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Abstract

A production / inventory system is considered, in which a single production facility
is engaged in producing items that are held in inventory. The inventory of items is
thus replenished one item at a time, and the processing time required to produce an
item is assumed to follow an arbitrary distribution. The demand for this item
occurs according to a Poisson process.

An (s,S) policy is considered in which the production stops at the instant that the
inventory level is raised to S and production begins again at the instant that the
inventory level drops to s. Under a cost structure that includes a set-up cost, a
linear holding cost, and a linear backorder cost, an expression for the expected cost
per unit time is obtained for given control values. Using convexity and unimodality
properties of the cost functions, an extremely simple and efficient procedure to find
the optimal (s,S) policy is presented



1. Introduction

In this paper, we consider the optimal control strategy for a production/inventory system
wherein a single production facility produces items of a given type. The demand for this item is
assumed to arrive according to a Poisson process with rate A. The processing time for producing
(replenishing) an item is assumed to be an independent, identically distributed, random variable U
which follows an arbitrary distribution. For stability of the system, we assume that AE(U)<1 and
E(U2)<eco. If an item is demanded, it is supplied directly from the inventory, if it is available. If
the item is not available, it is backordered. We assume that i) inventory holding costs are incurred
linearly over time with respect to the inventory level ii) backorder costs are incurred linearly over
time with respect to the backorder level and iii) a set-up cost is incurred each time the production
facility is turned on. The objective is to find a continuous review production/inventory policy to
minimize the expected cost per unit time.

The operating policy considered in this paper is an (s,S) policy. Such policies are known to be
effective in a variety of situations (Bell 1971, Sobel 1969, Veinott 1966, Veinott 1967). The
characteristics of the policy considered in this paper are now described.

As soon as the inventory level reaches a prespecified value S, the production facility is turned
off and a non-production period begins. During the non-production period, the inventory level is
continuously monitored to determine whether the inventory level has reached a prespecified value
s or not. At the instant the inventory level drops to s, the non-production period ends and
production begins immediately. During the production period, the inventory is replenishc ! on an
item-by-item basis while the demand continues to be made on these items. When the inventory
level is raised to S, the production period ends and the next non-production period begins,
initiating another cycle in the (s,S) policy system (refer to figure 1).

There is considerable work on (s,S) inventory policies. Such policies are studied by
Beckmann (1961), Johnson (1966), Veinott and Wagner (1965), Veinott (1967), Archibald and
Silver (1978), and Sahin (1979), to name but a few. However, most of the (s,S) policies present
in the literature assume that any amount of inventory can be replenished all at once. Our model is
different in the sense that the inventory can be replenished only on an item-by-item basis.

Since the replenishment in our model is made on an item-by-item basis, it is easy to note that
our model has an analogy with queueing systems. In fact, the work on control of queueing
systems, for instance, the papers by Heyman (1968), Yadin and Naor (1963), Bell (1971), Sobel
(1969), and Lee and Srinivasan (1989), have a close relationship with production/inventory



systems. Using this inventory-queueing analogy, some studies have been done on (s,S) policies
for the production/inventory systems in which the inventory is replenished item-by-item.

N : non-production period

P : production period
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Figure 1. The Continuous Review (s,S) Policy with

Poisson Demands and Arbitrary Processing Times

Heyman (1968) considers the operating policy for an M/G/1 queueing system which is a
special case of the (s,S) policy where the upper control limit S is set to zero. Gavish and Graves
(1980) consider an (s,S) continuous review production/inventory system with unit Poisson
demand arrivals and deterministic processing times. They develop a procedure to find the steady
state probability of each inventory level using an underlying M/D/1 queueing system. To obtain the
optimal control values, they use a search procedure in which some properties for cost functions are
effectively exploited. In a subsequent paper, Gavish and Graves (1981) extend the analysis to
consider general processing times. Although their search procedure is efficient, they do not prove
that the policy found by their algorithm is the optimal. Tijms (1980) considers a system with
arbitrary processing times and finds the optimal control values by using a denumerable state Semi-
Markov decision process. In his model, a start-up time is allowed which can model the time taken
to turn on the production facility. Altiok (1986) considers a system where the demand follows a
compound Poisson demand process. The service times in his model are assumed to be phase-type.
He uses an underlying continuous-time Markov chain to obtain the steady state probability of each
inventory level for a given policy. However, in this paper no special properties for the cost
function are proved, that would assist in the search for the optimum.

