A Statistical Theory of Cave Entrance Evolution

By RANE L. CURL

The question of the number of caves that may exist in a region or a country
is one that is often raised by both laymen and scientists. In the past many esti-
maites ranging from mere guesses to those based on empirical deductions have
been proposed. To these estimates is now added a statistical approach which
gives a more substantial foundation to the postulated number of caves. Rane L.
Curl was introduced to cave exploration during the summer of 1952 in Charles-
ton, W. Va. While at the Massachusetts Institute of Technology as a graduate
student he was chairman of the Boston Chapter of the National Speleological
Society. At present Dr. Curl is on the research staff of Shell Development Com-

pany in Emeryville, California.

INTRODUCTION

The natural creation and destruction of cave
entrances are geological phenomena depending
on the stratigraphic, meteorologic, hydrologic,
mineralogic, etc., relations of a region in which
caves occur. The existence of an entrance to a
cave suggests from a statistical point of view that
there is a process of entrance creation. The dis-
covery of second entrances from within known
caves suggests that there is a complimentary
process of entrance destruction. It follows that
there must be caves which have either not gained
or have lost entrances and which are therefore
unknown.

This conjecture is supported by the discovery
of new caves in excavating and mining and by
the appearance of a karst area having sinkholes
apparently without traversable caves at their
bases. The most common estimate is that there
are ten times as many undiscovered as there are
known caves. Folsom (1956) refers to approxi-
mately five thousand known caves in the United
States and suggests upwards of fifty thousand
unknown caves. The implication is often that
these are mostly unreported caves with entrances,
though this notion is not necessary and is indeed
unlikely.

Supporting evidence of a logical nature is pre-
sented here for these otherwise empirical con-
clusions. Originally this study began after it had
been noticed that since there are caves with one,
two, and more entrances, there logically should
be caves with no entrances. Such a notion found
immediate support from the evidence mentioned
above, but intriguing questions remained with
regard to the number of such caves and their
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properties. It seemed that it should be possible
to use data on the number of caves with one,
two, or more entrances, and to extrapolate to
find the number without entrances. This is, in
essence, what has been done in this paper, al-
though there is now a great difference between
the first crude attempts and the present analysis
based upon hypotheses concerning entrance
evolution.

It was evident from the beginning that a math-
ematical relation would have to be “fitted” to
the available information, in order to carry
through an extrapolation. The main question
was how this should be done. Although the earli-
est arbitrary functions considered gave an an-
swer, they left the impression that the result was
essentially meaningless. By what criterion was
the extrapolation to be considered realistic? An
example of the result of such an extrapolation,
based upon an almost arbitrary mathematical
relation is shown in Table 1. The mathematical
relation in this case is called the Poisson fre-
quency distribution (Cramer, 1955). It is a
formula describing the manner in which items
(caves) are sorted into different groups (groups
of caves, each for a different number of en-
trances) . The mathematical relation was fitted
to the observed frequencies and then the ex-
pected frequency of caves with no entrances was
calculated.

This use of an arbitrary though well known
statistical distribution seems insufficient to pro-
vide understanding of the processes which may
have occurred in nature to produce the observed
distribution of caves by number of entrances. In
addition, the characteristic parameter of the
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TABLE 1.

Comparisons of Observed Frequencies of Caves
of West Virginia with the Poisson Distribution
Giving the “Best Fit” to Data
Number of entrances 0 1 2 38 45
Observed frequency — 228 25 3 1 0
Expected frequency 893 226 29 2 0 0

Poisson formula was found to vary with the
average length of the group of caves for which
it was computed and hence it lacked the desir-
able feature of being a fundamental parameter
of all the caves. Furthermore, other equations
could have been fitted and there would have
been little reason to prefer one in particular,

Following this first approach a simple mechan-
ism of entrance evolution was assumed. The
variable of cave length was not included and the
resulting mathematical equation turned out to
be the same Poisson formula which had been
used first on intuitive grounds. Thus, Table I
also represents the “fit” of a theoretical method
based upon a simple mechanism. Two things
were then observed which led ultimately to the
theory in its present form. Firstly, it was noticed
that the Poisson formula predicts fewer caves
with multiple entrances than had been observed.
Secondly, and more important, it was noticed
that the multi-entrance caves are, in general,
longer caves than those with one entrance. It
thus became apparent that length was an im-
portant variable. As a result, the complete theory
leads to a method of predicting the relative
lengths of unknown caves as well as their
number.

STATISTICAL THEORY OF ENTRANCES

We will not speak here of the peculiar his-
tories and properties of individual caves. If we
did, we would find that each probably could be
argued as having some aspect which seems to
place it out of the realm of applicability of a
statistical theory. There would still remain, how-
ever, the group phenomena — properties of the
whole ensemble of caves which cannot be at-
tached to the individual members of the group.
The average number of entrances is clearly such
a property as are also the probability relations
developed here. Although we will not be able to
indicate what may happen to any given cave, we
will speak of what is likely to occur to a group
of caves with the passage of time.
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Consider a large number of caves distributed
over an area of relatively uniform geology,
climate, and topography. A continuing random
or stochastic process of formation or reopening
of entrances and closure of entrances will be tak-
ing place. The agents of these processes are, in
general, associated with surface erosion phen-
omena and, to a lesser extent, with the nature
of the caves in question. The assumption will
be made here that this process is taking place on
a fixed population of caves of invariant lengths.
The truth of this depends upon the relative time
scales of external and internal changes. The as-
sumption implies that the genesis of cave en-
trances is much more rapid than the genesis of
internal cavern features. This is likely as the
surface, where entrances form, is subject to a
much harsher environment, involving more
rapid chemical and physical weathering.

We start, then, with a population of caves of
different lengths and with zero, one, or more en-
trances, at some instant of time. As time passes,
the initial conditions of these caves with respect
to numbers of entrances will change. In some
given length of time, a few caves will lose en-
trances, a few will gain entrances and the rest
will remain as they were. Let us consider each
of these processes in turn, in order to deduce the
logical form of a stochastic theory of entrance
evolution.

