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ABSTRACT

Flowing water in caves frequently forms dissolution patterns, called scallops, on limestone
surfaces. It has long been known that scallops may be used to indicate past flow direction.
More recently, it has been learned that information about flow velocity may also be obtained

from them.

The basic hydrodynamic phenomena that control the characteristic dimensions of scallops
have been deduced from experiments in their generation on soluble surfaces and are summarized
here. Relations are developed for estimating the average flow rate in conduits, given certain
dimensional information about scallops and about the conduit.

INTRODUCTION

In Fig. 1 is shown the form of flow markings, or scallop-
ing, that develops in limestone caves and in caves in ice.
Flow markings have been the subject of a number of recent
studies (Curl, 1966; Allen, 1971; Goodchild and Ford, 1971;
Blumberg, 1970; Blumberg and Curl, 1974) that have
considered them from geological and hydrodynamic view-
points. Because almost nothing about this cave phenomenon
has appeared in the American speleological literature, the
purpose of this paper is to review some recent theoretical
and experimental findings and to extend them to practical
use in deducing “paleo-hydrologic” conditions in cave sys-
tems.

THE ScaLLoriNG PrOCESs

The basic setting for the production of scallops is the
turbulent flow of a solvent over a soluble surface. In nature,
this occurs most frequently with water dissolving limestone
or with air “dissolving” ice (exaporation being completely
analogous to the dissolution process). In either case, surface
irregularity may lead to the flow situation shown in Fig. 2,
in which Blumberg (1970) has observed the following
features: At the crest of an irregularity (Point 1), the main
flow separates, that is, it forms a “jet” above a region of
slower, recirculating flow. Within a short distance, this
jet flow becomes strongly irregular and itself becomes
turbulent (Point 2). Because the turbulence thereby pro-
duced causes mixing between the fluid in the lee eddy
(Point 3) and the jet, fluid is entrained out of the lee
eddy, causing the jet to turn toward the surface and
reattach at Point 4. Some of the fluid then enters the lee
eddy region and the rest flows onward along the surface.

«

In the vicinity of reattachment (Point 4), where the
turbulent jet flow impinges most directly upon the surface,
the rate of solution (or evaporation) is the highest. One
consequence of this is that the scallop pattern moves
downstream as it is dissolved further into the wall. This
has been observed in all experimental simulations of scallop
development. The characteristic asymmetry of scallop pro-
files, from which the direction of flow may be deduced, is
also indicated in Fig. 2.
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Fig. 1. Scalloping in Little Neath River Cave, South Wales. Photo
by P. A. Standing.
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Fig. 2. Fluid motion in the vicinity of a scallop. Point 1: flow
separation at crest. Point 2: transition of laminar shear layer to
turbulence. Point 3: recirculating flow in lee eddy. Point 4: jet
reattachment region.



The hydrodynamic processes in the vicinity of scallops
are also responsible for the well-known inverse relationship
between the size of scallops and the velocity of the flowing
fluid (water or air) that produced them. This inverse re-
lationship is produced by phenomena associated with the
free laminar shear layer (between Points (1) and (2))
that separates the outer rapid turbulent flow from the slow,
recirculating flow in the lee eddy (Point 3).-It has been
found that a free laminar shear layer undergoes transition
to turbulence in a distance d that is determined by the
density, p, viscosity u, velocity U of the jet, and by the
level of initial turbulence in the jet. This implies (see Blum-
berg and Curl, 1974) that there is a characteristic Reynolds
Number for transition, Re; = pUd/p, (See Table 1), which
should depend only on the nature of the outer turbulent
flow. Experiments with laminar jets producing a free laminar
shear layer have given a value Re, = 80,000. This value
should be smaller when scalloping occurs and there is a
turbulent outer flow.

The characteristic scaling of scallop size with the re-
ciprocal of velocity is a consequence of the above pheno-
menon. If, for example, the scallop is too small (or the
velocity too low for that scallop size), transition to tur-
bulence (Point 2) will occur further along the scallop and
reattachment will impinge on the next crest. The higher
solution rate at that point will reduce that crest and, in
effect, lengthen the scallop. On the other hand, if the
scallop is too large (or the velocity too high for that scallop
size), transition and reattachment will occur sooner. In
this case, the distance between the reattachment (Point 4)
and the next crest will be increased and an irregularity in
this region could be the origin of a new scallop, thereby
reducing the average scallop size.