The (s,S) policy in this paper uses a fundamentally different approach from those used in the
past. In addition, this paper also develops proofs of convexity and unimodality of certain
functions, which leads to a very efficient algorithm to find the optimal policy. This paper
considers, in fact, the same problem that was studied by Tijms except that a start-up time is not



considered in our model. However, as pointed out by Gavish and Graves (1980), the
computational time using a semi-Markov decision process for solving production/inventory
systems is much higher than that using an intelligent search technique. In the following sections,
first an expression for the expected cost per unit time for given control values will be derived and
following that an efficient procedure to find the optimal control values, s and S, will be presented.

2. The Analysis
2.1, Notation

For analytical convenience, we set r = S-s, and throughout the paper we will use (r,S) instead
of (s,S) to describe a policy. Thus, the (r,S) policy represents the policy with S-r as a lower
control value and S as an upper control value. Let

U = the processing time to produce a unit item, AE(U) < 1,

U(.),U*(.) =  the c.d.f. and the Laplace Stieltjes Transform of U, respectively,

Q =  the number of demands which arrive during a processing time U,

g = Pr{Qs}, =0,1.2,...,

K = set-up cost,

Ch = holding cost / item / unit time,

b = back order cost / item / unit time,

Cn(@,S) =  expected cost during a non-production period with control values r and S,
Cp(1,S) =  expected cost during a production period with control values r and S,
C(,S) = CN(S) + Cp(r,S) = sum of expected holding and backorder costs during

a cycle with control values r and S,
L(r,S)
TC(r,S)

expected length of a cycle with control values r and S,

expected cost per unit time with control values r and S.

2.2, General Approach

Our first objective in this paper is to obtain an expression for TC(r,S), the expected cost per
unit time for given control values r and S. To obtain this, note that the epoch marking the start of a
cycle forms a regeneration point. It follows that we have a renewal reward process, and thus from
the renewal reward theorem (see, for example, Ross 1970), the expected cost per unit time, when r
and S are used as control values, is obtained by



TCES) = % @.1)

Since the term C(r,S) is the sum of Cn(r,S) and Cp(r,S), to obtain TC(r,S) we need to find the
terms Cn(r,S) and Cp(r,S) as well as the term L(r,S). We now show how the terms Cn(r,S),
Cp(r,S) and L(r,S) are determined.

2.3. Computing the term Cy(r,S)

The expected cost during a non-production period is easily determined. Let gk k-1 denote the
expected cost incurred from the epoch at which the inventory level becomes k to the epoch when
the inventory level drops to k-1 during a non-production period. Then gi k-1 is given by

Gkl = %k, if k>0, (2.2a)
. -;h K, ifk <0, (2.2b)
The expected cost during a non-production period when r and S are used as control values, is then
expressed by
S
CheS) = Y Bkkl- 2.3)
k=S-r+1

2.4. Computing the term Cp(r,S)

During the production period, the production completion epochs are the times at which the
inventory is replenished. To compute Cp(r,S), we therefore restrict our attention only to these
epochs. Let f;;denote the expected cost from the epoch at which the inventory level reaches i, to
the epoch at which the inventory level is raised to j (j2i) for the first time with f; ;=0 for any i.
Then the expected total cost incurred during the production period, Cp(r,S), is just fs.r s which, in
turn, is expressed as (note that S-r = s)

