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ABSTRACT

This paper presents the development of a resolved motion adaptive control
which adopts the ideas of "Resolved Motion Rate Control" [9] and "Resolved Motion
Acceleration Control" [10] to control a manipulator in Cartesian coordinates for vari-
ous loading conditions. The proposed adaptive control is performed at the handvlevel
and is based on the linearized perturbation system along a desired hand trajectory. A
recursive least square identification scheme is used to perform on-line parameter
Identification of the linearized perturbation system. The controlled system is charac-
terized by feedforward and feedback components which can be computed separately
and simultaneously. The feedforward component resolves the specified positions,
velocities, and accelerations of the hand into a set of values of joint positions, velo-
cities, and accelerations from which the nominal joint torques are computed using the
Newton-Euler equations of motion to compensate all the interaction forces among the
various joints. The feedback component computes the variational joint torques which
reduce the manipulator hand position and velocity errors along the nominal hand tra-
jectory. This adaptive control strategy reduces the manipulator control problem from
a nonlinear control to controlling a linear control system about a desired hand trajec-

tory. The feasibility of implementing the proposed adaptive control using present day

low-cost microprocessors is discussed.
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1. introduction

The purpose of resolved motion control is to maintain a prescribed motion for the
manipulator along a desired time-based hand trajectory in Cartesian coordinates by
applying corrective compensation torques to the actuators to adjust for any devia-
tions of the manipulator from the hand trajectory. Most of the existing control
schemes [1]-[7] control the arm at the joint level and emphasize nonlinear compen-
sations of the interaction forces among the various joints. For most applications,
rasolved motion control, which commands the manipulator hand to move in a desired
Cartvesian direction in a coordinated position and rate control, may be more appropri-
ate. Most exlisting resolved motion control algorithms [8]-[ 12] control the arm at the
hand level with or without external sensory feedback information. The above joint
motion and resolved motion control algorithms are inadequate because they neglect
the changes of the load in a task cycle. These changes in the payload of the con-
trolled system may be significant enough to render conventional feedback control
strategies ineffective. The result is reduced servo response speed and damping,
which limits the precision and speed of the end-effector. Any significant perfor-

mance galin in this require the consideration of adaptive control techniques.

Recently various adaptive control algorithms [13]-[15] have been proposed.
Dubowsky [13] proposed a model referenced adaptive control which uses a linear
second-order time invariant differential equation as the referenced model for each
degree of freedom of the robot arm. The manipulator is controlled by adjusting the
position and velocity feedback gains to follow the model. A steepest decent method
is used to update the feedback gains. Koivo [14] proposed an adaptive self-tuning
controller using an autoregressive model to fit the input-output data from the manipu-
lator. Both control algorithms assume that the interaction forces among the joints are
negligible. Lee [15] proposed an adaptive control based on the perturbation equa-
tions in the vicinity of a desired joint trajectory. The highly coupled dynamic equa-

tions of a manipulator are linearized about a preplanned joint trajectory to obtain the
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perturbation equations. A recursive least square identification scheme is used to
identify the system parameters in the perturbation equations. The torques for the
Joint actuators consist of the nominal torques computed from the Newton-Euler equa-
tions of motion and the variational torques computed from the controller of the linear-

Ized system.

This paper adopts the ideas of resolved motion rate and acceleration control
[8]-[10] and extends the above adaptive control concept to control the manipulator
hand in Cartesian coordinates. All the feedback information are performed at the
hand level. In this paper, we only investigate the resolved motion adaptive control
for a six-jolnt manipulator and assume that the desired hand positions, velocities and

accelerations along a path/trajectory in Cartesian coordinates are given.

2, Kinematics of the Manipulator Hand

In general, the desired motion of a manipulator is specified in terms of a time-
based hand trajectory in Cartesian coordinates, while the servo control system
requires the reference inputs specified in joint coordinates. The mathematical rela-
tion between these two coordinate systems have been investigated by several
authors [8]-[12]. We shall briefly describe the basic kinematic theory relating these
two coordinate systems that wili lead us to derive the equations of motion of the

manipulator hand in Cartesian coordinates.

