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Abstract: Clustering problems are often difficult to solve due to nonlinear cost functions and complicating constraints. Set parti-
tioning formulations can help overcome these challenges, but at the cost of a very large number of variables. Therefore, techniques
such as delayed column generation must be used to solve these large integer programs. The underlying pricing problem can
suffer from the same challenges (non-linear cost, complicating constraints) as the original problem, however, making a mathe-
matical programming approach intractable. Motivated by a real-world problem in printed circuit board (PCB) manufacturing, we
develop a search-based algorithm (Rank-Cluster-and-Prune) as an alternative, present computational results for the PCB problem to
demonstrate the tractability of our approach, and identify a broader class of clustering problems for which this approach can be
used. © 2009 Wiley Periodicals, Inc. Naval Research Logistics 56: 215–225, 2009
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1. INTRODUCTION

Clustering problems, in which a group of objects must be
divided into nonoverlapping and exhaustive subsets, appear
in a wide variety of applications, ranging from transportation
(e.g. [5]) to manufacturing (e.g. [29]) to scheduling MBA
cohorts (e.g. [15]). When the cost function and/or the rules
governing the feasibility of subsets are complex, a set parti-
tioning model can often be formulated to avoid a nonlinear
objective function and/or complicating constraints.

Unfortunately, such formulations typically possess an
exponential number of integer variables. Very large integer
programs can sometimes be solved with branch-and-price, an
application-customized algorithm that uses delayed column
generation as a way to solve the large-scale linear programs
embedded within the branch-and-bound tree. Column gen-
eration, however, requires the repeated solving of a pricing
problem to identify candidate variables with negative reduced
cost. [These techniques are briefly summarized in the next
section.] When a set partitioning formulation is used as a
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way to bypass complex constraints and objective functions,
this complexity must instead be addressed in the pricing prob-
lem. Thus, mathematical programming (MP) approaches are
often inadequate for solving this pricing problem. This was
our experience in attempting to solve a real-world problem
in integrated printed circuit board (PCB) planning.

Motivated by this application, we have developed an alter-
native approach to the pricing problem, which we call Rank-
Cluster-and-Prune (RCP). RCP is a search-based technique
that, like branch-and-bound, uses a tree structure to enumer-
ate potential solutions. Rather than using linear programming
to construct the nodes, however, we make inclusion deci-
sions in an ordered way, allowing us to directly compute the
objective function. This is very powerful, as it enables us to
consider problems with a wide range of objective functions.
They need not be linear or convex. In fact, it is not even nec-
essary that we be able to write the objective function in closed
form. For example, we might compute it using Monte Carlo
simulation or a look-up table. The only restriction is that it
be nondecreasing in inclusion (i.e. when we add to a set it’s
cost does not go down). Pruning based on dual potentials
prevents the exhaustive enumeration of the solution space
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and therefore achieves tractability. In this article, we present
the RCP algorithm, demonstrate its tractability with exam-
ples from the PCB problem, and identify a broader class of
clustering problems for which this approach is applicable.

In Section 2, we present background material on set parti-
tioning, column generation, and branch-and-price. We also
introduce an application from PCB manufacturing, which
will be used as an example to demonstrate our proposed
approach. We present the RCP algorithm in Section 3. Com-
putational results for the PCB application are presented in
Section 4, and Section 5 offers conclusions and suggestions
for future research.

2. BACKGROUND

2.1. Set Partitioning Problems

In a set partitioning problem [1], a collection of objects
must be partitioned into sets such that each object is included
in exactly one set and the sum of the costs associated with
these sets is minimized. Letting K represent the collection
of objects, S the valid sets, δks a parameter with value one if
object k is contained in set s and zero otherwise, cs the cost
of set s, and xs the binary variable associated with choosing
set s (xs = 1) or not (xs = 0), the set partitioning problem
(SPP) can be formulated as:

SPP:

min
∑
s∈S

csxs (1)

st∑
s∈S

δksxs = 1 ∀k ∈ K (2)

xs ∈ {0, 1} ∀s ∈ S. (3)

The sole constraints are cover constraints ensuring that
each object is included in exactly one set.

2.2. Column Generation and Branch-and-Price

Most SPP’s have a very large number of variables – on the
order of 2|K|. Integer programs (IPs) of this size can some-
times be solved using branch-and-price [3, 4, 30], in which
each of the linear programs (LPs) in the branch-and-bound
tree is solved using delayed column generation [13, 31].
Column generation begins with a restricted master problem
(RM), which contains only a subset of the variables (columns)
from the original IP. After RM is solved to optimality, the dual
values are then used to determine if any of the variables not
currently included in RM have negative reduced cost. If so,
one or more of these new columns are added to RM and the
process repeats. If not, the RM solution is optimal for the
original LP as well.

Rather than explicitly computing the reduced cost of all
variables not yet included in RM, it is often more effective
to solve a pricing problem (also called a sub problem), a
secondary optimization problem that seeks the variable from
the original (master) problem with the most negative reduced
cost.

