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Abstract

The M*/G/1 queueing system is studied under the following two situations:

(1) At the end of a busy period, the server is turned off and inspects the length of
the queue every time an arrival occurs. When the queue length reaches, or
exceeds, a pre-specified value m for the first time, the server is turned on and
serves the system until it is empty.

(2) At the end of a busy period, the server takes a sequence of vacations, each for
a random amount of time. At the end of each vacation, he inspects the length
of the queue. If the queue length is greater than, or equal to, a pre-specified
value m at this time, he begins to serve the system until it is empty.

For both cases, the mean waiting time of an arbitrary customer for a given value
of m is derived, and the procedure to find the stationary optimal policy under a

linear cost structure is presented.



1. Introduction

In many real queueing systems, requests for service usually arrive in
batches. For example, in manufacturing systems of the job-shop type, each
job order often requires the manufacture of more than one unit; in
computer communication systems, messages which are to be transmitted
could consist of a random number of packets. When a cost structure is
superimposed on such batch arrival systems, obtaining an optimal control
policy under the given cost structure is very important. However, while a
considerable amount of work has been done on control policies for queueing
systems without batch arrivals, comparable work for the batch arrival case
is rarely found in the literature. This motivates us to develop control

policies for queueing systems with batch arrivals.

We consider an MX/G/1 queueing system, where requests for service
arrive to the system according to a Poisson process. Each request consists of
a number, X, of units where X is an independent and identically distributed
random variable. The units within a batch are served one at a time by a
single server. The service time for an individual unit is independent and
identically distributed. In this paper, we consider control policies for the
following two situations.

(a) Every time an arrival occufs, the server inspects the state of the
qﬁeue. If the total number of units is found to have reached or exceeded

a pre-specified value m, he takes a random amount of time to start up

the system. Following this, the server begins to serve the queue until

the system is empty. As soon as the system becomes empty, the server



is turned off and remains idle until the accumulated number of units
reaches or exceeds m for the first time.

(b) In this case, when the server finishes service and finds the system
empty, he takes a vacation for a random amount of time. At the end of
the vacation, the server determines the number of units present in the
queue. If the queue length at that time is below m, he immediately
takes another vacation. On the other hand, if the queue length is
greater than, or equal to m, he takes a random amount of time to start

up the system. He then begins to serve the system until it is empty.

It is to be noted that while the queueing system in (a) is continuously
monitored, the system in (b) is monitored only at the times each vacation
ends. In this paper, we refer to the policy in (a) as the m-policy without
vacation and the policy in (b) as the m-policy with vacation.

In these systems, it is assumed that there is a cost incurred each time
the server is turned on, and that there is a cost incurred for every unit of
time a unit waits for service. For both these policies, we obtain the mean
waiting time of an arbitrary unit for a given value of m and find the
stationary optimal m-policy which minimizes the expected cost in the long

run, under this cost structure.
2. Previous Work

As mentioned earlier, a considerable amount of work has been done on
control policies for the M/G/1 queueing system without batch arrivals. Most

of these studies present some special policies and derive the optimal



stationary policies under certain cost structures. Among them, the N-policy
studied by Yadin and Naor[17], Heyman[8], Sobel[16] and Bell[4] is one of
the earliest. In this policy, the server is turned on when the total number of

units reaches N and turned off when the system becomes empty.

Heyman([9] also considered the T-policy where the server is turned off
at the end of each busy period and inspects the state of the queue after an
interval of length T. If at least one unit is found awaiting service, a busy
period begins and the units are served until the queue is exhausted. If there
are no units found at the time of inspection, the server again inspects the
queue after another interval of length T. Heyman showed that under a
linear cost structure the optimal N-policy is superior to the optimal T-

policy.

Balachandran[2] and Balachandran and Tijms[3] proposed the D-
policy in which the server is turned off at the end of a busy period and
turned back on when the cumulative service time of the waiting units
exceeds some fixed value D. They also showed[3] that under a linear cost
structure the D-policy is superior to the N-policy for the service time
distributions with decreasing, constant, and for some cases, increasing

failure rates.

Hofri[10] studied the control policy for the M/G/1 system in which the
server takes a sequence of vacations at the end of busy period, inspecting the
state of the queue at the end of each vacation. When the queue length

exceeds a predetermined level m, the units are served until the system



becomes empty. Furthermore, he considered a control policy for the system

where two queues are served by a single server.

It is important to note that all these studies fall under the class of
server vacation models for the M/G/1 queueing system, which have been
extensively studied by Levy and Yechiali[12], Fuhrmann and Cooper[7],
Scholl and Kleinrock[15], and Levy and Kleinrock[11], to name but a few.

The m-policy in this paper extends the work on control policies to the
situation where arrivals occur according to a discrete compound Poisson
process and a start-up interval is allowed which takes a random amount of
time. When the batch size is 1 and the start-up interval is zero, our m-
policy without vacation reduces to the N-policy model of Heyman, and our

m-policy with vacation reduces to the vacation model studied by Hofri.

In the case of batch arrivals, it is also possible to adopt a policy that
uses information on the number of batches, instead of the total number of
individual units in deciding whether the server is activated or not. This
policy, which we will term as the n-policy in this paper, is described as
follows:

(1) n-policy without vacation

At the end of a busy period, the server is turned off and begins to count
the arrivals as and when they occur. When the total number of arrivals
reaches a pre-specified value n, the server takes a random amount of
time to start up the system. He then begins to serve the queue

exhaustively.



(2) n-policy with vacation

At the end of a busy period, the server takes a sequence of vacations. At
the end of each vacation, the server counts the number of batches that
have queued up for service. If the total number of batches at this time
equals to or exceeus a pre-specified value n, the server takes a random
amount of time to start up the system, and then begins to serve the
queue exhaustively. Otherwise, the server immediately takes another

vacation.

