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Abstract

The dynamic performance of computer-controlled manipulators is directly linked
to the formulation of the dynamic model of manipulators and its corresponding control
law. Various formulations are available to describe the dynamic models of mechanical
manipulators and most notable of these are the Lagrange-Euler and the Newton-Euler

formulations. This report describes An efficient position plus derivative control in the

Joint Variable space for a PUMA" robot arm whose dynamic equations of motion are
formulated by the Newton-Euler method. The recursive controller compensates the
inertia ioading, the nonlinear coupling reaction forces between joints and the gravity
logdlng effects. Using a PDP 11/46 computer, the controller equations can be com-
puted within 8 ms, which is sufficient for real-time control. Computer simulation of

the performance of the control law is included for discussion.

* PUMA Is a trademark of Unimation inc.
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1. Introduction

A mechanical manipulator can be modeled as an open-loop articulated chain
with several rigid bodies (links) connected in series by either revolute or prismatic
Jjoints. Oné end of the chain is attached to a supporting base while the other end is
free and attached with a tool (the end-effector) to manipulate objects or perform

assembly tasks. The motion of the joints result in relative motion of the links.

The purpose of manipulator control is to maintain the dynamical response of an
electromechanical manipulator in accordance with some pre-specified system per-
formance and desired goals. In general, the control problem consists of (i) obtaining
dynamic models of the physical system and (ii) specifying corresponding control
laws or strategies to achieve the desired system response and performance. This
report deals with the second part of the control problem of computer-controlied

manipulators, and in particular, the PUMA robot arm.

A priori information needed for control is a set of differential equations describ-
ing the dynamic behavior of the manipulator. Though various approaches are avail-
ablé to formulate the robot arm dynamics such as the LagranQe-Euler [UicB5], the
"Recursive-Lagrange’ [Hol80], the Newton-Euler [LWP80], the Lagrange form of
D'Alembert Principle [LLN82], and more recently the "Gibbs-Appell" [HoT80] formula-
tion, two main approaches remain to be used by most researchers to systematically
derive the dynamic model of the manipulator - the Lagrange-Euler and the Newton-
Euler formulations. After obtaining the dynamic equations of motion of the manipula-
tor, a suitable control law must be designed to compute the necessary feedback
torques/forces to actuate the joints for every set point ( 19",13",5" ) in a pre-planned
trajectory. Bejczy [Bej74] based on the Lagrangian formulation has shown that the
dynamic equations of motion for a 6-jointed manipulator are highly nonlinear and
vconsists' of inertia loading, coupling reaction forces between joints and gravity load-

ing Veffects. Hence, the control law must be designed to compensate all these non-

Robot Systems Division Introduction
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linear effects. A position plus derivative control based on the computed torque
technique has been used previously to servo a Stanford arm [Mar73] whose
dynamic equations of motion are formulated by the Lagrange-Euler approach. How-
ever, the dynamic equations of motion as formulated by the Lagrange-Euler method
have been shown to be computationally inefficient [TML80,Pau72], and real-time
control based on the 'complete' dynamic model has been found difficult to achieve if
not impossible [Pau72]. A simple control law in joint space which compensates the
Inertia loading, the coupling reaction forces between joints and thé gravity loading is
shown through the "Equivalence Formulation” [TML80,LCT82] to have the same con-
trol effects as the one obtained by the computed torque technique. This control law
is Ibased on the dynamic equations.of motion formulated by the Newton-Euler
method. Computer simulation of the performance of the proposed control law for a

PUMA robot arm on a VAX-11/780 computer shows the expected resulit.

In the following sections, vectors are represented in boldface lower case

alphabets while matrices are in boldface upper case alphabets.

2, Kinematics and Notation for Manipulators

A mechanical manipulator consists of a sequence of rigid bodies, called links,
connected by either revolute or prismatic joints. Each pair of joint-link consﬁtutes
one degree of freedom. Hence for an n degree~of-freedom manipulator, there are n
pairs of joint-link with link O attached to a supporting base wheré an inertial coordi-
nate frame is established. In order to describe the translational and rotational rela-
tionship between adjacent links, a Denavit-Hartenberg matrix representation for
each link is used [DeH565] and shown in Figure 1. From Figure 1, an orthonormal
coordinate frame system ( x;y;,2;, ) is assigned to the ith link, where the z; axis
passes through the axis of motion of joint i+1, and the x; axis is normal to the z;_4
axis, while the y; axis completes the right hand rule. With this orthonormal coordi-

