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ABSTRACT 

ABSTRACT 
A macro-scale plasticity model for High Performance Fiber Reinforced Cement 

Composites (HPFRCC) is developed. The proposed model is a phenomenological, multi-

axial, constitutive model capable of representing important phenomena associated with 

HPRFCC response such as tension-related cracking, hardening, and softening as well as 

compression-related confinement and crushing behavior. The proposed model is based on 

the results of experiments conducted in this study under various loading conditions in 

both compression and tension. The material parameters in the experimental program 

pertain to two types of commercially available fibers, namely Hooked and Spectra fibers, 

and three fiber volume fractions ranging from 1.0% to 2.0%. Test results reveal that the 

inclusion of fibers increases ductility in the softening regime in compression and 

significantly improves ductility and strain hardening in tension, which makes HPFRCC 

amenable to general plasticity theory. The proposed plasticity model is constructed by 

modifying an existing model of concrete in compression and extending it to encompass 

tensile response. A unique feature of the model is that a single yield surface is used to 

cover both compressive and tensile responses for both hardening and softening regimes. 

The accumulated effective plastic strain is used as a damage index for controlling the 

evolution of the plasticity surfaces. To ensure the validity of the proposed model, 

computational results are compared to results of several structural tests including tests of 



 

xv 
 

a two-span continuous beam, a slab subjected to punching loads, a structural wall, and a 

coupling beam. The model is shown to be able to capture with reasonable accuracy the 

experimentally observed responses, including load deflection behavior and mode of 

failure. The proposed model requires modest computational resources compared to 

existing micro-mechanical models for HPFRCC that explicitly address fiber and matrix 

responses, and the interaction between them through bond. It can therefore be applied for 

large-scale computational structural simulations providing a good balance between 

accuracy, detail, and computational demands. 
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CHAPTER 1 

INTRODUCTION 

CHAPTER 1 INTRODUCTION  

1.1 Introduction 

Cement-based materials such as concrete and mortar are brittle materials that 

crack under low tensile stress. One common way to mitigate this deficiency is by adding 

fibers to the matrix. Fiber Reinforced Cement Composites (FRCC) resist tensile stresses 

through composite action between the cementitious matrix and the embedded fibers. The 

transmission of forces between these two components occurs through interfacial bond 

stress defined as the shearing stress between the fiber surface area and the surrounding 

matrix. Fibers play a major role in the post-cracking behavior of FRCC by bridging the 

cracks and providing resistance to crack opening. Hence, the FRCC does not fail abruptly 

after the first crack.  

A key characteristic of High Performance Fiber Reinforced Cement Composites 

(HPFRCC) is that they can achieve quasi-ductile response that is they exhibit strain-

hardening response accompanied by multiple cracks and relatively large energy 

absorption prior to fracture localization. Figure 1.1 shows a comparison of the stress-

strain response in tension of both normal FRCC and HPFRCC composites. According to 

Naaman and Reinhardt (1996), there are two methods to identify if a composite behaves 
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as a high performance material. The first method is to examine the response of the 

composite in tension. If the post-cracking strength (σpc) is higher than that at first 

cracking (σcc), then the composite is considered to be a high performance material. An 

alternative method to classify a high performance material is proposed by Tjiptobroto and 

Hansen (1993). In this method, it is assumed that if the energy needed to form a new 

crack is less than the energy needed to propagate the crack, then multiple cracking type of 

failure is more likely to form (Figure 1.1b) and the composite is classified as “high 

performance.” Based on these two methods, several parameters that control the formation 

of multiple cracks can be identified. These parameters include the total number of fibers 

in the composites, the strength of the interfacial bond, the toughness of the matrix, and 

the mechanical properties of the fibers. 

At present, HPFRCC technology is still considered to be at an early stage where 

there is intense interest in material development, testing, and characterization. Analysis 

formulations are still few compared to more traditional materials, but the rate of 

development is picking up as the demand of HPFRCC construction grows. Inelastic 

analysis models for HPFRCCs can be broadly categorized by their resolution in modeling 

nonlinear behavior as micro-scale models, macro-scale models, and structural-scale 

model. Micro-scale models describe the interaction among the three phases of the 

material, i.e. fiber, matrix, and interfacial zones. Macro-scale models, on the other hand, 

focus on the phenomenological behavior at the point level. The point level in this context 

is defined as an element that contains several fibers embedded in cement matrix. They are 

capable of explicitly accounting for key behavior phenomena such as cracking, softening, 

hardening post-cracking responses, and crushing behavior. Structural-scale models 
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implicitly capture the essence of structural behavior at the domain level, for example, 

cross-sectional moment versus curvature behavior and panel shear force versus distortion 

relationships. They are generally favored by practitioners because they are 

computationally expedient and because they produce data that is intuitive and that deals 

directly with design variables such as moments, rotations, etc. 

 

1.2 Motivations and Objectives 

Since micro-scale models focus on the behavior of the constituents of HPFRCC, 

they have high computational demands which severely limit their use in analysis 

applications involving large structures. Structural-scale models can capture only the 

overall behavior at the domain level, and do not provide detailed enough information 

about structural behavior. Macro-scale model, however, can provide such details and are 

more computationally efficient than micro-scale models. Such models can also be 

practically applied to model structural behavior in the continuum finite element 

simulations.  

With the above motivation, the main objective of this research is to develop a 

macro-scale, multi-axial constitutive model for High Performance Fiber Reinforced 

Cement Composites (HPFRCC) that is suitable for application in computational structural 

simulations. The research program includes both experimental and analytical components 

that are intended to achieve this objective. The experimental programs include three 

different types of tests: uniaxial, biaxial, and triaxial tests. After understanding the 

behavior of HPFRCC through these tests, a macro model will be developed based upon 
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concepts in plasticity. The proposed model is verified against actual structural tests that 

involved the use of HPFRCC. 

 

1.3 Structure of Dissertation 

This dissertation composes of 5 chapters as follows: 

 Chapter 1: Introduction. This chapter provides an overview of the research. The 

objectives and a structure of the dissertation are also provided.  

Chapter 2: Literature review. This chapter provides background regarding High 

Performance Fiber Reinforced Cement Composites (HPFRCC) including analytical 

techniques applicable at various scale lengths. Particular emphasis is placed con mcro-

scale models and testing techniques of cementitious materials.  

Chapter 3: Experiments. This chapter describes four testing techniques that have 

been widely used in concrete and that are adopted here for testing HPFRCC. These 

techniques include uniaxial compression, uniaxial tension, biaxial compression, and 

triaxial compression tests. 

Chapter 4: Macro-scale plasticity model for HPFRCC. This chapter provides an 

overview of general plasticity theory and the four-parameter compressive yield surface 

for concrete proposed by Hsieh et al. (1979), which is further developed for HPFRCC 

materials. The chapter concludes with an extension of the compressive yield surface to 

the tension side. 

Chapter 5: Model Calibration and Verification. This chapter discusses the 

procedures to calibrate material parameters. In addition, evidence is provided to show 

that the proposed calibrated model works. Several exercises which include a two-span 
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continuous beam, punching shear slab, slender wall, and coupling beam are simulated 

and their results compared with the test results. 

Chapter 6: Conclusion. This chapter provides a summary of this research study. 

Conclusions related to the macro-scale plasticity model for HPFRCC are drawn and 

future work is recommended. 
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Figure 1.1 Typical Stress-strain response in tension of high performance fiber reinforced 

cement composites (HPFRCC) (Naaman and Reinhardt, 1996)  
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CHAPTER 2  

LITERATURE REVIEWS 

CHAPTER 2 LITERATURE REVIEWS 
Important aspects regarding the behavior and modeling of concrete and High 

Performance Fiber Reinforced Cement Composites (HPFRCC) at different length scales 

are reviewed in this chapter (Figure 2.1). Particular attention is paid to macro-scale 

models for concrete as they are the basis for constructing the HPFRCC macro-scale 

model presented in Chapter 4. Testing techniques under various loading conditions for 

concrete and fiber reinforced cement composites are discussed in the final section of this 

chapter. 

 

2.1 Classification of Models 

Depending upon the size, i.e. length, along which the dominant physical processes 

of interest take place, analysis techniques for High Performance Fiber Reinforced 

Cementitious Composites (HPFRCC) can be generally classified into three categories: 

structural-scale, macro-scale, and micro-scale models. The characteristic length scale of 

typical structural components in civil engineering is usually specified on the order of 100 

to 101 m. At this scale level, the responses of interest include load carrying capacity, drift, 

durability, etc. The pertinent parameters that influence structural response at this scale 

include member strength, stiffness, and ductility. At the macro-scale (10-1 – 10-2 m), it is 
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possible to distinguish between the responses of members made of fiber reinforced 

cement composites and conventional reinforced concrete members. Phenomena like 

strain-hardening and softening play a dominant role at this length scale. At the micro-

scale level  10 10   , each component of HPFRCC, i.e. fiber, matrix, and 

interfacial bond, can be distinguished. Propagation of matrix cracks from preexisting 

defect cracks and pullout of fibers that bridge these cracks are the major mechanisms that 

influence response at this length scale.  

The simply supported beam shown in Figure 2.2 demonstrates further the ideas 

presented in the previous paragraph. As the length scale progressively decreases more 

details of the beam are revealed. At the structural-scale level, all parts of the beam 

including HPFRCC and reinforcements are lumped together and represented by beam 

elements. Appropriate boundary conditions are enforced at the joints at both ends of the 

beam. At the macro-scale level, the rebars and HPFRCC are distinguished and are 

separately modeled with beam and solid elements, respectively. The interaction between 

reinforcement and HPFRCC is modeled by using appropriate kinematic constraints. 

However, the fibers and the matrix inside the HPFRCC at this scale length are still 

indistinguishable, i.e. HPFRCC is considered as a homogeneous medium. At the micro-

scale level, the fibers and the matrix and the interaction between them are explicitly 

modeled.  

Several methods have been proposed in the past to link models that describe 

HPFRCC responses across the various length scales. One of these methods is the spatial 

averaging concept (Kabele, 2003). Each component of a spatial element called a 

Representative Volume Element (RVE) can be identified on a finer length scale. The 
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constitutive law, which defines the relationship between overall stress and overall 

deformation of the RVE, is obtained by averaging the local quantities on the finer length 

scale. Another method is to use Homogenization Theory to link the micro and macro 

levels (Alwan, 1994). In this method, a composite material element is formed by the 

repetition of micro cells. Depending on the complexity of the model, the macro element 

can be composed of a few to several hundred unique unit cells arranged in a certain 

predefined pattern. An example given in Figure 2.3 shows a composite material element 

that composes two different unit cells arranged in a zigzag pattern. Each unit cell 

represents different properties such as Young’s modulus and Poisson’s ratio for the 

isotropic elastic materials. The load-displacement response of the macro-scale unit is 

obtained by combining all unit cells together. Further information regarding the basic 

concept of this theory can be found in Benssousan (1978); Sanchez-Palencia (1980); 

Lions (1981); Duvaut (1984); Oleinik (1984); Murat and Tartar (1985); and Levy (1985). 

Numerical approaches for Homogenization can be found in Triantafyllidis (1985, 1994); 

Wu et al (1989); Guedes and Kikushi (1990); and Leguillon (1992). 

The two methods given above only provide a linkage from micro-scale to macro-

scale models but they do not cover the transition from macro-scale to structural scale. 

The Finite Element Method is commonly used to make this transition. The advantage of 

this method is that it can handle structural members with arbitrary geometry, materials, 

and boundary and loading conditions.  
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2.2 Models of Fiber Reinforced Cementitious Composites (FRCC) 

Models of FRCC encompassing three different length scales will be discussed in 

this section: (a) Structural-scale models, (b) Macro-scale models, and (c) Micro-scale 

models. 

2.2.1 Structural-scale Models 

In structural-scale models, each component of a structure is represented using 

domain-level elements that are characterized by load-deflection or moment-curvature 

responses depending on the type of the component. There are few examples of structural-

scale models for HPFRCC including Stang and Olesen (1998) who developed closed 

form moment-rotation relationships for the plastic hinge region in HPFRCC members in 

pure flexure, and Olesen (2001) who extended these relationships to account for the 

effect of axial force.  

2.2.2 Macro-scale Models 

In macro-scale models, the constitutive models of each component of the 

structure, such as steel reinforcements and FRCC components, are uniquely defined and 

characteristics such as strain hardening in HPFRCC or strain softening in FRCC under 

tensile response can be distinguished. Macro-scale models can be divided into one-, two-, 

and three-dimensional. In one-dimensional models, the uniaxial responses of both FRCC 

and HPFRCC under both tension and compression are accounted for in a fiber section 

framework (Para-Montasinos, 1999 and Chandrangsu, 2003). In fiber section analysis, 

the equilibrium and strain compatibility between reinforcing bars and the FRCC 

components are enforced. The final product of such analysis is moment-curvature 

response for a beam section, which can be used as the input for structural-scale models. 
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Soranakoom and Mobasher (2007) used the same concept to derive a closed form 

solution for flexural beam responses of FRCC.  

In two-dimensional models, the responses of FRCC under biaxial loading 

conditions are considered. Two general constitutive models for FRCC include 

hypoelastic and plasticity models. By using the former, Han et al. (2003) incorporated a 

co-axial stress-strain model proposed by Feenstra et al. (1998) with the uniaxial 

compressive and the uniaxial tensile behaviors of FRCC to model cyclic member 

responses. In the co-axial stress-strain model, the corresponding principal strains are first 

determined based on a given state of strains. For each principal strain direction, the 

corresponding principal stress is then determined from the uniaxial constitutive model. 

Once all principal stresses are known, the original state of stresses is then calculated by 

rotating from the principal strain axis back to the original axis. The main assumption of 

this model is that the principal strain direction coincides with the principal stress 

direction. The drawback of this model is that it does not consider the increase in 

compressive strength under biaxial compression. By using a two dimensional plasticity 

formulation, Hu et al. (2003) proposed a single smooth biaxial failure surface for steel 

fiber reinforced concrete (SFRC), which was derived from the multiplication of elliptical 

and power functions. The model required a total of six material parameters determined 

from the test under biaxial loading combinations. The associative flow rule was used in 

this model based on the assumption that volumetric strain is not of concern.  

In three-dimensional models, the responses of FRCC under all triaxial loading 

combinations are considered. Seow and Swaddiwudhipong (2005) proposed a five-

parameter compressive failure criterion for FRC constructed with straight hooked fibers. 
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Beside the concrete parameters, a few additional parameters pertaining to fibers, such as 

the volume fractions, aspect ratios, ultimate bond strength, and types of fibers, were also 

taken into consideration for constructing the failure surface. For the tension response, the 

improvement of FRCC over conventional concrete was not modeled by using a plasticity 

model but by simply adding tensile softening once the stress reaches the tensile strength. 

The model was then verified against test results of FRCC cubes and a simply supported 

beam with two loads. Another example is by Minelli and Vecchio (2006) who used the 

modified compression field theory (MCFT) and the distributed stress field model 

(DSFM) combined with an adjusted tension softening model for steel fiber-reinforced 

concrete (SFRC) to model members under shear loading.  

2.2.3 Micro-scale Models 

By using the so-called representative volume element (RVE) approach, FRCC can 

be modeled as a collection of cell each comprised of three different components, i.e. a 

fiber, the surrounding matrix, and the interfacial bond between fiber and matrix. The first 

component, that is the surrounding matrix, usually represents either mortar or concrete. 

This component is modeled as linearly elastic up to the peak strength followed by strain 

softening to represent the brittleness of the matrix. The second component, which is the 

fiber, is also modeled as linearly elastic up to the yield strength of the fiber. However, the 

post-yield stress-strain response of the fiber is dependent on the fiber type. For example, 

steel fibers can be assumed as perfectly plastic up to the failure strain but the polymeric 

fibers fracture once they reach the yield strength. The last component in the RVE is the 

interfacial bond between fiber and matrix, which is mobilized when the matrix cracks. 

Once cracking occurs in the matrix, the fiber, which previously received stresses from the 
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matrix before cracking, now transmits the stresses across the cracks (Sujivorakul, 2002). 

The post-cracking process is mainly composed of two stages, i.e. debonding and pull-out 

stages, as shown in Figure 2.4. In the former stage, the separation between fiber and 

surrounding matrix occurs when the applied force reaches a critical value. This critical 

value can be calculated by two different approaches, i.e. the stress-based or energy-based 

approaches (Stang et al, 1990; Leung and Geng, 1998). In the stress-based criterion, 

separation occurs once the applied stress reaches some critical value. Examples of the 

stress-based model are the anchorage bond at the ends of hooked fibers, or the 

mechanical bond along the length of twisted fibers (Alwan et al, 1999 and Sujivorakul, 

2002). In the energy-based approach, debonding occurs once the external work done by 

the applied force overcomes the interfacial fracture energy. A comparison between these 

two approaches can be found in Stang et al. (1990). In the pull-out stage, once full 

debonding has occurred, the fiber starts to slide out of the matrix. Force resistance is 

mainly provided by the friction between fiber and matrix. Under small slip, the 

relationship between resisted force and sliding is mainly dependent upon the types of 

fibers (Sujivorakul, 2002), for example, the pullout load in the smooth steel fibers 

decreases as the embedded length decreases. However, in twisted fibers, the pullout load 

increases as the embedded length decreases.  

So far, only a RVE composed of a single fiber surrounded by matrix has been 

discussed. An averaging method can be employed in order to extend the micro-scale 

model to a corresponding macro-scale model (Li et al, 1991). The required material 

parameters in this method include properties of the matrix and fiber as well as the 

interfacial properties between fiber and matrix. These interfacial properties include size, 
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volume fractions, and distribution of fibers; and bonding strength or bonding toughness 

between fiber and matrix (Leung and Geng, 1998). With all these material parameters, 

the stress-strain curve of the pre-cracking behavior and the stress-displacement curve of 

the post-cracking behavior in the composite material can be obtained by integrating over 

the volume. 

Instead of the averaging method, an alternative method proposed by Bolander and 

Saito (1997) is to model fibers as truss elements dispersed throughout a matrix model. 

The orientation and the distribution of short fibers are random to represent actual fiber 

distribution in a real FRCC. The response of a fiber controlled by kinematic constraints 

from the matrix is divided into two parts, i.e. pre-cracking, and post-cracking. In the pre-

cracking stage, the interaction between fiber and matrix is modeled using shear lag 

theory, whereas in the post-cracking regime, the pullout response between fiber and 

matrix is used instead.  

 

2.3 Macro-Scale Models for Concrete 

Four common macro-scale models that can be used for modeling concrete are 

covered in this section: plasticity, microplane, fracture mechanics, and damage 

mechanics. In a typical case, one or more of these models can be combined together to 

create an appropriate constitutive model. For example, the plasticity model is used for 

compression while the fracture mechanics approach is used for tension. 

2.3.1 Plasticity Models 

Plasticity theory was originally developed to model the constitutive response of 

metallic materials. In the past few decades, the theory has been extended to model 
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concrete behavior due to its computational expediency. In plasticity theory, there are 

three essential ingredients used to describe the nonlinear behavior of concrete. The first 

ingredient is the plastic flow rule, used to determine the direction of plastic flow once the 

state of stress reaches the yield surface. This rule can be divided into two different types, 

i.e. associative, and non-associative. In the former, the loading surface is the same as the 

yield surface and hence, the plastic flow direction is always perpendicular to the current 

yield surface. In the latter, the loading surface is different from the yield surface and thus, 

the plastic flow direction is not normal to the current yield surface. In this case, a 

potential function is used to define the loading surface. Smith et al. (1989) observed that 

the plastic flow direction of concrete is not perpendicular to the yield surface as shown in 

Figure 2.5. Grassl (2003) confirmed that use of the associative flow rule over predicted 

the volumetric response of concrete under triaxial loading conditions. Therefore, a non-

associative flow rule is more suitable for modeling concrete behavior than the associative 

flow rule. Some examples of potential functions used for defining non-associative flow 

can be found in Schreyer and Babcock (1985); Ohtani and Chen (1986); Imran and 

Pantanzopoulou (2001). 

The second ingredient in the plasticity theory is the hardening rule. Once the 

direction of plastic flow has been determined in a plasticity model, a hardening rule must 

be employed to determine the kinematic of the yield surface. There are three commonly 

used hardening models, i.e. isotropic, kinematic, and mixed hardening, to describe the 

behavior of the yield surface (Figure 2.6). It should be noted that differences in response 

between these three models can be seen only if unloading occurs, i.e. the stress-strain 

responses under monotonic loading for these three models are identical. In isotropic 
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hardening, the yield surface expands equally in all direction but the center of the yield 

surface is fixed. In contrast, kinematic hardening requires the size of yield surface to 

remain constant, but the center point of the yield surface moves as the load increases. The 

result of moving the center of yield surface is to capture the cyclic behavior called the 

Bauschinger’s effect that occurs in steel. Lastly, mixed hardening is a combination of 

both isotropic and kinematic hardening. Hence, the yield surface grows and moves at the 

same time as the load increases. Derivation of hardening rules can be found in Hill (1950) 

for isotropic; Prager (1955, 1956) and Ziegler (1959) for kinematic; and Hodge (1957) 

for mixed hardening. Some examples of hardening rules in concrete models include 

Schwer and Murray (1994), who used a mixed hardening rule where the translation of 

center of the yield surface is calculated by multiplying a scalar quantity with the 

incremental plastic strains; Grassl et al. (2002) who used the volumetric components of 

plastic strains, instead of using the length of plastic strain tensors, as an alternative 

hardening parameter.  

The third ingredient in the plasticity theory, which is the most important item in 

developing a plasticity model for concrete, is the yield criterion. The yield criterion is 

used to define the elastic boundary of the concrete. When the stress reaches the yield 

surface, also known as the failure surface, permanent deformation will take place as the 

load increases. The classification of the yield criterion of concrete is based on the number 

of material parameters required to define the yield surface. These material parameters 

range from one to five parameters. However, one- and two-parameter models are not 

versatile enough to fit the observed experimental data. Hence, the minimum number of 

parameters needed to describe a concrete yield function is at least three parameters. Some 
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examples of concrete yield functions can be found in Chen and Chen (1975), Chang et al. 

(1987), Lade (1981), and Grassl (2003) for three-parameter models; Ottosen (1977), 

Hsieh et al. (1979) for four-parameter models; Balan et al. (2001), Barzegar and 

Maddipudi (1997), and Pivonka et al. (2004) for five-parameter models. 

Since the main finite element software used in this study is LS-DYNA, it is 

worthwhile to explore the existing concrete models available in the program. In LS-

DYNA, several plasticity models, such as the Geologic Cap model (MAT25) and its 

extension, the Continuous Surface Cap Model (MAT145), the K&C Concrete Model 

(MAT72 and MAT72R3), are currently available for modeling concrete behavior with 

solid elements (Hallquist, 2007). In MAT25, the Drucker-Prager yield surface combined 

with the cap surface is used to model geomaterials such as soils and concrete (Figure 

2.7a). The Drucker-Prager yield criterion is a two-parameter pressure dependent model 

that accounts for strength enhancement associated with the increase in confining pressure. 

The model is an extension of the one-parameter pressure independent J  yield criterion. 

The cap surface is included for controlling dilatancy of concrete (Dimaggio and Sandler, 

1971). The algorithm of MAT 25 is based on the work of Simo et al. (1988). Some 

drawbacks of this model pointed out by Schwer and Murray (1994) are the intersection 

between the shear yield surface and the cap surface, which creates a kink in the surface, 

and the exclusion of the third invariant J  term, which causes the cross-section of the 

yield surface to be circular in the π-plane contrary to observed test data.  