If the n-policy is adopted, the mean waiting time of an arbitrary unit
for a given value of n is obtained by treating a batch as if it were a single
unit, i.e., (1) find the mean waiting time of a typical batch and (2) add to it
the mean waiting time of a test(arbitrary) unit within a batch. This
technique, however, cannot be applied to the m-policy since the m-policy
uses the information about the individual units instead of batches.
Therefore, known results by previous authors cannot be directly applied to
the m-policy. This fact has led us to devise a different approach to obtain the
mean waiting time experienced by an arbitrary unit in the m-policy. In
section 7, the m-policy and the n-policy will be compared and it will be
shown that the optimal m-policy is superior to the optimal n-policy under a

linear cost structure.
3. The Approach

Requests arrive in batches according to a stationary Poisson stream

with rate A . Let X denote the number of units in a batch, where X is a

random variable (r.v.) with a known discrete distribution. The service time



of a typical unit is denoted by S and we assume that S has a finite second

moment.

Since we are only interested in the first moment of the waiting time,
the service discipline is not & matter of concern to us. However, for
analytical convenience, we assume that service is done in a First In First

Out (FIFO) manner.

We define some terms which will be used in the analysis.
Primary units are defined to be units which arrive either while the
server is turned off, or is being started up, and gecondary units are
those which arrive while the server is busy. We define a cycle to be the
period that elapses from the end of a busy period till the end of the next
busy period. In order to analyze the system, we divide the cycle into the
following three phases.
Phase 1 begins when the server is turned off and lasts until the server
has completed the start-up. Thus, phase 1 consists of two sub-periods:
a dormant period during which the server is turned off and a gtart-up
period during which the server is starting up the system. Note that the
units which arrive during phase 1 are the primary units.
Phase 2 begins when the start-up by the server is completed, and lasts
until all the primary units are served.
Phase 3 begins at the end of phase 2 and lasts until all the secondary
units are served.
Note that primary units arrive during phase 1 and are served during
phase 2. Secondary units arrive during both phase 2 and phase 3, and are

served during phase 3.



Our general approach to obtain the mean waiting time experienced by
an arbitrary unit in the m-policy is to analyze the mean waiting times of the
primary and the secondary units seperately, and then to combine these

results to yield the mean waiting time of an arbitrary unit. To this end, let
an (Wlsn) be the mean waiting time of a primary (secondary) unit, and let

an (N,sn) be the mean number of primary (secondary) units served in a cycle

when we use m as a control value. Then the mean waiting time of an

arbitrary unit, Wp,, is obtained as

P wP NS w
Nme+Nme

Wm = . (3.1)
p 8
Nm +Nm

. . . . . 1
To obtain an in (3.1), we divide Wl:n into two components, Wgﬁ ) and

(p,2)
m

)

W_"", where W(Iﬁ’ is the mean waiting time of an arbitrary primary unit

in phase 1 and W$’2) is its mean waiting time in phase 2. We obtain W(,ﬁ’l)

and W&:’z) in isolation and obtain an as:

D2
WP =W, W (3.2)

In the following sections, we develop the expressions for the terms

(1) 1(p:2)

W, Wpn ,an, an, an and the procedure to find the optimal m-policies

with/without vacations.



4, m-Policy with Vacation

In this section, we obtain the mean waiting time of an arbitrary unit in
a system using the m-policy with vacation. In the m-policy with vacation,
as explained in section 1, the server takes a sequence of vacations at the end
of a busy period until the queue length reaches or exceeds m for the first
time, at which point the start-up period begins immediately; as soon as the
start-up is finished the server begins to serve the queue. For any discrete

random variable, A, used in the analysis, we adopt the following notation:

a;j = Pf{A=i},

A(z) = zai zi,  the probability generating function (p.g.f.) of A,

i=0
adl) = E(A),
a® = E(A(A-1)).

Similarly, for any continuous random variable B used in the analysis, B(.)
and B*() will denote the distribution function and Laplace-Stieltjes

Transform(LST) of B respectively.

We define
A% = vacation time, r.v.,
Q = number of batches that arrive during a vacation, r.v.,

U  =start-up time, r.v,,
R =number of units that arrive during a vacation, r.v.,
Iq,m = number of (primary) units that arrive during a dormant period,
when m is used as a control value, r.v.,
I  =number of (primary) units arriving during a start-up period, r.v.,
Im =I4m+ls = number of (primary) units present when the service

begins, when m is used as a control value, r.v.,



Lq,m = expected total waiting time of primary units during a dormant
period, when m is used as a control value,

Ls m = expected total waiting time of primary units during a start-up
period, when m is used as a control value,

Lm = Ldm+Lsm = expected total waiting time of all the piimary units
in phase 1, when m is used as a control value,

[d,m = expected length of dormant period, when m is used as a control

value,

Im = [m + E(U) = expected length of phase 1, when m is used as a

control value,

xj*(i) = P{i-fold convolution of X is j}.
From these definitions, the following relationships are obtained:

a) By definition,

(=~]

a= | 2o ave). (41

0

However, for the computation of qj, we use the following equivalent
expression:
AR
qi = ——(i,) V), (4.2)
where V*(X0) is the ith derivative of the LST of V with respect to 6.

b) The probability that j units arrive during a vacation is given by

I
Ij= ZO(th ’ 3=0,1,2,--. 4.3)
i=

We also present a lemma that will be useful for computing the moments of

R, and for obtaining the pgf of Iq m:



Lemma 4.1 The probability generating function of R is given by

R(z) = V¥(A-AX(2)). (4.4.2)
Iy(z) = U*(l-LX(z)). (4.4.b)
(proof) By definition of the p.g.f,

= 5 GX@)i
i=0

= Q(X(2)).
Noting that Q(z) =V*(A-Az), the result follows.