nate frame, link i is characterized by two parameters: &, the common normal

Robot Systems Division Kinematics
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distance between the 2z;_1 and 2; axes, and ¢;, the twist angle measured between
the z;,_1 and z; axes in a plane perpendicular to a;; and joint | which connects link i-
1 to link i is characterized by a distance parameter d; measured between the x;_4
and x; axes and a revolute joint variable %; which is between the normals and meas-
ured in a plane normal to the joint axis. If joint i is prismatic, then it is characterized
by an angle parameter J; and a joint variable d;. With the coordinate frames esta-
blished for adjacent links (link i and link i-1), one can relate the relationship between
the adjacent coordinate frames (it" and i-1%" frames) by pérforming the following
four operations (see Figure 1): (a) Rotate an angle of +¥; about the z;_; axis ( the
X;—1 and x; axes are allgned ). (b) Translate a distance of d; along the z,_; axis (
the x,;—1 and x,; axes are coincident ). (c) Transiate a distance of a; along the x;

axis ( the two origins are coincident ). (d) Rotate an angle of o about the x; axis.

Z, -2

Joint i+1

Y)-1 \

Figure 1 Parameters of a Link Coordinate System

Joint j-1

Robot Systems Division Kinematics
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These four operations may be expressed by a 4 x 4 homogeneous coordinate

transformation matrix as:

cos¥; —cos o siny; sing;sing; a cos Y

sin¥; cosq;cosd¥ ~—sino; cos; a sin Y (2.1)
T/ = o sin o cos o d;
0 0 ) 1
R/-1 P/ _ (2.2)
{0 1

The upper left 3x3 submatrix of T,’_1 is called the rotation matrix R/_; while the
upper right 3x1 vector is called the position vector p,’_1 . One can view the rotation
matrix R,’_1 as a transformation matrix which maps a vector r;=(x,y, z 7
expressed in the i*" coordinate frame into the (i—1 )" coordinate frame with both
origins coincided at one point, and the po,s'ition vector as the displacement vector of

the origin of the i coordinate frame from the origin of the (i—1)* coordinate frame.

The above kinematics relationship between adjacent links will be used in the
following sections to derive the dynamic equations of motion and show the
equivalence of the two controllers based on the two most popular arm dynamics for-

mulations.

3. Dynamics of Manipulators

The dynamic equations of motion for a PUMA robot arm can be obtained from
known physical laws (Newtonian and Lagrangian mechanics) and physical measure-
ments (link inertias and geometric parameters). The actual derivation is based oh
the Lagrangian/Newtonian formulation applied to open articulated chains
represented in Denavit-Hartenberg matrix notation form. The equations of motion for

a six-jointed manipulatof have been derived previously by Bejczy[Bej74],

Robot Svstems Division Dyramics



RSD-TR5-82
Paul[Pau72] and Uicker[Uic65] using the Lagrangian generalized coordinates. The

equations of motion derived from the Lagrangian and Newtonian formulations will be
briefly presented here.

3.1. Lagrange-Euler Formuiation

Consider a position wvector expressed in homogeneous coordinates,
p=(xy, 2z 1)T, which points from the base coordinate system to a differential

mass, dm, located in the # link. p can be written as:
P=Tir,, and r,=0q,y,2,1)

(3.1)

where r; is the position of the differential mass dm represented in the
frame. '

it" coordinate

The velocity of this differential mass with respect to the base coordinate
frame ( an inertial frame ) is:

I arl.
(9P iy 970 o
Vo= dt LZ 1’]

. - (3.2)
2 59, r; ; fori=1,2,..n
The associated kinetic energy dK; is -szr( vf,(vé)r)dm which equals:
T
1 4 Lo farh o [aTd] . . (3.3)
aK; = — Tri—r dm|—1 Y :
' 2.@1:‘; r{aﬂj Y am| o) ok

When each link Is integrated over its entire mass and the kinetic energies of all
links are summed, we have:

KE. = ;231 faK, = ’g {%Tr{'zlj }l] ET—"TJ [91"1]7{9;&]}

where J, is defined as:

(3.4)

Robot Systems Division

Lagrange-Euler Formulation
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yy''zz 2 - = —- = —_
== +rem, FTymy T\ T2y Ty

- lax—lyy+lzz o - -

FyFxmy ———— +Tym FyFzmy Fymy

Jf =
LexHyy—1
P fr— yy ‘2z  _2 —
Fxm, Fym, sz, m;

The total potential energy of the arm is the sum of the potential energy of
each link expressed in the base coordinate frame:
8

8
PE. = 2 P, = 2 —m,gT[,F, (3.5)
1=1 i=1

where

¥; is the position vector of the center of mass of link | expressed in the ith

coordinate frame.
g is the gravity row vector = (gx,9y,9;,0) and | g | = 9.8062m/ s?