As a result of the limitations on the MAT25 model, the continuous cap model 

(MAT145) was introduced to overcome those problems. In the meridian plane, the shear 

and cap surface are blended together (Figure 2.7b) and in the π-plane, the circular cross-
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section is converted into a triangle with smooth corners. In addition, mixed hardening and 

strain rate effect are also embedded in this material model. More details on how to obtain 

material parameters and background of MAT25 and MAT145 can be found in Schwer 

(2002). Lastly, MAT72 (Figure 2.8) is a three-invariant model that uses three different 

yield surfaces, namely initial, maximum, and residual yield surfaces. Depending on the 

current location of stress (hardening or softening), the current state of stress is obtained 

by interpolating among the three surfaces. Full details on development and material 

parameters of this model can be obtained from Crawford and Malvar (2006). 

2.3.2 Microplane Models 

Another way to derive the relationship between the stress-strain tensors is to use 

the Microplane model, which was first introduced by Bazant in 1984. Unlike plasticity 

theory that is formulated in terms of invariants of the stress and strain tensor, the 

microplane model provides relations between stress and strain components on a plane 

with pre-specified orientations. The origin of this model can be traced back to the 

Taylor’s slip theory of plasticity (1938), based on which the plasticity of polycrystalline 

metals was formulated. It should be noted that the prefix “micro” in this context does not 

refer to the actual microstructure geometry, but rather implies a separate characterization 

of the inelastic deformations on planes of various orientations within the microstructure.  

The basic procedure of the microplane model is as follows. First, the strain 

components on microplanes with various orientations are obtained from the projection of 

the continuum strain tensors. Then, the corresponding normal, volumetric, deviatoric, and 

shear stresses of each plane are obtained by applying the kinematic constraints. Finally, 

the stress components on the microplanes are converted back to continuum stress tensors 
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by using the principle of virtual work. The evolution of microplane model can be found 

in Bazant and Oh (1983, 1985), Bazant and Prat (1988), Bazant et al. (1996), and Bazant 

et al. (2000), whereas some applications of this model can be found in Carol et. al. 

(1992); Cofer and Kohut (1994); Bazant and Ozbolt (1990); and Liu and Foster (2000). 

The main drawbacks of the microplane model (Bazant and Tsubaki, 1980) are that the 

formulation cannot be written as an explicit expression and the constitutive equations 

require many material constants. 

2.3.3 Fracture Mechanics 

Fracture mechanics is a commonly used method for determining the tensile stress 

causing crack formation or crack growth in structural components. There are two 

different types of fracture mechanics, i.e. Linear Elastic Fracture Mechanics (LEFM), and 

Nonlinear Fracture Mechanics. 

In the LEFM approach, the toughness of linear materials can be described by two 

methods, i.e. energy and stress intensity factors. In the former approach, initiation of a 

single crack or growth of the existing crack can occur if and only if such a process causes 

the total energy to decrease or remain constant (Griffith, 1920). Therefore, the critical 

condition in the energy approach is defined as the point where the crack growth occurs 

under the equilibrium condition with no net change in the total energy. Irwin (1956) 

further defined an energy release rate G as a measurement of the energy available for an 

increment of the crack extension. This parameter G can also be considered as the crack 

driving force. In the stress intensity factor approach, fracture occurs if the stress intensity 

factor KI reaches the fracture toughness of the material KIC. The subscript of K defines 
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the failure modes, which consist of opening  KI , in-plane shear  KII , and out of plane 

shear  KIII .  

Some examples of the applications of LEFM to cementitious composites include 

Hillerborg et al (1976) who studied the size effect on the formation and propagation of 

cracks in an unreinforced concrete beam using LEFM and the Finite Element Method. He 

used his results to explain the difference between bending strength and tensile strength 

and also the variation of bending strength with beam depth; Kim et al (1999) studied the 

size effect on the compressive strength of concrete cylinders and proposed empirical 

formulae to predict the compressive strength as a function of diameter and 

height/diameter ratios; Reis and Ferreira (2003) studied the influence of notch depth on 

the fracture mechanics properties of polymer concrete and found out that the fracture 

energy G  is in direct proportion to the notch depth; Li et al (1991) used the bridging 

fracture energy combined with a micromechanical model to derive the post-peak 

response of FRCCs. Paris and Erdogan (1963) related the fatigue life of a structure with 

pertinent fracture mechanics parameters. Their model is commonly known as Paris law. 

Several researchers further extended Paris law to model concrete (Baluch et al., 1987; 

Bazant and Schell, 1993; Bazant and Xu, 1991; Perdikaris and Calmino, 1987). 

Matsumoto and Li (1998) modified Paris law by introducing the stress intensity factor 

due to fiber bridging to predict the fatigue life of fiber reinforced concrete. Zhang et al. 

(2001) studied the size effect on fatigue in bending of concrete.  

In Nonlinear Fracture Mechanics, the process of fracture in the nonlinear 

materials is described by two approaches, i.e. the Crack Tip Opening Displacement 

(CTOD) and J contour integral (J-Integral). In the CTOD approach, the initial sharp crack 



 

21 
 

is blunted due to the plastic deformation at the crack tip (Well, 1961). The degree of 

blunting is in direct proportion to the material toughness. Since nonlinear deformation 

occurs, the LEFM factors, G and K, are no longer suitable factor to measure toughness of 

the materials. Hence, the CTOD is more meaningful term to measure the fracture 

toughness of the plastic materials.  Some examples of CTOD approach include Ouyang 

and Shah (1992) who used the critical CTOD  CTODC  and the critical stress intensity 

parameter  KIC  to derive the resistance curve (R-Curve). Jeng and Shah (1985) showed 

that the critical crack length a  cannot be used as a factor to replace the CTODC since a  

is dependent on the geometry of the specimen and the size of the initial flaw. 

The second nonlinear fracture mechanic approach is the J Integral proposed by 

Rice (1968). The J integral parameter is a path-independent method that can be used to 

define toughness of both linear and nonlinear materials. In LEFM, J integral can be 

viewed as either energy or stress intensity parameters (Rice, 1968; Hutchinson, 1968; and 

Rice and Rosengren, 1968). Some examples of J-Integral applications include Li et al. 

(1987) who were the first to use J-based technique to explain the tension-softening 

response of fiber reinforced composites. Marshall and Cox (1988) used the J-integral to 

explain how to achieve multiple cracking or pseudo strain hardening. The crack driving 

force  J  that accounts for the energy dissipation in the fiber bridging zone must be 

equal to the crack tip toughness  JT . If this condition is not satisfied, the Griffith type 

crack will overcome (Li and Leung, 1992). Other works related to multiple cracking can 

be found in Maalej and Li (1995); Mishra and Li (1995); Leung (1996); Kanda (1998). 

Once the cracking point is determined, two different techniques can be employed 

for modeling crack propagation in Finite Element Analysis: the discrete and smeared 
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cracking approaches. In the former approach, each dominant crack surface and its 

orientation are predefined and are explicitly modeled (Ngo and Scordelis, 1967). At each 

cracking interface, the nodal displacements of adjoining elements are progressively 

disconnected as the crack propagates as shown in Figure 2.9. In other words, as the 

tensile load increases, the displacements at the cracking interface will increase and 

adjacent elements near the crack that were joined before are now separated.  Thus, an 

adaptive meshing approach must be employed. However, this makes the model extremely 

complex and time consuming (Ngo, 1975). In addition, the finite elements used in this 

model require higher-order interpolation fields, which again impose high computational 

demand. In general, the discrete-cracking model can be used for solving problem 

involving with only a few dominant cracks.  

In the smeared cracking approach, cracking is accounted for by modifying the 

material properties to reflect the occurrence of cracking. Once a crack occurs, the 

strength of concrete perpendicular to the cracking surface diminishes and the shear 

stiffness is reduced by a shear reduction factor. The main advantages of this approach is 

that (Bolander and Wight, 1989): (1) cracks can occur at any direction; (2) multiple 

cracks can simultaneously take place at any integration point; (3) the topology of the 

finite element mesh remains unchanged throughout the analysis; (4) the smeared crack 

approach can handle situations involving widely spread cracking.  

2.3.4 Damage Mechanics 

Concrete behaves as a quasi-brittle material in the sense that it cannot withstand a 

significant amount of plastic deformation at the macro-scale, but at the micro-scale, 

localized damage growth can occur (Lemaitre, 1992). The gradual degradation of the 



 

23 
 

material at the macro-scale results from decohesion between aggregates and cement 

matrix. Continuum Damage Mechanics (CDM) is one of the methods that can be used to 

capture this degradation, also known as the strain softening type behavior. The CDM was 

first introduced by Kachanov (1958) as a scalar field quantity to model creep rupture 

failure in ductile materials and Krajcinovic (1983) was the first to use CDM to model 

brittle materials such as concrete. 

The CDM model is derived from the thermodynamics of irreversible processes 

and internal state variable theory and can be worked into two space domains (Simo and 

Ju, 1987), i.e. stress- and strain-space. Typically, the strain-driven mechanism is 

preferred since damage in the material is directly linked to the history of strain, not the 

stress history. In the strain-based model, the main hypothesis is that the strain associated 

with a damage state under the applied stress is equivalent to the strain associated with its 

undamaged state under the effective stress (Lemaitre, 1971). Besides having two space 

domains, damage mechanics is classified in two different categories based on material 

type. The first model is the isotropic damage model, which is used for modeling ductile 

material. In this model, a scalar variable is use to capture the growth of damage. The 

second model is anisotropic damage model, which is used for modeling brittle material. 

Unlike the former model, a forth order tensor is required in order to account for damage 

growth in all directions. Obviously, concrete must be modeled by using anisotropic 

damage mechanics. 

One drawback of CDM is that the mathematical expression becomes ill-posed at a 

certain level of accumulated damage. Ellipticity of the governing equations in quasi-static 

problems cannot be assured, whereas hyperbolicity in dynamic problems can be lost 
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locally. In numerical simulations, this shortcoming can be observed as extreme sensitivity 

to the fineness and orientation of the mesh (Borst et al. 1995 and Peerling et al. 1998). To 

overcome this problem, several approaches have been introduced in the past: for 

example, nonlocal approaches (Pijaudier-Cabot and Bazant 1987, Simo 1988); rate-

dependent approaches (Needlemen 1988, Sluys 1992); and continuum models enhanced 

with higher-order deformation gradients (Aifantis 1984, 1987, 1992, de Borst et al. 1995, 

Peerling et al. 1998).  

In the nonlocal approach, the state variables that fluctuate at the microscale are 

spatially averaged by using a weight function. A characteristic length, which is an 

essential parameter for the weight function, is influenced by spacing, size and shape of 

inclusions (fibers in the case of FRCC). A major problem of this approach is how to 

determine a suitable weight function. Furthermore, additional experiments are needed to 

obtain the characteristic length. In rate-dependent damage models, a damage function is 

incorporated as a result of classical viscoplasticity. It requires one additional material 

parameter, i.e. the damage fluidity coefficient (μ). As μ approaches zero, the model 

exhibits instantaneous elastic response, and as μ approaches infinity it is equivalent to a 

rate-independent damage model. In the gradient-enhanced damage model, the equivalent 

strain is used and can be obtained by using Taylor’s expansion up to the second order 

terms. Hence, the equivalent strain is composed of the local strain and its gradient. To 

determine the gradient term, additional boundary conditions are required in the boundary 

value problems. However, the physical interpretation of these boundary conditions 

remains an open issue (Peerling et al. 1998).  
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2.4 Testing Techniques 

In order to obtain the material parameters necessary to model the complete 

behavior of HPFRCCs in three dimensions, several tests, which consist of uniaxial, 

biaxial, and triaxial tests, must be performed under both compression and tension. This 

section provides background about these testing techniques for normal- and high-strength 

concretes, with and without fibers.  

2.4.1 Uniaxial Tests 

The uniaxial compression test is widely used in the civil engineering field. In fact, 

current design guidelines such as ACI 318-05 (2005) and AASHTO standards (2000) are 

based on the parameters obtained from this test. These parameters include the unconfined 

compressive strength and the Young’s modulus. The testing procedure can be found in 

ASTM D4832-02 standard (2002). Several issues regarding the geometry of the specimen 

and the boundary conditions were pointed out by Van Mier et al. (1997). They found that 

the friction at the interface between concrete specimen and the loading platens play an 

important role influencing the strength and ductility of the post-peak response of 

concrete. As a result of the frictional interface between the specimen and loading platens, 

the slenderness ratio of the specimen influences both strength and ductility of the post-

peak response. In addition, prism shaped specimens give higher strength than cylindrical 

shape specimens.  

Unlike ordinary concrete, FRCCs and HPFRCCs are not brittle so the direct 

tensile test must be performed to study tensile behavior. Since there is no standard test 

procedure in direction tension, several issues must be taken into account when designing 

the test setup. These issues include the geometry and alignment of the specimen, and the 



 

26 
 

boundary conditions. In terms of geometry, Chandrangsu (2003) showed that the size of 

specimens affects the strain value at the peak stress and the difference between small and 

large specimens could be as high as three times with small specimens being more ductile 

than large specimens. In term of alignment, Toutanji et al (1993) applied a small 

confining pressure to the side of a specimen to ensure that the loading direction is always 

parallel to the specimen. Since FRCC are not homogeneous, secondary flexural moment 

can be developed when fixed loading platens are used. This will cause redistribution of 

stress within a specimen and lead to higher fracture toughness than can be achieved with 

free rotating boundary conditions (Van Mier and Van Vliet, 2002).   

2.4.2 Biaxial Tests 

Prior to 1969, solid steel platens were used to apply the compressive loads on 

concrete specimens (Kupfer et al, 1969). Hence, the true biaxial loading conditions were 

not satisfied because the solid platens restricted transverse expansions due to Poisson’s 

effect and induced additional stresses in the specimen. Kupfer et al. (1969) proposed the 

use of brush-like platens composed of steel filaments as the loading plates, which would 

allow the specimens to move freely in the transverse direction. These platens are attached 

to two independent actuators for loading. Under combinations of both compression and 

tension, there are three segments in load space, i.e. compression-compression, 

compression-tension, and tension-tension (Figure 2.10). It should be noted that due to 

symmetry of loadings, only the shaded area needs to be tested. 

Under compression-compression, Kupfer et al (1969) reported that the biaxial 

strength of normal-strength concrete increases by about 16-27 % over the uniaxial 

compressive strength depending on the loading ratio. Lee et al. (2004) confirmed that 
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under equal biaxial compression, the compressive strength is about 17% higher than 

uniaxial compressive strength. Hussein and Marzouk (2000) tested high-strength concrete 

and found that the improvement of equal biaxial compressive strength of high-strength 

concrete is less pronounced compared with normal-strength concrete (Figure 2.10). 

However, the failure modes and crack patterns of both normal- and high-strength 

concrete were almost the same. Yan and Lin (2007) conducted biaxial compression test 

on concrete under dynamic loading with strain rates ranging from 10 /s to 10 /s. They 

concluded that the dynamic strength increases as the strain rate and lateral confinement 

increase. However, the initial tangential stiffness and the failure modes are not affected 

by the strain rate. Lan and Guo (1999) tested concrete under repeated biaxial load and 

noted that the failure envelopes of concrete subjected to repeated loads had no significant 

difference from those subjected to monotonic loads. They also noted that the shape of the 

stress-strain envelope curves under repeated biaxial loads is similar to that under repeated 

uniaxial loads.  

For steel-fiber reinforced concretes, Torrenti and Djebri (1995) utilized the same 

test setup as Kupfer et al. (1969) and found out that addition of steel fibers increases 

ductility substantially. In addition, orientations and types of fibers influence both failure 

modes and the biaxial compressive strength. Yin et al (1989) also tested steel fiber 

reinforced concrete under biaxial compression but they used different loading 

mechanism. Instead of using two separate actuators to apply biaxial compressive loads, 

they used two pairs of crescent shaped distribution beams to convert uniaxial 

compressive force to biaxial compressive loads. This loading mechanism is known as a 

load bifurcation mechanism. The main drawback of this loading mechanism is the 
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limitation of the compressive loading ratios between two directions. Moreover, only 

compressive forces can be applied using this kind of loading mechanism. It should be 

noted that this loading mechanism originated from Su and Hsu (1988) for testing fatigue 

under biaxial compression of concrete. The same conclusion that addition of fibers 

increased ductility and strength was drawn.  

Under compression-tension, the second and the forth quadrants in Figure 2.10 are 

identical due to symmetry of loading.  For normal-strength concrete, the compressive 

strength decreases as the tensile stress in the other direction is increased (Kupfer et al., 

1969). Introduction of even small amount of tension in one direction could reduce the 

compressive strength on the other direction more dramatically for high-strength concrete 

than normal-strength concrete (Hussein and Marzouk, 2000). Demeke and Tegos (1999) 

tested steel fiber-reinforced concrete (FRC) and noted that the strength of FRC is much 

higher than regular concrete strength. They saw enhancements of strength ranging from 

one to three times depending on the volume fractions of fibers. 

Another test setup for biaxial compression-tension test was proposed by Tschegg 

et al. (1995) to test fracture properties under multi-axial stress fields. In this test, a 

rectangular concrete block was pre-notched on the top where a tensile force was applied 

laterally by using a wedge. The compressive load from an actuator was applied to the 

wedge and the top area of the specimen, which created a compressive reaction force at 

the bottom of specimen. Hence, the biaxial compression-tension state could be achieved. 

Another attempt of fracture testing under biaxial compression-tension was done by 

Subramaniam et al (2002).  A hollow concrete specimen was subjected to torsional 

loading, which creates biaxial compression-tension in the principal direction. They 
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concluded that the fracture parameters, such as stress intensity factor  KI  and the 

resistance curve of the cracking opening failure mode could be obtained by this method.  

In the tension-tension regime, the tensile strength under any given loading 

combinations of biaxial tension is almost the same as the uniaxial tensile strength for 

normal-strength concrete (Kupfer et al, 1969 and Lee et al., 2004). In addition, material 

parameters such as KI and the Paris coefficient in the Paris fatigue law are similar to 

those obtained from uniaxial tension (Subramaniam and Shah, 2003). 

2.4.3 Triaxial Tests 

 In triaxial compression tests, there are two methods to apply confining pressure, 

namely active and passive confinement (Figure 2.11). In active confinement, a concrete 

specimen is placed in a pressure cell filled with pressurized fluid, i.e. the lateral load is 

achieved through hydrostatic pressure. Once the pre-defined confining pressure is 

reached, longitudinal load is then applied and the axial stress-strain curve and lateral 

strain history are obtained. The following conclusions can be drawn from existing 

literature (Smith et al., 1989; Imran and Pantazopoulou, 1996; Sfer et al., 2002; and 

Gabet et al, 2006): (1) increasing the confining pressure changes the failure mode of 

concrete from brittle to ductile strain hardening; (2) the volumetric strain starts with 

contraction up to the peak strength, followed by expansion; (3) the flow direction of 

plastic is not perpendicular to the yield surface; hence, using associative flow will 

overestimate the volumetric strain; (4) there is little difference in the yield surfaces of 

normal- and high-strength concrete (Li and Ansari, 1999); (5) increasing confining 

pressure decreases the permeability due to collapse of internal pores inside concrete 

(Mahboubi and Ajorloo, 2005); (6) the envelope curves of cyclic response for unconfined 
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and confined normal concrete are the same as the monotonic response curves. However, 

this observation is valid only for the ascending branch of the envelope curve of confined 

high-strength concrete subjected to cyclic loading. The descending branch needs to scale 

down for each unloading/reloading cycle (Lokuge et al, 2003).  

For passive confinement, lateral load is provided by either a steel tube or fiber 

reinforced polymer tube wrapped around a concrete specimen. A critital difference 

between these two materials is the peak strength, which in turn affects the maximum 

confining pressure. As axial load is applied, the concrete expands laterally due to the 

Poisson’s effect, but is arrested by the wrapping material, which leads to an increase in 

the confining pressure. The passive confining test provides more effective means for 

studying concrete behavior under confinement than the active confinement test because 

the confining pressure increases with the damage buildup (Pantazopoulou and Zanganeh, 

2001). This is favorable for concrete under compression because the ductility increases. 

Example of passive confining test setups using steel tube can be found in Ahmad and 

Shah (1982); and Panazopoulou and Zanganeh (2001). For FRP wrapping, some 

examples for test setups include Spoelstra and Monti (1999); and Panazopoulou and 

Zanganeh (2001).  

 Beside these two common triaxial tests, there is another triaxial test setup that 

uses three independent actuators applying load to a concrete cube specimen. This test 

setup is described by Schwer (2002) as the “true triaxial test” since the common triaxial 

tests previously mentioned can only control two of the three principal stresses. However, 

Lan and Guo (1997) observed that the test results under multi-axial compressions 

between proportional and non-proportional loading appear to have no effect on response. 
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However, the concrete responses under combination of compression and tension are 

sensitive to the stress paths. Lin et al (2002) studied the effect of triaxial compressive 

loading history on the reduction of tensile strength by correlating ultrasonic velocity with 

the degree of damage. Once the level of damage is known, the reduction of tensile 

strength can be determined.  

 

2.5 Conclusion 

This chapter surveyed the different techniques for modeling the constitutive 

response of concrete and HPFRCC. Model classification based upon by the scale was 

first discussed followed by models for HPFRCC at the structural, macro, and micro-scale. 

An extensive discussion for macro-scale models for concrete was also presented. A 

variety of concrete models including plasticity, micro-plane, fracture mechanics, and 

damage models were introduced. The chapter closed with a survey of the test techniques 

used to obtain the parameters necessary to calibrate the surveyed models.  
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Figure 2.1 Hierarchy of modeling and testing techniques and their relation to the model 
proposed in this dissertation  
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Figure 2.2 Two-dimensional simply supported beam with different length scale 

 

 
 

 
Figure 2.3 Example of composite materials compose of two different types of unit cell 

merging by homogenization theory (Alwan, 1994) 
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Figure 2.4 Interaction of a single fiber surrounded by matrix during the post-cracking 

process  
 

 

 
Figure 2.5 Plastic flow direction of the plastic strain components at peak and at post-peak 

range is not normal to the yield surfaces (Smith et al, 1989) 
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Figure 2.6 Various forms of hardening (Schwer, 2003) 

(a) Isotropic hardening 
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Figure 2.7 Cap models for concrete available in LS-DYNA 
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Figure 2.8 K&C Concrete model available in LS-DYNA (Crawford & Malvar, 2006) 
 

 

 

 
Figure 2.9 One-directional crack model (Bangash, 2001) 
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Figure 2.10 Biaxial strength envelopes for four different types of concrete under 

combinations of compression and tension (Hussein & Marzouk, 2000) 
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Figure 2.11 Triaxial test setups 
 

 

(a) Active triaxial tests (Domingo et al, 2002) 
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CHAPTER 3 

EXPERIMENTS 

CHAPTER 3 EXPERIMENTS 
This chapter reports on experiments performed under various loading paths to 

understand the complete behavior of HPFRCC in three-dimensional space. The loading 

paths selected include uniaxial, biaxial, and triaxial loading conditions (Figure 3.1). The 

test are conducted for HPFRCC with both hooked and Spectra fibers. The results from 

these tests are then used to construct the failure surfaces, hardening and softening 

functions presented in Chapter 4. 

