QUADTREE WITH QUADRATIC STORAGE

Hyun-Chan Lee
Tony C. Woo

Department of Industrial & Operations Engineering

The University of Michigan
Ann Arbor, Michigan 48109-2117

Technical Report 86-29
March 1987

Quadtree with Quadratic Storage

Hyun-Chan Lee
Tony C. Woo

Department of Industrial and Operations Engineering

The University of Michigan
Ann Arbor, Michigan 48109-2117

March 1987

<Abbreviated Title>

Quadratic Quadtree

<Mailing Address>
Tony C. Woo
Department of Industrial and Operations Engineering

The University of Michigan
Ann Arbor, Michigan 48109-2117

ii

<Key Phrases>

Quadtree, Data Structure, Representation Method, Space Efficiency,

Pattern Recognition, Computer Graphics, Algorithm.

iii

Abstract

In addition to being an approximation, existing quadtree methods
require a large storage. We develop a new finite branching quadtree
method which reduces the storage requirements from exponential to
polynomial and guarantees an exact representation of the original
object. These are made possible by adopting a new set of termination
conditions that ensure finiteness of the quadtree during the

subdivision.

This new data structure is analysed theoretically and tested
empirically. For space complexity, we analyse its best case, worst
case, and average case. Given an n-gon, we show the expected number of
nodes in our quadtree is O(nz). For time complexity, we again analyse
the best, worst, and average cases for constructing such a quadtree and
find the average to be O(nz). Finally, random n-gons are generated as
test data. We find the regression equation for the number of nodes in a

2

quadratic to be N = 0.136n" + 2,148n + 15.461. For construction time

CT, we find CT = 1.147N - 18.535.

iv

CT

DEN

KO,Kl

MEN

NTN

0'"1

Pr{-}

[xl,xz)

[Yl,Yz)

List of Symbols

Construction time of a quadtree.
Double-edge node.

An edge.

Expected value.

Probability distribution function.
T[-] - s[-].

Height of a quadtree.

Homogeneous node.

: Convex sets in 2D, quadrants.

¢ Length of a line segment.

e

Multi-edge node.

Total number of edges in a polygon.
Total number of nodes in a quadtree.
Non-terminal node.

Perimeter of convex set KO or Kl'

¢ Probability.

¢ Average space complexity.

Single-edge node.
Time complexity.
Random variables.

A vertex.

X domain of a quadrant ranging from X

Y domain of a quadrant ranging from Y

1

1

to XZ.

to Yz.

1. Introduction

The quadtree method is widely used in image processing and pattern
recognition (2,4,5,8,10,11,12,15,18,19,20]. Its popularity is
understandable when one considers its elegance. To obtain a quadtree
for a 2D object, one starts with a quadrant which contains the entire
object. If the quadrant under consideration is completely within or
completely outside the object, it is 1left alone. Otherwise, the
quadrant is subdivided into four quadrants each of which 1is treated
similarly. The subdivision continues recursively until all the
quadrants are completely within or completely outside the object, or a

quadrant of some pre-specified size is reached.

Some terms related to a quadtree are helpful. A node in a quadtree
is a quadrant in the Euclidean space Ez. When a quadrant is completely
within a given object it is a black node. A quadrant which is
completely outside the object is a white node. Because of the
homogeneity of their colors within a quadrant, black and white nodes
will be referred to as homogeneous nodes. A quadrant which is
subdivided into four quadrants is a non-terminal node. A quadrant of

the minimal allowed size is a minimum-resolution quadrant. A quadrant

which reaches the size of minimum-resolution and is neither a black node
nor a white node is a don't-care node. In a quadtree, homogeneous nodes
and don't-care nodes are terminal nodes. The number of subdivisions to
reach a minimum-resolution quadrant is the height of a quadtree. The
condition which prevents a quadrant from further subdivisions is a

termination condition for constructing a quadtree. We will call this

kind of quadtree construction and representation method the Binary

method.

A major advantage of the Binary method is the simplicity of the
Boolean operations on a quadrant: intersection, union, difference, and
complement. The intersection operation may be used for collision
detection. The union, difference, and complement operations are
commonly used in CAD for shape description. All Boolean operations on a
quadrant can be performed in constant time. However, a Binary quadtree

¢B* 1 _1y/3 nodes, where H is the height of the

has a maximum of (
quadtree. Thus, a major disadvantage of the Binary method is the
exponential data storage requirement. Because of the sheer volume of
data to compute on, even if the operations on a quadrant can be done in

constant time, processing on a Binary quadtree-encoded object is not

necessarily fast overall.

