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ABSTRACT

A merge configuration of open queueing networks with exponential service times and
finite buffers is analysed. We offer an iterative algorithm to approximate the steady-state
probabilities for each queue of the system. The procedure decomposes the queueing
network into individual queues and analyses each individual queue in isolation. An M/M/1/
N or M/G/1/N model is used for the analysis of the merging queues; An M/M/1/N with
state dependent arrival rate model is used for the receiving queue. The approximation
method is easy to implement, requires little memory, is computationally fast and yields

very accurate results.






1.Introduction

Queuing networks, where the output of one server is the input to others, are useful in
modeling manufacturing systems, computer systems, telecommunications, etc. This is
particularly true when the buffer space between facilities is finite, so that an upstream
server can be blocked due to unavailability of space in the destination server. In general,
queueing systems with blocking are difficult to analyse, and only under very limited
conditions can the exact solutions be obtained. Therefore, most analyses available are

based on approximation or simulation methods.

There are three basic structural configurations in networks of queues: tandem, split
and merge, combinations of which can represent a general network. For open queueing
networks (i.e., where units do not re-circulate continually), among these three the tandem
configuration has been most frequently analysed. It has been studied by Hillier and
Boling{11], Caseau and Pujolle[7], Altiok[2], Perros and Altiok[15], Bocharov and
Rokhasl4], Brandwajn and Jow[6], Foster and Perros[8], Gershwin[9], Pollock, Birge and
Alden[18]. The split and merge configurations have been reported by Boxma and
Konheim[5] and Altiok and Perros[3]. Combkinations of these configurations to form open
queueing networks with blocking have been studied by Takahashi, Mivahara and
Hasegawa[21], Labetoulle and Pujolle[l?], Perros and Altiok(16] and Perros and
Snyder(17]. For closed queueing networks with blocking, approximation algorithms have
been reported by Suri and Diehi[19,20], Yao and Buzacott[22], Akyildiz[1] and Onvural

and Perros[13]. A detailed literature survey can be found in Perros[14].

In this paper, we present an approximation method to analyse the merge configuration
of an open queueing network with blocking. This algorithm is based on an earlier
algorithm (SIMP) proposed by Pollock, Birge and Alden[18] to analyse tandem queues with

blocking. It is also similar to the algorithm of Altiok and Perros [3], but differs in that we



describe the state of the merged queue by considering the sequence of blocked units. Our
algorithm also uses a fundamentally different approximation for the effective service time

distribution of the merging queues.

2.The Merge Configuration

The network we consider is identical to that in Altiok and Perros[3]. It consists of K
parallel single server queues, each feeding the same single server queue (see Fig.1). We
will call each of the K parallel queues (queue 1,2,,K) a merging queue; the queue
receiving the output of these merging queues is the merged queue (or queue 0). The
service time at queue i follows an exponential distribution with rate I Arrivals to queue i
are independent Poisson Processes with rate A.l. There is no external arrival to the merged
queue. The buffer size of the i-th merging queue is Ni (including the one in service.

N= N0 is the buffer size of the queue 0, and p = Ko is service rate at queue 0.

Arrivals to any queue are served in a FIFO manner. If an arrival encounters a
merging queue when it is full, the arrival is lost. When a unit completes service at the i-th
queue (i=1,--K), it proceeds to queue 0 only if space is available. However if queue 0 is
full at that time, the unit waits in the i-th server until it can enter queue 0. During this
time the i-th server cannot serve other units that might be waiting in its buffer: in this
case, the i-th server is said to be blocked and queue 0 is blocking. Thus, the merging
queues cannot be blocking, and the merged queue cannot be blocked. Since K queues feed
into queue 0, there might be more than one queue blocked at any instant; in the worse
case, obviously, there can be K blocked queues. In the multiple blocking case, we assume

blocked units enter queue 0 on a “First-Blocked-First-Enter” basis [3].
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<Insert Fig. 1>

3. Analysis of the Model

3.1. Approach and General Relationships

Our general approach is to decompose the queueing network into individual queues,
and then analyse each individual queue separately. We will make important use of the
fact that the time for a unit to clear service in a merging queue has two components; the
actual service time plus the delay caused by being (possibly) blocked by queue 0. In
particular, we make the following approximate assumptions about what is in reality an

extremelv complicated system:

a) There are Poisson arrivals, with rate Al i=1, - K) from queue i to queue 0 as
long as the i-th queue is not blocked. When the i-th queue is blocked, there is of
course no arrival from queue i to queue 0.

b) The buffer size of queue 0 is augmented by K so that the total buffer of queue 0 is

N+K.

