Stochastic Models of Cavern Development

by RANE L. CURL

ABSTRACT——A population of caves evolves from a population of cave precur-
sors consisting of joint systems of different complexity, which are subject to the
invasion of solvent water whose source, composition, and availability vary in
space and time. Although phenomenological theories have had considerable
success in the identification and explanation of the succession of geomorphic
processes responsible for cave development, these processes also produce mani-
festations in a cave population related to processes of a random or stochastic
nature.

Stochastic models have been constructed to mathematically reproduce the
evolution of a particular population manifestation, namely the distribution of
cave lengths. Intuitively “simple” mechanisms for the rate of cave growth
and decay have been used for this purpose. The theories provide a quantita-
tive description of the evolution of cave length distributions and, conversely,
some attributes of cave precursors which would lead to present-day length dis-
tributions. An estimate of the length distribution of all caves more than 100
feet long in West Virginia is used for these comparisons.

The complexity of the evolutionary process of cave populations and the
urge to select evolutionary mechanisms which are subjectively simple as well as
mathematically tractable are perhaps contradictory; but stochastic-process con-
cepts are essential for a more quantitative understanding of the cavern cycle,

and simple models may serve as a point of departure.

INTRODUCTION

A stochastic process is one containing
events attributable to chance or random-
ness. The word stochastic is preferred to the
other terms, as it implies the presence of
both deterministic and indeterministic as-
pects to a process. The presence of random
elements in geomorphic processes is the rule
rather than the exception, though for many
descriptive purposes it has not been neces-
sary to give specific consideration to those
aspects of land forms which are the product
of these random elements. Some examples
of the latter are the distribution and
amounts of rainfall; variations in rock
structure and composition; and location
and type of vegetation cover. Geomorphic
processes which reflect the influence of
random elements are drainage patterns;
meander development; stream piracy; and
the development of terrain in general.
Thornbury (1954, p. 114) writes: “Inse-
quent valleys are those whose courses are
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controlled by factors which are not de-
terminable. They show no apparent ad-
justment to structure or initial slopes and
seemingly developed where they are by
chance. This undoubtedly was not so but
the controlling factors escape detection”.
It appears that insequent valleys are the
result of processes in which the determinant
features are more obscure than the chance
features. Thornbury’s reservation on the
role of random elements probably arises
from a desire to relate specific forms to
specific processes but his phrasing might
also be applied to another random process
as in the toss of dice, for there too “con-
trolling factors escape detection”.

When we say that the cause of a particu-
lar landscape form is a certain process,
we have stated a theory for the evolution of
that form. When such a theory is made
quantitative using mathematics it is often
called a model because the theory then re-
produces in its symbolism some behavior
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of the physical process. A model is necessar-
ily a simplification of the real process. We
choose events in constructing a model which
are in our view simple, and the form of a
model will be conditioned by the ideas
already held and the understanding we
have already gained. It is therefore not
surprising that a model must often be
modified or discarded because it can no
longer, without contradiction, include all
observations or because its bases are found
to be not so “simple” as first supposed. A
stochastic model applied to cave develop-
ment must be constructed from the knowl-
edge used in existing genetic theories.

The author has already proposed a
stochastic model for the evolution of cave
entrances (Curl, 1958). Stochastic models
have for some time found application in
a number of fields. Neyman and Scott
(1959) in reviewing some of these wrote,
“A few simple chance mechanisms may
combine to reproduce many manifestations
of a complex phenomenon..” Terrain
analysis studies are the results of the sto-
chastic processes of terrain development
with the aid of statistical methods.

In the subsequent sections cave, cave
population, the distribution of cave lengths,
and possible processes in a stochastic model
of ‘cavern development will be defined, dis-
cussed, and applied to the evolution of cave
length distributions. The derivation of the
models will use the Davis (1930) two-cycle
theory of cave origin which implies that
cave growth, transition to vadose conditions,
and finally decay, are consecutive and non-
overlapping epochs. One-cycle caves (after
Davis) will not be considered.