 

3.1 Experimental Program and Preparation of Specimens 

3.1.1 Mix Proportions and Properties of fibers 

Two different types of fiber are considered in this work, namely hooked and 

Spectra. The fibers are embedded in a matrix with 8 ksi strength. The mix proportions for 

the mortar mix are given in Table 3.1 and include early age cement type III, fly ash type 

C, and Flint sand with ASTM 30-70 gradation. Superplasticizers are employed to 

increase flowability.  

 The main parameters in this study were fiber type and volume fractions. As 

shown in Figure 3.2, the two types of fiber are 1.5 in-long high strength steel hooked and 

1.5 in-long Spectra fiber. The Dramix® hooked fibers are made of high strength steel and 
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are a trademark of Bekaert, Belgium. The Spectra® fibers are made of high molecular 

weight polyethylene and are a trademark of Honeywell, US. Compared with other 

polymeric fibers, Spectra® fibers have higher strength and higher elastic modulus and 

typically used in the aerospace industries. Properties of both types of fibers are given in 

Table 3.2. Previous studies (Chandrangsu, 2003) showed that the optimal length for 

Spectra fiber for HPFRCC applications is 1.5 inches for the mix proportion chosen. Three 

volume fractions are considered in the tests, i.e. 1.0%, 1.5%, and 2.0%. As a result, each 

loading path was composed of seven series as shown in Figure 3.1 (including 3 for 

Spectra, 3 for hooked and base mortar test).  The test series are indentified using three 

abbreviated terms: the first term represents the loading conditions (UXC for uniaxial 

compression), UXT for uniaxial tension, BXC-C for biaxial compression-compression,  

TXCS for triaxial compression with confining pressure of 6 ksi, and TXCM for triaxial 

compression with confining pressure of 7.5 ksi); the second term represents the fiber type 

(S for Spectra, H for hooked, and M for mortar without fiber); and the third term 

represents the volume fraction of fiber. For examples, BXC-C-S1 represents HPFRCC 

with 1% Spectra fiber under biaxial compression-compression test, and TXCS-H1.5 

denotes HPFRCC with 1.5% hooked fiber under 6-ksi triaxial compression test. 

3.1.2 Specimen Preparation 

Water was first pre-mixed with super-plasticizer so that when the liquid part was 

mixed with the cement, the chemical reaction between super-plasticizer and cement could 

be fully developed. In the mixing process, all dry components (cement, sand, and fly ash) 

were first mixed together in the mixing machine for a few minutes. About half of the 

liquid part was then added. Once the dry components were fully mixed with the liquid 
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part, fibers were slowly added in a small amount at a time and the rest of liquid part was 

then intermittently added as well. Extra care was taken to prevent Spectra fiber form 

lumping into big balls. Once the mixing process was achieved, the specimens were cast 

into plastic molds on a shaking table in order to achieve good compaction. 

The specimens were kept in their molds and covered with plastic sheets for about 

24 hours. They were then removed from the molds and were placed in water tank for 

curing for at least another 28 days. Afterwards, they were removed from the tank and left 

to dry for 48 hours prior to testing. In addition, for the uniaxial compression test 

specimens, both ends of the cylinder were capped with sulfur before testing to ensure an 

even loading surface.  

 

3.2 Uniaxial Tests 

3.2.1 Testing procedures 

The uniaxial tests were divided into compression and tension tests based on the 

loading path. A standard cylinder specimen (3 in  6 in) was used for the uniaxial 

compression test. Three LVDTs were attached along the side of specimen to measure the 

longitudinal deformation up to the peak load. To prevent damage to the LVDTs from 

rapid deformation increases after the peak load, the LVDTs were removed and the post-

peak deformation was obtained from the machine displacement instead. The full stress-

strain response was then obtained by joining the two parts. In the pre-peak regime, strain 

was obtained by dividing the average of the three LVDT deformations with the LVDT 

gauge length. In the post-peak regime, strain was obtained by dividing the machine 

deformation by the total specimen height. The stress was directly obtained by dividing 
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the machine load with the cross-sectional area. To ensure the consistency of the results, at 

least three specimens within the same series were tested and the average curve was used. 

A dog-bone shape specimen was used for the uniaxial tension test. The 

dimensions of dog-bone shape specimen are shown in Figure 3.3. Two LDVTs with 

gauge length of 7 in were attached along the sides of the specimen in the loading 

direction. Tests were carried out in an MTS machine with a stroke rate of 0.025 inch per 

minute. A data acquisition system was used to record the applied load from the machine. 

The deformation of specimen was obtained by averaging the readings of the two LVDTs. 

Again, to make sure that the test results were consistent, at least six tests were repeated 

for each series.  

The average curves for both test results are finally used as inputs to determine the 

parameters of the plasticity model (Chapter 4). In addition, Young’s modulus is also 

obtained from the unconfined uniaxial compressive test. 

3.2.2 Test Results 

Figure 3.4 shows the average uniaxial compressive stress-strain responses of 

mortar and HPFRCC with different types and volume fractions of fibers. Additional 

details on each type and each volume fraction of fiber can be found in Appendix A. The 

peak strength and its corresponding strain clearly increase in the HPFRCC mixes 

compared to the plain mortar specimen. For example, the peak strength of UXC-H for all 

volume fractions increased by 25% whereas the corresponding strain at peak was 

increased by 50% over the corresponding mortar values. The failure mode was observed 

to shift from brittle to ductile once the fibers were added. This was clearly evident in the 

softening part of the stress-strain curve. Both enhancements, i.e. the strength and the 
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gradual softening, were due to the fact that the dispersed fibers hindered lateral 

expansion, which in turn increased the confining pressure. Since the mortar is a pressure 

dependent material, increasing confining pressure enhances both the strength and the 

ductility of the material (Table 3.3).  

Figure 3.5 shows the average uniaxial tensile stress-strain responses of mortar and 

HPRCC with different types and volume fractions of fibers. Clearly, the response of 

mortar without fiber is brittle under tension. The response of plain mortar (UXT-M) is 

linear elastic up the first crack, followed by an abrupt drop associated with the crack 

localization. The addition of fibers changed the response dramatically and eliminated 

localization after the first cracking. In this study, specimens mixed with both types of 

fibers (UXT-H and UXT-S) showed strain-hardening behavior along with multiple 

crackings (Figure 3.6). Other enhancements were evident too. For example, the strength 

of UXT-H was at least five times that of plain mortar. Similarly, the strength of UXT-S 

was four times higher than plain mortar strength. In term of ductility, UXT-S showed 

greater ductility than UXT-H. Specifically, at 2% strain, UXT-S could maintain a stress 

level of 75% of the tensile strength whereas UXT-H could sustain only 25% (Table 3.4). 

 

3.3 Biaxial Tests 

3.3.1 Testing procedures 

A total number of 90 specimens with the size of 5.5 in  5.5 in  1.5 in were 

tested using an existing test setup at UI-MUST-SIM facility at the University of Illinois. 

This test setup was composed of four independent actuators each with loading capacity of 

112 kips (500 kN) situated on the loading frame. Each actuator was attached with a 
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brush-like platen that was designed in such a way that when the load was applied in the 

longitudinal direction, the specimen could expand freely in the transverse direction. The 

test setup was similar to that used by Kupfer et al. (1969). A non-contact displacement 

measurement system called Krypton® system was used for detailed measurement of the 

deformation in the test panels (Figure 3.7a). The signal receivers were placed in the 

middle of the specimen 1.5 in apart from each other as shown in Figure 3.7c. In each 

direction, receivers were aligned into three lines and the two outer receivers were used to 

measure the in-plane deformation along each line. The deformation along each line was 

then converted to strain and the in-plane strain was obtained by averaging three strains in 

each direction. Hence, the horizontal deformation was obtained by averaging the 

deformation of receivers (1-3, 4-6, and 7-9 receivers) whereas the vertical deformation 

was obtained by averaging the deformations of receivers (1-7, 2-8, and 3-9 receivers). In 

addition, an LVDT was attached at the back panel of the specimen to measure the out-of-

plane expansion (Figure 3.7b). The out-of-plane deformation was obtained by adding the 

z-direction movement of the middle receiver (No. 5) with the deformation of the LVDT. 

The main parameter varied during the tests was the ratio between principal 

strains. Due to symmetry in biaxial strain space, the four loading paths shown in Figure 

3.8 are sufficient to provide the necessary information regarding the biaxial compression-

compression behavior of HPFRCC. The loading paths are classified as the ratio of the 

vertical to the horizontal strain: C-C for ratio of 1; C-0.4C for the ratio of 0.4; C-0.6C for 

the ratio of 0.6; UXC for the ratio of 0. 
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3.3.2 Test results 

During the first trial experiments, it was found that all specimens exhibited failure 

by out-of-plane splitting. This was manifested in the load-displacement curve as a sudden 

drop after the peak point (Figure 3.9). This problem was due to the fact that the length of 

the fibers was about the same size as the thickness of the specimen. Thus, the fibers were 

aligned in the in-plane direction of the specimen. In other words, there was no fiber in the 

out-of-plane direction to prevent the splitting crack. To alleviate this problem, each series 

was recast into one big specimen with dimensions of 6.5 in  6.5 in  18 in and then 

sliced into 10 specimens each of size 5.5 in  5.5 in  1.5 in. This improved the results 

dramatically as show in Figure 3.10. Table 3.5 summarizes the key parameters of the 

peak point of HPFRCC under uniaxial and equal biaxial compression.  

The uniaxial compressive responses of HPFRCC tested with the biaxial test setup 

are shown in Figure 3.11. The longitudinal stress is plotted against both longitudinal and 

transverse strains. As can be seen, the strength of UXC-H increases as the fiber volume 

fraction increases. However, the strengths of UXC-S under all fiber volume fractions are 

about the same value. In term of the effect of the test setups and geometry of specimens, 

the comparison of uniaxial response between cylinders and rectangular panels is shown in 

Figure 3.12. In the pre-peak region, the Young’s moduli obtained from both setups are 

almost identical but the cylinder specimens give higher compressive strength than that of 

rectangular specimens. In addition, the amount of fibers in cylinder specimens does not 

affect the compressive strength. In the post-peak region, the rectangular panels are more 

ductile than the cylinders in the hooked fiber case. However, the ductility in Spectra is 

less affected by the setup or geometry of specimens when compare with the hooked fiber.  
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The equal biaxial compressive responses of both fiber types are plotted against the 

uniaxial compression in Figure 3.13. In the pre-peak regime, the initial slope of both 

uniaxial and equal biaxial compressions is identical for both types of fibers. However, the 

peak stress of both fibers is improved over the uniaxial compressive strength. In the post-

peak regime, except the BXC-C-S1 and BXC-C-S1.5, the ductility under equal biaxial 

compressions is similar to that under uniaxial compression. For the BXC-C-S1 and BXC-

C-S1.5, the receivers were detached from the specimens after reaching the peak load. 

Hence, the post-peak strains were discarded in the graph. The failure envelopes of 

specimens with both fibers under biaxial state of stress are compared with normal 

concrete in Figure 3.14. Under equal biaxial compression (BXC), the ratio between the 

peak strength and the unconfined compressive strength is improved from 1.1 in high 

strength concrete to 1.5 and 1.6 in HPFRCC constructed with hooked and Spectra, 

respectively. The failure envelopes of regular concrete were obtained from Hussein & 

Marzouk (2000). The enhancement is attributed to the fibers, which prevent out-of-plane 

expansion, which in turn helps to improve the confinement and thus increases the 

compressive capacity.  

 

3.4 Triaxial Tests 

3.4.1 Testing procedures 

Passive triaxial tests were performed using a 500-kip compression machine. A 

steel tube 3 in in nominal diameter and 7 in in height was used to encase the HPFRCC 

specimens to the necessary confinement (Figure 3.15). The level of passive confinement 

was varied by changing the thickness of the tube. Two thicknesses of steel tubes used in 
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this study are 1/8 and 1/16 in, which are denoted on the first term of ID as “S” and “M”, 

respectively (see Figure 3.1). During the casting process, a thin Teflon sheet was placed 

inside the steel tube to minimize friction between specimen and the tube. The HPFRCC 

material was cast inside the tube. A clear depth of 0.5 in was left on each end so that a 

steel loading plate could fit inside the tube and directly load the specimens. 

Three LVDTs were placed along the side of the tube for measuring longitudinal 

deformation and two strain gauges were attached to the tube at the mid-height (on 

opposite sides of the tube) in both longitudinal and circumferential directions. The 

longitudinal strain gauge was used to evaluate the effect of friction between specimen 

and the tube whereas the circumferential strain gauge was used to measure the expansion 

of the tube which was then converted to confining pressure.  

The dog-bone shape steel pieces were cut from the tube and direct tension tests 

were performed to obtain the stress-strain curve of the steel tube. Once the stress-strain 

curve of steel tube was known, the circumferential strain of the steel tube could then be 

converted to circumferential stress and this stress was then converted to confining 

pressure using the following formula: 

  P
σt
R
  (3.1) 

where P is the confining pressure,  is the circumferential stress, R and t are the radius 

and thickness of steel tube, respectively.  From the direct tension tests and the above 

formula, the maximum confining pressure of 1/8-in and 1/16-in thick are 6 and 7.5 ksi, 

respectively. 
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3.4.2 Test results 

The stress-strain responses of HPFRCC under triaxial compression test are plotted 

in Figure 3.16. The overall stress-strain response is not influenced by the type and 

volume fractions of fiber. This is attributed to the heavy confinement provided by the 

steel tube which over shadowed the effect of the fibers. Nevertheless, the strength of both 

hooked and Spectra specimens under both confining pressures is slightly greater than 

regular mortar. Figure 3.17 illustrates the responses of HPFRCC with 2% Spectra under 

all loading conditions tested in this study. The initial slope of the responses under all 

loading conditions is the same but the strength is improved as the confining pressure 

increases. Another observation is that the minimum volumetric strain  ε ,  of Spectra 

specimens, which indicates the ability of specimen to expand laterally in the hardening 

regime, was double that of mortar (Figure 3.18). This volumetric strain ε  is calculated 

by adding the longitudinal strain with the lateral expansions, which are identical in both 

transverse directions. The minimum volumetric strain indicated as the lowest contraction 

point of the volume strain is numerically defined as the lowest negative number of ε . 

Similar to the uniaxial compressive response, ε  starts with the contraction as the lateral 

expansion at the initial state is still less pronounced than the longitudinal strain. However, 

as the load increases, the lateral expansions increase at a higher rate than the longitudinal 

deformation and subsequently, the volumetric strain switches from negative to positive. 

Table 3.6 summarizes the key parameters that are used to obtain the material parameters 

for the failure surface. 
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3.5 Conclusion 

The chapter begins with discussion of the fiber properties and mix proportions used 

in this study. The mixing process to achieve the high performance response is given. In 

particular, it is noted that special care should be taken during mixing to avoid problems, 

such as segregation due to excessive liquid and balling of fibers, which could jeopardize 

the performance of the HPFRCC. The uniaxial tests under both compression and tension 

are discussed next. It is noted that the addition of short fibers into the mortar improves 

not only the strength but also the ductility in both loading paths, especially the tensile 

one. The biaxial compression-compression tests are discussed next, and the special 

loading platens that allow specimens to expand freely in the loading plane are described. 

The test results reveal that including the fiber significantly increases the material strength 

under biaxial loading because the fibers prevent the out-of-plane expansion inducing a 

confinement effect. The last section covers the triaxial compression tests, based upon 

which, it is concluded that under high pressure confining pressure, the effect of fibers is 

diminished. As a consequence, the shape of the yield surface depends mostly on the 

strength of the matrix and not on the fiber content. 
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Table 3.1 Mixed proportions by weight of cement 

Matrix type Mortar 

Cement type 3 1 

Aggregates 
Silica sand (Flint) 1 

Coarse aggregate - 

Fly ash class C 0.15 

Chemical admixtures Super-plasticizer Added when the mix is too dried

Water 0.4 

Fibers 
Types of fibers Hooked & Spectra 

Volume Fraction V  (%) 1.0, 1.5, and 2.0 

Compressive strength f  ksi (MPa) 8 (55.2) 

 

Table 3.2 Properties of fibers 

Fiber Type 
Diameter Length Density 

Tensile 

strength 

Elastic 

Modulus 

in (mm) in(mm) g/cc ksi (MPa) ksi (GPa) 

Hooked 0.015 (0.38) 1.18 (30) 7.9 304 (2100) 29000 (200) 

Spectra 0.0015 (0.038) 1.50 (38) 0.97 374 (2585) 16960 (117) 
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Table 3.3 Summary of the key parameters of the average test results of mortar and 
HPFRCC from uniaxial compression tests 

Types of 

fiber 

Fiber 
volume 
fraction 

ID 
Young’s 
modulus 

Peak point Post-peak 
strain at 

40% of f ′  Strength f ′  Strain 

(%) ksi (MPa) ksi (MPa) (%) (%) 

Spectra 

1.00 UXC-S1 5421 (37376) 8.01 (55.19) 0.31 1.23 

1.50 UXC-S1.5 6528 (45009) 7.57 (52.21) 0.22 1.79 

2.00 UXC-S2 4292 (29592) 7.24 (49.93) 0.27 1.88 

Hooked 

1.00 UXC-H1 3083 (21257) 8.25 (56.91) 0.29 0.52 

1.50 UXC-H1.5 5360 (36956) 8.75 (60.30) 0.31 0.62 

2.00 UXC-H2 5288 (36459) 8.30 (57.23) 0.26 0.85 

Mortar UXC-M 3856 (26586) 6.27 (43.25) 0.21 0.43 

 

Table 3.4 Summary of the key parameters of the average test results of mortar and 
HPFRCC from uniaxial tension tests 

Types 

of fiber 

Fiber 
volume 
fraction ID 

First crack Peak strength 

Stress σ Strain ε Stress σ  Strain ε

(%) ksi (MPa) (%) ksi (MPa) (%) 

Spectra 

1.00 UXT-H1 0.15 (1.03) 0.024 0.46 (3.15) 1.61 

1.50 UXT-H1.5 0.14 (0.96) 0.021 0.48 (3.24) 1.24 

2.00 UXT-H2 0.13 (0.93) 0.019 0.45 (3.09) 0.61 

Hooked 

1.00 UXT-S1 0.16 (1.13) 0.010 0.51 (3.48) 0.28 

1.50 UXT-S1.5 0.19 (1.33) 0.013 0.61 (4.24) 0.29 

2.00 UXT-S2 0.18 (1.25) 0.017 0.58  (4.00) 0.30 

Mortar UXT-M 0.12 (0.82) 0.013 - - 

* referring to Figure 1.1 
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Table 3.5 Summary of the key parameters of the average test results of HPFRCC from 
biaxial compression tests 

Types 

of fiber 

Volume 

fraction 

Peak point 

Uniaxial compression Compression-Compression 

Horizontal Vertical Horizontal Vertical 

Stress Strain Stress Strain Stress Strain Stress Strain

(%) 
ksi 

(MPa) 
(%) 

ksi 

(MPa) 
(%) 

ksi 

(MPa) 
(%) 

ksi 

(MPa) 
(%) 

Spectra 

1.00 - -0.53 
6.35 

(43.77) 
0.53 

9.42 

(64.97) 
0.28 

9.36 

(64.50) 
0.49 

1.50 - -0.31 
5.39 

(37.16) 
0.43 

8.61 

(59.37) 
0.68 

9.98 

(68.78) 
0.64 

2.00 - -0.36 
5.64 

(38.91) 
0.68 

9.57 

(66.01) 
0.71 

8.40 

(57.90) 
0.93 

Hooked 

1.00 - -0.37 
5.23 

(36.06) 
0.44 

9.98 

(68.80) 
0.58 

10.37 

(71.52) 
0.70 

1.50 - -0.29 
7.24 

(49.88) 
0.56 

10.06 

(69.33) 
0.53 

10.24 

(70.63) 
0.70 

2.00 - -0.42 
7.48 

(51.59) 
0.72 

9.40 

(64.84) 
0.81 

9.54 

(65.76) 
0.73 

Note: Negative number in ε for uniaxial compression case represents tension (expansion). 
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Table 3.6 Summary of the key parameters of the average test results of mortar and 
HPFRCC from triaxial compression test 

Type of 

fiber 

Volume 

fraction 

Confining pressure 

6 ksi (41 MPa) 7.5 ksi (52 MPa) 

f  ε  ε ,  f  ε  ε ,  

(%) 
ksi 

(MPa) 
(-) (%) 

ksi 

(MPa) 
(-) (%) 

Spectra 

1.00 
21.17 

(145.95) 
0.025 -0. 53 

32.17 

(221.83) 
0.037 -0. 91 

1.50 
21.48 

(148.10) 
0.040 -0. 61 

32.62 

(224.89) 
0.042 -0. 71 

2.00 
20.47 

(141.16) 
0.045 -0. 61 

31.67 

(218.36) 
0.048 -0. 92 

Hooked 

1.00 
21.51 

(148.33) 
0.015 -0. 55 

30.01 

(215.38) 
0.033 -0. 54 

1.50 
22.10 

(152.41) 
0.022 -0. 55 

31.24 

(215.39) 
0.040 -0. 40 

2.00 
22.83 

(157.40) 
0.018 -0. 59 

32.21 

(222.05) 
0.041 -0. 43 

Mortar 
18.90 

(130.31) 
0.013 -0. 33 

28.76 

(198.28) 
0.034 -0. 71 

f : Maximum stress 
ε : Corresponding longitudinal strain at maximum stress (positive number represents 
contraction). 
ε , : Minimum volumetric strain (negative number represents contraction). 
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Figure 3.1 Flowchart of experimental program with ID 
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Figure 3.2 Photos of (a) 1.5-in. long Spectra fibers and (b) 1.5-in. long hooked fibers 

 

(a) Dimension of dog-bone specimen (b) Test setup (Likhitruangsilp, 2006) 
Figure 3.3 Configuration of tensile specimen 

(a) Spectra fibers (b) Hooked fibers 
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(a) Hooked fiber 

 
 

(b) Spectra fiber 
 

Figure 3.4 Effect of volume fractions of fibers on uniaxial compressive behavior of 
HPFRCC 
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(a) Hooked fiber

 
 

(b) Spectra fiber 
 

Figure 3.5 Effect of  volume fractions of fibers on uniaxial tensile behavior of HPFRCC 
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Figure 3.6 Photos showing multiple cracks at different loading states observed in 

HPFRCC with Spectra 1% in tensile test 

(a) First few cracks (b) Saturated cracks (c) Localization 

Note: Light color line represents minor crack 
Dark color line represents major crack 
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Figure 3.7 Biaxial test setup with the measuring systems 
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Figure 3.8 Nominal loading paths in strain space under biaxial compression-compression  

state of stress 

Load Path 
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Figure 3.9 Problem with individual casting of specimen is the out-of-plane splitting 
failure caused sudden drop of load after its peak 
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Figure 3.10 Solution to solve the splitting crack in the out-of-plane direction 
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(a) Hooked fiber 

 

(b) Spectra fiber 

Figure 3.11 Uniaxial compressive responses of HPFRCC 
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(a) Hooked Fiber 

 

(b) Spectra fiber 

Figure 3.12 Comparison of the uniaxial compressive responses between cylinder and 
rectangular panel specimens 
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(a) Hooked Fiber 
 

 
 

(b) Spectra Fiber 
 

Figure 3.13 Comparison between equal biaxial compressive responses and uniaxial 
compressive responses of HPFRCC in rectangular panel specimens 
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Figure 3.14 Failure envelopes of HPFRCC constructed with hooked and Spectra fibers 
under biaxial state of stress compared with ordinary concrete 
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Figure 3.15 Passive triaxial test setup 
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Figure 3.16 Stress-strain responses in longitudinal direction under two levels of confining 

pressure (6 ksi and 7.5 ksi) 
 

 

Figure 3.17 Comparison of stress-strain responses of 2% Spectra under various 
compressive loading conditions 
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 (a) Confining pressure of 7.5 ksi (52 MPa) 
 

 
 

(b) Confining pressure of 6 ksi (41 MPa) 
 

Figure 3.18 Volumetric strain versus longitudinal strain under triaxial compression tests 
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CHAPTER 4 

THEORY OF MACRO-SCALE PLASTICTY MODEL FOR HPFRCC 

CHAPTER 4 THEORY OF MACRO-SCALE PLASTICITY MODEL FOR 
HPFRCC 

A macro-scale plasticity model for High Performance Fiber Reinforced Cement 

Composites (HPFRCC) is presented in this chapter. First, a brief overview of general 

requirement for the plasticity model is given. Then, a four-parameter compressive yield 

surface for concrete proposed by Hsieh et al. is discussed and is further modified to 

develop a macro-scale plasticity model for HPFRCC. Finally, the tension yield surface is 

proposed and added into the developed model in the last section of this chapter. 

