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ABSTRACT

BIOINFORMATIC ANALYSIS OF EPITHELIAL:MESENCHYMAL
CROSSTALK DURING MOUSE GUT DEVELOPMENT AND PATTERNING

By

Xing Li

Chair: Deborah L. Gumucio

The small intestine develops from a tube of endoderm wrapped by mesoderm.
Crosstalk between the endodermally derived epithelium and the underlying
mesenchyme is required for regional patterning and proper differentiation of the
developing intestine. In this thesis, microarray technology was combined with
bioinformatics techniques to study two aspects of small intestinal organogenesis. First,
the transcriptomes of the separate mesenchymal and epithelial compartments of the
perinatal mouse intestine were examined. It was found that the vast majority of
soluble inhibitors and modulators of signaling pathways such as Hedgehog, BMP,
Wnat, Fgf, and Igf are expressed predominantly or exclusively by the mesenchyme,
accounting for its known ability to dominate instructional crosstalk. ~Additionally,

while epithelially enriched genes tended to be highly tissue restricted in their
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expression pattern, mesenchymally enriched genes were broadly expressed in multiple
tissues. Thus, the unique tissue-specific signature that characterizes the intestinal
epithelium is instructed and supported by a mesenchyme that itself expresses genes

that are largely non-tissue specific.

In a second study, gene expression profiles were analyzed during the formation of the
pyloric border. At E14.5, before this border is established, gene expression patterns in
stomach and nearby duodenum were similar. However, at E16.5, border formation
was accompanied by the up-regulation of about 2000 genes specifically in the
duodenum. Combining the results from these two microarray experiments revealed
that >95% of up-regulated genes were epithelial. This work establishes for the first
time that epithelial border formation occurs via a massive change in duodenal (not
stomach) character. Genes that are specifically expressed at the border (Nkx2.5, Gata3,
nephrocan) and might be involved in border specification were identified, as were
transcription factors (Hnf4o,, Hnf4y, Tcfec, Creb313, etc.) that are likely to be
important in establishment of intestinal identity, a process herein called
“intestinalization”. Taken together, the results of these studies provide new insights
into tissue crosstalk and the specific transcriptional networks that are responsible for

intestinal organogenesis.
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CHAPTER |

INTRODUCTION

The biology of gut development

Brief introduction to gut development

The gastrointestinal (GI) tract plays a critical role in digestion and nutrient absorption.
This GI system extends from mouth to anus and includes the GI tract proper as well as
associated solid organs (pancreas, liver, etc). The embryonic gut tube in vertebrates is
composed of endodermal epithelium and splanchnic mesodermal mesenchyme. In the
process of embryonic development, the gut tube is properly divided into different
regions that eventually develop into the various highly specialized and
morphologically different organs, including esophagus, stomach, duodenum, small
intestine, and large intestine. Their morphology and characters are directly associated
with their distinct functions, such as food delivery, food storage, digestion, absorption,
or waste packing and excretion. Understanding the fundamental processes of
alimentary tract organogenesis during embryonic development has the potential to
shed light on the mechanisms of disease in these tissues, since often, these diseases
involve reactivation of the embryonic program or re-use of embryonic signaling

pathways.

At gastrulation, the cells of developing embryo are divided into three principal germ

layers: endoderm, mesoderm, and ectoderm. The gut epithelium is derived from



endoderm, which is initially the ventral-most, and later the innermost layer of the
vertebrate embryo. This gut endoderm is surrounded by mesoderm, which becomes
remodeled during development into muscle, blood vessels, lymphatics and other

supporting tissues.

The development of the gastrointestinal tract in vertebrates can be divided into four
fundamental stages (Wells & Melton 1999): (i) formation of a sheet of endoderm
supported by lateral plate mesoderm immediately after during gastrulation; (ii)
morphogenesis of this bi-layered sheet of tissue into the primitive gut tube; (iii)
establishment of organ-specific domains (esophagus, stomach, small intestine, large
intestine, etc) within this primitive tube; (iv) organ-specific differentiation of each
domain. The fundamental mechanisms that regulate this entire organogenesis process

are complex and many of them are still unexplored.

The formation of endodermal organs begins at E7.5-E8.5 in the mouse embryo. At the
end of gastrulation (E7.5), the endoderm is a one cell layer thick cup of approximately
500 cells, which forms the ventral-most surface of the embryo. Within the following
24 hours (ES.5), a series of morphogenetic movements remodel this one cell layer
endoderm cup and finally transform it into a primitive tube. The signals and pathways
that establish these cell movements are under intense study. However, it is clear that
even at this early time, the forming tube is somewhat patterned along its
anterior/posterior and dorsal/ventral axis. This is believed to occur mainly through
recruitment of specific pre-patterned mesenchymal populations to the forming
endodermal tube at precise locations. The pattern is then played out via bidirectional

mesenchymal/epithelial crosstalk.



Despite some regional patterning in both mesoderm and endoderm, the primitive
endodermal tube appears initially morphologically homogeneous along its length.
Anterior-posterior (A/P) patterning of different organs along the tube is induced by

mesodermal signals (Biben et al 1998b, Lawson & Pedersen 1987).

The early anterior and posterior endoderm express different markers, with Hesx1
(Thomas et al 1998) and Otx2 (Ang et al 1996, Perea-Gomez et al 2001, Rhinn et al
1998) in anterior endoderm and IFABP or intestinal fatty acid binding protein (Green
et al 1992), and Cdx2 in the posterior region (Beck et al 1995, Fang et al 2006).
Epstein et al showed that Otx and Cdx family genes not only mark the anterior and
posterior boundaries but also are required for establishing early tissue pattern in the
frog (Epstein et al 1997) though their functions in mouse endoderm A/P specification

1s not clear.

As the pattern plays out, foregut endoderm contributes to the formation of the
esophagus, lung, stomach, liver, and pancreas. The midgut contributes to formation of
the small intestine, and the hindgut contributes to formation of the cecum and large

intestine (Wells & Melton 1999, Zorn & Wells 2007).

At the same time of tube patterning, buds of endoderm and associated mesoderm also
form from this primitive tube at E9.5 to E10.5 and undergo organ specific
differentiation. These buds eventually will develop into gut-associated organs, such as
liver, pancreas, thymus, etc. The signals determining and patterning these endodermal
buds derive from adjacent structures of both mesodermal and ectodermal origin and
seem to be both inductive and permissive. For example, the heart (cardiac mesoderm)

provides an instructive signal to the hepatic bud while endothelial cells of the dorsal



aorta provide permissive signals for dorsal pancreas development (Wells & Melton

1999).

The establishment of vertebrate gut tube A-P and D-V pattern requires expression of
many transcription factors, of which the homeodomain containing factors may be
especially important (Beck 2002, Beck 2004, Beck et al 2000, Bort et al 2006, Choi et
al 2006, Kim et al 2007b, Playford 2002, Zacchetti et al 2007). The anterior gut tube
expresses several Hoxb genes (Huang et al 1998), Nkx2.6 (Biben et al 1998a,
Nikolova et al 1997, Tanaka et al 2000) Nkx2.1 (also called TTF1/NKX2A/BCH)
(Maeda et al 2006, Minoo et al 1995, Reynolds et al 2003, Rossi et al 1995), Pax8
(Mansouri et al 1998) and Pax9 (Peters et al 1998). The region of the gut tube that
contributes to stomach, pancreas, and duodenum expresses homeodomain factors,
such as Isx (Choi et al 2006), Nkx2.2 (Desai et al 2008, Doyle & Sussel 2007, Sussel
et al 1998), Isl-1 (Ahlgren et al 1997), Pdx1 (Ahlgren et al 1996, Boucher et al 2008,
Svensson et al 2007), Pax4 (Larsson et al 1998, Ritz-Laser et al 2002, Sosa-Pineda et
al 1997) and Pax6 (Liu et al 2003, Martin et al 2004, St-Onge et al 1997, Trinh et al
2003), while the posterior gut tube expresses many genes in the Hoxd cluster (Roberts
et al 1995), as well as Cdx1 and Cdx2 (Beck 2002, Beck 2004, Beck et al 1995, Beck

et al 2000).

Epithelial-mesenchymal crosstalk

The gut tube is a two-layered organ. Endoderm is surrounded by mesoderm. Regional
gut tube patterning and gut-derived organogenesis along the anterior-posterior axis
require bi-directional endoderm-mesoderm crosstalk. The epithelium is in a constant
crosstalk with the underlying mesenchyme to maintain or regulate stem cell activity,
proliferation in transit-amplifying compartments, lineage commitment, differentiation,

4



and cell death. These reciprocal interactions are carried out by soluble signals that
pass between of the epithelium and the underlying mesenchyme (Roberts 2000, Wells

& Melton 1999).

Recombination experiments in which epithelium and mesenchyme from different gut
regions are separated and recombined in grafts (e.g. intestinal mesenchyme and
stomach epithelium) show that mesenchyme plays a major instructional role in
epithelial differentiation. Thus, for example, the intestinal mesenchyme can instruct
stomach epithelium to become intestinal epithelium (Kedinger et al 1998b). The
intestinal epithelium is also highly instructive, but its instructive power is limited to a
short developmental window of time. The exact signals that are responsible for these
instructions are still being investigation, but the work shown in chapter 2 of this thesis

begins to shed some light on this question.

