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Abstract

In this paper we consider the problem of determining the minimum cost configuration
(number of machines and pallets) for a Flexible Manufacturing System with the constraint
of meeting a prespecified throughput, while simultaneously allocating the total workload
among the machines (or groups of machines). Our procedure allows consideration of
upper and lower bounds on the workload at each machine group. These bounds arise as a
consequence of precedence constraints among the various operations and/or limitations on
the number or combinations of operations that can be assigned to a machine because of
constraints on tools slots or the space required to store assembly components. Earlier work
on problems of this nature assumes that the workload allocation is given. For the single
machine-type problem we develop an efficient implicit enumeration procedure which uses
fathoming rules to eliminate dominated configurations, and present computational results.
We discuss how this procedure can be used as a building block in solving the problem with

multiple machine types.



1. INTRODUCTION

A Flexible Manufacturing System (FMS) is a computer-controlled system of
numerically controlled machines and automated material handling equipment. Each
machine is capable of performing a variety of operations with minimal changeover times
between operations. When a system is being designed, one critical decision is the number
of machines of each type to be purchased. Another important decision is the number of
jobs (or pallets of jobs) circulating in the system since this has a significant impact on the
number and type of material handling equipment required. These decision variables define

a system configuration, and normally such a configuration is maintained for several years.

The appropriate configuration choice, however, is influenced by the allocation of
workload among the various machines (or machine groups). Of course, the total workload
of each machine type may change over time as the product mix changes, and the "true"
optimal configuration should consider these dynamics. We consider a static (steady-state)
situation here, and generalize earlier work by taking advantage of the ability to allocate
workload among machines of the same type while simultaneously considering other

practical constraints on the workload allocation.

Our procedure can be used in several different ways. First, it can be used to identify a
set of viable, cost-effective system configurations by applying it to a variety of realistic
workloads and related workload allocation constraints. The robustness of these
configurations to product mix changes could then be evaluated. Second, if it is difficult to
predict changes in product mix, the procedure can be applied to the new mix to determine
how the system configuration and workload allocation should be modified. Third, even if
the number of machines of each type and the number of jobs is fixed, our procedure can be
used to regroup the machines of each type and reallocate the workload among them as the

product mix changes.



We investigate the problem of simultaneously determining the minimum cost
configuration and the corresponding optimal workload allocation subject to a constraint on
system throughput for a FMS which consists of a given number of stations. Each station
may have one or more identical machines of a specified type. We assume that the total
workload to be allocated among stations of the same type is given. The decisions to be
made are the number of machines (servers) and the workload allocated to each station, and

the number of pallets.

[f there were no constraints on the allocation of the workload among the machines, the
optimal solution would have a single station for each machine type, with all of the
workload for that machine type assigned to it. Our procedure allows consideration of
upper and lower bounds on the workload at each station. These bounds arise as a
consequence of precedence constraints among the various operations and/or limitations on
the number or combinations of operations that can be assigned to a station. The latter may
be a result of constraints on tools slots or the space to store assembly components nearby
(e.g., within the reach of assembly robots). Earlier work on problems of this type assumes

that the workload allocation is given.

In order to solve this problem, we must evaluate several candidate configurations to
ascertain whether the throughput constraint is satisfied. To accomplish this, we use the
algorithm of Lee et al. [1988] to solve the subproblem of allocating the total workload
among the stations to maximize system throughput within the constraints imposed by the
upper and lower bounds on the workload at each station. In order to reduce the number of
candidate configurations that must be evaluated, we develop fathoming rules to eliminate
dominated configurations. We develop a procedure to obtain the optimal configuration and
workload allocation for the case where all the machines are of the same type. We also
discuss how this procedure can be used as a building block to solve the problem with

multiple machine types.



Previous research on related problems has typically used closed queueing networks
(CQNs) with the assumptions of exponential service, first-come-first-served service
discipline, and arbitrary routings allowing multiple visits to a station to represent FMSs.
Under these assumptions, the throughput function has the well-known product form
(Gordon and Newell [1967]), and is therefore relatively easy to compute. The popularity
of using queueing networks to model FMSs stems from its ability to capture the effects of
congestion on throughput and queue lengths. Our model also assumes that the FMS is
represented by a product form CQN (see Solberg [1977] and Suri and Hildebrant [1984]

for CQN modeling of FMSs and support for its applicability).

Vinod and Solberg | 1985] and Dallery and Frein [1986] study the problem of finding
the configuration that satisfies throughput requirements at minimum cost. Both capital
equipment and operating costs are considered in their objectives. They assume that the
number of stations and the workloads for each are given. (A station is represented by a
multiple-server node in the queueing network.) The decisions are the number of machines
to assign to each station, the number of pallets, and the number of automated guided

vehicles (AGVs) where applicable.