Assumption b) is simply a modelling convenience made possible by noting that a
blocked unit is ready to proceed to queue 0 whenever there is space in queue 0. Thus, such

a unit is effectively waiting in line to be served by server 0.

The key to our approach is thus to take advantage of the fact that queue 0 is never
blocked, and its service time is exponentially distributed with rate u, so that it can be
analysed by using M/M/1/N+K analysis, using approximation a). The second part of our

approach is to use seperate M/G/1/N. analyses in each merging queue i, in order to obtain
pp p i g



the values of ’\i used in approximation a).

In order to proceed, we define (where, unless otherwise stated, the index i always runs
from 1 to K)
Ti = clearance time for server i, i.e., the time between when a unit enters seivice in
queue i, and when it arrives at queue 0,

S. ,(S) = service time at server i (server 0), (excluding any delay due to blocking)

A, = arrival rate to queue 0 from queue i as long as queue i is not blocked,

EY

A,

1

1

e =

i
Pi(k), [P(k)] = steady state probability that there are k units at queue i [queue 0],
bi(n) = probability that queue i is blocked and the number of units at queue 0 is
N+n,
ai(k) = conditional probability that, upon service completion at server i, there are k
units at queue 0,
f'.l = Probability {i-th queue is full} = Pi(N.])
These definitions, and the structure of the system, produce the following relationships.
a) The contribution of queue i to the total system throughput, X;, is given by
- (3.1)
A= ’\i(l'fi)

b) The total system throughput, }, is

¢) The clearance time for queue i is a random variable represented by



K-1
Si with probability 1 — T ai(N+j)
T =1 G+1) =0 (3.2)
Si + S with probability ai(N+j) j=0,-K-1

j+1 C e . . . . .
where S(J ) is a gamma-distributed random variable that is the sum of j+ 1 service times
j+1
] = —_

W

j+1
at queue 0. In particular, as will be used later on, E[ S(J :

Note that the bottom line of (3.2) follows because 1) the residual service time of a unit
in queue 0 is exponential by the memoryless property of exponential distribution, and 2)
given that a unit sees j other units blocked at the instant of service completion at queue i,
it must wait j independent service times and one residual service time at queue 0 before it
feeds into queue 0. By 1) the distribution of this blocking time is the convolution of j+1
independent exponentially distributed random variables with parameter u, which is

gamma distributed random variable with parameters (+ 1,u..

3.2. Analysis of Queue 0

Before we analyse queue 0 in general, we first consider the special case of K=2,
Suppose we know the values of ,\j, Az Define the state of queue 0 to be i if there are i
units in queue 0 and there is no blocking. If there is blocking, the state of queue 0 is
( N+n,v) where N+n is the number of units in queue 0 (including n blocked units), and v

is an n-component vector representing, in order, the units which are being blocked.

For example, the state
{N+1, 1} = {queue 1 is blocked by queue 0};
{N+1, 2} = {queue 2 is blocked by queue 0};

{N+2, 12} = {queue 1 and 2 are blocked by queue 0 in that order};



{N+2, 21} = {queue 2 and 1 are blocked by queue 0 in that order}

The resulting state transition diagram of queue 0 is shown in Fig. 2. We are
interested in computing the (steady state) occupancy probabilities of these states. We will
find these. however, by looking at a smaller set of aggregated states. In particular, define

(N+1} ={N+1, 1} U{N+1, 2}

{N+2} ={N+2, 12} U{N+2, 21}
These new aggregated states { N+i}, i=1,2, represent, simply, N+i units in queue 0
— including those blocked and thus waiting in their respective merging queue. We also
define /\a(i) to be the arrival rate from state i to state i+1 in the aggregated
system. Figure 3 shows the transition diagram for this (smaller) state space. It is

straightforward to show that the following equations of balance hold for the system in

figure 2:
PIN+1,1) = —P(N+1) 1=1,2 (3.3)
)
1
P(N+2,12) = P(N+2, 21) = = P(N+2) (3.4)
()

4]

where A 5)\1 + AQ.