 

4.1 Introduction 

Because HPFRCC behaves like many geomaterials in an inelastic nonlinear 

manner, a simple linear elastic model is not sufficient to describe its stress-strain 

behavior. Therefore, a macro-scale plasticity model that is based on phenomenological 

observations of HPFRCC behavior is introduced. Phenomenological models employ a 

mathematical formulation to describe the macro-scale behavior of a given material 

without regard to how it behaves at the micro-scale level (Ogden, 1984). One essential 

requirement of this theory is material homogeneity in which material components are 

uniformly distributed. In the case of HPFRCC, this requirement is satisfied, in that fibers 

are not organized in any specific patterns and are distributed randomly. Even though, 
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phenomenological models heavily depend on engineering judgment, such models have 

been successfully used by many researchers and are widely accepted to provide good 

accuracy with less computational demand than micro-scale models.  

  

4.2 Plasticity Model for Compressive Response of HPFRCC 

The behavior of ordinary concrete is first discussed in this section with emphasis on 

the requirements for concrete yield surfaces. These requirements are then used to extend 

an existing model for concrete to model HPFRCC response. Since HPFRCC behaves 

differently in compression and tension, a separate model for tension response is also 

proposed.  

4.2.1 General characteristics of the plasticity model in concrete 

The response of regular concrete under uniaxial compression shown in Figure 4.1 

can be divided into two different sides, i.e., compression and tension. In the compression 

regime, the response is initially linear elastic up to point A, i.e. the loading/unloading are 

on the same path (Figure 4.1). Beyond point A, the concrete starts to develop permanent 

plastic deformations as a result of micro-cracks and collapsing air voids inside the 

concrete. In other words, the concrete will not be able to fully revert back to the starting 

stage when unloading occurs. Under such conditions, the loading and unloading paths no 

longer coincide. Concrete will soften in compression beyond the peak stress.  

The yield surface of concrete must have the following characteristics: (1) smooth 

and convex; (2) pressure-dependent; (3) able to model the difference between 

compressive and tensile strength; (4) nonlinear in the meridian plane; and (5) able to 

capture the change in volumetric strain. The first condition is derived from the 
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consequences of Drucker’s postulates and ensures that the concrete material is stable. 

However, this condition does not necessarily apply under the softening regime. The 

second condition arises from triaxial compression test results (Schwer, 2002). In Figure 

4.2, the load starts at stage I where the particles inside concrete resist the load up to 

pressure P1. At this stage, no permanent deformations have taken place yet and therefore, 

the concrete material is assumed to behave as an elastic material. Once the pressure 

exceeds P1, air voids inside the concrete starts to collapse and hence, the bulk modulus, 

which is the slope between pressure and volumetric strain, reduces. Stage II can also be 

referred as work-hardening stage. At pressure P2, the concrete particles are fully 

compacted; thus the load is now solely resisted by concrete particles and crushing starts 

to take place. The third and forth conditions, which are logically necessary conditions, 

can be achieved by using a non-circular cross-section with a larger radius on the 

compressive meridian. In addition, test results reveal that at low hydrostatic pressure, the 

yield surface shape is nearly triangular. However, as the pressure increases, the yield 

surface bulges (becomes more circular). The last characteristic also stems from 

experimental data, where it has been observed that the volumetric strain starts with 

contraction up to peak stress, followed by dilation (expansion) beyond (Figure 4.3). 

Moreover, triaxial test results show that the volumetric strain direction does not coincide 

with the direction of plastic flow (Smith et. al, 1989). Therefore, the non-associative flow 

rule should be used to model concrete.    

Concrete plasticity models can be classified according to the number of 

parameters required to define the yield surface. The number of parameters range from 

two up to five parameters in the literature. A one-parameter model is not enough to fully 
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define a concrete yield surface, since concrete is a pressure-dependent material. Some 

examples of two-parameter models are the Mohr-Coulomb and Drucker-Prager models; 

further examples can be found in Chen (1982), Jansen (1975), and Schreyer and Babcock 

(1985). Examples of three-parameter models can be found in William and Warnke 

(1975); Chen and Chen (1975); Chen et al. (1980); Elnashai and Nicholson (1986); Lade 

(1982); and Lade et al. (1994). Examples of four-parameter models can be found in 

Ottosen (1977); Hsieh et al. (1979); Voyiadjis and Abu-Lebdeh (1994); and Imran and 

Pantanzopoulou (2001). Examples of five-parameter models can be found in William and 

Warnke (1975); Barzegar and Maddipudi (1997); and Balan et al. (2000). 

4.2.2 Original HTC model 

Hsieh et al. (1979) proposed the four-parameter HTC model by combining an 

equilateral triangular cross-section with a circular shape to represent the surface shape in 

the deviatoric plane. In the derivation of this yield function, three of five requirements 

listed in the previous section are considered. First, the compressive meridian must be 

higher than the tensile meridian under the same level of pressure. Consider the two 

extreme yield surfaces in the deviatoric plane as shown in Figure 4.4a. The two cross-

sections represent a circle (r k) and an equilateral triangle ( r cos θ k ). To satisfy 

this first condition, these two cross-sections are merged and the new cross-section 

equation becomes r a cos θ b k. Second, the yield surface drawn in the meridian 

plane is nonlinear. This was achieved by introducing a square term of ‘r’ into the cross-

section equation. Third, the yield function is pressure-dependent, which was 

accomplished by adding the pressure term ‘ρ’ into the equation. The new yield function 

of the HTC model is: 
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  F ρ, r, θ ar α cos θ β r Cρ 1 0  (4.1) 

where r and ρ represent the deviatoric and the hydrostatic components of stress tensors, 

respectively r 2J , ρ I . Material constants a, α, β, C can be directly obtained 

from experiments. It should be noted that even though the smoothness and convexity 

conditions were not considered when deriving the yield function, Eq. (4.1) does satisfy 

this requirement. The yield function can also be expressed as a function of invariants as: 

  F I , J , σ A
J
f

B
J
f

C
σ
f

D
I
f

1 0  (4.2) 

where A, B, C, and D are material parameters that can be evaluated from four different 

loading conditions: unconfined uniaxial compression, equal biaxial compression, 

confined triaxial compression, and uniaxial tension (Hsieh et al., 1982).  

Three drawbacks of this original model can be identified. First, this model does 

not consider post-peak behavior, i.e. post peak response. Secondly, the model does not 

consider the evolution of volumetric strain. Lastly, since the associative flow rule is used, 

the plastic flow direction is perpendicular to the yield surface, which is contradictory to 

actual test results. 

4.2.3 Modified HTC model 

To address the drawbacks of the original HTC model, Imran and Pantazopoulou 

(2001) modified the HTC model by adding softening and potential functions to capture 

the post-peak behavior and the change in volumetric strain, respectively. The yield 

function of the modified HTC model is composed of two parts: the hardening (F1) and the 

softening parts (F2) and the new equation can be written as: 

  F , k, r F , k F , r   (4.3) 
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where 

  F , k
AJ
kf

B J Ckσ DkI E
1 k
kf

I kf   (4.4) 

and 

  F , r 1 r
I

I
f 1 r f   (4.5) 

The first term F , k  remains almost the same as the original equation. The 

second term F , r  was introduced to capture the post-peak response. The parameter 

I  in the second term was introduced to capture the failure mode of the post-peak 

response of concrete. This parameter represents the magnitude of hydrostatic stress at the 

transition point between brittle and ductile failure modes. If the confining pressure is 

three times greater than trans
1I , the failure mode of concrete shifts from brittle to ductile. 

The hardening and the softening parameters are derived from Hognestad’s parabolic 

equation and the Cosine function, respectively (Figure 4.5). 

  k
2 ε ε , ε

ε ,
1 k k   (4.6) 

  r
1
2

1
2
cos π

ε ε ,

ε , ε ,
  (4.7) 

In Eq. (4.6) and (4.7), the scalar parameter ε  is a measure of the plastic 

deformation that can be obtained from the equivalent inelastic work. As shown in Figure 

4.5, ε ,  and ε ,  correspond to the value of εp at the peak and residual strength, 

respectively and k0 represents the value of k at the initial yield surface. The equivalent 

plastic work can be defined as follows: 

  ε dε
:
kf

  (4.8) 
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The evolution of the yield surface with respect to the hardening parameter k is 

shown in Figure 4.6. Unlike the J2-plasticity model, this model uses a cap surface to limit 

the material strength in the hydrostatic loading case. Figure 4.7 and Figure 4.8 show the 

yield surface under various softening stages. If the hydrostatic pressure exceeds the 

transition pressure  I , the effect of softening factor ‘r’ is diminished. In other words, 

the concrete behaves as a perfectly plastic material when the concrete is triaxially loaded 

under high hydrostatic pressure that is three times greater than I . 

 Another feature added in this model is the non-associative flow rule. The 

Drucker-Prager yield surface is selected as the potential function which is used to control 

not only the direction of the plastic flow but also the amount of volumetric plastic strain. 

The Drucker-Prager function is defined as:  

  g aC
I
√3

2J c  (4.9) 

where c does not need to be defined since only the gradient of the potential function is 

used. The parameter ‘aC’ is the slope of the flow direction which in turn controls the 

amount of volumetric plastic strain and can be defined as: 

  aC
a

1 η
ε

ε ,
η   (4.10) 

where a  is the value of ‘aC’ under uniaxial loading and η is the ratio of 
,

 at zero 

volumetric plastic strain, which is also the same point where the stress reaches the peak 

point (Figure 4.3). 

4.2.4 Modified HTC model for HPFRCCs 

The experimental results of HPFRCCs under uniaxial compression reveal that the 

fibers help to prevent the sudden drop that occurs after the load reaches its peak point. 
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The fibers act in a manner similar to a thin confining tube surrounding specimen as 

shown in Figure 4.9. Because the presence of fibers does not significantly increase the 

strength, although it does increase ductility, a third term is introduced into the modified 

HTC described in Eq. (4.3).  Since the softening shape of HPFRCCs is different from that 

of regular concrete, an exponential function is applied in the third term. Hence, the yield 

surface is now composed of three different functions, i.e. a hardening function (F1), a 

cosine softening function (F2), and an exponential softening function (F3). 

  F , k, r F , k F , r F , s   (4.11) 

  F , k
AJ
kf

B J Ckσ DkI E
1 k
kf

I kf   (4.12) 

  F , r 1 Imp 1 r f
I

I
1   (4.13) 

  F , s Imp 1 s f
I

I
1   (4.14) 

The parameter Imp controls the level of the stress at the beginning of the 

exponential softening curve as shown in Figure 4.10, whereas the exponential factor ‘s’ 

controls the slope of the softening curve that is expressed as a function of ε  (Figure 4.5):  

  s Exp
ω ε ε ,

ε , ε ,
  (4.15) 

where the factor ‘ω’ controls the slope of exponential curve (Figure 4.11). ε ,  indicates 

the plastic strain at the residual state. At this state, the material becomes perfectly plastic, 

i.e. stress does not increase or decrease with an increase in strain. 

For the ease of fitting data, the definition of ε  is changed from the equivalent 

inelastic work to the effective plastic strain and is expressed as: 
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  ε dε
2
3

:   (4.16) 

Therefore, under uniaxial compression response, the material parameters 

ε , , ε , , and ε ,  can be obtained by simply subtracting the elastic strain from the 

total strain. 

 

4.3 Plasticity Model for Tensile Response of HPFRCC 

In contrast to regular concrete where localization and subsequent sudden 

softening occur once the strain reaches the first crack, HPFRCC exhibits strain hardening 

tensile behavior until crack saturation occurs. In other words, the tensile behavior of 

HPFRCC showing strain hardening and then gradual softening makes it a good candidate 

for a tension plasticity model. Several points are considered in constructing the maximum 

tension yield surface as follows. First, the tension surface has to merge into the 

compression surface. In order to prevent sudden change in stress between compression 

and tension, the zero pressure point A, which represents the dividing point between both 

yield surfaces (Figure 4.12), is chosen. By substituting zero pressure I 0  into the 

modified HTC yield function (Eq. 4.11), the corresponding J  at this point A is 

determined as  

  J , J ,HTC
2c

b √b 4ac
  (4.17) 

where 

  a
A
kf

  (4.18.1) 
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  b B
2Ck
√3

sin θ
2π
3

  (4.18.2) 

  c kf 1 IMP 1 r f IMP 1 s f   (4.18.3) 

Second, using the same method used for constructing the cap surface for the 

compression yield surface, the limit point for the tension yield surface is selected as point 

B in Figure 4.12 (where J 0). At this point, the material is under triaxial tension 

(TXT). Since there are no test results for this case, it is assumed in this study that the 

maximum principal stress is the same as the uniaxial tensile strength. Therefore, the 

second point is expressed as 

  I , , J , 3f , 0    (4.19) 

Third, an intermediate point C I , , J ,  located between the transition and 

TXT points is defined by using uniaxial and equal biaxial tensions. At uniaxial tension 

(UXT), the first invariant I  and square root of the second invariant J  are f  and 

f /√3, respectively, whereas at equal biaxial tension (BXT), I  and J  are 2αf  and 

αf /√3, respectively. The parameter α represents the strength ratio between equal biaxial 

and uniaxial tensions. From Table 4.1, the lode angles of UXT and BXT, which are at the 

extreme limits of the lode angle (i.e. θ π/6 and π/6, respectively), are constant. 

Unlike points A and B, where the lode angles are not constant, the linear interpolation 

using the sine function between UXT and BXT points is employed to obtain the 

intermediate point. Therefore, the intermediate point is expressed as 

  I , f 1 2α 1 sin θ
1
2

  (4.20) 

  J ,
f
√3

1 α 1 sin θ
1
2

  (4.21) 
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 With these three points, the tension yield surface is proposed to be as follows 

  F xI yI z J 0  (4.22) 

where the material parameters x, y, and z are obtained by substituting I  and the 

corresponding J  of the three identified points into the yield function.  

 

I , I , 1
I , I , 1
I , I , 1

x
y
z

J ,

J ,

J ,

  (4.23) 

By inverting the first matrix of the right hand side equation, the solutions of x, y, 

and z are obtained. 

 
x
y
z

I , I , 1
I , I , 1
I , I , 1

J ,

J ,

J ,

  (4.24) 

where 

  x
1
d

I , I , J , I , I , J ,   (4.25.1) 

  y
1
d

I , I , J , I , I , J ,   (4.25.2) 

  z
1
d

I , I , I , I , J , I , I , I , I , J ,   (4.25.3) 

  d I , I , I , I , I , I ,   (4.25.4) 

 To rid the denominator term ‘d’ of parameters x, y, and z, multiplying Eq. (4.22) 

with ‘d’ and let’s define x xd, y  yd, and z zd. Then, the tension yield function 

now becomes 

  F x I y I z d J 0  (4.26) 

By substituting the value of I  and the corresponding J  at three points from 

Table 4.1, material parameters x , y , z , and d can be obtained as 
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  x xd f 2α 1 β 2 J ,HTC √3f 1 α 1 β   (4.26.1)

  y yd f 8 2β 2α 1 β 2α 1 J ,HTC 3√3f 1 α 1 β   (4.26.2)

  z zd 3f 1 2α 1 β 2α 1 β 2 J ,HTC  (4.26.3)

  d 3f 1 2α 1 β 2α 1 β 2   (4.26.4)

  β sin θ
1
2
  (4.26.5)

  So far only the construction of the maximum tensile yield surface is given, the 

evolution of the tension yield surface is not yet discussed. In order to make sure that the 

continuity between compression and tension yield surfaces exists at every loading state, 

the development of the tension yield surfaces, i.e. expansion under hardening regime and 

contraction under softening regime, must be taken into consideration. As the tension yield 

surface expands, the compression yield surface must be expanded also to maintain 

continuity between these two yield surfaces. Therefore, the hardening and softening 

parameters (k, r , and s) are shared for both compression and tension yield functions. By 

introducing the hardening and softening parameters into Eq. (4.26), a complete tension 

yield function is written as: 

  F , k, r, s x I y z √rs z I kz d J 0   (4.27) 

where the material  parameters x , y , z , and d are obtained from Eq. (4.25). Although the 

hardening and the softening parameters of both compression and tension yield functions 

are the same, the shapes of the both responses are not the same. Under uniaxial 

compression, the shape of the response starts with the parabolic function, followed by a 

mix of cosine and exponential functions. However, under uniaxial tension, the shape of 

the response composes of bilinear hardening, followed by an exponential softening shape. 
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Therefore, the hardening (k) and the softening parameters (r and s) are redefined under 

tension as  

  k
k k
ε ,

ε k 0 ε ε ,   (4.28) 

  k
1 k

ε , ε ,
ε ε , k ε , ε ε ,   (4.29) 

  r s Exp γ
ε ε ,

ε , ε ,
ε , ε ε ,   (4.30) 

where k  , k  , ε ,  , ε ,  , and ε ,  are defined in Figure 4.13. The parameter γ is defined 

as the slope of exponential softening function. The definition of tension effective plastic 

strain is defined the same way as in compression. Hence, both compression and tension 

effective plastic strains are defined as: 

  ε dε
2
3

: P 0  (4.31) 

  ε dε
2
3

: P 0  (4.32) 

Since the effective compression plastic strain ε  is not the same as the tension 

effective plastic strain  ε , ε  must be updated as the tension yield surface evolves. For 

the hardening region (Eq. 4.6), the inverse relationship between ε  and k can be obtained 

as 

  ε ε , 1
1 k
1 k

  (4.33) 

For the softening region (Eq. 4.7 and 4.15), the inverse relationship between ε  and 

softening parameters (r and s) can be obtained as  
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  ε max
ε ,

ε , ε ,

π
cos 2r 1

ε ,
ε , ε ,

ω
ln s     

  (4.34) 

Conversely, if the compression yield surface evolves, the tension effective plastic 

strain ε  must be updated. Under the hardening region, two separate equations are used to 

obtain the corresponding ε . The first equation is when the hardening parameter k is 

between k  and k  

  ε ε ,
k k
k k

  (4.35) 

The second equation is when k is between k  and 1 and can be expressed as 

  ε ε ,
k k
1 k

ε , ε ,   (4.36) 

Under the softening region, the minimum value of r and s is taken and the corresponding 

ε  is obtained as 

  ε ε ,
ε , ε ,

γ
ln min r, s   (4.37) 

The same potential function used for compression (Drucker-Prager model) is used 

for tension. However, the slope of plastic flow direction aT  is defined as a constant 

value since there is no information on how the volumetric strain expands or contracts 

respected to the longitudinal strain. Nevertheless, the potential function defined here is 

for future expansion of the model. Once the relationship between volumetric and 

longitudinal strains is known, the parameter ‘aT’ can be easily adjusted to fit with the 

experimental results. Therefore, the potential function for tension is defined as: 

  g aT
I
√3

2J c  (4.38) 
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where aT is the slope of the plastic flow direction used to control the amount of 

volumetric plastic strain. 

One of a few drawbacks of the proposed model is the kink at the connection 

between compression and tension yield surfaces (Figure 4.12). Since only the zeroth 

degree continuity is considered when constructed tension yield surface, the slope at the 

transition is not smooth. Another drawback is the number of material parameters required 

for modeling complete behavior of HPFRCC. However, out of 22 material parameters, 

only six are required for determining compression yield surface and only two are required 

for tension. The remaining parameters can be obtained from simple uniaxial compression 

and tension tests.  

Another limitation of this model is that it cannot simulate cyclic behavior. The 

consequence of sharing hardening and softening parameters of both yield functions 

together appears when cyclic loading occurs. To illustrate this effect, one element 

subjected to uniaxial cyclic loading is simulated as shown in Figure 4.14. The load first 

starts with compression until reaching the hardening regime, followed by unloading until 

it reaches the tension side (Figure 4.14b). At the beginning, a compressive stress develops 

as the compressive strain increases and once the stress reaches the initial yield surface, 

the hardening parameter increases and the compressive yield surface starts to grow. Since 

both yield functions share the same hardening parameter, the tension yield surface also 

grows. Once unloading takes place, the pressure drops and the hardening parameter stops 

developing (Figure 4.14c). As the pressure drops and switches from positive to negative 

(from compression to tension), the algorithm is switched from compression to tension as 

well. Since the current tension yield surface is not at the initial state, but at the last point 
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where the yield surface stops expanding from the last compressive stress, the stress-strain 

response under cyclic loading differs from the monotonic loading scenario shown as a 

dotted line in Figure 4.14d. In other words, the tensile elastic region increases in size 

when compared with the monotonic case. However, the strength capacity remains the 

same as the monotonic case. It should be noted that the strain in the cyclic loading case is 

obtained by subtracting the total strain from the permanent damage strain caused by the 

compression regime. Since this dissertation focuses only on monotonic loading behavior, 

correcting this unrealistic cyclic response is beyond the scope of this study and is 

something that can be addressed in future work. Nevertheless, the proposed model is 

sufficient to accurately represent monotonic loading behavior under both compression 

and tension for HPFRCC. 

 

4.4 Conclusion 

A macro-scale plasticity model for High Performance Fiber Reinforced Cement 

Composites (HPFRCC) is given in this chapter. The material model is divided into two 

parts, i.e. compression and tension. In the former, an existing model is modified for 

modeling HPFRCC compressive response. The shape of the compression yield surface is 

taken similar to the modified HTC model proposed by Imran and Pantazopoulou (2001). 