Yao and Shanthikumar [1986] and Shanthikumar and Yao [1987, 1988] study the
problem of allocating servers to stations to maximize throughput. They assume that the
number of stations and pallets, and the workload at each station are known. Their results

suggest that a greedy allocation procedure is optimal.

Various algorithms are available to solve the workload allocation in a product form
CQN under the assumption that the number of stations, the number of machines at each
station, the number of pallets, and the number of AGV's are given (see, for example, Yao
[1985], Stecke and Solberg [1985], Stecke [1986], Lee et al. [1988]). In our experiments,
we will use the algorithm of Lee et al. They derive several properties of the optimal

solution under the assumption that the throughput is a pseudo—concave function of the



workload allocation. Under this assumption, the first order conditions are both necessary
and sufficient for optimality. These properties are then used as the basis for an efficient
reduced gradient algorithm to find the optimal workload allocation when there are lower

and upper bounds on the workload for each station.

Previous research has thus considered obtaining either the minimum cost configuration
assuming a given workload allocation, or the optimal (unconstrained) allocation of the total
workload assuming a given system configuration. Our work differs in that we consider
obtaining the optimal system configuration and the optimal workload allocation

simultaneously.

We assume that each operation can be done by only one type of machine, and that the
machine types have been predetermined. Hence, for each machine type there is an
aggregate workload which is the total processing time for all the operations that can be
performed by that machine type. We assume that the total cost of machines of a given type
depends only upon the total number of machines of that type, and is independent of where

the machines are physically located or what operations each machine actually performs.

The remainder of the paper is divided as follows. In section 2, we state a mathematical
formulation of the minimum cost configuration problem for a system with a single machine
type. In section 3, we present an optimal algorithm for this problem, including fathoming
methods to eliminate dominated configurations. Related computational results appear in
secion 4. In section 5, we present a solution procedure for the problem with multiple
machine types. Section 5 also considers the system with batch transfer, where more than
one part is transferred between stations at a time. We conclude with a brief summary and

discussion in section 6.



2. PROBLEM FORMULATION

As mentioned earlier, the optimal configuration and workload allocation problem is to
simultaneously determine the optimal workload allocation, and the number of machines
(servers) and pallets required to achieve a prespecified throughput at minimum cost. Here
we assume that the number of stations, M, is given. However, if the number of stations is
also a decision variable, one can simply solve this problem for several values of M. The
total workload, TW, is the total expected machine processing time for one part. The
workload allocation is specified by the vector W = (Wg» W.....Wy,) where W is the total
expected material handling time for one part. which is assumed to be a known constant,
and W, denotes the workload at station i, i = l,...,M. The number of servers at station i,
S;, i =1..M, and the number of pallets, N, define a configuration. For ease of
presentation, we define S = (§;.-..5y). We initially assume each pallet carries only one

part, which is common when parts are relatively large, but later relax this assumption.

We first consider a simple FMS where there is only one type of machine. We assume
that the material handling system (MHS) is a delay node. This means that there is a delay
in transferring a part from one machine to another, but there is no contention for the MHS
that results in any additional (queueing) delays. Typically, these systems are designed to
prevent them from becoming bottlenecks, so this assumption is reasonable for many
systems. Examples include loop conveyors and dedicated (stop-and-go) AGVs. Material
handling systems for which considerable contention occurs may be modeled by

representing them as other (processing) stations in the system.

The cost function, z(N,K), is permitted to be any function which increases with N and

M
K = ¥ Si. Thus, the annualized cost of the machines, material handling equipment,
i=1

pallets, and work-in-process inventory can be incorporated into the objective function. A

mathematical formulation of the problem is to



P1: Minimize z(N,K)

subject to:
M
K=Y S, (1)
i=1
THMNS,W) 2 d, Q)
M
T W =TWw, (3)
=1
LisW; <V, i=L..M, 4)

where
TH(M,N,S, W) = throughput of the system, given M,N,S,W,

d = throughput requirement,
L, = lower bound on the workload at station i, and
U, = upper bound on the workload at station i.

As mentioned earlier, the upper and lower bounds may be consequences of precedence
relations among operations and/or constraints on the number or combinations of operations
that can be assigned simultaneously to the station. In Appendix 1, we give an example to
show how the upper and lower bounds are affected by precedence relations in a flow
system. It should be intuitively clear how tool slot limitations, or constraints on the
combination of assembly operations induced by consideration of the space required to store
components nearby, will affect the upper bounds on workloads. Deriving tight bounds is
not always easy, partly because the bounds at one station may influence the bounds at other

stations. In many situations, however, they may be specified on the basis of experience.

