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ABSTRACT

A macro-scale plasticity model for High Performance Fiber Reinforced Cement
Composites (HPFRCC) is developed. The proposed model is a phenomenological, multi-
axial, constitutive model capable of representing important phenomena associated with
HPRFCC response such as tension-related cracking, hardening, and softening as well as
compression-related confinement and crushing behavior. The proposed model is based on
the results of experiments conducted in this study under various loading conditions in
both compression and tension. The material parameters in the experimental program
pertain to two types of commercially available fibers, namely Hooked and Spectra fibers,
and three fiber volume fractions ranging from 1.0% to 2.0%. Test results reveal that the
inclusion of fibers increases ductility in the softening regime in compression and
significantly improves ductility and strain hardening in tension, which makes HPFRCC
amenable to general plasticity theory. The proposed plasticity model is constructed by
modifying an existing model of concrete in compression and extending it to encompass
tensile response. A unique feature of the model is that a single yield surface is used to
cover both compressive and tensile responses for both hardening and softening regimes.
The accumulated effective plastic strain is used as a damage index for controlling the
evolution of the plasticity surfaces. To ensure the validity of the proposed model,

computational results are compared to results of several structural tests including tests of

X1V



a two-span continuous beam, a slab subjected to punching loads, a structural wall, and a
coupling beam. The model is shown to be able to capture with reasonable accuracy the
experimentally observed responses, including load deflection behavior and mode of
failure. The proposed model requires modest computational resources compared to
existing micro-mechanical models for HPFRCC that explicitly address fiber and matrix
responses, and the interaction between them through bond. It can therefore be applied for
large-scale computational structural simulations providing a good balance between

accuracy, detail, and computational demands.
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CHAPTER 1

INTRODUCTION

1.1 Introduction

Cement-based materials such as concrete and mortar are brittle materials that
crack under low tensile stress. One common way to mitigate this deficiency is by adding
fibers to the matrix. Fiber Reinforced Cement Composites (FRCC) resist tensile stresses
through composite action between the cementitious matrix and the embedded fibers. The
transmission of forces between these two components occurs through interfacial bond
stress defined as the shearing stress between the fiber surface area and the surrounding
matrix. Fibers play a major role in the post-cracking behavior of FRCC by bridging the
cracks and providing resistance to crack opening. Hence, the FRCC does not fail abruptly
after the first crack.

A key characteristic of High Performance Fiber Reinforced Cement Composites
(HPFRCC) is that they can achieve quasi-ductile response that is they exhibit strain-
hardening response accompanied by multiple cracks and relatively large energy
absorption prior to fracture localization. Figure 1.1 shows a comparison of the stress-
strain response in tension of both normal FRCC and HPFRCC composites. According to

Naaman and Reinhardt (1996), there are two methods to identify if a composite behaves



as a high performance material. The first method is to examine the response of the
composite in tension. If the post-cracking strength (op.) is higher than that at first
cracking (o), then the composite is considered to be a high performance material. An
alternative method to classify a high performance material is proposed by Tjiptobroto and
Hansen (1993). In this method, it is assumed that if the energy needed to form a new
crack is less than the energy needed to propagate the crack, then multiple cracking type of
failure is more likely to form (Figure 1.1b) and the composite is classified as “high
performance.” Based on these two methods, several parameters that control the formation
of multiple cracks can be identified. These parameters include the total number of fibers
in the composites, the strength of the interfacial bond, the toughness of the matrix, and
the mechanical properties of the fibers.