Regional patterning of the gut tube establishes the organ domains. Then, each organ
(eg, stomach, intestine) begins to differentiate in an organ-specific way. In the
intestine, this differentiation process involves remodeling of the simple gut tube into
villi and crypts. Before villus formation, the epithelium is of the stratified squamous
type. At E14.5, this multilayered squamous epithelium undergoes remodeling to
become a single layer of columnar epithelium that will finally form villi at E16.5
(Calvert & Pothier 1990, Mathan et al 1976). The villi are finger-like structures lined
by absorptive epithelium that projects into the lumen; epithelial cells of the villi
execute the function of digestion and nutrient absorption after birth. The inter-villus
regions of small intestine, an area where proliferative cells concentrated, will be
remodeled to form flask-shaped crypts. The lower part of the intestinal crypt provides

the niche for the intestinal stem cells. These stem cells constantly give rise to new



epithelial cells and this proliferative process pushes the epithelial cells up and out of
the crypt and onto the villi. Cells stop proliferating at the crypt-villus junction and
begin to differentiate. They continue to migrate up to the top of the villi, where they
are finally sloughed off into the lumen. In this way, the entire epithelial surface is

renewed every 4 days.

There are four types of intestinal epithelial cells: enteroendocrine cells, enterocytes,
goblet cells and Paneth cells (Sancho et al 2004). While the Paneth cells reside at the
base of the crypts near the stem cells and secrete antimicrobial peptides and enzymes
such as cryptidins, defensins, and lysozyme (Porter et al 2002), the other three cell
types undergo the constant crypt-to-tip migration discussed above. Enterocytes secrete
hydrolases and absorb nutrients; enteroendocrine cells which are rare secrete
hormones including serotonie, substance P, and secretin; and goblet cells produce a
protective mucous lining (Hocker & Wiedenmann 1998). Though cell lineage
decisions are thought to involve Notch signaling among epithelial cells, the possible

role of mesenchyme in this process is poorly studied.

Specific pathways important in intestinal development

A complete understanding of the process of intestinal development is not currently
available, but several studies have begun to reveal specific roles for several signaling
pathways, including Hedgehog, Wnt, Bmp, Notch, TGF-beta and Fgf (Sancho et al

2004).

Most of these signaling molecules (except Notch) are soluble. In order to gain a better
understanding of GI tract development, it is critical to know not only which cells or

tissues (i.e., epithelium or mesenchyme) express these factors or signals but also



which cells receive those signals. Typically, this has been established by in-situ
hybridization or by immunohistochemistry. However, as it will be demonstrated in
this thesis, microarray approaches can give a valuable global picture. Below, I will
discuss some of the major functions that have been determined for some of the most
important signaling pathways in order to provide perspective for the interpretation of

my own studies.

Hedgehog pathway

The Hedgehog signaling pathway plays vital roles in vertebrate gastrointestinal
development in the embryo and in homeostasis in adult life; perturbation in Hedgehog
signaling results in diseases or malformations of the gastrointestinal tract and other
tissues. (Farzan et al 2008, Fukuda & Yasugi 2002, Lees et al 2005, Omenetti & Diehl

2008, Parkin & Ingham 2008, van den Brink 2007, Zavros 2008)

There are three Hedgehog (Hh) proteins in vertebrates: Indian Hedgehog (Ihh), Sonic
Hedgehog (Shh), and Desert Hedgehog (Dhh). Both Ihh and Shh have important
functions in gut development as measured by the severe GI phenotypes seen when
either of these two proteins is deleted (Ramalho-Santos et al 2000). However, the Dhh
protein is not highly expressed in the intestine and the Dhh knockout has no gut
phenotype (Bitgood et al 1996). Patched1 (Ptchl) and Patched2 (Ptch2) are the
receptors for Hh proteins. Smoothened (Smo) is a transmembrane protein that does
not bind Hh, but is responsible for turning on or off the Hh signal transduction by
virtue of its reversible inhibition by Ptch. Three zinc-finger family members, Glil,
Gli2 and Gli3, are downstream transcription factors of the Hedgehog signaling

pathway. In the absence of Hh signals, Ptch blocks the activity of Smo. In the absence



of Smo activity, Gli factors are degraded, either partially, to form a repressor, or
completely. When the Ptch receptor binds Hh, Smo inhibition is released and this
triggers a signaling cascade that results in the translocation of full length Gli factors
into the nucleus. After translocation, the Gli factors drive the expression of target
genes of Hedgehog signals (Ingham & McMahon 2001, Nybakken & Perrimon 2002).
Another important member of Hedgehog pathway is Hedgehog-interacting protein
(Hhip). Hhip is a transmembrane protein and can bind Hh proteins with an affinity
comparable to the Hedgehog receptor Ptch and hence is an important regulator of
Hedgehog signaling pathways. It is important to realize that Hhip, as well as Glil and

Ptchl are direct downstream transcriptional targets of the Hh signaling pathway.

Hedgehog signals act as morphogens during development as they control cell fate
specification in a concentration-dependent manner. Hedgehog signals are strictly
paracrine in intestine as the the receptors (Ptch and Smo), transcription factors (Glil,
Gli2 and Gli3) and regulator (Hhip) are all expressed in intestinal mesenchyme only
(Madison et al 2005). Hence, Hedgehog signals (Shh and Ihh) are generated in
epithelium and secreted into mesenchyme to have functions there (Madison et al
2005). The Hedgehog signaling pathway is required for the correct formation of
intestinal villi (Madison et al 2005), concentric patterning of intestinal smooth muscle
(Sukegawa et al 2000), and patterning of enteric neurons (Ramalho-Santos et al 2000,
Zhang et al 2001b). Hh over-expression has also been implicated in stomach and
colon cancer and this was thought to be due to activation of autocrine Hh signaling in
epithelial cells (Nielsen et al 2004, van den Brink et al 2004, Varnat et al 2006).
However, a recent study of the role of Hh signaling in colon cancer revealed that in

such cancers, Hh signaling is indeed paracrine and epithelial proliferation is driven by



abnormal mesenchymal signals that were induced by too much Hh (Yauch et al 2008).

Wnt pathway

The Wnt signaling pathway is crucial for controlling cellular decisions between
proliferation and differentiation in the epithelium (Sancho et al 2004). Beta-catenin is
the central member in the Wnt signaling cascade. The stability of Beta-catenin is
regulated by the Apc tumor suppressor complex (Kohler et al 2008). Complexes of
Frizzled seven-transmembrane molecules and Lrp5/6 are the receptors for Wnt signals.
When Wnt signals are absent, caseine kinase 1 and GSK3-beta in the Apc complex
phosphorylate several highly conserved Ser/Thr amino acid residues in the N terminus
of Beta-catenin. This phosphorylation leads to the ubiquitination and degradation of
Beta-catenin. In the absence of Wnt signals, the DNA-binding proteins T cell
factor/Lymphoid-enhancing factors (TCF/LEF) occupy Wnt target genes along with
co-repressors and repress their expression. When Wnt signals are present, the kinase
activity of the Apc complex is blocked and this results in Beta-catenin accumulation.
Beta-catenin translocates into the nucleus and engages TCF/LEF and transiently
converts TCF factors into transcriptional activators to induce the transcription of TCF

target genes (Sancho et al 2004).

Recent studies on epithelial cell lines and mouse models have shown that the role of
Wnt signaling is to mediate proliferation of intestinal stem cell populations and
differentiation of the Paneth cell population (Andreu et al 2008, Sellin et al 2008).
Both Wnt and Notch signaling pathways are important in the differentiation of
secretory populations (Clevers 2006, de Lau et al 2007, Gregorieff & Clevers 2005,

Pinto & Clevers 2005, Reya & Clevers 2005, van Es et al 2005).



The Wnt signaling pathway has been implicated in the proliferation of intestinal
epithelial progenitor cells (Bienz & Clevers 2000, Booth et al 2002, Clarke 2006,
Kinzler & Vogelstein 1996). It has been shown that proliferative cells at the bottom of
crypts of the small intestine and the colon accumulate nuclear Beta-catenin. As Wnt
signals decline, these cells differentiate, and switch from a crypt-like phenotype to a
differentiated villus epithelial phenotype (Batlle et al 2002, van de Wetering et al
2002). Loss of TCF4 hastens this process, causing loss of proliferative compartments
in the small intestine (Korinek et al 1998). Moreover, overexpression of the soluble
Wnt inhibitor Dkk1 dramatically reduces epithelial proliferation and results in the loss
of crypts (Gregorieff et al 2005, Pinto et al 2003). Wnt signaling is also likely to play

a role in the biology of mesenchymal cells, but this has not been well studied yet.