The reduced cost of a variable in SPP is the true cost of the
corresponding set minus the sum of the duals associated with
the cover constraints for the objects in that set. Thus, letting
πk represent the dual variable associated with the cover con-
straint for object k, the pricing problem (PP) can be stated
as:

PP:

min cs −
∑
k∈s

πk (4)

st

s ∈ S. (5)

In some applications, all subsets of K are feasible sets but
the cost cs associated with these sets is a nonlinear function.
In other applications, complex rules govern which subsets are
feasible. In either case, the pricing problem may be difficult to
solve, as it must address the nonlinearities and complicating
constraints that were the motivation for using set partitioning
in the first place. When traditional MP approaches to solving
PP are not tractable, alternative approaches must be devel-
oped. One of the alternatives most commonly seen in the
literature is multilabel shortest paths (e.g. [5, 14]), which is
often appropriate when the clusters actually correspond not
just to groups of objects but in fact to the sequencing of these
objects. Typically, these cases involve multiple resources that
are consumed in some complex way while traversing the
associated path; thus, many clusters can be pruned due to
infeasibility and/or dominance. Other domain-specific alter-
native approaches to the pricing problem include the para-
metric approach of [25], the use of dynamic programming
to solve the capacitated lot sizing problem in [10], solving a
knapsack problem to generate columns in the cutting stock
problem [17], and constraint programming in [16].

In this article, motivated by the PCB application, we
develop an alternative approach to existing methods for solv-
ing the pricing problem, which we call Rank-Cluster-and-
Prune. This approach is targeted primarily towards problems
where nonlinear objectives and/or complicating constraints
are not easily ammenable to a MP framework, but can easily
be computed/evaluated “off-line.”

2.3. Integrated Printed Circuit Board Planning

To demonstrate both the need for and the power of our
approach, we introduce a problem we encountered in PCB
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manufacturing [2, 11, 18]. PCBs are made up of an assort-
ment of components—capacitors, resistors, etc.—that are
mounted onto a substrate. One method for doing so is with
a through-hole pick-and-place machine that automatically
selects and inserts the components, which are stored in a
feederbank—a linear array of sleeves used to store the vari-
ous components. Each sleeve contains components of a single
type. A numerically-controlled conveyance requires tj sec-
onds to move the retrieval head to sleeve j , pick a component,
return to the home position, and insert the component. [The
board is simultaneously repositioned and thus the position on
the board does not impact the production time.] It is easy to
show (e.g. [19]) that, given a demand for a set of components
of varying types, the retrieval time is minimized by sorting
the component types according to decreasing frequency of
use and then assigning them to sleeves of increasing dis-
tance in the pick-and-place machine. Figure 1 shows this
“pipe-organ” configuration.

Now consider the short-term problem of assembling a col-
lection of different board types, in which a setup cost σ is
incurred whenever the machine is reconfigured, i.e. compo-
nents are reassigned to new sleeves, to recognize the upcom-
ing boards’ new characteristics. Because a “full tear-down”
in which all components are removed and then restocked
is typically used, so as to avoid error, this process is time-
consuming and should therefore be taken into account in
the planning process. Specifically, the problem requires the
integration of clustering decisions (which boards to group
together, when similar enough to permit a common set-up
across them) and configuration decisions (how to assign
components to sleeves). This problem, integrated clustering
and machine setup (ICMS), addresses the problem of deter-
mining the optimal trade-off between set-up and processing
costs [21–23]. Although formulations other than set parti-
tioning can be used to model this problem, the linearization
of the objective function and the resulting weakness of the
linear programming relaxation greatly restricts the size of
instances that can be solved. We were able to achieve signif-
icant improvements by instead formulating this problem as a
set partitioning problem and then solving the pricing problem
via RCP. We use this application to demonstrate our proposed
approach.

The following notation is used:

• K is the set of jobs, i.e. distinct board types.
• N is the number of distinct component types (and thus

the number of sleeves in the pick-and-place machine).
• qik is the demand for components of type i to satisfy

the production of boards of job type k.
• tj is the time to retrieve a component from sleeve j .
• f ∗

c (k) is the time to produce all boards of type k

according to the pipe-organ setup which is optimal
for the cluster C collectively; note that this setup is

Figure 1. A pick-and-place machine showing an optimal pipe-
organ setup.

not necessarily the optimal setup for any individual
board k within C.

Given this notation, the objective coefficient for any cluster
C ⊆ K is

σ +
∑
k∈C

f ∗
C (k). (6)

the reduced cost is

σ +
∑
k∈C

(
f ∗

C (k) − πk), (7)

and the pricing problem is therefore
ICMS-PP

min σ +
∑
k∈C

(
f ∗

C (k) − πk) (8)

st

C ⊆ K. (9)

Note that all subsets of K are feasible in this application,
and that the objective function is trivial to compute for a given
cluster C, using the pipe-organ approach. As we will see in
the next section, however, linearizing this objective function
within a MP leads to significant computational challenges.
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3. THE RANK-CLUSTER-AND-PRUNE
ALGORITHM

3.1. Motivation

The motivation for a search-based approach to solving the
set partitioning pricing problem stems from the fact that the
cost of a cluster is often determined by a nonlinear function.
Furthermore, there may be complex rules determining which
clusters are feasible. The challenges of trying to address these
in a MP approach are the very reason for using a set parti-
tioning formulation in the first place, and these issues are thus
also naturally problematic in the pricing problem.