Each epoch including growth, transition,
and decay, will be considered in turn, after
which a composite model wilt be given for
West Virginia caves. In particular an at-
tempt will be made to explain the length
distribution of all caves in West Virginia
which is shown in figure 1. The discussion
will be directed toward seeking reasonable
assumptions concerning the quantitative
dspects of the particular processes. Because
of lack of space the mathematical develop-
ment- of each case has been omitted and
only the results presented.
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Distribution function of length for caves in

West Virginia, where F is the fraction of caves

longer than a given length: (a) all caves longer

than 100 feet; (b) all such caves with only one
entrance.

CAVE POPULATIONS

A cave population is an ensemble of
caves related by proximity or other features
useful for classification. When Davis urged
the collection of better and more extensive
data on certain cave features he had already
implicitly used the idea of populations of
caves developing by similar means and
possessing similar genetic characteristics.
From the limited data then available he
sought to deduce population characteristics
which should be observed. The existence of
more extensive data today permits the
population view of certain cave feature
origin presented here,

The individual cave is the element or
member of the cave population. It may be
a single solution cavity or a fragment of an
originally larger system. It does not matter
whether or not it has an entrance. The
fundamental basis for identifying a cave
as such is the size of a human; if a different
scale of measurement were used there might
be no “caves”, or, at the other extreme, all
caves might be one cave. A solution cavity
in liméstone is a cave if we can get into it.
Caves too narrow to traverse could be in-
cluded in a cave population, if necessary,
By imagining ourselves to be smaller than
we are. (However it is our misfortune from
the standpoint of understanding cave origin
that we are unable, except in rare in-
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stances, to study small passages of the primi-
tive cave system.)

The length of a cave is the distance we
may enter into the cave, assuming that we
may gain entrance. A definable length exists
because caves tend to develop upon joint
systems which contribute their linear struc-
ture to subsequent passages, and cave ter-
minations are usually quite final. At one
end an entrance terminates an enterable
cave and at the other, or others, there may
be a blank wall, flowstone, impassable
breakdown, a filled passage, or a passage
smaller than our measurement basis—the
size of a man.

Caves which have an impassable but ob-
servable connection will be considered as
two caves. A corollary is that an unenterable
section of a known cave is a second cave
without an entrance. Some such distinction
must always be made although where we
choose to draw the line may vary with cir-
cumstances,

In the previous study on cave entrances,
the length distribution of one entrance
caves shown in figure 1, curve b was intro-
duced empirically. It was thought then that
the distribution of length must also be a
product of a stochastic geomorphic process.
However it is the population of all caves
which is of interest in a theory of cavern
development, not just those which happen
to possess entrances, so the result derived
by the earlier methods for all caves, shown
in figure 1, curve a, will be used to repre-
sent the present circumstances in the state
of West Virginia.

Any actual cave population is finite and
therefore has a largest member, a deepest
member, etc. It is convenient for the pur-
pose of discussing generalized cave popula-
tions to overlook this fact and consider the
existing population as a sample of caves
from an infinite population. Distribution
functions of length as in figure 1, when ap-
plied to a finite population, may yield a
fraction- of a cave as the number longer
than some length, which just means that
there is a small likelihood of that length
occurring .in samples of caves of the ob-
served number chosen from the infinite
“parent” population.
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GrowTH ErocH

A growth-population consists of growing
and maturing cavern passages. Little is
known in detail of this process. It is prob-
ably at the end of this epoch that caves
have their largest size and greatest extent.
It is also at this time that we can identify,
at least in principle and retrospect, the
parts of the primitive network which were
responsible for the structure of individual
caves.

The primitive system may be enlarged
either continuously or discontinuously. The
former means that enterable passages in the
system remain always in connection and
cave length grows from some single unit to
include eventually the utilizable (though
not the available) phreatic network. Dis-
continuous means that the primitive system
evolves to passable size in a number of sec-
tions which may in some cases coalesce
(producing a discontinuous increase in
length and the loss of a ‘“‘cave”) before the
subaerial stages commence; each forms a
cave which would be associated with a
larger—though intraversable—basic system.
This does not include caves which are sepa-
rated from a continuous growth cave by
later modification. In this treatment of
growth the continuous model will be used
although Davis (1930) implied his prefer-
ence for the discontinuous mode in writing
of the “integration of small systems into
few systems of larger extent”.