Bmp pathway

Bone morphogenetic proteins (BMPs) are important in intestinal development
especially for epithelial renewal (Ishizuya-Oka & Hasebe 2008, Ishizuya-Oka et al
2006). BMPs bind type I and type II serine-threonine kinase receptors which
specifically phosphorylate and activate Smad1, Smad5, and Smad8. Smadl, Smad5
and Smad8 (receptor-regulated samds, termed R-SMADS) associate with Smad4
(common SMAD, co-SMAD) and translocate to the nucleus where this SMAD
complex interacts with other transcription co-activators or co-repressors to regulate
transcription of downstream target genes. It has been shown that Bmp4 is expressed
in the intervillus mesenchyme in the adult tissues (Haramis et al 2004, Hardwick et al
2004). The phosphorylation of the downstream transcrtiption factors, Smad1l, Smad5,
and Smad8 (Zwijsen et al 2003) in villus epithelium as well as mesenchymal cells is

an indication that BMP from the mesenchyme acts as both a paracrine and autocrine
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signal. The mutation of BMP receptor type 1A or Smad4 is associated with Juvenile
Polyposis Syndrome, a disease that is characterized by the formation of thousands of
polyps in the intestine (Howe et al 2001, Howe et al 1998, Sayed et al 2002, Zhou et
al 2001). A recent study by He et al concludes that this syndrome is caused by loss of
Bmprla in the epithelium. However, that study used a Cre driver to delete Bmprla
that is active in both epithelium and mesenchyme. Thus it was still not clear whether
the critical BMP function causing over-proliferation of epithelium is targeted to
mesodermal or epidermal cells. Indeed, a specific knockout of Bmprla in only the
epithelium using a Villin promoter was later shown to affect cell fate choice but not
proliferation of intestinal epithelium (Auclair et al 2007). Therefore, it seems clear
that a relay is active: BMP signals that are received by mesenchymal cells cause
these cells to send a signal to epithelium that says “don’t proliferate.” It is not clear

what this response signal is currently.

Notch pathway

The Notch signaling pathway is essential in cell fate specification and differentiation
in the intestinal epithelium, as well as spatial patterning (Artavanis-Tsakonas et al
1999, Sancho et al 2004). All Notch receptors (Notch 1, 2, 3, 4) and five ligands
(Delta-like 1, 3, and 4; Jagged 1 and 2) are transmembrane proteins. In the absence
of the ligands, the transcriptional factor in the Notch pathway, CBF1/RBPjk, acts as a
repressor. When Notch binds to its ligands on an adjacent cells, Notch will be cleaved
and the Notch intracellular domain (NICD) will translocate to nucleus to bind its
transcription factor CBF1/RBPjk to activate the downstream target genes, one of
which is hairy/enhancer of split (HES), a member of the basic helix-loop-helix

transcriptional factor family. HES can therefore regulate other downstream target
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genes (Baron 2003, Hansson et al 2004, Iso et al 2003, Mumm & Kopan 2000).

Members of the Notch signaling pathway are expressed both in embryonic and adult
mouse intestine and are involved in controlling the cell’s decision to proliferate or
differentiate as well as cell lineages (Jensen et al 2000, Schroder & Gossler 2002). In
addition, the cell fate, that is, the choice to be secretary (goblet, enteroendocrine or
Paneth) versus absorptive (enterocyte), is controlled by MATH 1, which is a
downstream target of HES in intestine. Animals with reduced HES in small intestine
have fewer absorptive cells but increased mucous-secreting goblet cells and

enteroendocrine cells (Jensen et al 2000, Yang et al 2001).

Pyloric border formation in gut development

One of the interesting morphological aspects of the gut tube is the fact that there are
several points along the length of the gut where very distinctive borders are found.
Despite the fact that the gut tube is initially (in the fetus) morphologically identical
from mouth to anus, the adult tube has clear organ-specific character. Our laboratory
has been interested in one of these boundaries between two organs: the pyloric border.
This border is of interest for two reasons. First, the mechanisms that control
boundaries between tissues are not well understood, but are are of intense interest
from a biological and developmental standpoint. Second, this particular boundary is
where cells with intestinal identity meet directly with cells of stomach identity. How
these cells “know” how to be intestine or stomach is of interest because there are
pathological lesions found in the stomach within which cells take on intestinal identity.
These lesions with cells of the “wrong” (intestinal) address are called intestinal
metaplasias. They are precursers to gastric cancer (Schmidt et al 1999, Silberg et al
2002). Therefore, the understanding of how the stomach and intestine gain and
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maintain their identity is of great interest.

In the adult gastrointestinal tract, the morphologic border between stomach and small
intestine is literally one cell thick. The patterning mechanisms that underlie the
development of this sharp regional division from a once continuous endodermal tube
are still obscure. Interestingly, this regional division occurs quite late in fetal life, at
E16.5 (Braunstein et al 2002). It is clear that some pattern is laid down early. For
example, the region-specific expression of certain genes (e.g., intestine-predominant
expression of the actin binding protein villin) can be detected as early as 9.0 days post
coitum. However, there is no sharp boundary of villin expression between intestine
and stomach until 4-5 days later (Braunstein et al 2002). The refinement in cellular
identity needed to finally establish intestine from stomach is a late event which we

call “intestinalization”.

The previous work in our lab has shown that villin responds to cues for intestinal

identity (Braunstein et al 2002, Madison et al 2002). Therefore, we used this gene to
determine exactly when the border forms. We found that it forms suddenly at E16 in
the mouse. The same border is maintained through to adulthood. The villin promoter

laeZI* K nock-in mouse have been valuable tools with which to further

as well as a villin
investigate the mechanisms underlying the formation of this epithelial border. In this
thesis, we have used the information gained from the study of the formation of the

pyloric border to set up a microarray analysis. The results of that study revealed novel

information about gut tube patterning.

Microarray technology and development

Since much of the work done for this thesis involved microarray analysis, I will now
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review the application of this technique in biological settings. I will discuss the major
platforms available, as well as the leading techniques for further mining of data from

array analysis.

Brief introduction to microarray

After the genome sequencing projects are finished in many organisms, one of the next
major challenges is how to use the genome sequence information to understand how
these genes are regulated on a time- and tissue-specific level. The cadre of genes that
are expressed by one cell at a given tissue and time is called its transcriptome. Several
high-throughput techniques have been developed for transcriptome analysis, including
microarray. The fundamental rationale of microarray technology is based on DNA
complementary hybridization according to Watson-Crick rules. Microarray has wide
application in biological, medical and clinical fields, including transcriptional
profiling (the main application in this thesis), gene copy number variation study
(CGH arrays), resequencing, genotyping, single nucleotide polymorphism study (SNP
arrays), DNA-protein interaction or transcription regulation study (ChIP-on-chip),
gene discovery (Genome Tiling arrays), etc. Microarray technology, for the first time
in the history of biomedical science, makes it possible to study the expressions of
thousands of genes simultaneously; even the whole genomic expression profile can be
analyzed using some platforms. This high-throughput technology combining with
other Bioinformatics techniques provides the first opportunity for scientists to
understand genomic expression profile, gene regulation and carry out genome-wide

network analysis on a holistic level.

For investigating genome expression profiles, gene expression microarray technology
is semi-quantitative. It measures the relative amount of mRNA in the sample; this is
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proportional to the relative gene expression level. Currently there are two major types
of microarrays in abroad use: high density oligonucleotide arrays (Affymetrix

GeneChip) and cDNA arrays.

The Affymetrix GeneChip platform is widely used in academia and industry for
expression analysis. It is a high-density short oligonucleotide array (Lipshutz et al
1999, Lockhart et al 1996). The manufacture of Affymetrix GeneChips is based on
two techniques: photolithography and solid-phase DNA synthesis (Figure 1.1,
(Lipshutz et al 1999)). Affymetrix uses light masks to control synthesis of
oligonucleotides on the surface of a silicon chip, a technology developed by the
microprocessor industry for making silicon chips for computers. The number of genes
that could be detected by this platform is limited by the physical size of the array and
the achievable lithographic resolution. Current technology allows for several millions
of oligo probes to be synthesized on a few square centimeters (1.28 X 1.28 cm). One
of the most intriguing aspects of this platform is the presence of multiple probes per

genes and mismatch (MM) probes.

As for the principle of Affymetrix GeneChip, each gene is represented by one or more
ProbeSets on the Affymetrix microarray. Each ProbeSet is in turn comprised of 11-20
probe pairs and each probe pair has two 25 base long probes, one perfect match (PM)
which matches the gene sequence exactly while the mismatch (MM) probe is same as
the perfect match except that the middle base in the probe’s 13" position is exchanged
with its complement (Figure 1.2). The goal of design of multiple probe pairs is to
improve specificity because of their short length. The PM probes are designed to
hybridize only with transcripts from the target gene (specific hybridization). However,

the hybridization of PM probes to other mRNA, non-specific hybridization is
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unavoidable. Therefore, the observed intensities need to be corrected. MM probes are
introduced to estimate non-specific binding and their location is adjacent to PM
(Lipshutz et al 1999). Theoretically or according to the original purpose of the
inclusion of MM, MM should not hybridize to the target genes under highly stringent
conditions. In practice, this is not necessarily always true. The intensity values of a
large number of MM have been shown to be higher than those of PM (Irizarry et al
2003b). Therefore, it should noted that the use of MM control for deriving the final
gene expression levels is not universally agreed upon and some studies have shown
that ignoring the mismatch data and adopting some statistical models based on perfect
match intensity achieve better performance (Chu et al 2002, Irizarry et al 2003b, Li &
Wong 2001). This issue will be discussed further below. In addition, there can also
typically a high variation in the intensity values of the 16 or more oligonucleotide
probes that constitute a probe set which implies that selecting of different set of
probes may give a slightly different measure of abundance. In some cases, this can

imply mRNA splicing or processing.