At present, HPFRCC technology is still considered to be at an early stage where
there is intense interest in material development, testing, and characterization. Analysis
formulations are still few compared to more traditional materials, but the rate of
development is picking up as the demand of HPFRCC construction grows. Inelastic
analysis models for HPFRCCs can be broadly categorized by their resolution in modeling
nonlinear behavior as micro-scale models, macro-scale models, and structural-scale
model. Micro-scale models describe the interaction among the three phases of the
material, i.e. fiber, matrix, and interfacial zones. Macro-scale models, on the other hand,
focus on the phenomenological behavior at the point level. The point level in this context
is defined as an element that contains several fibers embedded in cement matrix. They are
capable of explicitly accounting for key behavior phenomena such as cracking, softening,

hardening post-cracking responses, and crushing behavior. Structural-scale models



implicitly capture the essence of structural behavior at the domain level, for example,
cross-sectional moment versus curvature behavior and panel shear force versus distortion
relationships. They are generally favored by practitioners because they are
computationally expedient and because they produce data that is intuitive and that deals

directly with design variables such as moments, rotations, etc.

1.2 Motivations and Objectives

Since micro-scale models focus on the behavior of the constituents of HPFRCC,
they have high computational demands which severely limit their use in analysis
applications involving large structures. Structural-scale models can capture only the
overall behavior at the domain level, and do not provide detailed enough information
about structural behavior. Macro-scale model, however, can provide such details and are
more computationally efficient than micro-scale models. Such models can also be
practically applied to model structural behavior in the continuum finite element
simulations.

With the above motivation, the main objective of this research is to develop a
macro-scale, multi-axial constitutive model for High Performance Fiber Reinforced
Cement Composites (HPFRCC) that is suitable for application in computational structural
simulations. The research program includes both experimental and analytical components
that are intended to achieve this objective. The experimental programs include three
different types of tests: uniaxial, biaxial, and triaxial tests. After understanding the

behavior of HPFRCC through these tests, a macro model will be developed based upon



concepts in plasticity. The proposed model is verified against actual structural tests that

involved the use of HPFRCC.

1.3  Structure of Dissertation
This dissertation composes of 5 chapters as follows:

Chapter 1: Introduction. This chapter provides an overview of the research. The
objectives and a structure of the dissertation are also provided.

Chapter 2: Literature review. This chapter provides background regarding High
Performance Fiber Reinforced Cement Composites (HPFRCC) including analytical
techniques applicable at various scale lengths. Particular emphasis is placed con mcro-
scale models and testing techniques of cementitious materials.

Chapter 3: Experiments. This chapter describes four testing techniques that have
been widely used in concrete and that are adopted here for testing HPFRCC. These
techniques include uniaxial compression, uniaxial tension, biaxial compression, and
triaxial compression tests.

Chapter 4: Macro-scale plasticity model for HPFRCC. This chapter provides an
overview of general plasticity theory and the four-parameter compressive yield surface
for concrete proposed by Hsieh et al. (1979), which is further developed for HPFRCC
materials. The chapter concludes with an extension of the compressive yield surface to
the tension side.

Chapter 5: Model Calibration and Verification. This chapter discusses the
procedures to calibrate material parameters. In addition, evidence is provided to show

that the proposed calibrated model works. Several exercises which include a two-span



continuous beam, punching shear slab, slender wall, and coupling beam are simulated
and their results compared with the test results.

Chapter 6: Conclusion. This chapter provides a summary of this research study.
Conclusions related to the macro-scale plasticity model for HPFRCC are drawn and

future work is recommended.
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CHAPTER 2

LITERATURE REVIEWS

Important aspects regarding the behavior and modeling of concrete and High
Performance Fiber Reinforced Cement Composites (HPFRCC) at different length scales
are reviewed in this chapter (Figure 2.1). Particular attention is paid to macro-scale
models for concrete as they are the basis for constructing the HPFRCC macro-scale
model presented in Chapter 4. Testing techniques under various loading conditions for
concrete and fiber reinforced cement composites are discussed in the final section of this

chapter.