2.1, Position and Euler Angles of the Manipulator Hand

The location of the manipulator hand with respect to a fixed reference coordi-
nate system can be realized by establishing an orthonormal coordinate frame at the
hand (the hand coordinate frame) [18] (See Figure 1). The problem of finding the
location of the hand is reduced to finding the position and orientation of the hand
coordinate frame with respect to the inertial frame of the manipulator. This can be

conveniently achieved by a 4x4 homogeneous transformation matrix [18], [16]:
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Nx Sx 8y Px Rotation | Position
Tpand Ny Sy 8 Pyl Ins ap|l | matrix | vector (1)
asé ~ in, s, a; pz| |10 0 0 1|7 - | -
0 00 1 oo | 1

where p is the position vector of the hand; and n,s, a are the unit vectors along the
principal axes of the hand coordinate frame describing the orientation of the hand.
Instead of using the rotation submatrix [ n,s,a] to describe the orientation, we can
use three Euler angles, yaw «, pitch B, and roll 7, which are defined as rotations of
the reference frame about the x,y, and z axes of the reference frame respectively..
One can obtain the elements of [n,s,a] from the Euler rotation matrix resulting from
a rotation of a angle about the x, axis, then a rotation of § angle about the y, axis,
and a rotation of 7y angle about the z, axis of the reference frame. Thus:
Nx Sy ay v —Sy 0]|CB O Sg[j1 © 0
R=1in s, a|=Sy Cy OFf 0O 1 O[]0 Ca —Sa
Y’z s, a, o 0O 1][-SBOCE/I0 Saa Cu (2)

CyCB —SyCa+CySBSa SySa+ CySBCan
= [SyCB CyCua+8ySBSa —-CySa+S8SySBCu
| -8B CASa CRCa

where sina =Sa,cosa=Ca, sinf =8p,cos8=Cg, siny=S8Sy,cosy =C.

2.2. Velocities and Accalerations of the Manipulator Hand

Let us define the position, orientation, linear velocity, and angular velocity vec-

tors of the manipulator hand with respect to the reference frame respectively:

A A

P(t) = (px(8),py(1),p()) 5 B() = (a(t),B(t), 7)) T @
A A

V(1) = (1 (D v (), v (D) T 5 Q) = (e, 0, (1),0,()) T

where the superscript '"T" denotes transpose operation on vectors and matrices. The

linear velocity of the hand with respect to the reference frame is equal to the time

derivative of the position of the hand:
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- dp(t) - (4)
v(t) = gt - p(t)
Since the inverse of a direction cosine matrix is equivalent to its transpose, the
Instantaneous angular velocities of the hand coordinate frame about the principal

axes of the reference frame can be obtained from (2) as (see [21]):

oR’ dR 0 o o
R _ _9Bpr. -
R p dtn Wy o Wy
0 ~SBa+y -SyCPA-Cyf
=| Sfa-7y | 0 _ CyCBa-SyB
SyCBa +CyB —CyCBa +Svyp 0

From the above equation, the relation between the (wx,wy,wz)r and (clx,ﬁ,'})r can

be found by equating the non-zero elements in the matrices:

wx| [-cycp sy o

¢ (6)
y|=|-SyCB -Cy O B
w2 SB 0 -1 |y
I1ts Inverse relation can be found easily:
a -y -Sy 0 | |ox
gl=8secpf {SyCB —-CyCB O Wy
Y ~CySg ~SySg —-Cfl |w,
(7
Or

. A
a0 = w| o
Based on the moving coordinate frame concept [17], the linear and angular velo-

clties of the hand can be obtained from the velocities of the lower joints:

v(t) . '
0(t) = [-I(Q)]Q(t) = [J1 o, m o, dg | q(t) (8)
where &(t) =(q1, " ,qe) is the joint velocity vector of the manipulator, and J(q) is

a 6x6 matrix whose /" column vector J; can be found from (see [17]):
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Z/1 X(P — Pj~1) . _
z,_q ] ; If joint | is rotational (9)
J, =
Zi-1 ; If joint i Is translational
0

where x Indicates cross product, p;_, is the position of the origin of the (i1 )" coor-
dinate frame with respect to the reference frame, z,_4 is the unit vector along the
axis of motion of joint /, and p Is the position of the hand with respect to the refer-
ence coordinate frame. (8) is the basis of resolved motion rate control [8]-[9], and

J(q) is the Jacobian matrix.