Applying the Lagrange-Euler equations of motion to the Lagrangian function
L = K.E. — P.E., we obtain the necessary generalized torque 7, for joint i to drive

the it" link of the arm:

T
_dfaL) a _8 aTs  [aTs
Tl—d‘[ﬁ] o0 2 1§T {31’1 Koo
(3.6)
86 mm [g2T0 (o1l T].. 8 oT4 |
+ Tr J Y%k — ), mjg——¥; ; fori=1,2,..,6
,2,,@,2; {aqs,-aqsk m\gs, | [ Ik ,E:, 1955, T

Because of its matrix structure, this formulation is appealing from a control

viewpoint in that it gives a set of closed form differential equations as:
D(9)3 + H(8,D) + G(3) = 7 (3.7)

where:

Robot Systems Division Lagrange=-Euler Formulation
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D(8) = a 6x8 inertia acceleration matrix

8 at{ [o1i)
Dik= Y Tf{——°J,- ——°” s for ik=1,2,....8 (3.8)
J=max(l k) B9 oY%

H(3, '0) = a 6x1 nonlinear Coriolis and Centrifugal vector

8 214 [aTi ]’] . (3.9)
H = Tr Jd; ; for k,m=1,2,...,6 °
fhm 1=ma§r,k,m) {a«akaﬂ,,, ! [a«s, o

G(?) = a 6x1 gravity loading vector of the links

8 o1
G =~-Ym g—F; ;fori=1,2,..8 (3.10)
' }z=:l i 9%,

9= ,9, -, %)
B= (%, %, -, %)
B=C, B, 00 %)
T = (11,72 ,73 +T4 s75 ,Te)|

= external applied torques for the joints

This form provides more Insight to the coupling effects between joints and to
designing a control law that compensates all these nonlinear effects easily. Com-
putationally, however, the Lagrangian formulation is extremely inefficient as com-

pared with other formulations.

3.2. Newton-Euler Formulation

The Newton-Euler equations of motion of a manipulator consist of a set of
compact forward and backward recursive equations. The most significant of this
formulation is the computation time of the applied torques could be reduced tremen-

dously so that real-time open-loop control is possible. A brief derivation of the

Robot Systems Division Newton-EuIer Formulation
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formulation based on [LWP80] is presented here for completeness.

The forward recursive equations propagate linear velocity, linear acceleration,
angular velocity, angular acceleration, total link forces and moments from the base
to the end-effector of the manipulator. For manipulators having all the rotary

Joints, these equations are:

Forward Equations: /i = 1,2, - ,n

w = R (w1 + 2o®) (3.11)
o = R [ay—1 + 2% + wy_q X Zo8] (3.12)
a =oyXr+ WX [w, x r,] +R/=1a,_, (3.13)
A=y XF+wx[wxXF]+a (3.14)
F; = m3 (3.15)
Ny = Loy + o X Loy (3.18)

The backward recursive equations of motion propagate, from the end-effector to

the base of the manipulator, the forces and moments exerted on link i by link i-1.

Backward Equations: i = n,n-1,---,1

£, =R/*'f + F (38.17)
n = R/”n,+1 +r Xt +(n+7)XF +N; (3.18)
T1=n[(R[~"z,) (3.19)

with the "usual" initial conditions of wo = 0,85 = g2 ,00 =0, g = 9.8062m/ s2,

fan+1 = external force exerted on the hand and n,;1 = external moment exerted

Robot Systems Division Newton-Euler Formulation
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on the hand.
where:
R/ =1 = the rotation matrix which transforms a vector from its representation in
the i—1* coordinate system to its equivalent in the i*" coordinate system.
w; = the angular velocity of link i with respect to the it" coordinate system.

«; = the angular acceleration of link i with respect to the it" coordinate sys-

tem.

r; = the position vector of the origin of the i—1% frame with respect to the it

coordinate system.