The cDNA microarray technology is another platform that has also been extensively
used to monitor the relative levels of expression of thousands of genes simultaneously
(Schena et al 1995). The basic process of manufacture of this platform is that a robot
spotter is used to spot tiny quantities of probe in solution from a microtiter plate to the
surface of a coated glass slide or nitrocellulose or nylon membrane. Therefore, cDNA
microarrays are also called spotted arrays. Membranes are most suited to applications
where radioactivity is used to label the cDNA, while glass slides only support
fluorescence-based detection. The probes spotted on cDNA arrays can be cDNA, PCR

products, or oligonucleotides. Each probe is complementary to a unique gene. The
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probes are fixed on the surface in a number of ways. The traditional method is by
non-specific binding to polylysine-coated slides. The samples and controls usually are
labeled by differently fluorescence dyes and competitively hybridize to the same
cDNA array. This is why cDNA arrays are also called two-channel arrays. In contrast,
Affymetrix GeneChips are single channel arrays since one chip is hybridized by one
sample, which means the control/reference and treatment need to be hybridized to
different chips. From a data analysis point of view, the main difference is that the
cDNA arrays usually generate a dataset of ratios while Affymetrix chips give a

relative expression levels.

There are advantages and disadvantages of each type of array. The Affymetrix
oligonucleotide array can accommodate higher densities of genes, including some
hypothetical genes predicted using computing algorithms which are not represented in
cDNA libraries. Even the whole set of genes on certain genome can be accommodated
by Affymetrix style arrays. The microarray chips that we used for our experiments in
the mouse model is 430 2.0. It contains over 45,000 ProbeSets and investigates about
30,000 genes, which is almost all currently known and predicted mouse genes.
Usually, the Affymetrix GeneChips exhibit lower variability from chip to chip. And
since Affymetrix is a well designed commercial platform, it facilitates microarray data
comparison and integration across different research groups throughout the world.
Though cDNA arrays are considerably cheaper than Affymetrix chips and offer more
flexibility in array design, the spotting of cDNAs is less uniform than the
manufactured Affymetrix chips. Since cDNA microarrays typically have an upper
limit of 15,000 elements (and often include fewer than 5,000 spots), they are unable to

represent the complete set of genes present in higher eukaryotic genomes.
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Consequently, this platform is usually developed for detecting a class of interesting
genes specific to certain developmental stage or tissue. Since we use the Affymetrix
GeneChip platform in this thesis work, I will focus on this platform in the rest of the

introduction.

General procedure for microarray experiments

The microarray experiments can be divided into several steps: experimental design,
performing the microarray experiments, low-level microarray data analysis, high-level

microarray data mining, and follow-up validation and experiments (Figure 1.3).

Designing and performing microarray experiments

The first task in the design of any microarray experiment is to frame a biological
question or a hypothesis which will be studied or tested in the microarray experiments.
The aims of the microarray experiment, the accessibility of the sample, the

availability of funding, and the current research status of the same research area using
microarrays (for easily comparing results from different research groups), etc., are all
important considerations. When planning the experiments, there are two types of
repetitions: technological and biological. Technological repetitions usually involve
using the same biological sample repeatedly (e.g., repeated hybridization). Biological
repetitions use different samples from different biological individuals. The latter is

much more important in microarray experiments.

Once finishing the experimental design, one needs to prepare samples (tissues, cells,
etc) under different treatment and control conditions or other time series points. Then
extract mRNA, synthesize cDNA and label the cDNA and hybridize it to microarrays.

After hybridization, the array is scanned and intensities are extracted for each feature
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on the array (The Affymetrix microarray experiment process is shown in Figure 1.4

a).

Background adjustment and normalization

After performing microarray experiments, we need to process the images to obtain the
gene expression values. Basically, preprocessing Affymetrix expression arrays
involves three main steps: background adjustment, normalization, and summarization
of probe level intensities. In any experiment involving multiple Affymetrix
microarrays, there is inevitable inherent noise which is introduced in the process of
experiments since the experiments are complicated and involve a number of steps,
most of which have the potential to introduce noise. The source of the variations may
come from differences in mRNA extraction and cDNA amplification,
dye-incorporation, efficiency of hybridization, microarray image-scanning process or
experimenter bias. Before we can derive any real significant signals from the
microarray data, we need to remove or at least to reduce as much as possible the noise.
The processes for reducing the noise or variation within/between the arrays are

background adjustment and normalization.

Background Adjustment

The background adjustment used in MAS4.0 and MASS5.0 is called regional
adjustment. By this method, each array is divided into a grid of n rectangular regions
(default n=16). For each region, the lowest 2% of probe intensities are used to
compute a background value for that grid. Then each probe intensity is adjusted based
on a weighted average of each of the background values. The weights are dependent

on the distance between the probe and the centroid of the grid (Affymetrix 1999,
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Affymetrix 2001). This method corrects both PM and MM probes.

A different background adjustment accomplished by a convolution strategy is used by
the Robust Multichip Average or RMA method (Bolstad et al 2003, Irizarry et al
2003a, Irizarry et al 2003b). Irizarry et al found there are various problems using the
MM probes in the preprocessing stage and proposed a procedure that only uses PM.
By this method, the PM intensities are adjusted array by array with a global model for
the distribution of probe intensities. This method was motivated by the empirical
distribution of probe intensities. In brief, the observed PM probes are modeled as the

sum of a Gaussian noise component and an exponential signal component (Irizarry et

al 2003a, Irizarry et al 2003b).

Since the RMA background adjustment normalization approach ignores the MM
intensities, it sacrifices a degree of accuracy for large gains in precision. Moreover,
the global background adjustment in RMA ignores the different propensities of probes
to undergo non-specific binding; thus this method may underestimate background.
Another method, called GCRMA, considers the sequence characteristics of each
probe using the probe sequence information released by the manufacturer (Wu &
Irizarry 2004, Wu & Irizarry 2005). In this model, an affinity measure is calculated by
using the probe sequence information. A background adjustment method motivated
by this model has been implemented and together with quantile normalization and the

medial polish procedure used by RMA to define a new expression measure.

Normalization

Following the background adjustment, there are two main types of methods for

performing normalization on the probe intensity level. The first type is called the
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baseline array method; it selects a baseline array, usually the array with the median of
the median intensities. There are scaling methods (Affymetrix 1999, Affymetrix 2001)
and non-linear methods (Li & Hung Wong 2001, Li & Wong 2001) to accomplish this.
The scaling method is the standard Affymetrix normalization method; it is used both
in MAS4.0 and MASS5.0. After selection of the baseline array, all the arrays are
normalized to this array by multiplying a scale to adjust them so that they have the
same mean intensity as the baseline array. The scale is calculated by dividing the
trimmed mean intensity of the baseline array by the trimmed mean intensity of the
normalized array (Affymetrix 1999, Affymetrix 2001). This method is equivalent to
selecting a baseline array and then fitting a linear regression without an intercept term
between each array and the chosen array. The non-linear method performs non-linear
adjustments between the arrays and tends to out-perform linear adjustments such as
the scaling method. Several non-linear relationships have been proposed including
cross-validated splines (Schadt et al 2001) and running median lines (Li & Hung
Wong 2001, Li & Wong 2001). For a typical implementation, the normalizing
relationship is fitted using a rank-invariant set of points, that is, a set of points that has

same rank ordering on each array.

A second group of widely-used normalization methods is called complete data
algorithms since this approach combines information from all arrays in one
experiment to establish the normalization relationship. Two algorithms in this group
are the cyclic loess and contrast based method, both of which are based on the M
versus A plot. Here M is the difference in log expression values and A is the average
of the log expression values (Astrand 2003, Bolstad et al 2003, Dudoit et al 2002).

The third method is Quantile normalization; this method makes the distribution of
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probe intensities the same for each array in multiple microarray experiment. This is
the normalization method used in the Robust Multichip Average (RMA) method

(Bolstad et al 2003).

Summarization of Probe Intensities

Affymetrix high density oligonucleotide arrays rely on multiple different probe pairs
for each gene and it is necessary to condense these probe pairs into a single intensity
for each gene. This process is called summarization. There are several methods to
obtain the gene expression values: Average difference (AvgDiff,
MAS4.0)(Affymetrix 1999), the MASS5.0 statistical algorithm (Affymetrix 2001,
Hubbell et al 2002), the Model-based Expression Index (MBEI, implemented in
dChip software) (Li & Hung Wong 2001, Li & Wong 2001), and the Robust
Multichip Average (RMA) (Irizarry et al 2003b) and GCRMA (Wu & Irizarry 2004,
Wu & Irizarry 2005). Some of these algorithms use mismatch information to make

adjustment for non-specific hybridizations and some completely ignore MM.

In the early version of the Affymetrix software MAS 4.0, an Average Difference
between PM and MM probe pairs was calculated. Since the mismatch (MM) was
originally designed to detect probe-specific non-specific hybridization, we could
adjust the PM probe intensities by subtracting the MM intensities from the

corresponding PM intensities. Average Difference was calculated as follows:

AvgDiff = (Sum of (PM — MM) of all probes for each gene) / (number of probe pairs)

Note that probes that deviate by more than three standard deviations from the mean
are excluded from the calculation. There are negative or very small AvgDiff values.

The possible reasons for these values are either that the target is absent or that there is
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non-specific hybridization.