3. AN OPTIMAL SOLUTION PROCEDURE

We now consider a solution procedure for determining the optimal configuration and
associated workload allocation for the FMS. We first present an overview of our
procedure. This is followed by a detailed description of each step of the procedure,

including fathoming methods which eliminate dominated configurations.



Procedure to Find the Optimal Configuration and Workload Allocation.

1. Find an initial feasible configuration and workload allocation, NI, SI, and W, and set
the incumbent equal to this solution. Let z represent the cost of the incumbent.

2. Find lower bounds on the number of pallets and the total number of servers, denoted as
NLB and KLB respectively, below which the prespecified throughput cannot be satisfied.

3. Implicitly enumerate over values of N and K satisfying N 2 NLB K > KLB, and

z(N,K) < z.

The initial feasible solution in step 1 is obtained in the following manner. First, an
initial feasible workload allocation is obtained by solving the workload allocation problem
under the assumption that each station has an identical number of servers. Since balancing
the workloads is optimal (for the unconstrained problem) when each station has the same
number of servers, for reasonable upper and lower bounds on the workloads the resulting

workload allocation is nearly balanced.

Given this workload allocation, an initial feasible configuration is then obtained using
the method of Dallery and Frein [1986]. Since the initial feasible workload is nearly
balanced, the initial feasible configuration generally has a similar number of servers at each
station and, consequently, is easy to identify. This "balanced" solution serves as an initial

solution for Problem P1.

The lower bounds, N'B and K!8, in step 2 can be derived using the asymptotic bound
analysis of Muntz and Wong [1974]. Using this method, NL8 is fd-(TW+W0ﬂ where [ x|

is the smallest integer greater than or equal to x. This simply says that the number of

pallets in the system should be at least as large as the demand (arrival) rate multiplied by

V]
the minimum sojourn time in the system. K!8 is max ([d-TW], Y SitB) where S;-8 is

1=1
the lower bound on the number of servers at station i and is given as S;L8 =[d-L;] with [y]
denoting the smallest integer greater than y. This essentially says that the total number of

servers must be large enough so that the total system utilization and the utilization levels of



the individual stations are less than one. Dallery and Frein [1986] also use asymptotic

bound analysis to obtain lower bounds on the number of pallets and machines.

The implicit enumeration of step 3 is executed by considering all undominated
combinations of N and K. For each (N,K) pair, we must determine whether there is a
feasible S and W for P1. Related to this decision problem, we define another problem

which is formulated as follows:

P2:

maximize TH(S, W)

subject to constraints (1), (3), (4) of PI.
Denote as §*(N.K) and W*(N.K) the optimum solution to P2. Clearly, when
TH(§*(N.K),W*(N.K)) < d, there is no feasible solution to the problem for the given N
and K. Later in this section we provide a procedure to solve P2. Before doing so, we
present two lemmas that permit us to eliminate some dominated (N,K) pairs. Proofs of the

lemmas appear in Appendix 2.
Lemma 1. If TH(S (N.K),W (N.K)) < d. then TH(S (N.K-1),W (N.K-1)) < d.
Lemma 2. If THGS (N.K),W (N.K)) < d. then THGS " (N-1.K).W (N-1.K)) < d.

We solve P2 by generating all partitions of K machines among M stations and
sequencing them from the most unbalanced to the most balanced. (This ranking turns out
to be a lexicographic ordering.) Observe that for each partition, there are several different
Ss, each of which corresponds to a different permutation of the station indices. For
example, there is only one way to partition three machines into two groups: two machines
in one group and one machine in the other. This partition gives two different Ss: (1,2)
and (2,1). In order to distinguish between partitions and the various Ss, a partition is

denoted by G=(G,...,Gm), where G; 2 G, 2..Gu.



Our rationale for sequencing the partitions from the most unbalanced to the most
balanced is based upon the empirical observation by Stecke and Solberg [1985] that more
unbalanced configurations achieve a higher throughput. Justification for this conjecture is
based on the pooling effect (Kleinrock [1976]): a larger group of pooled machines can be
loaded more heavily simply because pooled servers can achieve a higher utilization than an

equal number of single servers given the same average customer waiting time.