Consider ICMS, for example. In this case, all nonempty
subsets of K are valid clusters, but the objective function
is nonlinear as it relies on the sorting of the components.
Although this can be formulated as a MP, in our experi-
ence the performance of such an approach is far too slow,
especially when considering that this MP must be solved at
each iteration of each node of the branch-and-bound tree. We
demonstrate this with the following formulation, which is a
MP-based approach to the pricing problem.

Recall that the purpose of the pricing problem is to identify
a variable (i.e. the cluster or, in this case, the set of jobs) with
negative reduced cost. In addition to the input data described
earlier, we define three sets of binary variables. xk = 1 if
board type k is included in the new cluster; yij = 1 if com-
ponent i is assigned to sleeve j when processing this new
cluster; and wijk = 1 if component i is retrieved from sleeve
j to meet the demand of board k when processing this cluster.

The pricing problem can then be formulated as

min σ +
∑
k∈K

 N∑
i=1

N∑
j=1

qiktjwijk

 − (πkxk)

 (10)

st∑
i=1..N

yij = 1 ∀j (11)∑
j=1..N

yij = 1 ∀i (12)

∑
j=1..N

wijk = xk ∀k, i (13)

wijk ≤ yij ∀i, j , k (14)

xk , yij , wijk ∈ {0, 1} ∀i, j , k (15)

We denote the optimal objective value of the pricing prob-
lem (independent of how it is found) by z∗(K). [The K is
included to indicate that this is optimal relative to the given
set of objects K—this will be relevant in the general state-
ment of the algorithm, when the pricing problem is solved
over varying sets of objects.]

At its core, this pricing problem must make two sets of
decisions—which boards to include in the new cluster, and
how to configure the pick-and-place machine for this cluster.
Both of these can be formulated easily. Constraints (11) and
(12) form an assignment problem, placing exactly one com-
ponent in each sleeve. The binary variable restrictions on x

in (15) determine the make-up of the cluster. The remainder
of the model is used to linearize the cost function, and this is
the source of its complexity. Constraints (13) state that each
component must be retrieved for a given board if and only
if that board is included in the cluster. Constraints (14) state
that a component cannot be retrieved from a sleeve unless it
is assigned to that sleeve.

This formulation succeeds in linearizing the objective
function, but fails to achieve tractability for all but the most
trivial of problem instances. It suffers from two primary flaws.
First, it is very large—on the order of N2 ∗ |K| constraints
and a comparable number of integer variables. For a problem
with 24 board types and 100 component types, this is more
than 240,000 constraints.

Second, and perhaps more problematic, is the weakness
of the LP relaxation. Even for small problem instances, this
model is slow to converge, because the model is able to
“cheat” and only use the least expensive sleeves by selecting
fractions of boards for the solution. Consider the following
analogy. A child is told that he must eat all his dinner—
chicken and peas (which he hates)—to have dessert. He
proposes to eat half of his dinner in return for half of his
dessert. His foolish mother agrees, only to discover the child
eating all of the chicken but none of the peas. Similarly, in the
model, if we only assign a fractional value to xk then we only
need fractional values for the retrieval variables wijk , which
in turn enables the less expensive sleeves to be “shared” by
multiple components in fractional amounts. In other words,
we can gain the benefit of a fractional value of board k’s dual
while paying less than the equivalent fractional value of its
processing cost.

The formulation can be strengthened through the use of
cuts, but this further increases the constraint set. Certainly
alternative formulations exist as well, but it would appear
that any tractable formulation would require the use of deci-
sion variables x to select the boards; in testing many different
formulations, we found that it was quite common for the
branch-and-bound solver to branch on the majority of the
x variables to reach a solution. In other words, the solver
enumerates a large number of clusters and for each of these
clusters solves an IP to find the objective value for this clus-
ter. Note, however, that for a given cluster, we can trivially
compute the objective value without the use of MP—it is sim-
ply the pipe-organ solution. Thus, we set out to exploit this
fact by constructing a search-based framework for the pric-
ing problem that computes the objective function of candidate
clusters directly, rather than through the use of MP.
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3.2. Algorithm

In this section, we first derive RCP in the context of ICMS,
then generalize it and describe a class of set partitioning
problems for which it is applicable.

3.2.1. Rank-Cluster-and-Prune for ICMS

The purpose of the Rank-Cluster-and-Prune algorithm is
to take a set of board types (jobs) and their corresponding
dual values, and generate a subset of these jobs with nega-
tive reduced cost. The RCP algorithm has three steps. First,
rank the board types by decreasing likelihood for inclusion
in the new column. Second, construct a tree that explicitly
constructs and computes the cost of possible clusters (i.e.
sets of board types), at each depth d of the tree, branching on
whether or not to include the dth-ranked board type. Third,
prune the tree whenever possible to avoid full enumeration.

This approach exploits three important characteristics of
the problem to achieve tractability. First, it is trivial to com-
pute the cost of a cluster. Second, the cost of a cluster always
increases when another board type is added to it. Third, the
only negative contribution to the reduced cost function is the
duals associated with the board types in the cluster.

