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ABSTRACT

An arbitrary configuration of an open queueing network with exponential service times
and finite buffers is analysed. We offer an iterative procedure for approximating the
marginal occupancy probabilities for each queue of the system. The method decomposes
the queueing network into individual queues and analyses each in isolation using
information from only its nearest neighbors. Based upon the SIMP approximation
previously used for tandem queues, it replaces each server’s service time with a clearance
time(which includes blocking), and each server’s arrival rate by an equivalent “acceptance”
rate. The procedure is easy to implement and requires modest memory and computer
time. Extensive numerical experiments, performed for various topologies, yield accurate

results compared with those obtained by exact or simulation methods.



1.Introduction

A queuing network, a set of arbitrarily connected queues, can represent many
processes of interest in manufacturing systems, computer systems, telecommunications,
etc. If the buffer space between servers is infinite and service times at each queue are
exponential, these networks can be exactly analysed by Jackson’s decomposition method
[13]. Jackson’s method, however, ignores an important feature of many real queueing
systems, i.e., blocking due to the finiteness of buffer space. In this case the product form
property does not hold, and very complicated conditions of dependency exist among the
queues; the number of states needed for an exact analysis grows combinatorially with
number of queues and buffers. For this reason, most analyses are based on

approximation, numerical or simulation methods.

There are various configurations of queueing networks with blocking. The tandem (or
serial) network, the most basic structural configuration, has been studied (assuming
exponential service times) by Hillier and Boling[12], Caseau and Pujolle[7], Latouche and
Neuts[16], Boxma and Konheim[5], Altiok[1l], Perros and Altiok[18], Bocharov and
Rokhas[4], Brandwajn and Jow[6], Foster and Perros[9]. For non-exponential service
times, Gershwin[10] and Choong and Gershwin[8] present algorithms for special service
time distributions, representing probabilistic failure and repair of the server. The SIMP
approximate procedure of Pollock, Birge and Alden[20] allows for general service time

distributions.

Analysis of other configurations, particularly split and merge, have been reported by
Boxma and Konheim[5], Altiok and Perros[2] and Lee and Pollock[17]. With the exception
of allowing some servers to have general service time distributions in [17], these all

assume exponential service times.

The general system, being a combination of tandem, split and merge configurations, is



the most complicated one to analyse. Takahashi, Miyahara and Hasegawa[21] assumed
that “effective” service times follow an exponential distribution, and developed a set of
simultaneous non-linear equations that must be solved to get performance
measures. Labetoulle and Pujolle[15] and Kerbache and Smith[14], allowing for non-
expenential service times, use a diffusion approximation that may restrict its validity[19].
Perros and Altiok[3] use phase-type distributions for approximately characterizing
effective service times. Their procedure appears to be_ restricted to small networks due to
the inherent complexity of the phase-type mechanism. Recently, Perros and Snyder[19]
developed a similar algorithm, using a two-phase Coxian distribution to approximate
effective service times, as an improvement over [3]. However, this algorithm is not
accurate in important boundary cases, such as when queues receiving exogenous inputs
have very large buffers. In these previous analyses, as with the work presented in this

paper, the networks are restricted to have no feedback loops.

In a tandem queueing network, representing a manufacturing system, the assumption
that service times have an exponential distribution is not realistic, although it might be
quite suitable for modelling computer systems. However, general queueing network
models of manufacturing systems usually represent job-shop situations, where various
types of product are produced on common facilities. Since each product type has a
different service time at the same facility, the overall service time at each facility may be
reasonably represented by an exponential distribution, even though the service time for

one particular product is definitely not.

In this paper, we present an approximation method for analysing the general
configuration of an open queueing network with blocking. This algorithm is based on two
earlier algorithms; one proposed by Pollock, Birge and Alden[20] for tandem queues and
the other by Lee and Pollock[17] for merge queues. This new algorithm solves a large

network quickly, and yields robust and accurate results.



2.Description of the Network and Formulation of the Problem

The network we consider is identical to that in Altiok and Perros[3] and Perros and
Snyder[19] except that we also allow external arrivals at any server. It consists of the set
{i:i=1,2,-+-M} of single server queues, connected arbitrarily via arcs (i,j) with the
restriction that there is no directed cycle. Since there is no directed cycle, we can number
each queue in such a way that every arc (i, j) has i less than j. The service time at queue
i follows an exponential distribution with rate p, and external arrivals to queue i are
independent Poisson processes with rate A.. The buffer size of the i-th queue is B,, and its
capacity (including the one in service) is Ni= 1'+Bi. Units at each queue are served in a
FIFO manner. If an external arrival encounters a queue i when it is full, the arrival is
simply lost. A unit which has completed service at queue i gets its next service at queue j
with “routing probability” Ty The probability that a unit leaves the queueing system after

completing service at queue i is T Fig. 1 shows an example consisting of four queues.

