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Abstract

Given two non-overlapping convex polygons P and Q, we £ind their
relative position such that the convex hull encasing them is minimal in
area. Without loss of generality, we allow Q to translate about a fixed
P. Let N be the total number of vertices in P and Q. We are able to
determine the minimal area convex hull in O(N) time. Instead of
computing the convex hull after every translation, we compute the slope
of the added area function and update it in constant time. We show that
the added area function is piecewise linear and that there are only O(N)

points on the curve where updating is necessary.
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1. Introduction

In computer science and operations research, allocating finite
resources has been an important problem. This problem has many
applications in industry and is characterized by the clustering of
demands to minimize waste (or to maximize utility). One criterion for
classifying the problem is the shape of the material to use. If the
shape is 1linear, planar, or spatial, then the problem is considered a
one-dimensional, two-dimensional, or three-dimensional problem,
respectively. We shall restrict our attention to two-dimensional

problems.

An interesting two-dimensional problem is the packing of shapes.
The shapes can be rectangular or non-rectangular. The packing of
rectangular shapes is formulated as the Bin-Packing problem [6] and the
Cutting-Stock problem [4]. It is NP-hard to determine optimal packing
for rectangular shapes [2]. For non-rectangular shapes, it is
reasonable to expect even greater difficulties. Recent solutions for
rectangular shapes have employed heuristics [2,7]. For non-rectangular
shapes, very few papers are published. One approach to simplify the
packing of non-rectangular shapes is preprocessing them by
circumscribing with rectangles [1] and packing the resulting rectangles
[3]. However, this preprocessing produces more waste than packing with
the original shapes. Therefore, we try to develop more efficient
preprocessing algorithm by clustering the original shapes by two,

especially two convex polygons.

In this paper, we consider the problem of packing two convex

polygons of given orientations under translation such that the convex



hull over the two polygons is minimal in area. If a polygon is non-
convex, we can apply a linear time algorithm to find its convex hull
[5]. To reduce the waste, we seek the minimal area convex hull of two
convex polygons P and Q with Q being allowed to translate along the
boundary of P. Since Q is allowed to translate, there are at least O(N)
possible configurations, where N is the total number of wvertices of P
and Q. For each configuration of P and Q, their convex hull can be
found in O(N) time [8]. Hence, brute force leads to an algorithm that

would run in at least O(Nz) time.

Instead of calculating the total area of the convex hull of two
convex polygons, we find an added area due to the convex hull since the
area of two given polygons is constant. We show that an added area
function is piecewise linear as shown in Figure 1l.1. Exploiting the
piecewise linearity of the added area function, we find the minimal
added area configuration by calculating the added area at points where
the slope of the added area function changes. We call these points

refraction points. To calculate the added area at refraction points, we

triangulate the added area once at the initial configuration and update
the slope of the added area function by calculating the amount of
translation and the change in triangle area to reach the next refraction
point. Since the triangulation is done once in 1linear time and the
updating at each refraction points is done in constant time, we find the
minimal area configuration in O(N) time by showing that the total number

of refraction points is O(N).

<Insert Figure 1.1>

This paper is organized as follows. In section 2, definitions and
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notations are introduced. In section 3, the added area function is
examined. In section 4, initialization processes are discussed to find
the minimal area convex hull. In section 5, a linear time algorithm and

its analysis are presented. 1In section 6, we conclude this paper.



2. Definitions and Notations

In this section, we introduce the definitions related to the convex
hull of convex polygons P and Q, with Q being allowed to translate
counter-clockwise along the boundary of P. Then, we introduce the

notations for the convex hull and for the vertices and edges of P and Q.

2.1 Definitions

To find the minimal area convex hull of two convex polygons, we
define terms we will use including (1) reference edge and vertex, (2)
convex hull edges and vertices, (3) front and rear added polygons, (4)

triangle and added area functions, and (6) base edge.

(1) Reference edge and vertex : Consider the convex hull over two

adjoining convex polygons P and Q as illustrated in Figure 2.1. The two
adjoining convex polygons touch each other, with one polygon providing
an edge and the other a vertex. The edge, along which Q translates, is

called a reference edge. The vertex from the other polygon is called a

reference vertex. In Figure 2.1, a reference edge is marked by a dcuble

line and a reference vertex by a circle.

<Insert Figure 2.1>

(2) Convex hull edges and vertices : To form a convex hull of two

convex polygons, new edges are needed. Each new edge connects two
vertices, one vertex from P and the other from Q. The new edges are

called convex hull edges and the vertices are convex hull vertices. In

general, there are two convex hull edges joining four convex hull

vertices. For some cases, the convex hull vertices from P and 0Q
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coincide as illustrated in Figure 2.2. In these cases, we count them as
two distinct vertices. Therefore, we can assume that for the general

case there are always exactly four convex hull vertices.

