though explicit optimization procedures or other sophisticated reasoning
may be incorporated in our heuristics as well when they are motivated by potential
performance gains.

3 Perceived-Price Bidding Strategies
If an agent knew the final prices of all m goods and if those prices did not depend
on its own bidding strategy, then its optimal strategy would be clear: bid on a subset
of goods that maximizes its surplus at known prices. When prices are uncertain or
bid-dependent, this is not optimal, but may nevertheless serve as a useful starting
point. In this section, we define a class of bidding strategies that generalizes this
approach by selecting a subset of goods that maximizes surplus at perceived prices.

Definition 1 (Perceived-Price Bidder) A perceived-price bidder is parametrized
by a perceived-price function ρ : B → Zm

∗ which maps the agent’s information
state, B, to a (nonnegative, integer) perceived-price vector, ρ(B). It computes the
subset of goods

X∗ = arg max
X

σ(X, ρ(B))
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breaking ties in favor of smaller subsets and lower-numbered goods.3 Then, given
X∗, the agent bids bi = βi + 1 (the ask price) for the i ∈ X∗ that it is not already
winning.

A perceived-price bidding strategy is defined by how the agent constructs the per-
ceived price from its information state. We now define two versions of the function
ρ, corresponding to perceived-price bidding strategies well-studied in prior litera-
ture. In Section 4 we define the newer price-prediction perceived-price strategies
we analyze in this article. Our discussion focuses on the particularly challenging
case of superadditive preference—complementary goods. We return to address the
case of substitutable goods in Section 7.

3.1 Straightforward Bidding
One example of a perceived-price bidder is the widely studied straightforward bid-
ding (SB) strategy.4 An SB agent sets ρ(B) to myopically perceived prices: the
bid price for goods it was winning in the previous round and the ask price for the
others:

ρi(B) =

{
βi if winning good i

βi + 1 otherwise,
(2)

where β is the current bid prices.
Straightforward bidding is a reasonable strategy in some environments. When

all agents have single-unit demand, and value every good equally (i.e., the goods
are all 1:1 perfect substitutes), the situation is equivalent to a problem in which all
buyers have an inelastic demand for a single unit of a homogeneous commodity.
For this problem, Peters and Severinov [2006] show that straightforward bidding is
a perfect Bayes-Nash equilibrium.

If agents have additive utility, i.e., v(Y ) =
∑

i∈Y v({i}), then they can treat
the auctions as independent and in this case too, SB is in equilibrium. To see this,
consider the case that all other agents are playing SB with additive preference. Then
your bid in one auction does not affect your surplus in another. This implies the
auctions can be treated independently and SB is a best response.

3More precisely: when multiple subsets tie for the highest surplus, the agent chooses the small-
est. If the smallest subset is not unique it picks the subset whose bit-vector representation is lexico-
graphically greatest. (The bit-vector representation ω of X ⊆ {1, . . . ,m} has ωi = 1 if i ∈ X and
0 otherwise. For example, the bit-vector representation of {1, 3} ⊆ {1, 2, 3} is 〈1, 0, 1〉.) This tie-
breaking scheme is somewhat arbitrary, and we expect alternative choices would be inconsequential.
We describe our version here in detail to facilitate replication of our experimental results.

4We adopt the terminology introduced by Milgrom [2000]. The same concept is also referred to
as “myopic best response”, “myopically optimal”, and “myoptimal” [Kephart et al., 1998].
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The degenerate SAA with m = 1, i.e., a single ascending auction, is strate-
gically equivalent to a second-price sealed-bid auction [Vickrey, 1961]. In other
words, SB is a weakly dominant strategy in a single ascending auction, similarly
to “truth-telling” in a second-price sealed-bid auction.5 For m > 1, however, the
joint strategy space allows threats such as “if you raise the price on my good I will
raise it on yours.” These will then support demand-reduction equilibria, even in
the additive case. Thus, although SB is a good strategy and is in equilibrium for
some special-case environments without complementarities, it is not (even weakly)
dominant.

Up to a discretization error, the allocation in an SAA with single-unit demand
is efficient when agents follow straightforward bidding. It can also be shown [Bert-
sekas, 1992, Wellman et al., 2001] that the final prices will differ from the minimum
unique equilibrium prices by at most min(m, n) times the bid increment. The value
of the allocation, defined to be the sum of the bidder surpluses, will differ from the
optimal by at most the bid increment times min(m, n)(1 + min(m, n)).

Unfortunately, none of these properties hold for general preferences. The final
SAA prices can differ from the minimum equilibrium price vector, and the alloca-
tion value can differ from the optimal, by arbitrarily large amounts [Wellman et al.,
2001]. And most importantly, SB need not be a Nash equilibrium.

v({1}) v({2}) v({1, 2})
Agent 1 20 20 20
Agent 2 0 0 30

Table 1: A simple problem illustrating the pitfalls of SB (Example 1).

Example 1 There are two agents, with values for two goods as shown in Table 1.
One admissible straightforward bidding path6 leads to a state in which agent 2 is
winning both goods at prices (15,14). Then, in the next round, agent 1 would bid
15 for good 2. The auction would end at this point, with agent 1 receiving good 2
and agent 2 receiving good 1, both at a price of 15.

5Technically, this equivalence applies to a strategically restricted version of the ascending auction
which does not allow arbitrary bids above the ask price (and raises the ask price continuously rather
than discretely). Otherwise, there exist strategies (albeit pathological) to which SB is not a best
response. For example, suppose my policy is to not bid more than $100 unless the bidding starts
lower, in which case I will keep bidding indefinitely. The best response to such a strategy requires
jump bidding.

6The realized progression of the SAA protocol depends on tie-breaking.
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In this example, SB leads to a result with total allocation value 20, whereas
the optimal allocation would produce a value of 30. We can construct slightly
more complex examples by adding goods and agents, enabling us to magnify the
suboptimality to an arbitrary degree.

We see that straightforward bidding fails to guarantee high quality allocations.
It is also easy to show that straightforward bidding is not an equilibrium strategy in
general. Consider again Example 1. If agents follow the SB strategy, the mecha-
nism reaches quiescence at prices {15, 15}. However, it is not rational for agent 2
to stop at this point. If, for example, agent 2 continued bidding, prices would reach
{21, 20} with agent 2 winning both goods, and the auction would end (assuming
agent 1 plays SB). Agent 2 would be better off, with a surplus of −11 rather than
−15.

It is clear that SB is not a reasonable candidate for a general strategy in SAA.
We show next how a simple parametric generalization to SB can address a key
strategic shortfall.

3.2 Sunk-Aware Bidding
Another example of perceived-price bidding is the sunk-aware family of bidding
strategies. We showed in Example 1 that in some problems agents following a
straightforward bidding strategy may stop bidding prematurely. To motivate the
alternative sunk-aware approach, we consider why SB is failing in this situation. In
a given round, agents following SB bid on the set of goods that maximizes their
surplus at myopically perceived prices (current bid or ask prices). If none of the
nonempty subsets of goods appear to yield positive net surplus, the agent chooses
the empty set, i.e., it does not bid at all, because the alternative is to earn negative
surplus. However, this behavior ignores outstanding commitments: the agent may
already be winning one or more goods. If the agent drops out of the bidding, and
others do not bid away the goods the agent already is winning, then its alternative
surplus could be much worse than if it continued to bid despite preferring the empty
bundle at current prices. In the case of an agent dropping out of the bidding on some
goods in a bundle of perfect complements, its surplus is negative the sum of the bid
prices for the goods in the bundle it gets stuck with. This failure of straightforward
bidding is due to ignoring the true opportunity cost of not bidding.

We refer to this property of straightforward bidding as “sunk-unawareness”
[Reeves et al., 2005]. SB agents bid as if the incremental cost for goods they are
currently winning is the full price, βi. However, if the probability that someone
else will outbid the agent for this good is α, then the agent is already committed
to an expected payment of (1 − α)βi. This represents a sunk cost that should not
affect rational continuation bidding. We can think of the difference, αβi, as a rough
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measure of the incremental cost the agent incurs by deciding to stay with this good.
To address this limitation of straightforward bidding, we parametrize an alterna-

tive family of perceived-price bidding strategies (Definition 1) that permits agents
to account to a greater or lesser extent for the true incremental cost of goods they
are currently winning. We call this strategy “sunk aware”. A sunk-aware agent bids
as if the incremental cost for goods it is currently winning is somewhere on the
interval of zero and the current bid price.

Our sunk-aware strategies generalize SB’s method for choosing the perceived-
price vector (Equation 2) through the parameter k ∈ [0, 1]:

ρi(B) =

{
kβi if winning good i

βi + 1 otherwise.