Suppose a unit has just finished service at queue i and the next service required is at
queue j. If queue j has no available space at that time, the unit must wait in the i-th
server until it can enter queue j. During this time the i-th server cannot serve other units
that might be waiting in its buffer: in this case, the i-th server is said to be blocked and j-
th queue is blocking. Note that in Figure 1, queue 1 cannot be blocking and queue 4

cannot be blocked.

<Insert Fig. 1>



One difficulty in the analysis comes from the fact that a queue may be simultaneously
blocking more than one “upstream” queue. We assume blocked units enter the destination
queue on a “First-Blocked-First-Enter” basis [3]. Suppose k queues merge into queue j:
any combination of these can be blocked simultaneously. In the worse case, all k queues

can be blocked by queue j at the same time.

Since a unit blocked by queue j is ready to proceed to queue j whenever there is space
in the buffer of queue j, it is effectively waiting in line to be served by server j. Therefore
we‘ can interpret the server position of a blocked unit to be part of the buffer capacity of
the blocking queue. In this way, we can consider the capacity of each queue to be
augmented by the number of upstream queues directly connected to it, so that the effective
capacity of queue j is Nj+k. In the next section, we develop a procedure that exploits the
augmented buffer size for each queue.

3. Analysis of the Model

3.1. Approach and General Relationships

Our general approach is to focus on the measures that seem to be important (for
example, individual queue steady state probabilities) and to seek an approximation that
will produce these measures fairly accurately. To do this, we analyse each individual
queue separately, using infermation from only its nearest neighbors. We also use the
important fact that the time for a unit to clear service, or the clearance time, has two
components: the actual service time plus a term due to the occasional and probabilistic

delay caused by blocking.

The first step, in approximating by a simple model what is, in fact, a very complicated

and dependent state of affairs, is to make the following gross assumptions:

*

ij a8 long as the

a) Arrivals from queue i to queue j are Poisson with effective rate A



i-th queue is not blocked by queue j. When the i-th queue is blocked by queue j,
there is of course no arrival from queue i to queue j.
b) The service clearance time (having two components) is exponentially distributed,

*
with effective rate p, .

¢) A unit at server i, at the instant service is completed, sees the destination queue

in steady state.

The relation between the effective rates (/\ij and p;) and the actual rates (’\i and ui) is

discussed below.

These conditions are, of course, far different from what actually happens in the
system: a) is clearly not true since the outputs of each queue are anything but Poisson.
We anticipate, however, that Poisson assumption may be approximately true if the service
time at each queue is exponential; b) is also a heroic assumption since the clearance time,
in general, being the sum of two random variables does not follow an exponential
distribution. However, our previous experience with tandem queues [20,17] shows that
this does not degrade results as compared to those obtained by allowing the clearance time
to have a general distribution; c) allows the use of well-known steady state analyses, and
does not appear to be crucial — particularly in contrast to the oversimplifications of a) and

b).

3.2. Definitions and Underlying Relationships

We define (where, unless otherwise stated, the index i always runs from 1 to M)

S.

; service time at server i (excluding any delay due to blocking),

i

T

i

clearance time for server i, i.e., the time between when a unit enters service in

queue i, and when it leaves queue i,



Fi = predecessor set of queue i = { k : queue k can pass units directly to queue i },

ki = |F1| = number of upstream queues directly connected to queue i,

B, = successor set of queue i = {k: queue k can receive units directly from queue
i},

Xij = flow rate from queue i to queue j i=1,-M-1, j€B,

XOi (Xio) = flow rate from outside the system to queue i (from queue i to outside the

system),

*

Aij = arrival rate to queue j from queue i as long as queue i is not blocked by queue j

1=1,"'9M'1) jEBi7
P.(k) = steady state probability that there are k units at queue i,

bij(n) = probability that n units are blocked by queue j including one at

queue i, i=2,,M, iEFj,

aij(k) = conditional probability that, upon service completion at server i, a unit
which has queue j as its destination sees k wunits at queuej

j=27“',M7 IEFJ9

f. = Probability {i-th queue is full}

These definitions, assumptions a), b) and c), and the structure of the system, produce the
following relationships:
1) Since the buffer space of each queue is augmented by the number of upstream queues

directly connected to it, the probability that queue i is full is
1
Z P(N.+n) (3.1)

2) Since units cannot enter from outside of the system to queue i unless it is not full, the

flow rate from outside is given by,



- (3.2)
g = A4~ £)

3) The total flow rate into queue j, denoted by Xj, is
X = i;)xlj (3.3)