<Insert Figure 2.2>

(3) Front and rear added polygons : Once a convex hull of polygons

P and Q is formed, there exist two added polygons which are the
difference between the convex hull and the polygons P and Q. One of the

added polygons is a front added polygon and the other one is a rear

added polygon. The front added polygon is the one in the direction Q

translates. The area of these two added polygons is an added area. The

added area can be zero or positive.

(4) Triangle and added area functions : Finding the minimal area

convex hull of two adjoining convex polygons P and Q under translation
is equivalent to finding the position of Q with minimal added area. As
Q translates along a reference edge, the area of the added polygons
changes. Since the added polygons can be triangulated, the change in
the added area can be computed from the changes in the area of the
triangles. The changes in the area of triangles are described as

triangle area functions. The sum of the triangle area functions in the

added area is an added area function.

(5) Base edge : In general, a triangle in é triangulated added
polygon shares one entire edge with polygon P or Q (see Figure 2.3).
The shared edge will be referred to as a base edge. In some cases,
triangles share two entire edges with polygons P and Q, one with P and

the other with Q. 1In these cases, selecting the base edge depends on
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which polygon provides a reference edge. If the reference edge belongs
to P, for the triangle in the front (or rear) added polygon, the base
edge is the one which belongs to Q <(or P). If the reference edge

belongs to Q, we select the base edge in the opposite way.

<Insert Figure 2.3>

2.2 Notations

Now we introduce the notations for (1) vertices of polygons P and
Q, (2) edges of polygons P and Q, (3) the data structure of vertices,
(4) the convex hull wvertices, (5) the reference edge, and (6) the

reference vertex.

(1) Vertices of polygons P and Q : We assume that the total number

of vertices of polygons P and Q is N. Among the N vertices, n vertices
belong to polygon P. Hence, Q has N - n vertices. We indicate the iEE
vertex of polygon P, starting from a fixed vertex and indexing in a

counter-clockwise order, as vi where i=1,2,....,n. Also, 4 stands for

the iEE vertex of polygon Q, starting from a fixed vertex and indexing
in a clockwise order, where i=n+l1l,n+2,....,N. The reason for using the
opposite ordering is to simplify the equations of the added area
functions. The X and Y coordinates of a vertex v, are denoted by

(xi’Yi) .

(2) Edges of polygons P and Q : We indicate an edge by using the

notations for vertices. The iEE edge of a polygon is vivi+l and its

slope is Si.

(3) The data structure of vertices : The vertices of P and Q are
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separately stored as doubly linked lists. 1In the lists, the next (or

previous) vertex of a given vertex ] is vi+l (or v, .). The next (or

i-1
previous) vertex is decided in cyclic order, i.e., the next (or
previous) vertex of Vo (or Vl) of P is vy (or vn) and the next (or

previous) vertex of vy (or Vn+1) of Qis v (or vN).

n+l

(4) The convex hull vertices : To indicate the convex hull

vertices, we introduce a special notation. We indicate the vertices as
v. If a convex hull vertex belongs to polygon P (or @), we include p
(or q) in the subscript of v and if the vertex belongs to the front (or
rear) added polygon, we include @ (or ) in the subscript of wv.
Therefore, the convex hull vertices are denoted by v

pa' ps’ ‘qa
The locations of these vertices are illustrated in Figure 2.4.

, and

v

gs’

<Insert Figure 2.4>

(5) The reference edge : We classify the reference edge as initial

reference edge and current reference edge and indicate these edges as e,
and ec, respectively. For the current reference edge ec, we indicate

its two vertices as va and vﬁ, where \A (or v,) is the vertex belonging

B
to the front (or rear) added polygon. Since A is the next vertex of
vﬁ, the slope of the current reference edge ec is S

g

(6) The reference vertex : For the reference vertex, we introduce

only the current reference vertex and indicate this vertex as Vc'
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3. Added Area Function

In this section, we examine the added area function. The added
area function is a sum of the triangle area functions since the added
area can be triangulated. To characterize the added’ area function,
first we prove that the triangle area function is linear. Based on the
linearity, we derive the slope of the added area function. Then, by
examining the slope formula, we exploit the conditions when the slope of
the added area function changes. Finally, piecewise linearity of the

added area function is discussed.
3.1 Triangle Area Function

As a basis of the added area function, we examine the triangle area
function as Q translates counter-clockwise along the boundary of P.
First, we define a triangle under consideration. Then, the method to
calculate the triangle area is explained. Finally, we characterize the
triangle area function of a translated triangle as Q translates along

the reference edge.

