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Abstract

Given two non-overlapping convex polygons P and Q, we find their
relative positions such that the convex hull encasing them is minimal in
area. Without loss of generality, we allow Q to translate about a fixed
P. Let N be the total number of vertices in P and Q. We determine the
minimal area convex hull in O(N) time. Instead of computing the convex
hull after every translation, we compute the slope of a function for the
added area and update it in constant time. We show that the added area
function is piecewise linear and that there are only O(N) points on the

curve where updating is necessary.
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1. Introduction

In computer science and operations research, allocating finite
resources has been an important problem. This problem has many
applications in industry and is characterized by the clustering of
demands to minimize waste (or to maximize utility). The geometric
problem of packing rectangular shapes is formulated as the Bin-Packing
problem [6] and the Cutting-Stock problem [4]. It is NP-hard to
determine optimal packing for rectangular ;hapes for which recent
solutions have employed heuristics [2,7]. For non-rectangular shapes,
it is reasonable to expect even greater difficulties. One approach to
simplify the packing of non-rectangular shapes is to preprocess them by
circumscribing with rectangles [1] and to pack the resulting rectangles
[3]. Since rectangular circumscription produces more waste than convex
circumscription, we develop a more space-efficient preprocessing
algorithm by clustering the original shapes by two - specifically, two
convex polygons into one with minimal convex hull. 1If a polygon is non-

convex, we can apply a linear time algorithm to find its convex hull

[5].

Given two convex polygons P and Q, we assume that Q is allowed to
translate along the boundary of P as shown by the sequence in Figure 1.
Suppose the minimum area convex hull occurs at a configuration in which
a vertex from P touches a vertex from Q. There are O(N) such possible
configurations, where N is the total number of vertices of P and Q. For
each such configuration, their convex hull can be found in O(N) time.
Hence, brute force leads to an algorithm that would run in at least

O(Nz) time. But, such an algorithm is not guaranteed to work. As shown



in Figure 1l(c), the minimum area convex hull occurs in a configuration

other than the discrete vertex-vertex configuration.

<Insert Figure 1>

Instead of calculating the total area of the convex hull of two
convex polygons, we find an added area due to the convex hull since the
area of two given polygons is constant. We show that an added area
function is piecewise linear. Exploiting its piecewise linearity, we
find the minimal added area configuration by calculating at points where
the slope of the added area function changes. We call these points

refraction points. To calculate the added area at refraction points, we

triangulate the added area once at the initial configuration and update
the slope of the added area function by calculating the amount of
translation and the change in the triangle area to reach the next
refraction point. Since the triangulation is done once in linear time
and the updating at each refraction points is done in constant time, we
find the minimal area configuration in O(N) time by showing the total

number of refraction points to be O(N).

This paper is organized as follows. In section 2, definitions and
notations are given. In section 3, the added area function is examined.
In section 4, initialization processes are discussed. In section 5, the
algorithm and its analysis are presented. 1In section 6, we conclude

this paper.
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(a) Given Two Polygons P and Q

(=)

(b) Vertex-Vertex Configuration is not
necessarily Minimal Area Convex Hull

o
(=)

(c) Minimal Area Convex Hull

Figure 1. Brute Force Algorithm may not
Lead to Optimal Solution



2. Preliminaries

In this section, we define terms related to the convex hull of
polygons P and Q, with Q being allowed to translate counter-clockwise
along the boundary of P. Among a total of N vertices, n of them belong

to P. We indicate the iEE vertex of P, starting from a fixed vertex and

indexing in a counter-clockwise order, by \ where i=1,2,....,n. The
vertices \ of Q are indexed in the clockwise order, where
i=n+1,n+2,....,N. (The reason for using the opposite ordering is to
simplify the equation of the added area functions later.) The vertices
of P and Q are stored in two doubly linked lists. We indicate the slope

of the edge vivi+1 by si.

Consider the convex hull over two convex polygons P and Q in
contact as illustrated in Figure 2. There exist two added polygons
which constitute the difference between the convex hull and the polygons
P and Q. Based on the direction of travel, one of the added polygons is
in the front and the other one is in the rear. The total area of these
two added polygons is the added area, which can be zero or positive.
The two polygons touch each other, with one providing an edge and the

other a vertex. The edge, along which Q translates, is called the

current contact edge eC with slope S The vertex vc from the other

6.
polygon is called the contact vertex. In Figure 2, a contact edge 1is

marked by a double line and a contact vertex by a circle.