Using this perceived-price vector to define sunk-aware bidders, Definition 1 above
gives us a complete specification of the agent’s bidding strategy. If k = 1 the
strategy is identical to straightforward bidding. At k = 0 the agent is fully sunk
aware, bidding as if it would retain the goods it is currently winning with certainty.
Intermediate values are akin to bidding as if the agent puts an intermediate proba-
bility on the likelihood of retaining the goods it is currently winning. We treat as
a special case agents with single-unit demand: their sunk-aware strategy is to bid
straightforwardly (k = 1) since for such agents SB is a no-regret strategy.

The sunk-awareness parameter provides a heuristic for a complex tradeoff: the
agent’s bidding behavior changes after it finds itself exposed to the underlying prob-
lem (owning goods for which the agent has lower value if not part of a larger pack-
age). In our previous study we experimentally determined good settings of the
sunk-awareness parameter in various environments [Reeves et al., 2005].

4 Prediction-Based Perceived-Price Bidding
Straightforward and sunk-aware bidding represent alternative SAA bidding strate-
gies, distinguished by the way in which bidders formulate “perceived prices” that
determine the items on which they bid. In this section we propose yet another class
of bidding strategies: price prediction bidding. In this heuristic approach, bidders
form predictions of final prices in order to select the items on which they will bid
in a given round.

Whenever an agent has non-substitutes preference and chooses to bid on a bun-
dle of size greater than one, it may face exposure. Exposure in SAA is a direct
tradeoff: bidding on a needed good increases the prospects for completing a bun-
dle, but also increases the expected loss in case the full set of required goods cannot
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be acquired. A decision-theoretic approach would account for these expected costs
and benefits, bidding when the benefits prevail, and cutting losses in the alternative.

Re-consider agent 2’s plight in Example 1: following SB it is caught by the
exposure problem, stuck with a useless good and a surplus of −15. (Other tie-
breaking choices result in different outcomes but all of them leave agent 2 exposed
and with negative surplus.) If the agent instead plays a fully sunk-aware strategy
the result could be an outcome in which it purchases both goods at prices {21, 20}
for a net surplus of 30 − 41 = −11. This is better than using SB, but the agent
would fare better still by not bidding at all.

The effectiveness of a particular strategy will in general be highly dependent on
the characteristics of other agents in the environment. This observation motivates
the use of price prediction. We would prefer strategies that employ type-distribution
beliefs to guide bidding behavior, rather than relying only on current price informa-
tion as in the sunk-aware strategies (including SB). Forming price predictions for
the goods in SAA is a natural use for type-distribution beliefs. In Example 1, sup-
pose agent 2 could predict with certainty before the auctions start that the prices
would total at least 30. Then it could conclude that bidding is futile, not participate,
and avoid the exposure problem altogether. Of course, agents will not in general
make perfect predictions. However, we find that even modestly informed predic-
tions can significantly improve performance.

We now propose to improve on SB and sunk-aware bidding by using explicit
price predictions for perceived prices. Let F ≡ F (B) denote a joint cumulative
distribution function over final prices, representing the agent’s belief given its cur-
rent information state B. We assume that prices are bounded above by a known
constant, V . Thus, F associates probabilities with price vectors in {1, . . . , V }m.

We next consider two ways to use prediction information to generate perceived
prices. We first define a point prediction π, which anticipates possible exposure
risks. Then we define a distribution prediction F that explicitly models uncertainty
about the exposure prospects. The distribution prediction generates perceived incre-
mental prices, ∆, which account for the likelihood that the agent’s current winning
bids are sunk costs. As with sunk-awareness, price-prediction strategies for agents
with single-unit demand ignore the predictions and play SB.

Before we define our price-prediction strategies we want to make two points.
First, we are not (initially) concerned with how the agent formulates her beliefs
(price predictions), nor the optimality of the prediction method. Rather, we propose
strategies that use some beliefs. In our experiments we investigate several different
predictors.7 Second, since these are strategies for bidding in iterative auctions, we

7We believe that finding the optimal predictor to use in a particular strategy is likely to be as
computationally infeasible as the problem of finding an optimal strategy.
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face the question of how to update the initial price predictions based on information
revealed during the bidding process. We do not insist here on identifying the op-
timal updating procedure; again, we define strategies that incorporate some belief
updating procedure. Whereas we experiment with different initial price predictors,
in this paper we employ only one specific, simple, updating procedure.

4.1 Point Price Prediction
Suppose the agent has (at least) point beliefs about the final prices that will be
realized for each good. Let π(B) be a vector of predicted final prices. Before the
auctions begin the price prediction is π(∅), where ∅ is the null information state
available pre-auctions.

The auctions in SAA reveal the bid prices each round. Since the auctions are
ascending, once the current bid price for good i reaches βi, there is zero probability
that the final price pi will be less than βi. We define a simple updating rule using this
fact: the current price prediction for good i is the maximum of the initial prediction
and the myopically perceived price:

πi(B) ≡
{

max(πi(∅), βi) if winning good i

max(πi(∅), βi + 1) otherwise.
(3)

Armed with these predictions, the agent plays the perceived-price bidding strat-
egy (Definition 1) with ρ(B) ≡ π(B). We denote a specific point price-prediction
strategy in this family by PP(πx), where x labels particular initial prediction vec-
tors, π(∅). Note that straightforward bidding is the special case of price prediction
with the predictions all equal to zero: SB = PP(0). If the agent underestimates the
final prices, it will behave identically to SB after the prices exceed the prediction.
If the agent overestimates the final prices, it may stop bidding prematurely.

4.2 Distribution Price Prediction
We generalize the class of price-prediction strategies by taking into account the
entire distribution F , rather than just a nominal point estimate (e.g., the expectation
of F ). We assume the agent generates F (∅), an initial, pre-auction probabilistic
belief about the final prices.

As with the point predictor, we restrict the updating in our distribution predictor
to conditioning the distribution on the fact that prices are bounded below by β. Let
Pr(p | B) be the probability, according to F , that the final price vector will be p,
conditioned on the information revealed by the auction, B. Then, with Pr(p | ∅)
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as the pre-auction initial prediction, we define:

Pr(p | B) ≡






Pr(p | ∅)∑

q≥β

Pr(q | ∅)
if p ≥ β

0 otherwise.

(4)

(By x ≥ y we mean xi ≥ yi for all i.) For (4) to be well defined for all possible β
we define the price upper bounds such that Pr(V, . . . , V | ∅) > 0.

We now use the distribution information to implement a further enhancement
to take sunk costs into account in a more decision-theoretic way than the sunk-
aware agent. If an agent is currently not winning a good and bids on it, then the
expected incremental cost of winning the good is the expected final price, with the
expectation calculated with respect to the distribution F . If the agent is currently
winning a good, however, then the expected incremental cost of winning that good
depends on the likelihood that the current bid price will be increased by another
agent, so that the first agent has to bid again to obtain the good. If, to the contrary,
it keeps the good at the current bid, the full price is sunk (already committed) and
thus should not affect incremental bidding. Based on this logic we define ∆i(B),
the expected incremental price for good i.

First, for simplicity, we use only the information contained in the vector of
marginal distributions, (F1, . . . , Fm), as if the final prices were independent across
goods. Define the expected final price conditional on the most recent vector of bid
prices, β:

EF (pi | β) =
V∑

qi=0

Pr(qi | βi)qi =
V∑

qi=βi

Pr(qi | βi)qi.

The expected incremental price depends on whether the agent is currently winning
good i. If not, then the lowest final price at which it could win is βi + 1, and the
expected incremental price is simply the expected price conditional on pi ≥ βi + 1,

∆L
i (B) ≡ EF (pi | pi ≥ βi + 1) =

V∑

qi=βi+1

Pr(qi | pi ≥ βi + 1)qi. (5)

If the agent is winning good i, then the incremental price is zero if no one outbids
the agent. With probability 1− Pr(βi | βi) the final price is higher than the current
price, and the agent is outbid with a new bid price βi + 1. Then, to obtain the good
to complete a bundle, the agent will need to bid at least βi + 2, and the expected
incremental price is

∆W
i (B) = (1− Pr(βi | βi))

V∑

qi=βi+2

Pr(qi | βi + 2)qi.
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The vector of expected incremental prices is then defined by

∆i(B) =

{
∆W

i (B) if winning good i

∆L
i (B) otherwise.

The agent then plays the perceived-price bidding strategy (Definition 1) with ρ(B)≡
∆(B). We denote the strategy of bidding based on a particular distribution predic-
tion by PP(F x), where x labels various pre-auction distribution predictions, F (∅).

To recapitulate, in this and the previous section we have formally specified three
categories of bidding strategies, encompassed within a single broad but flexible
class we call “perceived price” bidding. The first two, straightforward and sunk-
aware bidding, have been explored in prior literature; the third, price-prediction
bidding, is new. Both sunk-aware and price-prediction are families that admit a
wide range of specific strategies, and thus represent a variety of actual bidding
behaviors.8 For the generic SAA we study, when bidders have non-substitute pref-
erences but face exposure (but not other problems such as budget constraints), we
think this broad set of strategy candidates captures most of the existing wisdom
about SAA strategy design.