¥, = the position vector of the center of mass of link i with respect to the i

coordinate system.

a; = the linear acceleration vector of link | with respect to the it" coordinate

system.

@& = the linear acceleration vector of the center of mass of link i with respect

to the i coordinate system.

l; = the Inertia matrix about center of mass of link i with respect to the i*" coor-

dinate system.

F; = the total external force vector exerted on link i with respect to the i*"

coordinate system.

N; = the total external moment vector exerted on link i with respect to the ith

coordinate system.

f, = the force vector exerted on link i by link i-1 .
n; = the moment vector exerted on link i by link i-1 .
7; = the applied torque exerted on link i

Robot Systems Division Newtcn~Euler Formulation
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4. Computed Torque Technique Based on the Newton-Euler Formulations

Given the equations of motion of a manipulator as in Egs. (3.7)-(3.10)
(Lagrange-Euler formulation) or Egs. (3.11)-(3.19) (Newton-Euler formulation), the
control problem is to find appropriate feedback torques/forces to servo all the
joints of the manipulator in real-time to track a desired position trajectory as closely
as possible. Several methods are available in accomplishing this task. Most notably
of these are: (i) Resolved Motion Rate Control (RMRC)[Whi69], (ii) Cerebellar Model
Articulation Controller (CMAC)[AIb76], (iii)) Near-minimum-time control [KaB7 1], and

(iv) Computed torque technique [Mar73, Pau72].

| The RMRC is a technique for determining the joint angle rates required to éause
a manipulator end point (or tool) to move in the directions which are expressed in
the hand or world coordinate system. In order to find the required 1% the inverse
Jacobian matrix J(3¥)~! is required. One of the drawbacks of this method is the
added computation load needed to find the invérse Jacobian matrix and the singular-

ity problem associated with the matrix inversion.

The CMAC is a table look-up control method which based on neuro-physiological
theory. It computes control functions by referring to a table stored in the computer
memory rather than by solution of analytic equations. For useful applications several

problems such as memory size management and accuracy need to be solved.

Due to the nonlinearity and complexity of the dynamical model of manipulator, a
closed form solution of the optimal control is very difficult, if not impossible. Near-
minimum-time control is based on the linearization of the equations of motion about
the nominal trajectory and linear feedback and/or suboptimal control law are
obtained analytically. This control method is still too complex to be useful for mani-

pulators with four or more degree of freedom and furthermore it neglects the effect

of unknown external loads.

Bobot Systems Division Control Law
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One of the basic control schemes is the computed torque technique

[Pau72,Mar73] based on the Lagrange-Euler equations of motion.

The computed torque technique assumes that one can accurately compute the
counterparts of D(4), H(4, 9 , and G(¥) in Eq. (3.7) to minimize their nonlinear
effects and use a position plus derivative control to servo the joints [Pau72]. Thus
the structure of the control law has the form of:

7= DO F + KA - D + K87 = 9) | + HlB, B + Gu(®) (4.1)
where
- K, is an nxn derivative feedback gain matrix.
K, Is an nxn position feedback gain matrix.
n is the number of degree of freedom of a manipulator.
Substituting T from Eq. (4.1) into Eq. (3.7), we have:

D(9)8 + H(8,D + G(») = D.('d)[:t'f’ + K = + K7 - 19)]

k (4.2)
+ H (3, ) + Gx(F)

If DLYI), Ha(8, ), G(¥) are equal to D(B) , H(S , ¥ , G(3) respectively, then Eq.

(4.2) reduces to:

n(«s)['e' + Kee + K,,e] =0 (4.3)

wheree =99 —gande =9 — ¢

Since D(3) is always non~singular, if the values of K, and K, are chosen so that
the characteristic roots of Eq. (4.3) have negative real parts, then the position error

vector e approaches zero asymptotically.

However, the computation of the joint torques from Eq. (4.1) is very inefficient
if the dynamic model is based on the complete Lagrange-Euler equations of motion.

Because of this reason, it is 'c_:ommon to simplify Eq. (4.1) by neglecting the

RPobot Svstems Division Control Law
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velocity-related coupling term Ha(19,1§) and the off-diagonal elements of the
acceleration-related matrix D,(-3). That is, the structure of the control law has the

form of:
T = diag[ D) 1| ¥ + K(F — 9 + Ky(3? = 9) | + Go(8) (4.4)

in the next section we will show the effects of neglecting these terms when
the controller (as in Eq. (4.4)) is based on the simplified Lagrange-Euler equations of

motion.