In a large number of caves with one entrance,
a certain fraction of the entrances will be closed
in some interval of time. It is reasonable to say
that in double the time interval about twice the
number of caves will lose an entrance, as long as
in either case the total number losing entrances
is small compared to the total number of caves.
Furthermore, if all of this group of caves had
two entrances, it is apparent that the number of
caves which would lose an entrance would be
about twice that for single entrance caves, in the
same interval of time. This presupposes that all
present entrances are equally likely to close, an
assumption which might not be quite true, but
which will be taken as a first approximation. We
therefore state the following hypothesis:

The probability (or fraction) of caves with n
entrances losing one entrance in a time interval
At is equal to snAt.

The proportionality constant s is a function
of the influences of the environment.
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As the length of a cave increases, it becomes
ever more likely to possess those features which
are conducive to entrance formation. While it
may not be proper to say that the formation of
an entrance is equally likely along every foot of
a cave — we usually observe entrances at the
terminations of caves — it is reasonable to assume
that some related properties associated with en-
trances such as joint intersections, approaches to
the surface, length relative to topographical
scale, and others, are functions of the length.
Therefore we might expect that on the average
caves of twice the length would be twice as likely
to gain an entrance in some time interval. This
likelihood would also be proportional to the
time interval, as in the case of losing entrances.
We therefore state the following hypothesis:

The probability of caves of length I gaining
an entrance in a time interval At is equal to
rlAL.

The proportionality constant r again depends
on the environment.

It is possible that the existence of an initial
entrance influences the creation of subsequent
entrances, but if the new entrances are reason-
ably separated from the first, this effect should
be negligible. In this analysis, such an effect will
be assumed to be absent.

The remaining possible event of caves neither
gaining nor losing an entrance follows from the
previous two.

The probability of caves of length | and with
n entrances neither gaining or losing an entrance
in a time interval At is equal to I-nsAt-riAt.

These relations define the mechanisms in-
volved. It is now necessary to consider how they
act in order to create the existing distribution of
cave entrances among caves.

At some instant of time, ¢, we would find that
there exists in a population of caves a cer-
tain number, fn, with n entrances; another
number, f - with 7n-r entrances, and still an-
other number of caves, < J with n+r entrances.
We are interested in determining how many
caves with n entrances there will be after some
time interval At. Instead of discussing the actual
number of caves corresponding to a certain num-
of entrances, we may speak of the probability of
caves having n, n-1, or n+r entrances. If the in-
terval of time Af is so short that the event of a

BuLLETIN NuMBER 20, NovEMBER 1958

cave gaining or losing two or more entrances is
extremely small compared with gaining or losing
only one entrance, it follows that the probability
of obtaining caves which are of length [ and have
n entrances at time ¢ + At, p (Ln,t+At), will de-
pend upon:

(a) The probability of caves of length [ with
n-1 entrances at time ¢, p (L,n-1,t) , and the prob-
ability of such caves gaining an entrance, riAt,

(b) The probability of caves of length [ with
n+r entrances at time ¢, p(Ln+r,t), and the
probability of these caves losing an entrance,
s(n+1)At, and

(¢) The probability of caves of lerigth [ with
n entrances at time ¢, p(I,n,t), and the prob-
ability of these caves neither gaining or losing
an entrance, 1-rlIAf-snAt.

Further mathematical development may be
found in the appendix. It suffices for this dis-
cussion to state that an equation may be ob-
tained which describes how the probability of
having caves with n entrances varies with time,
if we know the distribution of lengths. It may be
solved numerically if we are given the lengths
of all the caves and the initial distribution of en-
trances among the caves. It would be found that
the probability of finding caves with n entrances
would approach, in time, a value depending only
on n, ¥, and s, and independent of time. This
would be a mature population of caves in regard
to entrance development and we would speak of
the process as then being in statistical equili-
brium. ‘

When statistical equilibrium is attained, the
probability distribution of entrances does not
change with time. This does not mean that the
opening and closing of entrances has ceased or
slowed down, but rather that they appear and
disappear at such relative rates that the probable
number of caves with some number of entrances
remains fixed. The actual number will vary
about this value as a mean. For example, if we
look at the cave population at different times,
we may find that sometimes there are no caves
with three entrances, and at other times there
are one, two, or more caves with three entrances.
The data we have on the number of caves with
one, two, or more entrances. is only one of a mul-
titude of different possible arrangements. The
time process occurs on an extremely large time
scale for which reason we are not conscious of
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these fiuctuations. It is possible to calculate the
relative frequency with which other arrange-
ments would occur and thereby obtain an esti-
mate of the variation of f o about the mean over
a long time. These estimates are given in Tables
2 and 3 and are discussed in more detail in the
section dealing with results and conclusions.

Since the probabilities do not change with
time at equilibrium, the parameters which de-
termine the distribution should also be inde-
pendent of time. In the statistical theory, the
only parameters which enter are 7, the prob-
ability per foot of cave per year of an entrance
forming; and s, the probability per entrance per
year of an entrance closing. The only combina-
tion of these parameters which does not involve
units of time, as required by the condition of
statistical equilibrium, is the ratio of r to s. This
ratio will be denoted by the Greek letter lambda
\)»

A= T/S.

Since r and s are functions of the environment,
A is also. We may define as a homogeneous re-
gion a region encompassing a population of
caves which have entrances developing by a proc-
ess in which A is everywhere constant. In this
study, A has been evaluated separately for caves
in different length groups in the states of West
Virginia and Pennsylvania. A comparison of the
values obtained indicates to what extent the
areas under consideration are subject to similar
conditions with regard to cave entrance develop-
ment. :

While A is defined in terms of the entrance
genesis phenomenon, it would be expected that
it'is also related to the processes involved in the
internal development of caves. If A is constant
similar internal cavern features might also be ex-
pected within the area.

The statistical theory may be used to corre-
late data. If we take data on the number of caves
with one or more entrances and on their lengths,
the theoretical equation may be “fitted” to ob-
tain the value of » which yields the closest agree-
ment between observation and theory. In mak-
ing this “fit”, it is not necessary to try to make
the theoretical form “pass through™ all the data
points. Only one constant is available for manip-
ulation (A), hence only one constant obtained
from the observations may be used. This number
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from the data is the average number of entrances
per cave for all caves in an area with one or
more entrances and will be given the symbol
alpha (a).