To reduce the storage requirement, there are two approaches. The
first approach is to develop a more storage-efficient data structure
iwhile maintaining the same termination conditions. Instead of using a
tree structure with homogeneous nodes, an array is used to store black
nodes only [3,7,19]. The elements of the array are represented by
quaternary integers. This method reduces the storage by as much as the
total storage for non-terminal nodes and white nodes. The number of
non-terminal nodes in a quadtree can be estimated by (N-1)/4, where N is
the total number of nodes in a quadtree in the Binary method. If we
assume that the number of black nodes and the number of white nodes are
the same on the average, the expected number of black nodes is (3N+1)/8.
Therefore, reduction in the number of nodes over the Binary method is

about 62%. The second approach is to reduce the storage requirements by

introducing more conditions to terminate the subdivision before a

quadrant becomes homogeneous. To do so, edge and gray nodes are used as

terminal nodes in addition to black and white nodes. An edge node is a
quadrant which includes one edge. A gray node is a minimum-resolution
quadrant which may include more than one edge. A reduction of 55%-65%
in the number of nodes over that from the Binary method is possible.
This is supported by experiments involving a polygon of 20 edges and the
height of a quadtree is restricted to eleven [2]. Note that minimum-

resolution is invoked as a terminal condition in this approach as well.

While storage is still a concern, another disadvantage of the
existing methods is that a quadtree is inherently an approximation. The
inexactness of representation and the large storage requirement of the
existing quadtree methods come from the minimum-resolution termination
condition (without which, the existing methods will not
terminate. Because, on the boundary or at the vertices, the subdivision
would continue forever.) To overcome these two disadvantages - storage
and approximation, we propose a new finite branching quadtree
representation. In our method, we use a new set of termination
conditions to ensure finiteness without using the notion of minimum-
resolution. As a result, we achieve the goals of compactness in storage

and exactness in representation.

To visualize the effectiveness of the new termination conditions, a
comparison of methods is illustrated in Figure 1. In the figure,
quadtrees generated by the Binary method, by the Ayala, Brunet, Juan,
and Navazo (ABJN) method [2], and by the new method are illustrated with

a randomly generated polygon of 20 edges. To simulate finite branching

in the first two methods, we set the height to 6 which is the height of
the quadtree in Figure 1l(c). For the Binary method, the quadrants are
"clustered" on the boundary of the polygon. For the ABJN method, they
are clustered at the vertices. By comparison, the quadrants by the new

method are more "balanced" and "sparse" than these two methods.

<Insert Figure 1>

In Section 2, the new quadtree representation method is explained
along with the data structure and the algorithm for constructing the
quadtree. In Section 3, the space complexity of a quadtree by the new
method is analyzed. 1In Section 4, the time complexity of the algorithm
for constructing such a quadtree is analyzed. In Section 5,

experimental results are shown.

saaJipeny jo uosuedwo) °| ainbi4

pouylaw maN (9) poyltew Nrgyv (q) poylow Areuig (e)

v 1 e veng
\ 7 :
!

SUSENGLZ 50N,
2 H

[ﬂ//; /M klrg et

2. Finite Branching Quadtree

A quadrant is a subset of the Euclidean space EZ. The domain of a
quadrant is defined as [Xl'xz) X [Yl,Yz) c Ez, where Xl and X2 are the
minimum and maximum X-coordinates of the quadrant, respectively;
similarly, for the Y-coordinates. Note that we use an open set to

include only one half of the boundary of the quadrant as the domain to

avoid overlap.

To terminate the subdivision without minimum-resolution, we provide
a condition that ensures finite subdivision on the boundary and at the
vertices. We allow a quadrant to contain two edges that intersect at a
vertex. (Refer to quadrant 9 in Figure 1(c).) Two other types of
terminal nodes are needed in addition to black and white nodes. One is
a single-edge node, which corresponds to a guadrant that contains one
edge. (The quadrant qz in Figure 1(c) is an example.) The other is a
double-edge node, which corresponds to a quadrant that contains two
edges. (See q3 and ql in Figure 1l(c).) We also allow the special case
when a vertex is on the boundary of a quadrant that does not belong to
the domain of the quadrant. This is illustrated in Figure 2(a). Our
double-edge node ensures the finite terminatién of subdivision without
minimum-resolution. 1In short, the termination condition for the finite
quadtree of a simple polygon is to divide the 2D Euclidean space into

quadrants until a quadrant contains a maximum of two edges.
<Insert Figure 2>

The termination conditions for a non-simple polygon are different

from those for simple polygons as described in the preceding paragraph.