For each candidate S, we use the algorithm of Lee et al. [1988] to determine the
workload allocation that maximizes throughput subject to constraints (3) and (4) of P1. In
that paper, the throughput for a CQN is shown to be a pseudoconcave function of the
workloads in special cases. Based on the conjecture that the function is pseudoconcave in
general, two algorithms are developed: a reduced gradient procedure (Avriel [1976]), and a
fixed point procedure (Saigal [1977]). The reduced gradient procedure is basically an
ascent algorithm in which all of the variables can be changed simultaneously. A fixed point
procedure is an iterative algorithm which converges to the solution, usually by changing

one variable at each iteration.

Both procedures take advantage of the fact that satisfaction of the Kuhn-Tucker (first
order) conditions are both necessary and sufficient for optimality in a linearly constrained
problem if the objective function is pseudoconcave. (Weaker forms of concavity require
computation of the Hessian to find the optimal solution.) The fixed point procedure also
uses the result that if the number of customers in the system is greater than the maximum
number of servers at any station, the optimal solution is an interior Brouwer's fixed point.
This fixed point can be found by the Eaves-Saigal (Saigal [1977]) procedure, which

converges quadratically for unconstrained problems.

The workload allocation problem is complicated by the existence of upper and lower
bounds on the workloads. Incorporating workload bounds into the fixed point procedure

is easy, but quadratic convergence is no longer guaranteed because of the manner in which



constraints are handled by the procedure. In the case of the reduced gradient procedure, it
is necessary to find an initial feasible solution, and a simple algorithm to find such a
solution is presented in Appendix 3. We use the reduced gradient procedure in our
compuational experiments. A computational comparison of the reduced gradient and the

Eaves-Saigal algorithms appears in Lee et al. [ 1988].

Each candidate S is considered in tum until a configuration that satisfies the throughput
constraint is identified or until all configurations have been considered and none satisfies
the constraint. Some of the Ss can be eliminated from consideration using the lemmas

below. Proofs of the lemmas appear in Appendix 2.

Lemma 3. If U; < L for any i and k, then we only need to consider S such that S; < Sy.

Lemma 4. If L; < Ly < U; € Uy for any i and k, then we only need to consider S such
that §; < Sg.

Qualitatively, Lemmas 3 and 4 state that a station with a greater workload should be

assigned a larger number of servers.

Lemmas 1 and 2 eliminate many (N,K) pairs. For each of the (N,K) pairs that still
remain for consideration, we need to consider all possible partitions of K among the M
stations, and each such partition will give rise to several possible permutations of the server
vector. Lemmas 3 and 4 eliminate many of these permutations from consideration. In
addition, other permutations can be eliminated from consideration using the following
observation which is based upon the assumption of unimodality of the throughput function

(Stecke and Solberg [1985], Stecke [1986], Lee et al. [1988]).

Remark. Let W! be the optimal workload allocation for a given server vector S1. Also
let I denote the set of stations for which Lj < W;! < U;j. Suppose we now permute the
server vector and its corresponding workload vector for just those stations in the set I to get
a new server vector S2 and a workload vector W2. If, for this configuration, we have L; <



Wi2 < U;j for all i, then this workload allocation is also optimal, since the throughput of
these two configurations is identical.

The above remark enables us to eliminate the server vector S2 from consideration in the
search process for such cases. It should also be noted that any S with S; < Sit8 for any i
can be eliminated from consideration, where S;B is obtained from asymptotic bound
analysis.

We now elaborate on the implicit enumeration over N and K, which is step 3 of the
procedure given earlier. In the implicit enumeration, we use the results in Lemmas 1 and 2
and the fact that z(N,K) is increasing in N and K to fathom solutions. We use NP and KP
to refer to the values of N and K, respectively, in the present incumbent solution. The
initial solution, NI and S! provides the first incumbent solution. A description of the

procedure follows.
The Implicit Enumeration Procedure for Step 3.

{Step 3a finds the next incumbent solution by decreasing K as much as possible from
the initial solution K! obtained from step | while maintaining feasibility. )
(3a) For N = N, find the smallest value of K 2 KB for which TH(S*,W*) 2 d. This

provides an incumbent solution which we denote as (Nf,Kf). Set (NP,KP) = (N KF).

{Steps 3b and 3c search over N > NI, For each value of N, the smallest feasible
value of K is found. Whenever a feasible solution with lower cost is found, the
incumbent solution is updated. }

(3b) Increase N by one and find the largest K such that z(N,K) < z(NP,KP).

(3c) If K <K, then set K to K - 1, and go to step 3d. If K 2 KLBand TH(S*,W*) < d,
then go to step 3b. In all other cases, update the incumbent solution, reduce K by

one, and repeat this step.
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(Steps 3d and 3e search over K 2 Kf. For each value of K, the smallest feasible
value of N is found. Whenever a feasible solution with lower cost is found, the
incumbent solution is updated. }

(3d) Increase K by one and find the largest N such that z(N,K) < z(NP,KP).