However, the softening part of the yield function is modified to accommodate the 

difference between mortar and HPFRCC. Unlike mortar where the stress drops abruptly 

after reaching the peak, the post-peak response of HPFRCC gradually softens. In tension 

the modified HTC model is extended to cover tensile behavior. The evolution of variables 

shared by both tension and compression surfaces is described.  
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Table 4.1 Four points for constructing the tension yield function 

Experiment 
First invariant

I  

Second invariant 

J  

Lode angle 

θ  

1. Compression yield surface 0 J ,HTC 6
,
6

 

2. Uniaxial tension (UXT) f  
f
√3

 
π
6 

3. Equal biaxial tension (BXT) 2αf  
αf
√3

 
π
6 

4. Equal triaxial tension (TXT) 3f  0 6
,
6

 

where α is the strength ratio between equal biaxial tension-tension and uniaxial tension 
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Figure 4.1 Idealized uniaxial stress-strain of regular concrete (Chen, 1982) 

 
Figure 4.2 Schematic of geomaterial particle compaction and corresponding pressure-

volume response under triaxial loading condition (Schwer, 2002) 
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Figure 4.3 Amount of volumetric strain under uniaxial compression controlled by a  
(Imran, 1994) 

 

 
Figure 4.4 Original yield surface of HTC model (Hsieh et al., 1982) 
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Figure 4.5 Plot of hardening and softening parameters as a function of ε  

 

 
Figure 4.6 Evolution of loading surface during the hardening on the meridian plane 

(Imran, 1994) 
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Figure 4.7 Evolution of loading surface during the softening on the meridian plane 

(Imran, 1994) 
 

 

 

 
Figure 4.8 Evolution of loading surface during the softening on the meridian plane at the 

lower level of confinement (Imran, 1994) 
 

0

20

40

60

80

0 20 40 60 80 100

Ef
fe

ct
iv

e 
St

re
ss

 (M
Pa

)

Pressure (MPa)

Ptrans = I1
trans/3

Ptrans

I1
trans : Transition point from brittle to ductile failure

0

10

20

30

40

50

0 10 20 30 40

Ef
fe

ct
iv

e 
St

re
ss

 (M
Pa

)

Pressure (MPa)

r : Softening Parameter

r = 0.2

0.6

r = 1.0



 

92 
 

 
Figure 4.9 Fibers provide the effective confinement under uniaxial loading condition 

 

 

 
Figure 4.10 Effect of IMP under uniaxial compression 
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Figure 4.11 Effect of ‘ω’ factor under uniaxial compression 

 

 

Figure 4.12 Compression and tension yield surfaces on the meridian plane at θ 0 
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Figure 4.13 Plot of hardening and softening parameters of the tension yield surface as a 
function of effective plastic strain  ε  

 

 

Figure 4.14 Uniaxial response under cyclic loading 
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CHAPTER 5 

IDENTIFICATION OF MATERIAL PARAMETERS AND MODEL 

VERIFICATIONS 

CHAPTER 5 IDENTIFICATION OF MATERIAL PARAMETERS AND MODEL 
VERIFICATIONS 

The model discussed in the previous chapter is calibrated and validated in this 

chapter. After implementing the model in the commercial Finite Element software, LS-

DYNA, several exercises are conducted to ensure that the model gives good results with 

respect to test data. These exercises include a variety of specimens including two-span 

continuous beam, punching shear slab, slender wall, and a coupling beam.  

 

5.1 Identification of Material Parameters 

5.1.1 Material Parameters for Compressive Yield Function 

As discussed in Chapter 4, a total of 22 material parameters are required to define 

the yield and potential functions of both compression and tension parts of the model. The 

yield surfaces define the boundary of the elastic region whereas the potential functions 

define the plastic flow direction as well as control the magnitude of the volumetric plastic 

strain. The material parameters A, B, C, D for the compression yield function are 

obtained in two different stages, i.e. at the peak and residual points. These two stages are 

selected for two reasons. The first is to ensure that the peak strengths under the three 
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basic loading combinations, namely uniaxial (UXC), equal biaxial (BXC), and triaxial 

compressions (TXC), match with the experimental results. The second reason is to 

guarantee that the lowest softening stress can be achieved. Since the uniaxial 

compression state of stress gives the lowest confining pressure out of these three loading 

combinations, the lowest possible stress will be controlled by this loading scenario. 

Therefore, at the peak point where all the internal hardening and softening parameters are 

unity (k = r = s = 1), the yield function becomes: 

  F σ, k 1, r 1, s 1
A
f
J B J Cσ DI f 0  (5.1) 

At the residual point, the hardening parameter remains unity k 1  but the softening 

parameters are zero r s 0  and the yield function is expressed as: 

  F σ, k 1, r 0, s 0
A
f
J B J Cσ DI f

I
I ,

  (5.2) 

By substituting the material strengths for the UXC, BXC, and TXC cases into Eq. 

(5.1) and the residual strength under UXC into Eq. (5.2), the material parameters A, B, C, 

and D can be obtained by solving the following equation: 

 

0.1
3

1
√3

0 1

f
3

f
√3

0 f

f
3f

f
√3

0 2f

σ σ
3f

σ σ
√3

σ σ 2σ

A

B

C

D

f
I ,

f

f

f

  (5.3) 

where f  is the compressive strength; f  is the biaxial compressive strength; σ  and σ  

are the maximum longitudinal stress and its corresponding lateral stress under TXC, 
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respectively. In this study, the residual strength is taken as at one percent of the unaixial 

compressive strength.  

 

A

B

C

D

0.1
3

1
√3

0 1

f
3

f
√3

0 f

f
3f

f
√3

0 2f

σ σ
3f

σ σ
√3

σ σ 2σ

f
I ,

f

f

f

  (5.4) 

 The remaining two material parameters for the compression yield function, E  

and I , , can be obtained once the material parameters A, B, C, and D are known. For 

the hardening region, E , which defines the cap of the yield surface in the meridian 

plane, is determined at the initial yield function. At the initial point, the hardening 

parameter is prescribed as k  and the yield function is expressed as: 

  F σ, k
AJ
k f

B J Ck σ Dk I
E 1 k I

k f
k f 0  (5.5) 

Under uniaxial compression, the principal stress first reaches the yield surface 

at k f . By replacing the invariants I  and J  with the uniaxial state of stress  k f , E  

can be derived as: 

  E
1

k 1
A
3

B
√3

Dk 1   (5.6) 

The variable I , , which defines the first invariant at the transition zone, is 

directly obtained from the triaxial compression test. The transition zone is defined as a 

point in which the post peak behavior changes from softening to perfectly plastic. Once 

the first invariant reaches I , , the softening response is eliminated and HPFRCC 

behaves as a perfectly plastic material. 
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The remaining compression parameters are the effective plastic strains 

ε , , ε , , and ε ,  and the slope of the exponential softening parameter (s). These 

parameters are directly obtained by fitting the stress-strain response with the observed 

response under uniaxial compression and are shown in Table 5.2 as a function of fiber 

type and volume fraction. 

5.1.2 Materials Parameters for Tensile Yield Function 

Only the tensile strength and the ratio between equal biaxial to uniaxial tensions 

are needed for the tension yield function. The hardening parameter k , the effective 

plastic strains ε , , ε , , and ε , , and the softening slope (s) are obtained by fitting with 

the uniaxial test result (Figure 4.13). The initial hardening parameter k  is shared with 

the compressive yield function and takes the same value. The tension material parameters 

are given in Table 5.3 as a function of type of fiber and volume fraction. 

5.1.3 Mesh Size Dependency in Softening Response 

 To eliminate the mesh size dependency associated with softening behavior, the 

material parameters related to the softening slope under both compression and tension are 

modified to account for this effect. The diagonal length of the element is selected to 

represent mesh size. To determine the sensitivity of the softening responses to mesh size, 

two simulations, i.e. uniaxial compression cylinder and dog-bone tensile specimen, are 

simulated. Under compression, a cylinder with the same dimensions used in the testing in 

Chapter 3 is simulated. Three different sizes of elements are used ranging from 0.25, 0.5, 

and 1 in. From the simulated results, it turns out that the mesh size has little effect on the 

compressive softening slope (Figure 5.1). Therefore, the parameter ω controlling the 
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compressive softening parameter is defined as a constant for each type and volume 

content of fibers. Under tension, the dog-bone specimen is simulated where the same 

element sizes used in the compression simulations are used as well. The simulations show 

that the tensile softening slope does depend on the size of the element as shown in Figure 

5.2. From the trend lines in both fibers, the softening parameter is directly proportional to 

the element size.  Hence, the tensile softening slope ‘s’ given in Table 5.3 is expressed in 

term of diagonal length of the element. 

  

5.2 Implementation and Simulation in LS-DYNA 

5.2.1 Implementation 

The proposed model is implemented in LS-DYNA as a user-defined material 

subroutine called UMAT. Within the subroutine, the user-defined model is compiled with 

INTEL-FORTRAN and linked to the LS-DYNA executable file as a static library as 

shown in Figure 5.3 (Moraes & Nicholson, 2001). The user-defined subroutine is called 

at every time step for each integration point. Users need to know priori what input 

parameters are required and transferred from the main program to the UMAT subroutine 

because some static libraries are not available from LS-DYNA. If that is the case, users 

need to write their own additional static library. By default, the given inputs from the 

main program are the incremental strain  , the previous state of stresses  and 

strains  , and the history variables. The outputs from UMAT are the current material 

state, e.g. state of stresses  , strains  and history variables, which are needed for 

the next increment. In the current version (LS-DYNA 971), LS-DYNA allows user to 

write up to ten subroutines simultaneously and up to 48 history variables for each 
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UMAT. Since LS-DYNA is written in FORTRAN, user-defined subroutines require a 

FORTRAN compiler running on the users’ machine.   

5.2.2 Material Model for Reinforcing Bars 

In all simulations given in section 5.5, a bar reinforcement is modeled by using the 

J  plasticity model (MAT 24) in LS-DYNA. The yield function of this model is 

expressed as follows (Hallquist, 2007): 

  F , σY J
σY
3

0  (5.7) 

where J  is the second invariant of the deviatoric stresses and σY is the yield strength, 

which is defined as 

  σY β σ f ε   (5.8) 

From Eq. (5.8), the yield strength is related to three parameters, i.e. the strain rate 

factor  β , the initial yield strength  σ , and the hardening function f ε . Since the 

simulation is under static loading condition, β is set to one. The hardening function is 

expressed in term of the effective plastic strain ε , which is defined as: 

  ε
2
3

: dt  (5.9) 

where  is the plastic strain tensor. Example of the tabular form f ε  for the 

reinforcement is given in Table 5.4.  

5.2.3 Contact Algorithm 

The CONTACT_AUTOMATIC_SINGLE_SURFACE algorithm is used to 

prevent inter-penetration between parts in this study. The algorithm employs the penalty 

method in which slave and master surfaces are automatically defined within the code. 

When the slave node penetrates the master surface, the code automatically detects and 
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calculates the required force to push the slave nodes back to the master surface. This 

required force is determined from fictitious spring stiffness and the penetration 

displacement (Figure 5.4). The stiffness of the fictitious spring is calculated from the bulk 

modulus, contact area, and volume of the elements on the master surface. Further details 

regarding to this contact algorithm can be found in Hallquist (2007). A static coefficient 

of friction between all solid parts is assumed to be 0.3. 

5.2.4 Element Formulations 

To avoid hour-glassing during simulation, a full quadrature is used for an 8-node 

solid element (Figure 5.5a). The Hughes-Liu beam element formulation with 2 2 Gauss 

quadrature integration is used to model reinforcements. This beam element formulation is 

selected because it is based on a degenerated brick element formulation (Tavarez, 2001). 

Hence, it is compatible with the solid elements used elsewhere. The beam element 

contains six degree of freedoms in both translation and rotation. The orientation of the 

beam element is defined as shown in Figure 5.5b. The main geometry input parameter of 

this element is the nominal diameter of the rebar, not the radius as specified in the manual 

(Hallquist, 2007).   

 

5.3 Single Element Exercises 

The first exercise to ensure that the proposed model works is to exercise a single 

three-dimensional solid element subjected to various loading conditions, i.e. uniaxial, 

biaxial, triaxial, and shear loading combinations as shown in Figure 5.6. In all loading 

combinations except shear, the load case is further divided into compression and tension. 
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A fully integrated solid element with the dimension of 1 in.  1 in.  1 in. is used where 

a prescribed displacement is specified at nodal points depending on loading conditions.  

In the uniaxial loading cases, the prescribed displacements are equally applied at 

nodes on two faces opposite to each other in the opposite direction. The computed stress-

strain responses under compression and tension are plotted in Figure 5.7a. In the equal 

biaxial case, the prescribed displacement is now applied at four faces in the same plane in 

the opposite direction. The biaxial stress-strain responses under compression and tension 

are plotted in Figure 5.7b. Notice that strength enhancement occurs under equal biaxial 

compression due to the increase in pressure. On the contrary, strength reduction occurs 

under equal biaxial tension. This is to be expected since the strength ratio α in the tension 

yield function is defined to be 0.5.  

In the triaxial case, two different confining pressures are applied to demonstrate the 

effect of confining pressure on the strength and ductility response under both 

compression and tension. The confining pressure is first applied at the four horizontal 

faces. Once the confining pressure reaches the specified level, it is kept constant and the 

prescribed displacement in the vertical direction (z-axis) is applied next. Under 

compression, the two confining pressure levels are 5 and 10 MPa (Figure 5.7c). 

Obviously, increasing the confining pressure improves both strength and ductility. Under 

tension, the two confining pressure levels are 1 and -1 MPa. It should be noted that the 

sign convention of confining pressure is positive under compression and negative under 

tension. Two things can be pointed out from the stress-strain responses. First, the strength 

and its corresponding strain are dependent upon the confining pressure. As shown in 

Figure 4.12, decreasing the confining pressure (or increasing I ) will reduce the 
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corresponding J  on the yield surface and thus, the strength will also be reduced. 

Second, the residual strength under tension is usually set to zero. However, for the 

confining pressure of -1 MPa case, the triaxial tension state of stress is reached (all 

principal stresses are at 1 MPa) before the softening variables reach zero. At this 

particular point, the triaxial tension algorithm is triggered and the state of stress is kept 

constant. In the shear case, the shear strength is a direct result from combining the 

compression and tension yield surfaces together. This loading case should not be 

confused with the pure shear force case since the simulation is performed under 

displacement controlled. The normal stresses are not zero in this case.  

 

5.4 Simulations of Uniaxial Compression and Uniaxial Tension Tests 

In this exercise, two simulations with the same dimension as used in the 

experiments are performed to see if the material model can capture the observed overall 

responses. In the first simulation, a 3 in  6 in cylinder is compressed by two steel plates. 

Fully integrated solid elements are used as shown in Figure 5.8. A linearly elastic 

isotropic material model with the properties of steel is used for steel plates. Two 

boundary conditions are enforced at the end nodes of the steel plates. A fully fixed 

boundary condition is enforced at the bottom nodes whereas the prescribed displacements 

are enforced at the top nodes. 

Figure 5.8 illustrates the contour lines of both hardening and softening parameters 

under various loading stages. Since the friction between specimen and both steel plates 

inhibits the expansion on the top and bottom of the specimen, the hardening parameter 

first reaches unity in the middle portion of the specimen. After the peak, softening starts 
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to take place as the deformation kept increasing. Figure 5.8c and Figure 5.8d show the 

contour lines of the Cosine softening parameter (r) and exponential softening parameter 

(s), respectively. Notice that the parameter ‘r’ softens faster than the parameter ‘s’. This 

is due to the fact that the development of ‘r’ takes place right after ‘k’ reaches unity but 

the development of ‘s’ takes place much later (at ε ,  ).  

In the second simulation, the dog-bone shape specimen with same dimensions as 

given in Figure 3.3 is simulated. To duplicate the real boundary conditions used in the 

test, four cylindrical steel supports are also included in the simulation. Figure 5.9 shows 

the contour lines of the hardening and softening parameters at various loading stages. In 

the hardening stage, the stress is concentrated at the middle portion of the specimen. 

However, in the softening stage, the stress is concentrated at one particular area and this 

causes the localization at the end of the simulation.  

 

5.5 Validation using Structural Tests 

Several validation exercises are presented in this section to show that the developed 

formulation is applicable to a wide range of loading conditions. 

5.5.1 Two-Span Continuous Beam 

5.5.1.1 Experiments 

Chandrangsu (2003) proposed a bridge deck system using HPFRCC to replace the 

negative reinforcements. According to AASHTO (2000), reinforcements in the bridge 

deck must be provided in both top and bottom layers. However, in this proposed system, 

the negative reinforcement, which was required for temperature and shrinkage controls, 
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was entirely eliminated and replaced with HPFRCC. Only the positive reinforcement, 

which was used to resist bending moment, was provided. To evaluate the performance of 

this system, one strip of the bridge deck, which was equivalent to two-span continuous 

beam, was tested under monotonic loading (Figure 5.10a). 

• Experimental Setup 

A two-span continuous beam with dimensions of 4 in  7 in  10.5 ft subjected 

to monotonic loading was tested as shown in Figure 5.10b.  The beam rested on three 

supports was subjected to prescribed displacements applied through two loading platens. 

Two exterior supports were placed on each side 3 in from the edge and one interior 

support was placed at the mid-span. Each loading platen was placed on each span 1.875 ft 

apart from the center of the beam. These two loading platens were attached to a hydraulic 

Instron machine, which was used to apply the prescribed displacement. Two LVDTs 

were placed under the beam at each loading point to measure the deflection at each span. 

• Materials 

The beam was constructed with HPFRCC with 1.5% Spectra fiber and a No.3 

rebar was placed at 2.5 in from the bottom fiber. The material compositions by weight of 

HPFRCC were 1-cement: 1-sand: 0.15-fly ash: 0.4-water. The experimentally obtained 

uniaxial stress-strain curves of HPFRCC along with the simulated results are shown in 

Figure 5.11. For the compressive response, the strain at maximum stress given in the 

literature is three times higher than that given in Chapter 3 because the strain in the 

literature was obtained from the machine displacement, which always gave higher value 

than LVDT deformation. From the direct tension tests, the stress-strain responses showed 

the size dependent effect. The upper bound curve denoted as (H) was obtained from the 
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small dog-bone size whereas the lower bound curve denoted as (L) was obtained from the 

large specimen. Further discussion regarding the specimen size and the size effect can be 

found in Chandrangsu (2003). No.3 rebar had the Young’s modulus of 29,000 ksi and the 

yield strength of 60 ksi. The ultimate strength was 105 ksi with the corresponding plastic 

strain of 4.2%. 

5.5.1.2 Finite Element Model 

• Mesh Description 

The three-dimensional finite element beam consists of beam elements to represent 

the No. 3 rebar and solid elements to represent HPFRCC matrix and fixtures. Figure 

5.12a shows the finite element mesh with the boundary supports and the loading fixtures. 

The beam rests on half cylindrical shaped supports and is pushed down by two half 

cylindrical shaped fixtures (Figure 5.12b). Since full bond between the rebar and the 

matrix is assumed, the size of the solid element is dictated by the location of the rebar. 

Hence, the solid elements are split along the height into two sections based on the clear 

cover. The first section extends from the top fiber to the rebar and is meshed with 8 

elements along the height. The second section extends from the rebar to the bottom fiber 

and is meshed with 4 elements along the height. Both sections are meshed with 8 

elements across the width (Figure 5.12c). Along the length of the beam, both 

reinforcement and matrix is meshed with 200 elements. Hence, this beam consists of 

19200 solid elements and 200 beam elements. The smallest mesh size of solid element is 

0.63 in  0.63 in  0.47 in. Hence, the diagonal length of the smallest element, which is 

1 in, will be used for obtaining the tensile softening parameter‘s’ in Table 5.3. 
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The fixed boundary conditions were applied by fixing all the bottom nodal 

displacements of the supports whereas the top nodes of the loading platens were fixed all 

horizontal movements. In addition, the top nodes were enforced with the prescribed 

vertical displacement as shown in Figure 5.13.    

• Material Models 

Three material models are used in this simulation corresponding to three main 

components. The modified HTC model for HPFRCC proposed in Chapter 4 is used for 

the matrix component of the beam. The material parameters are directly obtained from 

Table 5.2 and Table 5.3 where the tensile softening parameter is obtained based on the 

diagonal element length of 1 in. To provide a more objective comparison, the model in 

Chapter 4 is recalibrated to uniaxial test data in Chandrangsu (2003). In other words, the 

simulations in this exercise are performed based on two material parameter sets: (1) One 

based on a direct calibration to test data in Chandrangsu (2003); and (2) Material 

parameters directly obtained from Table 5.2 and Table 5.3 without any modifications. 

A J  plasticity model (MAT24 in LS-DYNA) is used for the reinforcement where 

the initial yield strength of No.3 rebar is 60 ksi and the tabular form f ε  is given in 

Table 5.4.  Notice that once the stress reaches the ultimate strength, the perfectly plastic 

condition is applied. A linearly isotropic elastic model (MAT 1 in LS-DYNA) is used for 

supports and loading fixtures where the elastic properties are the same as used in the 

rebars.   

5.5.1.3 Results and Discussions 

Figure 5.14 shows the contour plots of the hardening and softening parameter (k 

and r, respectively) at various stages.  At the beginning, the hardening parameter is at the 
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initial value (Figure 5.14a). As the prescribed displacement increases, the hardening 

variable starts to propagate not only from the contact areas at the supports and at loading 

platens, but also from the negative and positive moment sections (Figure 5.14b). Once the 

hardening parameter reaches unity, softening starts to take over and propagates from the 

extreme fiber of the beam in both positive and negative moment sections (Figure 5.14c). 

It should be noted that the hardening parameter in the compression side reaching one 

does not represent crushing of the HPFRCC. Crushing occurs when the softening 

parameter reaches zero. However, the hardening parameter in the tension side reaching 

one does represent the localization due to formation of a major crack.  

The load vs. deflection in span under the point load is shown in Figure 5.15. In the 

first case in which material parameters are recalibrated on test results provided in the 

literature, both simulation results give similar trend as the experimental results but the 

response of the beam with the lower bound tensile capacity (L) is closer to the test results 

than with upper bound tensile capacity (H).  The notations (L) and (H) indicate the two 

different tensile curves of HPFRCC used in the simulations. In the second case where 

material parameters are obtained from Table 5.2 and Table 5.3, the simulation result also 

gives similar trend as in the first case. Although the compressive Young’s modulus in the 

first case is lower than the second case, the load-deflection responses are similar in both 

cases. Because the beam is designed as under-reinforced, the tensile response of 

HPFRCC matrix governs the overall behavior of the beam. The comparison of deformed 

shape at the final stage between test and simulation is shown in Figure 5.16. At this stage, 

major cracks in the testing beam occurred at three locations: at the top fiber of the mid-
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span, at the bottom fiber of the left and the right loading platens. The simulation results 

match these three locations.  

5.5.2 Punching Shear Slab 

5.5.2.1 Experiments 

A HPFRCC slab subjected to concentrated load was tested as a part of the 

proposed bridge deck system described in the previous section (Likhitruangsilp, 2006). 

The deck configuration for the punching tests is the same as given in the previous section 

(Figure 5.10a). Two different reinforcement layouts, i.e. no reinforcement (0T-0L), one 

layer of reinforcement (1T-1L), are considered in this test. For specimens with 

reinforcements, rebars are aligned in both directions perpendicular to each other (Figure 

5.17).  

• Experimental Setup 

As shown in Figure 5.18, a square slab with dimensions 31 in  31 in  7 in was 

tested under a concentrated load placed at the center of the slab. The slab rested on a steel 

frame, which was intended to simulate as simply supported conditions. The dimension of 

this frame was 32 in  32 in with an opening in the transverse direction of 6 in at the 

middle. The width of this frame was 2 in. A square 4  4 in  steel plate placing at the 

center of the top of the slab was pushed down at a rate of 0.01 in/min. An LVDT was 

placed at the bottom center of the slab to measure the deflection.   