2.1 Classification of Models

Depending upon the size, i.e. length, along which the dominant physical processes
of interest take place, analysis techniques for High Performance Fiber Reinforced
Cementitious Composites (HPFRCC) can be generally classified into three categories:
structural-scale, macro-scale, and micro-scale models. The characteristic length scale of
typical structural components in civil engineering is usually specified on the order of 10°
to 10" m. At this scale level, the responses of interest include load carrying capacity, drift,
durability, etc. The pertinent parameters that influence structural response at this scale

include member strength, stiffness, and ductility. At the macro-scale (10™ — 10 m), it is



possible to distinguish between the responses of members made of fiber reinforced
cement composites and conventional reinforced concrete members. Phenomena like
strain-hardening and softening play a dominant role at this length scale. At the micro-
scale level (1073 —107°), each component of HPFRCC, i.e. fiber, matrix, and
interfacial bond, can be distinguished. Propagation of matrix cracks from preexisting
defect cracks and pullout of fibers that bridge these cracks are the major mechanisms that
influence response at this length scale.

The simply supported beam shown in Figure 2.2 demonstrates further the ideas
presented in the previous paragraph. As the length scale progressively decreases more
details of the beam are revealed. At the structural-scale level, all parts of the beam
including HPFRCC and reinforcements are lumped together and represented by beam
elements. Appropriate boundary conditions are enforced at the joints at both ends of the
beam. At the macro-scale level, the rebars and HPFRCC are distinguished and are
separately modeled with beam and solid elements, respectively. The interaction between
reinforcement and HPFRCC is modeled by using appropriate kinematic constraints.
However, the fibers and the matrix inside the HPFRCC at this scale length are still
indistinguishable, i.e. HPFRCC is considered as a homogeneous medium. At the micro-
scale level, the fibers and the matrix and the interaction between them are explicitly
modeled.

Several methods have been proposed in the past to link models that describe
HPFRCC responses across the various length scales. One of these methods is the spatial
averaging concept (Kabele, 2003). Each component of a spatial element called a

Representative Volume Element (RVE) can be identified on a finer length scale. The



constitutive law, which defines the relationship between overall stress and overall
deformation of the RVE, is obtained by averaging the local quantities on the finer length
scale. Another method is to use Homogenization Theory to link the micro and macro
levels (Alwan, 1994). In this method, a composite material element is formed by the
repetition of micro cells. Depending on the complexity of the model, the macro element
can be composed of a few to several hundred unique unit cells arranged in a certain
predefined pattern. An example given in Figure 2.3 shows a composite material element
that composes two different unit cells arranged in a zigzag pattern. Each unit cell
represents different properties such as Young’s modulus and Poisson’s ratio for the
isotropic elastic materials. The load-displacement response of the macro-scale unit is
obtained by combining all unit cells together. Further information regarding the basic
concept of this theory can be found in Benssousan (1978); Sanchez-Palencia (1980);
Lions (1981); Duvaut (1984); Oleinik (1984); Murat and Tartar (1985); and Levy (1985).
Numerical approaches for Homogenization can be found in Triantafyllidis (1985, 1994);
Wu et al (1989); Guedes and Kikushi (1990); and Leguillon (1992).

The two methods given above only provide a linkage from micro-scale to macro-
scale models but they do not cover the transition from macro-scale to structural scale.
The Finite Element Method is commonly used to make this transition. The advantage of
this method is that it can handle structural members with arbitrary geometry, materials,

and boundary and loading conditions.



2.2 Models of Fiber Reinforced Cementitious Composites (FRCC)

Models of FRCC encompassing three different length scales will be discussed in
this section: (a) Structural-scale models, (b) Macro-scale models, and (c¢) Micro-scale
models.

2.2.1 Structural-scale Models

In structural-scale models, each component of a structure is represented using
domain-level elements that are characterized by load-deflection or moment-curvature
responses depending on the type of the component. There are few examples of structural-
scale models for HPFRCC including Stang and Olesen (1998) who developed closed
form moment-rotation relationships for the plastic hinge region in HPFRCC members in
pure flexure, and Olesen (2001) who extended these relationships to account for the
effect of axial force.