S-1
Cp(r,S) = fsrs = Y fiksl (2.4)
k=S
From equation (2.4), we see that the term Cp(r,S) can be determined if we can calculate each value
of fix+1. Let Ex denote the expected cost incurred during a processing time that is initiated with k
items in inventory. Then fi k41 is expressed as

fik+1 = Eg + 21 Qj i1,k 1. (2.5)
F



In equation (2.5), the term Ey is the expected cost incurred during the time required to produce the
first item following the initiation of production. During this time, j items are demanded with
probability q; and this takes the inventory level to k+1-j at the end of the production period. The
second term in equation (2.5) is thus the expected cost incurred from the end of that processing
time until the time at which the inventory level is first raised to k+1. The g; values can, in general,

be computed from the following expression:
00

o = J(x—i;le'hdU(t). 2.6)

Remark: Note that the computation of the g; values is considerably simplified in many cases. For
example, when the production times are of phase-type, the g;'s can be obtained in closed form
(Neuts 1981, page 59). Also, these computations are trivial for the case of deterministic
processing times.

To obtain Eg, we let hy denote the expected time that the kth item is held in inventory during a
processing time. (It is implicit that this processing time is initiated with at least k items in
inventory.) If the number of items demanded during a processing time is less than k, then the ki
item will be held during this entire processing time. The term Ej is obtained from Lemma 2.1. A
proof of Lemma 2.1 is given in Appendix A.

Lemma 2.1

The term Ex is expressed recursively as

B = Ex + hy41(ch + ¢b) - E(U)cy, (2.7)
where
k
hgy = hy + l-(1 - ¥ qj), with hg=0 fork<0. (2.8)
AR
. . AE(U2) .
As an initial value for equation (2.7), we use Ey = %> Cb, which can be obtained from

equation (A.13) in appendix A by setting k = 0.
2.4.1. Computing the term fy y,,

We now obtain a recursive expression for the term fy x4,. First, we develop an expression for
the term £ o, which denotes the expected total cost incurred from the epoch at which the inventory
level reaches -1 units till the time that the inventory level is first raised to 0. Note that this is



equivalent to the expected total cost incurred during the busy period in the M/G/1 queueing system
where the waiting cost per customer is cp. Thus, if we know the expected total waiting time for
customers during a busy period in an M/G/1 queueing system then we can easily obtain f; .
Lemma 2.2 gives this result. Since this is a well known result, we omit the proof (note that the
expected number of customers served in a busy period is just 1/(1-p) ).

Lemma 2.2

Consider an M/G/1 queueing system with arrival rate A and service time U. Then, the expected
total waiting time, W, of all the customers during the busy period is given by

2
w, = L 2B, gy n
(1-p) 2(1-p)

From Lemma 2.2, f 1 o can be obtained simply as

= N WY (4.3}
fio W, o p)[ Y +EU)lc,, (2.9)
Define
Af, = fie ke - fietko (2.10a)
and
AE, = Ex - Ex4 = hy(ch + cb) - E(U)cp. (2.10b)

Note, from equations (2.8) and (2.10b), that

1 k-1
AEy - ABy x(l - ;LO qj) (cn + cb), k>0, (2.10c)

0, k<0 (2.10d)

The recursive expression for fy x4, is obtained from Lemma 2.3. A proof of Lemma 2.3 is
given in Appendix B.

Lemma 2.3

The term fy i, is obtained from the recursive expression

1 k k
ket = fiore+ = (Mt +ABg- ABy, - 3 gy Afis +(1- $q) 2% ¢}, k>0,  (2.11a)
% = o (1-p)

(U)
f; - —=C k<O0. 2.11b
k-1k - ) ( )
|



Let
& = Bkl k T fkkel. (2.12)

Using equations (2.3), (2.4) and (2.12), C(r,S) is expressed as

S-1
C,S) = CN(@,S) + Cp(r,S) = kZS Tk (2.13)
=S

2.5. Computing the terms L(r,S) and TC(r,S)

The expected cycle time in the (r,S) system can be obtained by using the relationship between
production/inventory systems and queueing systems. To obtain L(r,S), we make an important
observation that the length of a production period in our (r,S) system is the convolution of r busy

periods in an M/G/1 queueing system. Therefore, the expected length of a production period is
rE(U)

directly obtained from the busy period analysis as (0) . Since the expected length of a non-
production period when r and S are used as control values is % the expected length of a cycle is
given by
Les) = ZE@,r__r (2.14)
(I-p) A (1-pA

