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Flow markmgs in cave channqls are, dwmded mto scﬂllopﬂ - gy
irregular concavities - and the special case of flutes - regular, per10d1c,
para.l—lel crgsted. patterns transverse to, the flow direction. ;. It is shown
that flutes. arige under conditions,of lang periods of constantiflow.velacity
(solytion rate).and.that,all stable solution flutes have & universal profile;
downstream direction of propagation and Reynoldsinumber:of formatien:
A quantitative relation between flyte.period and fhow- vel-ocmyuus ;p,rca\pascd,

the permd bemg ms.rersel.y proportmnal to: velomtrga I e} serTio
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Scallop patterns appear to be prmamly dua to: vamable fbow con+t
ditions and are therefore less useful than flutes in estimating past flow
comditions -in: caves, except for flow direction.::.In both cases:flow mark-
ings are.only observed in channels carrying relatively rapid flow andcare
readily. obscured, remowved or prevented from formmg by-d: v,arlietwef
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Flow markmgs in- the form.of concawtms' : orrridges: pfredormn- 1
antly transverse to the flow direction, are known to be produced during '
the solution or erosion of submerged limestone surfaces in caves. They
are generally -known-in:England as “scallops' and.in America as'flutes",
but-have .also.been termed grooves, pockets;-ripples: and pits.: Similari '«
forme-produced by free~surface flow, producing:'valleys*paruallebto the
flow direction, are properly ‘{gr‘ooves"' or iapies grooving:' :Thei former:

variety are the subject!of this: study,;.” For the:moment! I* shaih .refer’ to-
a.ny E>£ th1s stype of . flowwma.rk:mg as ”sca.ld:ops't.. vgeden v 50 Tl TRAEEEE wof BOTLOEE S0
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Scalloped hmestone surfa.ces arebfcu.nd dn su.'rfa.ce strdams. as:well
as in caves, and were first rémarked upon«(liugeonyil915).as a mechanism
of surface stream erosion. .. This theme was-later tdken up.in more detail
by Maxson and: Campbeill. (1935):and again by .Maxson (1940). Bretz: (1942):
observed: the form-on:the floor) walls and: ceilings :of caves-and suggested
their use, now common, in determining the! diredtion of tave istream: flow.
This idea was developed in more detail by Coleman (1949), who suggested
the term ''scallop'. Scalloped surfaces have also been observed on surface
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ice and in ice caves (Sharp, 1947; Leighly, 1948).

The dominant form of scallops may be described as "interrupted
concavities', usually covering a surface in a pattern which, while
appearing largely random, exhibits a degree of uniformity in size, shape
and spacing. The observable complexity of the forms produced, depend-
ing on stream and surface configuration and other factors, led Maxson
and Campbell to classify flow markings into sweep, undulation, pocket,
spiral, pothole and fret flutes (scallops).

The ridges or crests between the concavities vary from sharp
to smooth. If a section is taken through crests which lie transverse to
the flow direction it is almost always found that the lee slope is steeper
than the streamward slope. This property provides an indication of
flow direction in cave passages no longer carrying streams. A less
common form of scallop possesses nearly parallel crests and a rela-
tively constant distance between crests. These appear to be a simpli-
fication of the irregular scallop pattern.

Abrasion of limestone by suspended sediments in a stream was
favored as the essential erosive agent by Maxson and Campbell and
Maxson, but Bretz and Coleman observed that scallops on the walls and
ceilings of cave passages often have chert and fragile silicified fossil
inclusions standing out in relief from the surface. Therefore solution
must also play a major part. That scallops are usually (though not
always) found on limestone supports this contention. It is more evident
in the scalloping of ice that solution (sublimation) or melting (Heat
Transfer) are the only factors.

All of these authors believed that the character of the flow is
primarily responsible for the sizes and forms of scallops, the rock or
ice character being secondary. It is generally affirmed that the flow
itself is turbulent and hence carries eddying or vortex currents.
Maxson suggested that the salient edges of the boulders in streams,
on which he found his examples of scallops, produced a turbulent wake
containing trailing vortices which eroded scallops, but he was unable
to explain the rough periodicity of the patterns. However he remarked
that, once formed, the scallops may "fix" the position of vortices
supplied by the turbulent flow. Maxson and Campbell give a figure
showing hypothetical attached vortices behind scallop crests. Bretz
and Coleman went further in suggesting self-stabilizing interaction of
vortices and scallops. Leighly suggested a rather different mechanism -
natural cellular convection - for scallops he observed on the ceiling of
ice shelters. This would require negligible air velocities.
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Maxson attempted the only theoretical consideration to date of the
problem by introducing the Reynolds number of the flow producing the
scallops, basing it on the dimensions of the boulder on which the scallops
occurred. He used this viewpoint because of his belief that the vortices
induced by the salients of the boulder were the active agents. This attempt
was unsuccessiul.

As solution proceeds on a scalloped surface the pattern propagates
into the wall. In addition it probably also propagates parallel to the flow.
Bretz, observing the steep lee slopes and believing that this indicated that
solution rate is there maximum, concluded that the pattern propagates
upstream. We shall see later that the reverse is true. The author (1959),
Glennie (1963) and Eyre (1963) have recently suggested an inverse relation
between the size of scallops and the velocity of the flow forming them.
This is a question of great importance in interpreting the past hydrology
of a cave system.

Nlustrations of typical scallop patterns may be found in Maxson,
Bretz and Coleman, and in many cave photographs in general publications.
That particular form of marking where the crests are nearly parallel to
one another for distances greater than the distance between crests,
referred to hereafter as flutes, are rarer and less frequently illustrated.
In Plates 1 - 7 are shown flutes, occurring usually in association with
scallops, on rock and ice. Scallops and flutes on ice are usually an order
of magnitude larger than those forming on rock. Flutes, being of simpler
geometry, appear to be more readily subject to theoretical analysis than
scallops and therefore the greater part of this study is devoted to flutes.

Similar wave phenomena occur throughout nature. Sand dunes
(Scheidegger, 1961), submarine sand ripples and waves (Jordan, 1962;
Thomas, 1964) and water waves (Ursell, 1956) are examples, but all
differ significantly from the scallop phenomenon. On sand dunes and
waves material is removed, transported, and redeposited - by air or
by water. Only energy is transferred in the case of water waves.
However these and scallops are all similar in that the controlling factor
is the interaction between the flow of a fluid and the response of a
modifiable surface. The shallow pits found on some meteorites may
be more analogous to the flow markings discussed here (Williams, 1959,

1963).