Equation (4.4b) is proved in a similar manner. ||

From lemma 4.1, by differentiating R(z) and I5(z) with respect to z, we can

obtain the first and second factorial moments of R and I as:

r) = ER) = AE(V)x@), (4.5.a)

r2 = ERR-1)) = AxD)2EV2) + x@EV), (4.5.b)

il = E(Ip) = AEU)®, (4.5.0)

i(sl) = E(4(I5-1)) = AxW)2EU2) + Ax@E(U). (4.5.d)
(D,

4.1 Computing the term W™ :

Suppose we have available the values of Ly, and ig,ll). Then, the mean

waiting time of a primary test(arbitrary) unit in phase 1 is obtained as

10



(4.6)

(p,1) _Lm
W =
lm

.(1) .(1)

(1 . ..
The term 1;) consists of two terms, ig , and ig . In order to obtain 151 1,1,

we need to find the p.g.f. of Iq m. The following result, stated as Theorem
4.1 expresses the p.g.f. of Iq m. A proof of Theorem 4.1 is given in the

Appendix.
Theorem 4.1
m-lp. R(z)-rg
Ig,m(z) = jZ:I Tro? Wami(@-1) + 7 m=l2,.. 4.7)
|

Using Iq,m(z) we obtain the first and second factorial moments of Iq m. The
second moment of Iq m will be used to calculate ii,zl).

a 1 ml g D)

151:!1 = E(Iqm) = m—zlrjl(d zn-j i D =1,2,.... (4.8.a)

J:
.2) 1™l @ r®

i3 = Edg,m(Idm-1)) = mj:% 1(2jig i+ ig my) + Tmg> D= 1,2,....

(4.8.b)

Since the number of units which arrive during the start-up period is
independent of the number of units which arrive during the dormant
period, the following relationship holds:

Im(z) = Iq,m(2)Is(2). 4.9)
By differentiating In,(z) with respect to z, we obtain the first and second

factorial moments of I,(z) as:

A Lo L) (4.10.2)

m dm s

11



. .2 . 1) .
1§§) = 13; + 122) +2 15113,, l(sl), (4.10.b)

where i(sl) and i§2’ are obtained from equations (4.5.c) and (4.5.d).

Now the term ig,) can be obtained from (4.10.a). To compute the term

Lm which is needed in (4.6), we first obtain the term L4 m and then obtain
the term Lg m. In order to compute the term Lq m, we require the following

lemma.

Lemma 4.2; Consider all the units that arrive during the first vacation. Let

@ denote the total waiting time experienced by these units during this
vacation. Then its expected value, E(w) is given by

E(@ =5 x ) E(V2) 411)

(proof) Lemma 4.2 is proved using the following simple argument.
1) If we take an arbitrary unit which has arrived during the first vacation,
its mean waiting time during the first vacation is the expected residual

E(V2)

life time of a vacation, i.e.,m.

2) The expected number of units which arrive during the first vacation is
AE(V)x(@),
The product of terms 1) and 2) yields E(w) = lz'x“) A E(V2),

The term, Lq m, is then obtained from the following recursive relation:

m-1

Lim =E@+ X rjG 4mj+Ldmj), m=1,2 (412
j=0

The explanation of equation ( 4.12) is as follows:

For any value of m, the m-policy must have at least one vacation during the

dormant period. Therefore, L  is represented by the expected total

12



waiting time during the first vacation plus the expected total waiting time
from the second vacation onwards until the end of dormant period. In
(4.12), the first term expresses the expected total waiting time during the
first vacation for all the units that arrive during this vacation and the
second term expresses the expected total waiting time from the second
vacation onward until the end of dormant period. The expression for the
second term is based on the following reasoning:

1) If the number of units that arrive during the first vacation is more
than or equal to m, dormant period ends as soon as the first vacation
finishes and there is no further waiting in dormant period.

2) Suppose j units arrived during the first vacation. The probability that
j units arrive during the first vacation is rj, If j is less than m, each
of these j units must wait for [ m-j on the average from the beginning
of the second vacation onward until the end of dormant period.
Noting that the expected total waiting time of the units that arrive
from the second vacation onwards is L4 m-j we get the second term of

equation (4.12),

If we solve equation (4.12) for Ly m we obtain

11 ml
Ldm = m{‘z'x(l)lE(VzhjZ‘,lrj(] d,mj+Ldm4)}, m=1,2,,  (413)

0
where 3 is defined to be 0.
=1

The term, /4 x, which is needed (for k=1,2,--,m-1) in equation (4.13),

can be obtained by the following forward-type recursive equation.

13



k-1
Q,k =EV) + .Zol'j Q,k-j, k=1,2,-. 4.14)
j=

The first term of equation (4.14) represents the fact that at least one vacation
is needed for any value of m used in the m-policy. The second term of
equation (4.14) is obtained using the fact that if the number of units which

arrive during the first vacation is less than k, say j, the expected remaining

length of dormant period is {4 k.j, and also the probability that j units arrive

during the first vacation is rj. If we solve equation (4.14) for /3 x, we obtain

k-1
fax =1_1—rO{E(V)+.21rj ki) k=1,2, (4.16)
J:

0
where, again, Y is defined to be 0.
i

Now that we can calculate the term Lq m, the only remaining

unknown needed to obtain W(n};’l) is Lg,m, which is obtained by the following

equation.

MEU?2
Lgm = 130 E(U) + w. (4.16)

In equation (4.16), thé first term represents the expected total waiting time
of the units during the start-up period which are already present at the
beginning of that period. The second term represents the expected total
waiting time for the units which arrive during that period. The second
term is obtained using an approach similar to that used to obtain equation

(4.11).

14



Now Ly is determined by summing L4 m and Lg m, and i(,:l) is obtained

from equation (4.10.a). Thus we can finally calculate Wm using equation

(4.6).
Remark 1 From a computational point of view, q; is easily obtained from

equation (4.2) if V*(.) is a well defined differentiable function. On the other
hand, we may have trouble calculating r;j if j is large since calculation of

s
g; ® is usually cumbersome if i is large (refer equation (4.3)). However, from

a practical point of view, we can always calculate rj to the desired level of
accuracy for the following reasons:

1) If the value of m used in the m-policy is not so big, we can calculate all

the necessary rjs without difficulty since only rg,r1,-,rm.1 are
needed to obtain W, p’l)

»
2) Considering that q; converges to 0 very fast and x; ® is always less
than or equal to 1, we can calculate rj using equation (4.3) by

truncating the summation after k terms are summed up if qx=0 for

some k<j.