Rank. Consider the impact on reduced cost of adding board
type k to an existing cluster C. By the optimality of f ∗ and
the fact that it is non-decreasing in set inclusion,(∑

i∈C

(
f ∗

C∪{k}(i) − πi

)) + (
f ∗

∪{k}(k) − πk

)
≥

(∑
i∈C

(
f ∗

C (i) − πi

)) + (
f ∗

k (k) − πk

)
. (16)

Thus, adding k to the cluster must change the reduced cost
by at least

pk ≡ f ∗
k (k) − πk , (17)

which we define as the potential of board k; in other words,
this is a lower bound on the impact. We suggest that, in
general, adding a board with more negative potential to an
existing cluster is more likely to lead towards reduction in
reduced cost. Note that for a board to have very negative
potential, its minimum processing cost f ∗

k (k) must be low, its
dual πk must be high, or both. A low processing cost might
suggest a small number of components to be retrieved, in
which case the board type would have limited impact upon
the processing cost when being added to an existing clus-
ter. Conversely, a high dual suggests that the board type is
having negative impact on the ability of RM to find good
solutions (i.e. this board does not fit well with other boards to
form a logical cluster)—thus, new columns containing this

Figure 2. A sample RCP tree for an instance with four board types.

board type are desirable; on the other hand, if the board type
is incompatible with other board types, then the subsequent
additions of other boards to the cluster would quickly show
an increase in overall cost and lead to easy pruning. Thus, we
rank boards in increasing order of potential (i.e. beginning
with the most negative).

Cluster. Given a ranked set of boards, we then construct a
tree in which the root is the null set and has value σ . We
branch on this root node, creating two children—the left one,
in which we add the highest-ranked board, which we will
denote as board type 1, and the right one, which is a copy of
its parent node (i.e. board type 1 is rejected and will not be
reevaluated in any offspring of this node). The value of each
of these nodes is determined by computing the reduced cost
of the corresponding cluster. For each of these two nodes, we
then branch, deciding whether or not to add the second ranked
board, etc. For example, node a in Fig. 2 corresponds to the
cluster of boards ranked first, second, and third according to
their potentials; its value is

σ +f ∗
{1,2,3}(1)+f ∗

{1,2,3}(2)+f ∗
{1,2,3}(3)−π1 −π2 −π3. (18)

Node b corresponds to board 3, with cost

σ + f ∗
{3}(3) − π3 (19)

and node c corresponds to boards 1 and 4, with cost

σ + f ∗
{1,4}(1) + f ∗

{1,4}(4) − π1 − π4. (20)

Prune. If we fully construct the tree, at depth |K| we will
have 2|K| nodes. Pruning is thus essential for tractability. We
do so by again exploiting the notion of board potentials.

First, we note that any board with a nonnegative potential
will only increase the reduced cost of any cluster to which it
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is added (because f is non-decreasing in set inclusion) and
thus we can preprocess out any such board.

Second, we consider the extension of this idea to cumula-
tive potentials. Suppose we are at a node in the tree of depth
d − 1. That is, our next decision at this node is whether or
not to include the board ranked dth. Suppose also that the
current node has nonnegative value α. All remaining board
types have negative potential (or else they would have been
removed in preprocessing). If the sum of these potentials is
not more negative than (−α), however, then the current node
will never yield a negative reduced cost column and can be
pruned (again, because f is non-decreasing in set inclusion).
We formally define the cumulative potential at depth d as

cpd ≡
|K|∑
i=d

(
f ∗

i (i) − πi

)
. (21)

Note that this potential depends only on the depth of the tree
and not on the cluster itself.

Finally, we observe that even the cumulative potentials can
be strengthened, because their computation is premised upon
the notion that we can gain the value of all the outstanding
boards’ duals but in turn only pay their individually-optimal
processing costs. For example, if we are going to add to our
cluster both boards a and b, then at a minimum our processing
cost would increase by

f ∗
{a,b}(a) + f ∗

{a,b}(b) (22)

rather than

f ∗
{a}(a) + f ∗

{b}(b), (23)

as is computed in the cumulative potentials.
It is not correct, however, to revise the potentials by

replacing

|K|∑
i=d

(
f ∗

i (i) − πi

)
(24)

with

|K|∑
i=d

(
f ∗

{d,d+1,d+2,...|K|}(i) − πi

)
(25)

because we might be able to better improve our reduced
cost by adding only some of the remaining outstanding
board types. Rather, the lower bound should be stated as z∗
({d, d + 1, d + 2, . . . |K|}) − σ . In other words, this is the
optimal reduced cost (minus the constant setup cost σ ) found
when only considering boards of depth d or greater. That is
to say, we can compute improved potentials by solving the
pricing problem recursively, beginning with the lowest depth
and moving upward, considering progressively larger subsets

of K, with each solution providing bounding information for
the higher iterations. We denote this tightened bound by βd .
This is demonstrated in the formal statement of the algorithm
in the following section.