I will show there, among other things, that all stable flutes have
the same profile and this profile propagates into the rock and downstream;
that the distance between crests of flutes {their period) is strictly inver-
sely proportional to flow velocity and that a quantitative relation relating
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flute period, velocity and water properties may be obtained from mea-
surements. The probable connection between flutes and scallops will
also be discussed.

Hydrodynamic Interaction:

Scallops and flutes are the consequence of the interaction of
fluid flow and rate of solution of a soluble surface, or rate of combined
solution and erosion. The removal of material at the surface develops
the concavity, This may establish a new boundary for the flow which
in turn modifies the flow pattern and the rate of removal of material.

If these two interacting processes can come into an equilibrium so that
the surface form is no longer modified, but propagates unchanged into
(and along) the surface, we have stable scallops or flutes. The existence
of flute patterns with nearly uniform periods and individual profiles
suggests that a flute pattern may become stable. The situation in the
case of scallops is less clear as the pattern is irregular. It is
possible that within a scallop pattern, growth, coalescence and init-
iation of concavities proceed simultaneously, as suggested by Yeh
(Davies, 1963) and stability in the above sense may not be possible.

The flow pattern over a stable flute pattern must itself be per-
iodic with the same period as the flutes as otherwise the regularity of
the pattern would be lost. On the other hand the flow pattern over any
particular flute must be affected by the previous flutes. As apparently
regular patterns of only a few periods are observed, it is likely that
the flow pattern over a particular flute is nearly completely determined
by its own profile and that of the previous period only.

Why this may be true is explained by considering the flow in
more detail. At the initial crest of a particular flute a disturbance and
separation, or at least the formation of a lee wake, occurs. (Goldstein,
1938)., This will strongly modify the flow pattern directly behind a
crest., This distrubed flow subsequently joins the main external flow to
pass over the next crest. Therefore while details of the flow at a crest
is determined by the previous flute, the flow pattern within a concavity
is primarily a consequence of the lee wake of each initial crest.

If the resulting modified flow pattern within a concavity estab-
lishes a solution rate profile which maintains the flute profile, the
pattern will remain stable. There is no restriction in this on whether
the flow is laminar or turbulent. If the velocity is high enough so that
separation does occur at the crest, an eddy or vortex will form behind
the crest and over some portion of the flute profile on the lee side of a
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crest will be a reversed flow. Sucha situation is nearly always hydro-
dynamically unstable and turbulence will develop and diffuse into the

main stream flow. Therefore the flute pattern will itself cause turbulence
and its attendant fluctuating velocities. Since this is generated at the

wall it has the greatest intensity there and turbulent fluctuations in the
main stream would have only a secondary influence near the wall. Con-
sequently it is not correct to say that turbulence is responsible for the
development of scallops and flutes; rather it is the reverse. It will be
shown that the flow velocity required for flute stability is apparently high
enough that we may restrict ourselves to the turbulent situation.

At high enough flow velocities in a smooth channel, turbulence
will also develop, subjecting the wall to fluctuating velocities and fluc-
tuating local solution rates. However the frequencies of these fluctua-
tion are so high compared to the rate of retreat of the wall that only
average solution rates are important. Any irregularity in the surface,
no matter how small, will initiate a lee wake and the modified average
flow pattern will with time cause a change in the shape of the surface.
Therefore any soluble surface is initially unstable with respect to the
development of scallops or flutes. The details of the development pro-
cess are not known at present so we must restrict ourselves to
questions of the stability and propagation of only stable flutes.

In the lee wake of a crest the flow velocities are on the average
smaller than in the main stream. With forward flow over a crest and
reversed flow just behind it, there must exist some point on the lee
side at which the average velocity is zero. Inthe vicinity of this point
there should be a minimum in the rate of solution. The streamward
side of a crest extends into the main flow and is subject to the direct
impingement of the highest velocities, and we would expect a maxi-
mum in solution rate somewhere on this side. This is similar to the
behavior in the distribution of solution or mass transfer about a
sphere, the minimum occurring in the vicinity of the separation
point (Hsu and Sage, 1957; Garner and Suckling, 1958}, We shall
see later that this conclusion is found experimentally and is also
entirely consistent with a steeper lee slope.

Due to the high turbulence levels induced by a scalloped wall,
the exchange of solvent between the surface and main stream is very
rapid. At the surface a saturation condition may exist but the aver-
age concentration in the fluid must fall very rapidly with distance
from the surface to the main stream concentration. This means that
the concentration boundary layer at the wall is very thin compared to
typical scallop dimensions and therefore the concentration gradients
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at a point in the profile have a negligible affect on the solution rate at
nearby points on the profile - that is, the local hydrodynamic conditions

may be considered as controlling the solution rate profile along the
surface.

If abrasion due to suspended sediments is also important, it will
be most rapid where the flow impinges most directly on the surface -
again on the streamward side of crests. This will modify the erosion
pattern produced by solution but will not change the general conclusions
above. Of course larger sediment particles may be trapped in floor
scallops by gravity and by moving in response to the eddying lee wake
flow erode the base of the concavity., Under some conditions this may
lead to higher removal rates at the bottom of concavities and the devel-

opment of the familiar pot-holes. This affect is absent in wall or
ceiling scallops.

Deposition of fine clay on the surface will also modify the solu-
tion process, by locally decreasing the rate of solution. We would
expect such deposition to occur to the greatest extent on the lee slopes
where the flow velocities are lowest, but what actually occurs will
depend on many factors including surface roughness, type and quantity
of suspended material, orientation of the surface and the flow condi-
tions. Such deposition would probably be irregular and thus introduce
irregularities into the process, leading to scallops rather than flutes.
Even if regular over a flute pattern, clay deposition would be dis-
tributed over a flute profile, modifying its form and dimensions. The

subsequent analysis applies primarily to stable, sediment-free,
solution flutes.

Dimensions of Stable Flutes:

A characteristic dimension of a stable flute pattern is its
crest-to-crest wave length, or period, usually of the order of 5 to
15 centimeters. If the pattern is stable the period is a dependent
variable completely determined by the independent variables con-
sisting of flow conditions, fluid properties, and rock properties
(This analysis applies equally to ice flutes but will be phrased in
terms of the more familiar water-rock situation). To simplify the
theoretical consideration of the problem the flow conditions will be
taken to be characterized by the average velocity of flow in the chan-
nel, U, and a channel dimension H.” The only fluid properties which
can be involved are the density, p» and viscocity, 4.. The solubility
of the rock and saturation conditions of the water would only be
important in regard to the rate of propagation of a flute pattern but
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could not themselves alter the pattern of local dissolution rate established
by the flow phenomena. However the diffusivity, D, of the solute ions in
solution may affect the pattern of local solution rates through the concen-
tration boundary layer. Assuming that solution alone is important and that
the rock is homogeneous, the stable flute period, L, is a function of U, H,
£ A and D only. We may write: (Bird, Stewart, Lightfoot, 1960)

L=1U H p, 4 D) ‘ | | )

From dimensional analysis it is necessary then that

UL L, &
= fl =? 2
P =H 2 & o) (2)

The ratio on the left is the Reynolds number for the flow, based on
the flute period. On the right appear a length ratio and the Schmidt num-
ber, relating the diffusivities of momentum and matter.