We consider the area of the translated triangle of a triangle

V.V.V
1]

K when polygon Q is translated by (tx,ty) along the current

reference edge ec (vav ) with slope S,, where tx (or ty) is the X (or Y)

B B
component of the translated distance. We assume that the base edge of

the triangle Vivjvk is Vivj' Since Vivj is the base edge, both vertices

k

polygon. We assume vj is the next vertex of \ in the same polygon.

4 and vj belong to the same polygon P or Q and v, belongs to the other

Therefore, the slope of the base edge vivj is Si. The translated

triangle can be denoted by vivjvk if the base edge vivj belongs to



polygon P and denoted by AN

vk if the base edge belongs to Q.

The area of a triangle viv.v is computed by the cross product of

jk
its two edges. The cross product is taken using left hand rule. The
cross product (vivj X vjvk)/z is the area of a triangle Vivjvk if its
base edge belongs to P. On the other hand, if the base edge belongs to

Q, then the area is (vjvi X vivk)/z.

In the following Lemma 3.1, we assume that no edge has an infinite
slope. The details for resolving an infinite slope are discussed in

Section 4.

Lemma 3.1 The triangle area function of the translated triangle of

V.V.V
1

vk along ec by (tx,ty) is linear in tx‘ Its slope is:

(Xj - Xi)(Si - Sﬁ)/Z.

The proof is given in Appendix.

Lemma 3.1 can be illustrated as follows. Consider a triangle

Vn+lvn+zvl in Figure 3.1. The slope of its triangle area function is:

(Xj - Xi)(Si - sﬁ)/z

= (X - X .)(§

n+2 n+l - 52)/2

n+l

where Sn+ is the slope of the base edge Vn+lvn+2’ and S, is the slope

1 2

of the reference edge V2V3.

<Insert Figure 3.1>
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As Q translate along the boundary of P, a triangle in the added
area polygons exists for certain range of the translated distance of Q.
Therefore, a triangle area function is a line segment defined in this

range.
3.2 Slope of the Added Area Function

Since the added area is a sum of the triangles in added polygons,
we can calculate the added area function from triangle area functions.
The added area polygons includes the same triangles for certain range of
the translated distance of Q. In the range, the added area function is
linear from Lemma 3.1. We calculate the slope of the added area

function for a configuration of P and Q.

The slope of the added area function depends on the slope of the
base edges and the slope of the reference edge since the slope of a
triangle area function depends on the slope of the base edge and the
slope of the reference edge from Lemma 3.1. It is worthwhile to note
that the slope of the added area function does not depend on how the
added area polygons are triangulated. If we know which edges of polygon
P and Q correspond to the added polygons and which edge is the reference

edge, we can calculate the slope of the added area function.

To calculate the slope of the added area function, we need to know
the base edges and the reference edge. From the definition of convex

hull vertices, we know that the edges between v_, and v o and between

o

Vqﬁ and an belong to the added polygons and these edges are the base

edges, where vpa (or an) and vp‘3 (or Vqﬁ

belonging to P (or Q) in the front and rear added polygons,

) are the convex hull vertices

10



respectively. Therefore, if we assume the current reference edge is e.

(vavﬁ), the slope of the added area function is:
pa-1 ga-1
. z (Xi+1 - Xi)(si - SB)/Z o z (Xi+l - Xi)(Si - SB)/Z
i=pp i=qgp

where pa, 4ga, pf, and g8 are the indices for the convex hull vertices
and Sﬁ is the slope of the current reference edge e, Note that if si

and S, are the same, (Si - S,) is zero. This implies that the reference

g Y
edge is not used as a base edge.

3.3 Change in the Slope of the Added Area Function

Let us examine the change in the slope of the added area function.
From the formula in Section 3.2, we can see the slope changes if the

number of terms in the summation changes or S, changes. The former case

8
corresponds to situation when the convex hull vertex changes and the
latter case when the reference edge changes. The following two lemmas

3.2 and 3.3 clarify the conditions when the slope of the added area

function changes.

Lemma 3.2 The slope of the added area function changes if a convex hull

vertex changes.

[proof] If a convex hull vertex changes, the number of terms in the
slope formula of the added area function increases by one or
decreases by one. In either case, the slope of the added area
function changes because the slope of the triangle area function of
the appearing (or disappearing) triangle cannot be zero. Because

both P and Q are convex polygons, the slope of the base edge cannot

11



be the same as the slope of the reference edge. Hence, by Lemma
3.1, the slope of the area function of an appearing (or a

disappearing) triangle must be nonzero. ®

A change in the convex hull vertex is illustrated in Figure 3.2.

In Fiqure 3.2(a) a triangle disappears as a convex hull

Vpg'pp+17qp

vertex changes from v_, to v This occurs when vqﬁ passes the

ps pp+l’

extended line of edge Vpﬁvpﬁ+l' Symmetrically, in Figure 3.2(b), as the

tended 1li of an ed
exte ine ge anvqﬁ-

vertex changes fromv_, to v and a triangle vp

qp gp-1

1 passes the vertex v_,, a convex hull

P8

6Vqp¥qp-1 Ppears.