2.2.2 Macro-scale Models

In macro-scale models, the constitutive models of each component of the
structure, such as steel reinforcements and FRCC components, are uniquely defined and
characteristics such as strain hardening in HPFRCC or strain softening in FRCC under
tensile response can be distinguished. Macro-scale models can be divided into one-, two-,
and three-dimensional. In one-dimensional models, the uniaxial responses of both FRCC
and HPFRCC under both tension and compression are accounted for in a fiber section
framework (Para-Montasinos, 1999 and Chandrangsu, 2003). In fiber section analysis,
the equilibrium and strain compatibility between reinforcing bars and the FRCC
components are enforced. The final product of such analysis is moment-curvature

response for a beam section, which can be used as the input for structural-scale models.
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Soranakoom and Mobasher (2007) used the same concept to derive a closed form
solution for flexural beam responses of FRCC.

In two-dimensional models, the responses of FRCC under biaxial loading
conditions are considered. Two general constitutive models for FRCC include
hypoelastic and plasticity models. By using the former, Han et al. (2003) incorporated a
co-axial stress-strain model proposed by Feenstra et al. (1998) with the uniaxial
compressive and the uniaxial tensile behaviors of FRCC to model cyclic member
responses. In the co-axial stress-strain model, the corresponding principal strains are first
determined based on a given state of strains. For each principal strain direction, the
corresponding principal stress is then determined from the uniaxial constitutive model.
Once all principal stresses are known, the original state of stresses is then calculated by
rotating from the principal strain axis back to the original axis. The main assumption of
this model is that the principal strain direction coincides with the principal stress
direction. The drawback of this model is that it does not consider the increase in
compressive strength under biaxial compression. By using a two dimensional plasticity
formulation, Hu et al. (2003) proposed a single smooth biaxial failure surface for steel
fiber reinforced concrete (SFRC), which was derived from the multiplication of elliptical
and power functions. The model required a total of six material parameters determined
from the test under biaxial loading combinations. The associative flow rule was used in
this model based on the assumption that volumetric strain is not of concern.

In three-dimensional models, the responses of FRCC under all triaxial loading
combinations are considered. Seow and Swaddiwudhipong (2005) proposed a five-

parameter compressive failure criterion for FRC constructed with straight hooked fibers.
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Beside the concrete parameters, a few additional parameters pertaining to fibers, such as
the volume fractions, aspect ratios, ultimate bond strength, and types of fibers, were also
taken into consideration for constructing the failure surface. For the tension response, the
improvement of FRCC over conventional concrete was not modeled by using a plasticity
model but by simply adding tensile softening once the stress reaches the tensile strength.
The model was then verified against test results of FRCC cubes and a simply supported
beam with two loads. Another example is by Minelli and Vecchio (2006) who used the
modified compression field theory (MCFT) and the distributed stress field model
(DSFM) combined with an adjusted tension softening model for steel fiber-reinforced
concrete (SFRC) to model members under shear loading.
2.2.3 Micro-scale Models

By using the so-called representative volume element (RVE) approach, FRCC can
be modeled as a collection of cell each comprised of three different components, i.e. a
fiber, the surrounding matrix, and the interfacial bond between fiber and matrix. The first
component, that is the surrounding matrix, usually represents either mortar or concrete.
This component is modeled as linearly elastic up to the peak strength followed by strain
softening to represent the brittleness of the matrix. The second component, which is the
fiber, is also modeled as linearly elastic up to the yield strength of the fiber. However, the
post-yield stress-strain response of the fiber is dependent on the fiber type. For example,
steel fibers can be assumed as perfectly plastic up to the failure strain but the polymeric
fibers fracture once they reach the yield strength. The last component in the RVE is the
interfacial bond between fiber and matrix, which is mobilized when the matrix cracks.