(3¢) If N < NLB then go to step 3f. If N2 NLB and TH(S*,W") < d, then go to step 3d.
In all other cases, update the incumbent solution, reduce N by one, and repeat this
step.

(3f) The incumbent solution is optimal. Terminate.

Example: We provide an example to clarify the solution procedure for problem P1. Let
M=3 and Wo%8. Also let the processing capacity of a machine (i.e., total service time
available from a machine during a period) be 960 time units. The number of units required
during this period is 100 items, giving a throughput requirement of 100/960 items per unit
time. The problem is to:

minimize z(N,K) = 600 N + 5000 K
subject to:
3
K = 2 Si,
i=1
THM,N,S,W) 2 100960 ,
3
Z W; = 30,
i=1

SSWi<10, 105 Wa<15, 5< W3<20.

From Lemmas 3 and 4, we must have S| <S5 and S; £ S3. We execute the three steps

outlined in the procedure.

1. [Initial solution: W! = (10,10,10), S! = (2,2,2), KI=6, Nl=5, with cost z(5,6) =
33000.

2. Lower bounds: SLB=(1,2,1), KLB=4, and NLB=4,



(3a)

(3b,c)

(3d,e)

(3

The implicit enumeration procedure:

With N = NI = 5, we decrease K as much as possible, while maintaining feasibility.
We obtain K = 5, and z(5,5)=28000.

When K=5, there are two possible partitions: G'=(3,1,1) and G2=(2,2,1). The
partition G! provides two server vectors: S1=(1,1,3) and §2=(1,3,1). S§! is
eliminated since Sp! < SoLB. For 52, the workload allocation problem is solved
and the resulting throughput is less than the required throughput. The partition G2
provides only one server vector: S1=(1,2,2). The solution to the workload
allocation problem gives a throughput which is less than the throughput
requirement. Thus, there is no feasible solution at N=5, K=5, and so (Nf,Kf) =
(NLKD) = (5,6).

Search over N > NI.

We first consider N = Nl + | = 6. To find the smallest feasible K, we start with
K=5, giving z(6,5)=28600. When K=5, the partitions G!=(3,1,1) and G2=(2,2,1)
are examined. A better feasible solution is found when the the workload allocation
problem is solved with S1=(1,2,2), and so the incumbent solution is updated as
(NP,KP)=(6,5).

We next decrease K by 1. This provides one partition G!=(2,1,1) and two
resulting server vectors S'=(1,1,2) and S2=(1,2,1). No feasible solution is found
for both Ss: S! is eliminated from further consideration since S3! < SoLB, and S2 s
eliminated since TH(S2,W") is less than the throughput requirement.

We now increase N by one unit at a time and, for each value of N, find the largest
K such that z(N,K) < z(NP,KP), and the solution is feasible. For N=7, in order to
have z(N,K) < 28,600, we must have K<4, but this gives a throughput less than
the requirement. Similarly, for N=8, we must have K<4, but this is infeasible too.
A better feasible solution is found at N=9, K=4, with $2=(1,2,1). The incumbent
solution is updated as (NP.KP)=(9.4).

We now try to decrease K. This results in K < KLB,

Search over K 2 Kf. For K=6, the largest N such that z(N,6) < z(NP,KP)=25400
is less than NLB,

The current incumbent solution, namely, (NP,KP)=(9,4), with $°=(1,2,1) and
W*=(7.5, 15, 7.5), is optimal.



The search process for the example is illustrated graphically in Figure 1.

Figure 1.

4. EXPERIMENTAL RESULTS

We use five sets of parameters to illustrate the optimal algorithm for a single machine

type. We use the following linear cost function for z(N,K):
ZNK)=(Ch+Cp+Ca) - N+Ci-K

where Ch, Cp, C, and Cy are the annualized costs of a unit of work-in-process (WIP)
inventory, a pallet, a stop-and-go AGV, and a machine respectively. When the MHS is a
loop-conveyor instead of AGVs, C, is assigned a value of zero. Note that only the ratios
of these cost parameters are relevant since the cost function is linear. To investigate various
scenarios, we use different ratios for the five sets of cost parameters. The workload
bounds are chosen arbitrarily, but are consistent with the other problem data. The problem

data are presented in Table 1.
Table 1.

The algorithm was coded in FORTRAN and run on an IBM 3090-600, using the
VS-opt3 compiler. The following statistics were collected at termination of the algorithm
for each problem: the optimum solution and its cost, the number of throughput
computations, the number of workload allocation problems solved, and the CPU time. The
number of throughput computations was recorded since this consumed most of the CPU

time. The statistics are summarized in Table 2.
Table 2.