There are two important consequences of this mechanism.

First, because the characteristic scaling of scallop size is
the result of a purely hydrodynamic mechanism, we do not

expect the molecular diffusivity of the dissolving material
to play an important role. Second, the scaling mechanism
acts longitudinally (in the flow direction) and, therefore,
scallop dimensions in that direction most directly reflect
the scaling mechanism, as contrasted with scallop depth
or width that are the consequence of secondary flow
mechanisms. These aspects will be discussed in a more
quantitative form in the following sections.

Various other features of scallop development and hydro-
dynamics, such as the rate of solution, the direction of
propagation of the pattern (downstream, at about 60° into
the wall), the wall friction, and the profile of individual
depressions, are treated in detail in Blumberg and Curl
(1974 ). Their experimentally developed scalloping is shown
in Fig. 3. For our present purposes, we need only to review
the nature of turbulent flow in the vicinity of the rough
wall and the interaction of this with the roughness caused
by dissolution of the surface.

TurBULENT FLow NEAR A RoucH WaLL

Experiments on flow through artificially roughened con-
duits have shown that a moderately good approximation
to the average velocity profile near such a rough wall is
given by Prandtl’s “universal velocity distribution law”

y
u/v* =25l —+ B (1)
1 L

(Schlichting, 1968), where u is the average flow velocity
at distance y from the wall, L is some characteristic dimen-
sion of the roughness, and v* is the friction velocity \f'r—/—p
where 7 is the average shear stress at the wall and p the
fluid density. The “roughness” constant B; depends only

on the nature (geometry) of the wall roughness.

Still following Prandtl (as presented by Schlichting,
1968), we assume that Equation (1) applies everywhere
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Fig. 3. Artificially produced scallops on plaster of paris, blocks are 76 cm l(_mg and 15 cm wide. The larger scallops developed at u (_l_;a:) = 40
cm/sec and 16°C., T,, = 6.0 cm. The smaller scallops developed at u (L,,) = 90.7 cm/sec and 33°C.,, L,, = 1.7 cm. The values of Rej,
are both close to 21,000. Flow (and illumination) was from left to right.
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in a rough conduit and that we therefore may average u
over the cross section of a conduit by appropriately inte-
grating Equation (1) from the wall (y=0) to the center
(y=D/2). D is the diameter of a circular conduit, or the
width between two parallel walls. The result, for the
average velocity u, is

D
T=0* [2.5 (In — —3/2) +B:| (2)
oL L

for the circular conduit, and

D F
U =0* E.S(ln——l)+B] (3)
2L L

for the parallel walls. It remains to relate v*®, L, and By,
to the scalloping phenomenon.

CHARACTERISTIC SCALLOP SIZE

The following section follows Blumberg and Curl (1974):

Imagine that, in a soluble conduit, we impose a fixed
pressure drop or, more particularly, an average wall shear
stress 7. This is equivalent to imposing a valve of the
friction velocity v®, given the fluid (water or wr) with
which we are dealing. It is the nature of turbulent flow
near a wall that the velocity profile depends primarily upon
the wall roughness and shear stress. That is, the flow near
the wall is not “aware” of the conduit size except as it
affects .

As the walls dissolve, scalloping will develop with some
characteristic dimension L. This characteristic dimension
will depend upon v* and the fluid properties (density p
and viscosity u) and, possibly, upon the molecular dif-
fusivity &  of the solute (calcium bicarbonate or water
vapor ). We may express the dependence by writing

L=f(v%,u® ) (4)
Nondimensionalizing this general statement, we conclude
that

Lv*p P
=f (ﬁ) (5)
® o
that is, that the Reynolds number based on the friction
velocity and the scallop size Re®, depends, at most, on the
Schmidt number Sc = p © /n.

Observations of the phenomenon in nature, the results of
experiments, and the earlier comment on the role of mole-
cular diffusivity all suggest that the dependence of Re*®
on Sc is very weak (see also Wigley [1972]). If it is negligi-
ble, Re* must be a universal constant.