In Section 6 we intensively analyze and compare the performance of this broad
set of bidding strategies in a series of SAA environments with non-substitute pref-
erences. After that (Section 7) we specify yet another family of strategies, based on
prior literature, and perform a strategic analysis over this enlarged set for environ-
ments with substitute goods.

5 Some Methods for Predicting Prices in SAA
In Section 4 we define bidding strategies based on point price and distribution-
based predictions. These are classes of strategies parametrized by the choice of
initial prediction: a vector of predicted final prices in the case of the point predictor,
or a distribution of final prices for the distribution predictor. We now present several
ways to obtain an initial prediction. Each different prediction method generates a
different bidding strategy, with potentially different bidding behavior. Furthermore,
these methods all take as input the problem’s type distribution, and so (unlike a
particular sunk-awareness setting, for example) are potentially appropriate to apply
across different environments.

8In the next section we define a variety of different price prediction methods, each leading to
different bidding behavior.
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5.1 Predictions from Simulated Data
One natural method for generating an initial prediction is to fix a particular strategy
profile, and simulate the play of this profile for a large number of games by sampling
agent valuations from the underlying type distribution. From this set of simulated
games, we can observe the resulting prices, and use these as a basis for prediction.
For a point price prediction, we simply compute the average final prices over the
simulation experience, and for a distribution-based prediction we compute final
price histograms. This yields a large family of prediction-based strategies, each
member distinguished by its form of predictor (point vs. distribution), and by the
strategy profile employed in simulation to generate the price data.

As a noteworthy special case of the above, our baseline prediction is the distri-
bution of final prices resulting when all agents follow the SB strategy. We denote the
baseline point predictor PP(πSB) and the baseline distribution predictor PP(F SB).

As noted above, these prediction strategies, and others presented below, take
the type distribution as input to the simulation process. Thus, in order to use this
method in practice, agents (who know only their own valuation function) need to
employ probabilistic beliefs over the valuation functions for other agents. The ad-
vantage of this approach is that the methods themselves can be applied to a range
of environments by modifying this type-distribution input, without any further pa-
rameter tuning required.

5.2 Walrasian Equilibrium for Point and Distribution Predic-
tion

An alternative, competitive-analysis approach is to use as predictions the prices that
would obtain if the market were to reach a Walrasian price equilibrium with respect
to the m goods and agent valuation functions over those goods. In another complex
bidding setting, we have found that predictions based on competitive equilibrium
can be surprisingly effective, achieving accuracy comparable to sophisticated ma-
chine learning approaches [Wellman et al., 2004]. We emphasize that our appeal
to competitive equilibrium in this context is purely heuristic; we are not assuming
as analysts that the equilibrium is realized, but rather employing the well-defined
equilibrium concept as a means to generate price predictions for use in bidding.

One immediate complication that underscores the distinction is that Walrasian
prices need not actually exist in our setting. Consider once again the m = n = 2
configuration of Example 1 (Table 1). Versions of this example, in which one
agent views the goods as complements and the other as substitutes, are commonly
employed to illustrate the absence of a competitive equilibrium [Cramton, 2005,
McAfee and McMillan, 1996]. There exist no prices for goods 1 and 2 such that
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both agents optimize their demands at the specified prices and the markets clear.
General conditions for existence of price equilibria given discrete goods are pro-
vided by Bikhchandani and Mamer [1997].

To deal with this problem, we specify the Walrasian prediction strategy opera-
tionally, just as we do the simulation-based predictors presented in Section 5.1. That
is, we define the “equilibrium” prices to be those produced after a specified number
of iterations of some designated price-adjustment protocol, applied to the environ-
ment corresponding to the given SAA game. Although this construction does not
guarantee the prices employed are actually in equilibrium (indeed, such guarantee
is not possible), it does ensure that the prediction strategy is well-defined.

Another complication is that the standard definition of Walrasian equilibria
presumes deterministic demand functions, whereas in our setting we are faced
with probability distributions over agent valuations. We can generalize the price-
equilibrium calculation in two ways to allow for probabilistic knowledge of the ag-
gregate demand function. The first is to find the expected price equilibrium (EPE):
the expectation (over the type distribution) of the Walrasian price-equilibrium vec-
tor. The most straightforward way to estimate this is Monte Carlo simulation, sam-
pling from the type distribution. A particular sampled type determines the demand
function x, which we can then employ in a tâtonnement protocol. Let pt denote the
price vector at iteration t, and αt an adjustment parameter that decays with t. The
standard tâtonnement procedure [Arrow and Hahn, 1971] applied to the SAA set-
ting (one unit of each good available) iteratively revises the price vector according
to the following difference equation:

pt+1 = pt + αt[x(pt)− 1]. (6)

Repeated sampling of types and application of (6) yields a crude Monte Carlo esti-
mate of the expected price equilibrium.

An alternative (which may sometimes be preferred for computational reasons)
to estimating a price equilibrium in the face of probabilistic demand is the expected-
demand price equilibrium (EDPE): the Walrasian price equilibrium with respect to
expected aggregate demand. In other words, we calculate or estimate the expected
demand function and then apply tâtonnement once to find an equilibrium as if real-
ized demand were in fact equal to expected demand. We calculate expected demand
analytically when possible [Cheng et al., 2005]; otherwise, we can estimate it by
Monte Carlo simulation, again sampling from the type distribution.

Either of these generalized Walrasian price-equilibrium methods can be applied
to generate point predictions. We denote the expected price-equilibrium point pre-
dictor by PP(πEPE) and the expected-demand price-equilibrium point predictor by
PP(πEDPE). The method of expected price equilibrium can also be straightfor-
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wardly generalized—by tracking the empirical distribution of price equilibria in-
stead of just average prices—to the case of distribution predictor, yielding PP(FEPE).9

5.3 Self-Confirming Price Predictions
Our final class of prediction methods combines the spirit of simulation-based and
equilibrium-based approaches. The basic idea is to estimate prices under the as-
sumption that agents will follow prediction strategies with accurate price predic-
tions. We refer to these as self-confirming predictions. We begin with the simpler
case of point predictions.

Definition 2 (Self-Confirming Point Price Prediction) Let Γ be an instance of an
SAA game. The prediction π is a self-confirming prediction for Γ iff π is equal to
the expectation (over the type distribution) of the final prices when all agents play
PP(π).

In other words, if all agents use a point price-prediction strategy, then the self-
confirming predictions are those that on average are correct at the end of the auc-
tion.10 We denote the self-confirming prediction vector by πSC and the self-confirming
point prediction strategy by PP(πSC).

The key feature of self-confirming predictions is that agents make decisions
based on predictions that turn out to be correct with respect to the type distribution
and the assumption that all agents play this particular prediction strategy.11 Since
agents are employing these predictions strategically, we might reasonably expect
the strategy to perform well in an environment where its predictions are confirmed.

We next define the concept of a self-confirming distribution of final prices in
SAA.

Definition 3 (Self-Confirming Price Distribution) Let Γ be an instance of an SAA
game. The prediction F is a self-confirming price distribution for Γ iff F is the dis-
tribution of prices resulting when all agents play bidding strategy PP(F ).

9Unlike the EPE method, which produces a price vector for each sample from the type distribu-
tion, the EDPE-method price data is always a single price vector, because tâtonnement is applied
only once at the last step. Therefore, we did not construct distribution price-prediction strategies
based on the latter.

10As described above, our price-prediction strategies perform simple updating based on price-
quote information as the auction proceeds. Our self-confirmation notion, however, applies only to
initial predictions and final prices—we do not insist that the intermediate updated predictions are
also confirmed.

11An equilibrium with this feature is sometimes called a “fulfilled expectations equilibrium”
[Novshek and Sonnenschein, 1982].
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The actual joint distribution will in general have dependencies across prices for
different goods. We are also interested in the situation in which if the agents play
a strategy based just on marginal distributions, that resulting distribution has the
same marginals, despite dependencies.

Definition 4 (Self-Confirming Marginal Distribution) Let Γ be an instance of an
SAA game. The prediction F = (F1, . . . , Fm) is a vector of self-confirming marginal
price distributions for Γ iff for all i, Fi is the marginal distribution of prices for good
i resulting when all agents play bidding strategy PP(F ) in Γ.

5.3.1 Existence of Self-Confirming Predictions

We demonstrate in Section 5.3.2 that we can often find approximately self-confirming
point and distribution predictions. However, we first observe that they do not always
exist, for the same reason that Walrasian prices may not exist.

Proposition 1 There exist SAA games for which no self-confirming point price pre-
diction exists, nor do any self-confirming or marginally self-confirming price dis-
tributions.