Since this new process is a simple birth and death process, it is almost trivial to find
P@i) for i=0, - N+2. From (8.3), (3,4) we can obtain the occupancy probabilities for the

original (unaggregated) queue 0.

<Insert Fig. 2, Fig. 3>



This idea can be readily extended to the general system with K merging queues. As
in the above, the state of queue 0 is i, the number of units in the system. If there is
blocking. the state of queue 0 is (N+n,v), n=1,- K, where N+n represents the number
of units in queue 0, including blocked ones, and v is the n-component vector representing
the units which are being blocked, in order. Unfortunately since the order of blocked units
is part of the state description, the total number of states increases geometrically in K.
However, if we are able to disregard the order of units being blocked, states which have
the same number of units can be aggregated into one state, and the total number of states
will be only N+K+1. We now define the states of such an aggregation indexed by i, the
number of units in queue 0 (i=0,,N+K). Recalling that we have defined /\a(i) to be the
arrival rate to state i+1 from state i in the aggregated system, the following theorems

hold.

Theorem 3.1. The aggregated queue 0 is equivalent (in terms of producing identical P(i)

to the original queue 0 if the arrival rate to each aggregated states is:

(3.5
)\a(i) =) - for i=0,--,N
(n+ 1>Ql\+1 (3.6)
Aa(N+n) = — forn=1,--,K-1
n
k £
where Qk = z A, ij € {1,,K}

. . ..= J
11< <1k] 1

Note that if the merging queues are symmetric, then Aa(N+n) satisfies the simple
expression

K—-n

g

/\a(N+n) = A for n=1,-K-1 (3.7)

K



Theorem 3.2. The relationship between the steady-state probabilities of the original
queue 0 and those of aggregated queue 0 is:
n

1.
jzl J (3.8)

P(N+n.i1~--in) = P(N+n) for n= 1’...‘K

n! Q
n

(The proof is in the appendix )

To use (3.8) we note that the aggregated occupancy probability P(i) can be found from

i A0
P1)=P(0) I
=1 p

i=1,2,- N+K

N+K
L Pi=1 (3.8.a)
1i=0

In order to use these results, however, we need to know the values of )\l Suppose we
have available the values of )\_1 and bi(n). To find the ,\;, we can use the following

equation.
b.n) = X (3.9)
Equation (3.9) is a conservation equation which yields the value of the arrival rate /\l

needed in order to produce the given value of throughput /\—]

3.3 Analysis of Merging Queues

The above analysis depended upon known values of b.(n) and -A_l But b,(n) can be



obtained directly from P(i), as will be explained later. Also, from bi(n), ai(k) can be
straightforwardly found. Once values of a,(k) are obtained, we can find the clearance time
distribution at merging queues using equation (3.2), which makes it possible to analyse
each merging queue by separate M/M/ l/N.1 or M/G/ 1/N.l analyses. Then we obtain the full
probability fi at each merging queue, which produces /\_1 Given '/\—1 and bi(n), we once more
find an updated ’\1 using equation (3.9). This procedure is used iteratively until the
expected clearance times at merging queues (or other appropriate variable values)

converge.

We now examine each merging queue to find b.l(n), the probability {queue i is blocked

and the number of units at queue 0 is N+n},

b.(n) = z P(N+n,i
1 R . 1
le{ 119""11 }

1

i)
n

By simply inserting equation (3.8) into the above, one can show that:

A0

1 n=1\
bi(n) = ———— P(N+n) i=1,-K j=0,-,K (3.10)
Q
n
n—-1 .
where @ _ = T oa,, Salﬁ&1J+LwK}

11< <1n_13 1

Note that if we sum (3.9) over the merging queues i using equation (3.10), we obtain
the following conservation flow equation for the aggregated system.
N+K-1 _
LA OPGE) = A (3.11)
. a
1=0
We now find the conditional probability (k) that, upon service completion at server i,

a unit is blocked and there are k units at queue 0. To do this, we will assume that a unit
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at server i, at the instant service is completed, sees queue 0 in steady state. From this
assumption and the fact that there can be no service completion at queue i if it is blocked,
we see that ai(N+j) is the conditional probability that there are N+j units at queue 0

given that queue i is not blocked. Here, the steady state probability that queue i is blocked
K
is X bi(n) since bj(n) is the probability that there are n blocked units at queue 0 including
n=1
one from queue i. From these, ai(N +j) can be obtained:

P(N+j)=b,()
a(N+j) = i=1,-K j=0, K (3.12)
1
K
1- bi(n)
n=1

where b.l(O') is defined to be 0.