Assumption 1. — The number of caves
in a growing population remains constant.

The continuous linear extension of a
cave during the growth epoch occurs at a
rate which depends at least on the following
circumstances: (1) The availability of water
which varies from place to place, and in
time, due to differences in surface drainage
patterns and fluctuations in climatic condi-
tions. Water availability is also likely -to
change with the size which a cave has at-
tained, a larger system being able to divert
surface drainage underground over a wider
area. (2) The solvent power of water (car-
bon dioxide content and initial approach to
saturation) will vary with time and source.
(3) Corrasive power of subsurface drainage
will vary with time .and.source. (4) The
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properties of the limestone in which the
cave is developing are determined before-
hand but our lack of knowledge of variations
of the properties and their significance in
cavern development requires that they be
considered as stochastic variables. (5) The
configuration of the primitive network in-
fluences the rate as well as the possible
extent of growth.

Together these factors cause a distribu-
tion in the rate of cave enlargement. They
may be divided into those that are de-
pendent upon cave length and those that
are independent of length. The first factor
cited above is of the former type. The fourth
and fifth may be dependent upon length
because the cave could encounter, sequen-
tially, structures of different properties and
thereby have variations in its rate of growth.
However, variations in structural properties
may be included with temporal variations
when the nature of the variability in the
structures encountered does not itself depend
on length.

In figure 2 three possible histories of the
length of a cave are shown which, it is as-
sumed, ended growth with a particular
length at a particular time. Curve a results
from growth at a constant rate while in
curve b the rate of growth increased with
length and in this case is proportional to
length. For curve ¢ time-dependent factors
entered in such a way that a relatively slow
rate changed subsequently to a more rapid
rate. Since a larger cave may receive more
solvent water it should be expected that
big caves tend to grow bigger and faster,
though some big caves will suffer setbacks
in growth and some little caves will exhibit
growth spurts. Members of a cave popula-
tion would start at different lengths, grow at
different rates, and end at different lengths,
rather than the illustrative situation in
figure 2.

Assumption 2.—The Rate of Growth of
Length of a Cave is Proportional to the
Length Already Attained, All Other Things
Being Constant, While the Proportionality
Constant Varies Stochastically with Time
for Each Cave.

The rate of growth varies from cave to
cave and the distribution at any instant

must be complex .and changing in a com-
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Figure 2
Mode of growth: (a) constant; (b) exponentia!;
(¢) possible real case,

plex manner. However only a suitable aver-
age over the whole epoch of growth rate
need be considered, as in figure 2 where
all three histories have an identical average
rate of growth over the period. The distri-
bution of this average rate of growth should
be more stable. Specific assumptions about
the epoch-average growth rate distributions
will be made in connection with examples.
The growth epoch starts with the caves
existing at the end of the primitive stage
though perhaps it is not realistic to dis-
tinguish between these stages as no special
event marks the change. The treatment of
the subsequent processes must be a study of
the  transformations of earlier populations
until more is known about the origins of
solutional openings in limestone. A distribu-
tion of time varying rates of growth acting
on an initial distribution of cave lengths
constitutes a stochastic process for the growth
epoch. Each cave will increase in length,
some slowly and some rapidly, and a new
distribution of lengths will evolve. Caves
with lengths in some range are produced by
others growing into that range, and removed
by growing beyond. The manner in which
this evolution takes place will depend upon
the superimposed growth rate distribution..
A mathematical statement ‘of this - process
would make an accounting of the numbers.
of caves entering and leaving, the -above
range of lengths, and equate this to the rate:
of increase: of -the number of caves.in the
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Figure 3

Exponential growth of uniform population where
P is the relative frequency of caves of given
length.

range. The assumptions which determine
the process have already been stated. The
resulting transformation equation for growth
is given in the Appendix. Examples follow:

Figure 3 shows the relative frequency of
caves, P, (the higher the curve the more
frequent are caves near that length) plotted
versus length, for the case when all the caves
originally had the same length and the
epoch-average growth rate is exponentially
distributed.