Re® =

In the above, it was not presumed which dimension (L)
of scalloping was being considered. It may have been an
average scallop length, or width, or depth, or any other
composite dimension. Since all must scale according to
Equation (5), ideal scalloping must also have a “universal
shape” (albeit of the nature of a random-pattern), varying
only in size with changing conditions. As turbulent velocity
profiles have been found to be similar over similar rough-
ness, we deduce that Bpis also a universal constant for

scalloping.

The choice of a characteristic dimension L for a scallop
pattern is rather arbitrary. Goodchild and Ford (1971)
used the number-mean maximum length of each depression.

They also provided evidence, however, that the average
size of “scallops” depends to some extent on the material
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being dissolved—air bubbles (in plaster) and insoluble in-
clusions (such as fossils in limestone) creating the condi-
tions for the development of smaller scalloping. In addition,
scalloped surfaces exhibit a number of small depressions
that appear to be related to the intersections of the rims
of the depressions. Consequently, a better method of deriv-
ing the average size would suppress the importance of the
smaller features, especially if comparison should be made
with the regular, periodic, two-dimensional flow markings
(flutes) that sometimes appear.

We will choose here the definition

3

- X
sz = __.Z___‘_‘._ (6)

24
where l;is the largest longitudinal (parallel to the flow)
dimension of the #th scallop. (This average is called a

“Sauter-mean”.)

Using this definition for L in Equations (1) through (5),

Blumberg and Curl (1974) found from their experiments
Re® = 2200 and Br = 9.4. The product of these is (from

Equations [1] and [5] Rep = pu (L,,) T,,/u = 21,000.

This is a Reynolds number based on the fluid velocity at a
distance from the wall equal to the chosen characteristic
dimension L = L,,.
ScarLor—CoNpuiT REYNOLDS NUMBER
The Reynolds number based on mean scallop size and
average fluid velocity in a conduit is

— pi Ly,
Re = (7)
L ”
By multiplying Equations (2) and (8) by pL/y and using
L= _l':,z, we obtain
- D
Re = Re* 2.5 (In — —3/2) + B (8)
L oL, L

for the circular conduit and

D
25 (ln——1)+ B 9
[ oL,, ;J

for the case of parallel walls. _
If Re* and By, are known, and if D and L,, are measured

Re =Re*
L

for the particular situation, it is possible to calculate 'R—éL .

Then, the average fluid velocity under which the scallops
were developed may be found if values for w/p are known
or can be guessed (for water at 10°C, u/p = 0.013 cm2/sec;
for air at 0°C, u/p = 0.132 cm2/sec).

Using the values for Re® and B, given earlier, Equations

(8) and (9) are plotted in Fig. 4.

Fig. 4 shows that scalloping of a given size in a large
conduit represents a larger mean flow velocity than it
would in a small conduit. This is to be expected, once we
accept the inverse relationship between scallop size and
some near-wall velocity (u[L,,], say), as this velocity will
be lower in the larger conduit for the same mean conduit
velocity.

The accuracy of Fig. 4 for estimating prior flow condi-

tions depends on several factors. It is useful to enumerate
them here.
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Fig. 4. The predicted relation between the (meﬂ velocity in con~
duit) x (mean scallop size) Reynolds number (Rey) and the ratio

of conduit diameter or width to mean scallop size (D/Lg,).

1. Equation (1) is an adequate approximation to the
turbulent flow wvelocity profile across a rough conduit.
There are alternative velocity profile expressions (see Sch-
lichting, 1968) and some fussing has been done with the
constants 2.5 and By, (for various types of roughness).

Given, however, other, greater, sources of error, Equation
(1) should be adequate at high Reynolds numbers based
on conduit diameter, Re.D = piD/u. (See Table 1)

2, The constants Re* and Bj that have been used here

will be subject to some revision when experiments are
conducted in longer conduits than anyone has as yet used.
It is estimated, however, that they are now known with
sufficient accuracy that Fig. 4 is correct within about + 15%.
The values used here differ considerably from an equiva-
lent estimate made by Goodchild and Ford (1971). The
exact reason for this is not yet known.