<Insert Figure 3.2>

A special case occurs if more than one convex hull vertex changes
simultaneously as illustrated in Figure 3.3. In this special case, the
slope of the added area function may not change since occasionally the
sum of the adding terms can be same as the sum of the deleting terms.
To resolve such a case, we consider the changes of convex hull vertices
one at a time. Therefore, in general, the slope of the added area

function changes whenever the convex hull vertex changes.
<Insert Figure 3.3>

Lemma 3.3 The slope of the added area function changes if the

coefficient of S, is not zero and the slope of the reference edge

4

changes.
[proof] In the formula of the slope of the added area function, the

coefficient of S, is (X , - X + (X - X . This coefficient
p 15 Kop = Xpg) * (Kgg ~ X))

is not zero by assumption. Therefore, if the value of S, changes,

B

12



(a) A convex hull vertex changes from Vppg to Vpp+:
A triangle Vpg Vpp+ Vqp disappears.

(b) A convex hull vertex changes from Vgqp to Vf'm-ﬂ
A triangle Vpg Vqp Vqp-1 appears.

Figure 3.2 Changes of a Convex Hull Vertex



Two convex hull vertices Vpp and Vqp change
simultaneously to Vpp+{ and Vdp-1 , respectively.

Figure 3.3 Special case:

More than one convex hull vertex changes



i.e. the slope of the reference edge changes, the slope of the

added area function changes. ®
3.4 Shape of the Added Area Function

Now we are ready to characterize the shape of the added area
function. Lemma 3.2 and Lemma 3.3 imply that the added area function is
piecewise linear since there exist points where the slope of the added
area function changes. Since the area of a configuration is unique,
there can not be a jump in the added area function where the slope
changes. Therefore, the added area function is continuous at points
where the slope changes. Hence, the added area function is continuous

piecewise linear.

Since the area of the polygons P and Q is constant, finding the
minimal area convex hull of P and Q is equivalent to finding the minimum
in the added area function. Since the added area function is piecewise
linear the minimum of the added area function is at one of the
refraction points where the slope of the added area function changes.
Therefore, by tracing the area at the refraction points, we can find the
minimal area convex hull of P and Q. In the following sections, we
develop an algorithm to find the minimal convex hull of P and Q in

linear time.

13



4, Initialization

To find the minimal area convex hull, we set the initial values of
the parameters to be used in an algorithm in Section 5. First, we set
the initial configuration of P and Q. Second, a procedure to determine
initial reference edge and reference vertex is presented. Third, we
calculate the initial added area and determine the initial convex hull
vertices. Finally, we calculate the initial slope of the added area

function. All of the above are done in linear time.
4.1 Initial configuration of P and Q

We find the initial configuration of P and Q by translating polygon
Q so that a wvertex of P and a vertex of Q coincide. In such
configuration, there can be edges with an infinite slope. A method to

avoid infinite slopes is discussed.

First, we find the initial touching configuration of P and Q. From
the coordinates of the vertices of P, we find a vertex vpr with the
smallest Y-coordinate. Similarly, we find a vertex vqr with the largest
Y-coordinate among the vertices of Q. In case there is more than one
such vertices, choose a vertex with the largest (or the smallest) X-
coordinate for vpr (or Vqr)' We translate Q such that vqr coincides

with v__.
pr

 In this translated configuration, there can be edges that have an
infinite slope. However, there can be at most four such edges, two from
P and two from Q, because of the convexity of the two polygons. If both

P and Q are rotated by a "small" amount about{vpr, then no edge will

14



have an infinite slope. The angle of rotation is one half of the
minimum of the four angles -- ei, ej, ek, and Gm -- between a vertical
line and the four edges which end or start at the vertices of P or 0,
respectively, with the smallest and the largest X-coordinates. It is
illustrated in Figure 4.1. If there are edges with an infinite slope,
the vertices with the largest or the smallest X-coordinate is not
unique. In this case, if the vertices belong to P (or Q), we choose the
vertex with the smallest (or the largest) Y-coordinate. This is

performed in linear time.
<Insert Figure 4.1>
4.2 Initial Reference Vertex and Reference Edge

To translate vpolygon Q along the boundary of polygon P, there
should be an edge and a vertex which provide the direction and position
along which Q translates. The edge is the reference edge and the vertex
is the reference vertex. We develop a procedure to find the reference
edge and the reference vertex for an initial configuration of P and Q.