(For those queues i which have only inputs from outside, so that Fi= g, the flow rate is

o (3.4)
X =3, =2046)  {i:F,=0)

4) By the conservation of average flow, the flow rate from queue i to queue j (or to outside

of the system) is given by

- - (3.5)
A= AT,
ij i’ij
5) The total arrival rate to queue j when queue j is not full is
. i1, .
= i;'\‘j + ) (3.6)

6) The expected clearance time at queue i, given that queue j is the destination, is given

by

—

k.-
E(Ti|j ) = Pil + :z::o (n+ l)aij(Nj+n)E(Tj) (3.7
The first term in (3.7) represents the service time at queue i. The second term is the
expected delay time due to blocking. If a unit whose destination is queue j sees n other
units blocked by queue j at the instant of its service completion at queue i, it must wait n
(independent) clearance times plus one residual clearance time at queue j before it feeds

into queue j. (By assumption b), the residual clearance time is simply another clearance

time)

Since the probability that queue j will be the destination queue is Iy the expected

clearance time for queue i is



ET) = Yr, ET]j)
‘?&” ‘ (3.8.2)

If queue i has no directly connected downstream queues, i.e., Bi=¢’

E(T) = E(S) (3.8.b)

7) The service completion rate at queue i is the reciprocal of the expected clearance
time. Thus,
. 1

My = —_— (3.9
E(Ti)

3.3. Analysis of Model

Analysis given effective arrival rates and expected clearance times

We are now in a position to analyse each queue of the network. Any queue which has
no directly connected upstream queue is easy to analyse, for example, consider queue 1 in
Figure 1. Suppose we know the value of E(T,). Then we can analyse queue 1 by using a
M/M/1/N L model since we assume that its clearance time follows an exponential
distribution, and the arrivals to queue 1 are Poisson. Therefore, the occupancy probabilities

of queue 1 can be obtained as:

(1= p)éy
P () = ——— j=0,1,+N, (3.10)
N1+1
1-0p
where p, = A E(T)). The probability that queue 1 is full is
; = PN (8.11)

It is more difficult to analyse queues which have directly connected upstream queues. In

order to obtain the occupancy and blocking probabilities of such queues, we use the



procedure developed in [17] for merge queues, as outlined briefly below.

Consider queue j which has kj directly connected upstream queues. Assume we know
E(Tj) and thus y; from (3.9). Define the state of queue j to be the number of units in
queue j if it is not blocking. If queue j is blocking, the state is defined to be (Nj-l-n,v),
n= 1,---,kj, where Nj+n represents the number of units in queue j, including blocked ones,
and v is the n-component vector representing the units which are being blocked, in
order. In order to obtain the blocking probability bij(n), we must find the occupancy
probabilities for each of these ordered states. Ordinarily, these occupancy probabilities can
be obtained only by solving a very large set of steady state balance equations, which are
impracticable to solve if kj is fairly large. However, as shown in [17], we can obtain these
occupancy probabilities very simply by considering an equivalent aggregated state space,
and its associated simple birth-and-death equations. The aggregated state is the number
of units in queue j, disregarding the order of uilits being blocked, so that blocking states
which have the same number of units are aggregated into one state. Let ﬁj(n) denote the
arrival rate to state n+1 from state n in this aggregation. The following theorem allows us

to compute appropriate values for the :\j(n).

Theorem 3.1. The aggregated states of queue j are equivalent (in terms of producing
identical Pj(i)) to the original states of queue j if the arrival rates to the aggregated states

are:
Aj(l) =) for 1=0,~--,Nj

) n+DQ L, (3.12)
AN+n) = ———— for n=1, k1
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kK«
where = Z . -l:-[/\ij’ L € 17‘j
;< ---<1k] =1
Once we obtain the occupancy probabilities of the aggregated states, we can find the

occupancy probabilities of the original states by the following theorem:

Theorem 3.2. The relationship between the occupancy probabilities of the original states

and those of aggregated states is:

*

A,

=

1 (3.13)

e
]

PJ.(N+n,i1---in) = Pj(N+n) for n= 1,'--,kj

n! N

n
These theorems and their proofs are exactly the same as in [17], with the modest
extension that the network here has external arrivals to queue j and so equation (3.6) is
used. For more detail on the analysis of merged queues and proof of the theorems, refer to

[(17].