Hence, from equations (2.1), (2.13), and (2.14),

S-1
YT+ K

TCrS) =  (I-pA=— (2.15)

3. The Optimal Control Values

In order to find the optimal control values (r*,S*), a two-dimensional search over the integer
parameter space must be made. Usually, the search for the optimal point in two dimensional space
is not easy. However, if we exploit some properties of the cost functions and the recursive nature
of g+1xand fyy,1, we can find an extremely efficient search procedure. Let us denote the
optimal S value for a given r by $*(r) and the optimal r value for a given S by r*(S). We now
demonstrate some properties that are possessed by this system. These properties are used in
dévising the search procedure.



Theorem 3.1:

Ty is convex with respect to k.
Proof:

Since Tx = gk+1x + fick+1, Tk is convex if we can show that gy, x and fi k41 are both convex.

Note from equation (2.2), that the function gx+1 x - 8k k-1 i a non-decreasing function with respect
to k. This proves that gx+ k is convex. To show convexity of fi x+1, we need to prove that Afy -
Afy.1 20 for all k. We will prove this by induction on k.

From Lemma 2.3, Afy=- I-*:i(-g-)-cb, k £0, and so Af - Afy ;=0 forallk <0.

Suppose Afy - Afk_1 2 0 holds for k < n, for some n > 0. We now prove that Afy - Afy_; =0 for

k=n+1 using the induction hypothesis. From equation (2.5), Af, = AE, + ¥, qj (fa+1-j,n+1 - fa-jin)
&1

and so, after some algebra, Af;,, - Af;, is expressed as (also refer equation (B.2))

Afpy - Afy = AEp, - AE, + _EIQj(Aan - Afn+1-j ). (3.1)
F

Equation (3.1) can be rewritten as

1 ©o
Myi-8fy = (AR ABy + 3 qiAfy- A ). 3.2)
F

n
From equation (2.10c), AEp,; - AE, =lx(1 - ¥, qj)(cn+ cp) 2 0 for all n. Also by the induction
0

hypothesis, Afy, - Afpy1. 2 Oforall j> 1. Since q;> 0 for j 20, we must have Afyy - Af, 20.
So, by the principle of mathematical induction, Afy - Afy.; 2 0 for all k and hence fy x4 is convex
with respect to k. u

Figure 2 gives one possible realization for the function Ty. Note that C(r,S*(r)) is nothing but
a minimum value among all possible sums of r adjacent Ty's. In figure 2, for example, C(3,5*(3)
is just the sum of 7,7 and T3. Furthermore, since Ty is convex, C(4,S*(4)) in figure 2 can be
obtained directly from C(3,5*(3)) as C(4,8%(4))=C(3,5*(3))+min{To,T4} = C(3,5*(3))+Ts.
Corollary 3.2 generalizes this result.
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Figure 2. One realization for the function Ty
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Corollary 3.2:
Ca+1,8*@+)) =  C@S*@) +min {Tgs), Ts#(r)r-1)- (3.3)

If TS*(r) < TS*(r)-r-l, then S*(r+1) = S*(r) +1.
If Tgoy > Tssgrl, then S*(r+1) = $¥().

Proof:

Corollary 3.2 is a direct consequence of Theorem 3.1.

|
Theorem 3.3 presents an important characteristic of the cost function which is very useful in the
search procedure, and in guaranteeing optimality.

Theorem 3.3:
TC(r,S*(r)) is unimodal with respect to .
Proof:
In order to prove the unimodality of TC(r,S*(1)), it is sufficient to show the following:

If TCnS*@n)) < TC(n+1,8*(n+1)) ,
then, TC(n+1,8*(n+1)) < TC(n+2,8*(n+2)) . (3.4)

The term TC(n,S*(n)) can be expressed as



TC(n,S*(n)) =

(K + B(nn)) (1-p)A , where B(n) = min { i+gl’t’k }.