We now can use this value of oj(N +j) in equation (3.2) to obtain the distribution of Ti’
the clearance time at queue i. This. in turn, allows us to analyse queue i by using M/M/1/
N or M/G/1i/N methods, since the arrivals to each are Poissons. Which of these we use
depends upon the approximation assumption we are willing to make about the distribution

of Ti:

Approximation 1: Model each merging queue i (i=1,-K) as an M/M/1/N
system. To do this, we assume the clearance time Ti is
exponentially distributed, with an equivalent service rate
equal to the reciprocal of the expected clearance time.

Approximation 2: Model each merging queue i (i=1,-,K) as an M/G/1/N

system, using (3.2) to describe the random variable Ti'

Both of these lead to iterative algorithms that use queue 0 analysis to produce values

of ai(') and queue i analysis to produce Al
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3.3.1. M/M/1/N Analysis
If we assume that the clearance time at server i has an exponential distribution, the
information needed to analyse the queue is only the arrival rate and the expected
clearance time. But the arrival rate is given as A.l, and the expected clearance time can be
obtained from (3.2),
1 K-1 j+1

+ T oN+j) — i=1,-K (3.13)

E(Ti) =
0 p

.

i v

An approximate solution to the system’s steady state probabilities is then gotten from the

following iterative algorithm.

0. (Set-up) Set the values of )‘i’ oo Nj for i=0,-,K

1. (Initialization — The conditions here are as if all queues are unblocked.)
1

Set E(Ti‘) == 9= )‘i' E(Ti), fori=1.-K

Hy

Find ’\_1 = ’\i'(l'f‘l) for i=1,- K where

(1=p)p
PPy
A P (3.14)

2. (Find full and blocking probabilities of queue 0)

Find Aa(i) using equations (3.5), (3.6) for i=0, -, N+K-1

P(i) using birth and death equations (3.8.a) for i=0, - N+K

bi(n) using equation (3.10) for i=1, - K, n=0,-K
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ai(N+j) using equation (3.12) fori=1, -~ K, j=0, - K

3. (Find expected clearance times at each merging queues. )

Solve for E(Tj) using equation (3.13) and set p, = AiE(T.I') for i=1, - K.

4. (Convergence check)
If updated values of E(Ti) show little change from the previous ones for all i (i.e.,

convergence) go to step 6. Else, go to step 5.
5. ( Find full probabilities of merging queues and ,\;)

Obtain full probabilities for each of the merging queues using equation (3.14)

Find A_l using equation (3.1) fori=1, - K
Set X =

Find /\1 and /\* using equation (3.9).
Go to step 2.
6. (Calculate occupancy probabilities)
For queue 0, these have already been obtained in step 2. For queue 1 through K,

. h
(I=p))p,

P = ———— fori=1, --K, n=0. - N, (3.15)
1 N.+1 1
1=p!

1

3.3.2 M/G/1/N Analysis

The clearance time of each merging queue is in fact not exponentially distributed (as
assumed in the section above) since there might be delay due to blocking. Therefore, in
order to get a more accurate analysis, we can treat the clearance time of a merging queue

as having a general distribution, which requires replacing the M/M/1/N analysis of step 3
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of algorithm 1 with an M/G/1/N analysis.

The standard approach for M/G/1/N analysis is to consider the state occupancies only

at departure epochs. Following this approach, define for each queue i the following;

n o . : .
a, = Probability of n arrivals during a clearance time,

7r;] = steady state probability of n units in queue i,
¢.(t) = p.d.f. of T,
h,(t), [h(t)] = p.d.f. of 8, [S],

«(n) +(n)
¢ (s), [h (s)] = n-th derivatives of Laplace transforms of q’)i(t),[hi(t)],

1 1

Then, (see Pollock et.al [18] for details ).

n
(—Aj)

In order to evaluate the right hand side of (3.16) we note that, from (3.2),
K-1 y K-1

61={1~- ¢ o(N+j h(s) + T ai(Nﬂ){h;"'(s){h*(s)}”l}
=0 =0

Taking the n-th derivative of both sides of (3.17)