(a) Double-edge node (b) Multi-edge node

Figure 2. A Vertex on the Boundary

A polygon is simple if no two non-consecutive edges share a vertex.
Otherwise, the polygon is non-simple [14]. The need for representing a
non-simple polvgon comes from projection and hidden-line removal in
computer graphics. If we represent a projected object only by its
boundary (a simple polygon) as illustrated in Figure 3, we do not have a
representation of the inside. Even in two dimensions, we need to

consider quadtrees for simple and for non-simple objects.

<Insert Figure 3>

For a non-simple polygon, we need to add one more termination
condition since there can be any number of edges incident to a vertex.
Subdivision is terminated if a quadrant contains a set of edges that are
incident to one vertex which is inside or on the boundary of the
quadrant. See Figure 2(b). Such a quadrant corresponds to a multi-edge

node in a quadtree.

We summarize by comparing the terminal nodes of three methods: the

Binary method, the ABJN method, and our new method, in Figure 4.

<Insert Figure 4>

The data structure for a quadtree is given in Table 1, which is
described in Pascal. To indicate the inside of a simple polygon, we use
the edge equation in a form of AX + BY + C > 0 by storing the
coefficients A, B, and C. For a non-simple projected object, we record
the number of faces of the 3D object to be projected in addition to the

edge equations.

\
N
N

Yo ————f -

-h-————-—--r-—
\

__
~ N
~
~
~
]
]
'
« !
-r
L

1
T SRR —— N
]
1
[]
e R PR T S
S [
]

(a) 3D object (b) Projected boundary (c) Projected 2D object
(a simple polygon) (a non-simple polygon)

Figure 3. Projection of a 3D Object onto 2D Screen

" N

gray terminal node
minimum-resolution

dda

don't-care node edge node
minimum-resolution any size

white or black node white or black node
any size any size
(a) Binary method (b) ABUN method

=,

multi-edge node
any size

double-edge node
any size

single-edge node

white or gray node
any size

(c) New method

Figure 4. Comparison of Terminal Nodes

<Insert Table 1>

The algorithm for constructing a quadtree using the four types of
termination conditions in Figure 4(c) and the data structure in Table 1
is given as Algorithm Quadtree_Construction. In the algorithm, the
procedure Check_Type examines Edges, an array containing the number of
edges in the parent node of the quadrant currently under consideration,
and decides the Type for the current quadrant based on the number of
edges, Num_edges, in it. The procedure Subtree(Q) creates four children
for the non-terminal node Q. The four children LB, RB, LT, and RT
represent the left-bottom, right-bottom, left-top, and right-top
quadrants, respectively. 1In this algorithm we omit the process of
identifying whether a homogeneous node HN is a black or white node.
(This can be done by traversing the constructed quadtree
6nce. Therefore, it does not effect the time complexity of the

construction algorithm.)

<Insert Algorithm Quadtree_Construction>

Type Node_Set = (HN, SEN,DEN,MEN,NIN);

Record
X_Co : Real
Y Co : Real
End ;

Vertex_ Record

e we

Vertex_Array = Array[l..Tot_Vertices] of Vertex_ Record ;

Edge_Record = Record
First Vertex : Integer ;
Second Vertex : Integer ;
I

A,B,C ¢ Real
{ coefficients of AX + BY + C > 0 }
End ;
Edge Array = Array[l..Tot_Edges] of Edge Record ;
Edge_List = Array[l..Tot_Edges] of Integer ;
Node_PTR = TNode_Record ;
Node_Record = Record

Parent : Node_PIR ;
Case Node_ Type : Node_Set of
HN : { homogeneous node }

(Leaf ¢ Boolean);
SEN : { single-edge node }

(EG - ¢ Integer)
DEN : { double-edge node }

(E1,E2 ¢ Integer);
MEN : { multi-edge node }

(ESET ¢ Edge List);
NTN : { non-terminal node }

(LB,RB,LT,RT : Node PTR);

End ;