The aggregated occupancy probability Pj(i) needed to obtain Pj(Nj-l-n,il---in) in (3.13)

can be found trivially from the simple birth and death formulae:

i 40 (3.14.)
Pj(o:P(O)I_I— i=1,2,7 N, +k,
=1 p
Nj+kj
Z Pl =1 (3.14.b)
=0

Finding effective arrival rates

In order to use these results, however, we need to know the values of ’\ij (so that the
A; can be gotten from 3.6). If we have available the values of Kij and bij(n), however, then

the '\ij can be gotten from
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k.
. i -
Al = nZ_jlloij(n)) = X (3.15)

*
a conservation equation which yields the arrival rate ’\ij needed in order to produce the

given value Xij'

Finding effective expected clearance times

Once we have values of Pj(Nj+n,i1---in) from (3.13), we can obtain bij(n), the
probability{n units are blocked by queue j including one at queue i} from:

*

A0 - (3.16)
bij(n) = -———PJ.(N-*-n) n= 1,---,kj, 1EFj
0 .
n
n-1 .
where @ _ ... = . Z H A i € Fj\{l}
11<---<xn_1_]=1

From bij(n), we can now compute the conditional probability cxij(n) that, upon service
completion at server i, a unit which has queue j as its destination queue sees k units at
queue j. From assumption c) in section 3.1 and the fact that a unit cannot be served (and
therefore cannot have completed service) at queue i if queue i is blocked by queue j, we see
that aij(Nj+n) is the conditional probability that there are Nj+n units at queue j given

that queue i is not blocked by queue j. Since the probability that queue i is blocked by
k.

J
queue j is nZlbij(n),

Pj (NJ. +n)- bij(n)
a . (N.+n) = n=0,-k-1, i€F, (3.17)
5 3 i

k.
J
1= by(n)
n=1

where b.u.(O) is defined to be 0. We now can use this value of a.lj(Nj+n) in equation (3.7) to

obtain E(Til i)
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The occupancy probabilities of each queue can now be found by an iterative procedure.

*
Each iteration consists of two sets of calculations: the effective arrival rates Aij are
calculated in forward order and occupancy probabilities and E(Ti| j) are calculated in

backward order.

If external arrivals occur at only the first queue, only a single set of calculations
needed.b However, if more than one queue has external arrivals, a two way analysis is
unavoidable for the following reason. Suppose more than one queue has external arrivals.
The analysis of queue i (B;# ¢) yields an updated value of f;, as well as other values of
performance measures, and this updated value of f,, in turn, gives the updated X, and X..
But the updated value of Xi affects A; for all the upstream queues, whick can change the
occupancy probabilities of upstream queues already obtained. In order to avoid this

dilemma, we use a two way analysis:

Forward calculation

Each iteration begins with queue 1 and proceeds to queue 2,3, M. f ;» the probability
that queue 1 is full, is gotten using (3.10), (3.11); the values of le come from (3.5) for all
j€B,. From le and blj(n) (obtained in a previous backward analysis), we can find ’\Ij for
all jEB1 using equation (3.15). Then, we consider queue 2. At queue 2, since we have
available /\:2 for all iEFZ, we can find fz’ the probability that queue 2 is full, which makes
it possible to obtain 702. Now we can find 72 using (3.3) and ij for all jEBz using
(3.5). From ij and sz(n) (obtained in a previous backward analysis), we find A;J. for all

JEB,. Then queue 3 is considered, etc., until the values of },;, are obtained for all iEFM.

Backward calculation

We start from queue M, and obtain the occupancy probabilities and E(Ti| j) for each
queue. Since queue M is never blocked E(T,) is always equal to E(SM). Using ";d and

’\i*M (obtained in a previous forward analysis), we can find E(Ti|M) for all i€F,, as well as
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the occupancy probabilities of queue M. Then consider queue M-1. At queue M-1, we first
obtain E(TM—I) (and therefore, py;_,) using equation (3.8.a). From this updated a1
and A:M—l (obtained from a previous forward analysis), we can obtain occupancy

probabilities of queue M-1, and E(TilM-l) for i€Fy _,. This procedure continues until

1’

E(Tl) is obtained.

At the end of the backward analysis, we check whether the convergence condition is
satisfied, by using a suitable comparison, such as the values of the E(T,), for successive

iterations. If convergence does not occur, another iteration is performed.

Note that, in the forward analysis, occupancy probabilities of disaggregated states are
not obtained, since the only occupancy probability computed is fi from (3.12) and
(3.14). Thus the computational effort of the two way analysis is not critically increased

over that needed for the cne way analysis.

3.3.1. Approximate Algorithm 1

The analysis above is incorporated into the following iterative algorithm to obtain an

approximate solution to the system’s steady state probabilities.