Proof. Define an SAA game corresponding to the configuration of Table 1. Re-
call the argument in Section 5.2 that there are no Walrasian prices for this exam-
ple. Given a deterministic SAA mechanism (one without asynchrony or random
tie-breaking), for fixed value functions the outcome from playing any profile of de-
terministic trading strategies is a constant. Thus, the only possible self-confirming
distributions (which were defined for agents playing the deterministic PP(F ) strate-
gies) must assign probability one to the actual resulting prices. But given such a
prediction, our trading strategy will pursue the agent’s best bundle at those prices,
and must actually get them since the prices are correct if the distribution is indeed
self-confirming. But then the markets would all clear, contrary to the fact that the
predicted prices cannot constitute an equilibrium, since such prices do not exist in
this instance. !

Despite this negative finding, we conjecture that price distributions that are
self-confirming to a reasonable degree of approximation exist for a large class of
nondegenerate preference distributions, and can be computed given a specification
of the preference distribution. For instance, in Example 2 below we demonstrate
that if the preference distribution is such that any particular preference profile is
a different variation of Example 1 rather than a fixed configuration, approximate
self-confirming point price predictions may exist even though Walrasian prices do
not exist in any game instance. We also show in Section 5.3.2 that approximate
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marginal self-confirming price distributions may also exist in games with such pref-
erences. We now present a procedure for deriving self-confirming distributions, and
some evidence for its effectiveness.

5.3.2 Deriving Self-Confirming Price Predictions

To find approximate self-confirming point predictions, we follow a simple iterative
procedure. First, we initialize the predicting agents with some prediction vector
(e.g., all zero) and simulate many game instances with the all-predict profile. When
average prices obtained by these agents are determined, we replace the initial pre-
diction vector with the average prices and repeat. When this process reaches a fixed
point, we have the self-confirming prediction, πSC.

Example 2 There are n ≥ 2 agents and m ≥ 2 goods. Agent 1 has single-unit
demand, and the value of each good is v1 > 0. The rest of the agents each need all
the goods in order to obtain any value. For i ,= 1, agent i’s value for the m-good
set is vi, such that

v1 < vi < mv1. (7)
Let v1, . . . , vi, . . . be chosen probabilistically from a given type distribution satisfy-
ing condition (7).

The values in Table 1 are an example of preferences satisfying condition (7). As
for that example, no Walrasian equilibrium prices exist for any combination of v1

and vi consistent with the condition. However, because self-confirming predictions
are expectations over the type distribution, non-existence of equilibrium prices for
specific preferences does not imply non-existence of self-confirming prices with
respect to the ex ante distribution. In Figure 1 we show the convergence to a self-
confirming price-prediction vector for Example 2, for a particular distribution and
various numbers of agents and goods. In three out of four such SAA games we
analyzed, the prices converged within 10 iterations. In the game with two agents
and five goods (Panel (c)), there is some persistent oscillation, but the prices stay
within 0.5% of the upper bound on a single good value V .

In cases of price oscillation, we found that by resetting the vector of predicted
prices to equal the averages around which the prices are fluctuating, the process
often immediately converges to a more precise fixed point. We used this method to
construct πSC for the SAA game presented in Section 6.2.

A similar approach can be applied to derive distribution predictions. Starting
from an arbitrary prediction F 0, we run many SAA game instances (sampling from
the given preference distributions) with all agents playing strategy PP(F 0).12 We

12In most of our experiments, the initial prediction is uniformly distributed prices between 0 and
the upper bound, V , on the value of a single good, but our results do not appear sensitive to this.
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(c) n= 2, m= 5 (d) n= 5, m= 5

Figure 1: Convergence of iterative estimation of self-confirming price-prediction
vectors in environments in which no Walrasian equilibrium prices exist. The sce-
narios are instances of Example 2, with v1 ∼ U [3, V − 1], V = 50, and each
vi ∼ U [v1 +1, min(m(v1−1), V )]. The initial prediction is that all prices would be
zero, with prices at subsequent iterations determined by a million simulated games
at the previous predicted price. The graph plots the distance between the price
vectors in consecutive iterations. We define vector distance as the maximum over
pointwise distances, measured as a percentage of the upper bound, V , on the value
of a single good.

record the resulting prices from each instance, and designate the sample distribu-
tion observed by F 1.13 We repeat the process using the new distribution F t for
iteration t+1 for some further series of iterations. If it ever reaches an approximate

13In order to ensure that conditioning on information state during bidding is always well defined,
we modify the observed distribution to add uniform infinitesimal probability for all price vectors
greater than those observed in samples.
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fixed point, with F t ≈ F t+1 for some t, then we have statistically identified an
approximate self-confirming price distribution for this environment.

We employ the Kolmogorov-Smirnov (KS) statistic as one reasonable measure
of similarity of probability distributions, defined as the maximal distance between
any two corresponding points in the CDFs:

KS (F, F ′) = max
x

|F (x)− F ′(x)|.

For self-confirming marginal distributions, we take the maximum of the KS dis-
tances measured separately for each good: KSmarg = maxi KS (Fi, F ′

i ).
Specifying our procedure requires (i) a number of samples per iteration, (ii) a

threshold on KS or KSmarg on which to halt the iterations and return a result, (iii) a
maximum number of iterations in case the threshold is not met, and (iv) a smoothing
parameter designating a number of iterations to average over when the procedure
reaches the maximum iterations without meeting the threshold. The bound on the
number of iterations ensures the procedure terminates and returns a price distribu-
tion, which may or may not be self-confirming. When this occurs, the smoothing
parameter avoids returning a distribution that is known to cause oscillation. We do
not, of course, expect the bidding strategy to perform as well when we cannot find
a convergent self-confirming distribution and the underlying oscillations are large.

For our empirical analyses, we specify an SAA game based on a scheduling
problem in which there are m units (called time slots) of a single schedulable re-
source, indexed 1, . . . ,m. Each of n agents has a single job that can be accom-
plished using the resource. Agent j’s job requires λj time slots to complete, and by
accomplishing this job it obtains some value depending on the time it completes.
Specifically, if j acquires λj time slots by deadline t, it accrues value vj(t). Dead-
line values are nonincreasing: t < t′ implies vj(t) ≥ vj(t′).

To illustrate, we consider such a scheduling problem with five agents competing
for five time slots. We draw job lengths randomly from U [1, 5]. We choose deadline
values randomly from U [1, 50] then prune to impose monotonicity [Reeves et al.,
2005]. The initial prediction is the baseline distribution prediction F SB. We set
the algorithm parameters at one million games per iteration, and a 0.01-KSmarg

convergence criterion. The predicted and empirical distributions quickly converge,
with a KSmarg distance of 0.007 after only six iterations.

To see if our method produces useful results with some regularity, we applied
it to 26 additional instances of the scheduling problem, varying the numbers of
agents and goods, and the preference distributions. The initial prediction in all
26 additional instances is that all prices are uniformly distributed. We again drew
deadline values from U [1, 50] and pruned them for monotonicity. We used two
probability models for job lengths in the first 21 instances. In the uniform model,
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Figure 2: Convergence of iterative estimation of self-confirming marginal price
distributions. The initial prediction is that all prices are uniformly distributed. The
prices at each iteration are determined by a million simulated games. The graph
plots the maximum, mean, and median KSmarg from 21 instances of the scheduling
problem with uniform and exponential preference models.

they are drawn from U [1, m]. In the exponential model job length λ has probability
2−λ, for λ = 1, . . . ,m− 1, and probability 2−(m−1) when λ = m.

We constructed 10 instances of the uniform model, comprising various com-
bination of 3 ≤ n ≤ 9 and 3 ≤ m ≤ 7. In each case, our procedure found
self-confirming marginal price distributions (KSmarg threshold 0.01) within 11 it-
erations. Similarly, for 11 instances of the exponential model, with the number of
agents and goods varying over the same range, we found SC distributions within
7 iterations. We plot the distribution of KSmarg values from these 21 instances in
Figure 2.

The 22nd instance was designed to be more challenging: we used the n = m =
2 example with fixed preferences described in Table 1. Since there exists no SC
distribution, our algorithm did not find one, and as expected, after a small number
of iterations it began to oscillate among a few states indefinitely. After reaching the
limit of 100 iterations, our algorithm returned as its smoothed prediction distribu-
tion the average over the last 10.

Finally, we also tested the procedure on the four cases of Example 2, employed
above (see Figure 1) to evaluate search for self-confirming point predictions. Recall
that in these environments, no Walrasian equilibrium prices exist in any instance of
the preference distribution. For the cases with the number of goods m = 5 (both
n = 2 and n = 5), price distributions immediately converged to a self-confirming
distribution with the price of the first good equal to one with probability one and
the rest of the prices equal to zero. To see that this is self-confirming, note that
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the agents who need all m goods will calculate their incremental cost by condi-
tioning on the price being positive (see Equation (5)). The posterior probability is
uniform over all prices (since the condition is greater than any observed prices),
which deters all such agents from bidding at all. This is the correct decision from
their perspective, as they could not profitably obtain all the goods in the presence
of an agent who needs only one and obtains a greater per-good value. For the cases
with m = 2, in contrast, the uniform belief is not always sufficient to keep these
agents from bidding initially, and so the prediction of p1 = 1 and p2 = 0 is not self-
confirming. For these examples, we found that the KSmarg value during iterative
search oscillates in a range of up to 30% of V .