The quantity A, determined from o and cave
lengths, may be used to calculate the number of
caves in the same area which have, at present, no
entrance. In addition, the length distribution for
caves with two or more entrances may be com-
puted and compared with observations, to obtain
a check on the theory. Finally, we may calculate
the length distribution of unknown caves and
obtain in this way the probable number of such
caves longer than any given length.

SELECTION OF DATA

Because of the relative rarity of multi-entrance
caves, it is necessary to study a very large popu-
lation in order to obtain meaningful results
from the statistical analysis. Only two sources
were found to be satisfactory.

As regards the number of detailed reports of
caves, the best reference was for the State of West
Virginia (Davies, 1949) . The second source, with
fewer caves reported, was for Pennsylvania
(Stone, 1953) . The former describes about 400
caves of which the information on 257 was found
suitable according to certain selection rules. Of
the 272 caves described in Pennsylvania, 110
were used.

Even what we are to consider a cave depends
on the size of the explorer, the length of enclosed
passage, knowledge of geological relations, and
the extent of exploration (which may make two
caves into one with two entrances). For this
study, the following selection rules were used.

Criteria for selecting caves

1. The cave is reported and described in either
the West Virginia or Pennsylvania reference.

2. The cave occurs in limestone.

3. Sufficient data is given to ascertain the
length of the cave and its number of entrances.

4. The cave’s total length is greater than 50
feet for Pennsylvania and 100 feet for West Vir-
ginia.

All the caves in each state were considered to
lie in homogencous regions. While it may be
argued that this is not strictly true, it was a
necessary assumption, in order to have a suffici-
ent number of caves upon which to conduct a
statistical analysis. As a result, the possible vari-
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ations in A within each state are averaged in
the final value obtained, according to the con-
tribution by each county (or homogeneous re-
gion) to the total number of caves.

The study was restricted to caves occurring in
limestone. Inclusion of the few caves in sand-
stone and other rocks would have had little effect
on the results, but for the sake of being consist-
ent with regard to geological environment they
were excluded. Some reports were found of
“numerous caves” in certain areas. These and
similar indefinite references were ignored.

As shorter and shorter caves are considered,
some question arises as to whether they are or
are not caves. In reading collected descriptions,
one gets the impression of decisions to omit caves
which are “short” by some indefinite standard.
It is reasonable that this be done, but in order to
have an accurate probability distribution for
lengths, some lower limit must be placed on the
lengths of caves to be included. The calculated
value of A should not depend on this limit, but
the calculated number of undiscovered caves
will. In the case of West Virginia, the decision
was made to include only those caves which are
longer than 100 feet. In Pennsylvania, where
there are fewer caves and the indication is that
short caves have been retained in reports, the
limit was placed at 50 feet. This “rule” accounts
for most of the caves which were not included.

Criteria for determining length

1. Only horizontal distances are considered.

2. Total traversable length is summed, includ-
ing different levels and parallel passages.

If a total length was unambiguously stated, it
was used without question. In some caves, how-
ever, the final length came about by a process
of interpretation, judgment, and addition, ap-
plied to each cave. The judgment used may have
introduced errors, but, because even the best
reported lengths are probably accurate within
109, and reported values like “300 yards” repre-
sent even greater probability of error, it was not
thought of value to refine the process.

Criteria for counting entrances

1. The entrance is natural.

2. The entrance is large enough to permit
entry by an adult human being.

3. The entrance exists now or is reported to
have existed, but it is now closed as a result of
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human activity and the cave meets all other con-
ditions for acceptability.

Caves in quarries were excluded. They are, in-
deed, to be classed with the zero entrance caves.
Quite a few caves have been reported in quarries
in Pennsylvania and relatively few in West Vir-
ginia. Possibly this may be because of greater
quarrying activity in Pennsylvania. It is also not
known where entrances may have existed prior
to the quarrying operation. Unless reported
otherwise, they were assumed not to have existed.
Entrances produced by roadcuts and other con-
struction work fall, of course, in the same cate-
gory as caves in quarries.

A vague dividing line occurs for caves which
were first entered by some excavating — perhaps
such a trivial thing as dislodging a small stone.
By the formal definition, the latter would be an
entranceless cave. If necessary, the definition
could be modified to allow some small excavat-
ing work such as that which can be done only
by hand. However, since such a fact is seldom
reported, some caves are probably incorrectly
included. For the purposes of the present com-
putations, it was assumed that reporting was
accurate, and caves were accepted as reported.

After the data suitable for use in the com-
putations had been selected, the calculations
were performed. This involved the determina-
tion of the average number of entrances for
known caves, separate numerical computations
on the data of the 367 caves tabulated, and sub-
sequent operations to obtain the desired num-
bers. The magnitude of this task would have
made hand computation lengthy and subject to
many errors. The computations were pro-
grammed for an electronic digital computer and
run with the data on caves of West Virginia and
Pennsylvania in groups having different lower
lengths.

REsuLTs AND CONCLUSIONS

In Tables 2 and § are shown some of the re-
sults of the calculations. Included are the ob-
served and theoretical frequencies of caves with
n entrances, an estimate of the standard errors
of the predictions, the value of A determined for
different length groups and the comparable re-
sults obtained by use of the Poisson distribution.
The values of expected frequencies are given to
the nearest tenth, though they were calculated
to more places.
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Table 2.