If the relative frequencies of caves are
initially distributed as shown in figure 4,
then after some time, for any distribution
of the growth rate parameter, the new dis-
tribution will be as shown. This case is
particularly interesting because the form
of the distribution does not change. If in-
stead we plotted these curves as in figure 1,
as the fraction of caves longer than each
length for caves over 100 feet long, the
curve would remain always the same during
growth. There would of course be more
caves longer than 100 feet, but the fractions
of them would remain distributed in the
same way. As this is true no matter what
the epoch-average growth rate distribution
is, it will be called an invariant growth
population.

The assumptions that have been made
in the above model for a stochastic growth
process are of course restrictive. Also, while
the evolution of one distribution (length)
has been *explained”, other distributions
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Invariant growth population showing
distribution after some time has passed.

new

were introduced for this purpose — those
for initial lengths and epoch-average growth
rates, It is believed, however, that the in-
troduction of the latter is a useful step in
understanding the growth process.

TransiTioN Erocu

The two-cycle cave origin theory states
that a regional uplift, or river downcutting,
brings caves above the zone of saturation
following the period of enlargement of a
cave system to its largest extent by solution
and corrosion. It is believed (Davies, 1958,
p- 27) that cave fill, collapse (breakdown),
and the development of entrances occurs
during this time. Water barriers may also
be left in a cave while elsewhere the surface
may dissect a cave into several fragments.

A characteristic modification of this tran-
sition epoch will be assumed to be the
dividing of a cave into smaller caves, or
fragments. A large cave may be expected to
suffer more divisions than a small cave, but
some caves will be undivided and others
highly fragmented. Variations in the fre-
quency and location of modification by
fragmenting during transition identifies this
as a stochastic geomorphic process, and
associated population manifestations should
be expected. Other events do, of course, oc-
cur during transition. There may be con-
siderable loss of cave passage by filling or
total removal, but here the specific effect
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of fill on length distributions will not be
treated except later in regard to the decay
epoch.

Fragmenting may be either length-pre-
serving or length-destroying. The former is
an idealization of those divisions of a cave
system which destroy little net length. The
latter case, which is the real situation, may
be considered as superimposed decay.

Assumption 3.——Cave Fragmenting is
Length Preserving. ‘

Random fragmenting is assumed for the
lack of a better hypothesis. Random is
used to mean that divisions of the caves
following the growth epoch are equally
likely to occur at any point in a cave but
have some average frequency of occurrence
per foot of cave (much less than one).

Assumption 4.——Caves are Divided into
Fragments by a Random Process in which
Divisions are Equally Likely to Occur Any-
where, but an Average Frequency per Unit
Length Exists (Poisson Process).

During transition some caves would not
be divided at all and these would join the
new population unchanged in length or
number. Other caves would be divided once
or more into two or more fragments. These
would join the new population as shorter
and more numerous caves. This process
would transform the initial population to
a more numerous population with a new
distribution of lengths. The transformation
equation for transition is given in the Ap-
pendix. Short caves can arise by either
never growing very big, or by being frag-
ments of larger caves. Both types must exist,
although they are all reported as individual
caves. But a cave which terminates in a
short distance by breakdown or fill is prob-
ably a fragment and is likely to continue
beyond (or rather, there is probably a
second cave beyond).

Table 1 indicates how often caves of
different lengths will be divided for a case
when divisions occur at the average fre-
quency of, for example, 0.0005 per foot of
cave. Values are given for the percent of
caves of a given length which will receive
one or more divisions.