4.2. Determining W >

We are now in a position to find W(p’ the mean waiting time of the

primary test unit in phase 2. Let Im be the number of primary units in a

cycle that contains the test unit. Then, W(,I:,’z) is obtained by the following

equation (see, for example, Cooper[6]):

W$’2)=.2E(W(,§’2) I Im=j)P[Im=j}’ 4.17)
J=m

15



where

' . PIm=j)
Pl =5

m

and

BWe? 11, =) = 2B

Substitution of (4.18) and (4.19) into (4.17) yields

@
g mES)

Wn =—3.
m 2i:,11)

4.3. Determining W,

(4.18)

(4.19)

(4.20)

To determine the mean waiting time for secondary units it is first

noted that their waiting time in the system occurs only during phases 2

and 3. Further, note that as far as these units are concerned, phase 2

represents a 'vacation' period during which the arriving secondary units

find the server busy attending to primary units. Phase 3 then represents a

busy period for these secondary units. Let Ty, represent the duration of

phase 2, which is the pseudo-vacation (for the secondary units). We first

determine the first and second moments of Ty,, For this, note that Ty, is a

sum of the service times of the primary units, and can be expressed as:

Tm= Sl+Sz+-~~+SIm,

The LST of Tp, is then given by
* oo
Tp(® = 3 (S*O)X P{In=k)
k=m

16



= Im(S*(0)). 4.21)
By differentiating (4.21), we obtain

E(Tp) = i E(S), 4.22)

E(T2) = i2(E(S)) 2+ 0 E(S). (4.23)

Having determined the first and second moments of Ty,, we can now obtain
an using Lemma 4.3.

Lemma 4.3. Consider an MX/G/1 server vacation model where the server

begins a vacation of random length T each time the system becomes empty.
If the server finds at least one unit at the end of a vacation, he begins to
serve the units until the queue is empty. If the server finds no units waiting
at the end of the vacation, he takes another vacation immediately. The
arrival rate, batch size and service time for an individual unit are assumed
to follow our general notations. Then, the mean waiting time, W, for an

arbitrary unit is given by

ET2) MxUE(S?) +x@ (ES))2} EE)x®
=2EM * 2(1-p) * o

(4.24)

where p=Ax(VE(S). |

Remark 2 Baba obtained equation (4.24) using a supplementary variable
technique in [1]. However, equation (4.24) can be obtained directly if we
combine the decomposition property of Furmann and Cooper[7] for the
M/G/1 system with server vacation and Burke's method[5] to obtain the
expected waiting time for the MX/G/1 system. That is, we first treat a batch

as if it were an individual unit. Then by the decomposition property of the

17



M/G/1 server vacation model, the mean waiting time for a typical batch is
expressed as the sum of the mean residual life time of a vacation plus the
mean waiting time of a typical batch in the corresponding standard M/G/1
system. Then, using Burke's method, the mean waiting time of a test unit
is obtained by adding the mean waiting time of a test unit within a batch to
the mean waiting time for a typical batch. Therefore W consists of the
following three independent components: the mean residual life time of a
vacation, the mean waiting time of a batch in the corresponding M/G/1
system and the mean waiting time of the test unit within a batch. Each of
these three components is represented by the first, second and the third

terms of equation (4.24) respectively. | |

Substituting Ty, in place of T in Lemma (4.3), and using equations (4.22)
and (4.23), we obtain an as:

W Bln) 3 0R(S) + 0 (BO))  ESx®
m = 2R(Trm) * 21-p) oM

which can be rewritten, after some elementary algebra, as

.(2)

Im 1) @ 2
W, = —EE(SHMX( E(S?) + x@ (E(S)) }' 4.25)
21, | 2p(1-p)
4.4. Determining N':n and N, :

It is clear that,

NP =i (4.26)

m m

18



To obtain an, we again treat a batch as if it were a single unit. Let Y be the

number of batches that arrive during phase 2. Then, the length of phase 3
becomes a sum of Y independent busy periods of an M/G/1 queue. Applying
the well known fact about the number of units served during the busy

period of the M/G/1 queue, the expected number of batches served during
phase 3 is E(Y)/(1-P) where E(Y)=AE(Ty,). Since len is the expected number

of units served during phase 3, it is expressed as

s _ AE(Tm)x®

N
m 1-p

and using equation (4.22), this simplifies to

=L (4.27)
From equations (4.26) and (4.27), equation (3.1) reduces to

Wm = L-p)WP + oW,

m:

(4.28)

Finally from equations (4.6), (4.20), (4.25) and (4.28), we obtain an
expression for Wp,» stated as Theorem 4.2:

Theorem 4.2:

The mean waiting time, Wp,, for the m-Policy MX/G/1 queueing system

with vacations is given by

.(2)
L Im AMxWE(S?) + X (E(S))?)
Wm = (1-p) § + ;i—fnl—)E(S) + ) (4.29)

19



Remark 3 As we see in equation (4.29), Wy, consists of three terms which
represent, respectively, the mean waiting time of a primary unit in phase 1
multiplied by 1-p, the mean waiting time of a primary unit in phase 2, and
the mean waiting time of a batch in the corresponding M/G/1 system. Since
the fraction of primary units is 1-p, the sum of the second and third terms
of (4.29) represents the mean waiting time of an arbitrary unit after service
begins, which is completely determined by the first and second moments of

the number of primary units. |

Let the busy period, which is the sum of phase 2 and phase 3, be denoted by
*
Bm and let the LST of By, be denoted by Bm(e). It has been shown [1,13] that

LST of the busy period initiated with 1 unit in the system, B*(8), can be
expressed by

B*(6) = S*(6+A-AX(B*(6))) (4.30)
and that the LST of the busy period initiated with k units in the system is
expressed by (B*(8))k. Therefore, the LST of the busy period in the m-policy
is

B ©0)= ¥ Plln=j)(B'@)

J=m
= 1n(B*@)). (4.31)

From (4.30), we obtain the mean busy period initiated with 1 unit in the

system as

EB) = =E) 4.32)