<Insert Figure 2>

To form a convex hull of two convex polygons, new convex hull edges

are needed. The new edge in the front connects two convex hull



Convex Hull Edge
Front Added Polygon

Contact
Edge €¢

Rear Added Polygon

]

Direction of
Translation

Figure 2. Convex Hull of Two Polygons



vertices, Vpa and an' Similarly, there is one in the rear. If the
convex hull wvertices from P and Q coincide, we count them as two
distinct vertices. Therefore, we can assume that for the general case
there are always four convex hull vertices joined by two convex hull

edges.

Finding the minimal area convex hull of two adjoining convex
polygons P and Q under translation is equivalent to finding the position
of Q with minimal added area. As Q translates along a contact edge, the
area of the added polygons changes. Since the added polygons can be
triangulated, the change in the added area can be computed from the

changes in the area of the triangles by triangle area functions, the sum

of which is the added area function.

In general, a triangle in a triangulated added polygon shares an
edge with polygon P or Q. The shared edge will be referred to as a base
edge. In some cases, triangles share two edges, one with P and the
other with Q, Wich are shaded in Figure 3. Selecting the base edge
then depends on which polygon provides a contact edge. If the contact
edge belongs to P, for the triangle in the front (or rear) added
polygon, the base edge is the one which belongs to Q@ (or P). If the
contact edge belongs to Q, we select the base edge in the opposite way.

A base edge is marked by a double line in Figure 3.

<Insert Figure 3>



Figure 3. Base Edges ( double lined) of
Triangles in the Added Polygons



3. Added Area Function

In this section, we examine the added area function (AAF). The
added area 1is the sum of triangles since it can be triangulated. To
characterize AAF, first we prove that the triangle area function is
linear. Based on its linearity, we derive the slope of AAF. (The
reason we are interested only in the slope is due to the following
observation. Whenever Q is translated by tx, the origin of AAF can be
translated by the same amount. This enables us to treat the current
added area as a constant term in AAF.) By examining a formula for AAF,
we state the conditions when its slope changes. Finally, the piecewise

linearity of AAF is asserted.

As Q translates along the boundary of P, a triangle in the added
area polygon exists for a certain range of the translated distance.
Since the added area is the sum of the triangles in the added polygons,

we can calculate AAF from the triangle area functions.

Consider the area of a triangle AN

5% when polygon Q is translated

by (tx,ty) along the current contact edge ec (vav ) with slope S The

B B’

area of the triangle A is computed by the cross product of its two

jk

edges using the left hand rule. The cross product (vivj X vjvk)/z is

the area of the triangle AN if its base edge belongs to P. On the

ik

other hand, if the base edge belongs to Q, then the area is (vjvi X

vivk)/z. In Figure 4, the base edge Vivj with slope Si belongs to Q and

v, belongs to P.

k

<Insert Figure 4>

We now establish a linear relationship between area and the amount



Figure 4. Calculation of the Area of a Triangle



of translation by assuming that no edge has an infinite slope. (The

detail for resolving an infinite slope is discussed in Section 4.)

Lemma 3.1 The triangle area function of a triangle viVij translated

along ec by (tx,ty) is linear in tx. Its slope is:

(xj - xi)(si - sﬁ)/z, (1)

where SB is the slope of e, and Si is the slope of edge Vivj with X-

coordinates Xi and xj.

[Proof] The proof is given in Appendix 1.

The slope of AAF depends on the slope of the base edges and the
slope of the contact edge since the slope of a triangle area function
depends on the same quantities from Lemma 3.1. It is worthwhile to note
that the slope of AAF does not depend on how an added polygon is

triangulated.

The calculation for the slope of AAF follows. We know that the

sequence of edges between v_, and v__ and those between v_, and v__ are
P8 pa qs ga

the base edges, where v (or v_ ) and v
Pa da qp

P8

vertices belonging to P (or Q) in the front and rear added polygons,

(or v_,) are the convex hull

respectively. Therefore, if the current contact edge is eC (vav ), the

B
slope of AAF is:

pa-1 ga-1
IR XS - S)/2 % I (X, - XS, - 5)/2 @)
i=pg i=qp

where pa, ga, pB, and gf are indices for the convex hull vertices and S

B

is the slope of the current contact edge e.. Note that if Si and S, are

B



the same, (Si - §)) is zero. This confirms that the contact edge is not

f

used as a base edge in the calculation.