3. The conduit must be of regular cross section and must
be sufficiently long and straight for almost fully developed
flow to be established. The cross section need not be either
circular or parallel-walled (the effect will be a relation
lying between those for the circular and parallel-walled
channels in Fig. 4), but it should be unchanging for some
distance. In curving conduits, the velocity is greatest near
the inner wall at the beginning of the turn and near the
outer wall at the end of the turn (there also may be a
reverse flow on the inner wall near the end of the turn).
Therefore, Equations (2) and (3) are highly approximate
in other than regular, straight conduits.

4. The flow must have been at a constant velocity (ac-
tually, at constant ¢%/u) throughout the period of final
development of the scallop pattern. This is unlikely to be
true in any given case but, since scallop patterns develop
most rapidly at high velocities, they tend to reflect the past
history of the higher velocity flows in a given conduit.

4

5. The dissolution process should be dominated by diffu-
sional mass-transfer, not by a chemical rate-limiting step
at the surface. For pure calcite, it has been shown (Curl,
1968) that at low dissolution rates the process is controlled
by the diffusional transfer of Cat++ (plus HCO,—~) between
the surface and the bulk solution, while at high transfer
rates it is controlled by the diffusional transfer of H:COs
(not CO,) to the surface. There was predicted to be very
little effect of solvent motion on the rate of dissolution in
an intermediate calcite dissolution regime. Is scalloping in
this regime?

The intermediate regime may be defined approximately
(and non-dimensionally) by

1
1< —
h
where h is the mass transfer coefficient for H,CO,, and k,
the rate constant for the homogeneous reaction step
H,CO, » CO, + H,0. In addition, the mass transfer co-
efficient on a scalloped surface (measured by Blumberg
[1970] and reported by Blumberg and Curl [1974]) is
hzsz 3
—— =112 Sc1/38, (11)
D

Pk, < 100 (10)

Eliminating h between Equations (10) and (11), we obtain
112 Sc1/3|_@_’_ <T,, <112 x 104 ScV/ I?_ . (12)
k k

At 10°C, k, = 32.45 sec—1, D = 143 x 10_—_5 cm22/sec and
Sc = 914 (Curl, 1968). These give 2.2 < L,, < 220 cm.
This range includes most natural occurrences of scallops on
limestone.

It appears that, in turbulent (rapidly fluctuating) flows
over microscopically rough surfaces, a flow velocity effect on
the calcite dissolution rate is not fully suppressed. This
problem has not been studied, but something can be said
about its effect on scallop dimensions and geometry.

It was found by Blumberg (1970) that, although flutes
of a dimension not matching (in terms of Re®) the ad-
jacent flow velocity still retained their shape, the direction
of propagation was changed. As the velocity was doubled,
the downstream propagation angle increased from 60° to
75° into the surface. The local average rate of dissolution
remained consistent with the original geometry. It may be
demonstrated that, if the actual local rate of dissolution
were to vary as, say, h0.5, due to kinetic phenomena, rather
than being directly proportional to h (as would be the case
outside the intermediate calcite dissolution regime, or if
the substrate were gypsum), the profile of a flute would
show little change, although the angle of propagation would
steepen to near 75°. In addition, the characteristic dimen-
sion L (or _L:12 in particular) still should be determined
mostly by hydrodynamics and, therefore, be largely inde-
pendent of the additional kinetic phenomena.

This matter requires further study.

6. A multitude of factors that can modify or obscure
scallop patterns have been omitted from the foregoing
discussion. These have been discussed in some detail else-
where (Curl, 1966) and include close jointing or fracturing,
a heavy bed load, deposition of clay, and numerous in-
soluble inclusions in limestone.
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Table 1. Definitions of Reynolds numbers

Characteristic Velocities

Characteristic “Near wall” Friction At yfITu Average
length U o* u (L,,) conduit, &

Distance to Re, — — —
transition, d

Average scallop — Re* Re Re
size, L,, L L
Conduit diameter —_ — — Re

or width, D D
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p. 4,col. 1, line 8, . .. Re p = puD/p.
ERRATA
Z 18 line 9, ... constants Re* and . . .
1
) - i p- 5, col. 2, line 11 up: . . . measure u(fu) or..
p. 3, Eqn (8). L, = —e—— (6) . s
Zp col. 1, under Characteristic Velocities (Table 1)
. i -Average
i conduit, T
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