The accelerations of the hand can be obtained by taking the time derivative of

the velocity vector in (8):

Kn(z)] = [d(@) Ja(®) + [H(@) Ja@®) (10)

where q(t) = (g7, - ,qs) is the joint acceleration vector of the manipulator.

If the Inverse Jacobian matrix exists at q(t), then the joint velocities c';(t) of the

manipulator can be computed from the hand velocities using (8):

v(t)
q(t) =[J™ (Q)] [Q(t)] (11)
Using (8) and (11), (10) can be expressed as:
v(t) )
[Q(t)] = [H@) 1[4 (@) ] [Q(t)] + [J(q) Jq(t) (12)

and the joint accelerations q(t) can be computed from the hand velocities and

accelerations as:

v(t) v(t)
Q) = [J~ (@]} Ot ~ Y@ HDI[I (] Q(t)

The above kinematic relations between the joint coordinates and the Cartesian

(13)

coordinates will be used in the next section to derive the equations of motion of the

manipulator hand in Cartesian coordinates.
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3. Equations of Motion of the Manipulator Hand

The dynamics of a six-joint manipulator can be derived either by Lagrange-Euler
[1]-[3]), [16] or Newton-Euler formulations [17], [16]. The resulting equations of
motion are highly nonlinear and consist of inertia loading, coupling reaction forces
(Coriolis and centrifugal) among the various joints, and gravity loading effects. In
general, the Lagrange-Euler equations of motion of a six-joint manipulator, excluding
the actuator dynamics, gear friction and backlash, can be expressed in vector matrix
notation as [16]:

D(q) a(®) + H(q,q) + G (@) = 7(D) (14)
where 7(t) Is a 6x1 applied torque vector for joint actuators, q is the angular posi-
tions, q is the angular velocities, ii(t) is a 8x1 Joint acceleration vector, G(q) is a
6x1 gravitational force vector, H(q,&) is a 6Xx1 Coriolls and centrifugal force vector,

and D(q) is a 6x6 acceleration-related matrix.

Since D(q) is always nonsingular, q(t) can be obtained from (14) and substituted

into (12) to obtain the accelerations of the manipulator hand:

v(t) . v(t) .
hol = L@@ [y + [H@ D~ @) - H(a,® - 6@ | 1O

For convenience, let us partition J(q), J“‘(q), and D“’(q) into 3x3 submatrices

and H(q, q), G(g), and 7(t) into 3x1 submatrices:

Jdi2 K11

A Ji1 | A A | Kiz 16
Q| = |~ | —_ ; —1( ) = . ' L
Pq] Ja1 | Jaz [J q] [K] K21 | Kz
Evs | E H .
@] 221 1 2L b)) s few] 2 ] ]2
P21 ' E22 H; G2 T2

Using (16)-(17), (16) can be expressed as:
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v(t) J11Kq1 + J12Kz1 J11Kq2 + J12K22 v(t)]
Q)] ~ |321Kq1 + J22K21 J21Kqz + J22Kz2| [0

(18)

~Hy -Gy + 74

J11Eqq +Jd12E21 J11Eq2 + Jq2E3
+ ~Hz - G2 + 72

J21Eq1 + J22E21 J21Eq2 + J22E22

Combining (4), (7) and (18), we can obtain the state equations of the manipulator

hand in Cartesian coordinates:

. 1 -
p] [o o | lox3 0 p(O)
sw| |o o | 0 M a(t)
I T _—
‘:'(t) 0 0 | J91Kqq +d12Kzq dy1Kqz + J12Kpp| |V(D 19)
O] {0 0 | J2iKir + 22Kzt J21Kaz + J22Kaz e
0 o] ]
0o 0 - Hy -Gy + 74

J11E12 + Ji2E2| [-H2 — G2 + 72
J21E12 + J22E22

J11Eqq + Jq2E24
J21E11 + J22E21

+
|
1
I
|
i
i

(19) is the state equations of the manipulator hand and will be used later to derive

an adaptive control scheme in Cartesian coordinates.