Table 1. Data Structure for a Quadtree

Algorithm Quadtree_Construction(Q,Edges,Num_Edges,X,Y,Scale)
Begin
Check_Type(Edges,Num_Edges, X, Y, Scale, Type)
Case Type of
HN : Qt.Node_Type <-- HN

SEN : QT.Node Type <-- SEN
Q*.EG <-- Edges[1]

DEN : Q*.Node_Type <-- DEN
Q*.El <-- Edges[1]
Q*.E2 <-- Edges[2]

MEN : QT.Node_Type <-- MEN
For i <-- 1 to Num_Edges Do
Q*.ESET[i] <-- Edges[i]

NTN : Qt.Node_Type <-- NIN

Scale <-- Scale / 2
Subtree(Q)
Quadtree_Construction(Qt.LB,Edges,Num Edges,X,Y,Scale)
X <-- X + Scale
Quadtree_Construction(Qt.RB,Edges,Num_Edges,X,Y,Scale)
X <-- X - Scale
Y <-- Y + Scale
Quadtree_Construction(Qt.LT,Edges,Num_Edges,X,Y,Scale)
X <-- X + Scale
Quadtree_Construction(Q?t.RT,Edges,Num_Edges,X,Y,Scale)

End { Case }

End { Algorithm }

3. Analysis of Space Complexity

In this section, based on the new termination conditions we analyze
the space complexity. The analysis consists of three cases: the best
case, the worst case, and the average case. We use the symbol N for the
total number of nodes in a quadtree corresponding to a given polygon

with n edges.

The best case, which is shown in Figure 5(a), occurs when every
terminal node is a double-edge node. If H is the height of a quadtree,

then in the best case H is log4n. The total number of nodes N thus is:

4i = (4-4H—1)/3 = 4n/3 - 1/3.
0

=
L}
N ™Mx

i
Therefore, the best case space complexity of a quadtree is linear in n,

the total number of edges of a polygon.
<Insert Figure 5>

The worst case happens when two vertices (or one vertex and a non-
incident edge) are very close. This is shown in Figure 5(b). If the
edges at the 1lower-left corner of the figure and those at the upper-
right corner become shorter and closer to their respective corners, more
and more nodes will be needed. 1In this worst case, the number of nodes
of a quadtree would not depend on the number of edges n. Instead, it
depends on the minimum distance between a vertex and an edge to which it
is not incident. The following lemma gives us an idea about the maximum

possible height of the quadtree.

Lemma 1 The maximum possible height of a quadtree is the smallest

p.-"
| [1\ V0.4
==) v/

1 \Y A] (
TN //
v \ 1] //
))) { 7/
L 112 \ ”(
(@) The best case (b) The worst case

Figure 5. The Best and the Worst Case of Space Complexity

integer which is greater than:

log, (max_size / min_distance) + 3/2

where max_size is the size of the largest quadrant and min_distance is

the minimum among the distances from a vertex to non-incident edges.

[Proof] The size s of the smallest quadrant is at most
min_distance / 2/2. When a vertex v and an edge e, which determine
min_distance, lie diagonally in a quadrant, the size of the
quadrant is min_distance / ¥2. This situation is illustrated in
Figure 6(a). The size of the smallest quadrant is one half of the
value since we need one more subdivision as shown in Figure 6(b).
Therefore, the maximum possible height of a quadtree generated by

the new method is the smallest integer which is greater than:
logz(max_size / (min_distance / 2v2))
= log, (max_size / min_distance) + 3/2
where max size 1is the size of the quadrant containing the entire

object as shown in Figure 6(c). ®

<Insert Figure 6>

The reason we say maximum possible height is that even when a vertex 1is

close to an edge or when an edge is short, the maximum height may be

less than that stated in Lemma 1. The situation is illustrated in

Figure 6(d). The quadtree in Figure 6(c) has maximum possible height of

5.

The same polygon translated by a small amount yields a quadtree of

height 2, which is less than the maximum possible height.

For the average case analysis of space complexity of a quadtree, we

min_distance

<

v

P\ <T-’|
min_distance/N2_

(@) (b)

y/’\ AN

= \ 4/ \
/ \ N // VQ
S 2T\

(€) (d)

Figure 6. Maximum Possible Height of a Quadtree

employ a known result from geometric probability [21,22] without

duplicating its proof.