Initial reference edge and reference vertex may belong to P or Q
depending on their relative orientations. The two situations are
illustrated in Figqure 4.2, where the reference edge is marked by a

double line and the reference vertex by a circle.
<Insert Figure 4.2>

To determine the initial reference edge and vertex, and to determine the
new reference edge and vertex to be used in Section 5, the Procedure
Find_ec_vc is provided. The output of the procedure is e, and A which

indicate the determined reference edge and reference vertex,

15



Figure 4.1 Candidate Angles of Rotation



VPrs

Var—

(a) Reference Edge Belongs to Polygon P

(b) Reference Edge Belongs to Polygon Q

Figure 4.2 Reference Edge and Vertex



respectively. The input of the procedure is vPc and ch’ which are two
touching vertices from P and Q, respectively. 1In the procedure, the

cross product is taken using the left hand rule.

<Insert Procedure Find_ec_vc>

The procedure works as follows. If the cross product ch—lvqc

vpcvpc+l is positive (Figure 4¢.2(a)), the counter-clockwise angle of
v v_V is less than 7. In this case, current reference edge e
gc~-1lgc pc+l c

is v v which belongs to P and current reference vertex v_ is v
pc+l pc c qc
which belongs to Q. If the cross product is not positive (Figure

4.2(b)), e is vqcvqc—l and V. is vpc.

In the initial configuration, the touching vertices are vpr and
Vqr' With these vertices as an input, we can determine the initial
reference edge and reference vertex by calling the procedure with
parameters (ei, Ver Vpr’ Vqr)‘ The output e also represents the
current reference edge e,

4.3 Initial Convex Hull Vertices and Added Area

To start to find the minimal area convex hull of P and Q, we need
to find the initial convex hull vertices and added area. While we find
the initial convex hull vertices, we can calculate the initial added
area. For these purposes, Procedure Find_CHV__AC is provided. In the
procedure, a p-cross-product is for the area of a triangle which shares
the base edge with P while a g-cross-product is for a triangle which
shares the base edge with Q. {CHV} is the set of four convex hull

vertices, v_. , v
pa

ps

' an’ and v Ac stands for the current added area.

qp’

16



Procedure Find_ e v _(e ,v_,v )
c-¢c c¢''¢'pc’ qc

begin

cross_product ¢ ch-lvqc X vpcvpc+l’

if (cross_product > 0)

€ « .
then ec Vpc+lvpc’ vc vqc

« « R
else e chvqc 1 vC vpc

end



<Insert Procedure Find_CHV_Ac>

The procedure works as follows. For the front added polygon,
starting from the touching vertices vpr and vqr as current vertices of
polygon P and Q, respectively, form triangles which share the base edge
with Q by traversing the vertices of Q clockwise until no more such
triangle can be formed. Move the current vertex of P to the next vertex
and test whether a triangle which shares the base edge with P can be
formed. If it is possible, form it and restart to form triangles which
share the base edge with Q starting from the current vertex of Q.
Repeat this process until no more triangle can be formed. Then, put the
current vertices of polygons P and Q into the set of convex hull
vertices. While forming the triangles, using the cross product,
calculate the added area. The same process is applied for the rear

added polygon by changing the direction of traversing the vertices.

While performing the Procedure Find_CHV_Ac, every vertex of P and Q
is traversed at most once. Therefore, the time complexity of this

procedure is linear in N,
4.4 Initial Slope of the Added Area Function

To calculate the initial slope of the added area function, we use
the formula in Section 3.2. To simplify the updating the slope, we
introduce a representation for the slope. We represent the slope of the

added area function as:

(Cb + Cr S )/2 where

4

17



\'

Procedure Find CHV A ({CHV},A V)
- =c pr’ gr

cl

begin

{ checking front added polygon }

vpc € vpr’ vqc « vqr'

A ‘- 0.
c

-
p_cross_product ch+1vqc X Vpcvpc+1’

if (p_cross_product > 0) then vpc « Vpc+l'

if (p_cross_product = 0) then

Vpc ‘ Vpc+l’ ch “ vqc+
while (p_cross_product > 0) do
begin
g_cross_product ¢« ch+1vqc X chvpc'
while (g_cross_product > 0) do

begin

-
AC Ac + g_cross_product/2, vqc

g_cross_product ¢

end

« .
p_cross_product chvpc X Vpcvpc+l

if (p_cross_product > 0) then

A CA + p_cross_product/2, v

end

vV ¢€v_, vV v .
pa pc’ da qc

a}'

{cuv} « {vpa,vq

1 p_cross_product « 1.