Results of Calculations for Caves of West Virginia

Constants and Frequencies of Caves with and without Entrances

Caves Average Number Observed Expected Poisson Distribution
longer | Number number " of frequency frequency Expected
than: M) entrances entrances (£) (m ) A¥ frequency
(feet) () (n) R 2 (£
100 257 1.13 0.00032 0.25
0 (10) 2405 4+ 395 893 .+ 16
1 228 228.7 + 15 226 + 15
2 25 23.7+ 4.9 28.5 + 5.3
3 3 3.6 x 1.9 2.3 1.6
4 1 0.7+ 0.9 0.1 + 0.4
5 0 0.2+ O0.b 0.0% 0.1
500 124 1.24 0.00033. 0.45
0 - 350 & 59 228+ 37
1 39 99.9 + 10 98.2 + 9.9
2 21 19.3 + 4. 22,1+ b7
3 3 3.7+ 1.9 3.3+ 1.8
b 1 0.8 + 0.9 0.4 + 0.6
5 0 0.2 0.k 0.0+ 0.2
1000 64 1.33 0.00031 0.60
0 - 08 o+ 21 B 4+ 15
1 48 47.6 + 6.9 L6.8 + 6.8
2 12 2.8+ 3.6 .03 5.7
3 3 2.8+ 1.7 2.8 + 1.7
b 1 0.6 + 0.8 0.4 + 0.6
5 0 0.1+ 0.3 0.0+ 0.2
Table 3. Results of Calculations for Caves of Pennsylvania
Constants and Frequencies of Caves with and without Entrances
Caves Average Number Observed Expected Poisson Distribution
longer | Number number of frequency frequency Expected
than: (M) entrances A entrances (gn) (gn) A% frequency
(feet) (@) (m) = = (£0%)
50 110 1.12 0.00035 ‘ 0.23%
0 (55) 2109  + 562 431 4115
1 99 99.3 + 10 98.0 + 9.9
2 9 8.8% 3.0 1.1+ 33
3 2 1.5% 1.2 0.8% 0.9
i ] 0.0+ 0.2 0.0+ 0.2
5 0 0.0 + 0.0 0.0+ 0.0
100 78 1.15 0.00034 0.31
0 (50) 701+ 208 212+ 63
1 68 68.1 + 8.2 66.4b + 8.2
2 8 8.2% 2.9 0.4+ 3.2
3 2 1.k + 1.2 1.1+ 1.0
N 0 0.3+ 0.5 0.1+ 0.3
5 o] 0.0 + 0.2 0.0+ 0.1
500 33 1.09 0.00013 0.18
0 = 238  +135 67T + 95
1 31 30.2 + 5.5 30.1 + 5.5
2 1 2.6 + 1.6 2.7+ 1.6
3 1 0.2+ 0.k 0.2+ 0.4
b 0 0.0% 0.1 0.0+ 0.1
5 0 0.0 + 0.0 0.0 + 0.0
1000 21 1,14 0.00016 0.27
0 - 79 o+ Lk 61 + 37
1 19 18.3 + 4.3 18.3 + 4.3
2 1 243 1.6 2.5+ 1.6
3 1 0.3 + 0.5 0.2+ 0.5
4 (o} 0.0 + 0.1 0.0+ 0.1
5 0 0.0 + 0.0 0.0 + 0.0
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Homogeneity of West Virginia and Pennsylvania
The data for caves of the two states were cal-
culated separately for a number of lower limits
on the length. This, in effect, separated the caves
into a number of groups, representing different
areas within each state. As the lower limit was
raised, the number of included caves decreased.

If the assumption of homogeneity made in the
analysis is not justified, it would show up in a
variation of A between the groups. It is an im-
portant result that such has not been found to
be the case. In fact, the constancy of the para-
meter A between the states as well as within the
states is quite significant. We may conclude that
the caves in these states are located in essentially
the same geologic and climatic region; a result
agreeing with simple observation.

The deviation of A in the two upper length
groups of Pennsylvania may be due to either in-
homogeneity or to insufficient data. The num-
bers of caves represented in these groups have
decreased to 31 and 21 respectively and results
obtained from such limited data is subject to
error.

Now Al is the ratio, for a cave of length I, of
the probability of gaining an entrance to the
probability of losing an entrance. With the value
of A given in Tables 2 and 3, the product Al
would have the value Al = 1 for a cave approxi-
mately 3000 feet long. Since most caves are
shorter than this, it is a general result that caves
are more likely to lose their entrances than to
gain entrances. Of course, the calculated value of
A is a consequence of this fact. The destruction
of a cave entrance might be looked upon as the
“natural” event, in that almost any collapse,
slip, silting, etc., tend to fill holes which might
otherwise be traversable, and it is the rarer case
when these actions not only disclose an aperture,
but leave its entire length traversable to a human
being.

Distribution of Cave Entrances

The agreement in Tables 2 and 3 between ob-
served and calculated frequencies of caves with
different numbers of entrances is excellent. One
cannot say, though, that it is appreciably less
excellent for the ordinary Poisson distribution.
In both cases A was calculated so as to have the
best agreement, but the only value that was
needed from the data on entrances was the aver-
age number of entrances for caves with one or
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more entrances. However, based solely on the
Poisson distribution, an extrapolation to find the
number of caves with no entrances is unconvinc-
ing. With the statistical theory to indicate a
mechanism accounting for the existence of such
caves, the extrapolation may be performed with
some confidence. This fact and the agreement
between theory and fact support the hypotheses
in the theory.

Standard errors are given in Tables 2 and 3 for
the expected frequencies. If we had an a priori
value of A for a population of caves, we would
calculate the expected frequency distributions
shown in the tables. If we inspected the popula-
tion, we would find that there would be different
frequencies than we had calculated. This has al-
ready been explained in terms of the fluctuations
about the “probable” frequencies which would
occur with time in a population in statistical
equilibrium. The observed differences between
the expected and observed frequencies are well
within the standard errors so we are given by
this test no reason to doubt the proposed me-
chanism.

Standard errors are given also for the values
of m-. If the theory is reasonably correct, the
probability that m_ differs from its predicted
value in either direction by more than the given
standard error is equal to 0.82. That it would
differ by more than twice as much has a prob-
ability of 0.05.

The frequencies of “observed” caves with no
entrances, given in Tables 2 and 3, refer to caves
in quarries and roadcuts. It is interesting that of
the eleven commercial caves reported in Pennsyl-
vania, four were found during quarrying opera-
tions and one was found while grading for a
highway. There seems little doubt that there are
many more extensive caves which would be un-
covered if such operations were carried on in
other locations.