• Materials 

The slab was constructed using HPFRCC with 1.75% volume fraction of 1.5-in 

Spectra fibers. The mixture proportions by weight of this matrix were 1-cement: 2-sand: 

1-aggregate: 0.5-water. The compressive strength was 6.5 ksi. Figure 5.20 shows the 
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uniaxial stress-strain response of HPFRCC. For reinforcements, No. 3 steel rebars with 

the Young’s modulus of 29,000 ksi and the yield strength of 60 ksi were placed in both 

transverse and longitudinal directions at the spacing of 4 in. center-to-center. As stated 

earlier, there are three configurations of steel layout considered in this test. With one 

layer of reinforcement, the clear cover from the bottom of the slab was 2-5/16 in. The 

layout of reinforcement is shown in Figure 5.17.  

5.5.2.2 Finite Element Model 

• Mesh Description 

As shown in Figure 5.19a, the punching shear slab model consists of beam and 

solid elements. For one layer of reinforcement case, the Hugh-Liu beam elements are 

used to represent the No. 3 reinforcements whereas the fully integrated solid elements are 

used to represent the HFPFRCC matrix, the steel frame, and the loading plate. Full bond 

between matrix and reinforcement is assumed as in the previous simulation and thus, the 

size of the solid element is selected to be 1 in  1 in  1 in. To simplify the meshing 

process, the centroid of the rebars is moved up to 2 in measured from the bottom fiber. 

Hence, the slab model consists of 6727 solid elements and 620 beam elements. 

In terms of boundary conditions, the bottom nodes of the steel frame are imposed 

with a fixed boundary condition. The top nodes of the steel plate are pushed down with 

the prescribed displacement and prevented from moving horizontally. The 

CONTACT_AUTOMATIC_SINGLE_SURFACE algorithm was used to provide the 

contact between the slab, the steel frame, and the loading plate (Figure 5.19). 
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• Material Models 

The same material models used in the two-span continuous beam simulations are 

used here. The material properties of the modified HTC model are obtained from Table 

5.2 and Table 5.3. Since there is no existing data for 1.75% Spectra fibers, the material 

parameters used in this simulation are based on the response of HPFRCC with 1.5% 

Spectra fibers. A minor re-calibration of the material parameters is performed to fit with 

the uniaxial responses given in the literature (Figure 5.20). For the reinforcement, since 

the literature provides only the yield strength, the steel is assumed here to behave as 

elastic perfectly plastic material. Therefore, the hardening function f ε    was set to be 

independent of the effective plastic strain. For the steel frame and loading plate, the 

material properties are the same as used for the rebars.  

5.5.2.3 Results and Discussions 

The comparisons of load vs. mid-span deflection curves between simulation and 

experiment are shown in Figure 5.21. For the case of 0T-0L, the load-deflection response 

is matched well with the experimental result. This is because the biaxial ratio factor α  

is adjusted to be 0.5. In other words, since the HPFRCC component at the bottom center 

of the slab is mostly subjected to biaxial tensile loading condition, the α ratio dictates the 

maximum loading capacity. Therefore, the α parameter is adjusted until the maximum 

load is fitted with the experimental result. For the case of 1T-1L, the initial slope and the 

peak load of simulated response are matched well with the experiment but the softening 

response of simulation is less ductile than the test results. This may be attributed to the 

fact that the material model for reinforcement is assumed to be perfectly plastic without 

hardening. In term of the shape of failure mode, the final deformed shapes of both 
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simulation and test are illustrated in Figure 5.22. From the test result, the top steel plate 

penetrates into the specimen, which indicates that that top deformation of specimen is 

concentrated around the applied area. This can also be observed from the simulation. For 

the bottom of the slab, the deflection shape of simulation matches well with the test. 

Unfortunately, the crack pattern cannot be captured by this proposed model. 

5.5.3 Structural Wall 

5.5.3.1 Experiments 

Parra-Montesinos et al. (2006) tested the structural wall constructed with 

HPFRCC under displacement reversals. In order to resist large displacement demands 

imposed by earthquake, the structural wall requires a substantial amount of transverse 

reinforcement at the boundary regions for the confinement. However, this would lead to 

difficulty in the construction process due to the congestion of the reinforcement. To ease 

this problem, HPFRCC used to replace concrete in critical section helps to eliminate the 

number of stirrups while not reducing displacement capacity. 

• Experimental Setup 

A structural wall with a span-to-wall ratio of 3.7 was tested under displacement 

reversals. As shown in Figure 5.23, a structural wall with the dimension of 40 in  40 in 

 136 in was subjected to displacement reversals at the top block through a 100-kip 

hydraulic actuator. The dimension of the top block was 16 in  16 in  52 in. The base 

block was 24 in  24 in  72 in and bolted to the strong floor. Lateral support was 

provided at mid-height of the wall to prevent out-of-plane movement. 
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• Materials 

The wall was constructed with two different materials, i.e. normal concrete and 

HPFRCC with 2% volume fraction of 1.5-in long steel hooked fiber (Dramix ZP 305). 

The mixture proportions by weight of the matrix were 1: 0.48: 2: 0.48 (cement: water: 

sand: fly ash). The compressive strengths of concrete and HPFRCC were 7 and 6.5 ksi, 

respectively. The HPFRCC was used for the critical section of the wall whereas the 

normal concrete was used for the rest of the specimen. The critical section was defined as 

the location where the high strain demand occurred. Since the slender wall acted as 

cantilever, the critical section was located at the bottom of the wall. For this particular 

wall, the critical section was covered from the bottom of the wall up to 40 in (Figure 

5.23).  

As shown in Figure 5.24, the main reinforcements were aligned in two identical 

layers. Each layer composed of 3 of No.5 rebars with the spacing of 2.5 in located at the 

end of each side of the wall and 4 of No. 2 rebars with the spacing of 6 in located in the 

middle of the wall. The transverse reinforcements were No. 2 rebars with the spacing of 6 

in. Since the bottom block and the critical section of the wall were constructed with two 

different materials, the cold joint at this section could not be avoided. To strengthen this 

cold joint, No.4 dowel bars were placed at the bottom concrete block and were extended 

14 in into the wall section. The properties of the reinforcements are listed on Table 5.5. 

5.5.3.2 Finite Element Model 

• Mesh Descriptions 

The finite element model of slender wall consists of two different element types, 

i.e. beam and solid elements. As shown in Figure 5.25, the beam element is used to 
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represent main reinforcing steel bars, stirrups, and No. 9 bolts. The solid element is used 

to represent the matrix of the wall, top and bottom concrete blocks, and the steel plate 

that is used to apply the prescribed displacement. Based on given spacing of both main 

reinforcements and stirrups, the size of solid element of HPFRCC section is selected to 

be 2 in  2 in  1 in and that of concrete section of the wall is selected to be 2 in  3 in 

 1 in. The diagonal element length of HPFRCC section is 3 in. Therefore, for the wall 

part, the number of solid elements is 20 across the width  4 through the height  52 

along the height. For top and bottom concrete blocks, to ensure the continuity between 

wall nodes and the top and bottom blocks, the size of solid elements of these blocks is 

dictated by that of the wall. Hence, the smallest element size of these blocks is the same 

size as used in the wall. Since full bond between reinforcement and matrix is assumed, 

the location and mesh size of beam elements are dictated by the size of the solid 

elements. The spacing between two layers of reinforcement is modified from 2.5 in to 2 

in to simplify the meshing process.  

A fixed boundary condition is enforced at the bottom nodes of the bolts. To let the 

top steel plate rotate freely in the z-direction (Figure 5.25), only one single line of nodes 

through the depth is subjected to prescribed horizontal displacement. In addition, the 

boundary condition at this nodal line is prevented from moving in the vertical and out-of-

plane directions. 

• Material Models 

The structural wall specimen is constructed with three material models, namely 

modified HTC model, J  plasticity model, and linearly isotropic elastic model. The 

modified HTC model is used for the main wall section for both HPFRCC and concrete 
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sections. For the HPFRCC section, the material parameters are divided into two sets. 

These two material sets are identical, except those parameters in tension. The material 

parameters for tension of the first set (DYNA1), are obtained by fitting with the tensile 

response given in the literature and the simulated response is shown in Figure 5.26a. For 

the second material set (DYNA2), the material parameters for tension are directly 

obtained from Table 5.3 without any modifications. As can be seen in Figure 5.26b, the 

simulated tensile response in DYNA2 is different from the experimental responses. The 

tensile strength in DYNA2 is four times higher than that in the literature but the overall 

response in DYNA2 is less ductile than in the literature. For compression, since the 

literature only provided the compressive strength, the material parameters for 

compression are obtained from Table 5.2 for 2% hooked fibers. 

For the concrete section, the modified HTC model is reduced to the Drucker-

Prager model by setting material parameters A, C, E  to zero. Other material parameters 

for compression are obtained by using the following well-known formula: 

 
f
f

1 4.1
fCON
f

  (5.10) 

where f  is the axial compressive strength of concrete under confining pressure fCON and 

f  is the uniaxial compressive strength of concrete. The tensile response is assumed to be 

elastic with softening after the peak. The J  plasticity model is used for the 

reinforcements where the material parameters are given in Table 5.5. The input data 

required for defining the hardening function f ε  is the yield stress vs. the plastic 

strain. No reinforcement is provided at the top and bottom blocks because the 

deformation of these blocks are not the main concern in this simulation.  
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The linearly elastic isotropic material model is used for top and bottom concrete 

blocks as well as the top steel plate in which the prescribed displacement is applied. Since 

most deformation takes place at the wall section, the elastic model is sufficient to 

represent these parts. The material properties for both blocks are the same as used in the 

concrete section of the wall. For the top plate, the elastic property of No.9 bolt is applied.  

5.5.3.3 Results and Discussions 

  Figure 5.27 shows the load-drift responses of the structural walls. The envelope 

curves of test results under cyclic loadings both positive and negative sides are plotted 

against the monotonic curve obtained from simulations. The overall trend of both 

simulated results is matched with the test. However, the initial stiffness of DYNA2 is 

much higher than the experimental results and DYNA1. This is due to the fact that the 

tensile response used in DYNA2 simulation is different from thetest result. The 

maximum load in DYNA1 is over-predicted by 20% but the corresponding drift is the 

same as in the test. Figure 5.28 shows the contour lines at various loading stages. The 

softening region starts to propagate from the location where the dowel bars are 

terminated. This location is the same as in the test where the major horizontal crack was 

formed (Figure 5.29). It should be noted that the test was performed under cyclic loading. 

Hence, the major horizontal crack was formed by propagation of two horizontal cracks 

that intersect at the center of the wall. However, the simulation was performed under 

monotonic loading and thus, the tension softening region occurred only on one side.  
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5.5.4 Coupling Beam 

5.5.4.1 Experiments 

HPFRCC coupling beams constructed as a part of the reinforced concrete 

structural wall systems were tested under displacement reversals in Wight et al (2007). 

During a large earthquake, the coupling beams, which are used to connect between two 

walls to form the structural wall system, are subjected to large inelastic deformation. The 

steel reinforcement detailing is required for high energy dissipation and retaining the 

integrity of the beams. However, this stringent detailing requires intensive labor and high 

cost. To reduce the congestion of the rebars, HPFRCC is therefore used to replace the 

steel confinement reinforcement. 

• Experimental Setup 

A coupling beam with the length-to-span ratio of 1.75 was tested under 

displacement reversals. With this aspect ratio, the coupling beam was subjected to not 

only high shear demand, but also flexural deformation under drift of the element. As 

shown Figure 5.30a, the coupling beam was subjected to cyclic displacements at the top 

concrete block through a 100-kip hydraulic actuator. A fixed boundary condition was 

provided by bolting the bottom concrete block to the strong floor. The overall dimensions 

of coupling beam with concrete blocks are given in Figure 5.30a. 

• Materials 

The coupling beam was constructed by using HPFRCC with 1.5% volume 

fraction of hooked fiber. The mixture compositions by weight of this matrix were 1: 

0.875: 2.2: 1.2: 0.8: 0.005: 0.038 (cement: fly ash: sand: aggregate: water: super-

plasticizer: viscosity modified agent (VMA)). The compressive strength of this matrix 
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was 5.5 ksi. The main longitudinal reinforcements were placed into two identical layers. 

As shown in Figure 5.30b, each layer composed of 4 of No.4 rebars with a spacing of 11 

in and 24 in apart from each other. In addition, 2 of No. 3 rebar with the spacing of 7 in 

apart from each other. The main diagonal reinforcements that were placed in the middle 

of the cross-section located between two layers of the main reinforcements composed of 

4 of No.5 rebars with a spacing of 17 in and 21in apart from each other. Since the 

coupling beam and the blocks were constructed with two different materials, to provide 

load transition, all main reinforcements including the diagonal rebars were extended 18 in 

into concrete blocks on both sides. The web stirrups were No.3 rebars with the spacing 

indicated in Figure 5.30. Properties of reinforcements are listed on Table 5.6. 

5.5.4.2 Finite Element Model 

• Mesh Description 

The coupling beam model is composed of solid and beam elements. Solid 

elements are used to represent HPFRCC and concrete matrices, and the steel plate 

whereas beam elements are used to represent steel reinforcing bars, stirrups, and bolts. 

The size of solid elements used in the HPFRCC matrix is dictated by the location of the 

diagonal bars. With the diagonal bar slope of 0.5, the size of HPFRCC solid elements is 1 

in  2 in  1 in. In addition, full bond between concrete blocks and HPFRCC is assumed. 

The element size of concrete blocks along the width and the depth is controlled by 

HPFRCC section at the interface areas.  

Slight changes in geometry were made to make the mesh fit. For example, the 

distance between the two outer diagonal bars is reduced from 20.75 in apart to 20 in. 

However, the inner diagonal bars are moved farther from 17 in to 18 in apart. For the 
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main reinforcements, No. 3 rebars are moved from 7 in. to 8 in. apart from each other. 

Reinforcements in the top and bottom concrete blocks are excluded in this model. 

Two bars are connected from the top concrete block to the strong floor to prevent 

the top block from rotating in the z-direction (Figure 5.31). In addition, 8 nodes of the 

bottom block located at the same location as in the test are enforced with a fixed 

boundary condition to represent contact with the fiber. A single line of nodes of the steel 

plate is pushed horizontally with the prescribed displacement and prevented to move in 

the vertical and out-of-plane directions. 

• Material Models 

The same set of material models as used in slender wall is used in this simulation 

with modification of material parameters. For the modified HTC model, the material 

parameters obtained from Table 5.2 and Table 5.3 for 1.5% hooked fibers are re-

calibrated to fit with the data given in the literature. Figure 5.32 shows the comparison 

between the simulated responses and the test results. For the J  plasticity model, the 

material parameters are obtained from Table 5.6. 

5.5.4.3 Results and Discussions 

Figure 5.33 shows the load vs. drift response of the coupling beam. The envelope 

curves of both positive and negative loading directions are plotted against the response 

obtained from simulation under monotonic loading. The model successfully captured the 

overall trend of the response. The peak load is matched with the experimental result but 

the corresponding drift is over-predicted by 25%. This is due to the fact that the 

displacement reversals are applied in the experiment, which causes the crack to propagate 

from both directions, which in turn reduces the stiffness of the beam. In addition, the 
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softening response in the experiment happens earlier than the simulation due to the same 

reason. Contour lines of the exponential softening parameter reveal that the coupling 

beam starts with the crack on tension on both top and bottom of the coupling beam. 

Figure 5.34 shows the hardening and softening contour lines at the final stage of loading. 

The tension softening propagates at the same location where the major cracks occur in the 

test. 

 

5.6 Conclusion 

This chapter covers the procedure to obtain the material parameters as well as 

verification of the plasticity macro-scale model for HPFRCC given in Chapter 4. The 

material parameters for compression yield function are obtained from three tests, namely 

uniaxial, biaxial, and triaxial compression tests whereas the material parameters for 

tension yield functions are obtained from uniaxial and biaxial tension. The remaining 

parameters are obtained by fitting the simulated response with the uniaxial responses. 

The softening response under compression shows little effect on the element size. 

However, the tensile softening response shows strong dependency on the size of the 

element. To compensate for this effect, the material parameters controlling the slope of 

tensile softening curve are written as a function of diagonal length of the element. Several 

exercises including a two-span continuous beam, a punching shear slab, a slender wall, 

and a coupling beam are conducted to verify the proposed model. The simulations are 

shown to capture the overall responses as well as the failure locations well. 

 

 



 

121 
 

Table 5.1 Steps to obtain material parameters 
Steps to obtain material parameters 

1. The compressive strength f ′ , Young’s modulus E , and Poisson’s ratio ν  are 

obtained from uniaxial stress-strain compressive response.  

2. Based on peak strengths under uniaxial, equal biaxial, and triaxial compressions, 

material parameters A, B, C, and D are obtained by using Eq. (5.4).  

3. The hardening parameter for the compression yield funciton E  is obtained next 

from the initial condition  k (Eq. (5.6)).  

4. The softening parameter for the compression yield function I ,  is directly 

obtained from triaxial compression test. 

5. The effective plastic strains  ε , , ε , , and ε ,  and the slope of exponential 

softening parameter (s) are obtained by curve fitting with the uniaxial 

compressive response. 

6. The tensile strength  f  is obtained from the uniaxial direct tension test. 

7. The ratio between equal biaxial tension-tension and uniaxial tensile strength is 

obtained from biaxial tests. 

8. The effective plastic strains ε , , ε , , and ε ,  and the softening slope  α  is 

obtained by curve fitting with the uniaxial tensile response. 
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Table 5.2 Material parameters of compression yield surface and its potential function 

Parameter* Mortar 
Hooked Spectra 

1.0 % 1.5 % 2.0 % 1.0 % 1.5 % 2.0 % 

f ′  43.25 56.91 60.3 57.23 56.06 53.46 50.47 

E  25463.3 25620.7 25723.4 35228.4 20359.84 25931.6 22024.2 

A 2.8548 2.7212 2.702 2.7464 2.7663 2.7975 2.8174 

B 0.7022 1.3331 1.5908 1.5878 1.7897 1.7449 1.6172 

C 2.6419 1.6452 0.9484 2.1228 1.0053 1.5965 1.0293 

D 0.3570 0.6767 0.8191 0.8322 0.9554 0.9339 0.8728 

E  -0.3570 -0.6767 -0.8191 -0.8322 -0.9554 -0.9399 -0.8728 

I ,  -301.26 -309.89 -318.37 -325.03 -329.51 -332.57 -326.04 

k  0.37 0.37 0.37 0.37 0.37 0.37 0.37 

ε ,  0.001 0.001 0.001 0.0015 0.002 0.001 0.001 

ε ,  0.001 0.001 0.001 0.0015 0.002 0.001 0.001 

ε ,  0.005 0.007 0.008 0.006 0.011 0.008 0.006 

ω 1.0 0.7 0.8 0.4 0.5 0.2 0.2 

IMP 0.70 0.8 0.6 0.8 0.7 0.7 0.9 

a ,COMP 0.63 0.63 0.63 0.63 0.63 0.63 0.63 

η 0.34 0.34 0.34 0.34 0.34 0.34 0.34 

ε ,  -0.005 -0.005 -0.005 -0.005 -0.005 -0.005 -0.005 

Ratio† 1.2‡ 1.42 1.53 1.53 1.62 1.60 1.55 

* Based on 25 25 25  single element and the unit of stress is MPa 
† Ratio between biaxial compression-compression strength to uniaxial compressive 
strength (not the material parameter for yield function) 
‡ Assumed value based on Hussein & Marzouk (2000) 
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Table 5.3 Material parameters of tension yield surface and its potential function 

Parameter Mortar 
Hooked Spectra 

1.0 % 1.5 % 2.0 % 1.0 % 1.5 % 2.0 % 

f  0.818 3.48 4.24 4 3.15 3.24 3.09 

α† 1.0 1 1 1 1 1 1 

k  - 0.7 0.9 0.7 0.9 0.9 0.9 

ε ,  - 0.0005 0.002 0.0005 0.008 0.007 0.003 

ε ,  - 0.0025 0.005 0.004 0.021 0.02 0.015 

ε ,  - 0.018 0.018 0.018 0.035 2.70E-02 
3.50E-

02 

s‡  - 
0.0149d 

+ 0.15 

0.0084d 

+ 0.45 

0.0143d 

+ 0.4 

0.0156d 

+ 0.1 

0.0058d 

+ 0.15 

0.0143d 

+ 0.4 

a ,  - 2 2 2 2 2 2 

* Based on 25 25 25  single element and the unit of stress is MPa 
† Since there is no existing data, the ratio between biaxial tension-tension strength and 
tensile strength is assumed to be 1.0. This assumption is based on the experimental results 
of the normal strength concrete under biaxial loadings (Hussein & Marzouk, 2000). 
‡ d is diagonal length of solid element 
 
 
Table 5.4 Material parameters of No. 3 rebar used in two-span continuous beam 

ε  f ε  

(-) ksi (MPa)

0 60 (414) 

0.04 105 (724)

1.00 105 (724)
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Table 5.5 Properties of structural wall reinforcements 

Steel No. 

Nominal 

diameter 

Yield point Ultimate point 

Stress Strain1 Stress Strain2

in (mm) ksi (MPa) (%) ksi (MPa) (%) 

#2 0.25 (6.35) 62.0 (427.48) 0.214 63.2 (435.75) 0.228 

#4 0.50 (12.70) 92.3 (636.39) 0.318 111.8 (770.84) 1.878 

#5 0.63 (15.88) 85.5 (589.50) 0.295 101.4 (699.13) 1.567 
1 Based on assumed Young’s modulus of 29000 ksi (200 GPa) 
2 Based on assumed tangent modulus of 1250 ksi (8618 MPa) 
 
 
 
Table 5.6 Properties of coupling beam reinforcements 

Steel No. 

Nominal 

diameter 

Young’s 

modulus

Yield point Ultimate  point Failure 

strain Stress Strain Stress Strain 

in 

(mm) 

ksi 

(GPa) 

ksi 

(MPa) 
(%) 

ksi 

(MPa) 
(%) (%) 

#3 
0.375 

(9.525) 

28532 

(196.72)

76.55 

(527.79) 
0.27 

116.3 

(801.86) 
10.23 13.63 

#4 
0.5 

(12.7) 

25035 

(172.61)

72.50 

(499.87) 
0.29 

106.9 

(737.05) 
11.02 17.12 

#5 
0.625 

(15.875) 

23463 

(161.77)

62.55 

(431.27) 
0.29 

98.65 

(680.17) 
10.94 17.29 
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Figure 5.1 Mesh size dependency under compressive softening response (UXC-H1) 
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Figure 5.2Mesh size dependency under tensile softening response 
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Figure 5.3 User-defined material in LS-DYNA (Moraes and Nicholson, 2001) 

 

 

 

Figure 5.4 Penalty method for contact algorithm (Tavarez, 2001) 
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Figure 5.5 Orientation of solid and beam elements used in LS-DYNA (Hallquist, 2007) 
 

 

 

 
Figure 5.6 Single element test under various loading conditions 
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Loading directions 
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confining pressures 
(Unit: MPa)  (Positive P = Compression)  (Negative P = Tension) 

 
(e) Shear 

 
Figure 5.7 Stress-strain responses under various loading conditions 
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Figure 5.8 Contour plots of cylinder specimen at various loading stages 
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Figure 5.9 Contour plots of dog-bone specimen at various loading stages 
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Figure 5.10 Continuous beam test setup (Chandrangsu, 2003) 
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TEST (H): Tensile strength of 0.66 ksi & TEST (L): Tensile strength of 0.53 ksi 
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(a) Material parameters obtained from Chandrangsu (2003) 
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(b) Material parameters obtained from Table 5.2 and Table 5.3 

 
Figure 5.11 Responses of HPFRCC with 1.5% Spectra fiber under uniaxial loadings 
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Figure 5.12 Finite element model of two-span continuous beam  

 
 

 
Figure 5.13 Prescribed displacement at the top nodes of loading fixtures 

Prescribed motion on 
top nodes of fixture 

Loading fixture 

HPFRCC beam 

Contact interface 

Prescribed displacement 

0.63 in. 
(16mm) 

0.47 in. 
(12 mm) 

0.63 in. 
(16mm) 

(d) Dimension of solid element for 
HPFRCC matrix 

60 in. (1524 mm) 60 in. (1524 mm) 

7 in. 