(1) K-1 ()
o ={1- = ai(N+j) th  (s)
1 J=O 1
K-1 n Ln=k) i+l k
+ T N+ T (Oh @ e,
j=0 k=0 !

which allows (3.16) to be evaluated by setting s= X

it

(3.16)

(3.17)

(3.18)

Once the values of a? are obtained, the steady state probabilities 7r? follow from the usual

M/G/1/N analysis. (see, e.g., Gross and Harris[10])
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The steps in the resulting algorithm are as follows:

0,1,2. (See algorithm 1)

3. (Find expected clearance times at each merging queues.)
x(n) . . no . . :
Calculate ¢ (,\i) using equation (3.18) and calculate a, using equation (3.16) for
1
i=1,-K and n=0,~~-,Nj

(1)
Set E(T)=-¢ (00 fori=1,-K

4. (Convergence check)
If updated values of E(Ti) show little change from the previous ones for all i (i.e.,

convergence) go to step 6. Else, go to step 5.
5. ( Find full probabilities of merging queues and /\;)

. N.
Use M/G/1/N analysis to solve for m

\f

N.
Set fi = fori=1,-N.

Find -A_] using equation (3.1) fori=1, - K

Find )‘1 and A using equation (3.9).

Go to step 2.
6. (Calculate occupancy probabilities)
For queue 0, these have already been obtained in step 2. For queue 1 through K,

use M/G/1/N analysis to obtain the occupancy probabilities.

If the merging queues have infinite buffer spaces, since X: is simply equal to A at
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every iteration, the iterative procedure becomes simpler. For stability conditions when

merging queues have infinite buffers, see Altiok and Perros[3].

5. Computational Results

The two approximation methods were tested for their accuracy in estimating steady
state occupancy probabilities. In those cases where analytic solutions are not available the
results are compared with simulations. Tables 1-6 shows a comparison with the method
of Altiok and Perros [3], for systems consisting of from 2 to 4 merging queues. Tables 1
through 4 treat problems with finite buffers for the merging queues, and table 5 and 6
treat the problems with infinite buffers for the merging queues. Each table gives average
and maximum absolute deviations of the approximate values from the exact or simulation

ones.

In all experiments we have conducted, the number of iterations needed for convergence
was under 7 and CPU time required was under 0.05 seconds on an IBM 3090-400. We
should note that the Altiok and Perros method always overestimates the probability of
queue 0 being full. Ours does not, and usually gives more accurate values. This is due to
the fact that, in analysing queue 0, Altiok and Perros do not consider a reduction of
arrival rates for the states where blocking exists, which fact our method takes into
account. As can be seen in the tables, both algorithm 1 and algorithm 2 give better results

than those of Altiok and Perros, in both average and maximum absolute deviations.

We can also see that algorithm 2 yields only slightly improved results over algorithm
1. This suggests that the exponential approximation for the clearance time is not
unacceptable, at least for the cases we examined. This also suggests that a great part of

the error may come from the (fundamentally faulty) Poisson assumption about the input
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process to queue 0, not from the exponential assumption for the clearance time.

Algorithm 2 does, however, have the distinct advantage of allowing the service time
distribution at the merging queues to be non-exponential, although thic paper does not

present numerical results for such cases.

6. Conclusions

We presented two approximation algorithms for analysing a merge configuration of
queueing networks with blocking. These algorithms converge rapidly acceptably.
Considering the simplicity of algorithm 1, we are optimistic about using it as a “building
block” in the analysis of more general configurations of open queueing networks with
blocking. It remains to be seen whether we can provide any error bounds, or provide
explicit advice on parameter values for which the approximation is unequivocally

recommended.
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<Appendix>
(Proof of Theorem 3.1, 3.2)
Suppose we set Aa(i) as in (3.5).(3.6) and solved for P(i), i=0,-- ,N+K. Also suppose
we obtained P(N+n,i1~-~in) from (3.8). If the P(N+n,i1--- in) obtained thus satisfv the
balance equation of the original system, then Theorem 3.1 and 3.2 must be true. The

balance equations of the original system are

(A.1)
A P(0) = uP(1) i=0

* i (A'2)
(A +wWPEH = A P-1) + u PG+1) i=1,N-1

E B K
(A +wP@ = A PG-1) + 4 T PIN+1, ) i=N (A.3)