Though we do not expect self-confirming predictors to always provide excellent
predictions (they are, after all, heuristics), these examples indicate that even in a va-
riety of challenging environments (in which Walrasian price equilibria do not exist)
they often provide reasonable predictions. Of course, the real test of their value as
a method for use in bidding comes from their performance against other bidding
strategies. We now turn to the computational evaluation of over 50 strategies in
various SAA games.

6 Empirical Game Analysis: Complementary Pref-
erences

We now analyze the performance of self-confirming price distribution predictors in
a variety of SAA games, against a variety of other strategies. We use Monte Carlo
simulation to estimate the payoff function for an empirical game, which maps pro-
files of agent strategies to expected payoffs for each agent. This approach converts
a game in extensive form to normal form in the expected payoffs. We then analyze
equilibria in these normal forms. Our methods extend the approach developed in
our prior work [MacKie-Mason et al., 2004, Reeves et al., 2005, Wellman, 2006],
and build on ideas from other recent studies in a similar empirical vein [Armantier
et al., 2000, Kephart et al., 1998, Walsh et al., 2002]. We emphasize here that all
of the analysis below applies directly to the estimated empirical game. These cor-
respond to statistical claims about the actual restricted-strategy game, and lead to
arguments generalizing the observations to related games.

6.1 Environments and Strategy Space
We studied SAAs applied to market-based scheduling problems, as described in
Section 5.3.2. Particular environments are defined by specifying the number m
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of goods, the number n of agents, and a preference model comprising probability
distributions over job lengths and deadline values. The bulk of our computational
effort went into an extensive analysis of one particular environment: the m = n = 5
uniform model presented above. As described in Section 6.2, the empirical game
for this setting provides much evidence supporting the unique strategic stability of
PP(F SC). We complement this most detailed trial with smaller empirical games
for a range of other scheduling-based SAA environments. Altogether, we have
studied selected environments with uniform, exponential, and fixed distributions
for job lengths; a modified uniform distribution for deadline values; and agents in
3 ≤ n ≤ 8; goods in 3 ≤ m ≤ 7.

To varying degrees, we have analyzed the interacting performance of 53 dif-
ferent strategies. These were drawn from four strategy families described above:
SB, 20 sunk-aware agents with varying sunk-awareness parameters k, 13 point pre-
dictors, and 19 distribution predictors based on various prediction methods. The
price prediction methods include variations of Walrasian equilibrium prediction
(nine point and one distribution predictor), historical-data predictions (two point
and one distribution), self-confirming predictions (one point and one distribution),
and other methods.14

The choice of strategies was based on prior experience. We believe that the
set includes the best strategy candidates from the prior literature, though we make
no claim to have covered all reasonable variations. Naturally, our emphasis is on
evaluating the performance of PP(F SC) in combination with the other strategies.

Given n agents and S possible strategies, the corresponding symmetric normal-
form game comprises

(
n+S−1

n

)
distinct strategy profiles. The game size thus grows

exponentially in n and S; for the n = 5, S = 53 game we estimate below, there
are over four million different strategy profiles to evaluate. We first illustrate the
process for a simpler game, with five agents, each choosing between SB or the
baseline point price-prediction strategy PP(πSB) (abbreviated PP). There are six
possible profiles which can be described as profiles with j agents playing PP (and
the rest SB) for j = 0, . . . , 5. We simulate a large number of games for each profile
and average the payoffs for a player of each type (PP, SB). We present the resulting
empirical game in Figure 3. For this simple game, we can solve the normal form for
a unique pure-strategy Nash equilibrium by inspection, illustrated by the arrows. If
all five players choose SB, any one can get a higher expected payoff by deviating
to PP. If only one plays PP, a second can beneficially deviate to PP. Likewise for
each profile except all playing PP, from which none can gain by deviating to SB,

14Space considerations preclude a full description of the 53 strategies here. An appendix with
specification of all parameters, including complete description of all the prediction methods used
for point and distribution predictors, is available at http://hdl.handle.net/2027.42/
57741.
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Figure 3: Normal-form payoffs for a 5-player game with 2 strategies. The arrows
indicate best responses. All-PP is the unique Nash equilibrium.

establishing a unique Nash equilibrium.

6.2 5× 5 Uniform Environment
By far the largest empirical SAA game we have constructed is for the SAA schedul-
ing environment discussed in Section 5.3.2, with five agents, five goods, and uni-
form distributions over job lengths and deadline values. We estimate payoffs em-
pirically for each profile by running millions of simulations of the auction protocol,
so estimating the entire payoff function for over 4.2 million strategy profiles is in-
feasible. However, we can estimate the payoff matrix for subsets of all profiles, and
as we describe below, with well-chosen subsets we can reach useful conclusions
about equilibria in the 53-strategy game.

Our results are based on estimated payoffs for 4457 strategy profiles, calculated
from an average of 7 million samples per profile (with some profiles simulated for
as few as 200 thousand games, and some for as many as 200 million, depending on
sampling variances). Despite the sparseness of the estimated payoff function (cov-
ering only 0.1% of possible profiles), we have been able to obtain several results.

First, as discussed above, we conjectured that the self-confirming distribution-
prediction strategy, PP(F SC), would perform well. We have directly verified this:
the profile where all five agents play a pure PP(F SC) strategy is a Nash equilib-
rium of the empirical game. That is, we verified that no unilateral deviation to any
of the other 52 pure strategies is profitable. Note that in order to verify a pure-
strategy symmetric equilibrium (all agents playing a strategy s) for n players and
S strategies, one needs only S profiles: one for each strategy playing against n− 1
copies of s. Similarly, to refute the possibility of a particular profile being in Nash
equilibrium, we need to find only one profitable deviation profile (i.e., obtained
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by changing the strategy of one player to earn a higher payoff given the others’
strategies).

The fact that PP(F SC) is pure symmetric Nash for this game does not of course
rule out the existence of other Nash equilibria. Indeed, without evaluating any
particular profile, we cannot eliminate the possibility that it represents a (non-
symmetric) pure-strategy equilibrium itself. However, the profiles we did estimate
provide significant additional evidence, including the elimination of broad classes
of potential symmetric mixed equilibria.

Let us define a strategy clique as a set of strategies for which we have estimated
payoffs for all combinations.15 Each clique defines a subgame, for which we have
complete payoff information. Within our 4457 profiles we have eight maximal
cliques that include strategy PP(F SC). For each of these subgames, PP(F SC) is
the only strategy that survives iterated elimination of (strictly) dominated strategies.
It follows that PP(F SC) is the unique (pure- or mixed-strategy) Nash equilibrium
in each of these clique games. We can further conclude that in the full 53-strategy
game there are no equilibria with support contained within any of the cliques, other
than the special case of the pure-strategy PP(F SC) equilibrium.

Analysis of the available two-strategy cliques (not generally maximal) provides
further evidence about potential alternative equilibria. Of the

(
52
2

)
= 1326 pairs of

strategies not including PP(F SC), we have all profile combinations for 49. Based
on profiles estimated, we have determined that for any symmetric profile defined
by a mixture of one of these pairs, an agent can improve its payoff by a minimum
of 0.32 through deviating to some other pure strategy. For reference, the average
payoff for the all-PP(F SC) profile is 4.51, so this represents a nontrivial difference.

That is, none of the two-strategy mixtures for which we have data comes very
close to equilibrium, further strengthening our confidence in PP(F SC).

Finally, for each of the 4457 evaluated profiles, we can derive a bound on the
ε rendering the profile itself an ε-Nash pure-strategy equilibrium. The three most
strategically stable profiles by this measure are:

1. all PP(F SC): ε = 0 (confirmed Nash equilibrium of the empirical game);

2. one PP(F SB), four PP(F SC): ε > 0.13;

3. two PP(F SB), three PP(F SC): ε > 0.19.

All the remaining profiles have ε > 0.25 based on confirmed deviations.
15Thus we have a 2-strategy clique if we have estimated all six profiles that five agents can form

from these two strategies.
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Our conclusion from these observations is that PP(F SC) is a highly stable strat-
egy within this strategic environment, and likely uniquely so. Of course, only lim-
ited inference can be drawn from even an extensive analysis of only one particular
distribution of preferences, so we now consider other environments.