1-p)
By differentiating (4.31) with respect to 6 and using (4.32), we obtain the

expected length of a busy period in the m-policy as

iE@©)

1-p

EBp) = (4.33)



(1)
lm

It can easily be shown (refer Property 4 in Section 6) that £, = Ok Using
X

this result, the mean length of a cycle in the m-policy is then expressed as
.(1)
i

m
fmn+EBm) = m . | (4.34)

Let the number of units served in a busy period initiated with 1 unit in the
system be M and let the pgf of M be M(z). Then it is easy to show that

M(z) = z S*(A-AX(M(z)) (4.35)
If we denote the number of units served in a busy period in the m-policy by

M, and its pgf by Mm(z), Mm(z) can be expressed as
Mm(z) = p P{Im=J}(Mm(z))]

j=m
=1,(M(2)) . (4.36)
By differentiating (4.36) with respect to z, we obtain the mean number of

units served in a busy period (or in a cycle), Np, as:

(1)
Im

(4.37)

m= i'_—p'

Note that equation (4.37) can be also obtained from equations (4.26) and
(4.27), using the fact that N, = Nl:n + an.

5. m-Policy without Vacation

The general approach used to obtain Wy, for the case of the m-policy
without vacation is basically similar to that outlined in the case of the m-
policy with vacation. Most of the equations used in the m-policy with

vacation still hold and are used in the exactly same way. However, the

2



a 2
expressions for Ig m(z), ldzn , 1(41,1 ,Ldm and 4 m are different from those

in the m-policy with vacation model. In this section, we obtain these

alternate expressions.

The probability generating function of Ip,, which yields i 1d m and 1(31,1,

is expressed by the following theorem.

Theorem 5.1

m-1
I4,m(z) = 'Elxj'zJ'{Id,m.j(z)-l} + X(2), m=1,2,.... (5.1)
J:

A proof of Theorem 5.1 is given in the Appendix.

From (5.1), the first and second factorial moments of Iq 1, are obtained as

1 ml g
133,1 3 XJ 1511),1J + x(), m=1,2,...., (5.2)
J—

(2 m-1
1( ) =3 XJ(2J 513,” + 1de) +x2),  m=12,.... (5.3)

=1

The expected total waiting time in dormant period, Lq m, is obtained by
conditioning on the first arrival. Suppose the number of units in the first
batch is j. If j exceeds m, dormant period ends upon the occurrence of the
first arrival so that there is no waiting in dormant period. Ifj is less than
m, these j units must wait for the length of 4 m.j on the average and the
expected total waiting time of the (primary) units, excluding these j units,
is Ld,m-j- The term Ly m can be obtained, therefore, by the following

recursive equation



m-1
Lim = .lej(j d,m-j+Ldm-), m=1,2,- (5.4)
J:.'

0
where L4 1=0 and Y is defined to be 0.

=1
The terms [ k, for k=1,...,m-1, in equation (5.4), is obtained from
1 Kkl
ldx= x-{-z Xj Ak k=1,2,--. (5.5)
J=1
It is easy to see that we can obtain equation (5.5) by a similar argument as

. . . L@ Q) L@
was used to obtain equation (4.14). To obtain 1§ ), 1§, ), 1(m) , 1(,,3 , Lg,m and Ly

we use the same equations as in the m-policy with vacation. If we substitute

. . . )1 . "2
1(,,3 and Ly, into (4.6), we obtain W(,f, ). To obtain W(,ﬁ ), W,sn, Nl:n and N:n, we

just follow the same procedure as described in section 4 using, however, the

. (1) (2) .
new expressions for Ly, i," and i derived above.

6. Optimal Design of the m-Policy

In this section, we find the value of m which produces the optimal
stationary m-policy. We assume that a start-up cost of cgis incurred each
time the server is turned on and that a linear holding cost of ¢, per unit
time is incurred for each unit that waits in this system. To obtain the
optimal m policy, we first obtain the expected cost per unit for a given value

of m, and then find the value of m which minimizes this cost.

Since the expected number of units served during a cycle is Np,, the

c
expected start-up cost per unit is expressed as Ns; Similarly, the expected



waiting cost per unit is given by ¢, Wp,. From this, the expected (long run)

total cost per unit, G, using m as a control value, is calculated as

Cm = Nf'j;‘*‘Cth

E(S)i .(2)
(1-p)cs {(1 Pl 'm  ADE(S?) + x@ (E(S))2}}

= +
(1) (1) 2im) 2(1-p)

(6.1)

Note that the last term is a constant and is independent of the policy
adopted. Setting
a = (1-p)cg,

_ MxOE(S?) + x2 (E(S))2)
- 2(1-p) h,

and

b= (-plehLmt SRES)1 Y,

we can write

Cm = Cm+B,

where the cost function, ¢y, is given by

a+h

i

m

The terms 1( Y 1:11) and Ly, are all recursive in nature. For example, to

obtain ifilzn which is needed to obtain igl), all the terms igi, 0 <k <m have to

be evaluated beforehand. Also note that once these terms are obtained,
evaluating cp, requires very little effort. Hence, in the process of evaluating

Cm, We obtain all the information that is needed to quickly calculate c, c2,

4



..., and cm-1. In a sense, ¢y is thus evaluated sequentially, starting with

m=1.

. 1) (2 .
The recursive nature of the terms 1(m), 1(m), fm and Ly makes it very

difficult to characterize ¢, with regard to its convexity or unimodality.
However, we now show that the function ¢, has a special characteristic
which enables us to find a global minimum very efficiently. This
characteristic is that, in the process of evaluating ¢y, m=1,2,..., the first
local minimum encountered is the global minimum. This is stated below as

Theorem 6.1. Before we state and prove this theorem, we develop some

. (1) (2 .
properties that the terms 15,1), 1(m), fm and Ly, possess. These properties are

not only used to prove Theorem 6.1 but are also used to significantly reduce
. . . .(2
the amount of computation required to obtain the terms 1§n), fm and Ly,. The

proof of these properties are given in the Appendix.