As already discussed, in the presence of the highly disturbed flow
region near a fluted surface the flow disturbance produced by other
surfaces of the channel may be expected to be of less importance, except
to the extent that other surfaces determine the average flow velocity in
the region of the surface upon which the flutes form. This may be seen,
for example, in Eldons Cave, Massachusetts, U.5. A. (Perry, 1946)
where flutes follow the surface around corners parallel to the flow direc-
tion without change of period or profile. As long as L/H is small,
equation (2) should not depend upon it to an important degree.

Likewise, the Schmidt number, which controls the relative
thickness of the mass and momentum transfer boundary layers, should
not be important when it is large and the concentration boundary layer
is extremely thin. If the function in equation (2) is independent, or
extremely weakly dependent upon its arguments, it must be a constant
and we may write '

gk = N7 | | (3)

7 f

The dimensionless number Nf' is the stable flute Reynolds
number. It differs in derivation and principle from the Reynolds num-
ber introduced by Maxson. This relation states that the flute period is
inversely proportional to flow velocity but also depends on the fluid
properties. The dependence on velocity has been suggested empiri-

cally by Glennie (1963) and Eyre (1963). If the value of N7 can be
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found, flow velocities can be determined from measurements of stable
flute period and knowledge of water properties.

Two sets of flutes have been measured in an attempt to estimate
N{. In Boydens Cave, Calif., U.S. A, (Halliday, 1962) flutes occur on
active and fossil stream side walls. Measurements made on an active
stream section (Plate 4) found a mean flute period of 6.5 cm. Stream
velocity was estimated to be 50 cm. /sec. At the cave temperature
(8 ©C) the value of the kinematic viscosity of water, A /@ , is 0.0138
cmzlsec. Therefore if these flutes are stable under these conditions
the value of N is 23,500.

The second flute set comes from an entirely different environ-
ment., Inthe Eisriesenwelt, Salzburg, Austria, one wall of the
Morkdom is entirely ice, past which flows a steady stream of air
towards the entrance. (Czoernig-Czernhausen, 1926). Flutes and
scallops have developed in this ice either by sublimation of the ice
into the air stream, or by melting due to transfer of heat from the
slightly warmer (1© C) air (Plate 6). In either case equation (2) must
also apply, except that if heat transfer is important the Prandtl number
(Cp’u' /k, where Cp is the specific heat the k the thermal conductivity of
air) replaces the Schmidt number.

‘The mean flute period was found to be 137 cm. (over twenty
times that in the rock-water system) and the measured air velocity
was 21 cm/sec. The kinematic viscosity of air at 1 atm. and 1° C is
0.133 cm %/sec. If these are stable conditions the flute Reynolds
number is 21, 600.

These two estimates are within 5% of a mean value of 22,500.
The agreement may be partly fortuitous as the water velocity was only
estimated and there is no assurance that the velocities represent the
conditions under which the flutes formed. However as the data come
from the radically different systems of water-rock and air-ice, it is
likely that the dependence in equation (3) on kinematic viscosity is
correct, and with some confidence the dependence on velocity.
Equation (_§) is plotted in Figure 1 as L versus U, for the wa&er-rock
system at various temperatures and the air-ice system at 0 C, using
Nf‘ = 22,500, This value is, of course, subject to correction by
further observations or experiment.

This analysis states that constant water velocity and temper-
ature during solution are sufficient to produce a flute pattern of
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Fig-3

Fig. 3.

Profiles copies from flutes in Boyden's Cave, Calif., U.S.A. All
located close to the present stream level except No. 4. No. |
shown also in Plate 4 and No. 6 in Plate 5.
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constant period. Flutes are usually observed high on the walls and on the
ceilings of caves which flood completely and thereby provide a constant
overall water pressure head to produce constant flow rate through the
terminal constrictions. The flutes in the early passages of Eldons Cave
and in Polnagollum Cave, Co.Clare, Ireland (Plate 1) (Collingridge, 1962)
may be typical of this situation. Simultaneous abrasion by suspended
sediments may alter NF and confuse the interpretation of flute period,

but this may leave its own evidence, which will be discussed later.

The causes for the loss of the parallel crest structure of flutes
to produce the somewhat randomly placed concavities of scallops are not
known at present. However scallop patterns require many more length
dimensions to characterize them than a single period and therefore other
variables must enter into their determination. The pattern of scallops is
partly random and would require a statistical description. This suggests
that the additional variables may also be statistical variables associated
with fluctuating flow conditions during scallop formation. Scallops are
also associated with variable flow conditions by Maxson and Coleman.
Nevertheless a scallop pattern might remain statistically stable even
though individual scallops change with time, if the statistical flow prop-
erties are constant.

This idea gains support from a consideration of what would happen
to regular flute patterns under fluctuating flow conditions. As the flutes
would continually be attempting to adjust to the stable period a variety of
periods would develop and superimpose in a complicated manner. This
requires the junction of flute crests to form a scallop configuration. If
this interpretation is correct it will be much more difficult to determine
flow conditions from scallop size than from flute size although a rough
inverse dependence on average flow velocity might be a valid assumption.

The flute profile y(x), defined in Figure 2, is a dimension which
must also be functionally related to the same variables as the period
and also x. Writing this dependence in terms of a dimensionless distance
between crests,

) @)

yxy = £(U, H, g, . D, x
&) € x
we obtain by dimensional analysis,
exU = f(x, UH, 4 ) (5)
M L AL D¢
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If the dependence on the channel Reynolds number and Schmidt
number may be neglected for the reasons already given in regard to
L, we may substitute equation (3) and obtain

x:lf
le?f"(

and conclude that all stable flute profiles must be geometrically similar.

) (6)

In Figure 3 are shown six portions of flute patterns from Boydens
Cave, Calif. We see a superficial resemblance of flute profiles, but
irregularities prevent adequate comparison on the basis of equation (6).
The observed irregularity is not unexpected as the necessary conditions
for the exact validity of equation (6) would be rarely encountered. But
with sufficient data from flute patterns of different average period, a
statistical comparison with equation (6) should be possible. If stable
solution flute profiles are not all geometrically similar, a dependence
on channel size would have to be considered. If scallop pa.ttérns do
result from statistical fluctuations in flow velocity a simila} test is not
possible due to the simultaneous effects of many, and unknown, addit-
ional variables describing the flow variations. However if two scallop
patterns are shown to be statistically similar, even if the average size
of scallops are different, the statistical properties of scallop profiles
might be compared to find if they obey the scaling law of equation (3).