The ratio of unknown caves to known caves
depends upon the length group considered. It is
apparent from the theory that most very long
caves would be likely to have an entrance. In
the present cases, there are predicted to be about
20 times as many caves without entrances as with
for caves over 50 feet long. For caves over 100
feet long the ratio is about 10, and for those over
1000 feet about 2. If we consider the 100 foot
cave as the reasonable lower limit of our general
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Figure 1

Distribution functions of length for caves of West Virginia over 100 feet long, according to
number of entrances. Comparisons of observed and predicted distributions, The lines are
shown only to connect related points.

concern about the existence or non-existence of
sealed caves, the calculated ratio of 10 unknown
caves to every known cave is comparable to the
estimates which have been made by those fam-
iliar with caves and cave regions (Folsom, 1956) .

Distribution of Cave Lengths

A mathematical result of the statistical theory
is that it is possible to calculate, starting with
the observed fraction of caves with one entrance
whose lengths are greater than any given value,
the same fraction for caves with zero, two or
more entrances, This is a very useful result. Not
only can we estimate the number of caves with-
out an entrance, but we can also estimate their
lengths. Figures 1 and 2 present the results of
these calculations. In Figures 1 and 2 the frac-
tion of caves longer than 100 feet, with lengths
greater than some given length, is plotted versus
cave length. This relation is called a distribution
function of lengths. The logarithmic abscissa is
used to contract the extent of the graph in the
region of great length.
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Because of the method of computation, the
curves are not smooth. In order to simplify the
calculations, only eleven values of length were
used to find these distribution functions. Little
would have been gained by a finer division.

The observed distribution functions for caves
with one entrance in West Virginia and Penn-
sylvania are quite similar. The median length
of caves over 100 feet long with one entrance
is about 380 feet, and the average length about
680 feet. Using the single entrance distribution
functions for caves of both states, the distribution
functions were computed for caves with two
entrances. In Figure 1 is shown the result for
the caves of West Virginia. Quite good agreement
is found between the observed and predicted
length distributions for caves with two entrances.
This result gives additional confirmation to the
hypotheses in the statistical theory, since the pre-
diction is based only on the data for caves with
one entrance and is independent of A, and hence
of 4. The length predictions, furthermore, did
not require that a “fit” be made to data.
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Figure 2
Distribution functions of lengths for caves of Pennsylvania over 100 feet long, according to
number of entrances:s Comparisons of observed and predicted distributions. The lines are
. shown only to connect related points.

The agreement between theory and observa-
tion for caves with three entrances in West Vir-
ginia is poorer. Only three caves in West Virginia
are reported to have three natural entrances
(Steeles Cave, Monroe County, 1700 feet; Mystic
Cave, Pendleton County, 3700 feet; and Snede-
gars Cave, Pocahontas County, 3100 feet). It
would be extremely fortuitous for their lengths
to be just right to be correlated by the theoreti-
cal predictions. As it is there is agreement in the
fact that the theory predicts that caves with three
entrances should be long caves on the average,
which is what is observed. The predicted average
length of 2500 feet agrees well with the observed
2800 foot average length.

The predicted distribution function for caves
with four entrances is included in Figure 1. Since
there is only one such cave reported in West Vir-
ginia (Greenville Saltpeter Cave, Monroe
County: over 13,000 feet), it is not possible to
make a valid comparison except to note that the
one four-entrance cave is also an exceptionally
long cave. -
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The major source of error in extrapolating to
n larger than one is the emphasis on the longer
caves in forming these distribution functions. As
n increases, the calculated function depends
upon fewer and fewer caves and acquires the ills
associated with working with limited data.

In West Virginia the longest cave with one en-
trance was reported to be Patton Cave, Monroe
County, 5500 feet. Since the distribution func-
tion from which . numerical calculations were
made thus became zero at 5500 feet, so did all
derived distribution functions. It would have
been possible to fit some best equation to the
observed distribution before performing the
mathematical operations, but it was thought that
this would distort the significance of the results.
Instead it is concluded that the predictions at
great length are probably in error.

The prediction of the length distribution
function for caves with n = 0, depending most
strongly on a large number of shorter caves hav-
ing lengths known with greater accuracy, may
be expected to be more accurate. We can con-
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clude from an examination of Figure 1 that caves
which at present have no entrances are short
caves on the average. Their median length is ap-
proximately 175 feet and their average length
about 290 feet. Since this plot gives the fraction
of caves longer than some length, and we have
an estimate {rom Table 2 of the number of caves
without entrances, we can estimate the number
of caves without entrances which are longer than
some given length. For example, the probable
number of unknown caves in West Virginia
which are longer than 1000 feet is about 96.

Figure 2 presents the equivalent results for
Pennsylvania. The conclusions are similar except
that in Figure 2 there is no agreement between
the predicted and observed distributions for
n = 2. There appears to be an unusually large
proportion of short caves with two entrances.
Eight such caves were counted, and there was
doubt whether some of them should have been
included. The report on Dump Cave, Mifflin
County; 110 feet, the shortest, leaves some ques-
tion as to the history and condition of its second
entrance. Even more questionable is the inclu-
sion of Baker Cave No. 2, Franklin County; 150
feet. Excluding some of the doubtful cases from
the two-entrance tabulation would improve the
agreement between observation and prediction,
but to do so would contribute no new knowl-
edge — therefore the results are presented as
originally obtained.

The Pennsylvania caves with three entrances
are too few in number — Auchenbaugh Cave,
Franklin County; 300 feet; and Bear Cave, West-
moreland County; 4000 feet — to allow compari-
son except to note that the average length of
these caves is 2100 feet and the predicted average
length is 2200 feet. This is fortuitous but agree-
able. ~ i

The probable number of unknown caves over
1000 feet long in Pennsylvania is about 35.

RATE OF ENTRANCE DEVELOPMENT.

No information is available from this analysis
to suggest the magnitude of the parameters r or
s. These parameters depend on the time process
and can be obtained only from records of the
rate of entrance formation or closure. There may
be some reason to believe that the present rate

of these processes is different from that in the

near past. There is the possibility of a very rapid
rate having established statistical equilibrium

18

with subsequent relatively static conditions. Both
r and s could have varied together in the past,
without the fact being evident because A is a
ratio of r to s.