The results show that CPU time is sensitive to the throughput and the total workload.

This follows since a larger aggregate workload (d-TW) necessitates more servers, which in



turn increases the number of partitions to be evaluated. The longest CPU time (17.28 sec.)

was observed for problem D which had the largest d (200/960) and the largest TW (80).

5. EXTENSIONS

We now consider more general versions of problem P1 in which we relax some of the
assumptions made in Section 2. We first relax the assumption that a pallet carries only one
part. When the parts are small, a pallet can carry a batch of parts; thus, the batch size may
be another decision variable. Under Q-part transfer (where Q is the batch size), the Q parts
are processed consecutively at the same machine. Thus, the Q units can be viewed as one
"part" of a new product type whose total workload is Q-TW. The workload and
throughput parameters in P1 must be scaled accordingly. The cost associated with pallets
in the objective function should reflect the WIP inventory cost for Q parts instead of one
part per pallet. We assume that the expected material handling time (W() remains the same
regardless of the batch size. In other words, the speed of the handling equipment is
unaffected by the weight of the pallets. Therefore, with Q-part transfer, the formulation of

Problem P1 is restated as:

P1Q;
Minimize z(N.K,Q)

M
subjectto: K = ¥ §;j,
=l

THMN3,W) 2 dQ, 5)
M
I Wi=QTw, (6)
i=
QL; S W; < QU;. i=l,..M. (7)

We use the examples in Table 3 to study the effect of Q on the minimum cost. ForQ =1,
2,3,4,5, 10, 15, 20, and 30, we solved Problem P1Q. The results are shown in Figure
2. We assume that WIP inventory costs are linear with respect to Q. The optimum batch

size is determined by trading off three cost terms: material handling cost, machine cost and



WIP inventory cost. A large Q reduces the number of material moves, but increases WIP
inventory cost. To compensate for this, the optimal value of N, the number of pallets (and
stop-and-go AGVs) in the system usually declines. As a result, servers may be idle for a
long time while waiting for a pallet to arrive. This, in turn, increases the number of
machines required to achieve the desired throughput. We observed that the total cost
function is unimodal in Q. Based on this observation, it appears that a search procedure

could be adequate to solve the problem.
Figure 2.

We now consider the case of C machine types, and assume Q=1 for ease of
presentation. Let TW, be the total workload for machine type c, i.e., the mean service time
demanded by a part from machine type ¢. Also let:

K¢ = number of machines of type c,

M, = number of stations of type c,

Sci = number of machines at station i of type c,

W.i = workload for station i of type c,

L¢i = lower bound on workload for station i of type c,

Uci = upper bound on workload for station i of type c.

The optimum configuration and workload allocation problem becomes:

P1C;
Minimize z(N,K},K3,..., K¢)
subject to:
Mc
Kc = SCi' C"—’],....C, (8)
i=1
THMN,S,W) 2 d, 9)
Mc
W = TW,, c=1,...,C, (10)
i=l
Lei € W < Ui, i=1,...,.M¢, c=1,..,C, (1



where z(N,K{,K3...., K¢) is any cost function that increases with N and K for any c;

C - - _ - -
M =3 M; S = (Sc) with S¢ = (Sc1,....5¢M,); and W = (W) with We = (Wey,...,.Wem,).
c=1

The solution procedure for Problem P1C is as follows. We consider each machine
type, ¢, in isolation and use the solution procedure developed in section 3, to obtain the
optimal values of K. S¢*, N¢*, and W, with a throughput requirement of d. We next
consider the overall system with the C machine types, with a server vector given by the S;*
values, and a workload allocation given by the W.* values found above. This system is
evaluated for each N until the throughput is greater than or equal to d. This gives us an
initial feasible solution. Let Cyg denote the cost of this solution. Clearly a lower bound on
the cost, Cyg, is given by K'4, c=1,...,C, and N'8, which are obtained in the same way as

for the single machine type case.

We now generate all possible combinations of (K, ... , K¢, N) which have cost
between Cypg and Cig, rank these combinations in decreasing order of cost, and implicitly
enumerate the candidates in this list using a bisection search. For each candidate examined,
we obtain the optimal configuration and the corresponding workload allocation by solving
problem P2€, which is a generalization of problem P2:

P2C;
Maximize TH(S, W)
subject to constraints (8), (10), (11) of P1C,

Lemmas 1 through 4 and the Remark can be generalized and applied to Problem P2C.

It can easily be shown that the maximum throughput remains monotonic with respect to N

and K, for c=1,...,C (cf. Lemmas | and 2). Also, Lemmas 3 and 4, and the Remark hold

for stations of the same machine type.