Once cracking occurs in the matrix, the fiber, which previously received stresses from the
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matrix before cracking, now transmits the stresses across the cracks (Sujivorakul, 2002).
The post-cracking process is mainly composed of two stages, i.e. debonding and pull-out
stages, as shown in Figure 2.4. In the former stage, the separation between fiber and
surrounding matrix occurs when the applied force reaches a critical value. This critical
value can be calculated by two different approaches, i.e. the stress-based or energy-based
approaches (Stang et al, 1990; Leung and Geng, 1998). In the stress-based criterion,
separation occurs once the applied stress reaches some critical value. Examples of the
stress-based model are the anchorage bond at the ends of hooked fibers, or the
mechanical bond along the length of twisted fibers (Alwan et al, 1999 and Sujivorakul,
2002). In the energy-based approach, debonding occurs once the external work done by
the applied force overcomes the interfacial fracture energy. A comparison between these
two approaches can be found in Stang et al. (1990). In the pull-out stage, once full
debonding has occurred, the fiber starts to slide out of the matrix. Force resistance is
mainly provided by the friction between fiber and matrix. Under small slip, the
relationship between resisted force and sliding is mainly dependent upon the types of
fibers (Sujivorakul, 2002), for example, the pullout load in the smooth steel fibers
decreases as the embedded length decreases. However, in twisted fibers, the pullout load
increases as the embedded length decreases.

So far, only a RVE composed of a single fiber surrounded by matrix has been
discussed. An averaging method can be employed in order to extend the micro-scale
model to a corresponding macro-scale model (Li et al, 1991). The required material
parameters in this method include properties of the matrix and fiber as well as the

interfacial properties between fiber and matrix. These interfacial properties include size,
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volume fractions, and distribution of fibers; and bonding strength or bonding toughness
between fiber and matrix (Leung and Geng, 1998). With all these material parameters,
the stress-strain curve of the pre-cracking behavior and the stress-displacement curve of
the post-cracking behavior in the composite material can be obtained by integrating over
the volume.

Instead of the averaging method, an alternative method proposed by Bolander and
Saito (1997) is to model fibers as truss elements dispersed throughout a matrix model.
The orientation and the distribution of short fibers are random to represent actual fiber
distribution in a real FRCC. The response of a fiber controlled by kinematic constraints
from the matrix is divided into two parts, i.e. pre-cracking, and post-cracking. In the pre-
cracking stage, the interaction between fiber and matrix is modeled using shear lag
theory, whereas in the post-cracking regime, the pullout response between fiber and

matrix is used instead.

2.3 Macro-Scale Models for Concrete

Four common macro-scale models that can be used for modeling concrete are
covered in this section: plasticity, microplane, fracture mechanics, and damage
mechanics. In a typical case, one or more of these models can be combined together to
create an appropriate constitutive model. For example, the plasticity model is used for
compression while the fracture mechanics approach is used for tension.
2.3.1 Plasticity Models

Plasticity theory was originally developed to model the constitutive response of

metallic materials. In the past few decades, the theory has been extended to model
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concrete behavior due to its computational expediency. In plasticity theory, there are
three essential ingredients used to describe the nonlinear behavior of concrete. The first
ingredient is the plastic flow rule, used to determine the direction of plastic flow once the
state of stress reaches the yield surface. This rule can be divided into two different types,
i.e. associative, and non-associative. In the former, the loading surface is the same as the
yield surface and hence, the plastic flow direction is always perpendicular to the current
yield surface. In the latter, the loading surface is different from the yield surface and thus,
the plastic flow direction is not normal to the current yield surface. In this case, a
potential function is used to define the loading surface. Smith et al. (1989) observed that
the plastic flow direction of concrete is not perpendicular to the yield surface as shown in
Figure 2.5. Grassl (2003) confirmed that use of the associative flow rule over predicted
the volumetric response of concrete under triaxial loading conditions. Therefore, a non-
associative flow rule is more suitable for modeling concrete behavior than the associative
flow rule. Some examples of potential functions used for defining non-associative flow
can be found in Schreyer and Babcock (1985); Ohtani and Chen (1986); Imran and
Pantanzopoulou (2001).