For intensities from a typical Affymetrix microarray experiment, as many as 30
percent of MM probes have higher intensities than their corresponding PM probes
(Irizarry et al 2003a, Irizarry et al 2003b, Naef et al 2002). Consequently, when raw
MM intensities are subtracted from PM intensities using AvgDiff methods in MAS
4.0, many negative expression values are generated. This becomes problematic and
makes little sense because it is impossible for a gene expression value to below zero.
Furthermore, the negative values preclude the use of logarithms which are widely

used for data transformation in statistical analysis.

In the new version of the Affymetrix software (MAS 5.0), this issue is solved by
introducing ideal MisMatch (IdealMM) probes. The values of IdealMM are designed
to be smaller than the corresponding PM intensities. The strategy of the IdealMM is to
use MM when its intensity is less than PM or a quantity smaller than the PM in other
case. This is done by computing the specific background for each ProbeSet which is a
robust average of the log ratios of PM to MM for each probe pair in the ProbeSet

(Affymetrix 2001, Affymetrix 2002). The value is calculated by:

Signal = TukeyBiweight(log(PM,-IdealMM,)),

where Tukey biweight is a robust estimator of central tendency. However, the
introduction of IdealMM may affect the normality assumption often used in

downstream statistical analysis (Giles & Kipling 2003).

Li and Wong (Li & Hung Wong 2001, Li & Wong 2001) designed a method using a
Model-Based Expression Index (MBEI). This model takes into account that probe

pairs respond differently to changes in gene expression and that the variation between

23



replicates is also probe pair dependent. It computes a scaling factor which is specific
to probe pair (PMn-MMn) by fitting a statistical model to a series of experiments. It
has been shown that this model works with or without MM and usually has lower
noise when MMs are excluded. The software, dChip, was designed for fitting the
model (weighted average difference and weight perfect match) as well as for detecting

outliers and obtaining estimates on reliability (http://www.dchip.org). The weight

average difference is calculated by:

Signal = (sum of ((PMn-MMn)*(scaling factor)))/(number of probe pairs)

A comparison of Li and Wong’s method with Affymetrix’s Average Difference
method showed that MBEI (dChip) is superior in a realistic experimental setting
(Lemon et al 2002). However, this model parameter estimation works best with 10 to

20 chips.

Since MMs have been observed to detect some specific signals, Irizarry et al.
designed the Robust Multichip Average (RMA) that is a procedure for computing
expression values (Bolstad et al 2003, Irizarry et al 2003a, Irizarry et al 2003b). It
consists of three discrete steps: a convolution model-based background correction, a
non-linear quantile probe-level normalization, and a robust mutichip summarization
method. I have discussed the first two steps above. RMA completely ignores the
information of MM probes in all steps of the algorithm. Summarization is done using
a robust multichip linear model to fit on a probeset by probeset basis. Specifically, the
standard RMA summarization approach is to use median polish to computer

expression values:

RMA-signal = Medianpolish(log(PMn — (scaling factor))),
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where the scaling factor is specific to probe PMn and is obtained by fitting a statistical
model to a series of experiments. There are also other algorithms for performing
background adjustment, normalization and summarization of probe intensities. See

Table 1 for a summary of the methods discussed here.

There are several studies comparing how the different normalization and
summarization algorithms affect the high-level analysis (Bolstad et al 2003,
Hoffmann et al 2002, Ma & Qin 2007, Parrish & Spencer 2004, Shedden et al 2005).
However, there is no universal agreement as to which method is best. Generally
speaking, the sequence based methods or MM-based methods work better for high-
and median-expressing genes and worse for low-expressing genes. Furthermore,
which algorithm is best depends on the microarray data and no method of
normalization or probeset summarization shows any consistent advantages. We have
used the RMA method to perform background adjustment, normalization and
summarization of gene expression values in this thesis work (Affy package from

BioConductor (Irizarry et al 2003b)).

Identification of significantly changed genes

After obtaining the gene expression values, one of the important tasks for a
microarray study is to identify the statistically significantly changed genes across
different conditions, tissues or cell types. For comparative microarray experiments
involving two groups of samples, usually the t-test is used for identification of
significantly changed genes and may be combined with fold change. The t-test looks
at the mean and variance of the sample and control distributions and calculates the

probability that the observed difference in mean occurs when the null hypothesis is
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true (no difference of gene expression for the two compared conditions).

When using the t-test, it is often assumed that the variances in sample and control are
equal, which allows the sample and control to be pooled for variance estimation. If
there is evidence showing that these variances are not equal, one may use Welch’s
t-test which assumes unequal variances of the two populations. The t-test also
assumes that the data are approximately normal or the sample size is not too small.
The gene expression data obtained by RMA are log-transformed which makes the
data close to normal but there is no guarantee for this assumption. Giles and Kipling
(Giles & Kipling 2003) have demonstrated that deviations from the normal
distribution are small for most microarray data, except when using Affymetrix’s MAS
5.0 software. Furthermore, the t-test is robust to moderate deviations from the normal
distribution. Usually the sample size is small in microarray data analysis due to the
high cost or the availability of the samples. The lower the number of replicates, the

more difficult it will be to estimate the variance.

There are several solutions to this problem. The simplest solution is to take fold
change into account for experiments with small sample size and not consider genes
that have lower fold change, for example, less than two-fold change in expression.
This will guard low p-values that arise from underestimation of variance, and is sort
of similar to the algorithm used in Significance Analysis of Microarray (SAM)
(Tusher et al 2001), an approach which adds a small constant to the gene-specific
variance. The relationship between p-value and fold-change can be visualized by the
volcano plot (p-value on y-axis vs fold-change on x-axis) (Jin et al 2001), genes can
then be selected based on the distribution of the data points on the volcano plot. Other

solutions for low sample size are to base variance estimates not only on a single gene
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measurement, but to include variance estimates from the whole population (Baldi &

Long 2001, Kerr & Churchill 2007, Lonnstedt & Speed 2002).

Another alternative method for assessing significance without assuming normality is
the Wilcoxon/Mann-Whitney rank sum test (nonparametric test). This approach does
not use the actual expression values from the microarray experiment, but rather uses
their rank relative to each other. However, since the Wilcoxon test does not measure
variance, the significance of this result is limited by the number of replicates.
Therefore, one may find that Wilcoxon test gives a poor significance for a low

number of replications.

If there are three or more than three groups, conditions, or time series in the
microarray experiments, the t-test may not be the ideal method since the number of
comparisons grows fast if you perform all possible comparisons between all the
conditions. ANOVA (analysis of variation) using F-distribution would be an efficient
statistical method to find the statistically significant changed genes in such cases

(Kerr et al 2000).

There are other linear models for selecting differentially expressed genes such as
LIMMA (Linear Models for Microarray Data analysis) (Smyth et al 2005). Itis
designed for differential expression analysis of microarray data. The central idea is to
fit a linear model to the expression vector. The expression data can be log-ratios from
two-color microarrays, or log-intensities from Affymetrix microarray. Empirical
Bayes and other shrinkage methods are used to for moderating the genewise variances
between genes which makes the analyses stable even for experiments with small

number of arrays.
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There are many software packages for computing t-test and ANOVA. Some of the
tools we have used in our microarray data analysis include TM4, which is designed by
TIGR (The Institute of Genome Research), and functions and packages within R and

BioConductor.

Correction for multiple hypothesis tests

Since microarray data analysis usually contains comparisons of thousands of genes, it
is important to consider the effect of multiple hypothesis testing. The p-value of 0.05
(which is frequently used when selecting significantly changed genes) means that you
have a probability of 5% of making a type I error (false positive call) on one gene. If
there are 10,000 genes on the microarray, you expect 500 type I errors (false positive

calls).

For the purpose of correcting multiple hypothesis tests, there are several methods:
one-step methods and step-down methods. Both involve using smaller p-values for
identifying significant genes by “slashing” the p-value for each test (i.e., gene), so that
while the critical p-value for the entire data set might still equal 0.05, each gene will

be evaluated at a lower p-value.

The simplest single-step method, known as the Bonferroni correction, divides the
alpha value (e.g. 0.05) by the total number of multiple tests (usually this is the total
number of genes on the microarray). For example, for 10,000 genes on microarray,
the new cutoff is 0.05 divided by 10,000, which is 0.000005. This is a very strict
cutoff and using this method, most microarray experiments end with no genes

significantly changed.

Step-down methods are less conservative than one-step methods. It makes different
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adjustments to the p-values of different genes. This method first ranks the p-value of
all the genes in increasing order. Then it compares the p-value with the alpha value
after dividing by the total number of tests (N, usually the gene numbers on the array),
the second p-value with alpha divided by N-1, the third p-value with alpha divided by
N-2, and so on. If the p-value of one gene is less than the corrected alpha value, it is
considered significantly changed. Both single-step and step-down methods are
generally over-stringent due the large number of tests and only a few genes or no
genes at all pass this new cutoff for typical microarray experiments, which results in

exclusion of many false negatives.