In the preceeding it is implicit that the boundary layer thickness
also scales with period. For a fluted surface in an infinite fluid the
boundary layer would of course grow without limit, Therefore the finite
channel size enters in limiting boundary layer growth and establishing a
mean velocity in the channel and eventually a uniform pressure gradient
along a uniform channel. Since the stable flute Reynolds number is
appé.rently so large, the channel Reynolds number must be in the range
from about 200,000 to 2,000,000, and the channel flow is fully turbulent,
Consequently the mean velocity and the maximum velocity of the main
stream flow are not very different, and the apparent boundary layer
thickness will be constant and scale with flute period.

Rate of Solution and Friction Factor:

The average mass transfer coefficient over a full flute period,
k (cm/sec), is related to the flow conditions and flute period. Writing

: k=£U, H g 4 D, L) (7)
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PLATE 3 _
Flute patterns in B & B Cave, Ind., U.S.A. (G. F. Jackson).

PLATE 4
Flute pattern at stream level in Boyden's Cave, Calif., U.S.A. Flow is from left
toright. Profile shown in Figure 6, No. |.
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PLATE 5
Flute pattern on pendant in Boyden's Cave, Calif., US.A. Flow from right to left.

L

PLATE 6

Flutes on ice wall in the Eisriesenwelt, Salzburg, Austria. Height of wall is about
two meters. a Air flow from right to left.
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where now, since all stable flutes are similar, we need only introduce the
period L, dimensional analysis gives

kL_ ¢ L M, pUL, ‘ (8)
D B bp o

The dimensionless ratio on the left is the overall average Sherwood num-
ber on the flute pattern, N . Again neglecting the channel influence we
obtain (

§S=f(§?_, N : (9)

We cannot omit the Schmidt number here as the concentration boundary
layer does influence the mass transfer rate perpendicular to the surface.
For a stable flute pattern N g = ka so that for a given fluid-surface system

* ; :
N s= Ng, a constant. Therefore the rate of solution of the pattern 1s
inversely proportional to flute period and hence proportional to stream

{ velocity when stability is attained. This need not be true for changing
velocities over a fixed flute pattern. It means that the flute pattern will
evolve with time to establish a constant Sherwood number. We may also
conclude that stable flute patterns with small period are propagating
more rapidly than those with longer periods if all other factors (including
solvent saturation) are the same. It also means that shorter flute periods
should be more common than longer periods.

The friction factor for flow over a surface is defined as

R 4 (10)

where T is the average shear stress on the surface (including form drag).
It is necessary dimensionally that

'f_=f(Nf) (11)

over staple profiles, and hence the friction factor is a constant when

Nf = Nf, for any period. Since we know the flow for flute stability is
turbulent we may use the fact that the friction factor for flow over a rough

surface is independent of flow velocity to conclude that the friction factor
is independent of the evolution of stable flute patterns between two stabil-
ity conditions. However it may vary while the pattern re-adjusts to a new
stability condition. We may also conclude that the pressure drop in a
fluted channel (running full) varies as the square of velocity.
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There is some evidence (Schlichting, 1936; Wiederhold, 1949;
Seiferth and Kriiger, 1950) that flute-like roughness in pipes produces
an anomolous friction-factor relation - the pressure drop being higher
than expected from an equivalent roughness correlation - although this
seems to occur at lower values of Ny than required for flute stability.

Motzfeld (1937) has studied experimentally average flow patterns
over various wavy walls, and Benjamin (1959) has considered the prob-
lem theoretically. These studies have been restricted to flow and pres-
sure phenomena and do not extend to the soluble surface situation. In
the present work pressure loss phenomena are not involved, but it
would appear that flutes and scallops may play some role, as yet
unknown, in the general cave passage development and competition
problem. '

Geometry and Stability Conditions:

We may establish the relation between local solution rate and
flute profiles from a geometric argument. Consider the profile shown
in Figure 2. If the profile is stable, it propagates without change of
shape to a new position at a velocity V. The angle of propagation,
measured from a plane parallel to the flute system, is 8. At point x
the slope (angle) of the surface is 4. The normal velocity at that
point is v. This is proportional to the rate of solution at that point.
By resoclution of velocities we obtain

%,:sin(ﬁ—d)=sin0 cos ¢ - sin¢g cos @ (12)

Every point of equal slope has equal solution rate and, in particular, the
top of the crest and the bottom of the concavity must have equal solution
rate. This vertical rate of solution, expressed as a velocity v,, occurs
where the slope of the profile is zero, and v, = V sin 6. Therefore

Y = cosd - sin¢g ctn® (13)
Vo

or, in terms of local slope, since

COs8 d = 1 (14)
1+ y'z
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where y' is the derivative of y with respect to x, we have

L AL+ ¥y =1 - y" ctn 0O (15)
Vo

The left hand term, plotted against y', should be a straight line
with slope ctn @ if the profile is stable. From this 0 may be determined,
if v may be measured on a stable profile. This is a test for flute stab-
ility. This relation also shows that, given a stable profile, there may
be many solution rate profiles which are able to maintain it, correspon-
ding to the different values 8 may have. Thus we are not able to deter-
mine the solution rate profile given only the stable flute profile.

To all appearances flute profiles are quite regular. That is, they
have one maximum (the crest), one minimum and a smooth profile
between except for surface roughness due to rock granularity. The crests
are relatively sharp, but whether they may be real surface slope discon-
tinuities, or only locations where the slope changes rapidly, is not obvious.
We will begin an analysis of details of a stable flute profile by considering
a regular smooth profile with the following properties (Figure 4).

1. The profile has two points, A and B, where ¢ = 0.

2, Between A and B on the lee slope ¢ is everywhere positive finite
and on the streamward slope is everywhere negative finite.

2, Between A and B on the lee slope is one inflection point {1), where

the curvature changes sign (and is therefore zero) and where ¢ is a max-
imumn for the profile.

4. Between B and A on the streamward slope is one inflection point
(2), where the curvature is also zero and ¢, is a minimum (negative) for
the profile.