1) _.()

Propertyl i, >i, for m>n, n=1,2,....... (6.3)

Propertv2 hp>h,, form>n, n=12,..... (6.4)

2 .(2) 2)  .(2)

" 'm-1 Im-n " lm-n-1

.
Propertv 3 RO O RO 2(1+1§))n, for m>n, n=1,2,.......
l -

m -1 Im-n " lm-n-1

(6.5)
Propertv4 %= k, forallm, (6.6)
1

m

1
where k= i—;(-; .



-Lmi  Lmn -Lmn
Property 5 ff;‘ .I(‘{’)‘l = B4 (4E(U)n,  for mon, n=12,....
l -

m " Im-1 Im-n " Im-n-1

(6.7)

where k is as defined in property 4.

hm-h hp-h
Property § .(f; (;1)+ - >.(f; ,(11)1, for m>n+1, n=1,2,....... (6.8)
“1h

m "~ In+l Im

Properties 1,2 and 6 are used to prove Theorem 6.1 and properties 3,4 and 5
are used to calculate ig), Im and Ly, in a more efficient way. Also note that

. . . . .
properties 1 and 2 imply that lfn) and hy, are both increasing functions with

respect to m.

Now we present the main result of this section, which gives a characteristic

of the cost function, cp.

Theorem 6.1 If ck+1 > ck, then ¢, >c for all n>k>0.
Proof By contradiction. Suppose there exists an n such that n>k+1, and ¢,

< ck. Then the following inequalities hold:
o+hgs+1  o+hy

(i) .(1) > .(1) . (6-9-3)
k41 Ix

... o+hx a+h

(i)~ >~ (6.9)
Ik I

From (6.3), (6.4) and (6.9.a), we obtain:

hk41-hg
. > %
Ik+17k

(6.10)



Similarly, from (6.3), (6.4) and (6.9.b) we obtain:

o+hp hk+1-hp
D - > . - (6.11)
In Ik4171k

From (6.10), (6,11) and the assumption that ¢, < ck, we get:

h14:+1'hk hn'hk+1
o .0 > m.a) -
T4 1n k41

(6.12)

Noting that the numerator and the denominator are positive on both sides of

the inequality given in (6.12), we can write:

hp-hg hp-hg.1

.0 0. (6.13)
In "I n k4
which contradicts property 6. Thus, ¢, > ck for all n>k.
|

. . (2
Remark 4 In implementation, to calculate 1(m), m and L, we use

properties 3,4 and 5 instead of using the recursive equations. Note that once
(1) . . (2 .
1;,) is determined, 1(,,,), fm and Ly, (and hence, c¢p,) are calculated easily

using (6.5), (6.6) and (6.7). Thus, i. (in fact , iy, ) is the only term in which

we must use a recursive method for the calculation. This reduces the

computational effort significantly.

The above remark, together with Theorem 6.1 produces an extremely
simple, and fairly efficient procedure to obtain the optimal policy:
sequentially evaluate cp, starting with m=1, until we encounter a point at

which the cost function, ¢y, begins to rise.



Algorithm to find the optimal m-value
0. Set k=1. Compute cx.
1. Set k=k+1. Compute cg.
2. If cx>ck-1, stop. Optimal value of m is k-1.
Otherwise, go to step 1.

7. Numerical Examples

In order to verify the efficiency of our method and to show the
superiority of the m-policy over the n-policy, we made extensive numerical
tests. Some numerical examples are presented below, comparing the

results of the m-policy with those of the n-policy.

It is intuitively obvious that the optimal m-policy is superior to the
optimal n-policy since the m-policy uses more information about the state of
the queue than the n-policy. In fact, in all the problems we have tested up to
date, the m-policy consistently performs better than the n-policy. Due to the
complexity of the cost function, however, we could not prove this

analytically.

We present four examples below. Example 1 considers the m-policy
without vacation and examples 2, 3, and 4 consider the m-policy with
vacation. Also while examples 1 and 2 have no start-up times, examples 3
and 4 have start-up times. The vacation times in examples 2 and 3 are
assumed to follow a uniform distribution and the vacation time in example

4 is assumed to follow an Erlang distribution.



<Example 1>

A=0.3, E(S)=1, E(S2)=1.8,

x,=0.25, x,=0.25, X3=0.25, x 4=0.25,

¢s=2000, ch=3.
<Example 2>

1=0.3, E(S)=1, E(S2)=1.8,

x,=0.2, x2=0.3, x3=0.3, x,=0.2,

cs=1000, cp=3,

V follows a uniform distribution on [5, 10].
<Example 3>

1=0.3, E(S)=1, E(S?)=1.8,

x,=0.2, x2=0.3, x3=0.3, x,=0.2,

EU) =5, E(U?) =50,

¢s=1000, ch=3,

V follows a uniform distribution on [5, 10].

<Example 4>
A=0.2, E(S)=1, E(S2)=3,
x1=0.3, x2=0.3, x3=0.4,
E(U) =5, E(U2) = 25,
¢s=1500, c,=3,

V follows a two stage Erlang distribution with mean 2.

The results of the policy comparisons for these test examples are

presented in table 1 through 3. In each table, the values of Wy, and Cp, are

shown for each value of m in the m-policy. The results of the n-policy in the
examples have been obtained by the technique which treats a batch as if it

were a single unit. As shown in the tables, the optimal m-policy is better

2



than the optimal n-policy and the minimum points of the cost function Cp

occur at the first local minimum points in all three examples. It might be
thought that the optimal value of the m-policy should just be the optimal
value of the n-policy multiplied by the expected batch size. As we see in
tables 2 and 4, this is not necessarily true although in examples 1 and 3 this
does happen to be the case. However, in many of the cases that were tested,
these two values are observed to be fairly close. Finally, it must be stated
that although only two distributions(uniform, Erlang) for the vacation are
demonstrated in the examples, many other distributions can be easily

implemented.