0. (Set-up) Set the values of A, py N, for i=1,-M

1. (Initialization — The conditions here are as if all queues are unblocked.)
1
Set E(T)=-— fori=1,~M p = A, E(T),
K

Find f, using (3.10) and (3.11)
Set )‘1 = '\1(1 - fl)

Find le using (3.5) for all j€B,

Set ’\1j = ’\1j for all jeB,

For i=2, M-1 do
begin
find ,\i(n) using (3.12)
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find Pi(n) using (3.14)
find f. using (3.1)

find XO.! using (3.2)
find X, using (3.3)
find Xij using (3.5) for all j€B,
set /\;. = Xij for all j€B,
end

2. (Backward Analysis — Find E(Til j ) and occupancy probabilities for each queue)
For j=M,2,-1 do
begin
find F(TJ) using (3.8)
find Aj(n) using (3.12) for n=0,---,NJ.+kJ. -1
find Pj(n) using (3.14) for n=0,---,Nj+kj
find b.lj(n) using (3.16) for all iEFJ.
find aij(Nj+n) using (3.17) for all iEFj
find E(Til j ) using (3.7) for iEFJ.

end
Find E(T)) using (3.8)

3. (Convergence check)
If updated values of E(T,) show little change from the previous ones for all i (i.e.,

convergence) go to step 5. Else, go to step 4.

4. (Forward analysis — find A;. for each queue)
Set p, = A E(T)),
Find f, using (3.10) and (3.11)
Set A, = A,(1 1)
Find le using (3.5) for all J€B,

Find )‘Zj using (3.15) for all jeB,
Fori=2,M - 1do
begin
find A,(n) using (3.12)
find Pi(n) using (3.14)

find fi using (3.1)

find -A'Oi using (3.2)

find Xi using (3.3)

find X'lj using (3.5) for all jEB.1
find Aij using (3.15) for all jeB,
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end
go to step 2

5. (Calculate occupancy probabilities)
For queue 2 through M, these have already been obtained in step 2. For queue
1, find Pl(n) using (3.10)  for n=0,---,N1

3.4 Approximate Algorithm 2

If external arrivals occur only at the first queue, only the backward analysis is needed
in every iteration because all Xij are completely determined by f ! which is obtained at the
end of the backward analysis. The occupancy probabilities are then obtained from the

following simplified algorithm.

0. (Set-up) Same as in algorithm 1

1. (Initialization — The conditions here are as if all queues are unblocked.)
1
Set E(Ti) =— fori=1,- M p = ’\1E(T1)’
78

1

Find fl using (3.10) and (3.11)
Set 1\1 = Al(l - fl)
Find le using (3.5) for all j€B,

Set ’\1j = ’\1j for all jeB,
For i=2,M-1 do

begin
find Xi using (3.3)
find X‘U using (3.5) for all jeB,
Set ’\ij = Xij for all jeB,

end

2. (Backward Analysis) Same as step 2 in algorithm 1

3. (Convergence check) Same as step 3 in algorithm 1

4. (Find /\;. for each queue)
Set p, = A E(T)),
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Find f, using (3.10) and (3.11)
Set A, = A/(1 - f)
Find le using (3.5) for all j€B,

Find ), using (3.15) for all j€B,
Fori=2,M — 1do
begin
find Xi using (3.3)
find :ij using (3.5) for all j€B,

find ’\i*j using (3.15) for all jeB,

end
go to step 2

5. (Calculate occupancy probabilities) Same as step 5 in algorithm 1

4. Computational Results

In order to test the accuracy of our approximation method, the algorithm was
implemented on IBM 3090-400 and tested on a variety of problems. Tables 1-8 give
comparisons with three- to eight-node network problems in the literature, all of which have
only one queue with external arrivals. In those cases where exact solutions have not been

obtained, we use simulation results reported by previous authors.

Table 1 gives comparisons for the triangular aetwork of fig. 2, as reported in
Takahashi et. al [21] and Altiok and Perros[3]. Arrivals are at queue 1 with rate 1, and
every queue has a buffer of size one. The routing probabilities are ro=0 r,=r,,=0.5,
r,s=1. Comparisons are based on Pl(Nl), which determines the throughput of the
system since other queues do not have external arrivals. As can be seen in the table, our
method performs better than Takahashi’s method and is comparable with Altiok and

Perros’ method. We also note that Altiok and Perros’ method underestimates Pl(Nl)’ the

probability queue 1 is full, if the service rates are low (e.g., p#=1,1.1,1.2) and



overestimates it if the service rates are high (e.g., p=1,2,3). This pattern suggests that it
might have a larger error for very high or low service rates, even though in the
intermediate range shown their method is accurate. On the other hand, our method
appears to be more robust in that it shows a consistent pattern of overestimating

throughput for all explored service rates, by fairly small deviations, i.e., 0.004 — 0.005 in

absolute error.