From the profile stability relation{equation 12), since v must be
everywhere positive,

¢ 0 LT+ 4 (16)

[ .
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At point 1, ¢; is the maximum slope and therefore $1<0. At point 2

¢, = -|d,lis the minimum slope and hence 9 £ T - [d;]. (4, is
inherently negative. It is convenient to write its absolute value in these
expressions.) Therefore O must lie within the crest angle, defined as
the angle between tangents to points 1 and 2. This is also necessary as
otherwise a point on the profile would somewhere propagate out of the
profile, which is impossible.

Differentiating equation 12 with respect to distance along the sur-
face, 8, we obtain

1dv o | cos(o - 3d g
2 - 4) § 17)

Where the derivative on the left is zero we have critical points of
the solution rate profile; maxima, minima or inflection points.. The
derivative on the right is the curvature of the surface. The critical points
of v occur where

d ¢ -
N e = 0 (18a)

6 - ¢ = 34 | _ (18b)

The condition (18b) is where the surface and the direction of prop-
agation are perpendicular (if there is such a point). Then from equation
12 we find v = V and the solution rate is there maximum. To determine
the nature of the other critical points we differentiate again with respect
to s and obtain '

2 2 2
-%%—:2 = -cos(@ ‘-d)-g—‘séz - sin (0 - &) (—3—:) 19)

A variable, at a point where the first derivative is zero, is a maximum
if the second derivative is negative and a minimum if the second deriva-
tive is positive. At the critical points 1 and 2:

1. At dl ;

e _sli -0 (202)

2% . o (20b)
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and Elis a maximum if, a) 0 - d1> 17 and a minimum if, b) 0 - d1<

2. At dz;
g ‘: _ e (21a)
% o o (21b)

|

and zzis a minimum if, a) 0 +|d2[ > 3 and a maximum if, b) © +|¢2|< L
Now if @ lies in the interval
-4 <o < ¢ +3T (22)

the direction of propagation must be perpendicular to the surface at two
points in each period, at whichv =V (maxima), while there will be minima
in v at both points 1 {case 1b above) and 2 {case 2a above). The maxima
and minima in v will, of course, alternate along the profile.

There are many pairs of points with equal solution rate (equal &)
and two solution rate maxima are imaginable, but to have the maxima
identical (v = V) would appear to be too fortuitous to be likely, and there-
fore 0 probably does not lie in the interval of relation (22). The alterna-
tives are that 0 lies in the interval (from relations (16) and (22) )

4 < 0 < 3T -Icﬁz' (23)
or
'ﬁ" .
4 +%1< 0 <AT -|62| (24)

when, in either case, the direction of propagation is nowhere perpendicular
to the surface, and each period has but one maximum and one minimum in
solution rate.

If 0 lies in the interval (23), the propagation direction is down-
stream and Y)Yy If 0 lies in the interval (24), the propagation direction

is upstream and oY, It has already been argued that v2> i so on that
basis we expect downsztream propagation.

The ratio of the solution rates at the two critical points is, from
equation (12},
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v sin{® - &
i} ( L) 25)
sin(0 + [dzl) -

1
v

Now the crest angle is
¥ =T- 4 - |9, (26)

and writing the angle between ¢, and 9 as Y ; = 9 -4, equation (25)
becomes

(27)

V_1 _ sin(Y 1) ] sin( Y 1)
v, - (-, SnF-Y )

Thus the ratio of the solution rates at 1 and 2 is the ratio of the sines of
the angles into which the propagation direction divides the crest angle.

The direction of propagation of a stable flute pattern is determined entirely
by the ratio of solution rates at the points where the maximum and mini-
mum occur. If the ratio is small, the direction of propagation lies close
to ¢ , the lee slope.

A portion of equation (27) is plotted in Figure 10 as"l’lversus‘ffor
various values of v. /v . The propagation direction lies in the interval
(23)(downstream) if Y = and Y for a stable flute lie to the right of the
dotted line. (For a stable flute pattern there is only one correct point in

this figure). An average of eleve_lp crest angles from the best developed
crests in Figure 3 gives‘i’ = 1447 6° For v, /v, less than 0. 8

propagation is downstream, and there is but one point of maximum
solution rate.

The rate of solution would have to be continuous at the crest if
the crest were absolutely sharp (a cusp) with a discontinuity in ¢ at
that point. If the sharp crest were equivalent to coincidence of the
inflection points 1 and 2, the direction of propagation must bisect the
crest angle. This gives a minimum solution rate at the cusp and a
maximum somewhere within the concavity and, from usual flute pro-
files, an upstream propagation. The first consequence contradicts
our expectation and therefore stable flute profiles can not have a cusp.
A possible exception is when abrasion is also important, in which
case there may be a discontinuity of material removal rate across the
crest and an attendant discontinuity in slope.
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Fig. 4.
Crest and critical point geometry of a stable flute profile.
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Fig. 5.

Profile reduction of flutes by uniform solution.  The vertical
scale, representing the distance the wall has retreated, by solu-
tion, from the original positien (top), Is the true scale.

_F‘lg. 6.

Profile and local siope (as the derlvative of the profile) of the tast
profile used in polarographic mass transfer measurements,

— e
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Lange (1959) has shown that uniform solution rate over a surface
produces, with time, a rounding of all internal (concave) corners and a
sharpening of all external {(convex) corners. All convex surfaces will
eventually form cusps. This is shown in Figure 5 for uniform solution
of an initially smooth, stable flute profile.

This is not a contradiction of the previous conclusions. Uniform
solution will eventually remove all protuberances and produce a flat
surface. Therefore the intermediate cuspate surface is not stable.
However such a cuspate surface could be maintained if the solution rate
were non-uniform. The required profile of solution rate must have
a minimum at the cusps and a maximum within the concavity. Such a
solution rate profile cannot be produced by flow parallel to the surface
and transverse to the crests. However it could be produced by flow
parallel to the crests if the crests are not submerged, or only sub-
merged at intervals, This is the situation in lapies grooving and cusps
should not be unexpected in such cases. Cusps on what otherwise
appear to be a stable flute pattern must therefore indicate intervals
of uniform solution (ponded water), periods of lapies production
superimposed on the flute process, or simultaneous removal of
surface by abrasion, or possibly modification of the process by
sediment deposition.

It may, at first thought, appear strange that the bottoms of
the concavities do not represent points of maximum solution rate.
This is related to the downstream propagation of the pattern. The
streamward slope of the crest dissolves most rapidly to become,
with time, the concavity bottom and thereafter, with further solution,
to be modified and included in the lee-slope of the preceding crest.

Measurements:

In order to test the above conclusionswhich were arrived at
by deduction and to determine the mass transfer properties of a
stable flute profile, measurements were made on a flute pattern.
The 25 x 25 ¢m water tunnel in the Department of Physical Technology,
Technische Hogeschool, Eindhoven, The Netherlands, was used for
this purpose. The water tunnel installation is shown in Plate 8.