=1
P(N+n, ilmin){.c .Z . )‘j + oy = /\inP(N+n-1,i1~--in_1)
€ fijpi )
+ s pP(N+n+1, jilwin) lsn<kK-1 (A.4)
JE{II,...,ln}

PIN+Kii ~ip = A PIN+K-Li i ) n=K (A.5)

We now show equation (A.4) is satisfied by the solution of the aggregated system
together with relationship (3.8). It is trivial to show that the balance equations of the
aggregated system lead to the solutions

A, @) (A.6)

Pk) = P(k-1) k=1,-N+K

W

since the aggregated system is a simple birth-and-death process.

If we insert (A.6) together with the relationship (3.8) into (A.4), it is easily proved that

(A.4) is satisfied. For the other balance equations, ,i.e., (A.1), (A.2), (A.3), (A.5), the same



procedure is used.
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Table 1.

Dooblmion | M=t N£2 N= W=h Az =5 b=3 u=7
Measure Exact Altiok Algo.1 Algo.2
P (0) 02408 02470 02519  0.2494
quoue | BV 02196 02219 02228 02237
1 | 2@ 02004 01986 01970 01989
B 3) 01835 01772 01742 0176l
P @) 01556 01553 01541 01521
B,(0) 04392 04621 04449 04422
Queue
s | BO 03312 03200 03220  0.3275
B(2) 02296 02179 02332  0.2302
P (0) 02820 02939 02975  0.2955
P (1) 02214 02183 02231 02224
ngue P(2) 01708 01621 01672 01673
P(@3) 01294 01204 01254 01259
P (4) 01963 02053 01869 01888
max. abs. deviation | 0.0000 0.0229 0.0155 0.0135
avg. abs. deviation | 00000 00080 00062  0.0047
throughput 49184 49430 49174 49314




Table 2

Problem N =N;=2,N=3 A=\=2, p =p,=3, p =4
Description

Measure Exact Altiok Algo. 1 Algo. 2

PO [ 03921 0.4205 0.4008 0.3972

%‘:f";e B@) | 03425 0.3283 0.3291 0.3353
R(@2) | 02653 0.2512 0.2702 0.2674

PO | 0.2551 0.2512 0.2702 0.2674

Queve | TU | 02248 0.2091 0.2222 0.2212

0 P2 | 01891 01740 0.1828 0.1830

p(3) | 03310 0.3657 0.3248 0.3284

max. abs. deviation | 0.0000 . 0.0347 0.0151 0.0123
avg. abs. deviation | 0.0000 0.0180 0.0082 0.0056
throughput 2.9388 2.9952 2.9193 2.9303




Table 3

Problem N=N=Ng=N,=3 N=5 p =20
Description )‘_1 = )\2 =3 )\3 =4 ), =5 H =4 u2=5 Hy =6 H, =7
Measure Simulation Altiok Algo. 1 Algo. 2
Queue | B ggg 0.5200 05314 0.5255 0.5250
1 B 0.2720 0.2673 0.2680 0.2695
i 01399 01341 01367 01368
1 0.0680 0.0672 0.0697 0.0687
Queus gﬁg 0.4466 0.4558 0.4501 0.4492
o 0.2706 0.2764 0.2763 0.2779
9 £i% 01732 01671 01696 01702
> 01094 0.1006 0.1041 01028
Queue 1133;‘1)3 04116 0.4095 0.4046 0.4036
3 o 0.2741 0.2774 0.2767 0.2783
o 01937 01873 01892 0.1901
3 01204 01257 01294 01280
%?1); 0.3765 0.3780 0.3745 0.3734
Queue B (2) 0.2780 0.2760 0.2751 0.2765
4 pa | 019 0.2009 0.2020 0.2031
A 01462 01451 01484 01470
. gg 0.3715 0.3833 0.3856 0.3847
Q @ 0.2468 0.2376 0.2404 0.2402
ueue P(3) 0.1547 01473 0.1498 0.1500
0 Py 01094 0.0913 0.0934 0.0936
gl 0.0563 0.0566 0.0582 0.0585
0.0619 0.0839 0.0726 0.0731
P (6)
max. abs. deviation 0.0000 0.0220 0.0160 0.0158
avg. abs. deviation 0.0000 0.0066 0.0054 0.0053
throughput 12.3232 12.3355 12.2886 12.3070