1 k=1

Using this in (3.4), observe that in order to show the unimodality of TC(r,S*(r)), we only need to

(K + B(n)) < (K + B(n+1)) (K +B(n+1)) (K + B(n+2))
n n+l n+l n+2 )

show that if . then

Let 8k = B(k) - B(k-1) and ¢ = K+B(n) . To show unimodality, we then need to show that if

C C +0n+1 C + On+1 C +dn+1 + Ons+2
n T n+l then n+1 n+2 : (3.5)
But from the fact that 8,41 < 8p+2, relationship (3.5) is obvious.
|

We now demonstrate two properties that the control limits possess, which assist in restricting the
search. Theorem 3.4 first indicates that the optimal production quantity per cycle is bounded from
below by the threshold value obtained from Heyman's N-policy formula (1968). A proof of
Theorem 3.4 is given in Appendix C.

Theorem 3.4:

If we denote the value of r in the optimal policy by r*, then r* >r*(0), where r*(0) is one of

the neighboring integers of '\, ”‘LICLP)—K : u

Theorem 3.5:
S*(r) 20foranyr2 1.

Proof Consider a policy (r,S) where S<0. Clearly the policy (r,0) always dominates this
policy since only non-positive inventory levels exist for these two policies and the expected
shortage level of policy (r,0) is always less than that of policy (r,S) by -S. Thus, S*(r) cannot be
negative for any r. n

We use these properties as follows. First note, from Corollary 3.2, that once we find an
optimal control value, $*(r), for some r, say r=k, then we can find an optimal control value for
r=k+1 very quickly. In our algorithm, we make use of this fact and start with r=1, that is, we find

10



C(l,S*(l)) first. To find C(1,S*(1)), noting that Ty is convex in k, we just search for the
minimum value of Ty. Since Ty 2 T.; for k < -1, the search starts from k = -1, and hence we

compute Ty from k=-1 up to the point at which the value of Ty is first increased. Thus, if
mli(n{’rk}='tq, the value of S*(1) can be obtained as q+1. The cost function TC(1,5*(1)) may then

be obtained from C(I,S*(l)) by using equation (2.1). (However, notice that by Theorem 3.4,
TC(r,S*(r)) need not be calculated for r <| Zi%b%_l where [_PJ is the largest integer that

does not exceed p.) Once C(l,S*(l)) is found, we can find C(r,S*(r)) and, therefore,

TC(r,S*(r)), sequentially in the order r=2,3,4,~-. Note that the values of Ty that are evaluated in
order to obtain C(r,5*(r)) for r=1, will also be used to obtain C(r,S*(r)) forr> 1.

Since TC(r, S*(r)) is unimodal with respect to r, we can now develop an extremely simple

211
ol 2A(1-p)K

search procedure: find C(r, S*)) for r=1 _] as indicated above. Following this,

we increase r by 1 and compute C(,S*(r) and TC(r,S (r)) for this new r, repeating this process
until TC(r,S*(r)) is first increased. Then, by Theorem 3.3, the local minimum point obtained in the
previous step is a global minimum and the optimal control values, r* and S*, are obtained. The
algorithm to find the optimal control values is described below:

Algorithm to find TC(r*,S*)

1. Determine n*=| 21(1 AApK

=221

2. Calculate C(r,S*(r)) forr = 1,...,n*, and obtain TC(r,S*(r)) for r = n*.

3. Set r=r+l and calculate C(r,S*(r)) and TC(r,S*(r)).
If TC(r,S*(r)) > TC(r-1,5*(r-1)), then return the optimal policy as (r-1,5*(r-1)).
Otherwise, repeat step 3.

This algorithm is simple and efficient: only one new Ty needs to be calculated each time thatr is

incremented. Moreover, due to the recursive nature of fi 41, Y is computed very quickly from Ty ;

for k > 0, or Ty, for k < 0 (either of which would have been obtained at the previous step). In this
algorithm, most of the computational effort to obtain the optimal control values is spent on

calculating values of Ty for k > 0 (see remark in Section 2.4). Suppose we know the optimal
control values (r*,S*) beforehand and that we just need to calculate TC(r*,S*). In this case, we

11



must calculate Ty for S*-r*+1 < k < S*. On the other hand, suppose we need to find both the
optimal policy and its cost using this algorithm. In this case, it may be observed that at most only
two additional values of T need to be calculated as compared to the case when the optimal control
values are known. This fact demonstrates the efficiency of our algorithm: very little calculation is
wasted on computing the points other than those required to obtain the optimal control values. In
fact, this algorithm finds the optimal solution in almost one shot.