BurLLETIN VoLuMmE 22, PART 1, JaNUARY, 1960

TABLE 1 ;
Length (feet) 200 800 20600 4000
Percent divided

(approx.) 10 32 63 86

Figures 5 and 6 show the effects of frag-
menting various initial populations with
random divisions. In figure 5 all caves had
the same length to start. Some remain un-
divided. In figure 6 the general shape (ex-
ponential) of the curve representing the
relative number of caves has not been alter-
ed by the transition process, although the
relative number of shorter caves has in-
creased at the expense of longer caves,

Only one model for transition modifica-
tion of a cave population based on a rea-
sonable mechanism for a change -which
might occur during this stage has been con-
sidered in detail. We know that caves are
often terminated by breakdown and other
passage closures, and it is possible to get
beyond such blocks often enough to support
the belief that beyond many barriers which
stop exploration now there is more cave
passage. This is justification for the belief
that caves are interrupted and that it is
permissible to consider the process as sto-
chastic. The stochastic process of cave frag-
menting tends to produce an apparent up-
per limit on the size of caves. By measure-
ments of length alone it is not possible to
distinguish between an upper limit on
length imposed by limitations of growth or
subsequent fragmenting. A comparative
study of the nature of cave terminations
is necessary to help decide this question.

Decay EprocH

The decay process is like the growth
process; caves are changing length as part
of a stochastic geomorphic process. However
the agents are now not those of enlarge-
ment, but of weathering, erosion, weaken-
ing, collapse, and fill. They are primarily
surface agents which act on the evolution
of entrances and the filling or cutting back
of points in the cave system through which
they have access. It is likely that caves decay
inward from points of surface intersection
while the internal cave passages are rela-
tively protected and static. If this is the
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case, the points' of division in the transition
epoch, together with the original “ends”
of the cave, could be the locations from
which decay proceeds. Additional intersec-
tions might be produced as the surface
above is eroded with fragmenting and decay
proceeding simultaneously. Such overlapping
of processes will not be considered here.
Since the processes occurring at divisions
and ends can hardly be influenced by many
of the interior passages of a cave, an appro-
priate guess would be that the rate of decay
of a cave does not depend on its length
although the rate may vary with other
geomorphic influences. An epoch-average
decay rate for each cave is also applicable
here.

Assumption 5.——The Rate of Decay of a
Cave is Independent of Length but Varies
with Time.

A distribution of time-varying rates of
decay acting on an initial distribution of
cave lengths constitutes a stochastic process
for the decay epoch. Each cave will decrease
in length and eventually reach zero length.
A decaying cave population moves toward
a final state in which all caves have zero
length. Since not only erosional removal of
rock but also fill and collapse are included
in decay, some zero-length caves would still
be detectable. Later events may rejuvenate
such caves but this complexity is not being
considered. The transformation equation for
the decay epoch is given in the Appendix.
Examples follow:

If all caves are initially of a single length
and the epoch-average decay rate is expo-
nentially disturbed, then the population de-
cays are as shown in figure 7. Some caves
already have zero length.

If the initial relative frequency of differ-
ent lengths is as shown in figure 8, then the
population evolves without a change in the
straight line form of the distribution no
matter what the decay rate distribution.
This is therefore, by analogy to the growth
case, called an invariant decay population.

A constant rate of decay (or growth) pro-
duces simply a fixed displacement of the
previous figures to the right or left depend-
ing on whether the process is growth or
decay.
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The conclusion from this discussion is
that decay, being independent of cave
length, would cause the greatest relative
changes to occur in short caves.

EvoLutioN oF CAVE POPULATIONS

Hypothetical Population

All of the previous models may be sum-
marized by showing the effects each has dur-
ing the evolution of a cave population.
Figure 9 shows the evolutionary sequence
for the length distribution of a hypothetical
population. An initial population I has
mostly short caves. Growth extends this
distribution to greater length, eventually to
give population Ila. Since it is likely that
the shortest members of this population are
also too narrow to enter, a modified popula-
tion IIb is shown to represent enterable
caves only. Transition modifies this by
transforming long caves to shorter frag-
ments to give population III. A number of
short but enterable caves have also been
formed and the distribution is raised near
the origin. This population then decays
and the distribution sinks toward - zero
length IV. Sometime during this epoch the
relative number of caves of some length may
increase for a while, but eventually all are
gone.
Lengths of Caves in West Virginia