Table 4

Problem N;=5(=0,1,234) M=Ag=2 JMp=)s=l
Description W=Wh=3 w=Ww=2 u=3§

Measure Simulation  Altiok Algo. 1 Algo. 2
Queue P.(0) 0.3239 0.3436 0.3334 0.3314
i=1.3 P,(1) 0.2531 0.2380 0.2364 0.2388
Pi(2) 0.1649 0.1667 0.1676 0.1693
P,(3) 0.1157 0.1155 0.1188 0.1193
P.(4) 0.0857 0.0798 0.0842 0.0838
B.(5) 0.0563 0.0545 0.0597 0.0574
P,0) 0.5002 0.5012 0.4846 04837
Queue B 0.2627 0.2550 0.2547 0.2580
i=2,4 B(2) 0.1355 0.1291 0.1339 0.1345
B@®) 0.0599 0.0652 0.0704 0.0696
B4 0.0299 0.0329 0.0370 0.0360
R (5) 0.0113 0.0165 0.0194 0.0182
P(0) 0.2675 0.2814 0.2847 0.2833
P) 0.2183 0.2057 0.2110 0.2104
Queue P(2) 01721 0.1503 0.1564 0.1563
0 P 0.1049 0.1099 0.1159 0.1161
P4 0.0911 0.0803 0.0859 0.0863
P(5) 0.1457 0.1725 0.1462 0.1476
max. abs. deviation 0.0000 0.0268 0.0172 0.0165
avg. abs. deviation 0.0000 0.0091 0.0080 0.0075
throughput 5.7522 5.7490 5.7224 5.7340




Table 5

Problem

Description N‘=N2=°° N=3 ll:xfé LL]=LL2=-;- b=l
Measure Simulation Altiok Algo.1 Algo. 2
l? 0) 0.2563 0.2824 0.2545 0.2545
g(l) 0.1999 0.2055 0.1898 0.1949
2:f;e g(Z) 0.1412 0.1476 0.1415 0.1454
| B(3) 0.1077 0.1053 0.1055 0.1074
E: 4) 0.0676 0.0750 0.0786 0.0791
P (5) 0.0600 0.0533 0.0586 0.0581
P(0) 0.3419 0.3333 0.3333 0.3333
Queue P@1) 0.2374 0.2363 0.2412 0.2412
0 P(2) 0.1704 01676 01746 01746
P(@3) 0.2500 0.2628 0.2509 0.2509
max. abs. deviation 0.0000 0.0261 0.0110 0.0115
avg. abs. deviation 0.0000 0.0080 0.0044 0.0042
throughput 0.6667 0.6667 0.6667 0.6667




Table 6

Problem Nj =~ (=1,2,34) N =5 7\1 =)3 =2 )7 =X4 =]
Description H=K=3 k=h=2 p=8

Measure Simulation  Altiok Algo.1 Algo. 2
Queue B (0) 0.2899 0.2985 0.2824 0.2821
i=1,3 P,1) 0.2154 0.2110 0.2031 0.2068
Fi(2) 0.1355 0.1481 0.1460 0.1487
P.@3) 0.1070 0.1036 0.1050 0.1061
P,(4) 0.0747 0.0723 0.0755 0.0755
B (5) 0.0600 0.0504 0.0543 0.0536
P,0) 0.4712 0.4913 0.4677 0.4676
Queue | B 02570 02509  0.2490 0.2534
=24 |RO@ 0.1269 0.1274 0.1325 0.1335
B@®) 0.0691 0.0645 0.0706 0.0697
BR@) 0.0379 0.0326 0.0376 0.0363
R(5) 0.0185 0.0165 0.0200 0.0189
P 0.2588 0.2500 0.2510 0.2509
PQ) 0.1874 0.1919 01970 0.1970
Queue |P®@ 0.1508 0.1474 0.1546 0.1546
0 P(@3) 0.1056 0.1132 01214 01214
P@ 0.0957 0.0868 0.0953 0.0953
P(5) 0.2014 0.2107 0.1807 0.1809
max. abs. deviation 0.0000 0.0201 0.0207 0.0205
avg. abs. deviation 0.0000 0.0068 0.0065 0.0062
throughput 6.0000 6.0000 6.0000 6.0000
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