In the state of West Virginia not one entrance
was reported to have opened naturally in the
period of human record. One cave of known
length was reported to have closed (Mitchell
Cave, Monroe County, 2000 feet), presumably
by natural causes. This is inadequate data on
which to base an estimate of r and s, but pro-
ceeding regardless, assuming a fifty year record,
we find that the probability of an entrance clos-
ing in one year is about 0.00007. This is equiva-
lent to a “life-time” of an entrance in the order
of 14,500 years. This estimate is probably con-
servative with the present climatic conditions.
However, under weather conditions such as occur
immediately after glacial periods, the entrance
life-time may have well been this value; or even
less. Similarly, from the value of A and 7, we find
that the probability of an entrance forming in
one year per thousand feet of cave is of the order
0.00002 and the equivalent life-time of a 1000
foot cave without an entrance is of the order of
45,000 years. A hundred foot cave would have
a life-time ten times as great. As implied at the
heginning of this set of estimates, caution is re-
quired when stating values for r and s, based on
the single available datum. However, the values
estimated are not unreasonable and they suggest
that entrance development is relatively more
rapid than the development of the caves them-
selves; a hypothesis which was basic to the sta-
tistical theory.

ProPERTIES OF CAVES WITHOUT ENTRANCES

It has been suggested here that undiscovered
caves are, in general, caves without entrances.
This would only be exactly true in an area which
has been thoroughly explored. Although it is
praobable that the reporting of what we consider
as caves with entrances is incomplete, it is not
believed that further scouting and discovery will
find anywhere near as many caves as, for ex-
ample, the 2400 in West Virginia which are pre-
dicted to have no entrances. Furthermore, the
discovery of new caves with entrances would only
change the relative results. If further caves are
found without excavating they should have
much the same distribution of number of en-
trances, lengths, etc., as the presently known
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caves if there is no relation between length or
number of entrances and the ease of discovery.
This latter is true where the limitation on' dis-
covery comes about because of limitations on the
areas searched rather than the ease of discovery.
It is suggested that this is usually the case; new
caves in most known cave areas commonly re-
quire some excavation. With the discovery of
additional caves not requiring excavation the re-
sults of this paper would be scaled upward by
the ratio of the total caves to the number now
known. Any new caves discovered that require
some excavating to enter would be examples of
what this paper considers as entranceless caves
and hence would not modify the numerical re-
sults.*

The caves without entrances have the length
distribution shown in Figures 1 and 2. Other
properties of such caves should, on the average,
be the same as those of all the known caves, ex-
cept for those aspects which depend on having
an entrance traversable by man. An entrance of
such a minimum size, or larger, will admit large
animals and, depending upon the cave config-
uration, contribute some effect to the humidity,
temperature, etc., of the cave interior. These in
turn affect the environment for cave fauna and

flora. Many of the caves which are considered

*The addenda to Davies (1949) in Bulletin 19 of the
National Speleological Society (December 1957) reports
119 new caves in West Virginia. 21 meet the selection
rules of this paper. The length distribution of the 20
of these caves with one entrance agrees very closely with
the previous data up to 630 feet. For greater length the
new caves exhibit a somewhat greater average length.
This trend agrees with the correction required for the
previous results to account for the additional length re-
ported for some previously described caves, and especially
for the introduction of a new very long cave (Culverson
Creek Cave, 10,800 feet, one entrance) The length dis-
tribution functions should now become zero at 10,800
feet rather than 5,500 feet.

From a population of 21 new caves about 2 =+ 1.4 should
have 2 entrances. One is reported, the Carpenter’s Pit-
Swago Pit system, with a length of 8,850 feet.

A recent addition to Pennsylvania data is by Bernard
L. Smeltzer and Ralph W. Stone in the Bulletin of the
Pennsylvania Department of Internal Affairs, vol. 24, no.
5, April 1956. Seventeen new caves are described, nine

being in quarries and cuts. Those over 100 feet long with ’

natural entrances have lengths in rough agreement with
Figure 2, n = 1 (112’, 600", 880’ and 1620°). None have
more than one entrance.

It is concluded that the newly reported caves in botk
states probably come from the same populations of
“open” caves as the previously reported sets, and hence
do not themselves represent any of the entranceless caves
(except of course for the new quarry caves). Therefore
the predictions of the number of zero entrance caves in
each state should be scaled upward proportionately.
These changes, 4 215 and 4 81 in West Virginia and
Pennsylvania respectively for. caves over 100 feet long, are
less than the standard errors of the original estimates.
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entranceless by the criteria of this paper would
still allow appreciable access to smaller animals
and air and hence would be part of the same in-
ternal environment family as caves with en-
trances. As the cave entrance becomes smaller the
internal environment will change, on the aver-
age, toward higher humidity, perhaps higher
temperature, less illumination in the “entrance”
passages, poorer air circulation, etc. These
changes may, for example, change the pattern
of flowstone deposition, make an interior room
unsuitable for bat habitation, or lead to modi-
fications (or exclusion) of life in the twilight
zone of the cave. As the sealing of caves becomes
more complete, these effects become more pro-
nounced. A completely sealed cave with stagnant
air may be expected to present a much altered
environment for many cavern features from that
found in presently accessible caves. The full
range of extent of closure will be found among
what are here called entranceless caves.

The statistical theory unfortunately contrib-
utes nothing toward determining the location of
any of the caves without entrances.

CONCLUSION

A more complex model would be justified only
if some important phenomena are found to be
omitted from the present analysis. Just as we
might have said that the Poisson distribution
was adequate if we did not realize that length
was an important variable and that A should be
constant for all caves in an area, we may say that
the present model is adequate because we do not
yet perceive the relations which still require ex-
planation. The completeness of the theory has
been tested by its ability to correlate the fre-
quencies of caves with different numbers of en-
trances, and by its ability to predict with reason-
able accuracy the length distribution of cave with
more than one entrance using only the lengths
of caves with one entrance. The ultimate test is
to count the number of caves without entrances
and determine their lengths, but this procedure
is unavailable to us.
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APPENDIX

The stochastic process
Pigure 3 is a taticn of the stochastic model

of cave entrance genesis. The joint probability, p(£,n,t+at), is the sum
of the three mutually exclusive joint probabilities, p(s,n-1,t,A),
v{4,n,t,C), and p(2,n+1,t,B). In addition

{1) " p(a/s,n-1,t) = TiOL ,

{2) p(B/3,n41,t) = s{nsr)at ,

and

(3) p(C/4,0,t) = L-rist-smat )

from wne section Statistical Theory. ‘Only terms first order in At have
‘been retained.