We return at last to a consideration of the
phenomena which prompted that which is
presented here: the observed distribution
of the lengths of caves in West Virginia
shown in figure 1b for all caves over 100
feet long and with one entrance. It has
been recognized that cave entrances are
accidents, and to explain the lengths of one-
entrance caves requires both an explanation
for the lengths of all caves, and an explana-
tion of the way entrances are distributed
among caves. The latter step was taken
in a previous paper (Curl, 1958). The same
data, modified slightly by the inclusion of
a recently discovered cave (Culverson Creek
Cave) were used to compute the distribution
of length for all caves in West Virginia
shown in figure la.

The data of figure la have been replotted
in figure 10 using logarithmic coordinates.
An “invariant” length distribution has been
assumed for the growth population because
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the mathematical development showed that
this is a distribution of great generality
obtained even with a variety of quite differ-
ent assumptions about initial length and
growth rate distributions. An “invariant”
population plots as a straight line in figure
10, and does not change during the growth
epoch.

The transition epoch transforms curve G
to T by causing a relative decrease in the
frequency of long caves. In the case shown,
the average distance between divisions (if
all the caves were strung out end to end)
is 2000 feet (0.0005 divisions per foot of
cave). The subsequent epoch of decay is
particularly hard on short caves which also
constitute a large proportion of the popu-
lation. A process of decay with an assumed
constant loss of 60 feet from every cave
produces the transformation to D. Many
caves will have decayed below 100 feet and
be no longer represented in the population
now shown.

The parameters were chosen to make the
final curve D agree with the characteristics
of the data. Considerable flexibility existed
in producing a good correlation since the
two processes of transition and decay affect
the long and short caves respectively, most
strongly. However it was still necessary that
the direction of the effects of transition and
decay be in accord with the long and short
cave properties of the data before a model
could be used. This, then, is a possible
model for the evolution of the West . Vir-
ginia cave population.

CONCLUSIONS

All geomorphic processes, and in particu-
lar the processes of cavern development,
are stochastic processes by virtue of elements
of chance or randomness which enter into
them. In the evolution of a cave population
certain manifestations may reflect the oper-
ation of relatively simple chance mechan-
isms and a study of these can be useful in
gaining a better understanding of the basic
processes,

Stochastic models for the growth, transi-
tion, and decay epochs of the cave popula-
tion of West Virginia, based on a. two-
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cycle geomorphic history, have been pro-
posed and compared with data. Modern
knowledge on cave development has been
used to guide the choice of assumptions. An
“invariant” growth population was found
which turned out to be very similar to the
data, and the subsequent predictions of the
effects of simple transition and decay models
improved the correlation. The numerical
values for the transition fragmenting fre-
quency, 0.0005 per foot, and the decayed
length, 60 feet, for West Virginia caves,
seem reasonable in the absence of better
data to check them.

The alternative to a stochastic model is
to maintain that every cave is unique and
that no processes may be identified as act-
ing in common upon all caves. On inspec-
tion many cave features can be ascribed to
very particular circumstances for that cave,
but to criticize stochastic models in the
light of such observations is to claim that a
prediction of a cave feature (length) could
have been made. This is more than any
present theory attempts to do and is irrele-
vant, if not impossible, according to sto-
chastic theories.

More observational information on
the mechanisms of cave growth, the nature
and causes of cave interruptions, and the
effects of surface degradation on cave modi-
fication will be needed before the validity
of the models presented herein can be
finally ascertained.
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DISCUSSION

Rrcuarp R. ANDERsON, Bell Telephone
Laboratories: You assume that the rate of
growth is dependent on the length. I would
think it would be more closely related to the
number of terminations.