-

ch+lvqc X chVpc.

pc ‘ Vpc+1'



{ checking rear added polygon }

V_ ¢V _,V_ ¢tV .
pc pr’ ‘gc gr

-
p_cross_product Vpc—lvpc X chvqc-l'

if (p_cross_product > 0) then vpc € Vpc-l'

while (p_cross_product > 0) do
begin

g_cross_product « Vpcvqc X chvqc—l'

while (g_cross_product > 0) do
begin

« + € .
A ¢ A, q_cross_product/2, vqc vqc-l

q_cross_product ¢ Vpcvqc X chvqc-l‘

end

p_cross_product € Vpc—lvpc X Vpcvqc°

if (p_cross_product > 0) then

A chA_+ p_cross_product/2, vpc € Vpc—l'

end

ps © Vpe' Yqp 7 Vgc

{cuv} « {cHv} + {Vpﬁ’vqﬁ}'

end



[@]
n

Sum of constants corresponding to the base edges

b
Cr = Sum of constants corresponding to the reference edge
55 = Slope of the reference edge

then the slope of the added area function shown in Section 3.2 have

terms:

pa-1 ga-1

Cb = - z (Xi+1 - Xi)si + . z (Xi+l - Xi)si
1=pp i=qp
pa-1 ap-1

Cr = -. z (Xi+l - Xi) - . z (xi+l - Xi)
i=pp i=qa

= (X, -X - X

(Xop = Xpg) * (Rgg ™ Xgg)

A procedure to calculate the slope of the added area function using

above formula is given in the Procedure Slope_of_ added area_function.

<Insert Procedure Slope_of_ added_area_function>
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Procedure Slope_of_added_area_function({CHV},Cb,Cr)

begin
Co © Kop ™ Xpo) * Bgp 7 Xyl
Cb « 0.
ie Vpﬁ'
while (i < vpa) do
begin
Cb « Cb + (Xi+l - Xi) Si.

end

ie qu.

while (i <v_ ) do
da

begin

Cp“Cp* Eiyy

- X)) S,.
i €41+ 1.

end

end



5. The Algorithm and Its Analysis

We are ready to present an algorithm that gives the minimal area
configuration. The minimal area convex hull for the two convex polygons
P and Q corresponds to the configuration in which the added area is
minimal. The added area function is piecewise linear and the slope of
the function changes at refraction points. To find the minimal area
configuration, we trace only the refraction points of the added area
function by updating the slope of the function in constant time. We
discuss the method to trace the refraction points and to update the
slope of the added area function. Now, the algorithm would then run in
linear time if there is linear number of refraction points. We show
that there can be no more than 3N of them where N is the total number of

vertices in P and Q.
5.1 Refraction Point Due to Convex Hull Vertex Change

If a convex hull vertex changes, then the slope of the added area
function changes as well. There exists a refraction point corresponding
to this change. We present a method to calculate the X component of the
translated distance of polygon Q along the current reference edge to
reach the refraction point. We denote the X component of the translated

distance as t .
Xc

<Insert Figure 5.1>

In Figure 5.1, as Q becomes Q', the convex hull vertex vqa moves to

The amount of translation txc can be calculated from the fact

1] 1

qp-1"gp"

Vgp-1"

that Vpﬁ is on the extended line of the edge v

The equation of

19



Q Q’

Figure 5.1 Refraction Point Due to a Change

in the Convex Hull Vertex



1 1)

the edge Vas-1Yqp is:

[} 1]

Y=Y =5, (X-X).

S
as qp ap
By replacing xqﬁ with (xqﬁ + txc) and Yq‘3 with (an + Sﬁtxc)’ we get:
Y - (an + Sﬁtxc) = Sqﬁ—l(x - (xqﬁ + txc))’

By inserting the coordinates of v_, into the equation, we have:

o

- Y =
Y (Y_, +S,t Sqp-1

jof qp i xc) (

X .+t )).

Xos = ¥qp * txe

Then, the refraction point due to the change of v_, can be calculated:

qp
= X -X - (Y -Y S -S).
txc = Sqp-1%pp ~ Xqp) = (pp ™ ¥qp) )/ (Sgp-1 = Sp)
For the general case, we provide the Procedure Calculate_txc. In

the procedure, txr is the X component of the distance Q translates along

the current reference edge, and it is explained in the next section.

<Insert Procedure Calculate_txc>

5.2 Refraction Point Due to Reference Edge Change

From Lemma 3.3, if the reference edge changes, there exists a
refraction point corresponding to this change except some special cases.
is zero and S, remains

B B
unchanged. We determine the new reference edge and reference vertex

The special cases are the coefficient of S

when the reference edge changes. Then, we calculate the maximum

distance the polygon Q can be translated along the new reference edge.