If the resulting throughput is feasible, then we can reduce the number of candidates

which still need to be examined by half, and continue the bisection search. On the other



hand, if the candidate being examined does not provide a feasible solution, then we cannot
reduce the number of remaining candidates by half. However, we can still eliminate the
current configuration and other configurations which are infeasible because of the
monotonicity of the throughput function with respect to N and K¢, ¢ = 1,...,C. We then
resume the bisection search on the remaining candidates. Since we use a bisection search,
the workload allocation problem may need to be solved only for a relatively small number

of candidates.

6. CONCLUSIONS

In this paper, we considered the problem of finding the minimum cost configuration for
an FMS subject to a constraint on throughput when there is some flexibility in allocating the
workload among stations. The cost function includes the cost of machines, as well as the

costs of material handling equipment and work-in-process inventory.

We presented an implicit enumeration procedure for the problem with one machine
type. We developed several fathoming methods to reduce the number of system
configurations that must be evaluated. Computational experience with the algorithm
suggests that problems of moderate size can be solved optimally within 20 seconds of CPU

time on the IBM 3090-600 mainframe.

We also outlined an optimal algorithm for the more general problem with multiple

machine types. Further research is needed to develop efficient heuristics for this problem.
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APPENDIX 1

In this Appendix, we give a simple example to show how precedence constraints
among operations influence the upper and lower bounds on workloads. Consider a flexible
flow system with one machine type which is capable of processing all 30 operations for a
given product. However, because of tool magazine constraints or limits on the number of
components that can be located nearby, only 20 operations can be performed by a given
machine at any point in time. Suppose the precedence relations specify that operation j
must be performed before operation k if j < k (i.e., serial precedence structure). It is clear

that two stations are sufticient. For simplicity, we will assume that two stations are used.

Assume that the processing time of operation i is i time units. The total workload per
unit is 465 minutes. If we were to ignore the precedence constraints discussed above, the

upper and lower bounds would be:

10
Li=Ly= Y4y=55
i=1
30
and Up=Uz= 3t =410

i=11
On the other hand, if precedence constraints are considered, a little logic will show that:
10
Li= 24=55
i=1

20
= Y1 =210,

30
L2 = 3t =255,and
i=21

30
Uz = 3t =410,
i=ll

o
[

which are quite different from the bounds given above.

It is important to note that a continuous workload allocation satisfying the latter set of
constraints may not be achievable given the actual operation times. However, such an

allocation is much more likely to be achievable (with respect to precedence constraints) than

that obtained using the looser bounds.
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APPENDIX 2

In this Appendix, we provide proofs of Lemmas | through 4. Lemmas I and 2 permit
us to eliminate some dominated (N.K) pairs while Lemmas 3 and 4 permit us to reduce the

number of Ss that must be considered for each undominated (N,K) pair.
- - —% — X
Lemma 1. If THS (N.K).W"(N.K)) < d. then TH(S (N,K-1),W " (N.K-1)) < d.

- — %
Proof: We will prove this by contradiction. Suppose TH(S*(N,K),W (N,K)) < d and
THGS (N,K-1),W (N,K-1)) 2d. Add to 5 (N,K-1) one server in the i'" station to give a

total of K servers. Then, it follows from the results on the monotonicity of throughput
— % -
with increasing service rates (Suri [1984]) that TH(S (N,K-l)+ei,W*(N,K-1)) 2

M -
TH(S (N,K-l),W*(N.K-l)) 2d where ¢; is a unit server vector with all elements zero

except the it element, which is set to 1. By definition of § (N.K) and W' (N,K),
THGE (N.K), W' (N.K)) 2 THE (N.K-11+e, W (NK-1)) 2 d. This contradicts our

original assumption. B
Lemma 2. If THS (N.K),W (N.K)) < d. then TH(S (N-1,K),W " (N-1.K)) < d.

Proof: The proof is similar to that of the previous lemma. |

Lemma 3. If U; < L for any i and k. then we only need to consider S such that S; < Si.

Proof: The product-form CQN under consideration consists of one delay node (the MHS
station) and M multiple-server stations. The delay node also can be viewed equivalently as
a multiple-server node with N servers, so there are no queueing delays. Thus, the CQN
can be treated as a network where all stations have one or more servers. Shanthikumar and
Yao [1988] show that the throughput function TH(S,W) of the multiple-server product-
form CQN is decreasing in transportation. That is, interchanging S; and Sk so that S; < Sk

whenever W; € Wy, may increase, and does not decrease, the throughput. This
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rearrangement changes neither K nor z(N,K). Thus, if such a rearrangement is possible, it

is preferable to do so. When U; <Ly, W; < W, for any feasible W. Therefore, any Ss not

satisfying the relationship in the lemma are dominated. (]

Lemma 4. If L; € Ly < U; < Uy, then we only need to consider S such that S; <.