It would be desirable to generate a flute pattern by actual

8solution of a soluble surface but the available equipment was not

suitable for this. Instead, the mass transfer profiles were meas-
ured on a fixed flute pattern machined into Perspex. The flute
profile chosen was copied from that shown as No. 1 in Figure 3.
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This was reproduced in Pérspex as shown in Figure 6. After machining,
the profile was measured with sufficient accuracy so that its slope
profile could be used in the stability test (equation 15).

When this profile was adopted it had not yet been recognised that
a stable flute pattern cannot have cusps. Nevertheless measurements on
it provide useful conclusions even though we might have predicted that it
is not a stable profile.

Mass transfer rates on this insoluble profile were determined
with the polarographic technique described by Reiss and Hanratty (1962),
Jottrand and Grunchard (1962) and earlier workers. It consists of
carrying out the cathodic reduction reaction

Fe(CN);3+ e "'..f-"-'Fe(CN);l : (28)

on an electrode flush with the surface, under conditions such that the
ferricyanide ion concentration at the electrode is zero. The current
flowing to the electrode is then a direct measure of the turbulent
diffusion rate of ferricyanide ions to the electrode.

Seven 0.5 mm nickel electrodeswere mounted flush with the
surface at the points indicated in Figure 6. These were polished and
cleaned just prior to use. The electrode voltage was set at a level
where the current was independent of the voltage but other cathodic
reactions did not take place. This is about -1.5 volts with respect
to the anode - the stainless steel tunnel sections above the Perspex
tunnel. The electrode current was measured with a sensitive recor-
ding microammeter. Sources of error included slight imperfections
in the electrode surfaces, slight variability in exposed electrode
area and polarization and fouling difficulties. Individual measure- . .~
ments are probably within only 15% of the correct value which :
prevents one from obtaining fine details of the mass transfer pro-
files.

The solution used was 0.7 N KOH ({to minimize transference o
effects); 0. 01 molar potassium ferricyanide and 0. 01 molar potassium °
ferrocyanide. At 20°C., where all experiments were conducted, the
solution properties are: F=_ 1.036 g/cm3;_ A =1,10 cp; and
D=0.672x 10 *5 c¢m 4 /sec. - ,

Average velocities were determined by pressure drop N
measurements in the converging venturi section ahead of the tunnel
section. Flute Reynolds numbers were computed on the basis of
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average tunnel velocity. Sixteen identical flute periods preceeded the
measuring period in order to establish a nearly stabilized boundary
layer flow. One flute period followed the measuring period.

Average electrode current over the test period was computed
from individual measurements and the known profile. These are
shown as a function of flute Reynolds number in Figure 7. The ordinate
has units of microamperes, an arbitrary scale. The slope of the line
shown is 0.50. This is the value usually estimated from mass transfer
measurements on spheres, cylinders and in packed beds (Linton and
Sutherland, 1960; Thoenes, 1958) where separated turbulent flows
occur. Nothing unusual is apgarent in the vicinity of the expected
stability Reynolds number, Nf = 22,500.

The measured mass transfer profiles are shown in Figure 8.
Within the accuracies of the measurements, they vary only in magni-
tude, but not form, with N¢ . When plotted in the test for profile
stability we find that the chosen profile is not a stable profile at any
of the test Reynolds numbers (Figure 9). However using a least-squares.
regression we obtain, from equation 15, 0 = 71° 1 20

Also from the measured mass transfer profiles we may estimate
the ratio of minimum to maximum v to be about 0.45. This ratio
should not be very sensitive to profile details. The region corresponding
to the measured averageV of flutes (144° t 6° ) and this value of vy fvy is
encircled in Figure 10. We find that hydrodynamic arguments and these
estimates of 0 and v{ /v, from experiments agree to confirm downstream
propagation of a flute pattern. Finding the stable profile with the above
methods would be a trial and error procedure, From the measurements
we may conclude:

1
l. Ng is proportional to Nf for a fixed pattern.
2. The mass transfer profile is weakly dependent upon Nf.

3. The mass transfer profile is strongly dependent on the flute
profile, especially along the lee slope.

A large variation in instantaneous local mass transfer rate was
observed in these experiments. At high frequencies this amounted to
a maximum of nearly 100% of the average transfer rate. The largest
fluctuations occurred between the third and sixth electrodes {counted
from the lee side of the crest) with considerably smaller fluctuations
just on the two sides of the crest. This turbulence in mass transfer
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rate is of course a consequence of the turbulence in the flow.

The weak dependence of solution rate profile on flow rate and the-
strong dependence on flute profile means that flutes will form much more
rapidly than they will adjust to a regular (stable) pattern. Consequently
patterns intermediate between scallops and stable flutes may occur,
even at constant flow rate, during the development of the stable pattern.
A stable flute pattern should be a quite rare occurrence in nature.

These measurements also demonstrate that it is not possible to
determine Nf by this technique. Not only do we not know the stable profile
in advance but the weak dependence of solution rate profile on Ny demands
extireme accuracy in determining the transfer rate profile in order to
distinguish stability from instability.

Shaw and Hanratty (1964) have recently demonstrated that polar-
ographic transfer measurements with extended electrode surfaces
yield the same result as with point (wire end) electrodes. - This would
be a consequence of the mass transfer boundary layer being orders of
magnitude smaller than the single electrode size. We may estimate
the mass transfer coefficient in fluted conduits from the water tunnel
measurements.

The ferricyanide ion flux to the electrodes is given in gram-
moles /cm? sec by '

S : 29
n= = (_)

where i is the measured electrode current, A the electrode area and F,
Faraday's number. In a run at N; = 22,500 (Series I) an average (over
all electrodes) current of 6.5 x 10-6 amperes was measured. The

electrode greais 1. 96 x 10 "cm ™. Therefore the flux n was 3.4 x 10 =8

g-mol/cm” sec.
Defining a transfer coefficient k by
n = k{c - co) (30)

where ¢ and ¢ _ are the ferricyanide molar concentrations in the bulk
flow and at the electrode surface respectively, and since ¢ _ is zero
under the measuring conditions while ¢ was 0. 010! molar {10 “mol/cm ~ ),

we find k = n/c = 3.4 x 10'3 cm/sec.
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AYERAGE ELECTRODE CURRENT, MICROAMPERES
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Mean measured electrode currents as a function of flute Reynolds
number.  Series | data have been corrected to the electrolyte
composition of series 2.
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Test for profile stability based on equation |5.
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Fig. 10,