20



Procedure Calculate_txc(CHV,{CHV},Sﬁ,txr,{txc})

begin
case CHV of
Vpa : txc = (spa(xqa - Xpa) - (an - Ypa)) / (SB - Spa)'
op * txe = Sppqp ~ Xpp) T Ygp ~ Ypg)) /(S5 Spp)-
Voo * txe T Gga-1%pe T Xge) T Ypa T Ygo!) 1 Bga-1 T S
Vas ¢ tee (Sqﬁ-l(xpﬁ - xqﬁ) - (Ypﬁ - Yqﬁ)) / (qu_l - Sp)-
end
if (txr > 0)

i < < «
then if (0 < e S t,,) then {txc} {txc} t ot

i < <
else if (t < tye S 0) then {txc} « {txc} * ot

end



The new reference edge and reference vertex are determined by
calling the Procedure Find__ec_vc provided in Section 4.2. The
parameters depend on the situations. As illustrated in Figure 5.2, if
the current reference edge belongs to P (case (a) and (b)), the

parameters are (ec, v, va, vc). If the current reference edge belongs

c

to Q (case (c) and (d)), the parameters are (ec, vV,V,V,). As a

o] c B
result of calling the procedure, we get the new current reference edge

and vertex.

Once the new reference edge and vertex are determined, we calculate
the X component of translated distance of Q along the new reference edge
to the next refraction point, which is denoted by txr‘ Since the

5, txr 1ls Xa - XB.

vertices of the current reference edge are va and v

<Insert Figure 5.2>
5.3 Updating the Slope of the Added Area Function

The next refraction point is the adjacent refraction point in the
direction Q translates from the current refraction point. The next
refraction point is the minimum (or maximum) of the elements of {txc}
and txr if txr is positive (or negative). Corresponding to the

refraction point, we update the slope of the added area function.

The updating of the slope of the added area function depends on the
cause of the refraction point. If the next refraction point corresponds
to a convex hull vertex change, we need to update the values of Cb and
Cr' For the general case of this change, Procedure Update_Slope CHV is

21
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Figure 5.2 Finding New Reference Edge and Vertex



provided. 1In this procedure, atxc stands for the next refraction point
among the elements of the set {txc}. If the next refraction point
corresponds to the reference edge change, we only need to change Sﬁ.
Even if- the reference edge changes, the value of Cb or Cr does not

change since it depends on only the convex hull vertices.
<Insert Procedure Update_Slope_CHV>

Note that, whenever Q is translated to the next refraction point,
the origin of the added area function is moved along X-axis by X
component of the translated <distance. This enables us to use the
current added area as a constant term in the added area function.
Therefore, we only need to update the slope of the added area function.
For the coordinates of vertices of P and Q, we keep the coordinates of
the initial configuration. By keeping track the movement of origin and
the translation of Q, we can calculate the cocrdinates of vertices we
need in constant time. In the algorithm given in the next section, we

assume the coordinates of P and Q is the updated coordinates.
5.4 The Algorithm and Its Time Complexity

The algorithm for finding the minimum area convex hull of two
convex polygons is given as Algorithm 1. Using the procedures in
Section 4, we initialize the configuration of P and Q and compute the
initial added area. Then, we trace the refraction points to find the
minimal added area and its configuration. In this Algorithm, Min (or
Max) {txc} finds the smallest (or largest) element in the set {txc}.
A ., me, mvc, and mtc are the vaiue of Ac' ec, vc, and tc'

min Cc

respectively, when the added area is minimal. Here, tC is a variable to
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Procedure Update_slope_CHV({CHV},atxc,cb,cr)

begin

case at of
XC

Voo Cp € Cp t (o T XS0,
Cp ¢ Cp = (R = %)
Vpa ¢ Vpa+l'

vpﬁ : Cb « Cb - (xpﬁ+l - xpﬁ)spﬁ'
Cp ¢ Cp * (R = X0
Vop © Vppe1’

an : Cb ¢ Cb - (an - xqa-l)sqa-l'

1
~

C_«C_+ (X X .
r r da ga-1

* .
vqa vqa-l

Yas F b "t Kgp T Xqp-1%gp-10

end

end



keep track of the X component of translated distance along e, from the

vertex v, to the current refraction point.

B

Since the time to update the values of Cb’ Cr' and Sﬁ at each
refraction point is constant, the time complexity of Algorithh 1 depends
on the number of refraction points. The following Lemma 5.1 gives the

limit of the number of refraction points.

Lemma 5.1 The maximum number of refraction points is 3N.