3.2.2. RCP Algorithm

We use two data structures in solving RCP. We first define
a node to be a triplet comprised of a cluster, a value, and a
tree depth. We then consider a pending list, which is a linked
list of nodes still to be examined.

Step 1: Define K̂ = {k ∈ K : pk < 0}. That is, K̂ is the
subset of jobs that have negative individual potential and are
therefore worth including in the search.

Step 2: Rank and re-index the elements of K̂ such that
p1 ≤ p2 ≤ · · · ≤ p|K̂|. This is the order in which they will
be evaluated in the tree, from most negative potential to least
negative potential.

Step 3: Set β(|K̂|) = p|K̂|. The cumulative potential at the
lowest depth of the tree is simply the potential of the final
board to be considered.

Step 4: If β|K̂| + σ < 0, add the column corresponding

to cluster {K̂} to RM. In other words, if we identify a clus-
ter with negative reduced cost while we are constructing the
potentials, then we can immediately add that cluster to the
restricted master.

Step 5: For each depth d in decreasing order of potential
(i.e. d = |K̂| − 1, |K̂| − 2, . . . 1), compute the cummulative
potential βd according to the following steps. Note that these
steps actually find z∗ ({d, d +1, d +2, . . . , |K̂|}), the optimal
solution to the pricing problem relative to the restricted set
of boards ranked d and higher.

Step 5a: Set the pending list to empty.
Step 5b: Set β(d) = β(d + 1). This initializes β(d) (the

most negative reduced cost that can be achieved by consider-
ing all boards d and higher) with the upper bound provided
by the known value of β(d + 1), which was computed in the
prior iteration.

Step 5c: Create node ({d}, pd , d). This is the root of the
tree, which automatically contains board d (since β(d + 1)

considers all clusters of boards with depth d + 1 or lower,
excluding board d). This node has a value of pd , the potential
associated with board d alone, and a depth of d.

Step 5d: Add node to pending list, thereby initializing the
tree.

Step 5e: While pending list is not empty, select an arbitrary
node and do the following. [We let (C, value, node_depth)
denote the characteristics of this node.]

Step 5e1: If value < βd , then we have a tighter bound on
the potential at depth d. Therefore, update βd = value.
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Step 5e2: If value + σ < 0, then the current cluster has
strictly negative reduced cost. Therefore, add cluster C to
RM.

Step 5e3: If node_depth = |K̂|, then we have reached the
bottom of the tree – prune node from pending list.

Step 5e4: Else, if node_depth < |K̂|, then we still
have remaining boards to consider. Check whether value
+βnode_depth+1 ≥ βd . In other words, is the current value plus
the potential of the board types remaining to be considered
guaranteed to be no better than the current bound on βd? If
so, prune node from pending list.

Step 5e5: Else, if value + βnode_depth+1 < βd , then the cur-
rent cluster can potentially be improved. Thus, we need to
evaluate the tree below it. We do so by branching according
to the following two steps.

Step 5e5a: Set node_depth = node_depth + 1, i.e. drop
down one level in the tree. This is equivalent to the right-
branch in the tree, i.e. we reject the next candidate board
from the cluster.

Step 5e5b: Create a new_node to include the next candi-
date board in the cluster—this is equivalante to the left-branch
in the tree. Set the cluster of new_node to {C ∪ node_depth},
the value of new_node to the optimal processing cost of this
new cluster minus the sum of its duals, and the depth of
new_node to node_depth. Add new_node to pending_list.

EXAMPLE 1: To clarify this, we refer the reader again to
Fig. 2. In this tree, there are four depth levels. This means
that there are four boards k in the data set for which

f ∗
k (k) − πk . (26)

We label these boards A, B, C, and D, where D has the
most negative potential (and thus is evaluated at the top of
the tree) and A has the least negative (but still strictly less
than zero) potential and thus is evaluated at the bottom of the
tree.

The first step is to compute the cumulative potential of
board A. This is simply the individual potential of A,

β(A) = f ∗
A(A) − πA, (27)

which by supposition is strictly negative. We then compute

β(A) + σ . (28)

If this is strictly less than zero, then we add the column
associated with the cluster {A} to the restricted master.

Next, we compute the cumulative potential of board B—
that is, the maximum value that can be gained by considering
boards of depth three or lower. In other words, we want to
find the minimum of the clusters {A}, {A, B}, {B}. To do so
we first check whether f ∗

B(B) − πB + σ < 0. If so, we add

the cluster {B} to the restricted master. Next, we compare
β(A) to f ∗

B(B) − πB . By our choice of ranking, β(A) will
always be lower and thus we set β(B) = β(A). We then
create the node associated with cluster {A, B} and compute
f ∗

A,B(A) + f ∗
A,B(−B) − πA − πA. If this is strictly less than

β(B) then we update β(B) with this value. We also check to
see if adding σ to this yields a strictly negative cluster; if so,
we add {A, B} to the restricted master.

In the third stage, we compute the cumulative potential
of board C. In this case, suppose that when we evalu-
ate the node associated with cluster {C, B}, we find that
f ∗

C,B(C)+f ∗
C,B(B)−πC −πB +β(A) ≥ β(C), then we can

prune—i.e. adding B to C makes us worse off than keeping
C alone.