6.3 Self-Confirming Prediction in Other Environments
To test whether the strong performance of PP(F SC) generalizes across other SAA
games, we undertook smaller versions of this analysis on variations of the model
above. We explored 17 additional instances of the market-based scheduling prob-
lem: eight with the uniform (U), eight with the exponential (E) preference mod-
els (3–8 agents, 3–7 goods), and one with fixed preferences, corresponding to the
counterexample model of Table 1. For each we derived self-confirming price dis-
tributions (failing in the last case, of course), as reported in Section 5.3.2. We also
derived price vectors and distributions for the other prediction-based strategies. We
ran between two and ten million games per profile in all of these environments.

For the non-symmetric game with fixed preferences, we evaluated all 53 profiles
with at least one agent playing PP(F SC).

For eleven of the symmetric games (eight U and three E models), we started by
evaluating 27 profiles: one with all PP(F SC), and for each of 26 other strategies
s, one profile with n − 1 PP(F SC) and one s. In eight of these games, PP(F SC)
and PP(F SB) were among top three unilateral deviations from PP(F SC) in the
all-PP(F SC) profile. For each of the eleven games, we identified five (additional)
top-ranking deviations from PP(F SC) and evaluated complete 7-cliques involving
these five strategies, PP(F SC) and PP(F SB) in the respective environments (at
least 340,000 samples per profile).

For the five additional E models, we evaluated all profiles over seven selected
strategies.16

Our results for U and E models are summarized in Table 2. For each case, we
report the ε that, for the estimated payoff matrix, renders all-PP(F SC) an ε-Nash
equilibrium. The next two columns report sensitivity information about this figure,
given its basis in payoffs estimated from samples. First, since our payoff matrix is
estimated (and thus each payoff has a sampling variance), we calculate the expected
value ε̄ of ε with respect to the empirical distributions of the estimated payoffs (as-
suming that the errors in our payoff estimates are independent, and using the sample
variances as population variances). Thus, for example, the environment E(3, 5) has

16For these models we did not incur the additional computational cost of evaluating all 27 profiles
to select best deviations from PP(FSC), which is a somewhat arbitrary procedure for selecting
strategies for a clique in any case. Rather, we selected the seven candidate strategies based on
regularities in the results from the other eleven games described above.
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a pure Nash equilibrium of all-PP(F SC) for the estimated payoff matrix, but taking
into account sampling variation, on average that profile has an ε of 0.005.

Under the same independence assumption, “Pr(ε = 0)” represents the prob-
ability that all-PP(F SC) is actually an equilibrium. Finally, for each empirical
game with n ≤ 6 we also obtained a symmetric mixed-strategy Nash equilibrium
using replicator dynamics.17 The rightmost column reports the probability of play-
ing PP(F SC) in the resulting mixture, to evaluate its significance when it does not
constitute a pure-strategy equilibrium.

Env(m, n) ε-gain ε̄-gain Pr(ε = 0): Probability
from adjusted for Probability of of play in

one-player sampling exact Nash rep. dyn.
deviation error equilibrium solution

E(3, 3) 0 0 1.00 1.00
E(3, 5) 0 .005 .600 .996
E(3, 8) .031 .032 0 —
E(5, 3) 0 0 1.00 .999
E(5, 5) 0 .001 .900 .998
E(5, 8) .029 .031 0 —
E(7, 3) 0 .007 .667 .992
E(7, 6) .003 .007 .567 .549
U(3, 3) .097 .099 0 .725
U(3, 5) 0 0 1.00 1.00
U(3, 8) .017 .016 0 —
U(5, 3) .103 .103 0 .809
U(5, 8) .047 .048 0 —
U(7, 3) .058 .060 0 .942
U(7, 6) .018 .018 0 .929
U(7, 8) .133 .132 0 —

Table 2: Evaluations of all-PP(F SC) profile for U and E models.

In 14 out of these 16 environments, PP(F SC) was verified to be an ε-Nash
equilibrium for ε < 0.1. Twelve have ε < 0.05, and in six of these (one U and
five E) it was an exact equilibrium. The two worst environments were U(5, 3) and

17By replicator dynamics we mean an iterative (evolutionary) algorithm for finding symmetric
mixed-strategy equilibria in symmetric games. Our implementation is based on the replicator dy-
namics formalism introduced by Taylor and Jonker [1978] and Schuster and Sigmund [1983] and is
described in detail in our earlier work [Reeves et al., 2005]. Though the method is not guaranteed to
generate all Nash equilibria, we have found it particularly useful for finding sample Nash equilibria.
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U(7, 8). In the last case, expected payoff for all-PP(F SC) was 2.67, so ε represents
about 5% of the value. For no other case did it reach 2%. Moreover, the results are
quite insensitive to statistical variation. The ε̄ values never exceed ε by much, and in
every environment for which we produced an equilibrium with replicator dynamics,
PP(F SC) appears in this symmetric mixed-strategy profile with substantial if not
overwhelming probability.

Overall, we regard this as favorable evidence for the PP(F SC) strategy across
the range of market-based scheduling environments. Not surprisingly, the environ-
ment with fixed preferences is an entirely different story. Recall that in this case
the iterative procedure failed to find a self-confirming price distribution. The dis-
tribution it settled on was quite inaccurate, and the trading strategy based on this
performed poorly—generally obtaining negative payoffs regardless of other strate-
gies. Since one of the available strategies simply does not trade, PP(F SC) is clearly
not a best-response player in this environment.

7 Strategies for Environments with Substitutes
In the previous sections we focused on the exposure problem when there are com-
plementarities in preferences. We found that strategies based on price prediction
can be quite effective in mitigating the problem. In this section we extend our anal-
ysis of bidding strategies to the case of substitutable goods. The strategic challenge
in this environment is bidding when there are significant own price effects: bidding
below willingness-to-pay for the marginal unit may lower the price sufficiently on
inframarginal units to be a profitable strategy [Ausubel and Cramton, 2002]. We
now expand the space of bidding strategies we evaluate to include simple demand-
reduction strategies as well as a sophisticated approach to predicting own price
effects inspired by the success of self-confirming price prediction for environments
with complementarities. In the environment with substitutes we study, we find that
the simple demand-reduction strategies clearly outperform this price predictor.

To analyze bidding strategies in an SAA game with substitutes, we assume
that each auction sells one unit of a homogeneous indivisible good, and the bid-
ders’ marginal value for units of this good is weakly decreasing. We implemented
such preferences by randomly drawing marginal values vk for the kth good from
U [0, vk−1], with v0 = V a uniform upper bound on the marginal value of one unit.

In homogeneous-good environments bidders derive the same value from any
bundle of q goods regardless of their labels. The definitions of strategies in this
section rely on this assumption, though it would not be difficult to generalize their
approaches to apply to environments with a more general type of substitutability.
The assumption of homogeneous goods is convenient for computational implemen-
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tation and analysis, however, we believe that it is not essential to our main results.

7.1 Demand-Reduction Strategy
Consider an SAA game with m auctions, each selling one unit of an identical (ho-
mogeneous) good. If all agents follow SB, the outcome is that the bidders for the
m most highly valued units win them, at a uniform price equal to the value of the
most highly valued losing unit (possibly plus the bid increment). This is virtually
equivalent to truth-telling in an m + 1st sealed-bid uniform-price auction. Like the
truth-telling/sealed-bid case, the all-play-SB outcome is efficient (modulo the bid
increment), but it is not an equilibrium. In fact, efficient equilibria in the m + 1st
sealed-bid uniform-price auction do not exist [Ausubel and Cramton, 2002]. To
motivate a possibly better strategy, consider the intuition for the non-existence of
an efficient equilibrium: if a bidder has a positive probability of influencing price
in a situation in which the bidder wins a positive quantity, then the bidder has an
incentive to shade her bid in a sealed-bid uniform-price auction. Bid-shading leads
to inefficient outcomes. This intuition and the failure of SB motivates considering
strategies that suppress demand.18

We introduce a relatively simple demand-reduction strategy, DR. Let us modify
SB by introducing a parameter κ ∈ [0, V ] defining the degree of the agent’s demand
reduction. An agent playing strategy DR(κ) bids the ask price on the lth cheapest
good as long as it is not winning that good, and its marginal surplus is at least
κ(l − 1). In other words, the agent considers the goods in order of price, adding
the lth good to its bundle until the marginal value vl drops below the ask price plus
κ(l − 1). The DR strategy family is a simple way of capturing the intuitions of
the demand-reduction literature: bidders should shade their bids, and the amount of
shading increases with the number of winning goods [Ausubel and Cramton, 2002].

Formally, define DR(κ)’s perceived price of the good with the lth lowest my-
opically perceived price (defined in Section 3):

ρl(B) ≡
{

βl + κ(l − 1) if winning the good
βl + 1 + κ(l − 1) otherwise,

(8)

where β is the vector of current bid prices. Agent DR(κ) plays the perceived-price
bidding strategy using this ρ(B). Note that ρ(B) as defined by (8) assumes that

18Note that the sunk-awareness modification of SB we introduced in Section 3.2 to address the
exposure problem leads to overbidding, as opposed to bid-shading, in this environment. Using
the terminology of Definition 1, the perceived-price vector of a sunk-aware strategy is equal to or
below the myopic perceived-price vector used by SB, which results in more aggressive bidding. The
perceived price of the demand-reduction strategy we introduce in this section is always at least as
high as the myopic perceived-price vector.
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the goods are indistinguishable. We use the subscript l instead of i to emphasize
that each good is labeled by its myopic price rank order rather than by the auction
selling it.