4, Resolved Motion Adaptive Control Formulation

Defining the state vector for the manipulator hand as:

x(t) i (x1,%2, "+ ,x12) 7
=(vaPy»pz:asﬁs')’»Vx:VysVz-wxawyaf"z)T (20)
g(pr’ér’vr’nrjr

and the Input torque vector as:

A A
U(t)=(‘r1,"',Te)T=(U1."',Us)T (21)
(19) can be expressed in state space representation as:
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x(t) = £( x(t),u(t),t) (22)
wheare x(t) € R2", u(t) € R", t € R*, #(*) : R%2" x R" x R* - R?" and continuously dif-
ferentiable, and n = 6 Is the number of degree of freedom of the manipulator. (22)

can be expressed explicitly as:

)'(1 = f1(x,u,t) = x;
X2 = f2(x,u,t) = xa .
X3 = fa(x,u,t) = xg

)'ra = fa(x,u,t) = —secxg(x10Cxg + X11Sxg) (23)

xg = f5(x,u,t) = secxs(xq0Cx58xg — X11Cx5Cxg)

xg = fg(x,u,t) = —secxs(x10Sx5Cxg + X118X5S8xg + X12Cx5)
X146 = 1146(X,u,t) = g116(X) X + by 46 (X) B(X) + bjye(Xu(t) ; i=1, -+ ,6
where g, ,.5(x) is the (i+86 )" row of the matrix:

o 0 | a3 0 ’
o 0 | 0 M

—— —— I S ————

0 O | Ji1Kqq + d92Kz1 J11Kq2 + J12K22
0 0 | Jz1Kyq + J22Kzy J21Kq2 + J22K22 |
and b, ,g(x) is the (/+6 )™ row of the matrix:

o

J11Eq1 + Jq12E24 J11Eq2 + J12E22
Jz21Eqq1 + Jp2Ep, J21Eq2 + J2E22

and

- Hq(x) — G1(x)
plx) = | —————-
~ Hz2(x) — G2(x)

With this formulation, the control problem is to find a feedback control law
u(t) = g(x(t)) such that the closed loop manipulator hand control system
x(8) = #(x(2), g(x(t)),t) Is asymptotically stable and tracks a desired hand trajec-

tory as closely as possible over a wide range of payloads for all times.
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4.1, Perturbation Equations of Motion

Equation (23) describes the complete manipulator hand dynamics, the desired
joint torques for each hand trajectory set point
(p? (D), 89 (1), v (1), 0% (©) ,\.Id ), (.)d (t)) can be computed (in open-loop fashion) quite
accurately as follows: (I) The hand trajectory set points are resolved into a set of
values of desired joint positions, velocities and accelerations, (ii) The desired joint
torques along the hand trajectory are computed from the Newton-Euler equations of
motion [17] using the computed sets of values of joint positions, velocities and
accelerations. These computed‘torques constitute the nominal torque values. Using
the Taylor series expansion on (23) about the nominal hand trajectory, the associ-
ated linearized perturbation model for this control system can be obtained:

6x(t) = F(t) 6x(t) + L(t) Su(t) (24)
where F()=V,f |, and L(t)=V,f|,, are the system parameters and are equivalent to
the gradients of f( x(t), u(t), t ) evaluated at the nominal states, x,(t), and inputs,
u,(t), respectively, x(t) = x(t) — x,(t), and Su(t) = u(t) — u,(t). F(t) and L(t) are

functionally defined by:

Fi1 | F12 o ] o (25)
FO)=|-— | ——=| ; LW =|-— | —-
F21 | F2 L2t | L2z
where the submatrices are found explicitly as:
0O 000 O 0 1 100 (o) 0 0
0O00O0 O 0 010 0 0 0 (26)
F 0O00O0 O 0] F 0 0 1 0 0] 0
"= afy ofy | 3 F12 % 8fs  Bfg
0000 — — 000 4]
Oxs Oxg Ox10 Bx11
ofs ofs 8fs  ofs
0O 000 — — 000 — 0
Oxs Oxg Ox1o 0Ox14
or of f f f
0000 = 2% 000 o O s
Oxg Oxg L Oxi10 Oxq11 Oxq2
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of, of;  ofy | af;  of; of7
x4 0x2 Oxg Ox; Oxg Oxq2
ofg ofg i (27)
6x1 Oxz
F21 ; Fa2 =
0142 ofq2 0f 42 . 0f 42
{ 8X1 8)(5 | 6X7 aX12
[ of, ofy; ofs ] [ or, of, of; ]
duy Oupz Buz dug; Oug Oug (28)
= . i Loz =
8f12 0f12 0fq 8f12 Bf12 842
601 602 3U3 | 604 dug 303 ]

F(t) and L(t) are slowly time-varying and depend on the instantaneous manipulator
hand position and velocity. The design of a feedback control law for the perturbation
equations requires that the system parameters of (24) be known at all times. Thus
parameter identification techniques must be used to identify the unknown elements in

F(t) and L(t).

As a result of this formulation, the control problem is reduced to determining
du(t) which drives éx(t) to zero at all times. In other words, the position/orientation
and velocity errors of the hand along the preplanned hand trajectory are minimized.
The controlled system is characterized by a feedforward component and a feedback
component. The feedforward component computes the nominal joint torques u,(t)
from the Newton-Euler equations of motion and the feedback component computes
the variational joint torques du(t). The main advantages of this formulation are two-
fold. Firstly it reduces a nonlinear control problem to a linear control problem about a
nominal hand trajectory, and secondly the computations of the nominal and variational
joint torques can be performed separately and simultaneously. The proposed

resolved motion adaptive control block diagram Is shown in Figure 2.
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4.2, Parameter ldentification and Control of the Linearized Perturbation System

For Implementation on digital computer, (24) needs to be discretized to obtain
the following discrete-time linear equations appropriate for parameter identification:
X((k+1)T)=A(KT ) x(kT) + B(KT) u(kT) ; k=0,1, --- (29)
where 7 is the sampling period, u(kT) € R" is a plecewise constant control input vec-
tor of u(t) over the time interval between any two consecutive sampling instants for
KT <t < (k+1)T, and x(kT) € R?" is a perturbed state vector which is given by:

KT
X(KT) = O(KT ,2,) x(to) + [ OCKT,t)L(t)u(t)at (30)

t
where B(kT,t,) Is the state-transition matrfx of the system. A(AT) and B(KT) are
respectively 2nx2n and 2nxn matrices and are given by:

A(KT) = O((k+1)T,kT) (31)
and

(k+1)T
B(KT)u(kT) = k/,'@((k+1)T,t)L(t)u(t)dt (82)

With this model, a maximum of 6n? (or 216) parameters need to be identified.

Without confusion, the sampling period T will be dropped from the above equations for

clarity.

In order to simplify the identification algorithm‘ for real-time applications, a recur-
sive least square parameter identification scheme is used. In the parameter identifi-
cation scheme, we make the following assumptions: 1) The parameters of the system
are slowly time~varying but the varlation speed is slower than the adaptation speed,
2) Measurement noise is negligible, and 3) The state variables x(k) of (29) are

measurable.

Defining and putting the i*" row of the unknown system parameters in (29) at

the k! instant of time in a vector as:

Sk = (a1(K), - = =, a;5(K), by1(K), * + =, byp(K) y ~ (883)
where p = 12 and n = B8, and the outputs and inputs at the k" instant of time in a
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vector as:

ek = (xq(K), = =, Xxp(K), ug (KD, = =+, up(K) )T (34)
and the state vector at the k! instant of time as:

x(K) = (x1Ck), ==, xp(K))T = (X, == = xpu ) (35)
(28) can be rawritten as follow:

Xike1 = ok s 1=1,2,--+2n. (36)
where x..1 Is the /" state variable at the (k+1)¥" sampling instant.