The second ingredient in the plasticity theory is the hardening rule. Once the
direction of plastic flow has been determined in a plasticity model, a hardening rule must
be employed to determine the kinematic of the yield surface. There are three commonly
used hardening models, i.e. isotropic, kinematic, and mixed hardening, to describe the
behavior of the yield surface (Figure 2.6). It should be noted that differences in response
between these three models can be seen only if unloading occurs, i.e. the stress-strain

responses under monotonic loading for these three models are identical. In isotropic
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hardening, the yield surface expands equally in all direction but the center of the yield
surface is fixed. In contrast, kinematic hardening requires the size of yield surface to
remain constant, but the center point of the yield surface moves as the load increases. The
result of moving the center of yield surface is to capture the cyclic behavior called the
Bauschinger’s effect that occurs in steel. Lastly, mixed hardening is a combination of
both isotropic and kinematic hardening. Hence, the yield surface grows and moves at the
same time as the load increases. Derivation of hardening rules can be found in Hill (1950)
for isotropic; Prager (1955, 1956) and Ziegler (1959) for kinematic; and Hodge (1957)
for mixed hardening. Some examples of hardening rules in concrete models include
Schwer and Murray (1994), who used a mixed hardening rule where the translation of
center of the yield surface is calculated by multiplying a scalar quantity with the
incremental plastic strains; Grassl et al. (2002) who used the volumetric components of
plastic strains, instead of using the length of plastic strain tensors, as an alternative
hardening parameter.

The third ingredient in the plasticity theory, which is the most important item in
developing a plasticity model for concrete, is the yield criterion. The yield criterion is
used to define the elastic boundary of the concrete. When the stress reaches the yield
surface, also known as the failure surface, permanent deformation will take place as the
load increases. The classification of the yield criterion of concrete is based on the number
of material parameters required to define the yield surface. These material parameters
range from one to five parameters. However, one- and two-parameter models are not
versatile enough to fit the observed experimental data. Hence, the minimum number of

parameters needed to describe a concrete yield function is at least three parameters. Some
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examples of concrete yield functions can be found in Chen and Chen (1975), Chang et al.
(1987), Lade (1981), and Grassl (2003) for three-parameter models; Ottosen (1977),
Hsieh et al. (1979) for four-parameter models; Balan et al. (2001), Barzegar and
Maddipudi (1997), and Pivonka et al. (2004) for five-parameter models.

Since the main finite element software used in this study is LS-DYNA, it is
worthwhile to explore the existing concrete models available in the program. In LS-
DYNA, several plasticity models, such as the Geologic Cap model (MAT25) and its
extension, the Continuous Surface Cap Model (MAT145), the K&C Concrete Model
(MAT72 and MAT72R3), are currently available for modeling concrete behavior with
solid elements (Hallquist, 2007). In MAT25, the Drucker-Prager yield surface combined
with the cap surface is used to model geomaterials such as soils and concrete (Figure
2.7a). The Drucker-Prager yield criterion is a two-parameter pressure dependent model
that accounts for strength enhancement associated with the increase in confining pressure.
The model is an extension of the one-parameter pressure independent ], yield criterion.
The cap surface is included for controlling dilatancy of concrete (Dimaggio and Sandler,
1971). The algorithm of MAT 25 is based on the work of Simo et al. (1988). Some
drawbacks of this model pointed out by Schwer and Murray (1994) are the intersection
between the shear yield surface and the cap surface, which creates a kink in the surface,
and the exclusion of the third invariant J; term, which causes the cross-section of the
yield surface to be circular in the m-plane contrary to observed test data.