4. Numerical Examples

We now present some numerical examples to illustrate this technique. In the first example, the
processing time is assumed to follow a special distribution, which is encountered frequently in
manufacturing situations. The processing time has a deterministic value tg if the production facility
does not fail during the processing time. However, if the production facility fails during the
processing time, which is assumed to occur with probability p, the processing time becomes tg plus
a repair time R which follows an exponential distribution with parameter . Other parameter
values are given as follows:

A = 015, K = 500, o, = 2, op = 10.
U=+t with probability 1-p,
= tp+R with probability p,
where p=0.02, to=5 and p=0.05.

In the second example, the processing time is assumed to follow a uniform distribution on

[2,4]. Other parameter values are given as
A=0.1, K=3000, cp=2, cp=20.

The results of the policy comparisons for these examples are presented in tables 1 and 2. In
these tables, the values of r, s*(r), $*(r) and TC(r,S*(r)) are shown for each value of r. Although
only two distributions for the processing time are demonstrated in the examples, many other
distributions can be easily implemented if their Lapace-Stieltjes transform functions are well
diffenrentiable.

5. Conclusions

We have considered the (s,S) control policy for production/inventory systems. We obtained
an expression for the expected cost per unit time for given values s and S and using a convexity
property of the function Ty and the unimodality property of the cost function TC(r,S*(r)), we have

developed an extremely efficient procedure to find the stationary optimal (s,S) policy.

12



Table 1.

Result of example 1

r=S-§ s'@ S'() TC(r,S*(r)
1 5 6 29.8176
2 5 7 22.7503
3 4 7 204731
4 4 8 19.3938
5 3 8 18.8947
6 3 9 18.5638
7@ 3 10 18.4672
8 2 10 18.5041
9 2 11 18.5643
10 2 12 18.7432
(@ indicates the optimal policy)
Table 2.
Result of example 2
I 1=S-s s'@) S‘(rL_l TC(r,5*(r)
10 -1 9 30.2455
11 -1 10 29.2474
12 -1 11 28.5824
13 -1 12 28.1735
14 -1 13 27.9658
15 -1 14 27.9192
16@ 2 14 27.8826
17 2 15 27.9640
18 -2 16 28.1475
19 -2 17 28.4169
20 -2 18 28.7594
(@ indicates the optimal policy)



Appendix A

Proof of Lemma 2.1
Lemma 2.1
The term Ey is obtained recursively as
Exe1 = Ex + hy41(ch + cp) - E(U)cy, (A.1)
where
k
het = he+e(1- 3q),  with he=0fork <0. (A2)
A =0
Proof

Let U; be the length of a processing time given that i demands arrived during that processing
time and let u; be E[Uj]. If we apply Bayes' formula, u; is expressed as

i
4 =  E[Uj] = é Q”i—t,)—e-hth(t). (A4)
1 .
From equations (A.4) and (2.6), after some algebraic manipulation we obtain:
qiui _ G
1 = )». (A.S5)

During a processing time, demands continue to occur and these demands are met from the
inventory on hand if any. Let I; denote the item in inventory which is used to satisfy the ith
occurence of a demand during a processing time. The term h; is the expected amount of time that I;
is held in inventory during a processing time. If the number of demands which arrived during the
processing time is less than i, say j, the I; will not be used and will be held during the entire
processing time Uj. In that case, the expected holding time of Ij is Uj. On the other hand, if the
number of demands during the processing time is more than i, say j, then I; will be used when the
ith demand arrives. Also note that given j arrivals during U, the joint distribution of these arrival
epochs have the same distribution as the order statistics of j independent random variables
uniformly distributed on [0, U;] (see, for example, Ross 1970). Hence the expected holding time
of I; when the number of demands, j, during a processing time is greater than i, is expressed as