Finally, we complete the algorithm by computing the
potential for board D and, in the process, effectively evaluat-
ing the entire tree, taking advantage of the recently computed
cumulative potentials to reduce branching.

3.2.3. Details and Observations

Generating Multiple Columns. Note that it is not necessary in
a delayed column generation approach to find the most neg-
ative reduced cost column when solving the pricing problem
(this is an important factor in the tractability of approaches
such as multilabel shortest paths (e.g. [5, 14])—we simply
must find a column with reduced cost strictly less than zero in
order for the column generation approach to converge. Thus,
whenever we encounter a negative reduced cost column while
constructing potentials, we can add this to RM. Furthermore,
it is often beneficial to add multiple new columns to RM in a
single iteration of the pricing problem. In our computational
experiments, we often found very large numbers of negative
reduced cost columns after examining only a fraction of the
RCP tree.

Avoiding Repetition. In the act of constructing cumulative
potentials, we are actually fully evaluating a portion of the
original tree. Thus, this portion of the tree does not need to be
reevaluated subsequently. In fact, if we compute the poten-
tials of each depth from |K| all the way up to 1, then the
algorithm is complete—the tree will have already been fully
evaluated. For example, in Fig. 2, we first evaluate the node
in block A to find β4, then block B to find β3, then block C

to find β2, and finally block D to find β1. This fully exhausts
the tree. Note that these blocks are not necessarily fully
enumerated, as nodes may be pruned within them by lever-
aging the potentials already computed for lower depths of the
tree.

Data Structure. Although we present RCP as a tree and
it is natural to think of it this way, it is more efficient
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computationally to process it as a singly-linked list. By defin-
ing each node in the tree to store its depth, its current cluster
(which can be stored as a binary number), and its current
value, we do neither need to keep pointers from child nodes
to parent nodes, nor do we need to retain nodes after they have
been evaluated and split. When we process a node, we first
compute its value (i.e. the reduced cost of the corresponding
cluster). If the node has (strictly) negative reduced cost, then
we immediately return its cluster to RM. After computing the
cost, we check to see if the node can be pruned. If not, we then
make a copy of the node and, in this copy, increase the depth
and add the next ranked board to the cluster (this corresponds
to the left branch). We can insert this immediately after the
current node in the linked list for a depth-first search, at the
end of the list for a breadth-first search, or in the appropriate
location for a best-bound search, as a function of its current
reduced cost. In addition, we also keep the original node, but
increment its depth, thereby converting the current node to
the right branch (associated with rejecting the next ranked
board type).

Termination Criteria. It is not necessary to fully evaluate
the pending list except in the final instance, in which opti-
mality is proven by the lack of any negative reduced cost
columns. So long as at least one valid column has been found,
the tree can be terminated at any time. It is trivial to set
limits on run time, number of evaluated nodes, or number
of generated columns, after which the algorithm should be
terminated. In Section 4, we demonstrate the power of this
fact.

Branching. Finally, although the focus of this article has
been on the pricing problem, which is an integral part of
solving the individual LPs in the branch-and-bound tree, we
conclude with a brief note about branching strategies for
RM. It is common when solving IP’s to branch on variable
dichotomy—given a fractional value for x, set x = 1 in one
half of the tree and x = 0 in the other. Such a strategy can be
problematic in branch-and-price, because this new constraint
is accompanied by a new dual value which only applies to a
single solution to the subproblem. Thus, in set partitioning
problems, it is common to instead branch on object pairs—
in one half of the tree, objects a and b must be included in
the same cluster and in the other half, they must not (see, for
example, [26] and [27]). In our proposed approach, it is triv-
ial to enforce this branching strategy and, in fact, this even
improves performance as the depth of the RM branch-and-
bound tree grows. For a node of the branch-and-bound tree
where a and b must be together, then whenever we add a

to a cluster as we are solving the subproblem, we prune the
portion of the RCP tree underneath it in which b is rejected
and vice versa; the opposite is true on a branch where a and
b must be separate.

3.2.4. RCP for General Set Partitioning Problems

The RCP algorithm, as described in the preceding section,
can easily be extended to problems other than ICMS. Only
the following two conditions are needed:

• It must be possible to compute the cost function f (g)

associated with cluster g quickly. Note that this does
not require linearity or even convexity of f . In fact,
we do not require that f be a closed-form function.
There must simply be an oracle that can quickly return
f (g) for any cluster g.

• f (g) must be less than or equal to f (g ∪ C) for all
sets C (i.e. adding to a cluster cannot decrease its o
cost).

Note that our initial statement of the algorithm (with
respect to ICMS) assumes all clusters are valid clusters. This
also need not be the case—so long as a cluster can easily be
tested for feasibility, we simply add that step at each node
(again, not that we do not require a MP approach to testing
these feasibility—any oracle is acceptable).

In addition, the following characteristics (not present in
ICMS) will improve the performance of the algorithm:

• Suppose that if the reduced cost of set g is less than
the reduced cost of g ∪ {i}, then the reduced cost of
g is less than the reduced cost of g ∪ {i} ∪ C for any
object i and any set C. In other words, if adding an
object to the set g increases its reduced cost, then the
reduced cost of any further expansion of the set g will
never have lower reduced cost either. Then whenever
a child node has greater value than that of its parent,
that branch of the tree can be pruned.