Lemma 2 Let Kl be a convex set with perimeter of length Pl contained in

another bounded convex set K., with perimeter of 1length P The

0

probability that a random 1line intersects K

O.
1 if it is known to

intersect KO’ is Pl/PO’

<Insert Figure 7>

An illustration of Lemma 2 is given in Figure 7. If we draw a random
line which intersects the larger quadrant KO’ then the probability that

the 1line also intersects the smaller quadrant K, is 1/2. However, an

1
edge of a random polygon is only a subset of a random line since the two
endpoints (vertices) of the edge are assumed to be uniformly randomly

distributed on the line. Making this observation, we can estimate the

average length of an edge.

Lemma 3 The average length of an edge, given the length L of a line

segment on which it lies, is L/3.

[froof] The average length of an edge is:

E[|w-U|] = E[w-U|w>U]Pr{w>U} + E[U-W|U2W]Pr{U2w}
where U and W are random variables representing the two endpoints
of an edge lying in the given line segment, and E[:] and Pr{-}
denote the expectation and probability, respectively. Let £(-) be
a probability distribution function. Then the first term on the
right-hand side is:

E[w-U|w>U]Pr {w>u}

10

LL
Pr{w>U} [[(w-u)f(u,w)/Pr{Ww>U}dwdu
Ou

LL
S (w-u)£ (u)f(w)dwdu
Ou

2 LL
(/%) [[(w-u)dwdu
Ou

/1?4 w%/e6)

L/60
With a similar derivation, we get E[U-W|U2W]Pr{u2w} = L/6.

Therefore, the average length of an edge is L/3. ®

Using Lemma 2 and Lemma 3, we arrive at the upper bound for the expected

number of nodes for a quadtree.

Theorem 1 The expected number of nodes of a quadtree corresponding to a

polygon is bounded in space O(nz).

[Proof] If we extend each edge of a polygon to a line, then the

probability that a line intersects a gquadrant K. of a parent

1

quadrant KO’ given that the line intersects KO’ is 1/2 by Lemma 2.

Therefore, the expected number of lines intersecting K when the

ll

number of lines intersecting K. is n, is n/2. Hence, the average

0
space complexity S(n) of the new method can be calculated by the
following recursive relation:

S(0)

S(1) = 5(2) = 1,

S(n) = 4S(n/2) + 4.

Here, the constant 4 comes from the fact that a quadrant produces 4

sub-quadrants if it is subdivided. The solution of this recursive

11

relation, i.e. the expected space complexity of our quadtree
method, is O(nz) [1]. Since an edge is shorter than its extended
line segment by Lemma 3, the above result is an absolute upper

bound on the expected space complexity. ®

12

4. Time Complexity of the Construction Algorithm

We next analyze the time complexity of constructing a quadtree.
The analysis again involves three cases: the best case, the worst case,

and the average case.

In the algorithm presented in Section 2, the major element which
determines its time complexity is the number of edges examined for each
node. By comparing the number of nodes generated and the accumulated
number of edges examined, we can get the time complexity T of the

algorithm in terms of N, the total number of nodes in a quadtree.

Lemma 4 The best case of the time complexity of the algorithm for

constructing a quadtree is O(N).

[Proof] 1If the average number of edges examined per node is
constant, then T(n) is O(N). Such a case does exist, as
illustrated in Figure 5(b). Whenever a subdivision is necessary,
we examine a constant number of edges, 3 in this example, and
produce 4 more nodes. Therefore, the more such subdivisions there
are, the closer the average number of edges examined per node is to
some constant, 3/4 in this example. Hence, the best case time

complexity is O(N). m

Lemma 5 The worst case of the time complexity of the algorithm for

constructing a quadtree is O(Nz).

[Proof] The maximum possible average number of edges examined per
node 1is O(n). If N is O0(n), the total number of edges examined is

O(nz). T(n) is therefore O(Nz) in the worst case. Now, we show

13

the existence of such a case as illustrated in Figure 8. In the
figure, whenever there 1is a subdivision, a vertex is no longer
under consideration. In this case, we can show that:

N=2n+3=0(mn)),
T(n) = n2 +9n -9 = N2/4 + 3N - 81/4 = O(Nz).

Hence, the worst case time complexity is O(Nz). L
<Insert Figure 8>

Theorem 2 The average time complexity of the algorithm for constructing
a quadtree is O(N).
[Proof] On the average, the accumulated number of edges examined
which is equivalent to the time complexity T(n) is:

T(2)

T(1) = T(0) = O,

T(n) = 4T(n/2) + 4n.