Approximatiouns to P (N,) from Takahashi et al., Altiok and Perros, and our algorithm

17

<Insert Fig. 2,3>

Table 1

By Mo Bg Exact Altiok & Perros Takahashi Algo 2.
1 1.1 1.2 0.55963 0.54698 0.58669 0.56301
1 1.2 1.4 0.54634 0.53736 0.57344 0.55020
1 1.3 1.6  0.53681 0.53049 0.56324 0.54094
1 1.4 1.8  0.52980 0.52541 0.55538 0.53404
1 1.5 2.0 0.52451 0.52153 0.54904 0.52876
1 1.6 2.2 0.52043 0.51850 0.54398 0.52462
1 1.7 2.4  0.51724 0.51608 0.53975 0.52133
1 1.8 2.6 0.51469 0.51411 0.53619 0.51866
1 1.9 2.8 0.51264 0.51250 0.53318 0.51646
1 20 3.0 0.51096 0.51115 0.53058 0.51464

Our method was also tested for nine other three-node network problems, as well as the
four four-node network problems and ten eight-node network problems analysed in [3] and
[19]. Figs. 1, 2 and 3 show the topologies of these networks. Tables 3-8 present some
numerical results selected from among these problems, showing the average (and
maximum) absolute deviations and average (and maximum) relative errors with respect to

exact or simulated values. Since Altiok and Perros’ algorithm cannot solve the eight node-
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network due to memory limitations, we compare our results in this case with only those of

Perros and Snyder’s.

Table 2 is a summary of the comparisons with Altiok and Perros’ and Perros and
Snyder’s for the averages of nine three-node network problems, four four-node network
problems and ten eight-node network problems, for the various performance measures in
table 3-8. As can be seen, our algorithm give better results in both average(maximum)
absolute deviation and average(maximum) relative error. In addition, while Perros and
Snyder’s algorithm is inaccurate if the first queue has infinite buffers (see for example

table 6), ours appears to work quite well for all cases shown.

Table 2
Summary of Comparisons with the approximations of
Altiok and Perros, and Perros and Snyder

Network Altiok Perros
Configuration Measures and Perros and Snyder New

3 node avg. abs. dev. 0.0095 0.0082 0.0066
network max. abs. dev. 0.0322 0.0201 0.0152
(avg. of avg. rel. err. 0.0545 0.0547 0.0311
9 prob.) max. rel. err. 0.1991 0.2132 0.1019
4 node avg. abs. dev. 0.0213 0.0198 0.0135
network max. abs. dev. 0.0442 0.0442 0.0257
(avg. of avg. rel. err. 0.0679 0.0638 0.0433
4 prob.) max. rel. err. 0.1691 0.1401 0.1045
8 node avg. abs. dev. - 0.014 0.007
network max. abs. dev. - 0.043 0.020
(avg. of avg. rel. err. - 0.079 0.045
10 prob.) max. rel. err. - 0.338 0.229

It is important to state that we have not proven the convergence of our
algorithm. However, in all of the problems we have tested to date, we have not found any

which did not converge. The maximum number of iterations needed for convergence was
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11; in most cases convergence to one part in 10° occurred within 4-7 iterations. From a
practical point of view, we note that the maximum CPU time required for an eight node
network problems was 0.008 seconds. We also do not have a-priori bounds on the

accuracy of the method; these are currently being explored.

Conclusions

We have presented a new approximate algorithm for analysing a general configuration
of an open queueing network with blocking. Besides being accurate and fast, our algorithm

has the following advantages over those previously reported:

Generality : It can solve not only networks with a large number of servers, but
also general topologies inc.luding external arrivals at more than one
queue.

Robustness: It yields accurate results regardless of whether the queues with
external arrivals have infinite buffers or not, or whether the service
rates are high. or low.

Simplicity: There are no numerical procedures involving the solution of

simultaneous nonlinear equations or fixed point problems.

Considering the generality, robustness, simplicity and accuracy of the algorithm, and
its significant improvement over previous methods, it holds promise to be a useful tool in

the study of networks of queues.
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Figure 3. the eight node network



Table 3
Comparison with the approximations of Altiok and Perros,
and Perros and Snyder for a three node network

Altiok Perros
Measures Exact and Perros and Snyder New
PI(O) 0.1078 0.1261 0.1248 0.1048
P.(D 0.0946 0.1096 0.1111 0.0938
P.(2) 0.0836 0.0956 0.0961 0.0840
P.@3) 0.0743 0.0835 0.0833 0.0752
P (4) 0.0662 0.0731 0.0724 0.0673
P.(5) 0.0592 0.0639 0.0632 0.0603
P.,(0) 0.6231 0.6489 0.6490 0.6161
P, (1) 0.2401 0.2294 0.2311  0.2399
P.(2) 0.0919 0.0818 0.0805 0.0934
P,(3) 0.0449 0.0399 0.0395 0.0506
P.0) 0.4563 0.4560 0.4561 0.4560
P.(1) 0.2684 0.2608 0.2608 0.2679
P3(2) 0.2753 0.2832 0.2831 0.2761
avg. abs. deviation 0.0000 0.0102 0.0102 0.0018
max. abs. deviation 0.0000 0.0258 0.0259 0.0070
avg. rel. error 0.0000 0.0876 0.0880 0.0192
max. rel. error 0.0000 0.1698 0.1744 0.1269