AutHorR: The number of terminations to a
cave is statistically related to its length. In
addition, length is more readily obtained
from data. The fact that great simplifica-
tions have some utility implies that a great
many other variables “average out” in some
sense, or they don’t enter into population
manifestations in the same way they do in
individual caves.

Aran D. Howarp, Yale University: Let’s
suppose we consider the breaking up of
caves as the dropping of bombs in a ran-
dom manner. If there are two types of
caves, those with a single long passage and
those with a maze pattern, doesn’t it seem
more likely that you will produce more
fragments from the single-passage cave than
from the network cave?

AUTHOR: A maze cave is a “multiple-con-
nected” cave and a linear cave is “simple-
connected”. In the latter you can take a
ball of string and run it around, tying it
together anyway you want, and still be able
to pull the mesh from the cave. As you
observe, if a multiple-connected cave is
divided, it is still possible to have just one
cave. My models apply only to simple-
connected caves (or passages) but these
constitute the majority. Again, many of the
peculiarities of the members of these popu-
lations are submerged in the averages which
are taken.

WiLLiam B, WHITE, Pennsylvania State
University: I would like to return to your
statement that the rate of increase of cave
length is proportional to the length, which
would mean that the length of a cave in-
creases exponentially with time up to the
end of growth. What transition is necessary
to terminate growth to keep the length of
the cave from going to infinity?

AutHor: Yes, the length of the cave would
go to infinity in time, so we must consider
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the reasons why caves are relatively short.
We could say that geologic control is the
answer, but this is a weak argument because
there is always much jointed limestone
that doesn’t have any caves in it. I have
solved the problem by assuming growth of
all caves in a population to cease at the
same time. If it didn’t, the processes of
growth, transition, and decay would over-
lap and considerably confuse the picture.
If anyone works out an alternative model,
I would be quite interested. I chose to take
the simplest case.

ANDERsON: This is presumably a continuous
process. I would think there are caves being
both created and destroyed now. Do you
believe that these processes must happen
at different times?

AuTHOR: The different populations could
certainly exist simultaneously, even in a
relatively small area.

AnpersoN: Then did you say the ones you
were studying were all of the same popula-
tion?

AuTHOR: I have confidence in feeling that
they are. In the previous paper on cave en-
trances, I considered a basic parameter of
these populations for all caves (with en-
trances) over 100 feet long, over 500 feet
long, and over 1000 feet long. If anything is
going to be different about different groups
of caves, these ought to have included dif-
ferent types of caves. This basic population
parameter turned out to be the same for
all these groups of caves in West Virginia.

Howarp: Have you done anything with
smaller groups within the larger total to
see if over a smaller areal range there might
be significant variation?

AuTHOR: Only in the earlier paper. Too few
data is the difficulty if small groups are con-
cidered. If a way could be found to look
at individual caves for properties which
would include or exclude them from the
local homogeneous population then some-
thing might be said about smaller groups.
It is not at all obvious yet what these prop-
erties would be.
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APPENDIX

The following equations were derived from
the assumptions given in the text and used
in applying each model:

GROWTH:

Po(L)= A " exp(—ut) Py[L exp(~up)]P(u)du

where Pi[L exp(—ut)] is the probability
density distribution of initial lengths evalu-
ated at L exp(—us); P(u) the distribution of
the epoch-average growth rate u (and dL/dt=
uL); and Py(L) the resulting length distribu-
tion. Statistical independence of u and initial
length has been assumed.

TRANSITION
Py(L)=
1L

1+1

where P»(]) is the length distribution at the
end of growth; I the average number of
divisions per foot of cave; 1 the average
length of the cave in the population prior to
fragmenting; and P;(L) the probability
density distribution of L resulting from transi-
tron.

{Pz(LH‘I /L "2+ 10— L)1P2<l>d1}

DEcay:
PyL)= ﬁ ® Py(LA-Vi) P(v)dv

where the terms are as defined in the growth
case except applied now to the population
before and after (some) decay. The distribu-
tion of the epoch-average rate of cave decay
is P(v) (and dL/di=—v). Statistical inde-
pendence of v and length has been assumed.
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