Here, the constant 4 comes from the fact that a quadrant produces 4
sub-quadrants if it 1is subdivided. The solution of the above
recursive relation is T(n) = O(nz). To prove that T(n) and S(n)

have the same complexity of O(nz), let G(n) be T(n) - S(n). Then,

G(n) = 4G(n/2) + 4(n - 1).

The solution of this recursive relation is also O(nz). Having
shown that the average T(n) is O(nz), we recall the definition that
there are N nodes in a quadtree. Therefore, the average time

complexity of the quadtree construction algorithm is linear in N. ®

14

Figure 8. The Worst Case in Time Complexity

5. Experimental Results

We have performed experiments to verify the theoretical storage and
time complexities of the construction algorithm. The hardware used for
the experiment is Amdahl 470V/8 at the University of Michigan in Ann

Arbor, Michigan.

To compare our method to the Binary methods, we use randomly
generated polygons. (As there is no provision for handling non-simple
polygons by existing methods, we restrict our comparison to using simple
polygons.) A method to generate a random simple polygon is as follows.
First, we generate uniformly random angles around a point which is
located in the center of a quadrant. Then, we generate radii based on
the assumption that a radius is distributed uniformly from zero to the
one half of the width of the quadrant. By joining the vertices in

sorted angular order, we get a random polygon that is simple.
5.1 Space Complexity

A comparison of the number of nodes generated by our method and by
the Binary method is illustrated in Figure 9. The result shows, for
example, that the number of nodes generated by our method is strictly
less than that of the Binary method if the height is greater than 6 and

the number of edges is less than 100.
<Insert Figure 9>

A scatter plot of the number of nodes generated against the number
of edges of a given polygon is given as Figure 10. In the €£figure, the

numbers indicate the frequency of occurrences and '*' represents an

15

Z 15000~ H=8 e
2 :
g g
c o
»8 (1)
o °
=
s
O
.:?_:,
10000}
H=7
5000}
__H=6
New method
/ H=5
0 2"“"—‘:—1 1 1 1] H=4
20 40 60 80 100

No. of edges n

Figure 9. Number of Nodes Generated

occurrence of once. From the data, we find the regression equation to
be:

N = 0.136 n2 + 2.148 n + 15.461.

F_test for the above regression relation shows that we can conclude with
a confidence 1level of 0.99. The coefficient of multiple determination
R2 is 0.989. This result supports Theorem 1 which states that the

number of nodes is quadratic in the number of edges.
<Insert Figure 10>
5.2 Time Complexity

The experiment involves a comparison between the number of nodes
generated and the construction time. The average number of edges

examined per node is also calculated.

The scatter plot of the construction time CT against the number of
nodes generated N is given in Figure 11 with the same legend. We find
the regression equation to be:

CT = 1.147 N - 18.535.

F_test for the above regression relation shows that we can conclude with
a confidence level of 0.99. The coefficient of simple determination R2
is 0.998. This result supports Theorem 2 which asserts the linear

relation between time and the number of nodes.
<Insert Figure 11>

The average number of edges examined per node is plotted against
the number of edges of a given polygon in Figure 12. The values range

from 4.2 to 5.0 and they have a tendency to be strictly less than 5.

16

No. of nodes N

2000.,0 +
+
1600.0 +
+
1200.0 +
+
800.0 +
+ %222
£ 3
2%2%
400.0 + X2 %
222%
22
+ *22
22222%
, ¥%2222
0.0 + 2%x
e et e el Tt
0.0 20.0 40.0 60.0

Figure 10. Scatter Plot:

% % %
*% k%

No. of edges n

Number of Nodes versus Number of Edges

Construction time CT
(in miliseconds)

2500.0

2000.0

1500.0

1000.0

500.0

0.0

+

*%k%
¥ k%

* %
*x%2

23

32
+ * %%

4%
*3

4%

+
N
[\)
*

0.0 400.0 800.0 1200.0 1600.0 2000.0

No. of nodes N
Figure 11, Scatter Plot:

Construction Time versus Number of Nodes

This result also supports Theorem 2.

<Insert Figure 12>

17

5.0

4.5 |

No. of edges examined per node

4.0 |

L.