8. Conclusions

We have introduced two control policies for the M*/G/1 queueing
system: the m-policy without vacation which is used for the control of the
ordinary M*/G/1 system and the m-policy with vacation which is used for
the control of a queueing system where the server takes a sequence of
vacations, possibly to do some other work at the end of each busy period. In
both of these models, we allowed a start-up interval to represent real
systems more accurately. For both policies, we obtained the mean waiting
time of an arbitrary unit for a given value of m and developed an efficient
procedure to find the stationary optimal m-policy using an important
characteristic of the cost function ¢y, The direct extension of the m-policy
would be the control policy for the system with batch arrivals where one or
more queues are served by a single server such as, for example, the model

with two queues, studied by Hofri for the case of unit (non-batch) arrivals.
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Table 1.

result of example 1: m-policy without vacation

(without start-up time)
m-policy n-policy

m Wm Cm n W, Cn

10 12.09 81.74 1 6.70 220.10

11 12.75 79.94 2 8.37 125.10

12 13.42 78.71 3 10.03 96.77

13 14.08 77.96 4 11.70 85.10

14 14.74 7157 5 13.37 80.10
*15 15.41 77.48 *6 15.03 78.43

16 16.07 77.63 7 16.70 78.67

17 16.74 77.99 8 18.37 80.10

18 17.40 78.52 9 20.03 82.32

( * represents the optimal policy )




Table 2.

result of example 2: m-policy with vacation

(without start-up time)
m-policy n-policy
m W Cm n W, Cn
1 10.43 70.60 1 10.43 70.60
2 10.50 68.78 2 11.14 64.36
3 10.71 66.33 3 12.46 61.45
4 11.09 64.02 *4 14.01 61.42
5 11.56 62.31 5 15.60 63.03
6 12.04 61.37 6 17.21 65.58
7 12.61 60.82 7 18.83 68.73
*8 13.21 60.69 8 20.46 72.28
18 13.82 60.89 9 22.09 76.12

( * represents the optimal policy )




Table 3.

result of example 3: m-policy with vacation

(with start-up time)
m-policy n-policy

m W Cm n W, C,

1 13.99 66.69 1 13.99 66.69

2 1408 6615 *2 14.68 6518

3 14.30 65.50 3 15.89 65.36

4 14.65 65.00 4 17.33 67.00
*5 15.09 64.81 5 18.83 69.53

6 15.53 64.90 6 20.36 72.63

7 16.05 65.26 7 21.92 76.11

( * represents the optimal policy )




Table 4.

result of example 4: m-policy with vacation

(with start-up time)
m-policy n-policy

m Wm Cn n W, Cq
8 1383  117.54 1 7.09 200.67
9 1495 11481 2 9.11 152.83
10 1611  113.00 3 11.36 130.44
11 1724  111.96 4 13.71 119.31
*12 1839 11151 5 1611 114.09
13 1955 11155 *6 18.54 112.36
14 2071  111.99 7 20.98 112.86

( * represents the optimal policy )




Theorem 4.1:

m-l R )
Id,m(z) = .2111:1.0 2{Ig mJ(Z) -1} + izr -0 m=1,2...
J:

Proof By conditioning on the number of units who arrive during the first

vacation, we can obtain a recursive equation that yields P{Iq m=k} as

m-1
P{lgm=k} = ¥ rjP{Ig mj=k-j} + rx, k>m, m=1,2... (A1)
=0
If we solve (A.1) in terms of P{Iq m=k},
m-1
P{lq,m=k} = 2 T, P{Id m-j=k-j} + rk k>m, m=1,2 (A.2)
here ¢ =T
where r, =77~

From (A.2), the p.g.f. of I§ m is obtained as
Ii,m(z) = kz P[Id,m=k}zk

oo m-]l ¢

= X {2 rP{lgmj=k-jl+r, )2k
k =mj=1J
m-1 + oo
=Y rzi ¥ {Ide=k-J}sz+ §_‘,r zk
j=1 3 k=m m
m-1
1.2){Iq m-j(z)-1}+ Z r, 'k
=%
m-1 R(z)-r
s I =270
- Ik Alami@ )+ Tt .



Proof of Theorem 5.1

Theorem 5.1:

m-1
I4,m(z) = ‘ZIXjZ][Id,m-j(Z)'l} + X(2), m=1,2,....
J:

Proof By conditioning on the number of units in the first arrival, we can
obtain a recursive equation that yields P{I§ m=k} as

m-1

P{lgm=k} = ¥ x;P{Iqm-j=k-j} + xx, k>m, m=1,2,... (A.3)
=1

From (A.3), the p.g.f. of Iq m is
Id’m(Z) = Z P{Id’m=k}zk
k=m

oo m-1
= ¥ Y xP{Igmj=k-j}+xi)zk
k=m j=1
m-1 . o .
= Y xjz) ZP{Id,m.j=k-j}zk'J+ Y xkzK
j=1 k=m k=m
m-1
= _%ijJ[Id,m.j(z)-IHX(z). |
J.‘:



Proof of Properties 1 through 6

Here we only provide proofs for the m-policy with vacation case. Proofs for
the case without vacation can easily be shown analogously. Before proving
the properties, we will present some propositions which will be used to
prove properties 3, 4 and 5.

2) .2 .(2) .(2)
4m-ddm-1 Nmn ldmn1
.(1) .(1) = .(1) .(1) + 211, fOl‘ m>n, n=1,2, ..... (A.4)

ldm " ddm-1 ldm-n"~1d m-n-1

proof The proof is by induction on m. If m=2 and n=0, (A.4) is trivially
proved. If m=2 and n=1, from (4.8) ,

2 @ _1 A @, 2 @
igg-iqn  Togeettldn + M)+ Topg a1

D . - 1, .0, ) q
42-131 Trg a1 + 775" 11

1) (2)
(from the fact that i((lll) = 1r_—r0, 1512; = lr_ 7o and ifil()) = i((iz()) =0)

1) .2
2igq +ig
=)

41
2 .(2)
HM1-4o

=0 o * 2.
d1-4o
So proposition Al is true if m=2,
For the induction step, suppose (A.4) is true for m=k-1. To verify (A.4) for
m=k, we use the following identity, which can be obtained after some
algebraic manipulation using (4.8).