4 in. 
(102 mm) 

(c) Cross-section 

No. 3 rebar 

2.5 in. 
(633.5 mm) 

(178 mm) 

(a) Side view of the model 

x y 

z 

(b) Isometric view for support 

4 in. 
(102 mm) 



 

134 
 

 

 

 
Figure 5.14 Contour plots of the hardening and softening parameters at various loading  

stages (without magnification) 
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(a) Based on material parameters obtained from Chandrangsu (2003) 

 

 
(b) Based on material parameters obtained from Table 5.2 and Table 5.3 

 
Figure 5.15 Comparison of load-deflection curves between test results and simulations 
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Figure 5.16 Deformed shape of continuous beam at the final stage 
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Figure 5.17 Reinforcement details of slab 

 

 
Figure 5.18 Punching shear slab test setup (Likhitruangsilp, 2006) 
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Figure 5.19 Finite element model of punching shear slab 
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Figure 5.20 Responses of HPFRCC with 1.75% Spectra fiber under uniaxial loadings 
 

(a) No Reinforcement (0T-0L) (b) One layer of reinforcement (1T-1L) 

 
Figure 5.21 Comparison of load-deflection at mid span between test and simulation 
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Figure 5.22 Deformed shape of slab at the final stage 
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(b) Experiment (a) Simulation 
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Figure 5.23 Slender wall test setup (Para-Montesinos et al, 2006) 
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Figure 5.24 Reinforcement details of slender wall specimen (Para-Montesinos et al, 

2006) 
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Figure 5.25 Finite element model of slender wall 
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Figure 5.26 Responses of HPFRCC with 2.0 % hooked fiber under uniaxial tension 
 

 

Figure 5.27 Lateral load Vs. drift response of slender wall 
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Figure 5.28 Deformed shape of slender wall at various loading stages 
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Figure 5.29 Deformed shape of the slab after testing 
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Figure 5.30 Coupling beam test setup and reinforcement details 
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Figure 5.31 Finite element model of coupling beam 
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(a) Uniaxial compression 
 

 
(b) Uniaxial tension 

 
Figure 5.32 Responses of HPFRCC with 2% hooked fiber under uniaxial loadings 
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Figure 5.33 Lateral load Vs. drift of coupling beam 

 

 

 
Figure 5.34 Final deformed shape of the coupling beam 
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CHAPTER 6 

SUMMARY, CONCLUSIONS, AND FUTURE RESEARCH 

CHAPTER 6 SUMMARY, CONCLUSIONS, AND FUTURE RESEARCH 

6.1  Summary and Conclusions 

The overall objective of this study is to develop a macro-scale, multi-axial 

constitutive model for High Performance Fiber Reinforced Cementitious Composites 

(HPFRCC).  The developed model focuses on phenomenological behavior at the macro-

scale level and captures responses such as cracking, softening, and hardening. An 

experimental program was conducted in order to gain a better understanding of the 

behavior of HPFRCC under basic loading combinations. Once the behavior of HPFRCC 

was understood from the experimental program, a material model was developed and 

verified in the analytical program of this research. Specifically, a macro-scale constitutive 

model for HPFRCC was developed and calibrated against the experimental results. The 

proposed model was then used to simulate several HPFRCC structural tests to validate its 

predictions.  

6.1.1 Experimental Program 

In the experimental program, two types of fibers, namely Hooked (H) and Spectra 

(S), with three different volume fractions, which are 1%, 1.5%, and 2%, were mixed with 

mortar having 8 ksi compressive strength.Hence, seven combinations including control 
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mortar without fiber were considered in this study. For these seven material 

combinations, three loading paths including uniaxial, biaxial, and triaxial were selected 

for the test program. The following conclusions can be drawn from the test results: 

• Under uniaxial tension, strain hardening behavior accompanied with multiple 

cracking was achieved in all specimens mixed with both types of fibers. Both strength 

and ductility of HPFRCC were generally improved compared with mortar without 

fiber. 

• Inclusion of fibers increased ductility under all compressive loading paths except 

under triaxial compression with high confinement. This indicated that the shape of the 

compressive yield surface mostly depends on the strength of the matrix and not on the 

fiber content. 

• Under uniaxial compression, the inclusion of fibers had little effect on the pre-peak 

response but significant effect on the peak and post-peak responses. Both strength 

enhancement and gradual softening were due to short fibers hindering lateral 

expansion, which in turn increased the confining pressure. Since mortar is a pressure 

dependent material, increasing confining pressure enhances both strength and 

ductility of the material. 

• Under biaxial compression, although the shape of the failure surface of HPFRCC was 

found to be similar to concrete, the strength ratio between equal biaxial and uniaxial 

compressions significantly increased (1.5 and 1.6 for hooked and Spectra, 

respectively) when compared with regular concrete (1.1 and 1.2 for high strength and 

ordinary concrete, respectively). The enhancement was attributed to the fibers, which 
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prevented out-of-plane expansion, which in turn helped to improve the confinement 

and thus increased the compressive capacity. 

• Under triaxial compression, the overall stress-strain response was not influenced by 

either types or volume contents of fibers. This was attributed to the heavy 

confinement provided by the steel tube which over shadowed the effect of fibers.  

6.1.2 Analytical Program 

The main objectives of the analytical program were to develop the material model 

for HPFRCC and to calibrate and verify the material model against actual structural tests 

that involved the use of HPFRCC. The macro-scale plasticity model was developed on 

the basis of the test results conducted in the experimental program. Unlike concrete, 

HPFRCC strain hardens after first cracking and then gradually softens once reaching the 

peak. This unique behavior of HPFRCC makes it a good candidate for a tension plasticity 

model. Due to clear differences in HPFRCC behavior under compression and tension, the 

proposed model was divided into two parts. Under compression, an existing four-

parameter concrete model, which was originated by Hsieh et al. (1979) and later modified 

by Imran and Pantazopoulou (2001), was adjusted in the softening part of the yield 

function to accommodate the difference between mortar and HPFRCC. The inclusion of 

fibers in HPFRCC was evident in the ductility of the descending part of the stress-strain 

response. Under tension, the tensile yield surface was constructed by extending the 

compressive yield surface. In addition, three tensile loading combinations, namely 

uniaxial, biaxial, and triaxial tensions, were used to construct the new yield surface as 

well. The main reason for extending the compressive yield surface to tension is to make 

sure that continuity between compression and tension yield surfaces at every loading state 
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exists. Internal parameters, i.e. hardening and softening parameters, were therefore shared 

by both yield functions to ensure continuity. 

After developing the macro-scale plasticity model, the material parameters were 

calibrated using the test results given in Chapter 3. Then, several exercises, which 

included a two-span continuous beam, punching shear slab, slender wall, and coupling 

beam, were conducted to ensure that the model provides good results compared with test 

data. The procedure to obtain material parameters is: 1) six material parameters for the 

compression yield functions are obtained from uniaxial, biaxial, and triaxial compression 

tests; 2) two parameters for the tension yield functions are obtained from uniaxial and 

biaxial tension tests; 3) the remaining parameters, which control the shape of uniaxial 

compressive and tensile responses, are obtained by curve fitting with the uniaxial 

responses. The two material parameters (ω and γ) that control the slope of the softening 

response under compression and tension are dependent on the size and orientation of the 

elements. To get rid of the mesh dependency, these two parameters were expressed as the 

function of the diagonal length of the element. Comparisons to test results show that 

simulations using the proposed material model can capture the overall responses as well 

as the failure mode and location well. 

In conclusion, a few characteristics of the proposed model can be drawn. First, a 

unique feature of the proposed yield surface for HPFRCC is that it contains a single yield 

surface covered both compression and tension. This will ensure numerical stability when 

crossing between compression and tension occurs. Second, the accumulated effective 

plastic strain  ε  defined as a scalar product of plastic strain tensors is used to measure 

the damage index for controlling the evolution of the plastic surfaces. The main 
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advantage of defining ε  this way is that the material parameters related to ε  at various 

stages can directly be obtained by subtracting the elastic strain from the total strain under 

uniaxial responses. Third, the model can also be used for ordinary concrete by simply 

modifying the material parameters. 

 

6.2 Future Research 

This research has been mainly focused on the development of a macro-scale, 

multi-axial plasticity model for concrete. Some improvements and features can be added 

to increase the capability of the developed models: 

• To reduce a number of material parameters and to simplify the compression yield 

function, two softening parameters can be combined into one parameter. This will 

subsequently reduce the components of the yield function. Instead of using a 

combination of Cosine and Exponential softeni0ng functions, a polynomial function 

can be used. Wang et al. (1978) proposed a second order polynomial function with 

four material constants to model the descending part. This polynomial function was 

constructed from three points, i.e. peak, inflection, and residual points. The inflection 

point located between the peak and residual point is in a way used to control the slope 

of the softening curve. Furthermore, they proposed the same form of polynomial 

function with another set of material parameters for the ascending part. This will help 

to further simplify the expression of both hardening and softening parameters. 

• Instead of separately defining two effective plastic strains in compression and tension, 

the conjugate effective stress, which is tied with a single effective plastic strain, can 

be used (Shaw, 2008). An example of conjugate effective stress is comprised of J  



 

156 
 

and I  terms. The I  is used as the indicator of loading condition since I  is positive 

under tension and negative under compression. This conjugate effective stress is 

expressed as 

  σ
3J cI
1 c

  (6.1) 

where c is the material parameters ranged from 0 to 1 for materials that are weak in 

tension. The uniaxial state of stress, σ  can be rewritten as 

  σ
σ cσ
1 c

σ for tension  (6.2) 

  σ
σ cσ
1 c

1 c
1 c

σ: for compression  (6.3) 

Clearly, σ  under compression is different from tension. The value of ‘c’ is actually the 

strength ratio between compression and tension. 

• This research has been mainly focused on the behavior under monotonic loading. 

However, the model could be extended to simulate behavior under cyclic loading 

with some modifications. These modifications may include the reductions of strength 

and stiffness due to permanent deformations. In contrast to the constant Young’s 

modulus used in this study, the Young’s modulus could be expressed in term of the 

effective plastic strain. Therefore, as permanent deformations accumulate, Young’s 

modulus is reduced and thus, decreases the unloading stiffness.  
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Appendix A Stress-Strain Responses of HPFRCC under Various Loading Conditions 
(Supplement to Chapter 3) 

APPENDIX A 

STRESS-STRAIN RESPONSES OF HPFRCC UNDER VARIOUS LOADING 

CONDITIONS (SUPPLEMENT TO CHAPTER 3) 

A.1 Uniaxial Compression Test 

A.1.1 Uniaxial compression responses of mortar with hooked fiber 

 
(a) UXC-H1 

0

10

20

30

40

50

60

0

1

2

3

4

5

6

7

8

9

0 0.002 0.004 0.006 0.008

St
re

ss
 (M

Pa
)

St
re

ss
 (k

si
)

Strain (-)



 

159 
 

 
 

(b) UXC-H1.5 
 

 
 

(c) UXC-H2 
 

Figure A.1 Uniaxial compression response of mortar with hooked fiber: (a) 1.0% volume 
fraction; (b) 1.5% volume fractions; (c) 2.0% volume fractions 
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A.1.2 Uniaxial compression responses of mortar with Spectra fiber 

 
 

(a)  UXC-S1 
 

 
 

(b) UXC-S1.5 
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(c) UXC-S2 

 
Figure A.2 Uniaxial compression response of mortar with Spectra fiber: (a) 1.0% volume 

fraction; (b) 1.5% volume fractions; (c) 2.0% volume fractions 
 
 

A.1.3 Uniaxial compression responses of mortar  

 
 

Figure A.3 Uniaxial compression response of mortar 
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A.2 Uniaxial Tension Test 

A.2.1 Uniaxial tensile response of mortar with hooked fiber  
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(c) UXT-H2 
 

Figure A.4 Uniaxial tensile response of mortar with hooked fiber: (a) 1.0% volume 
fraction; (b) 1.5% volume fractions; (c) 2.0% volume fractions 

 
 

A.2.1 Uniaxial tensile response of mortar with Spectra fiber 
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(b) UXT-S1.5 
 
 

 
 

(c) UXT-S2 
 

Figure A.5 Uniaxial tensile response of mortar with Spectra fiber: (a) 1.0% volume 
fraction; (b) 1.5% volume fractions; (c) 2.0% volume fractions 
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A.2.1 Uniaxial tensile response of mortar 

 
 

Figure A.6 Uniaxial tensile response of UXT-M 
 

A.3 Triaixial Case 

A.3.1 Triaxial compression under 6 ksi (41 MPa) confining pressure 
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(a) Mortar with hooked fiber 
 

 
 

(b) Mortar with Spectra fiber 

 
 

(c) Mortar 
 

Figure A.7 Stress-strain response under triaxial compression test with confining pressure 
of 6 ksi (41 MPa) 
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(a) Hooked fiber 

 

 
(b) Spectra fiber 
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(c) Mortar 

 
Figure A.8 Volumetric strain versus longitudinal strain responses of HPFRCC under 

confining pressure of 6 ksi (41 MPa): (a) Hooked; (b) Spectra; (c) Mortar 
  
 

A.3.2 Triaxial compression under 6 ksi (41 MPa) confining pressure 
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(b) Spectra fiber 

 
 

(c) Mortar 
 

Figure A.9 Stress-strain response of HPFRCC under triaxial compression test with 
confining pressure of 7.5  ksi (52 MPa) (a) Hooked; (b) Spectra; (c) Mortar 
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(a) Hooked fiber 

 

 
(b) Spectra fiber 
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(c) Mortar 

 
Figure A.10 Volumetric strain versus longitudinal strain responses of HPFRCC under 

confining pressure of 7.5 ksi (52 MPa) (a) Hooked; (b) Spectra; (c) Mortar 
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Appendix B Summary of Classical Plasticity Theory 
APPENDIX B 

SUMMARY OF CLASSICAL PLASTICITY THEORY 

  

The main intention of this section is only to give a brief review of general 

plasticity. A full treatment of plasticity can be found in most standard advanced 

mechanics textbooks, e.g. Chen (1982), Ottosen and Ristinmaa (2005). 

B.1 Geometrical interpretation of stress invariants 

A convenient way to visualize yield functions is to draw them in the Haigh-

Westergaard (H-W) coordinate system because yield surfaces are mostly expressed in 

terms of invariants used as coordinates in this system. In this coordinate system, principal 

stress tensors, which are expressed as the axis in the Cartesian coordinate systems, are 

modified into three stress invariant components. These invariants are values of stress 

tensors that do not depend on the reference coordinate systems and can be derived from 

the characteristic equation: 

  | σδ| σ σδ σ I σ I σ I 0  (B.1)  

where 

  I tr σ                    1 Invariant  (B.2.1)

  I
1
2
tr tr

1
2
σ σ σ σ 2 Invariant  (B.2.2)

  I det
1
6
ε ε σ σ σ 3 Invariant  (B.2.3)
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The deviatoric stress components, which are the components of stress that 

deviates from the hydrostatic axis, also have a characteristic equation, and again the 

coefficients are called invariants of the deviatoric stress tensors: 

  | σ | S Sσ S J S J S J 0  (B.3)  

where 

  J tr S 0            1 Invariant  (B.4.1)

  J
1
2
tr tr

1
2
S S S S

1
2
S S 2 Invariant  (B.4.2)

  J det
1
3
S S S    3 Invariant  (B.4.3)

Consider an arbitrary stress component P  σ , σ , σ  located at the cone shaped 

yield surface represented by dotted lines in Figure B.1a. The stress components at point P 

is decomposed into two terms: a hydrostatic term   ξ, ON  and a deviatoric term  ρ, NP .  

These two terms are considered in two separate planes in this coordinate system. The first 

plane known as the deviatoric or π-plane is the plane perpendicular to the hydrostatic 

axis. The hydrostatic axis represents the line where σ σ σ  and is denoted as n  in 

Figure B.1a. The projections of the σ -, σ -, and σ -axes on the deviatoric plane are 

shown in Figure B.1b. At this plane, the deviatoric component is further decomposed into 

ρ and θ. The first subcomponent ρ is the magnitude of the deviatoric stress normal to the 

hydrostatic axis whereas the second subcomponent θ represents the loading condition of 

the current state of stress. The angle θ is always measured from π/6 departed from 

principal stress axis. The second plane is the meridian plane, which the plane 

perpendicular to the deviatoric plane. As shown in Figure B.1c, the horizontal and 
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vertical axes of this plane are the hydrostatic component ξ and the deviatoric 

component ρ, respectively. 

Mathematically, the position of arbitrary stress P in the principle stress coordinate 

systems   σ , σ , σ  can be replaced with the Haigh-Westergaard coordinate systems 

  ξ, ρ, θ  as:  

  ξ
I
√3

; ρ 2J ; θ
1
3
sin

3√3
2

J
J /   (B.5)  

From Eq. (B.5), two unique properties of the Haigh-Westergaard components can 

be perceived. First, the component ρ is a positive definite value because the product of 

square root always gives a positive number. Second, the Lode angle θ, which is the 

product of the Arcsine function divided by three, has symmetrical properties in the 

deviatoric plane. This implies that any yield surfaces drawn in the deviatoric plane can be 

completely characterized within  π/6 θ π/6  and the remaining sectors of the yield 

surface are repeated. Within the range of π/6 to π/6, there are three meridian planes of 

interest when deriving the yield surfaces. They are the tensile meridian  θ π/6 , the 

compressive meridian  θ π/6 , and the shear meridian  θ 0 . 

B.2 Drucker’s postulates and their consequences 

Drucker (1950) showed that if the two conditions described below hold for a 

given mentioning, then the material is said to be stable. A stable material, in this context, 

is any material that always produces positive work when an external agency is inserted 

into the system (Shaw, 2004). The first condition states that with any given stress 

increment, the incremental strain must always generate positive work. Further, since the 

work increment is composed of elastic and inelastic parts and the elastic part is positive 
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definite, it is sufficient to say that inelastic work is also positive definite. The first 

condition can be mathematically written as: 

  Δσ Δε Δσ Δε Δε 0 or Δσ Δε 0  (B.6)  

Drucker’s second condition applies when the material experiences cyclic loading. 

Two cases of uniaxial cyclic loadings are shown in Figure B.2. In the first case, the load 

starts from zero up to σ at point B followed by unloading to σ* or point A. In the second 

case, again the load starts from zero but does not unload at point B. The material is 

further loaded for Δσ up to point C followed by unloading to σ* at point D. The 

difference in strain between these two cases represents a permanent deformation or the 

plastic strain. It should be noted that this plastic strain is unrecoverable. To guarantee that 

a material is stable under cyclic loading, Drucker’s second condition requires the shaded 

area ABCD to be greater than zero. Mathematically, the second condition can be 

expressed as: 

  σ σ Δε
1
2
ΔσΔε 0  (B.7)  

One special case for the second condition is a case in which σ is equal to σ*, then 

the first condition is recovered. In other words, if the stress σ is equal to σ , then the  first 

term of Eq. (B.7) becomes zero and Eq. (B.6) is recovered. 

The Drucker’s postulates are not applicable for softening materials because the 

slope of stress-strain curve is negative. In other words, with an increase in incremental 

strain, the corresponding incremental stress decreases. Therefore, the work increment for 

softening material will be negative.  
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The three consequences from Drucker’s postulates (Shaw, 2004) can be described 

as follows: (1) the incremental plastic strain is normal to the current yield surface (Figure 

B.3a); (2) the yield surface must be convex (Figure B.3b); (3) incremental stress and the 

incremental plastic strain have a linear relationship.  

B.3 Consistency condition and consistency parameter 

The consistency condition states that any given set of stress tensors is said to be 

admissible if and only if those stress tensors are either inside or at the yield surface. In 

Figure B.4, the admissible domains in both one- and two-dimensional cases are shown in 

the shaded area. If the state of stress falls inside these shaded areas, then the stress tensors 

are admissible. This condition can also be mathematically written as: 

  F , 0  (B.8)  

where  represent the current state of stress tensors and q represent the internal 

parameters that are used to indicate the size of the admissible domain.  

From Eq. (B.8), there are two possible scenarios for the admissible stress tensors. 

The first scenario is the circumstance when the state of stress falls inside the admissible 

domain and the yield function F is less than zero. The second scenario is the case when 

the state of stress is at the boundary of the admissible domain and the yield function F is 

equal to zero. The admissible domain can be defined as: 

  E , S R |F , 0 int E ∂E   (B.9)  

where E  represents the admissible domain, the union int E  and ∂E , which can be 

defined as   

  ∂E , S R |F , 0             : Boundary of Eσ  (B.10.1)  
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  int E , S R |F , 0       : Interior of Eσ  (B.10.2)  

where R  is the real number in m-dimensional space. Focusing on the second case, 

where the current state of stress is on the current yield surface, the subsequent state of 

stress must also satisfy the consistency condition. 

  F , F , ΔF , 0  (B.11)  

 where the superscript (i) represents the current state and (i+1) represents the next state. 

Since the current state of stress is at the boundary, the current yield function is zero. 

Thus, the increment of the yield function must be less than or equal to zero and so Eq. 

(B.11) can be replaced as follows: 

  ΔF , 0  (B.12)  

In Eq. (B.12), two possible outcomes can occur with a given set of incremental strains. 

The first occurs when the given incremental strains are under unloading condition; in this 

case the incremental yield function (ΔF) will be less than zero. The second occurs when 

the given incremental strains are under loading condition; the incremental yield function 

(ΔF) will be zero. As a consequence, by using Taylor’s expansion up to the first order, the 

incremental form of the yield function can be expressed as: 

  ΔF ,
∂F
∂

:
∂F
∂

· Δ 0  (B.13)  

Furthermore, since the first outcome represents the unloading case, the next 

incremental stress tensors will be in the elastic region. Hence, the plastic component of 

the given incremental strain will be zero. However, the plastic component for the second 

outcome is not equal to zero. In other words, the increment of total strains for the second 
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outcome is now composed of two components, i.e. the elastic and the plastic parts, and it 

can be mathematically expressed as: 

    (B.14)  

where the elastic component  is reversible and is the only component that is used to 

calculate the stress tensors. In contrast, the plastic component  represents permanent 

deformations that occur due to, for example, collapsing of air voids or the crushing of 

particles inside concrete when a compressive load is applied.  

Since only the elastic strain components are used to calculate the stress tensors, 

the stress-strain relationship can be written as: 

  :   (B.15)  

To write in an expression of incremental plastic strains, Eq. (4.14) is substituted 

into Eq. (B.15). The incremental stress tensors become 

  :   (B.16)  

where C is the forth-order stiffness tensor and subscripts ‘e’ and ‘p’ represent the elastic 

and the plastic components, respectively. Depending on the types of material, the elastic 

stiffness tensor C can have from 2 up to 21 independent variables. Since HPFRCC is 

homogeneous, the elastic behavior of HPFRCCs can be assumed to be linearly isotropic. 