Let us turn to the changes in the slope of AAF. From formula (2),

we see that the slope changes if S, changes or if the number of terms in

p
the summation changes. The latter case corresponds to the situation
when the convex hull vertex changes and the former case when the contact

edge changes. The following two lemmas clarify these situations.

Lemma 3.2 The slope of AAF changes if the coefficient of S‘3 is non-zero
and the slope of the contact edge changes.
[proof] In formula (2) for the slope of AAF, the coefficient of 53

is (Xp - an). This coefficient is non-zero by

g~ %pa) * Xgp

assumption. Therefore, if the value of S the slope of the

ﬁl
contact edge, changes, the slope of AAF also changes. ®

Lemma 3.3 The slope of AAF changes if a convex hull vertex changes.

[Proof] If a convex hull vertex changes, the number of terms in
formula (2) increases or decreases by one. In either case, the
slope of AAF ' changes because the slope of the triangle area
function of the appearing (or disappearing) triangle cannot be
zero. Because both P and Q are convex polygons, the slope of the
base edge cannot be the same as the slope of the contact edge.
Hence, by Lemma 3.1, the change in the slope of AAF due to an

appearing (or a disappearing) triangle must be nonzero. ®

Changes in the convex hull vertex are illustrated in Figure 5. 1In

Figure 5(a) a triangle v disappears as a convex hull vertex

pg p+1"qp



changes from v to v . This occurs when Vv asses the extended
g ps " Vpp+l g P

line of edge v Similarly, in Figure 5(b), as the extended line

P pp+l’

of an edge v__ v asses the vertex v
€ Vgp¥gs-1 P PP

from Vqﬁ to Vqﬁ-l and a triangle Vpﬁvqﬁvqﬁ-l appears. It is possible

that more than one convex hull vertex changes simultaneously as

a convex hull vertex changes

illustrated in Figure 5(c). The slope of AAF, then, may not change at
all since it is possible that the sum of the added terms equals the sum
of the deleted terms. To resolve such a case, we consider the changes

of convex hull vertices one at a time.
<Insert Figure 5>

Now we are ready to summarize the shape of AAF. Lemma 3.2 and
Lemma 3.3 imply that AAF is piecewise linear as there exist points where
the slope of AAF changes. There cannot be a jump in AAF where the slope
changes. If that were the case, the area at that point on the AAF would
be multi-valued. This implies that the convex hull over P and Q for a
particular configuration is non-unique which leads to a contradiction.
Therefore, AAF is continuous at points where the slope changes. Hence,

AAF is continuous piecewise linear.

Since the area of the polygons P and Q is constant, £finding the
minimal area convex hull of P and Q is equivalent to finding the minimum
in AAF. Since AAF is piecewise linear the minimum of AAF is at one of
the refraction points where the slope of AAF changes. In Section 5, we
develop an algorithm to £find the minimal convex hull of P and Q by
tracing AAF at these points. It 1is preceded by some initialization

procedures in Section 4.



(a) A convex hull vertex changes (b) A convex hull vertex changes
from Vpp to Vpps: A triangle from Vqp to Vap-1: A triangle
VP Vpp+ Vap disappears, Vpg Vap Vap-1 eppears.,

(c) Two convex hull vertices Vps and Vqp change
simultaneously to Vpp+1 and Vqp-1 , respectively.