In order to utilize the complete equations of motion, an analogous control law
derived from the computed torque based on the Newton-Euler equations of motion is
proposed. The analogous control law can be obtained by substituting '0, in Egs.

(3.11)-(3.19).

W + f:1 KLS(3E - B + 21 KLSCE = 3,
8= s= ,
or (4.5)

as n L ] n
9 + 21 Kifes + Y Kiseg

s=1

where K!® and K}f are the derivative and position feedback gains for joint i

respectively and e; = 99 — 13, is the position error for joint s.

The values of feedback gain matrices K, and K, can be determined systemati-

cally as follow:

If K, is a symmetric and semi-positive definite matrix and K, is a symmetric and
positive definite matrix, and the rank of |K, | KK, | --- | K{,’" K, | = n, then the

position error vector e approaches zero asymptotically.

[LCT82,TML80] show the equivalence of the proposed recursive controller and
the control law obtained by the computed torque technique based on the Lagrange-

Euler,equations of motion. Since the recursive controller is based on the complete

Robot Systems Division Control Law
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dynamic equations, it is expected that the performance of this controller is always
better than the controller based on the simplified Lagrange-Euler equations of

motion.

In the remaining of this section, the computational complexity of the proposed
recursive control law based on the Newton-Euler equations of motion and the analo-
gous control law obtained from the Lagrange-Euler equations of motion is tabulated.
Also the feasibility of the real time control of a PUMA robot arm using the recursive

controller is discussed.

As a mean of comparing their computational complexity, their efficiency is
determined based on the number of mathematical operations (multiplications and
additions) in terms of the number of joints of the robot arm, n . The number of
mathematical operations of some of the terms in both control laws may be slightlg}
different from other papers [TML80,Hol80] due to the method of implementation of

the control algorithms in programming.

In this study, the homogeneous transformation matrices T,'_1 are computed first
and then other relevant terms such as the velocity-related, the acceleration-related
and the gravity loading terms in the Lagrange-Euler equations of motion are com-
puted respectively. The number of mathematical operations of the control laws
based on these two formulations are tabulated in Table 1 and Table 2. In general,
for a six-jointed robot arm with rotary joints, the number of mathematical operations
in the control law as in Eq. (4.1) based on the Lagrangian formulation is about 100

times more than that of the Newton-Euler formulation.

Based on a PDP 11/45 computer and its manufacturer's specification sheet, an
ADD (integer addition) instruction requires 300 ns and ‘a MUL (integer multiply)
instruction requires 3.3 us. If we assume that for each ADD and MUL instruction, we
need to fetch data from the core memory and the memory cycle time is 450 ns, then

the proposed recursive control law based on the Newton-Euler equations of motion

Robot Systems Division Control Law
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Controller based on
Lagrange-Euler

Tj
ot
'"19;,;,7"1

n {6T",‘
k=max(l.j)

a2rm
Tr
89,89

oy

m=max(l j k)
‘.lid + K,,é + Kpe

T= D.('ad + Kje + Kze)
+ H (8 ,9) + G,,(ﬁ)

n a2ty (a1l
2o {a«s,a«sk""'[aﬂ, H

Multiplications

Ethetauvations of Motion
m

32n(n-1)

4n(9n-7)

1%-8-n(n+1 Wn+2)

%nz(n-ﬂ ¥n+2)

2n

n(n+2)

Additions

24n(n-1)

(51n-46)
"2

1
En(n—1)

%ﬁn(nn Xn+2)

1
-a—n(n—1 ¥Xn+1)

625 85 2(n+1)(n+2)

‘Enz(n—1 Y)n+1)

an

nP(n+1)

128 4 . 615 5
Total 3 nt+ 3 n 3 n B
Mathematical Operations + -8%)- 2 4 832 + 630 2 4 121

98 4 787 ,

where n = number of degree-of-freedom of the robot arm

Table 1 Breakdown of Mathematical Operations of the Controller

Based on Lagrange-Euler Formulation

Robot Systems Division
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Wy

xy

m

—

Controller based on
Newton=Euler
Ethetauations of Motion

I I —

 8f + Keeyr + Keey

Multiplications

on
on
27n
16n
3n
9(n-1)
24n
21n—-15

an

Total

Mathematical Operations

119n-24

Additions

n
Sn
22n

14n

o9n—6
18n
24n-156

4n

107n-21

where n = number of degree~of-freedom of the robot arm

Table 2 Breakdown of Mathematical Operations of the Controller

Based on Newton-Euler Formulation
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requires approximately 3 ms. to compute the necessary joints torques to servo all
the joints of a PUMA robot arm for a trajectory set point. This certainly is quite
acceptable for the time delay in the servo loop and thus allows one to perform real~
time feedback control on a PUMA robot arm with all its dynamics taken into con-

sideration.