Partial plot of equation 27, relating crest angle, propagation angie
relative to the maximum lee slope and ratios of critical point solu-
tion rates. The circle indicates the region, determined from
measured crest angles and solution rate ratios, where it is belie-
ved the point representing stable flute geometry lies.
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The Sherwood number is defined as (based on flute period)

kL
N, = 55 (31)
The solute diffusivity D may be estimated for the water tunnel experiments
from the value given by Shaw, Reiss and Hanratty (}263) bg means of the
Stokes-Einstein relation. This gives D = 0.62 x 10 cm “/Sec. Since
the test flute period was 10 cm., N ﬂ;= 5550 (this is an estimate of the
stable flute Sherwood number as the experiment was performed at the
estimated stable flute Reynolds number. )
1

From equation (9), the measured dependence of Ny on Nf , and L
the Schmidt number dependence we would expect for mass transfer:g"oa
boundary layer on a fixed surface (Bird, Stewart and Lightfoot, 1960),
we may write a correlation for the Sherwood number in the form

1
N, = ¢,Nf sc /3 (32)

where ¢; is a constant and Sc =4 / ¢ D. The constant may be evaluated
from Ng, Nf and Sc =1710 for the ferricyanide solution. The result
is ¢; = 3.07.

This relation applies to the transfer coefficient over stable flute
profiles of constant period with varying stream velocity. It is interesting
to compare it with the equivalent expression for flow in packed beds with
(say) 50% void space. With Reynolds and Sherwood numbers based on
particle diameter and the average interstitial velocity the correlation
of Thoenes and Kramers (1958) becomes

1
N =1.ONZ gcl/3 (33)
s P

We conclude that the fundamental processes are similar for varying flow
rate in a fixed geometry.

x Flutes, however, tend to adjust their period so that Ny is equal
to Ny. Hence in an equilibrated fluted conduit equation (32) becomes

N:=465 Sc 1/3 (34)

In an approximately circular conduit of diameter d, the Reynolds
and Sherwood numbers are defined as
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Sk = &4 (35)

and

Re = %f— (36)

from which it follows that

Sh = % Re ' - (37)

' *
Therefore, in an equilibrated conduit, from equation (34) and N.= 22,500

Sh = 0.0207 Re Sc /3. (38)

The Chilton-Colburn mass transfer analogy to the Colburn heat
transfer correlation (Bird, Stewart and Lightfoot, 1960) for flow in a
smooth circular pipe is

0. 1/3 :
Sh = 0.023 Re 8s:: / : : (39)

Equation (38) gives a considerably larger transfer coefficient at high
conduit Reynolds numbers than does (39) for smooth pipes, as would be
expected in a '""rough'' tube.

Either relation (31)= or (38) may be used to estimate transfer
coefficients in fluted conduits depending on whether it is believed the
flow and flutes are equilibrated (38) or not (32). We cannot at present -
give similar relations for scalloped conduits. Of course the appropriate
physical constants (especially D) must be used.

On the Absence of Scallops or Flutes:

Having concluded that solution of a soluble wall is always
structurally unstable and scallops or flutes will develop, we must
account for the quite common absence of flow markings in cave
channels. This discussion must be partly conjectural as we only
have direct information about the presence and behavior of flow
markings. However a number of possible causes of absence of
apparent flow markings may be suggested. T

1. If irregularities in cave channel surfaces, arising from other
causes, are of a size smaller than the nominal period of the flute or
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scallop pattern which should develop, flow markings will be obscured.
Factors such as variable rock properties, close fracturing and sediment
imposed irregularities are among possible causes of inherent channel
irregularity.
oA

2, When the flow velocity is such that the expected scale of flow
markings is of the same order of magnitude as the channel size, the
mechanism of flow marking may alter (L~H). Furthermore, such large
scallops or flutes tend toward being indistinguishable from gross channel
irregularities, turns, etc. We may make a rough estimate of the flow
rate below which flow markings will apparently be absent by assuming
the limit is in the vicinity of L. = H, defining H as the diameter of a
circle having the same area as the channel cross section. The volu-

metric flow through the channel is then
2

0 = T UH (40)
. 4
Substituting for U from equation (3) and letting L. = H, we obtain
%
Q= M4 Ne H_ (41)
4p

which for water at 10 ° C and Nf* = 22,500, becomes (with Q in liters /sec.,
and H in meters)

Q=23.2H (42)

Alternatively, if we substitute H for L in Figure 1, we obtain a
plot for the approximate limiting velocity, below which flow markings
will not be apparent.

We see that for a reasonable traversable channel (H~1 meter) the
minimum flow rate is quite significant (3 cm /sec, equivalent to 23. 2
liters /sec or 368 gallons (U.S5. A. )/min). For a larger channel the flow
required to produce observable flow markings is proportionately larger
in volume (though smaller in velocity). Therefore we would not expect
to observe flutes or scallops in channels enlarged by slow circulation in
sub-water table channels. In fact, meandering of such channels may be,
in part, an expression of such large scale "flow markings''.

On the basis of the assumption that flow markings will not be
evident when their period approaches the conduit size the smallest
possible conduit Reynolds number for the existence of periodic flow
~markings is about the same as the stable flute Reynolds number.
However the range of conduit Reynolds number from 2000 to 22,500
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also represents turbulent flow. Since flow in this range will not produce
observable flutes we see that while flow markings are concurrent with
turbulent flow, turbulent flow may not produce observable markings.

3. Stability, statistical or periodic, of flow markings requires that
the rate of removal of material at the crest, v, be equal to that at the
bottom of the concavity, vp . If for any reason v, < v, the concavity will
deepen, while if v < v, the relief of the surface will decrease.

If sediment deposits on the concavity bottom but not on the crest,
the pattern will decrease in relief, conceivably as far as planation of the
surface. Even with sediment over the whole surface it would probably
be thinner at the crests, giving a higher solution rate there. Therefore
flow markings should not develop beneath a sediment layer and pre-
existing patterns should be slowly removed.

It has been suggested that abrasion by suspended sediments may
cause true cusps to form due to a discontinuity in material removal rate
at the crest. A stable pattern could result so long as v remains only a
function of slope, _(i However if v becomes a function of the curvature
of the surface also, the situation changes. This may occur when rapid
streams with heavy sediment loads remove material by chipping and
gouging of the surface. The crests, being mechanically weaker, would
be more rapidly eroded causing v, to become greater than v,. There-
fore we expect strong mechanical erosion to remove flow markings.