20 40 60 80 100
No. of edges

Figure 12. Average Number of Edges Examined
per Node against Number of Edges

6. Conclusion

By using the new termination conditions, we are able to reduce the
storage for a quadtree from exponential to quadratic in n, on the
average, for a given n-gon, yet offer exact representation. The
construction time for such a quadtree is quadratic in n as well. While
our method retains much of the simple elegance of the existing quadtree
methods, our analysis confirmed by experiments offer a new lower bound

in time and storage to theoreticians and practitioners alike.

18

(2]

(3]

[4]

(5]

(6]

(8]

References

A. V. Aho, J. E. Hopcroft, and J. D. Ullman, The design and
analysis of computer algorithms, Addison-Wesley, Reading, Mass.,
1974.

D. Ayala, P. Brunet, R. Juan, and I. Navazo, Object representation
by means of nonminimal division quadtrees and octrees, ACH
Trans. Graphics 4, pp. 41-59, 1985.

H. H. Atkinson, I. Gargantini, and T. R. S. Walsh, Filing by
quadrants and octants, Computer Vision, Graphics, and Image
Processing 33, pp. 138-155, 1986.

B. B. Chaudhuri, Applications of quadtree, octree, and binary tree
decomposition techniques to shape analysis and pattern
recognition, [EFF Pattern Analysis and Machine Intelligence PAMI-
7, pp. 652-661, 1985.

C. R. Dyer, A. Rosenfeld, and H. Samet, Region representation :
boundary codes from quadtrees, Comm. ACH 23, pp 171-179, 1980.

C. E. Eastman, Representation for space planning, Comm. ACH 13,
pp. 242-250, 1980.

i. Gargantini, Linear octrees for fast processing of three
dimensional objects, Computer Graphics and Image Processing 20,
pp. 365-374, 1982.

G. M. Huster and K. Steiglitz, Operations on images using
quadtrees, [EEE Trans. Pattern Analysis and Machine Intelligence
PAMI-1, pp. 145-153, 1979.

C. L. Jackins and S. L. Tanimoto, Octrees and their use in
representing 3D objects, Computer Graphics and Image Processing

14, pp. 249-270, 1980.

19

[10]

[11]

[12]

[13]

[14]

[15]

(16]

[17]

[18]

[19]

[20]

C. L. Jackins and S. L. Tanimoto, Quadtrees, octrees, and k-trees
¢ a generalized approach to recursive decomposition of Euclidean
space, JEEF Trans. Pattern Analysis and Machine Intelligence PAMI-
5, pp. 533-539, 1983.

L. P. Jones and S. S. Iyengar, Space and time efficient wvirtual
quadtrees, IEEE Trans. Pattern Analysis and Machine Intelligence
PAMI-6, pp. 244-247, 1984.

A, Klinger and C. D. Dyer, Experiments on picture representation
using regular decomposition, Computer Graphics and Image
Processing 5, pp.68-105, 1976.

D. Meagher, Geometric modeling using octree encoding, Computer
Graphics and Image Processing 19, pp. 129-147, 1982.

F. P. Preparata and M. I. Shamos, Computational Geometry,
Springer-Verlag, New York, 1985.

C. Puech and H. Yahia, Quadtrees, octrees, and Hyperoctrees : a
unified analytical approach to tree data structures used in
graphics, geometric modeling and image processing, ACM
Proc. Symposium on Computer Graphics, pp. 272-280, 1985.

H. Samet, Region representation : quadtrees from boundary codes,
Comm. ACM 23, pp. 163-170, 1980.

H. Samet, Connected component labeling using quadtrees, J. ACH 18,
pp. 487-501, 1981.

H. Samet, The quadtree and related hierarchical data structures,
ACH Comput. Survey 16, pp. 187-260, 1984.

H. Samet, Data structure for quadtree approximation and
compression, Comm. ACM 28, pp. 973-993, 1985.

H. Samet and R. E. Webber, On encoding boundaries with quadtrees,

20

[21]

[22]

[23]

TEEE Trans. Pattern Analysis and Machine Intelligence PAMI-6,
pp. 365-369, 1984.

L. A. Santalo, [Integral geometry and geometric probability,
Addison-Wesley, Reading, Mass., 1976.

M. Tamminen, Performance analysis of cell based geometric file
organizations, Computer Vision, Graphics, and Image Processing 24,
pp. 160-181, 1983.

M. Yau and S. N, Srihari, A hierarchical data structure for

multidimensional digital images, Comm. ACM 26, pp. 504-515, 1983.

21