Thus, only two independent variables are needed for the elastic stiffness matrix C: 

  C
E

1 ν
1
2

δ δ δ δ
ν

1 2ν
δ δ   (B.17)  

where E and ν represent Young’s modulus and Poisson’s ratio, respectively. Substituting 

the incremental stress tensors from Eq. (B.16) into Eq. (B.13), the incremental yield 

function can be rewritten as: 
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  ΔF
∂F
∂

: :
∂F
∂

· 0  (B.18)  

The two unknowns in Eq. (B.18) are the incremental plastic strain tensors ( ) 

and the increment of internal variables ( ). These two unknowns are defined as: 

  γ
∂G
∂

& γ M h   (B.19)  

where the parameter γ  is the consistency parameter that indicates the magnitude of the 

incremental plastic strains.  The parameter G represents the potential function that defines 

the plastic flow direction. The selection of the potential function G depends on the type of 

flow rules. If the associative flow rule is selected, the potential function is defined to be 

the same as the yield function (G F . However, if the non-associative flow rule is used, 

the potential function is defined differently from the yield function (G F). In the latter 

case, the plastic flow direction is not normal to the current yield surface. The incremental 

of the internal parameters   is defined as a function of ‘h’ (M( ) stands for Function). 

Some examples of ‘h’ are typically defined as: 

 
h

∂G
∂

:
∂G
∂

       for the effective plastic strain ε  

(B.20.1)  

  h :
∂G
∂

             for the inelastic work W  
(B.20.2)  

Substituting the plastic incremental strains and the internal variables  from 

Eq. (B.19) into Eq. (B.18), the consistency equation can be rewritten as: 

  ΔF
∂F
∂

: : γ
∂G
∂

∂F
∂

· M h 0  (B.21)  
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By manipulating Eq. (B.21) to isolate the consistency parameter γ , the final 

equation becomes: 

  γ
∂F
∂ : :

∂F
∂ : : ∂G∂

∂F
∂ · M h

  (B.22)  

Once the consistency parameter is determined, the incremental plastic strains 

( ) and the increment of internal variables ( ) can be obtained from Eq. (B.19). Then 

the corresponding incremental stress tensors are determined from Eq. (B.16). Finally, the 

state of stress and the internal variables are updated. 

B.4 Integration of constitutive equations 

The main unknown in the plasticity model is the plastic component for a given set 

of incremental strains. Once the plastic component is determined, the elastic component 

can then be calculated by subtracting the plastic part from the total strain and the 

corresponding state of stress and the internal variables can finally be updated. From the 

definition of the incremental plastic strains, the incremental plastic strains are composed 

of two components, i.e. the consistency parameter  γ  and the plastic flow 

direction  G . To calculate these components, first the plastic flow direction is defined 

and the corresponding consistency parameter is determined from the consistency 

condition. Depending on the calculation method, the plastic flow direction is defined 

from the variables of two different states, i.e. current  , ε ,  or next  , ε ,  

state. For the current state, the plastic flow direction can be directly calculated from the 

given parameters. On the other hand, if the next state is involved in the calculation, trial-

error iteration is required to calculate the plastic flow direction. To generalize the 



 

181 
 

incremental plastic strain, Ortiz and Popov (1985) proposed the generalized mid-point 

rule in which the plastic flow direction can be obtained from a middle point between the 

current and the next state (Figure B.5): 

  γ
∂G
∂

  (B.23)  

where  

  G G 1 α σ ασ , 1 α ε , αε ,   (B.24)  

The parameter α is used to identify the location where the plastic flow is 

calculated. If the parameter α is equal to zero, the plastic flow is directly calculated from 

the current state of stress and the calculation method is said to be explicit. On the other 

hand, if the parameter α is greater than zero, the plastic flow direction is located between 

the current and the next states. Since the parameters in the next state remain unknown 

during the calculation, iteration is needed. Hence, the calculation method is said to be 

implicit. For the special case where the parameter α is one, the plastic flow direction is 

located at the next state. Once the location of the plastic flow direction is known, the 

consistency parameter is obtained from the consistency condition, which states that for 

any admissible state of stress, the corresponding yield function must be less than or equal 

to zero. For the case where the current state of stress is on the current yield surface  F

0 , the next loading incremental stress must give a zero incremental yield 

function ΔF 0  since the subsequent yield function is zero  F 0 .  

Both integration methods were implemented in this work, i.e. explicit and 

implicit. For the former  α 0 , the incremental form of the yield function is used to 

derive the consistency parameter. Since the yield function depends on two unknown 
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parameters, i.e. stress tensors  and the internal variables  ε , by applying the chain 

rule, the incremental yield function can be rewritten as: 

  ΔF , ε
∂F
∂

:
∂F
∂ε

· Δε   (B.25)  

From the definition of the incremental stress and the effective plastic strain Δε  

given earlier, the incremental yield function can be expanded in terms of the plastic 

strains: 

  ΔF , ε
∂F
∂

: :
∂F
∂ε

· √ :   (B.26)  

For the explicit scheme where the plastic flow direction  G  is obtained from the 

current state of stress, the consistency condition becomes 

  ΔF σ, ε
∂F
∂

: : γ
∂G
∂

∂G
∂ε

· γ
∂G
∂

:
∂G
∂

0  (B.27)  

By rearranging above equation, the consistency parameter can be derived as a 

function of the current state: 

  γ
∂F
∂ : :

∂F
∂ : : ∂G∂

∂F
∂ε

∂G
∂ : ∂G∂

  (B.28)  

It should be noted that since the consistency parameter for the explicit approach is 

solely based on the current state of stress, the stability or the accuracy of this method 

depends on a given set of incremental strains  . Table B.1 summarizes the calculation 

steps for the explicit approach. 
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For the implicit method, the consistency parameter of the sub-increment (i) is 

derived from the yield function for the next state  F  or F , ε , . To simplify 

the equation of consistency parameter, the parameter α in Eq. (B.24) is one in this study. 

Notice that the yield function F  actually depends only on one unknown parameter γ . 

By expanding the yield function with respect to γ , the yield function becomes 

  F
∂F
∂γ

· Δγ   (B.29)  

Or within the sub-increment during iteration, the yield function of the sub-increment (i) 

turns into: 

  F
∂F
∂γ

· γ γ   (B.30)  

 
By rearranging the known parameters in step (i), the consistency for the next sub-

increment (i+1) can be expressed as: 

  γ γ
F γ

∂ F γ
  (B.31)  

where ∂ F γ  is defined as 
F

, which is the partial derivative of the yield function 

with respect to the consistency parameter  γ . Notice that this form is essentially the 

same form as the so-called Newton-Raphson method using derivatives (Press et al., 

1997). By expanding the ∂ F γ  term, the derivative becomes  

  ∂ F γ
∂F γ
∂γ

∂F
∂

:
∂
∂γ

∂F
∂ε

·
∂ε
∂γ

  (B.32)  
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By substituting the incremental stress equation and the definition of incremental plastic 

strain, the derivative  ∂ F γ  becomes 

  ∂ F γ
∂F
∂

:
∂ 
∂γ

γ :
∂G
∂

∂F
∂ε

·
∂
∂γ

ε , γ
∂G
∂

:
∂G
∂

  (B.33)  

Since the trial state of stress  σ  and the current effective plastic strain  ε ,  do not 

depend on γ , the derivative  ∂ F γ  is collapsed into: 

  ∂ F γ
∂F
∂

: :
∂G
∂

∂F
∂ε

·
∂G
∂

:
∂G
∂

  (B.34)  

Therefore, the consistency parameter for the next sub-increment becomes 

  γ γ
F γ

∂F
∂ : : ∂G∂

∂F
∂ε · ∂G

∂ : ∂G∂

  (B.35)  

This formula is essentially the same as the cutting-plane algorithm proposed by 

Ortiz and Simo (1986). The basic concept behind their method is to use the elastic 

predictor to over-project the trial state of stress (σ ) to be outside the yield surface at 

the first trial step ( i 0  ). Then, at each trial step (i), the plastic corrector (σ ) at 

each trial step (i) is determined and used to slowly push the trial stress tensors back to the 

current yield surface (Figure B.6). Therefore, at the end of each trial step, the yield 

function slowly converges to zero and the iteration stops once the yield function reaches 

zero. The calculation step is shown on Table B.2 and the comparison between the explicit 

and the implicit methods are shown on Table B.3. 
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Table B.1 Calculation steps for explicit scheme 
EXPLCIT APPROACH α 0  

1. Calculate the trial state of stress :  

2. Calculate the trial yield surface F σ , ε  

3. Check the trial yield surface  

a. IF F , ε 0 THEN update the next state of stress 

and skip STEP 4 

b. IF F σ , ε 0 THEN go to STEP 4 

4. Plastic process 

a. Calculate the consistency parameter γ   

b. Calculate the incremental plastic strain and the 

corresponding incremental stress . 

c. Calculate the increment of the effective plastic strain Δε  and 

update internal variables (k, r, s, and a). 

Note: for the explicit scheme, there is no need to calculate F ,Δε  
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Table B.2 Calculation steps for implicit scheme 
IMPLICIT APPROACH  α 1  

1. Calculate the trial state of stress :  

2. Calculate the trial yield function F , ε  

3. Check the trial yield function 

a. IF F , ε 0 THEN update the next state of stress 

 and skip STEP 4 

b. IF F σ , ε 0 THEN go to STEP 4 

4. Plastic Process (at sub-increment (i)) 

a. Determine F γ , ∂γ F γ  

b. Determine γ γ
F γ

γ F γ
 

c. Update γ C: G 

d. Update ε ε , γ G : G 

e. Update history variables (k, r, and s) 

f. Check F γ TOL  

i. IF YES, STOP 

ii. IF NO, REPEAT STEP a. 

Note: Initial condition (0): γ 0              ε ε ,  
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Table B.3 Comparison between explicit and implicit schemes 
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Figure B.1 Geometric representation of the stress state in the principal stress space 
(Ottosen and Ristinmaa, 2005) 

 
 

(a) The Haigh-Westergaard coordinate system 

ni 
ξ 

Hydrostatic axis 
σ , σ , σ  

σ1 

σ2 

σ3 

ρ 

O 

N 

P σ , σ , σ  

n
1
√3

1,1,1  

(b) Deviatoric plane perpendicular 
to the hydrostatic axis 

mi 

σ1 

σ2 σ3 

P

N 

θ 
ρ 

ρ 

(c) Meridian plane 

ξ 
ni O N 

P 

π/6 



 

189 
 

 
Figure B.2 Stress cycle for stable materials produced by external agency must always 

give the positive work (shaded area ABCD >0) (Ottosen & Ristnimaa, 2005) 
 

 
Figure B.3Graphical representations of the Drucker’s postulates and their consequences 

(Shaw, 2004) 
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Figure B.4 Elastic range and admissible domain in stress space (Simo & Hughes, 2001) 

 

 
Figure B.5 Geometric interpretation of the generalized midpoint rule (Ortiz and Popov, 

1985) 
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Figure B.6 Geometric interpretation for the case of perfect plasticity of a general return 
mapping algorithm based on an elastoplastic split of the constitutive equations (Ortiz & 

Simo, 1986) 
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Appendix C Derivation of Consistency Parameter 
er 

APPENDIX C 

DERIVATION OF CONSISTENCY PARAMETER 

This appendix covers derivation of the consistency parameters for both 

compression and tension that involves tensorial manipulations such as double 

contraction, and dot products. Moreover, the derivatives of yield and potential functions 

with respect to stress tensors are discussed in this section as well. Before deriving the 

consistency parameter, the invariants of stress tensors and the derivatives of invariants 

with respect to stress tensors are discussed. 

 

C.1 Invariants of stress tensors 

I tr σ  : First invariant of stress tensors 
I
3  : Deviatoric stress tensors 

S σ
σ
3 δ  : Deviatoric stress tensors (index notation) 

J
1
2 :

1
2 S S  : Second invariant of deviatoric stress tensors 

J det
1
3 S S S  : Third invariant of deviatoric stress tensors 

sin 3θ
3√3J
2J /  : Lode angle 

 

C.2 Derivatives of Invariants with respect to stress tensors 

∂I
∂

∂ σ
∂σ δ δ δ  

: Derivative of first invariant 
with respect to stress tensors 

∂J
∂

∂J
∂ ·

∂
∂

∂ 1
2 :
∂ ·

∂
∂  

: Derivative of second invariant 
with respect to stress tensors 

∂J
∂σ

∂ 1
2 S S
∂S ·

∂S
∂σ S  

: Derivative of second invariant 
with respect to stress tensors 
(index notation) 
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∂J
∂

∂J
∂ ·

∂
∂

∂ det
∂ ·

∂
∂  

: Derivative of third invariant 
with respect to stress tensors 

∂J
∂σ

∂ 1
3 S S S

∂S ·
∂S
∂σ S S

2
3 J δ t  

: Derivative of third invariant 
with respect to stress tensors 
(index notation) 

 

C.3 Compression Yield Function  and Potential Function  

Recall compression yield and potential function given in Chapter 4. The 

compression yield function composes of three parts, i.e. hardening F , Cosine softening 

F , and Exponential softening F . The potential function used here is the Drucker-

Prager yield function used to control the amount of volumetric strain. 

• Compression yield function 

F , k, r, s F , k F , r F , s  

where 

F , k
A
kf ′ J B J Ckσ DkI E

1 k
kf ′ I kf ′  

F σ, r 1 Imp 1 r
I

I ,
1 f ′  

F σ, s Imp 1 s
I

I ,
1 f ′  

where 

σ
I
3

2 J
√3

sin θ
2π
3                                 Maximum principal stress 

• Compression potential function 

gC , ε aC
I
√3

2J cC 

where 
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aC
a

1 η
ε

ε ,
η  

 a  = Slope of volumetric strain ε  vs. normal strain without confinement 

η = Ratio of ε /ε ,   at zero slope a 0  

 

C.4 Derivative of Compression Yield Function with respect to Stress Tensor 

∂FC/ ∂  

By using chain rule, the derivative of yield function with respect to stress tensors 

can be decomposed into three parts based on invariants, i.e. first invariant I  A , second 

invariant J  A , and third invariant J  A . The derivatives of invariants with respect to 

stress tensors are given in C.2 

∂FC
∂

∂FC
∂I

∂I
∂

∂FC
∂J

∂J
∂

∂FC
∂J

∂J
∂  

∂FC
∂ A A A  

where 

A
∂FC
∂I

Ck
3 Dk 2E

1 k
kf ′ I

1 Imp 1 r f ′

I
Imp 1 s f ′

I
  

A
∂FC
∂J

A
kf ′

B
2 J

3Ck cos θ 2π
3

2 cos 3θ  
J
J

Ck
3J

sin θ
2π
3   

A
∂FC
∂J

Ck cos θ 2π
3

cos 3θ J  

∂J
∂  
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Note that the A and A  terms contained cos 3θ as denominator, which causes 

zero dividing, will be discussed later. 

 

C.5 Derivative of yield function with respect to effective plastic strain ∂FC/ ∂ε  

Besides having the derivatives of yield function with respect to the stress tensors, 

the derivatives of yield function with respect to effective plastic strain ∂FC/ ∂ε  are 

also of interest. Based on the number of internal variables, ∂FC/ ∂ε  are divided into 

three components, i.e. hardening B , Cosine softening B , and Exponential softening 

B . Unlike ∂FC/ ∂ , not all components are required for each loading step. For 

example, if the effective plastic strain ε  is less than ε ,  (under hardening regime), 

only B  is required and all other components are set zero.   

∂FC
∂ε

∂FC
∂k

∂k
∂ε

∂FC
∂r

∂r
∂ε

∂FC
∂s

∂s
∂ε  

∂FC
∂ε B H B H B H  

where 

B
∂FC
∂k

∂F
∂k

A
k f ′ J Cσ DI

E I
k f ′ f ′  

B
∂FC
∂r

∂F
∂r 1 Imp

I
I

1 f ′  

B
∂FC
∂s

∂F
∂s Imp

I
I

1 f ′  

H
∂k
∂ε 1 k

1
ε ε ,

1
ε .
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H
∂r
∂ε

π
2 ε , ε ,

sin
π ε ε ,

ε , ε ,
  

H
∂s
∂ε

ω
ε , ε ,

Exp
ω ε ε ,

ε , ε ,
 

 

C.5 Derivative of potential function with respect to stress tensors ∂gC/ ∂  

The last derivative required for obtaining the consistency parameter is the 

derivative of potential function with respect to stress tensors ∂gC/ ∂ . This component 

is also used to determine the plastic strain tensors. 

∂gC
∂

∂
∂ aC

I
√3

2J cC  

∂gC
∂

aC
√3

1
2J

 

 

C.6 Consistency Parameter for Compression 

Based on the assumption that the material in the elastic range is linearly isotropic, 

the first term in denominator of the consistency parameter equation becomes 

∂FC
∂ : :

∂gC
∂

∂FC
∂σ C

∂gC
∂σ  

A δ A S A t 2G
1
2 δ δ δ δ

ν
1 2ν δ δ

aC
√3

δ
1
2J

S  

∂FC
∂ : :

∂g
∂ 2G A aC√3

1 ν
1 2ν A 2J A

3J
2J

 

Note: For linearly isotropic elastic material, C is written as: 

C 2G
1
2 δ δ δ δ

ν
1 2ν δ δ    
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Back to the discussion related to cos 3θ  in A  and A  terms in section C.4 and 

consider the last two term of F : :  for the compression: 

A 2J A
3J
2J

A
kf ′

B
2 J

3Ck cos θ 2π
3

2 cos 3θ  
J
J

Ck
3J

sin θ
2π
3 2J  

                                          
Ck cos θ 2π

3
cos 3θ J

3J
2J

 

                                          2J
A
kf ′

B
2 J

Ck
3J

sin θ
2π
3  

                                         
A
kf ′ 2J

B
√2

√2Ck
√3

sin θ
2π
3  

Therefore, the first term of denominator of the consistency parameter equation 

becomes 

∂FC
∂ : :

∂gC
∂ 2G A aC√3

1 ν
1 2ν

A
kf ′ 2J

B
√2

√2Ck
√3

sin θ
2π
3  

By substituting ∂gC/ ∂  into the second term of denominator, it becomes 

∂FC
∂ε

2
3
∂gC
∂ :

∂gC
∂ B H B H B H

2
3 a 1  

 

C.7 Tension Yield Function  and Potential Function  

Recall the tension yield and potential functions given in Chapter 4. 

• Tension yield function FT  

FT σ, k, r, s x′I y′ z′ √rs z′ I kz′ d J  

where 
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x′ f 2α 1 β 2 J , √3f 1 α 1 β  

y′ f 8 2β 2α 1 β 2α 1 J , 3√3f 1 α 1 β  

z′ 3f 1 2α 1 β 2α 1 β 2 J ,  

d 3f 1 2α 1 β 2α 1 β 2  

β sin θ
1
2 

J , J ,HTC
2c′

b′ √b′ 4a′c′
 

where 

a′
A
kf ′  

b′ B
2Ck
√3

sin θ
2π
3  

c′ kf ′ 1 Imp 1 r f ′ Imp 1 s f ′  

• Tension potential function gT  

gT aT
I
√3

2J cT 

where  

aT = material parameter controlled slope of volumetric strain with respect to 

normal strain 

 

C.8 Derivative of Tension Yield Function with respect to Stress Tensor ∂FT/ ∂  

The same derivation in compression is repeated here for tension. 

∂FT
∂ A′ A′ A′  
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where 

A′
∂FT
∂I 2x′I y′ z′ √rs z′ 

A′
∂FT
∂J I

∂x′
∂θ I

∂y′

∂θ
∂z′
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∂θ k
∂z′
∂θ J

∂d
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∂θ
∂J

1
2
d
J

 

       I
∂x′

∂θ I
∂y′

∂θ
∂z′

∂θ √rs
∂z′

∂θ k
∂z′

∂θ J
∂d
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3√3
4 cos 3θ

J

J

1
2
d
J

 

      
3√3

4 cos 3θ
J

J

1
2
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J

 

A′
∂FT
∂J I

∂x′

∂θ I
∂y′

∂θ
∂z′

∂θ √rs
∂z′

∂θ k
∂z′

∂θ J
∂d
∂θ

∂θ
∂J  

       I
∂x′

∂θ I
∂y′

∂θ
∂z′

∂θ √rs
∂z′

∂θ k
∂z′

∂θ J
∂d
∂θ

√3
2 cos 3θ

1
J /  

       
√3

2 cos 3θ
1
J /  

 

C.9 Derivative of yield function with respect to effective plastic strain ∂FT/ ∂ε  

∂FT
∂ε′

∂FT
∂k

∂k
∂ε′

∂FT
∂r

∂r
∂ε′

∂FT
∂s

∂s
∂ε′  

∂FT
∂ε′ B′ H′ B′ H′ B′ H′  

where 

B′
∂FT
∂k I

∂x′
∂k I

∂y′

∂k
∂z′

∂k √rs
∂z′

∂k k
∂z′
∂k z′ J

∂d
∂k 
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B′
∂FT
∂r I

∂x′

∂r I
∂y′
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1
2 y′ z′

s
r
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H′ H′ ∂r
∂ε′

∂s
∂ε′

γ
ε ,
′ ε ,

′ Exp
γ ε′ ε ,

′

ε ,
′ ε ,

′             ε ,
′ ε′ ε ,

′  

• Derivative of internal parameters with respect to hardening parameter (k) 

∂x′

∂k f 2α 1 β 2
∂ J ,

∂k  

∂y′

∂k f 8 2β 2α 1 β 2α 1
∂ J ,

∂k  

∂z′

∂k 3f 1 2α 1 β 2α 1 β 2
∂ J ,

∂k  

∂d
∂k 0 

∂ J ,
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b′ √b′ 4a′c′ ∂ 2c′
∂k 2c′
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1

b′ b′ 4a′c′
2f ′

2c′

√b′ 4a′c′
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√3

sin θ
2π
3  

• Derivative of internal parameters with respect to softening parameter (r) 

∂x′

∂r f 2α 1 β 2
∂ J ,

∂r  
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∂y′

∂r f 8 2β 2α 1 β 2α 1
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• Derivative of internal parameters with respect to softening parameter (s) 

∂x′
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C.10 Derivative of potential function with respect to stress tensors ∂gT/ ∂  

∂gT
∂

∂
∂ aT

I
√3

2J cT  

∂gT
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1
2J
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C.11 Consistency Parameter for Tension 

By assuming that the material in the elastic range to be linearly isotropic as in the 

compression, the first term in denominator of the consistency parameter equation 

becomes 

∂FT
∂ : :

∂gT
∂

∂FT
∂σ C

∂gT
∂σ  

A′ δ A′ S A′ t 2G
1
2 δ δ δ δ

ν
1 2ν δ δ
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δ
1
2J

S  

∂FT
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1 ν
1 2ν A′ 2J A′

3J
2J

 

Now consider the last two term containing A′  and A′  terms, 

A′ 2J A′
3J
2J

3√3
4 cos 3θ

J

J

1
2
d
J

2J   
√3

2 cos 3θ
1

J

3J
2J

 

                                         
d
√2

 

Therefore, the first equation of denominator in consistency parameter equation 

becomes 

∂FT
∂ : :

∂gT
∂ 2G A′ aT√3

1 ν
1 2ν

d
√2

 

By Substituting ∂gT/ ∂  into the second term of denominator in consistency 

parameter equation, it becomes 

∂FT
∂ε

2
3
∂gT
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∂gT
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