The stochastic process may be written

() P(2,m,4408) = B(£,0-3,,4) + P(£,0,%,C) + P(£,041,1,B)
or, using (1}, (2) and (3),
(5) p(4,0,1488) = p(£,n-1,8)}(x88) + P(£,0,1) (L-reot-snat)

+ p(£,n4+1,t)(s(n+1)at)

ugh by sat, b

G R(4,n,0408) - p(4,m,8) *""M'!m" £18) | (n41)p(8,ne1,8) - (narg)p(£,n,t)
+ Mp(4,0-1,t)

which, after rearranging and ng

vhere A =.1/s.

In the limit At —=» O the left hand term in (6) becomes the partial
derivative of p(£,n,t) with respect to t. We know from physical reasoning
that the solution to (§) in the differential-difference form reaches an
asymptotic value for large t which is independent of its initial value.
The left hand term of (6} becames zero when this asymptotic condition
of statistical equilibrium is reached. Since we are intereated here only
in the case of statistical equilibrium, setting the rignt hand term of
(6) equal to zero and rearranging, we obtain
(7} [(n*x)p(l,nu) - Mp(l,nﬂ - Elp(l,n) - Mp(l,n-xﬂ =0
which 1s satisfied by the condition
(8) (n+1)p(£,m+1) - A8p(£,n) = c,g(4) 8
where g is an undefined function of £, The sum
(9) pln) =1

n=b
by definition so p(n) must approach zers at least as fast as 1/n? as
n —> o, Hence the left hand terms of (8) must approach zero as n —=> =,
hence ¢; = 0. Equation (8) become:

{10) (n+1)p{e,n41) - A2p(£,n) = O

which has the solution
n
@) plen) = 28 pe,0)

Probability distribution of n

Equation {11) states that the Joint probability p(4,n) is a
Poisson probability distribution in the variable AZ. The probability
p(n) is one marginal distributfon of (11) and may be obtained by inte-
grating {11) over all £, ’

o8 n
a2 e = [T Bl pis,00a
o

Now, p(4,0) is not available since we can directly observe

nothing about the cm n = 0, However, {rom the available conditional
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probability p(4/1), p(4,0) may be obtained and hence (12) evaluated.
rrom (11),

(13} p(s,0) - R

and also
(1k) p(4,1) = p(£/1)p(2)
8o therefore, together with (12),we obtain the formula

. n=-1
@ em e [T h sy
o

‘The condition (9) suffices for the evaluation of p{1) from (15). The
ocomplete expression for p(n) is then

f' M.——nl_m pls/1)as

(16) pn) =2

= M
Eva p(8/1)az

The value of A may be determined from data by obtaining the beat
£it of (16) to the empirical probability distribution, However, since data
are only available for n £ 0, a truncated probability distribution must be
formed from (1%) using the condition

17 S o) -2
Qan nEp(n)

From (15) and (17) we obtain the truncated probability distritutiom,
analogous to (16),

j - -‘ﬁx);: p(#/1)az

t Lo
(18) p'(n) === 3
V3 p(8/1)a2

This is the relation which may be used to find A from data by
"fitting" to the observed frequencies fn.

The technique used here to find the best estimaté of A for an
observed cave population is known as the maximum likelthood method (4).

In this method the derivative with respect to A is teken of the

logarithm of the likelihood function, and equated to zero, viz.:
£
) Suwfewm.o
n=1

This derivation will not be continued here but the result is that the
best estimate of A is obtained by caleulating from (18) the average
number of entrances for caves with ome or more enirances and settiing
this equal to the cbserved velue, From (18} and the definftion of an
average value we find

f- M p{£/1)ds

T AT
jo €772 plafras

(20) 1= i np'(n)
n=1

while the value from data is
(a1) o -% 3 n; (i over all caves in M) )
i

where M is the total number of known caves.

Equating (20) and (21) we obtain the integral equation which
determines A from the observed value of « and the probability distribu-
tion of £ for n = 1,

j: ™ p(a/1)ae
(22) o=

e
S vue
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The method used to solve this equation will be described in the
subsequent section on Numerical Procedure,

When A is obtained, equation (18) ylelds p'(n) and the predicted
values of the number of caves with n entrances, m,, mAY be found from
(23) m, = Mp'(n)

Frequency distribution of lengths
Inserting p(£,0) from (13) into (11), and writing the Joint
probabilities as the product of the conditionel and marginal probability

distributions, we obtain
n-x
@) pls/mpm) = QA py0)
Recognizing that equation (15) is equivalent to
03—
(@) () = p1) L 07

the bar indicating the average value over all caves with one entrance of

£ we may divide (24) by (25) to obtain

(26) p(£/n) = p(l/l)

£y
or, from the definition of a distribution funetion,

@) ar(efn) - B ar(n)
Exn-l

N
F(¢/n) is the frequency distribution function of lengtns for caves with
n entrances.

The average length of caves with n entrances may be obtained

from (26) in the form
(28) T

The averages are again over all caves with one entrance in the term on
the right. Similar expressions arise for averages of higher powers of
length.

Numerical progedure
Only basic aspects of the computational procedure will be

described below. Details of the computer program and various arithmetical
manipulations to obtain results in the desired forms are not presented.

The data used in this study consisted of length and entrance
information on individual caves.