• Suppose that all constraints are “additive” – if set g

violates the constraint, then set g ∪C will also violate
the constraint for any set C. Such constraints include
limits on the maximum number of elements in a set,
their maximum weight, and so forth. In such a case,
whenever a node is encountered that violates these
constraints, then again the tree can be pruned from
this node.

We conclude this section by briefly highlighting a few
of the other application areas where this approach might be
applied. The most obvious is school and voter redistricting:
The problem of how to divide neighborhoods or geographic
regions into districts for the purposes of voting, school assign-
ment, etc. has received substantial attention from the OR
community, dating back at least as early as 1965 [20] and as
recently as 2003 [8]. These problems, in which every neigh-
borhood must be assigned to exactly one district, naturally
lend themselves to a set partitioning formulation. What makes
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these problems challenging (see, for example [9]) is the col-
lection of requirements as to what constitutes a valid district.
For example, the neighborhoods in a district typically must
be contiguous, cannot span natural boundaries such as rivers
or major roadways, and must satisfy certain requirements
of diversity. These requirements are often straightforward to
test for—that is, given a set of neighborhoods, we can eas-
ily determine whether it satisfies the requirements—and yet
formulating these checks in a mathematical programming
construct can be quite problematic. As such, RCP provides a
natural alternative, because the feasibility test can be encoded
as a “black box” rather than through linear constraints. Simi-
lar problems exist in districting for electric power markets [6],
police districting [12], and home health-care districting [7].
Finally, we note that certain special classes of vehicle rout-
ing and crew scheduling problems may be ammenable to an
RCP approach. For example, in a drayage operation where
the dominant cost is a function of the customers served, rather
than the distance traveled, RCP might be applicable. In this
case, the challenge would be in determining the feasibility of
a set of loads from a timing standpoint. This again is in some
cases difficult to capture with a set of linear constraint but can
naturally and quickly be solved via a “black box” feasibility
checker.

4. COMPUTATIONAL RESULTS

Our computational experiments were conducted on
a test bed of ICMS problem instances generated by
Norman [24]. This data set (available at http://www-
personal.umich.edu/∼amycohn/papers.html), from which
we extracted 13 problem instances (referenced by their nam-
ing from [24]), was designed to capture a variety of man-
ufacturing characteristics and based on actual optimization
problems on the shop floor. Recognizing that the key trade-
off is between retrieval times and the machine setup time, we
considered three different values of the setup time σ for each
instance (derived from the particular instances’ parameters
to consider cases where there are large, medium, and small
numbers of clusters in the optimal solution). Each RM was
initialized with a set of columns containing one-, two-, and
three-item clusters, |K|−1, |K|−2, and |K|−3 item clusters,
and the exhaustive cluster.

We coded the branch-and-price algorithm in C++, using
CPLEX 8.0 to solve the individual restricted master LPs.
Branching was conducted using the strategy outlined in
Section 3.2.3. For each individual LP, RCP (also implemented
in C++) was used to generate the columns. We permitted
up to 10,000 negative reduced cost columns to be added to
RM at each iteration of the pricing problem. We terminated
RCP if at least one negative reduced cost column had been
found and more than 2,500,000 nodes in the RCP tree had

Table 1. Single instance.

Data set A4 Iteration Evaluated nodes Col’s

No. of boards 24 1 26178 (0.16%) 10,000
No. of components 16 2 63, 382 (0.38%) 10,000
σ 5000 3 87, 873 (0.52%) 10,000
Max nodes per tree 16,777,216 4 107, 923 (0.64%) 10,000
Total time 36 s 5 94, 037 (0.56%) 10,000

6 96, 793 (0.58%) 10,000
7 97, 714 (0.58%) 10,000
8 153, 029 (0.91%) 8,473
9 140, 314 (0.84%) 137

10 179, 595 (1.07%) 16
11 170, 043 (1.01%) 0

been investigated or more than 10,000 negative reduced cost
columns had been found.

We solved each of the problem instance to integer optimal-
ity (with the exception of one instance, for which we were
unable to solve the LP relaxation to provable optimality).
There was very little branching, as is often seen in set par-
titioning problems of this size. The instances often required
fewer than 10 nodes to be solved in the branch-and-bound
tree of the master problem and never required more than 50
nodes to be solved. In addition to noting the limited branch-
ing in our problem instances, we also note that the overall
performance issues associated with column generation and
branch-and-price relative to the master problem are indepen-
dent of the mechanism used to solve the pricing problems
(other than, of course, the run time of the pricing problem
iterations themselves). [See [28] and [30]) for further dis-
cussion.] Therefore, the remainder of our discussion on the
computational experiments focuses specifically on the per-
formance of the pricing problems in solving the root node of
the branch-and-bound tree.