1 - .
= U;. Consequently h; is represented as

j+l
i-1 o -
hi = Yqjg+ ;i?il‘-f, i=1,2,-. (A.6)
J =
L Sig+i-Tqp), i=12 A7)
= ={Xjq+i(l1-Yqp }, i=1,2,, .
A 9 j:oq’

14



where the second equality follows from equation (A.5). From equation (A.7), we observe that

k
by = hk+i—(l- ), fork20, with =0 for k<0 (A8)
J_

Let the expected time from the instant the ith demand arrives during a processing time onwards
until the instant that the processing is completed be b;. Let Hy denote the sum of the expected
holding time during a processing time that is initiated with k items in inventory. Correspondingly,
let By denote the sum of the expected backorder time during a processing time that is initiated with
k items in inventory. Then we have

k 0
H = Y hj, and By = Y b (A.9)
i=1 i=k+1

Since hy can be obtained from equation (A.8), H is easily obtained. To obtain By, note first that
since the sum of b; and hj is an expected processing time, b; is given by

bj

E(U) - hj, i=1,2,. (A.10)

Also note that for i = 0, both hg and bg are equal to 0. From the renewal theorem, the expected
total time from the instant each demand arrives until the instant that processing is completed is

00 2
2 bj = AE(ZU ) . (A.11)
i=0

From equation (A.9), (A.10) and (A.11), B is expressed as

AE(U2)

00 k
Bk = Xbi- Xbj 5

i=0 i=0

- {kE(U) - Hg}. (A.12)

Now note that the term Ey consists of two components: the expected holding cost, c,Hy, and
the expected backorder cost, c,By, during a processing time. So, from equation (A.12),

AE(U2
B =  oHooBe = Hin+op ol mpd-kEQ)). (ALY
From equation (A.13), Ex+1 is given by
Exs1 = Ex + hg+1(ch + cp) - E(U)cp, (A.14)

Since hg; = 0 for k <0, from equation (A.15) we get Ex = Ex+1 + E(U)cp, k<O0.



Lemma 2.3

The term fy ., is obtained from the recursive expression

1 U
fiet = fi+ g (Mt + ABy B - z gjAfij +(1 - z %) (( ; k>0,
E(U)
= figx - —=¢c, k<0
(1-p)
Proof
From equation (2.5),
Af = AE; + Zl Q5 (Fee1-,k+1 - fiejo)- (B.1)
F

From equation (B.1), after some algebra we get

Afy - Afy, = AEy - AEy 1 + zi q; (Afy - Afie)). (B.2)
F

The last term in equation (B.2) consists of infinite terms. However, as shown below, we can
express Afy - Afy ; without these infinite terms.

Let Dy denote the time period from the epoch when the inventory level reaches k to the epoch
when the inventory level is raised to k+1 for the first time. Note that the length of Dy is equivalent
to one busy period in an M/G/1 queueing system, hence, from the well known busy period
analysis, the expected length of Dy is % where p=AE(U).

Comparing the inventory levels during Dy and D41, we observe that the inventory level during
the period Dy follows the same stochastic path as the inventory level during the period Dy.; if one
item of inventory is added to the inventory level during Dy throughout this period. Consequently,
if k <0, then the inventory level during Dy has only one more shortage than the inventory level
during Dy on the average. Thus, Afy for k <0 is simply

Mi = fn-fax = e k<0, (B.3)

(1-p)
From equation (B.2), collecting Afy terms,

16



QoAfy = Afy, + AEy - ABy, - Zlqj Afy ;. (B.4)
F
For k > 0, we can express equation (B.4) as
k oo
Qo Afy = Afy, + ABg - ABx, - 3 qj Afyj - X qj Ak
Fl Fk+

Applying equation (B.3) to the last term on the right hand side of the above equation,

1 k k E(U)
Afy = —{Afi)+AE-ABg- Y qjAfj+(1- X qj) —=¢b}, k>0. (B.5)
i A H 7 (1-p)

where the term AEy - AEy ; is given by equation (2.10c).