Figure 5. Changes of Convex Hull Vertices



4, Initialization

Before finding the minimal area convex hull, we determine the
initial wvalues of the parameters to be used in the algorithm in Section
5. First, we set the initial configuration of P and Q. Secondly, a
procedure to determine the initial contact edge and contact vertex is
given. Thirdly, we calculate the initial added area and determine the
initial convex hull wvertices. And finally, we calculate the initial
slope of AAF. All of the above are done in linear time and the

procedures are given in Appendix 2.
4.1 1Initial Configuration of P and Q

We find the initial configuration by translating Q so that a vertex
of P and a vertex of Q coincide. From the coordinates of the vertices
of P, we find a.vertex vPr with the smallest Y-coordinate. Similarly,
we find a vertex v r with the largest Y-coordinate among the vertices of
Q. (In case there is more than one such vertex, choose the one with the
Fargest X-coordinate as vpr or the one with the smallest X-coordinate as
Vqr’) We translate Q such that vqr coincides with Vpr' We assume there
is no edge with an infinite slope. If there is such an edge, rotating

the polygons by a "small" amount about vpr eliminates the infinite

slope. These steps are performed in linear time.
4.2 1Initial Contact Vertex and Contact Edge

The initial contact edge e and the initial contact vertex vC may
belong to P or Q. To find them we use the Procedure Find_ec_vC listed

in Appendix 2. The input of the procedure is vpc and ch’ the two



contact vertices from P and Q. They are initially set at vpr and v o

respectively.

The procedure works as follows. If the left-handed cross product
v v X V_V is positive, the counter-clockwise angle of
gc-1'qc pc pc+l

v v_V is less than n. 1In this case, the current contact edge e
gc-1l gc pc+l c

v v__ which belongs to P and the current contact vertex v_ is v
pc+l pc c qc

is
which belongs to Q. If the cross product is not positive, e. is

vV_V and v_ is v__. The same procedure is also used for finding the
gc gqc-1 c pc

next contact vertex and contact edge.
4,3 1Initial Convex Hull Vertices and Added Area

While we f£find the initial convex hull vertices, we also calculate
the initial added area in Procedure Find_CHV_Ac. The output of the
procedure are {CHV}, a set of four convex hull vertices, vpa, Vpﬁ' an’
and v_,, and the current added area Ac. The input of the procedure are

qp

the two contact vertices vpr and Vqr'

The procedure works as follows. For the front added polygon,
starting frbm the contact vertices vpr and vqr as current vertices of
polygon P and Q, respectively, form triangles which share their base
edges with Q. Traverse the vertices of Q clockwise until no more such
triangles can be formed. Move the current vertex of P to its next
vertex and test whether a triangle which shares its base edge with P can
be formed. If so, form it and repeat until no more triangles can be
formed. Then, put the current vertices of polygons P and Q into the set
of convex hull vertices. While forming the triangles, we calculate the

added area by using the cross product. The same process is applied for

10



the rear added polygon by changing the direction of vertex traversal.

In performing the Procedure Find_CHV_AC, each vertex of P and Q is
traversed at most once. Therefore, the time complexity of this

procedure is linear in N.
4.4 Initial Slope of the Added Area Function

To calculate the initial Slope_of_the_added area_function, we use
formula (2) in Section 3. To simplify updating, we use the following

representation for the slope of AAF:

(Cb +C, sﬁ)/z
where Cb = Sum of constants corresponding to the base edges
Cr = Sum of constants corresponding to the contact edge
Sﬁ = Slope of the contact edge.

Then the slope of AAF has terms:

pa-1 dga-1l
Cp= LKy — XIS+ (X, -X)5
i=pg i=gp
pa-1 gs-1
Cr = - z (xi+l - Xi) - z (xi+l - Xi)
i=pg i=qga
= (X -X )+ (X -X ).
Xpp ™ *pa) * Bgp ~ Xqo)

11



5. The Algorithm and Its Analysis

We are ready to present an algorithm that gives the convex hull for
the two convex polygons P and Q for which the added area is minimal.
The AAF is continuous piecewise linear and its slope changes at
refraction points. To find the minimal area configuration, we trace
only the refraction points by updating the slope in constant time.
Then, the algorithm would run in linear time if there is a linear number
of refraction points. We show that there can be no more than 3N of them
where N is the total number of vertices in P and Q. We begin with the

updating for the refraction points needed by the algorithm.
5.1 Refraction Point Due to Contact Edge Change

From Lemma 3.2, when the contact edge changes, there exists a
refraction point. Correspondingly, we determine the new contact edge
and contact vertex. Then, we calculate the maximum distance Q can be
translated along the new contact edge to reach the next refraction

point.