[proof] From Lemma 3.2 and Lemma 3.3, we know that a refraction
point is caused by a change in the convex hull vertex or a change
in the reference edge. There are four convex hull vertices, two
from P and two from Q. As Q translates along the boundary of P,
every vertex Qf P and Q becomes a convex hull vertex exactly twice,
once in the front added polygon and once in the rear added polygon.
For the special case as illustrated in Figure 3.3, there is a
reduction in the number of refraction points by at most 3. Hence,
there can be no more than 2N refraction points due to a change in
the convex hull vertex. If there are no special cases, the slope
of the added area function changes whenever the reference edge
changes. Since every edge of P and Q becomes a reference edge
exactly once, the maximum number of refraction points due to a
change in the reference edge 1is N. Consequently, the maximum

number of refraction points is 3N. =

In Algorithm 1, we update the slope of the added area function
whenever a convex hull vertex or the reference edge changes. Therefore,

we update the slope exactly 3N times even if some of the updating is of
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no use. We can state the following theorem which gives the time

complexity of Algorithm 1.

Theorem 5.1 The time complexity of Algorithm 1 is linear in N.
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Algorithm 1. Find_minimum_area_convex_hull

1. Initialization

Find the initial configuration of P and Q, and vpr and Vqr'

Find_ec_vc(e.,v v ).

,V
i""c'"'pr’gr
e « e- .
c i

Find_CHV_Ac({CHV},A v ).

c pr’vqr

A. €A me ¢e,m_<«v ,m «O0.
min c c c c c c

Slope_of_added_area_function({CHV},Cb,Cr).

2. Repeat

t €« 0.
c

t «X -X.
Xr a B

{txc} 0.
for each CHV in {CHV}

Calculate_txc(CHV,{CHV},Sp,txr,{txc}).
while {txc} # ¢ do

begin

if (txr > 0)
then at ¢« Min{t }.
XC XC
else at  « Max{t }.
XC Xc

Ac « Ac + (Cb + CrSﬁ)atxc/Z.

t ¢t +at_ .
c c XC

if (A <A ., ) then
c min



A, €A ,mMe ¢e,mv v, mt ¢t .
min c c c c c c c

Update_slope_CHV({CHV} rat, 1CiCo).

t € t - at D
Xr Xr XC

for each CHV in {Cuv}

Calculate_txc(CHV,{CHV},Sﬁ,txr,{txc}).

end

Ac « Ac + (Cb + Crsﬁ)txr/z'

t «t +¢t .,
c c Xr

if (A <A . ) then
c min

A. €A me ¢e,mv_¢€v ,m et .,
min c c c c c c c

if (eC c P)

then Find e v (e ,v_,v ,v.).
-¢c-c c''c¢''a' ¢

).

else Find e v (e ,v_,v_,Vv
-"c- c( c'e'e’'B

Stop when e_ = e,.
c i



6. Conclusion

We have shown a linear time algorithm for finding the minimal area
convex hull for two non-overlapping convex polygons P and Q under
translation. This is done by tracing the refraction points of the added
area function since the function is piecewise linear and the number of

refraction points is linear in N.

If both rotation and translation are allowed, then the problem of
finding the minimal area convex hull becomes more difficult. The added
area function will be a three-dimensional surface with axis for area,
translation and rotation. Because of rotation, the added area function
is expected to be sinusoidal when projected. Refraction points becomes
refraction curves. If there is linear number of such refraction curves
then an algorithm with a lower bound of O(NZ) time is conceivable since
a linear number of refraction points along the translation axis 1is
expected to remain. If the given polygons are not convex, the problem

becomes even more difficult.
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Appendix. Proof of Lemma 3.1

We compute the area of a translated (new) triangle as a function of
the area of the old triangle. Here we use the same notations defined in

Section 3.1. If the base edge of the old triangle belongs to P, the

1]

area of the new triangle vivjvk is:

(vivj X vjvk)/z

= (((Xj, Yj) - X YD) x (X, Y) - (Xj, Yj)))/Z

Expressing xk as (Xk + tx) and Yk as (Yk + S tx), we have:

4

g

Expanding the cross product, we have:

= ((Yj - Yi) (Xk - Xj) - (Xj - Xi) (Yk - Yj) +

tx)/z

(Yj - Yi) tx - (Xj - Xi) S‘3

The sum can be expressed in terms of the area of the old triangle vivjvk

as:

= ((Xj - Xi, Yj - Yi) X (Xk - Xj' Yk - Yj))/2 +
((Yj - Yi) tx - (Xj - Xi) Sﬁ tx)/Z
= (vivj X vjvk)/z + ((Xj - xi) Si tx - (Xj - Xi) Sﬁ tx)/2

= (viv. X vjvk)/Z + (xj - Xi) (Si -S

3 ) tx/2

4

= area of the old triangle + area change
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Similarly if the base edge of the o0ld triangle belongs to Q, the

1 1

area of the new triangle v,v.v

V3V can be expressed in terms of the area of

V.V.v, as:
i“‘j'k

(vjvi X vivk)/z

(vjvi X vivk)/Z + (xj - Xi) (Si -S) tx/2

4

Since there are only two kinds of triangles in added area polygons,

above results prove the Lemma 3.1. ®
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