8. Computer Simulation Results

This section discusses the computer simulation result of the proposed recursive
control law and compares it with that of the simplified Lagrange-Euler equation of

motion.

A computer simulation study to evaluate the performance of the above control
laws for a PUMA robot arm was carried out on a VAX-11/780 computer. In this simu-
lation, the six-jointed manipulator moves from an initial joint angles
Yiua =(0°, 45°, 46°, 0°, 0°,0°" to a  final joint | angles
Btina = (90°, —45° , 136°, 90° , 90°, 80°) . The required time for this motion is 1
second. In this trajectory, the PUMA robot arm is fully stretched at 0.5 seconds. At
this position, 9p 55ec = ( 45°, 0°, 80°, 45°, 45°, 45°), the torques due to the gravity
have the maximum values and the absolute values of joint velocity of the arm also
becomes the maximum. The accelerations are sharply changed from the maximum
values to the minimum values or vice versa. The sampling time is chosen to be 0.01

second.

The feedback gain matrices K, and K, of the control law are kept constant for
the whole motion execution to facilitate the comparison of both control laws. The
elements of K, and K, are assigned according to thé stability criterion as outlined in
Eq. (4.3). The principal diagonal elements of K, are assigned the value of 100 and
the diagonal elements of K, to 2 \/I?; = 20 . Again to simplify the comparison, all

the non-diagonal elements of K, and K, are zero which neglect the position and

Robot Systems Division Computer Simulation
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derivative error effects between joints.

With reference to the dynamic equations of motion as in Egs. (3.11) - (3.19)

and Eq. (3.6) the numerical values used in this simulation are:

dy = 0.664 meter

a8 = 0.432 meter

d> = 0.1495 meter

da = 0.432 meter

dg = 0.130 meter

m =[ 2.27, 15.91, 6.82, 3.18, 0.91, 0.45] Kg
daig 11 = [ 0.0071, 0.0267, 0.0267] Kg—meter>
daig I, = [ 0.1000, 0.7300, 0.8025] Kg—meter>
daig I3 = [ 0.0222, 0.2160, 0.2245] Kg—meter?
daig I = [ 0.0020, 0.0010, 0.0010] Kg—meter?
daig 15 = [ 0.0030, 0.0030, 0.0004] Kg—meter?
daig lg = [ 0.0050, 0.0050, 0.0003] Kg—meter?
ry =[ 0., —0.664, 0.J meter

r, = [ 0.432, 0., 0.1495] meter

r3 =[ 0., 0., 0.] meter

rs = [ 0., -0.432, 0.1 meter

Robot Systems Division Computer Simulation



RSD-TR5-82 19
rs =[ 0., 0., 0.] meter

re = [ 0., 0., 0.13] meter

F; =[ 0., 0,0.073] meter

2 =[ -0.432, 0, 0. meter

Fa=[0., o.,‘ 0.1Y meter

f2 =[ 0., 0, 0.1 meter

»=[-0,0, 6.01]7 meter

¥s = [ 0., 0., —0.05] meter

Figure 2 shows the flow-chart for the computer simulation program implementation.
Figures 3-5 show the preplanned position, velocity and acceleration trajectory for
Joint 1. In this simulation each link moves 90 degrees from its original position. It is
expected that velocity trajectory and acceleration trajectory for each joint are the

same as joint 1 except joint 2 whose trajectories are reversed.