The new contact edge and contact vertex are determined by calling
the Procedure Find__ec_vc explained in Section 4.2. The parameters
depend on the situation. If the current contact edge belongs to P, the
parameters are (ec, Var Vi vc). If the current contact edge belongs to

).

Q, the parameters are (ec, Var Var V

B

Once the new contact edge and vertex are determined, we calculate
the X component of translated distance of Q along the new contact edge

to the next refraction point, which 1is denoted by txr' Since the

12



vertices of the current contact edge are v and v,, t is X -X,.
a g" "xr a g

5.2 Refraction Point Due to Convex Hull Vertex Change
When a convex hull vertex changes, the slope of AAF changes as
well. We calculate the X component of the translated distance denoted

by txc along the current contact edge to reach the next refraction

point.
<Insert Figure 6>

In Figure 6, as Q becomes Q', the convex hull vertex Vqﬁ moves to

Vqﬁ-l' The amount of translation e can be calculated from the fact
that v is on the extended line of the edge v v__. The equation of
pB 9€ Yap-1"qp &
the edge v v_, is:
9€ Vap-1Yqp
Y-Y _ =585 X-X . 3
s = Sqp-1% T Xgp) )

By replacing X

98 with (xqﬁ + txc) and Yqﬁ with (Yqﬁ + Sﬁtxc) and by
inserting the coordinates of vpﬁ into equation (3), we get the
refraction point due to the change of Vqﬁ:

t = (S X  -X -(Y_, -Y S -S)). 4
xc = (Sqp-1%pp ™ Xqp) = Upg gp))/(Sggy = Sp) ®)

For the general case, we use Procedure Calculate_txc in Appendix 2. The

term txr in the procedure is explained in the previous section.

5.3 Updating the Slope of the Added Area Function

The next refraction point ntxc is the minimum or maximum of the

13
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Figure 6. Refraction Point Due to a Change

in the Convex Hull Vertex



elements of {txc} and t  depending on whether t _ is positive or
negative. Corresponding to that refraction point, we update the slope
of AAF using Procedure Update_slope CHV in Appendix 2. The updating
depends on the cause of the next refraction point. If it is caused by a

change in a convex hull vertex, we update the values of C_ and Cr‘ If

b

it is caused by a change in the contact edge, we only need to change SB'

since Cb and Cr depend on only the convex hull vertices.

5.4 The Algorithm and Its Time Complexity

The algorithm for finding the minimum area convex hull of. two
convex polygons 1is given as Algorithm l.A Using the procedureﬁ in
Section 4, we initialize the configuration of P and Q and compute the
initial added area. Then, we trace the refraction points to find the
minimal added area and its configuration. In this algorithm, Min {txc}
finds the smallest element in the set {txc}; similarly, for Max {txc}.
The values mAC, mec, mvc, and mtC store the values of Ac, ec, Vc’ and
tc, respectively, when the added area is minimal. Additionally, tC is a
variable for the X component of translated distance along e from the
vertex v{3 to the current refraction point. For the vertices of P and Q,
we keep their coordinates from the initial configuration and update
them. By keeping track of the amount of translation for Q, hence the

translation of the coordinate system, we calculate the coordinates of a

vertex under consideration in constant time.
<Insert Algorithm 1>

Since the time to update the values of Cb' Cr' and S[3 at each

refraction point is constant, the time complexity of Algorithm 1 depends

14



Algorithm 1. Find_minimum_area_convex_hull

1. Initialization

Find the initial configuration of P and Q, and vpr and Vqr'

)

Find e —Vc(el'vc'vpr qr

e ¢ e,
(o] 1
Find _CHV__ A ({cuv},a ,vpr qr)

MA A 6 me e ,mv_¢v ,m <0,
c c c c c c c

Slope_of_added_area_function({CHV},Cb,Cr).