(2) .(2) (1) (1) k1
qk " Mdk1 k" ldk1 . N o

- ] ope L3 .
@ @ 0 0 @ @ [ 21-r0 { 2i6gic; - Ha ey
l4k1"1dk2 'dk1 'dk2 k1 Mdk2 jo1




(2) .2

@ .2 kil k2 @ .
+ gk -lak19) - 0 @ Vd kg id k-l-j)}]- (A.5)
13k1 "4 k-2

If we apply the induction hypothesis on the right hand side of (A.5), we get

(2) .2 (1) .Q1)
4k " 1d k-1 1k " 1d k-1

.(2) (2) T .Q) .(1)
14k-1 "4 k-2 1dk-1-Ydk-2

k1
1 5[ @) (1) (2)  .(2)
=™ .0 [ 21—‘;3 { 2403 15 - g k1) +( i - Hd ko1
k1" k2 =1

(2)  .(2)

kg kg1 O .
. . (1
Dt Gy -ig k-l-j)}]
kld k-j ~ 1d k-j-1 J
k-1
_ 2 I (.(1) .(1) )
= . Trg “dk-j~ 'dk-15
ldk1 "M k-2 j=1
1) .Q)
ik " k-1
=2 @ (A.6)
l4k-1 "4 k-2

where the last equality follows from the definition of i((ill)(. From (A.6), we obtain

(2) .@2) 1) .Q1)
4k "1 k-1 14k "1 k-1

@ @ O .o =2
1dk1 - Mdk2 dk-1-1dk-2
So under induction hypothesis, (A.6) also holds for m=k. Thus, by the
principle of mathematical induction, (A.4) holds for any m greater than 0.
|



Proposition A2 g;n =k, forall m>1 (A.7)

dm

1
where k—kx(l)

proof The proof is by induction on m. If m=1, (A.7) is trivially verified by
using (4.8.a) and (4.15). For the induction step, suppose (A.7) is true for
m=k-1. Under induction hypothesis we now prove that (A.7) is also true for
m=k.
E(V) 5 i
+ z r; k-.
élk j=1 ! !
@) - k1 )

kD4 JZ'.ll'Jld k-j

Kl
kl'(l)+k Y rJld k-j
=1
= k-1 1)
I'(l) + E r.lld k-j

=k.
So under the induction hypothesis, (A.7) also holds for m=k. Thus, by the
principle of mathematical induction, we conclude that (A.7) holds for all m
greater than 0. [ |

Proposition A3

Lim-Ldm-1 _ Ld m-n -Ld m-n-1
(1) . - .Q1) .(1)
4m " ld m-1 14 m-n “1d m-n-1

+ kn, form>n, n=1,2,... (A.8)

where k is defined in proposition A2,
proof Proposition A3 can be proved in the same way as proposition Al,
using proposition A2 appropriately. [

We now prove properties 1 through 6. The proofs for Properties 3, 4 and 5
will use the above propositions.



Property] i,(;)>i,(,l), for m>n, n=1,2,.......

proof Note that we only need to prove that ig) > 1,(;)1 for m>0. This can be

easily proved by induction on m and using equation (4.12). |

Propertyv 2 hm>hn, for m>n, n=1,2,.......
proof By induction, we can prove that ig) and Ly, are both increasing functions
with respect to m. Since hy is a positive combination of two increasing

functions, namely, 1;) and Lpy, hence it is also an increasing function. ]

2) .2 2 .(Q2)
In "Ima Im-n " m-n-1

.1
Bmmm (1) QD = 1) 1) + 2(1+lé ))n, for m>n, n=1,2, .....
1 -

m “"m-1 m-n”!m-n-1

proof Using proposition Al, we have:

(2) .2 2 .2 2.(1) (1) .1)
In "1m Mm - ldm1* 4 (ldm'ldm-l)
1) .qQ) < 1) .Q)
Im “1m-1 4m-d m-1
2) .2
Hm ldm1
_ 2.(1)
=D .0 T4
I4m " Y m-1
= 2(140). (A.9)
From (A.9), we obtain property 3 directly. [ |
Im
Propertv4 -Gy=k, forallm21,
lm

1
where km.



proof Using proposition A2, we obtain:

Im [m+ EU)
D70 A EURO
klff,’n E(U)
i) FAEUX®
=k. |

- L, Lm-n -Lm-n-
Propertv 5 {;’;‘ .1(:111)11 = ‘(B = .(f)ml + k+E(U))n for m>n, n=1,2,.....

Im "Ima Im-n " Im-n-1

where k is defined in property 4.
proof Using proposition A3, we have:

aQ .a
Ldm-Lam1+ (ld m lfi,)n PE)

Lm-Lm1 _
(1) . T (1) .Q)
Im "1m-1 14m " ld m-1
=Ik+EﬂJl (AJO)
From (A.10), we obtain property 5 directly. [ |
hm-h hm-h
Propertv 6 .(’ln) .(lr)m (llr; (1;1 for m>n+1, n=1,2,....... (A.11)
Im ln+1 1m n

proof From property 3, we know

.(2) .2 2 .2 .2 .2
Im "Im-1 m1 " m-2 m-3° 1m-2

DD . D D @
In "lp1  'mi1 " m2 !m2"lm-3

(A.12)

To prove property 5, we use the following identity:
Ifa, b, ¢, d, e, f, are all positive

a a a+cC a+c+e
£>q>7 holds iff T >F g > Brarp> ot

If we apply this identity to (A.12), for m > n+1, we obtain



(2) .(2) 2) .2

Im "4l Iy "1y
OO0 (A.13)
Im "In+41 m ~h

Similarly, we can prove that

Lm - Ln+1 Lm-Ln
O .a 1O (A.14)

Im "Il Im "4

Set hpy = 1Ly + °2ir(:) where ¢; = (1-p)cp and ¢ = %chE(S). Since c¢; and cg are
both positive, from (A.13) and (A.14) we can obtain (A.11). |