Since the complete Lagrange-Euler equations of motion require long computa-
tional time, it is common to simplify the Lagrange-Euler equatlons of motion by
neglecting the off-diagonail terms in the acceleration-related matrix and the Coriolis
and centrifugal terms. Though the simplified Lagrange-Euler equations of motion has
an advantage for computational time, the neglected terms becomes significant when
the robot arm is moving at high speeds. In order to show the effects of neglecting
the off-diagonal elements of the acceleration-related term and the velocity-related
terms ( Coriolis and centrifugal ), the applied torques have been computed for the
following cases: (a) the Lagrange-Euler equations of motion with the off-diagonal
elements of the acceleratlon-related matrix set to zero, (b) the Lagrange-Euler

equatlons of motion W|thout the Corlohs and centnfugai terms and (¢) the

Robot Systems Division Compiiter Simulation
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Lagrange-Euler equations of motion with both the off-diagonal elements in the
acceleration-related matrix and the Coriolis and centrifugal terms set to zero. Fig-
ures 6-11 show the applied torques computed from the Newton-Euler equations of
motion and from the case (a). Figures 12-17 show the applied torques from ihe
Newton-Euler equations of motion and from the case (b). The applied torques from
the Newton-Euler equations of motion and from the case (c) are shown in Figures
18-23. For this particular motion through a given trajectory ( fast movement ), the
off-diagonal terms in the acceleration-related matrix are large and dominant. In
Joints 2,3,4 and 5, the differences between the applied torques computed from the
recursive control law and the simplified control law are large and as a result it is

expected to have large position errors in joints 2,3,4 and 5.

In Figures 24-41, the position errors between the two dynamic models, the
Newton-Euler equations of motion and the simplified Lagrange-Euler equations of
motion, are shown for each joint for various loading conditions. The recursive con-
troller based on the Newton-Euler equations of motion always shows better perfor-
mance for various loading conditions and various trajectories. Although the position
errors from the proposed control technique are slightly "oscillatory” about the
desired position set points, they are always small. The simulation results are tabu-

lated in Table 3.

Since the manipulator is a highly nonlinear and complex system, further
improvements in the performance of the control law can be done by using adaptive
feedback gains. Our future work will focus on finding proper adaptive control stra~

tegies for industrial robots whose loads are varying within a task cycle time

[LeC82].
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Simplified model

Complete model

==—_—_1—————______ == = ——
Various Trajectory Tracking Trajectory Tracking
Loading Joint | Max, Error | Max, Error | Max, Error | Max. Error

Conditions ( radian ) (mm) ( radian ) (mm)
1 0.0194 19.40 0.0040 4.00

, 2 0.0494 49.40 0.0070 7.00

No Load 3 0.1882 94.10 0.0101 6.07
4 0.4698 70.47 0.0062 0.94

6 0.2278 34.17 0.0010 0.16

6 0.0726 10.89 0.0039 0.59

1 0.0239 23.90. 0.0046 4.60

2 0.0748 74.80 0.0099 9.90

1/2 Max. Load 3 0.2438 121.75 0.0151 7.538
4 0.7565 113.47 0.0096 1.44

5 0.3056 45.84 0.0014 0.21

6 0.16086 24.08 0.0041 0.61

1 - 0.0261 26.10 0.0048 4.80

2 0.0954 956.54 0.0122 12.20

Max. Load 3 0.2812 140.60 0.0193 9.65
4 0.8752 131.28 0.0122 1.83

6 0.3523 62.85 0.0016 2.33

6 0.2131 31.97 0.0053 0.79

Table 3 Comparison of Control Method based on Two Dynamic Models

Robot Systems Division
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(1) Seti = O where i = i sampling period.
(2) Determine 89[i], *F[/] and ¥[i] from preplanned trajectory.
(8) Compute position and velocity errors.
e[/] = 99[I] - ¥[/]
e[/] = ¥[/] - ¥[/] |
(4) Determine error signals with K,, K, feedback gain matrices.

F[i] + Kee[i] + Kpe[i]

(6) Forward recursive equations in Newton-Euler formulation.

(6) Backward recursive equations in Newton-Euler formulation to determine the

applied torques T[/].

(7) Compute coefficients of hbot arm model using Lagrange-Euler formulation as in

Eq. (3.6).

(8) Integrate the dynamic equation of a PUMA arm derived from Lagrange-Euler for-
mulation using the 4™ order Runge-Kutta method. The outputs are ¥,[/] and
i1

(9) Seti =i+ 1 next sampling period.

(10)Is i = N ? ( Total of N sampling periods ). If yes, stop. Else go to step (2).

Figure 2 Flow-Chart of Computer Simulation for the Proposed Controller

Robot Systems Division Computer Simulation
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