From equation (B.5), the term Afy for k=0, can be computed recursively using the initial value

E
Afy = -
T 1p)

fix+1 terms. Noting that Afy = fi x4; - fic.1 k, we get the desired result

cp. Since f,; o can be obtained explicitly from Lemma 2.2, we can now obtain all the

17



Appendix C
Proof of Theorem 3.4
Theorem 3.4

If we denote the value of r in the optimal policy by r*, then r* > r*(O), where r*(O) is one of
the neighboring integers of \’ 2)‘—(1(:-1;‘-)-)5 .
Proof:

We need to show that for 0 <n <r*(0), TC(r*(0),S*(r*(0)) < TC(n,S*(n)). By definition,
we have TC(r*(0),0) < TC(n,0). Set

_ -1 1 ir(0)-1 . il
) A= YT i) an)= X T, iii) B=min{ T T}, and iv) f(n)= min{ ¥ Ty }.
k=1"(0) k=- 1 k=i i k=i

Then, using equation (2.21), the problem can be restated as follows. For 0 <n < r*(O), given

(K+A) (K+oy(n)) (K+B) (K+B(n))
';;'(67' < _n— , show that T(O)- < '—n—— .

This statement, in turn, can be restated as follows. For 0 <n < r*(O), given

E-T-K > -*—A . o) show that E-—*—K > rB Bw
nr0) ro o’ 7 r0) rO) 0
So it is enough to show that

A afn) B B . A-B o(n)-B(n)
m = > m - = or, equivalently, that r—*(_O)- > —

i+*(0)-1
To show this, letm=argmin{ 3 Ty }, and define SpA = { Tx : 1) <k <-1},and Sg =
i k=i
{Tx:m<k<m+1*(0)-1). Thus,notethat ¥ Tx=A and I Tk =B.
ke Sa keSp

Let a; be the ith minimum value in the set {Ty: Txe SA} and similarly b; be the ith minimum
value in the set {Tx: Tke Sp}. Note that, by definition, aj 2 bj, for 1<i< 1*(0). Figure C.1 shows

one realization when r*(0)=4.



a2al
blbz

3
-1 ntl 2

Sa SB
Figure C.1. One realization for the function Ty when r(0)=4

Also, from convexity of the T's, note that 1‘_? (g) > a(n)I;B(n)

if the following inequality holds:

3 - bj > 3j.1-bi.;, forl< i < 1%0). (C.1)

A-B  o(n)-B(n)

Thus, in order to prove that ;*-(—05 >———we have only to show that the inequality given by

(C.1) holds. For this, we consider the following four cases:

Case 1 bj.1, bj € SA: Suppose bj = ag. Then, b1 = ag-1 holds in this case. From this relationship
together with the convexity of Ty, inequality (C.1) is proved.

Case 2 bje Sa, bi.1 € SA: Suppose bj = T4 Then, Tg41 < bj.g holds. From this together with the

convexity of Ty, we can show that aj - bj 2 aj.1 - Tg+1 2 8j.1 - bj-1.

Case 3 bje Sa, bi.i€ Sa: Letmin { Tx:Tke SA, Tk 2bj} = Tq. Then the following
relationships hold:
1) aj-bj 2 aj-Tq, ii) aj.1 - Tgs1 2 aj-1 - Tgs1 (since a; =T, and iii) bj.; = Tg+1. (C.2)

From (C.2), we have aj - bj 2 aj.1 - Tg41 = aj-1 - bj.1.

Case 4 bje¢ Sa, bi.1 ¢ SA: Letmin { Tx:Tx € SA, Tk 2 bj } = Tq. Then the following
relationships hold:
i) aj-bj 2 aj- Tq, and ii) aj.1-bj-1 < aj.1 - Tgs1 (since Tgs1<bi-1)- (C.3)

From (C.3) together with the convexity of Ty, we have: aj - bj 2 aj - Tq 2 8j-1 - Tq+1 2 &j-1 - bj-1.
||
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