Proof: For any feasible W, we have two cases.

Case 1) W, < W,. From Lemma 3, we only need to consider S such that §; < S;.

Case 2) W; > Wy. Consider W' = (W,',..,Wy’) which is obtained by interchanging W;
and Wy of W while keeping the other workloads fixed. This W is feasible since Li<Lg<
Wi < W; s Uj s Ui implies that L < Wy < Uj and Ly £ W; S Uy, or equivalently, L; < W;
< Ujand Ly € Wy’ < Uy by the definition of W'. Hence, by applying the result of Case 1
to W', we prove this lemma. This argument is valid since the throughput function is

permutation invariant, i.e., TH(S,W) = TH(n(5),r(W)) for any permutation T. [ |



APPENDIX 3

The following algorithm can be used to find a good initial feasible solution to the
constrained workload allocation problem. We assume that the indices of the stations are
arranged so that Sy 2 S7 2 ... 2 Spm. We also assume that there is a feasible workload

allocation (i.e., TW < Z; U).

1) Find a balanced workload allocation, W. If it is feasible, then terminate. Otherwise go

to step 2.
DLetA=(ilWi>U;},B={ilW; <L },Sa=3% (W;-Up, Sg=3 (Li-W).

IEA 1€B
Reset Wijto U; forallie AandtoL;forallie B. If S5 - Sg > 0 (less than the total
workload is allocated), go to step 3. If Sy - Sg < 0 (more than the total workload, TW

is allocated), go to step 4. Otherwise, terminate .

3) Reallocate Sa - Sg by assigning as much additional workload as possible to stations
1,...,M in sequence while maintaining feasibility. Terminate whenever a feasible

reallocation has been found.

4) Reduce the workloads at stations M,...,1 in sequence while maintaining feasibility, until

a total reduction of Sg - S has been achieved.

The rationale for steps 3 and 4 is a result of Shanthikumar and Yao [1988] that for the
multiple-server product-form CQN, throughput is increased by assigning more workload to

a station with a larger number of servers.



Figure 1. An Example for the Implicit Enumeration Procedure

(Legend: X an initial feasible solution A
O a better feasible solution

® an infeasible solution

a solution fathomed by
\_ lemmas 1 and 2
K

—_— z(N,K)=600N + 5000K
6 —X—

2(5,6) = 33,000
— at the initial solution

3 —__§T‘TI‘-7§*— —2(6,5) = 28,600

at the first improved solution
K24 S r—o0—
34 2(9,4) = 25,400

at the second improved solution,
which is optimal

N

NB=4 5 6 7 8 9

The numbers near the circles indicate the sequence in which the solutions
are evaluated. The optimum solution is indicated by "6".



Table 1. Five Data Sets

Problem | M d*960 TW W, G G G Cx
A 3 100 30 8 100 500 0 5000
B 4 100 60 25 100 SO0 600 2000
C 5 150 80 48 1 500 0 1000
D 6 200 80 35 | 500 500 1500
E 8 100 8 18 100 500 500 2500

Problem T (workload lower bound) U (workload upper bound)
A (5,10.,5) (10,15,20)

B (5,10,15,15) (10,40,30,40)

C (5,10,15,15,5) (30,40,30,40,50)

D (5,5,5,5.5.,5) (40,40,40,40,40,40)
E (5,10,15,15,1,10,5,1) (10,40,30,40,50,20,10,40)




Table 2. Results of Experiments with the Optimal Algorithm

Problem Optimum solution Optimum cost f‘tllumb?]r of Nun;dber dof CPU time
- throughput | workloa
(N, S, W) computations| allocation (sec.)
problems
A 9. (1,2,1) 25,400 24 8 05
(7.5,15,7.5)
B 12, (1,2,2,4) 32,400 74 18 A1
(5,11.7,15,28.3)
C 25, (2,3,3,6,3) 29,525 940 448 4.20
(7.4,13.2,15,30.5,
13.9)
D 28, (10,5,2,2,2,2) 62,528 2285 343 17.28
(40,17.84,5.54,5.54,
5.54,5.54)
E 17, (1,2,2,2,2,2,1,1) | 51,200 25 13 11

(5,12.3,15,15,12.3,
12.3,5,3.1)




optimum cost

90000

Figure 2. Effect of Transfer Batch Size Q on Optimum Cost
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