{a) Evaluation of a.
1 1
(29) a=g zn: nf, =% g n, (i over all caves in M)

(b) Eveluation of A.
Equation (22) may be written, using the identity p(¢/1)dz =
dF(£/1),

j'“ M ar(s/1)

j aF (/1)

Now, F(£/1) is not available as a continuous function, but

(30)

rather as a series of steps as a function of 2. If plotted, each step
would correspond to a single cave and would be of size 1/f;. At some
lengths possessed by more than one cave, a number of such steps would

add up to a larger step. Since the numerator and denominator of (30}
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represent the areas under curves of the arguments versus F(2/1), equation
(30) may be approximated, using the actual data, by the expresiion

Z M,

(31) I~ M
fx Y

(1 over sll caves in f,),

Equation (31) becomes, after expanding the exponentials in their
Taylor series (noting that the summations over each term, divided by f,,
are the average values),

1 3 PN
(32) 1+M1+ Ta+%!-zs+....+;-!-l,_v+....
Vo ——

1 +%!-£1 +3 7’ %r?{- é(v—tiﬁllv + s

This may be rewritten as the polynomial expression in A

(33) (1-(1)+(1-~))J1+(1-—)—'\—)\2+(1-E)—%-3+‘...+

+(1-v‘i‘1)%’!‘—+....
In an actusl numerical computation a choice must be made at this point as
1o how many terms of the infinite series ;1111 be used. This depends upon
the rapidity of convergence of the series. In the present computation
there is another consideration. The higher powers of £ depend essentially
on the data-for only one cave and are strongly influenced by small errors
in the length. If the series has not converged before this happens ; the
resulting value of A may be strongly in error. Therefore the serics was
terminated at the term which represented the data of essentially only one
cave, In the machine computation, equation (33) was solved by means of
Newton's method, keeping all terms up to the sixth power of A. It was
subsequently found that the last term became negligibly small with respect
to the others,

Newton's method is an iterative procedure which converges very
rapidly if an initial close velue of A is used. Since we ncpe %nat the
caleulated p'(n) will fit the observed distribution, a good starting
value should be that which makes the calculated curve fit the data

exactly at n = 1 and n = 2, The ratio

L} 1 i ¢
(34) 3 g
p'{2 %,\ =
therefore .
) -2l
£p' (1)

which may be approximated by using the ratio of the observed frequencies
f; and fa.

(%) axZz
£ 1y

Using this initial value, Newton's method converged in abcut
four iterations to 0.01%.
Usiné the notation of equation (31), equation (18) may be put

into the form

‘Zu'*L_

(37) p'(n) = To
f—:. 2 K‘i,x
or
1_')}1—1 l;n'l
(38) p'(n) = :' V= 3
1 +%}'—1+ﬁ‘_‘2* +v—!IV+ o

from which p'(n) was obtained numerically. With the formulae (23) m, wes

computed.

21



The distribution function for lengths was obtained from

cave of length £
1. n-1
== 3a,

1.(longest cave)

(39) F(¢/n) =

f:. ‘1!1-1

the sumnmation being carried out with the caves arranged in order of
decreasing length,
Poisson distribution

The Poisson distribution, mentioned in the INTRODUCTION and
used for comparison purposes in RESULTS, is derived in detail in many
books (4). The expression equivalent to (16) for the Poisson distribu-
tion is

e A¥
nl

(40} r*n) =
and, equivalent to the truncated disiribution of (18),

e

(41) H(R) =
. P 'n.(e)‘*-l)

Standard errors of predictions

The frequencies [n would be found to be distributed according to the

Poiason distribution
£

-Mp'(n) (oo n

(u2) ple/n) = E___f_sﬂ."_ﬂﬂu_
e

if an original population of M known caves and the assocliated ones with

zero entrances could be obsgerved over a very long time. The mean fn is

the expected frequency Mp'(n). The standard deviation is

(43) oy = Mp'(n} - n {0,
The standard error of the predicted values of mg may be shown

10 be given, to a first approximation, by

o0

~

(k) amo ¥ g mo ,

in which & is the standard error of the sample estimate of ¢, and is

equal to

P " g

(¥5) o = gt

where ¢, the standard deviation of p'(n), may'be approximated by using
the Poisson distribution representation for p'(n) and the sample valu;:

of @. For this case it is found that

(46) o = V(T +a%-a)) ,

where A*is the transcendental function of @,

w7 —H,l = x- @

SYMBOLS

A Tne event of a cave of length £ and n-1 entrances at time
gaining an entrance in the time interval At

B The event of a cave of length £ and n+:i éntrances at time t
losing an entrance in the time interval At '

c The event of a cave of length ¢ and n entrances at time t
neither losing or gaining an entrance in the time interval At

f Observed frequency (number) of cav?s

F Distribution function of cave lengths

£ Cave length, feet

m Predicted frequency (number) of caves

M Total number of observed caves with one or more entrances

n Number of entrances

P Probability function

r Probability per foot per year of a cave gaining an entrance

8 Probability per entrance per year of & cave losing an entrance

t Time
Average number of entirances for caves with one or more entrances
Increment of ....

S Ratio of probability of a cave gaining an entrance per foot to
probability of a cave losing an entrance per entrance; r/s

Subseripts

i Summing index for individual caves

n Number of entrances

QOthers

* Poisson-distribution function

] Average value

Truncated probability distributions

n-/

tiA !

/ !

n+/

s

n-/ n
(b)

.

Figure 3. Schematic repr tation of the stochastic
model of cave entrance genesis, The heights of the
columns represent the number of caves with each number
of entrances or, equivalently, the probabilities of caves
having each mumber of entrances ( p( £,n,t), etc...}).
(a) The situation at time t. The shaded portions A, B,
and C represent respectively the fraction of caves of
length £ and n-1 entrances which will gain an entrance
in the time interval At; the fraction of caves of
length £ and n+l entrances which will lose an entrance
in the time interval At; and the fraction of caves of
length £ and n entrances which will neither gain nor
lose an entrance in the time interval At. The unshaded
portions represent the fractions of the number of caves
with each mmber of entrances which will noi appear
with n entrances at time t+st, i.e. caves with n+l
entrances gaining an entrance, etc... (b) The situa-
tion at time t+at, The number (or probability) of
caveas with n entrances at time t+at is composed of the
contributions from the states of n-l, n, and n+l

~_ entrances at time t. Of course there also exist values

at n-1 and n+l but these have been omitted from the
drawing.

A similar development may be used to find the
probability of there being exactly £, cdves at time t
with n entrances. The result of such an anslysis is
given in Equation (42).
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