Based on the input-output relation in (36), a recursive least squares parameter

identification algorithm can be found to be [19]:

Bius1 = Bk — Pugk [okPro + 11" [okBik — xie1] 5 1=1,2, -+ ,2n @7
a7
Pis1 = [Pk — Pk [phPupk + r17 pkPd r™' 5 O0<r=1

where "hat‘fis used to indicate the estimate of the parameters and Py is a 3nx3n
symmetric positive definite matrix. Py =r[ ¥, ¥/ 1~' and Vi =[p1sp2, " 5ol is
the measurement matrix up to the Kth sampling Instant, if input-output data are used
to identify the system parameters non-recursively. The Py matrix has the similar
effact as the error covariance matrix in stochastic identification with zero mean

modeling error.

The estimate of the parameters J;.41 at the (k+1)¥ sampling period is equal to
the previous estimate @;k corrected by the term proportional to ;akT'ﬁ,k - Xik+1- The
@/ Bk Is the prediction of the value x;,,¢. The parameter r is a weighting factor and
is commonly used for tracking slowly time-varying parameters. If r < 1, a large
welghting factor is placed on the more recent sampled data by rapldly weighing out
the previous samples. We can compromise between fast adaptation capabilities and

loss of accuracy in parameter identification by adjusting the welghting factor r.

With the determination of A(kK) and B(k) from the parameter identification
scheme, proper control laws can be desighed to obtain the required correction

torques to reduce the position/orientation and velocity errors of the manipulator hand
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along a nominal hand trajectory. This can be done by finding an optimal control, u*(k),

which minimizes the performance index, J(k), while satisfying the constraints of (29):

J(K) = —12-[x7(k+1)0x(k+1) + u’ (K)Ru(k) ] (38)
where Q is a 2nx2n semi-positive definite weighting matrix and R is an nxn positive
definite welghting matrix. The one-stage performance Index in (38) indicates that
the objective of the optimal control is to drive the position/orientation and velocity
errors of the manipulator hand to zero along the nominal hand trajectory in a coordi-
nated position and rate control per interval step, while at the same time, a cost is
attached to the use of control efforts. The optimal control solution which minimizes
the functional in (38) subject to the constraints of (29) is well-known and is found
to be [20]:

~T -~ -1.7 ~
u'(k) = —=|R + B (K)QB(K) | B (k) QA(K) x(k) (39)

-~ ~

where A(k) and B(k) are the system parameters obtained from the identification algo-

rithm at the k*” sampling Instant.

The above identification and control algorithms in (37) and (39) do not require
complex computations. 1n (37), (gplPkc,ok + r) glves a scalar value which simplifies its
inversion. Although the welghting factor r can be adjusted for each i*" state variable
as desired, this requires excessive computations in the Py, matrix. For real-time
rbbot arm control, such adjustment is not desirable. Py, is computed only once at
each sampling time using the same weighting factor r. Moreover, since Py is a sym-
metric positive definite matrix, only the upper diagonal matrix of Py needs to be com-
puted. The computational requirements of the identification and control algorithms for

a six-joint manipulator is tabulated in Table 1.

5. Computational Complexity of the Adaptive Control

The overall adaptive control system is characterized by a feedforward com-

ponent and a feedback component. Such formulation has the advantage of employing
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parallei computation schemes In computing these components. A feasibility study of
Implementing the adaptive controller using present day low-cost microprocessors is
conducted by looking at the computational requirements In terms of mathematical mul-
tiplication and addition operations. The study assumes that multi-processors are

avallable for parallel computation of the proposed controller.

6.1. Computations of Fesedforward Control Component

The feedforward component which computes the nominal joint torques along a
desired hand trajectory can be computed serially in four separate stages. The first
three stages resolve the preplanned hand trajectory set points
(p? (), 8% @),v (), 0% (), v (t),(.)d(t)) into a set of values of desired joint posi-
tions, velocities and accelerations. The first stage involves the computations of the
inverse kinematics solution routine. The second stage involves the computation of
the inverse of the 8x6 Jacobian matrix which can be computed using the methods

stated in [22].

The third stage utilizes the computed joint positions and velocities from the pre-
vious stages to compute the desired joint accelerations from the hand accelerations.
Iin this stage, the time derivative of the Jacobian matrix is computed by first-order
approximation. Finally the forth stage utilizes the computed values of joint positions,
velocities, and accelerations from the previous stages to compute the nominal joint
torques along the desired hand trajectory using the Newton-Euler equations of motion
[17]. Computational requirements in term of multiplications and additions for the
feedforward component are tabulated in Table 1. It requires a total of 1341 multipli-

cations and 973 additions.