A =(0.8,0,00 u=(1,1,1) N = (00,3,2)
r10=0.2, r12=0.4, r13=0.4, r20=0.3, r23=0.7

CPU time = 0.001 second
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Table 4
Comparison with the approximations of Altiok and Perros,
and Perros and Snyder for a three node network

Altiok Perros
Measures Exact and Perros and Snyder New

PI(O) 0.2154 0.2142 0.2135 0.2092

Pl(l) 0.7846 0.7858 0.7865 0.7909

P_(0) 0.7051 0.7231 0.7241 0.6968

Pz(l) 0.2949 0.2770 0.2759 0.3032

P3(0) 0.6123 0.6144 0.6158 0.6235

P3(1) 0.3877 0.3856 0.3842 0.3765

avg. abs. deviation 0.0000 0.0071 0.0081 0.0086
max. abs. deviation 0.0000 0.0180 0.0190 0.0112
avg. rel. error 0.0000 0.0170 0.0196 0.0207
max. rel. error 0.0000 0.0607 0.0644 0.0289

A =(3.0,0,00 x=(1,1,1) N=(1,1,1)
r10=0.2, r12=0.4, r13=0.4, ry =0.5,

CPU time = 0.002 seconds

0 r23=0.5
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Table 5
Comparison with the approximations of Altiok and Perros,
and Perros and Snyder for a four node network

Altiok Perros
Measures Exact and Perros and Snyder New

P.(0) 0.0208 0.0246 0.0174 0.0207

P.(1) 0.1370 0.1405 0.1448 0.1325

P1(2) 0.8422 0.8349 0.8379 0.8467

PZ(O) 0.6001 0.6266 0.6371 0.5931

P,_)(l) 0.2636 0.2391 0.2405 0.2530

PZ(Z) 0.1363 0.1363 0.1225 0.1539

P.{0) 0.6311 0.6605 0.6618 0.6253

P.(1) 0.2533 0.2228 0.2267 0.2426

P.(2) 0.1156 0.1167 0.1115 0.1321

P4(0) 0.2764 0.2429 - 0.2570 0.2976

P (1) 0.2436 0.2056 0.2114 0.2410

P4(2) 0.4800 0.5515 0.5316 0.4615

avg. abs. deviation 0.0000 0.0225 0.0212 0.0100
max. abs. deviation 0.0000 0.0715 0.0516 0.0212
avg. rel. error 0.0000 0.0797 0.0813 0.0453
max. rel. error 0.0000 0.1827 0.1635 0.1427

A =(5000 p=(1,1,1,1) N=(22.2.2)
r10=0.05, r12=0.35, r13=0.30, r14=0.30, r20=0.05,

r23=0.05, r24=0.90, r30=0.05, r34=0.95
CPU time = 0.003 seconds
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Table 6
Comparison with the approximations of Perros and Snyder for an eight node network

Perros

Measures Simulation and Snyder New
Pl(O) 0.099 0.262 0.092 -
Pl(l) 0.071 0.191 0.083
P1(2) 0.056 0.129 0.076
P1(3) 0.048 0.090 0.069
Pl(!;) 0.041 0.065 0.062
P1(5) 0.037 0.048 0.057
PZ(O) 0.614 0.656 0.597
P,(1) 0.235 0.233 0.252
P,(2) 0.151 0.110 0.151
P3(0) 0.607 0.656 0.599
P3(1) 0.244 0.233 0.251
P3(2) 0.149 0.111 0.150
P(0) 0.566 0.618 0.560
P4(1) 0.240 0.239 0.255
P4(2) 0.195 0.143 0.186
P5(0) 0.461 0.600 0.420
P5(1) 0.262 0.250 0.277
P5(2) 0.277 0.150 0.303
P(0) 0.493 0.595 0.484
Pe(l) 0.282 0.249 0.266




[Ne]
(S ]