7.2 Predicting Own Price Effects
The ability of a single agent to affect final prices is strategically central when goods
are substitutes. Therefore, the focus of price prediction in the substitutes case is to
model this relationship. Specifically, for the homogeneous-good environment, price
predictions take the form of a mapping from purchase sizes (i.e., the agent’s chosen
demand) to final prices. The main role of this prediction is to guide the agent as to
when it is beneficial to refrain from bidding on potentially valuable goods.

The assumption that final prices depend on the number of goods the agent is
trying to win implies that the agent’s prediction of the final price of good i can no
longer be represented by a scalar. Let πiq(B) be the predicted final price of good i
given that the agent tries to win q goods and its information state at the current round
is B. We can think of the agent’s predicted own-effect prices as an m×m matrix, in
which the rows are auction labels and the columns are the intended purchase sizes.
We define an updating rule for πiq, i, q ∈ {1, . . . ,m}, similar to the point price-
prediction rule described in Section 4.1. The current price prediction for good i
when the agent plans to bid on q goods is the maximum of the initial prediction and
the myopically perceived price:

πiq(B) ≡
{

max(πiq(∅), βi) if winning good i

max(πiq(∅), βi + 1) otherwise.
(9)

There is no apparent reason why an agent should believe that the final price of
a homogeneous good on one auction will be higher than the price on another auc-
tion. Therefore, we construct the initial price prediction to be equal across auctions:
πiq(∅) = πjq(∅) for all i and j for all purchase sizes q. In other words, the ele-
ments in a column are identical in the agent’s initial prediction matrix. We label the
initial prediction matrix of predicted own-effect prices by πx, in which the subscript
x labels particular initial predictions.

In the homogeneous-good environment, agents are indifferent between item
subsets of equal sizes. Thus, in our strategy, the agent uses price prediction to
determine the number q∗ of units to buy, but not to identify specific auctions in
which to participate in the current round. Formally,

q∗ = arg max
q

max
|Y |=q

σ(Y, π.q(B)),
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where σ(Y, p) is the agent’s surplus for goods Y defined by Equation (1), and |Y |
refers to the number of goods in set Y .

Given q∗, the choice of goods X∗ on which to actually bid is based on the current
myopically perceived prices, ρ(B) as defined by Equation (2). Using myopically
perceived prices ensures that the agent never regrets the composition of its bid set
(conditional on size) even if its predicted own-effect prices are wrong.

X∗ = arg max
|X|=q∗

σ(X, ρ(B))

The agent breaks ties as in Definition 1. Given X∗, the agent bids bi = βi + 1 (the
ask price) for the i ∈ X∗ that it is not already winning. We call this strategy family
the own-effect price predictor (OEPP) and denote a specific strategy in this family
by OEPP(πx).

Similar to the point price predictor defined for complementary goods, the OEPP
family includes SB as a special case when the predicted own-effect prices are a ma-
trix of zeros: SB = OEPP(0). As mentioned in Section 7.1, if all players follow
SB, the allocation is efficient. Perceived prices based on an own-effect price ma-
trix with positive elements are weakly higher than the myopic perceived prices SB
uses. Therefore, an OEPP agent using positive predictions tends to bid on fewer
items than is efficient given the others’ bids, and never bids on more goods than SB
would.

7.3 Self-Confirming Own-Effect Prices
We define the concept of self-confirming own-effect price prediction similarly to
self-confirming point price prediction for complementary environments.

Definition 5 (Self-Confirming Own-Effect Prices) Let Γ be an instance of an SAA
game with homogeneous goods. Matrix π is a self-confirming own-effect price ma-
trix for Γ, if for all i, q ∈ {1, . . . ,m}, πiq(∅) is equal to the expectation (with re-
spect to the type distribution) of the final price when one agent tries to win q goods
and all the other agents follow OEPP(π).

In other words, self-confirming own-effect prices satisfy the condition that if one
of the agents bids to win q goods and the other agents “exploit” their own-effect
price predictions, that prediction on average is correct for all q. We denote the
self-confirming own-effect price matrix by πSC and the self-confirming own-effect
price-prediction strategy by OEPP(πSC).

To find approximate self-confirming own-effect prices, we follow an iterative
procedure similar to that described in Section 5.3. First, we initialize the own-
effect predictors with some own-effect price matrix (e.g., all zero) and, sampling
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Figure 4: Convergence to a self-confirming own-effect price matrix, starting with an
initial prediction that all prices would be zero regardless of the size of the agent’s
purchase. The prices at each iteration are determined by 10 thousand simulated
games. The graph plots the distance between the own-effect prices in consecutive
iterations. We define distance between matrices as the maximum over pointwise
distances, measured as a percentage of the upper bound on the marginal value, V ,
of a single unit of the good. The bound V equals 127 in all of our SAA games with
substitutes.

from the homogeneous-good type distribution, run many SAA game instances with
a profile in which one agent (the explorer) ignores its preferences and tries to win
a single good, while the others follow OEPP. When average prices obtained by
these agents are determined, we replace the first column in the own-effect price
matrix with a column vector with all elements equal to the average price, reset
the explorer to win two goods and repeat. After the second batch of simulations,
we replace all elements in the second column of the own-effect matrix with the
average price and increase the explorer’s target number of goods by one. We repeat
the process, recycling back to a single unit after the exploration target reaches m.
When this process reaches a fixed point, we have the matrix of self-confirming
own-effect prices, πSC . We have not investigated whether a fixed point necessarily
exists in homogeneous-good environments, but the price predictions converged in
this environment within 30 iterations in all of our experiments (see Figure 4).

7.4 Empirical Game Analysis
We perform analyses similar to, but less extensive than, those reported in Section 6.
We analyzed the m = n = 5 environment with uniform preferences introduced
at the beginning of Section 7. We set the upper bound V to 127. In Figure 5 we
display the agents’ average valuations as a function of the number of goods. As
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Figure 5: Preference distribution in the homogeneous-good environment.

before, our goal is to evaluate the performance of a self-confirming price-prediction
strategy, OEPP(πSC) in this instance. Since the literature predicts that agents sup-
press demand in equilibrium, we include many instances of our demand-reduction
strategy family. We analyzed 51 strategies: SB, 47 DR(κ) with 1 ≤ κ ≤ 120, one
sunk-aware strategy with parameter k = 0.5, a self-confirming own-effect price
predictor OEPP(πSC), and the baseline distribution predictor PP(F SB) (defined
in Section 5).

We estimated payoffs for 16542 strategy profiles (out of 3.48 million possi-
ble), based on an average of 986 thousand samples per profile. Some profiles are
simulated for as few as 40 thousand samples; near-Nash-equilibrium profiles were
simulated for up to 205 million game instances per profile. Despite the high-quality
information OEPP(πSC) employs about own effect on final prices, the strategy’s
use of this information did not provide any advantage over the simpler information-
free demand-reduction agents. In the majority of profile settings where it was tested,
OEPP(πSC) can be refuted with a DR(κ) strategy. Indeed, for 96% of the 16542
profiles analyzed, we found the best deviation in our data set to be an instance of
DR(κ) with 10 ≤ κ ≤ 22. For 108 profiles our data set includes estimated pay-
offs for all deviations from all strategies. The best deviations for these profiles are
always an instance of DR(κ) with 16 ≤ κ ≤ 19.

We provide more evidence in Figure 6 by displaying the number of times a strat-
egy was a best deviation (dark bars) relative to the number of estimated profiles in
which that strategy appeared (light bars). The latter is proportional to the approx-
imate number of opportunities for that strategy to be a best deviation from some
other profile. The dark bars reflect the preponderance of situations in which agents
prefer moving toward a DR(κ) strategy with κ near 15. The light bars document our
decision, as this evidence was emerging, to focus our finite computational resources
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Figure 6: Distribution of best deviations. The light bars reflect the number of
estimated profiles in which the corresponding strategy appeared. The dark bars
reflect how many times the strategy in fact was a best deviation. We index
demand-reduction strategies DR(κ) by their corresponding κ-values. OEPP refers
to OEPP(πSC), PP to PP(F SB), and SA refers to the sunk-aware strategy with
k = 0.5.
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on estimating regions of the payoff matrix most important for (near-)equilibrium
play.

We found only 14 profiles for which the highest gain can be obtained by de-
viating to OEPP(πSC). This is 0.085% of all estimated profiles and 6.36% of all
profiles containing at least one OEPP(πSC) player. We found 40 profiles for which
SB is the best deviation. The sunk-aware and PP(F SB) strategies are never the most
attractive deviations in our data.