Another method for correcting the multiple tests in microarray and bioinformatics
studies (GO term enrichment and pathway analysis) is false discovery rate (FDR); this
works by controlling the proportion of genes that are falsely identified. It can be set to
values less strict and will yield a moderate number of genes for study (Benjamini &
Hochberg 1995, Dudoit et al 2002, Reiner et al 2003). This method first ranks the
genes according to p-values (significance) and then starts at the top of the list and

accepts all genes with

p-value <= (i/m)*q,

where 1 is the number of genes accepted so far, m is the total number of genes tested
and q is the desired FDR. The False Discovery Rate can also be assessed by
permutation. This is the method implemented in the software SAM (Tusher et al
2001). It permutes the expression values from sample and control, repeats the t-tests
for all genes and gets an estimate of the number of false positives that can be expected

at the chosen cutoff (alpha). Then it divides this number by the number of genes that
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pass the cutoff on the original un-permuted data to get the FDR.

The final point about multiple hypothesis test correction is not to get overly focused
on p-values. Ultimately, what matters is biological relevance and significance. The
p-values can help you evaluate the strength of the evidence, and should not be used as
an absolute yardstick of significance. Statistical significance is not necessarily the
same as biological significance. The lower fold change (FC) and higher p values for
some genes, which makes them less statistically significant, may be due to the small
sample size (the normal situation in microarray studies) or other reasons. If there are
not too many genes passing the FDR control, one may use other methods to
understand the gene expression profiles (e.g., Gene Ontology (GO) term enrichment
or Gene Set Enrichment Analysis (GSEA) using all the gene expression profiles,

discussed below).

Microarray data mining and Bioinformatics

For pairwise comparison of microarray studies, the above analysis will generate a list
of regulated genes ranked by the magnitude of up- and down-regulation, and/or
ranked by the significance of regulation determined in a t-test. For microarray
experiments involving mutifactorial conditions, in attempting to make biological
sense of microarray data, it is helpful to visualize the huge data matrix by a method
the human brain can process easily. This usually entails graphical representation in
the format of line graph or color figures which display genes into clusters with similar
expression profiles. A variety of clustering methods have been developed to identify
groups of co-regulated genes, including hierarchical clustering, principal component

analysis, etc.
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Clustering Analysis

Clustering analysis has been using frequently in microarray analysis and can lead to
readily interpretable figures (Chu et al 1998, Do & Choi 2008, Eisen et al 1998, Qin
2006, Wang et al 2002). The main application of this method is to identify groups of
genes sharing similar expression patterns or profiles and identify spatial or temporal
expression patterns, which is often regarded as evidence for similarity of functions,
allowing putative annotation of the function of unknown genes. This in turn may
imply that the genes are involved in a similar biological process. Consequently, in
addition to describing how individual genes respond to certain treatments, microarray
analysis can describe the level of coordinate regulation of gene expression on the
genome-wide scale. Though not definitive, this type of analysis is at least sufficient to
generate hypotheses that can be tested by more traditional molecular biological
approaches. Similarity of expression profiles can also imply that the cluster of genes
share the same mechanisms of co-regulation. Some clustering methods can even
identify both positive and negative regulations in one cluster (Qin 2006).
Bioinformatic tools can then be applied to identify upstream regulatory sequences in
the promoter regions of these genes which may lead to isolation of transcriptional
factors that mediate particular expression profiles. Clustering can be performed both
on the genes and the samples (or treatments, mutations, drugs, etc), allowing detection
of patterns in two dimensions. In cases where the treatments represent a series of
tissue types, drugs or mutations, this two-dimensionality can be an extremely
powerful method for identifying similarities in genome-wide responses. Clustering on
samples or arrays in tumor microarray studies is essential when seeking new

subclasses of tumors or new cell types, which is crucial for successful diagnosis and
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treatment. Clustering on genes in cancer studies can identify marker genes that
characterize the different tumor classes (feature selection). Furthermore, Clustering
can be used for quality control: comparing array/gene clustering results to
experimental variables such as array batch, mRNA amplification methods, lab,

experimenter, etc.

Clustering involves several distinct steps. First, a suitable distance or similarity
between genes must be defined based on gene expression vectors. Then, a clustering
algorithm must be selected and applied. The results of a clustering procedure can
include both the number of clusters and a set of set of cluster labels for all the genes to
be clustered. Appropriate choices will depend on the questions being asked and the
data. There are many types of clustering algorithms (Do & Choi 2008, Eisen et al
1998, Qin 2006). One of the frequently used methods is the agglomerative (bottom-up)
hierarchical clustering method. The basic algorithm in hierarchical agglomerative
clustering is to begin with each data point (gene or sample) as a separate cluster and
then iteratively merge the two “closest” clusters until all the data points are in a single
big cluster. Here, “close” is defined by clustering criterion which consists of two parts
in nonparametric clustering: the similarity or distance measure or metric, which
specifies how to compute the distance between two data points; and the linkage,
which specifies how to combine these distances to obtain the between-cluster distance
since after several steps the clusters may contain more than one data point (sample or
gene). In model-based clustering, the clustering criterion is based on the likelihood of
the data given the model. The distance or similarity/dissimilarity of different genes
can be calculated based on different algorithms, such as Euclidean distance, or L?

distances, cosine vector angle, or one of many other possibilities.
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FEuclidean distance is defined as:
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After the distance is computed, the two most similar clusters will be merged in one
cluster. Since the clusters may have more than one data point, it is impossible to just
look at distance/dissimilarity matrix to determine similarities. This is why the linkage
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part is necessary. There are average linkage, single linkage, and complete linkage.
Single linkage is defined as the smallest pairwise distance between the members of
the two clusters. Average linkage is based on the mean distance of all the possible
distances between all the members in the two clusters. Maximum linkage uses the
maximum distance in all of the possible distance of the members in the two clusters.
In other words, single linkage defines two clusters to be similar if they have at least
one pair of similar samples, whereas complete linkage considers two clusters to be
similar only if all pairs drawn from the two clusters are similar. Average linkage falls
somewhere between the single and complete methods. Complete linkage tends to
yield compact clusters, while single linkage can be stringy or elongated. There is no

universal agreement on which of these three linkages is best in a given dataset.

A dendrogram or tree is commonly used to visualize the nested structure of clusters
resulting from hierarchical clustering, which are usually combined with a heatmap
(color-coded matrix) showing gene expression matrix. Clusters or nodes forming
lower on the dendrogram are closer together, while upper nodes represent merges of
clusters that are farther apart. Since each data point begins as a single cluster in
bottom-up hierarchical clustering, the leaves (terminal nodes at the bottom of the
dendrogram) each represent one data point (gene or sample), while interior nodes
represent clusters of more than one data point. The top node of the dendrogram
denotes the entire data set as a single root cluster. Partitions of the tree can be
obtained by cutting the tree at different levels of height; closer to the leaves (terminal
nodes), yields more clusters. While dendrograms are quite appealing because of their
apparent ease of interpretation, they can be misleading. First the dendrogram

corresponding to a given hierarchical clustering is not unique since for each merge
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one needs to specify which subtree should go on the left and which on the right. So
there are many different dendrograms. The default in the R function hclust (cluster
package) is to order the subtrees so that the tighter cluster is on the left. Since
clustering usually requires vast computing, it is reasonable to filter the data before
clustering by removing the genes not changed across different conditions to reduce

the required computing burden.

From dendrograms and heatmaps, it is easy to identify groups of genes or samples
with similar patterns which might therefore share regulation control. These then can
be further investigated to understand the patterns, for example, by searching for
common transcription factor binding sites (or motif) analysis in the promoters of the
clustered genes. In the follow-up analysis, the biological meaning of clusters can be
assessed by their predictive power and their capacity for generating hypothesis by
aligning cluster data with Gene Ontology (GO) and other genomic annotation, such as

linkage to a literature database.

Principal Components Analysis

The data matrix from microarray gene expression studies is usually highly
dimensional and it is impossible to discern any patterns or trends by visual inspection
of such a complicated huge matrix. Since visual analysis is usually performed in two
or three dimensions, it is necessary to reduce the dimensions of the data matrix before
any feasible visual analysis. There are many methods allowing reduction of a matrix
of any dimensionality to only two or three dimensions, one of which is Principal
Components Analysis (PCA). PCA is a powerful multivariate statistical method for

reducing the data dimensions and visualizing the data in a simple x-y graph. Some
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important trends or fundamental patterns underlying gene expression profiles can be
spotted from the PCA graph alone (Dysvik & Jonassen 2001, Raychaudhuri et al 2000,
Xia & Xie 2001) and its popular algorithm is Singular Value Decomposition (SVD)
(Alter et al 2000, Alter et al 2003, Holter et al 2000, Wall et al 2001). If replicates are
available, it is best to perform PCA on data that has already been filtered for
significance. The first principal component captures most of variation in the data and
may not necessarily coincide with any of the existing axes. Rather, it will have
projections of several or all axes on it. The second principal component captures the
maximum amount of variation left in the data and is orthogonal to the first one.
Therefore, PCA displays as much of variation in the data as possible in just two or
three dimensions. What the analysis will tell you depends on whether there is a trend
in the data that is discernible in two or three dimensions. PCA could be carried out on
both genes and samples to detect outlier genes in a certain group (such as some group
identified in volcano plot) or study the homogeneity of the tissue samples used in the

microarray experiments.

In this thesis, we apply PCA on tissue samples in our pyloric border microarray
experiments to show that the samples we used in our microarray experiment are quite
homogenous and to demonstrate that large changes in gene expression profiles

occurred between E14.5 duodenum and E16.5 duodenum.