6.2. Computations of Feedback Control Component

The feedback control component which computes the variational joint torques

can be conveniently computed serially in three separate stages.. The first stage
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computes the actual manipulator hand position and velocity from the measured values
of joint position and velocity. It involves the computations of: (i) The direct kinemat-
ics routine, (ii) The 8x6 Jacobian matrix which can be computed using (9). The above
computations can be performed In parallel and the maximum number of mathematical

operations is taken as the time requirement for this stage.

The second stage involves the computations of: (i) The hand position and velo-
clty errors which represent the deviations of the actual hand position and velocity
from the preplanned hand trajectory, and (ii) The least square identification scheme
for the linearized perturbation system. The third stage involves the computatioh of
the dead-beat controller for the linearized system utilizing the parameters identified
in the previous stage. Computational requirements for the feedback component are
listed in Table 1. It requires about 3427 muitiplications and 3037 additions. Since
the feedforward and feedback components can be computed in parallel, the proposed
adaptive controller requires a total of 3427 multiplications and 3037 additions in

each sampling period.

Based on the specification sheet of INTEL 8087 microprocessor, an integer mul-
tiply requires 19 us, an addition requires 17 us, and a memory fetch or store requires
9 us, the proposed controller can be computed in about 175 ms which is not fast
enough for closing the servo loop. Similarly looking at the specification sheet of PDP
11/456 computer, an integer muitiply requires 3.3 us, an addition requires 300 ns, and
a memory fetch or store requires 450 ns, the proposed controller can be computed in
about 18 ms which translates to approximately a sampling frequency of 66 Hz. How-
ever, the PDP 11/45 is a uniprocessor machine and parallel computation assumption
is not valid. But it does give us an indication of the required processing speed of the
microprocessors. We anticipate that faster microprocessors will be just around the

corner that will be able to compute the proposed adaptive controller within 10 ms.
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6. Conclusion

A resolved motion adaptive control based on the perturbation theory has been
presented with an analysis of computational requirements for implementation. The
adaptive control system Is characterized by a feedforward component and a feed-
back component. The feedforward componen.t computes the nominal joint torques
u,(t) from the Newton-Euler equations of motion using the resolved joint information,
and the feedback component consisting of recursive least square identification and
control algorithms for the linearized system computes the variational joint torques
6u(t). Since the computations of the nominal and variational torques can be per-
formed in paraliel, the computations of the adaptive control for a six-joint robot arm
may be Implemented in low-cost microprocessors. Present day microprocessors still
do not have the required speed to compute the proposed controller within 10 ms.
This may be changing in the next year or two. The above analysis presented an ideal
system study because it neglected such nonlinear effects as gear friction and back-
lash. The physical implementation of the proposed adaptive control may require
further investigation on the effects of gear friction, backlash, control device dynam-

ics, and flexible link structure to the controller.
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Adaptive Number of Number of
Controller Multiplications | Additions
L=m==—--____ T =
stage 1 Compute q? (Inverse Kinematics) 39 32
stage 2 Compute q7 (Eq. 11) 516 242
stage 3 Compute q° ( Eq. 13 ) 108 102
stage 4 Compute 7 ( see [16] ) 678 597
Total Feedforward Computations 1341 973
F
Compute (p"37) (Eqs. 1 & 2) 48 22
stage 1 Compute (v'07) (Eqs. 8 & 9) 168 138
Compute Hand Errors (x(k) — x,(k)) 12
stage 2 and + +
Identification Scheme ( Eq. 37 ) 1111 1097
stage 3 | Compute Dead-beat Controller ( Eq, 39 ) 2148 1790
Total Feedback Computations 3427 3037
Total
Mathematical Operations 3427 3037
Table 1 Parallel Computations of the Proposed Adaptive Controller
For a Six~Joint Manipulator
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Figure 1 Hand and Reference Coordinate Frames
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Figure 2 Proposed Resolved Motion Adaptive Control
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