We found many pure-strategy asymmetric ε-Nash equilibria in this environment.
Those with the lowest ε are profiles of DR(κ) with 14 ≤ κ ≤ 17. To give a sense of
the magnitude of demand (bid) suppression, these κs correspond to 33–40% of the
average final unit price if all players follow SB. In Table 3 we present all ε-Nash
equilibria for which ε ≤ 0.01519 and two of our benchmark profiles: all-SB and
all-OEPP(πSC) (for which the ε is rather large). The probability that the profile is
an exact Nash equilibrium was estimated empirically as described in Section 6.3.
The profiles are listed in the order of increasing ε. We have estimated payoffs of all
unilateral deviations from the strategies in the near-Nash-equilibrium profiles to all
of the other 50 pure strategies. These ε-equilibria all consist of DR(κ) with κs in a
narrow range; the best deviations are to nearby κs (column 2). If all agents follow
OEPP(πSC), a single agent can improve her payoff by at least 2.86 (5.5% of the
average payoff) by deviating to DR(24).

As expected, equilibrium outcomes are inefficient in this environment. How-
ever, the efficiency loss is small: all-16, the symmetric profile with the smallest
ε, achieves 98.55% efficiency. We present efficiency results for a few symmetric
near-Nash-equilibrium profiles and our benchmark profiles in Table 4.

Our results suggest that OEPP(πSC) is a weak competitor against DR(κ). The
weakness of OEPP(πSC) may lie in its failure to adjust its bidding to its oppo-
nents’ behavior: having good information does not guarantee strategic advantage.
We observe that OEPP(πSC) bids like an aggressive demand-reduction agent. As
a consequence, it earns high profits when playing against other predictors: essen-
tially, in a profile of all-OEPP, players are tacitly colluding to reduce demand and
thus prices. Payoffs would be higher if all agents could commit to this behavior.
However, when collusion is unenforceable, the usual motive to deviate unilaterally
is strong.

19For reference, the payoffs range from 30 to 69 in our empirical payoff matrix. Thus, the near-
equilibrium profiles in Table 3 are quite close to equilibria: the ε of 0.015 constitutes at most 0.05%
of the payoff.
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ε-Nash- Best ε-gain from ε̄-gain Probability the
equilibrium deviation one-player adjusted for profile is exact
profile deviation sampling error Nash equilibrium
15 15 16 16 16 15 → 16 0 0.001 0.58
all-16 16 → 15 0.001 0.004 0.25
15 16 16 16 16 16 → 15 0.001 0.006 0.14
15 15 15 16 16 15 → 16 0.004 0.005 0.11
14 16 16 16 16 16 → 15 0.004 0.008 0.02
15 15 15 15 16 15 → 16 0.005 0.009 0
15 16 16 16 17 15 → 16 0.006 0.007 0.11
14 14 15 15 16 14 → 15 0.006 0.008 0.02
14 14 14 16 16 14 → 15 0.007 0.008 0.09
14 15 15 16 16 14 → 16 0.008 0.009 0.02
15 15 17 17 17 17 → 16 0.008 0.012 0
14 14 15 15 15 14 → 15 0.009 0.008 0.07
15 15 15 17 17 17 → 15 0.009 0.010 0.02
14 14 14 15 15 14 → 15 0.010 0.010 0.05
14 15 15 15 16 16 → 15 0.011 0.010 0.02
16 16 16 16 17 17 → 15 0.011 0.010 0.02
all-15 15 → 16 0.012 0.012 0.04
15 15 16 17 17 17 → 16 0.012 0.012 0.01
15 16 16 17 17 17 → 16 0.012 0.013 0
14 14 16 16 16 14 → 15 0.012 0.013 0
15 17 17 17 17 15 → 16 0.012 0.014 0
14 14 14 15 16 16 → 15 0.013 0.015 0
14 15 16 16 16 14 → 15 0.013 0.014 0.01
15 15 16 16 17 17 → 16 0.013 0.013 0
14 14 15 16 16 14 → 15 0.014 0.014 0
all-17 17 → 16 0.014 0.015 0
15 16 17 17 17 15 → 16 0.015 0.015 0
16 17 17 17 17 17 → 16 0.015 0.015 0
all-SB SB → 14 1.450 1.469 0
all-OEPP OEPP → 24 2.857 2.905 0

Table 3: ε-Nash equilibria for the substitutes environment. The profiles are listed in
order of increasing ε.
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ε-Nash- Best ε-gain from Average Efficiency
equilibrium deviation one-player payoff (%)
profile deviation
all-SB SB → 14 1.450 34.266 100
all-14 14 → 15 0.020 44.665 98.82
all-15 15 → 16 0.012 45.230 98.69
all-16 16 → 15 0.001 45.773 98.55
all-17 17 → 16 0.014 46.307 98.40
all-18 18 → 17 0.035 46.810 98.26
all-OEPP OEPP → 24 2.857 52.063 93.75

Table 4: Efficiency of some symmetric ε-Nash equilibria in the substitutes environ-
ment. The profiles are listed in order of decreasing efficiency.

8 Discussion
Our investigation of bidding strategies for simultaneous auctions leads to qualita-
tively different conclusions for environments characterized by complementary and
substitutable preferences. For the case of complements, we find strong support
for a bidding strategy based on probabilistic price prediction, with self-confirming
predictions derived through an equilibration process. Like other decision-theoretic
approaches to bidding [Greenwald and Boyan, 2004], this strategy tackles the ex-
posure problem head-on, by explicitly weighing the risks and benefits of placing
bids on alternative bundles, or no bundle at all. The fact that the predictions are
self-confirming suggests that this cost-benefit analysis will be accurate when other
agents are following the same strategy.

Given the analytic and computational intractability of the SAA game, we eval-
uated our self-confirming probabilistic price-prediction strategy, PP(F SC), using
an empirical game-theoretic methodology. We explored a restricted strategy space
including PP(F SC) along with a range of candidate strategies identified in prior
work. Despite the infeasibility of exhaustively exploring the profile spaces, our
analyses support several game-theoretic conclusions. The results provide favorable
evidence for our new strategy—very strong evidence in one environment we in-
vestigated intensely, and somewhat less categorical evidence for a range of variant
environments.

For the case of substitutes, the driving strategic issue is demand reduction rather
than exposure risk, and thus it is necessary to predict own price effects as well
as exogenous price levels. We defined a bidding strategy, OEPP, based on such
predictions, and a concept of self-confirming prices analogous to the approach that
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proved so successful in complementary environments. In this domain, however,
the strategy OEPP(πSC) based on explicit self-confirming predictions did not fare
well, proving in our empirical experiments significantly inferior to an approach
based on simple across-the-board demand reduction.

There are several possible explanations for the relative lack of success of ex-
plicit price prediction in substitutes environments. One is that the particular OEPP
method we investigated measures own price effects under unrealistic assumptions.
Specifically, the strategy predicts the effect of selecting a demand level (number of
goods to go for), and sticking with that choice thereafter. In actuality, the agent
can and does reconsider its choice at each round conditional on the current auction
information. This myopic assumption about the agent’s own behavior would tend
to overestimate the effect of its immediate decision about demand at the current
prices, and thus cause it to reduce demand more aggressively than warranted.

The simple demand-reduction strategy, DR(κ), can pursue an appropriate de-
gree of demand reduction in a particular environment by tuning the free parame-
ter κ. This approach was successful in our experimental environment, but would
presumably need to be retuned for a different configuration of goods and prefer-
ences. It remains for future work to identify a general approach for deriving robust
demand-reduction strategies directly from specification of preference distributions.

Returning to environments with complementarities, our results establish the
self-confirming price-prediction strategy as the leading contender for dealing broadly
with the exposure problem. If agents make optimal decisions with respect to prices
that turn out to be right, there may not be room for performing a lot better. On
the other hand, there are certainly areas where improvement should be possible, for
example:

• incorporating price dependencies (but with reasonable computational effort);

• more graceful handling of instances when self-confirming price distributions
do not exist;

• more sophisticated prediction updates given price quotes, including possible
incorporation of history; and,

• timing of bids: trading off the risk of premature quiescence with the cost of
pushing prices up.

Dealing with combinations of complementarity and substitutability, by combining
considerations of exposure and demand reduction, is perhaps the most obvious di-
rection for extending the scope of bidding-strategy ideas developed here.
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Finally, an indirect contribution of this work is to demonstrate an empirical
methodology for game-theoretic analysis when strategy determination is analyti-
cally intractable [MacKie-Mason and Wellman, 2005, Wellman, 2006]. We find that
even when strategy spaces are enormous, much can be learned by empirically con-
verting an extensive-form game into a normal form in expected payoffs for strategy
choices, combined with thoughtful selection of payoff-matrix regions to estimate,
and carefully targeted analyses of results.
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