Transcription factor binding site (TFBS) analysis

Gene expression is regulated in part by transcription factor(s). Transcription factors
act by binding to specific DNA elements, Cis elements or transcription factor binding

sites (TFBS), in gene promoter regions. Identification of co-regulated genes and their
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transcription factor binding sites (TFBS) are critical issues for understanding gene
transcription regulations and networks (Qin et al 2003). Traditionally, methods
identify these elements by biochemical and/or molecular genetic procedures (for
example gel-shift assays). However, many of these regulatory elements remain to be
identified. Bioinformatic strategies together with microarray studies are being

employed to help with these issues.

Clustering analysis of microarray data generates groups of genes with similar
expression patterns (for example, those having a similar transcription response) in
different conditions; this may reflect a commonality in function or a sharing of
common regulatory mechanisms. When the genes in one cluster have known and
similar function, we can infer the function of unknown genes (or hypothetical genes)

within the same cluster.

Given a set of co-regulated genes (genes in the same cluster responding to the same
signals or stimuli), it is generally assumed that transcription of most of (if not all)
these genes is likely to be regulated by a common transcription factor. Therefore,
there may be conserved regulatory sequences in their promoter regions. The most
popular strategy is to carry out TFBS analysis on a small group of genes that are

identified either by clustering, pathway analysis, or other functional annotation.

The first step in TFBS analysis is to obtain the promoter regions for the group of
interesting genes. This requires that the promoter region is defined and included in a
database for retrieving. Even when the promoter sequences are available, finding
common regulatory elements is inherently complicated because of the degeneracy of

such elements. The first problem is that regulatory elements usually are short
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(between 6 to 10 bases in length, reflecting the length of helical groove that the
proteins or transcription factors recognize through specific hydrogen bonding). The
second problem is these regulatory sequences usually are variable to some degree in
several locations. The expected frequency of any n-base sequence is one in very 4"
nucleotides which means that it can occur millions of times in the genome. The
degeneracy of binding sites (some bases are variable which makes actual binding sites
diverge from the canonical motif) only exacerbates this problem. Thus, the problem of
identifying Cis elements that are overrepresented in the promoters of just a small
group of genes is acute. Furthermore, transcriptional regulation is complicated. Not all
genes with the same expression profile share a particular motif. Also, the same
transcription factor can be involved in the regulation of a wide variety of expression
profiles. In some cases, response may be concentration-dependent so that the same
factor can be an activator at some concentrations and a repressor at others. The
distance between the binding motif and transcription start site (T'SS) may affect the
efficiency of transcription. Some transcription factors may require co-factors. Thus
regulatory element function is heavily context-dependent (Fessele et al 2002, Herault
et al 1999, Werner et al 2003). While it is possible to identify conserved elements,
there is often no one-to-one correspondence between the presence of that element and
the transcription profile. Importantly, the binding sites that confer important
biological responses may often be the ones with lowest affinity for the transcription
factor which can be more sensitive to slight changes in protein concentration. Thus
the sites that diverge most from the consensus sequence may be very important in
regulation. Furthermore, in higher eukaryotes, regulatory elements tend to be
dispersed over tens and even hundreds of kilobases, and can be positioned

downstream of, within, or upstream of genes. This greatly increases the amount of

38



space that must be searched in order to find these motifs.

For a group of genes, if we have no prior knowledge about what transcription factors
regulate them, the common strategy for identifying motifs in their promoters is Gibbs
Sampling (McCue et al 2002, Newberg et al 2007, Thompson et al 2005, Thompson
et al 2004, Thompson et al 2003, Thompson et al 2007). The strategy is to iterate
randomly through ungapped alignments of the promoter sequences, searching for
alignments that result in the identification of blocks of conserved residues of some
pre-specified length. In essence, the result is an optional local multiple sequence

alignment.

An alternate strategy for understanding the co-regulation of genes in the same cluster
or similar functional group (for example Gene Ontology terms) is to identify
candidate transcription factors first. The transcription factors can be identified from
the microarray data itself by searching for the TFs with highest expression levels.
Candidate TFs can also be identified by literature analysis or pathway analysis

(Cartharius et al 2005, Quandt et al 1995, Werner 2000).

Once candidate TFs are identified, we can search their binding sequences by mining
literature or some TF database, such as TRANSFAC, JASPAR or Genomatix. Then
we search their binding sites in promoters of the interesting candidate genes. If there
is only one binding site (one exact short sequence), the search will be simple and fast;
however, variants will be missed. Since TFBSs are typically degenerate and there are
often several variations of binding sites for one transcription factor, a common
approach is to build a binding matrix then search this binding matrix (position weight

matrices, or PWM) in gene promoter sequences (Stormo 2000a, Stormo 2000b). It is
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important to compare such a binding site search in a group of candidate genes to a
control group of genes. For TFBS analysis, as is done in this thesis, several control
groups can be randomly extracted from the same microarray. The genes in the control
groups may not be expressed at all or may be expressed at different levels for
different samples or conditions. If specific TFs appear to be enriched in the candidate
group of genes compared to the control group(s), the functional basis for this will
need to be verified using laboratory studies. It is important to note that, given the
correct binding matrix, binding sites will probably bind to the corresponding factors
in in vitro studies, such as EMSA. But this does not mean that these sites are
necessarily bound in vivo. Only the context can tell a functional site from a mere
physical binding site (Elkon et al 2003). TFBS analysis tools such as MatInspector
used in this thesis work can identify the sites but cannot determine the functionality of
the sites. Most sites are only functional in certain cells, tissues or developmental
stages. The biological function of each site can only be proven experimentally.
Advanced bioinformatic strategies including orthologous or comparative genomic

analysis can reduce the number of the candidate sites that need to be tested.

Interpreting microarray data from an interaction network view

The traditional method of microarray study is to find the list of significantly changed
genes and then do further experimental analysis based on this gene list. However, sets
of genes act in concert. Therefore, single-gene analysis may miss important effects on
pathways. For example, an increase of small percentage (10% or 20%) in all genes of
a metabolic pathway may dramatically alter the flux through that pathway and may be
more important than a 20-fold up-regulation in a single gene. For this reason, it is

important to understand the identified gene list in the context of interaction networks.
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Researchers have proposed a couple alternative ways to mine the microarray data.
There are several tools to perform a global analysis of gene expression or genomic
data in the context of biological pathways and groupings of genes. One of them is
GenMAPP (www.genmapp.org). It is a free computer application designed by the
Conklin Lab in UCSF to visualize gene expression and other genomic data on maps
representing pathways and Gene Ontology Term Sets (Dahlquist 2004, Dahlquist et al
2002, Salomonis et al 2007). The GenMAPP database has hundreds of pathways
(signaling pathways, metabolic pathways, physiological pathways) and thousands of
Gene Ontology terms which are manually made by scientists based on currently
known information. The input to GenMAPP for microarray data analysis is the list of
significantly genes or the entire gene list on the microarray with fold change and
p-values. GenMAPP can visualize selected pathways by searching the input data
based on the user-set criteria. These criteria include fold change, p-value and colors
for different input data information to color the genes in the pathway map. Users can
even build their own pathway based on the known interaction network. GenMAPP is
a powerful tool to visualize gene interaction in a pathway format and can facilitate the
understanding of microarray data. However, the disadvantage is that it relies on
currently known information about pathways and there is no way for GenMAPP to

identify new interaction relationships between genes.

Another tool for understanding gene interactions is GeneGo (www.genego.com)
(Ekins 2006, Ekins et al 2006, Ekins et al 2005a, Ekins et al 2007, Ekins et al 2005b,
Nikolsky et al 2005a, Nikolsky et al 2005b). GeneGo is a leading bioinformatics
software package for data mining applications in microarray data and systems biology.

MetaBase is GeneGo’s manually-curated database of mammalian biology and
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medicinal chemistry. This database is built and constantly curated by entering
increasingly published gene interaction information which is obtained by scientists
who read the literature every day and identify new gene interaction relationships. The
input for GeneGo is a list of genes identified using statistical methods. Often, genes in
the input list are differentially expressed in certain tissues, cells or conditions.
GeneGo builds the gene-interaction network by searching gene interaction
relationship information in its expert-manually-curated database for the input list of
genes. GeneGo can also be used for Gene Ontology (GO) or MeSH term enrichment
analysis which may reveal important biological themes. GeneGo has incorparated
visualization power by using different symbols for different types of genes; for
example, transcription factors are represented by one special symbol while kinases by
another. Furthermore, the interaction networks built by GeneGo are dynamic because
each connection line between two genes is a link to the literature in which the
interaction information is obtained. Researchers can view this information by clicking
the connection line between the genes in the network map. This is totally different
from the GenMAPP pathway maps which are static and only the fold change or gene
expression value and/or p-value are shown on the map. GeneGo can also build
transcription regulation networks based on the published regulation information but
cannot find new transcriptional regulation networks between genes. GeneGo can also
filter longer lists based on gene expression level, fold change or p-value before
building the interaction networks. The disadvantage of GeneGo is that it performs
best for short lists (less than 50 or so). If the input gene list is too long, for example,
several hundred genes, which is normal in microarray analysis, GeneGo will build
very complex networks; this can be hard to interpret. However, the interaction

relationships in the expert-manually-curated database are more reliable than those in
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other databases that use computer natural language processing software to find

relationships.