Perros
Measures Simulation and Snyder New
PG(Z) 0.224 0.156 0.249
P7(0) 0.405 0.471 0.414
P.(1) 0.273 0.273 0.263
P.(2) 0.322 0.256 0.323
PS(O) 0.202 0.200 0.200
P8(1) 0.189 0.177 0.199
P8(2) 0.609 0.623 0.601
avg. abs. deviation 0.000 0.050 0.013
max. abs. deviation ~0.000 0.163 0.041
avg. rel. error 0.000 0.348 0.108
max. rel. error 0.000 1.690 0.541

A = (5,0.0,0,0,0,0,0) un = (4,1,1,2,2,2,2,3.5)
N = (2,2,2,2,2,2,2,2)
r10=0.0 r12=0.2 r13=0.2 r14=0.2 r17=0.2 r18=0.2

r20=0.0 r24=0.5 r26=0.5 r30=0.0 r34=0.5 r37=0.5
r40=0.0 = 1.0 r50=0.0 r56=0.3 r57=0.o r58=0.4
r60=0.0 es= 1.0 r70=0.0 rog= 1.0 Tgo™ 1.0

CPU time = 0.005 seconds
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Table 7
Comparisons with the approximations of Perros and Snyder for an eight node network

Perros
Measures Simulation and Snyder New
PI(O) 0.321 0.323 0.299
Pl(l) 0.313 0.335 0.332
P.(2) 0.366 0.342 0.369
PZ(O) 0.601 0.593 0.590
P,(1) 0.254 0.254 0.254
P2(2) 0.146 0.153 0.156
P3(0) 0.584 0.587 0.570
P3(1) 0.261 0.256 0.259
P3(2) 0.155 0.157 0.171
P4(0) 0.564 0.551 0.560
P4(1) 0.258 0.253 0.255
P4(2) 0.178 0.196 0.185
PS(O) 0.557 0.579 0.548
P5(1) 0.266 0.258 0.264
P5(2) 0.177 0.163 0.188
PG(O) 0.750 0.768 0.749
P6(1) 0.195 0.180 0.190
P6(2) . 0.056 0.053 0.062
P7(0) 0.539 0.529 0.533




Perros
Measures Simulation and Sniyder New
P7(1) 0.270 0.254 0.259
P7(2) 0.191 0.216 0.208
PS(O) 0.457 0.436 0.459
Ps(l) 0.262 0.250 0.262
PS(Z) 0.281 0.314 0.279
avg. abs. deviation 0.000 0.013 0.008
max. abs. deviation 0.000 0.033 0.022
avg. rel. error 0.000 0.046 0.033
max. rel. error 0.000 0.131 0.107

A = (8,0,0,0,0,0,0,00 u = (4,1,1,2,2,2,2,3.5)

N = (2,2,2,2,2,2,2,2)
routing is same as in table 5
CPU time = 0.006 seconds




Table §
Comparisdns with the approximations of Perros and Snyder for an eight node network

Perros
Measures Simulation and Snyder New
PI(O) 0.281 0.283 0.258
Pl(l) 0.247 0.263 0.253
P1(2) 0.226 0.229 0.247
P1(35 0.246 0.224 0.242
PZ(O) 0.535 0.527 0.526
P,_,(l\ 0.261 0.258 0.257
P2(2) 0.122 0.125 0.126
P2(3’) 0.082 0.090 0.692
P3(O) 0.522 0.520 0.505
P3(1) 0.261 0.259 0.259
P3(2} 0.128 0.127 0.133
P3(3\ 0.089 0.093 0.103
P4(0) “ 0.506 0.499 0.503
P4(1) 0.255 0.254 0.256
P4(2) 0.131 0.127 0.130
P4(3) 0.108 0.121 0.112
P5(0) 0.491 0.511 0.478
P5(1) 0.262 0.260 0.260
P.(2) 0.136 0.130 0.142
P5(3) 0.111 0.110 0.119




Perros
Measures Simulation and Snyder New
PG(O) - 0.707 0.727 0.704
P.(1) 0.213 0.200 0.209
P.(2) 0.061 0.054 0.062
P6(3) 0.020 0.020 0.025
PT(O) 0.454 0.448 0.451
P.(1) - 0.263 0.252 0.256
P.(2) 0.148 0.140 0.145
P7(3) 0.135 0.160 0.149
PS(O) 0.355 0.335 0.350
P.(1) 0.240 . 0.228 0.241
P8(2) 0.164 0.155 0.166
P8(3) 0.240 0.282 0.244
avg. abs. deviation 0.000 0.009 0.006
max. abs. deviation 0.000 0.042 0.023
avg. rel. error 0.000 0.047 ©0.042
max. rel. error 0.000 0.185 0.250

2 = (3,0,0,0,0,0,0,00 u = (4,1,1,2.2.2.2,3.5)
N = (3,3,3,3,3,3,3,3)

routing is same as in table 5

CPU time = 0.006 seconds
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