We begin in Table 1 by providing detailed information
about a single, illustrative example. This problem instance
has 24 boards, 16 components, and a setup time of σ = 5000.
It took 11 iterations of the resticted master (i.e. eleven calls
to the pricing problem, via RCP) to solve the LP relaxation
to provable optimality, with a total run time of 36 s. The first
seven iterations of the pricing problem terminated according
to the stopping criteria of having identified 10,000 negative
reduced cost columns. The remaining columns terminated
after the tree was exhausted. The final iteration did not yield
any negative reduced cost columns and thus established opti-
mality of the LP. Note that the number of nodes actually
evaluated in the tree was rarely above 1% of the total possible
size (224 = 16, 777, 216). In other words, the vast majority
of the tree was pruned without the associated clusters being
explicitly evaluated.

Table 2 provides statistics summarizing the performance
of the root node for all 13 instances. In these tables, an X
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Table 2. Results.

σ No. of iter. Ave. nodes per iter. (%) Ave. col’s. per iter. Total time (s)

A1 16,000 1 299 (0.00) 0 2
24 640,000 4 318,489 (0.02) 8,242 106
100 1,280,000 14 1,343,652 (8.01) 8,672 1,379
A2 2,500 1 148 (0.23) 0 2
16 20,000 3 32,394 (49.43) 102 7
100 80,000 3 52,431 (80.00) 36 11
A3 10,000 4 1,769 (0.01) 94 4
24 40,000 1 2,671 (0.02) 0 2
26 80,000 2 11306 (0.07) 87 2
A4 1 1 299 (0.00) 0 1
24 5,000 11 108,346 (0.65) 7,863 36
16 10,000 5 231,532 (1.38) 4,583 30
A5 5,000 2 5,787 (0.00) 87 3
40 10,000 4 28,088 (0.00) 10 6
16 20,000 5 475,919 (0.00) 2,594 96
A6 625 6 19,019 (0.03) 1,753 4
26 2,500 13 104,947 (0.16) 5,505 36
16 5,000 6 190,091 (0.28) 1,214 82
A7 5,000 2 30,452 (0.00) 5 7
60 10,000 4 240,518 (0.00) 128 40
16 20,000 15 2,470,862 (0.00) 2,549 1,336

S1 625 1 1,408 (0.00) 0 3
32 1,250 2 3,125 (0.00) 2 2
16 2,500 5 20,373 (0.00) 179 4
S4 5,000 9 208,272 (0.00) 6,779 105
32 10,000 18 996,037 (0.02) 8,846 606
16 40,000 10 2,474,787 (0.06) 3,287 595
S6 80,000 1 4,058 (0.00) 0 3
32 160,000 1 15,062 (0.00) 0 4
100 320,000 4 264,208 (0.01) 95 84
S8 1,250 14 160,544 (0.00) 6,957 124
32 2,500 19 318,520 (0.01) 7,005 155
16 5,000 10 495,027 (0.01) 2,237 388
S9 40,000 4 71,596 (0.00) 5,487 9
32 80,000 16 919,421 (0.02) 8,031 391
16 160,000 X X X X
S12 20,000 21 206,039 (0.00) 8,895 204
32 40,000 19 537,041 (0.01) 8,354 245
16 80,000 5 889,630 (0.02) 4,144 102

indicates that the instance could not be solved to completion
in under an hour; there is one such instance. The first column
of these tables lists the data set (labeled by the numbering
of [24]), number of boards, and number of components. There
are three instances per data set—the second column gives the
three values of σ . The third column gives the number of calls
to the pricing problem. The fourth column gives the aver-
age number of nodes evaluated per iteration as well as the
percentage of nodes relative to a fully-enumerated tree. The
fifth column gives the average number of columns gener-
ated per iteration (excluding the final call, which establishes
optimality). The sixth column gives the total run time. All iter-
ations solved in under an hour (in most cases, substantially
so) except one. Data set S9, with a value of σ = 160,000, did
not terminate within an hour of run time. We believe that is

a function of degeneracy, which is quite common in set par-
titioning problems. In particular, when the setup cost is very
large and thus the number of clusters included in the optimal
solution is very small, the vast majority of basic variables are
degenerate, which can lead to excessive pivoting. In contrast,
the most successful alternatives that we have seen in the liter-
ature, using traditional MIP-based approaches, cannot solve
problems larger than 8–12 boards types [21].

5. CONCLUSIONS AND FUTURE RESEARCH

This article demonstrates that, when nonlinear objectives
and/or constraints hamper the feasibility of a MP approach
to the pricing problem in set partitioning, a search-based
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approach, RCP, may be a viable alternative. For example, this
approach enables the solving of instances of ICMS that could
not be solved prior to this approach. In RCP we leverage the
fact that the cost function is straightforward to compute off-
line but difficult to linearize in an MP formulation, and we
reduce the number of clusters that are explicitly considered
in this enumerative approach by pruning the tree through
the use of potentials. Recursively computing progressively
tighter bounds on the potentials by solving increasingly large
subsets of the pricing problem greatly improves the quality
of these potentials and thus the performance of the algorithm.
This is demonstrated by our computational experiments, in
which typically less than one percent of the tree needed to be
explored to find provably optimal solutions.

Areas for future research include developing additional
methods for pruning the RCP tree and considering the impact
of alternative ranking strategies on performance.
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