Another tool based on literature mining is the Genomatix BiblioSphere Pathway

Edition (www.genomatix.de) (Cartharius et al 2005, Fessele et al 2002, Klingenhoff

et al 2002, Scherf et al 2005, Seifert et al 2005, Werner 2000, Werner 2001a, Werner
2001b, Werner 2002a, Werner 2002b, Werner 2007, Werner 2008, Werner et al 2003,
Werner & Nelson 2006). Like GeneGo, the gene interaction information in
BiblioSphere is also based on literature which is curated by experts and processed by
automatic computer natural language processing algorithms. BiblioSphere not only
uses gene interaction but also includes gene co-citation information in its database to
filter the input list. Like GeneGo, BiblioSphere can also do GO term analysis and
follow-up pathway analysis; the network maps are also dynamic to show literature
information. The big differences between GeneGo and BiblioSphere are that
BiblioSphere integrates transcription factor binding site analysis in its network
building process and that it can also show pathway information (signaling, metabolic)
on the networks. The gene network analysis, co-citation analysis, GO term analysis
and transcription regulation analysis are well integrated in BiblioSphere. The
advantage is that the results from BiblioSphere analysis can be easily followed up by
other Genomatix tools for TFBS framework analysis, comparative genomic analysis,
etc. The disadvantage is that the analysis following up BiblioSphere analysis,
especially for TFBS framework or module analysis, only works best for very short list

(about 10 or 20 genes).

Both GeneGo and Genomatix are designed to ideally perform well on a list of genes

that are identified by previous statistical tests. However, for microarray experiments
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in which few genes changed their expression across the conditions or samples, we
may end up with a list with only a small number of genes or even no significant genes
found after the consideration of multiple hypotheses testing. Or in some other
experiments in which many genes changed expression levels, we may have a long list
which contains thousands of genes and it is hard to tell the main biological theme for
these genes in the list. Neither of these situations is very good for pathway or

interaction analysis discussed above.

Another problem is that, since we usually select significantly changed genes based on
p-value and fold change (FC), there are some genes which may not meet the cutoff
threshold due to the small sample size (which usually happens in microarray
experiments due to the high cost or sample availability) but these genes may have
important biological functions. For example, some critical transcriptional factors or
signal modulators may be expressed at very low levels or in only a few cells. Another
problem arising from low-expressing genes is that when different groups study the
same biological model, the list of statistically significant genes from the two groups
may show little overlap. In order to overcome these challenges, a method called Gene
Set Enrichment Analysis (GSEA) was developed to interpret microarray data without
identifying the gene list first and evaluate the data at the level of predefined gene sets

(http://www.broad.mit.edu/gsea/) (Mootha et al 2003, Subramanian et al 2005). This

algorithm uses the genome-wide expression profiles in the microarray experiment as
input, not just a list of significantly changed genes; this is completely different from
GeneGo or Genomatix (BiblioSphere). Genes are ranked first according to their
differential expression between the classes. Except for using the entire gene

expression profiles, this method derives its power by focusing on gene sets, groups of
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genes that share common biological function, chromosomal location, or regulation.
The GSEA database, Molecular Signatures Database (MSigDB), contains more than
5000 gene sets for use with GSEA (www.broad.mit.edu/gsea/msigdb/). The MSigDB
gene sets are divided into five major collections: C1, positional gene sets for each
human chromosome and each cytogenetic band; C2, curated gene sets from online
pathway databases, publications in PubMed, and knowledge of domain experts; C3,
motif gene sets based on conserved Cis-regulatory motifs from a comparative analysis
of the human, mouse, rat and dog genomes; C4, computational gene sets defined by
expression neighborhoods centered on 380 cancer-associated genes, and C5, GO gene
sets annotated by the same GO terms. Users are also allowed to define their own gene
sets. The goal of GSEA is to determine whether members in a pre-defined gene set are
randomly distributed throughout the entire ranked gene list (in which case the gene set
is not correlated with the compared two conditions and is not considered significant),
or primarily found at the top or bottom of the ranked list (in which case the gene set is
correlated with the phenotypic class distinction). GSEA first calculates an enrichment
score (ES) that reflects the degree to which a given set is overrepresented at the top or
bottom of the entire ranked list. Then, it estimates the statistical significance of the ES
by using a permutation test procedure. Finally, it adjusts the estimated significance
level to account for multiple hypothesis testing by FDR control. The power of GSEA
is that it evaluates microarray data in gene sets and using the whole gene expression
profiles without losing low-level expression genes. However, it is still based on the

known information and cannot discover new interactions.

The methods discussed above help to interpret microarray data by combining the gene

expression information from microarray experiments with other biological
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information (literature mining, pathways, GO terms analysis, TFBS analysis, etc).
Other alternate ways to evaluate microarray data could be integration of
protein-protein interaction data, other microarray data (GEO database), CHIP-on-Chip

data, SAGE, etc.

Verification and follow-up experiments for microarray results

Like other high-throughput and semi-quantitative methods, noise is unavoidably
introduced in the microarray experiment process and there is a risk of making false
calls. Furthermore, there are possibilities of making errors in the probe selection and
probe design (there are several thousands probesets not assigned with gene annotation
during cross-gene-hybridization). In addition, microarray technology detects mRNA
level changes and mRNAs are unstable biomolecules. The changes in mRNA level do
not necessarily indicate protein level changes because important regulations take
place at the level of translation and protein modification. For these reasons, one of the
tasks in the further analysis following microarray experiments is to verify important
findings using different experimental procedures. Several traditional single-gene
analysis methods are available, including QRT-PCR, in situ, Northern blotting,
immunohistochemistry, etc. QRT-PCR is quantitative real time PCR for measuring
mRNA levels; it is the most rapid method of verification, especially for a large
number of genes. Northern blotting is an alternative way to investigate mRNA levels,
but it requires much more template RNA than PCR does. in situ hybridization or
immunohistochemistry are effective ways to determine gene expression pattern in
vivo ; these methods are very attractive when dealing with heterogeneous tissues as in
this thesis because they reveal the spatial and temporal expression pattern of the genes.

The interesting genes or the generated hypothesis can also be functionally studied by
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knock out or transgenic mouse models or in tissue culture analyses. The functional

studies are the most time consuming, but of course are also the most important.

Summary

In this thesis, microarray analysis and bioinformatics tools were used to probe basic
questions in gut development. In chapter two, I present the results of an examination
of mouse intestinal epithelial versus mesenchymal gene expression profiles. This
analysis is important because it allows us to begin to understand how epithelial and
mesenchymal cells produce and receive signals that regulate patterning and
homeostasis of the small intestine. In chapter three, I investigate a basic patterning
question: what genes are changed during the establishment of intestinal cell identity
during pyloric border formation? This work establishes for the first time, that
generation of a distinct epithelial pyloric border involves the coordinate up-regulation
of over a thousand genes in intestinal (not stomach) epithelium. We also identified
genes that are specifically regulated right at the pyloric border itself and might be
responsible for border establishment. This study has implications for gut patterning,
intestinal cell differentiation and for abnormal lesions such as intestinal metaplasia.
Finally, in chapter four, | summarize these results in light of other studies and identify

some of the most important future questions for study.
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Figure 1.1 Manufacture of Affymetrix high-density oligonucleotide arrays.
Affymetrix GeneChips are constructed by photolithography and solid-phase
oligonucleotide synthesis. A. light-directed oligonucleotide probe synthesis. A solid
substrate is derivatized with a covalent linker molecule ended with a photolabile
protecting group. Light is directed through a mask to deprotect and activate the
selected area, and protected nucleotides couple to the activated sites. This process is
repeated by activating different sets of sites and coupling different bases allowing
arbitrary DNA probes to be synthesized at each base. B. Schematic representation of

the lamp, mask and array (Image courtesy of Affymetrix).
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Figure 1.2 The Affymetrix GeneChip microarray: From probes to gene. The relative amount of mRNA in samples (tissues or cells) is
detected by one or more ProbeSets which consist of a set of probe pairs (16-20). Each probe pair is composed of Perfect Match (PM) and
MisMatch (MM), length of 25 bases. Note the base at the middle position (13"™) of MM is changed compared to PM (indicated by green
rectangle). Hybridization of labeled samples on a GeneChip is detected by laser scanning of the chip. In the schematic, the level of gray of black
color shows different amounts of hybridization.
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Figure 1.3 The process of a microarray experiment using the Affymetrix
GeneChip for eukaryotic study (Image courtesy of Affymetrix).
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Figure 1.4 Flowchart of microarray experiment analysis

51



4

Table 1.1 Summary of methods for microarray data analysis.

Methods Bac_kground Normalization Usage of MisMatch Summarlzatlor] 9f Literature
Adjustment Probeset Intensities
MAS4.0 Reginal Adjustment scaling by a constant MisMatch AveDiff (Affymetrix 1999)
. . . . . L (Affymetrix 2001,
MASS.0 Reginal Adjustment scaling by a constant ideal MisMatch Tukey Biweight Average Affymetrix 2002)
(Bolstad et al 2003,
RMA whole array adjustment quantile No medianpolish Irizarry et al 2003a,
Irizarry et al 2003b)
. : . (Wu & Irizarry 2004,
GCRMA GC content of probes quantile Yes/No medianpolish Wu & Irizarry 2005)
. (L1 & Hung Wong
dChip None invariant set Yes /No MBEI (Li-Wong 2001, Li & Wong

multiplicative model) 2001)
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