Weathering of a scalloped or fluted surface will also remove the
patterns. Weathering agents which penetrate the surface and weaken
the rock structure will penetrate furthest at the protuberent crests.
Subsequent corrosion or erosion will than be facilitated at the crests as
opposed to the concavity bottoms, again making v  greater thany ..
4. Uniform solution of a patterned surface also removes the pattern
(Figure 5). This may occur during periods when the velocity is very
small. It might be thought of as a preliminary step toward case 2 above.

5. Flaking, exfoliation and similar processes will remove developing
or pre-existing flute or scallop patterns.

Other Forms of Scallops:

A variety of other mechanisms may cause scallop-like concavities
on cave surfaces. These have not been much investigated but a few
causes may be surmised. e
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If a limestone contains chert nodules or similar inclusions, which
may be weathered away or mechanically removed faster than the retreat
of the limestone walls, depressions will be produced. At low flow veloci-
ties these may expand and coalesce to give sharp crested but shallow
ceiling or wall concavities. These would be a member of the class of
modified irregularities caused by near uniform solution of initially larger
depressions (Lange, 1959).

Ceiling concavities might also develop at low flow rates, under
totally submerged conditions, by a natural convection mechanism. Any
initial ceiling concavity may be the site for a natural convection 'cell"
in which the slightly denser solution at the surface, caused by limestone
solution, flows away from the surface at the crests and is replaced by
fresh solvent at the center. The higher solute concentration and lower
velocity along the perimeter of the concavity would cause a lower solution
rate there than in the center, and the concavity could deepen. The extent
to which this occurs in caves is not known nor are we able as yet to ascribe
ceiling ""pockets' to this, or another mechanism, with assurance.

It is the author's opinion that it is unwise to ascribe large flute
and scallop forms to the same mechanism responsible for shorter period
patterns unless other features of true flutes and scallops - periodicity,
asymmetry rounded crests, etc. - are also present and consistent with
the likely channel flow conditions.

Conclusions:

The conclusions reached in the course of this study are summarized
here:

L Scallops develop as a consequence of the interaction of the flow of
a solvent with a soluble surface, irregularities being amplified by the
induced flow pattern at the surface.

2. Regular period scallops with parallel crests, called flutes, are a
special case produced by constant flow conditions.

3 All flutes generated by solution alone are similar, propagate into
the wall and downstream at the same angle {about 71° from the horizontal)

and have rounded crests.

4, The ratio of minimum to maximum solution rate on a stable flute
pattern is about one half, while all points of equal slope have equal solution

rates.
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5. The stable flute Reynolds number, based on flute period, flow
velocity and the fluid properties, is a universal constant, as are also
the Sherwood number and friction factor over stable flute patterns. As
a consequence small flutes (and scallops) tend to dominate due to their
higher rate of solution.

6. A proposed value of the stable flute Reynolds number is N?= 22,500.

¥ The flute generating flow is always turbulent as a consequence of
the flow conditions apparently required for flute stability, although tur-
bulent flow characteristics are not directly related to flute form.

8. Variable flow conditions, sediment deposition and simultaneous
abrasion may all modify stable solution flute patterns to produce modified
flute patterns or scallop patterns.

9. The interpretation of scallop patterns in terms of the determining
flow conditions is more complicated than for flute patterns due to the
many unknown additional significant factors. At present it may only be
suggested that mean scallop pattern period is roughly related to some
mean flow conditions in a manner similar to flute relations.

10. Flutes and scallops will be absent or obscured in channels
carrying flows giving stable mean periods larger than channel dimensions;
if sediment deposition is extensive; if abrasion is an important factor; if
inherent channel irregularities are smaller than the expected flute or
mean scallop periods; or if penetrant weathering or surface flaking are
important processes.

Flutes are the most useful form of flow marking for the inter-
pretation of past flow conditions. However this limits us to cases where
flow was constant, an unusual and rare circumstance. In addition we
may only obtain useful observations from channels which carried rela-
tively large flows. The utility of flutes and scallops in determining
previous rapid flow directions is important, but a large class of possible
previous flow conditions either produce no apparent flow markings or
their quantitative interpretation is obscured by irregularities in the
patterns.

It is possible that with sufficient study of scallop patterns their
statistical properties may be interpreted in terms of the responsible
flow conditions, but as we have now no conceptions of the relations
between varying flow and scallop patte:‘;n statistics it appears that an
initial experimental program is necessaty.
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SCALIOPS AND FIUTES

ERRATA
(Trans. Cave Res, Grp., 7 (2) 121-160 (1966})

iine 13 "equals" sign missing
r Lo lp b O .

eqn. 16: .gi...e,..':rl-ge :
line 1: ..+« 8nd therefore gi < 9,

: F
line 2t @, = - Igé | "4n ..... and hence & = » -'l_ﬁél .

1
eqn., 24: ;Zlnl-g-':r £O £ - |Q’2|
eqn, 253 ; .
== v, sin(e - ¢,) .
v, " EmEEF 1) |
"o designates the r .of & given by eqns.

(23) and (24)

line 4 up: D = 0.62 x 1072 cm?/beé,g

line 10: .... except for maess transfer through a ....
line 15: Either relation (32) or (38) may ....

iine 17T: .... equilibrated (38) or not ....

I have misinterpreted the work of Shaw and Hanratty (1964).
Isolated point electrodes will give high values for
trangfer coefficients compared to the correct value.
Consequently the coefficients in eqns.(32), (34) and (38},
as well as the "stable" Sherwood number, are probably two
to five times too large (estimated). The functional
dependencies, however, remain the same, '
The dependence of transfer rate on N 1/2 (fixed profile)
implies that mass transfer is controiled by a laminar
boundary layer. It would appear that the separated {low
from & crest reattaches within the profile, initisting
esgentially laminar boundary layers downstream and
upstream (in the lee vortex} from that point.

R. L, Curl



NOTE: March 2009

In this paper the characteristic flute Reynolds Number was based on the mean channel
velocity. Blumberg and Curl (1974) instead based it upon the friction velocity Reynolds
Number, which is a constant independent of the channel size or configuration. The channel
Reynolds Number was then related to this by means of the universal law of the wall for
turbulent flow. A consequence is that transport properties over equilibrated flutes and
scallops vary with the channel Reynolds Number.

Application of this for estimating paleo channel flow from flute or scallop sizes was
represented by Curl (1974).

Paul N. Blumberg and Rane L. Curl, "Experimental and theoretical studies of dissolution
roughness”, Journal of Fluid Mechanics, Vol. 65, Part 4, October 1974, pp 735-751.

Rane L Curl, “Deducing flow velocity in cave conduits from scallops”, The NSS
Bulletin, Vol. 36, No. 2, April 1974, pp 1-5 (Errata: ibid. Vol. 36, No. 3, p 22.)
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