2. Repeat
t ‘- 0.
c
txr « Xa - Xﬁ.

{txc} “ 0.

for each CHV in {CHV}

Calculate_txc(cnv,{CHV},SB,txr,{txc}).
while {txc} # ¢ do

begin

if (t,. > 0)
then nt ¢ Min{t }.
XC XC
else nt ¢ Max{t }.
XC XC

Ac « Ac + (Cb + C_S

. ﬂ)ntxc/z'

t.,et +nt_ .
o c XC

if (A_ < mA ) then
c c



MA «A ,me ¢e,mv v ,mt €t .
c ¢ c c c c c c
Update_slope_CHV({CHV},ntxc,Cb,Cr).

t_ €t _-nt .
Xr Xr XC

for each CHV in {CHV}

Calculate_t _(CHV, {cuv},s 5 Exrt {txc} ).

end

AC « Ac + (Cb + Crsﬁ)txr/z'

t. et +1t_ .
c o Xr

if (A < mA ) then
c c
mMA €A ,me ¢e,mv_¢v ,mt ¢t
c c c c c c c c
i c
if (ec P)

then Find eC v (ec,vc,va,vc).

)

else Find e v (e ,v_,v_,V
c— c( c''c'"e¢''B

Stop when e_ = e,.
c i



on the number of refraction points. The following lemma gives the upper

limit on that number.

Lemma 5.1 The maximum number of refraction points is 3N.

[proof] From Lemma 3.2 and Lemma 3.3, we know that a refraction
point is caused by either a change in the contact edge or a change
in the convex hull vertex. Since every edge of P and Q becomes a
contact edge exactly once, the maximum number of refraction points
due to a change in the contact edge is N. There are four convex
hull wvertices, two from P and two from Q. As Q translates along
the boundary of P, every vertex of P and Q becomes a convex hull
vertex exactly twice, once in the front added polygon and once in
the rear added polygon. Though, for the special case illustrated
in Figure 5(c), there is a reduction in the number of refraction
points by at most 3. Hence, there can be no more than 2N
refraction points due to a change in the convex hull vertex.

Consequently, the maximum number of refraction points is 3N, ®
-

In Algorithm 1, we update the slope of AAF whenever a convex hull
vertex or the contact edge changes. By Lemma 5.1, the slope is updated
3N times. We can now state the theorem which gives the time complexity

of Algorithm 1.

Theorem 5.1 The time complexity of Algorithm 1 is linear in N.

15



6. Conclusion

We have shown a linear time algorithm for finding the minimal area
convex hull for two non-overlapping convex polygons P and Q under
translation. This is done by tracing the refraction points of AAF since
the function is piecewise linear and the number of refraction points is

linear in N.

If both rotation and translation are allowed, then the problem of
finding the minimal area convex hull becomes more difficult. The added
area function will be a three-dimensional surface with axes for area,
translation and rotation. Because of rotation, AAF is expected to be
sinusoidal when projected. Refraction points becomes refraction curves.
If there is a linear number of such refraction curves then an algorithm
with a lower bound of O(Nz) time is conceivable since a linear number of
refraction points along the translation axis is expected to remain. If
the given polygons are not convex, the problem becomes even more

difficult.

16
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Appendix 1. Proof of Lemma 3.1

We compute the area of a translated (new) triangle as a function of
the area of the old triangle. Here we use the same notations defined in

Section 3. If the base edge of the 0ld triangle belongs to P, the area

of the new triangle v.v.v. is:
i‘j'k

(Vivj X vjvk)/z

' t

Expressing Xk as (xk + tx) and Yk as (Yk + 8 tx), we have:

g

= (((Xj, Yj) - (X YD) x (X + tx)'(Yk * S5t )) - (Xj, Yj)))/Z

B

Expanding the cross product, we have:

= ((Yj - Y (X - Xj) - (Xj - X)) (Y - Yj) +

(Yj - Yi) tx - (xj - xi) S tx)/z

4

The sum can be expressed in terms of the area of the old triangle vivjvk

as:

= ((Xj - Xi' Yj - Yi) X (Xk = Xj' Yk - Yj))/Z +

((Yj - Yi) tx - (Xj - Xi) S tx)/2

B

= (viv. X vjvk)/z + ((xj - Xi) Si tx - (Xj - Xi) S

3 tx)/2

B

)t /2

= (viv. X vjvk)/z + (xj - Xi) (Si - Sﬁ

J

= area of the old triangle + area change

AL



Similarly if the base edge of the old triangle belongs to Q, the

area of the new triangle v.,v.v

V5V can be expressed in terms of the area of

V.V.V
1

Jkas:

(vjvi X vivk)/Z

(vjvi X vivk)/z + (Xj - xi) (Si -5) tx/2

p

Since there are only two kinds of triangles in the added area

polygons, the above results prove the Lemma 3.1. ®
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Appendix 2. Procedures

Procedure Find e v _(e_ ,v_,v )
c-¢c ¢’ 'c¢''pc’ qc

begin

-
cross_product vqc-lvqc X Vpcvpc+l'

if (cross_product > 0)

« « .
then eC vpc+lvpc' vc vqc

‘- V .

elsee «v_ v , vV
c gc gqc-1" ¢ pc

end

A3



Procedure Fmd_CHV_Ac({CHV},Ac,vpr,vqr

)

begin
{ checking front added polygon }

v €V .,V € v

-
p_cross_product ch+1vqc X vpcvpc+l.

if (p_cross_product > 0) then vpc « Vool

if (p_cross_product = 0) then

vpc « Vpc+l' vqc A\ ch+l’ p_cross_product ¢ 1.

while (p_cross_product > 0) do
begin

« .
g_cross_product ch+lvqc X chvpc

while (g_cross_product > 0) do
begin

« + - .
A, €A, q_cross_product/2, vqc Vac+l

‘- .
q_cross_product vqc+lvqc X chvpc

end

-
p_cross_product chvpc X Vpcvpc+l'

if (p_cross_product > 0) then

«
AC Ac + p_cross_product/2, vpc € Vpc+l'

end

V. ¢V__, V. €v__,
pa pPc’ Qe qc

{cHv} « {vpa,vqa} .



{ checking rear added polygon }

vpC « Vpr, vqc € Vqr.

p_cross_product € vpc—lvpc X chvqc—l'

if (p_cross_product > 0) then Voc « Voe-1*

while (p_cross_product > 0) do
begin

g_cross_product € Vpcvqc X chvqc-l'

while (g_cross_product > 0) do
begin

A CA_+ q_cross_product/2, v__ ¢ v,

gc gc-1°

g_cross_product ¢ vpcvqc X chvqc-l'

end

p_cross_product ¢ Vpc-lvpc X Vpcvqc'

if (p_cross_product > 0) then

A A+ p_cross_product/2, Voc « Voc-1°
<
end

ps © Vpe' Vs © Vg
{cuv} « {cuv} + {vpﬁ,vqﬁ}.

end

As



Procedure Slope_of_added_area_function({CHV},Cb,Cr)

begin
C_.« (X
r P
‘- 0.

. .
1 Vpﬁ

while (i

begin

S

i
end

. .
1 Vqﬁ

while (i

begin

%

i
end

end

6~ %pa) * g

<v_) do
pa

«C

«1i+1,

<v_) do

cC i

i+ 1,

- xqa)

- X)) S;.

+ (xi+1 - Xi) Si-



Procedure Calculate_txc(CHV,{CHV},S r,{txc})

ﬁ’tx

begin

case CHV of
Voo F tae = Spg(Bgg ~ X)) = (g, =Y ) / (5 -8 ).
Vop ¢ txe = SppEgp T Xpp) T Ygp T Ypp?) 1 (Bp 7 Spp)-
Vae * txe = Ggae1®pq ~ ¥ga) T Yo ™ Ygo)) / (Sgeoy - Sp)-
Vas * txc = Sgp-1%pp T Xqe) T Upg T ¥gp)) / GSgp1 7 Sy

end

if (t, > 0)

i < <
then if (0 < e S t,.) then {txc} € {txc} *

i of < s L]
else if (txr St 0) then {txc} « {txc} * ot

end



Procedure Update_slope CHV({CHV},nt__,C

begin

case nt of
XC

bl

Vpa : Cb « Cb + (xpa+l - xpa)spa'
€ v & (xpa+l - xpa)'
vpa « vpa+l :

VP‘3 : Cb « Cb - (xpﬁ+l - Xpa)Spﬁ.
Cr € Cr + (xp6+l - xpﬁ)'
¥ps © Vpper®

Vae * % % T %qa 7 *ge-1"5ge-1
oGt (an B xqa-l)'
an ‘ vqa-l

qp

end

end

Co ¢ Cm (Ryp = Xop )

« .
Vas © Vqs-1

A8

PO " Gt Kgp T Egp-1)5qp-10

C.)
r