As a result of the limitations on the MAT25 model, the continuous cap model
(MATI145) was introduced to overcome those problems. In the meridian plane, the shear

and cap surface are blended together (Figure 2.7b) and in the m-plane, the circular cross-
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section is converted into a triangle with smooth corners. In addition, mixed hardening and
strain rate effect are also embedded in this material model. More details on how to obtain
material parameters and background of MAT25 and MAT145 can be found in Schwer
(2002). Lastly, MAT72 (Figure 2.8) is a three-invariant model that uses three different
yield surfaces, namely initial, maximum, and residual yield surfaces. Depending on the
current location of stress (hardening or softening), the current state of stress is obtained
by interpolating among the three surfaces. Full details on development and material
parameters of this model can be obtained from Crawford and Malvar (2006).
2.3.2 Microplane Models

Another way to derive the relationship between the stress-strain tensors is to use
the Microplane model, which was first introduced by Bazant in 1984. Unlike plasticity
theory that is formulated in terms of invariants of the stress and strain tensor, the
microplane model provides relations between stress and strain components on a plane
with pre-specified orientations. The origin of this model can be traced back to the
Taylor’s slip theory of plasticity (1938), based on which the plasticity of polycrystalline
metals was formulated. It should be noted that the prefix “micro” in this context does not
refer to the actual microstructure geometry, but rather implies a separate characterization
of the inelastic deformations on planes of various orientations within the microstructure.

The basic procedure of the microplane model is as follows. First, the strain
components on microplanes with various orientations are obtained from the projection of
the continuum strain tensors. Then, the corresponding normal, volumetric, deviatoric, and
shear stresses of each plane are obtained by applying the kinematic constraints. Finally,

the stress components on the microplanes are converted back to continuum stress tensors
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by using the principle of virtual work. The evolution of microplane model can be found
in Bazant and Oh (1983, 1985), Bazant and Prat (1988), Bazant et al. (1996), and Bazant
et al. (2000), whereas some applications of this model can be found in Carol et. al.
(1992); Cofer and Kohut (1994); Bazant and Ozbolt (1990); and Liu and Foster (2000).
The main drawbacks of the microplane model (Bazant and Tsubaki, 1980) are that the
formulation cannot be written as an explicit expression and the constitutive equations
require many material constants.

2.3.3 Fracture Mechanics

Fracture mechanics is a commonly used method for determining the tensile stress
causing crack formation or crack growth in structural components. There are two
different types of fracture mechanics, i.e. Linear Elastic Fracture Mechanics (LEFM), and
Nonlinear Fracture Mechanics.

In the LEFM approach, the toughness of linear materials can be described by two
methods, i.e. energy and stress intensity factors. In the former approach, initiation of a
single crack or growth of the existing crack can occur if and only if such a process causes
the total energy to decrease or remain constant (Griffith, 1920). Therefore, the critical
condition in the energy approach is defined as the point where the crack growth occurs
under the equilibrium condition with no net change in the total energy. Irwin (1956)
further defined an energy release rate G as a measurement of the energy available for an
increment of the crack extension. This parameter G can also be considered as the crack
driving force. In the stress intensity factor approach, fracture occurs if the stress intensity

factor K; reaches the fracture toughness of the material K;c. The subscript of K defines
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the failure modes, which consist of opening (K;), in-plane shear (Ky;), and out of plane
shear (Kyp).

Some examples of the applications of LEFM to cementitious composites include
Hillerborg et al (1976) who studied the size effect on the formation and propagation of
cracks in an unreinforced concrete beam using LEFM and the Finite Element Method. He
used his results to explain the difference between bending strength and tensile strength
and also the variation of bending strength with beam depth; Kim et al (1999) studied the
size effect on the compressive strength of concrete cylinders and proposed empirical
formulae to predict the compressive strength as a function of diameter and
height/diameter ratios; Reis and Ferreira (2003) studied the influence of notch depth on
the fracture mechanics properties of polymer concrete and found out that the fracture
energy G¢ is in direct proportion to the notch depth; Li et al (1991) used the bridging
fracture energy combined with a micromechanical model to derive the post-peak
response of FRCCs. Paris and Erdogan (1963) related the fatigue life of a structure with
pertinent fracture mechanics parameters. Their model is commonly known as Paris law.
Several researchers further extended Paris law to model concrete (Baluch et al., 1987;
Bazant and Schell, 1993; Bazant and Xu, 1991; Perdikaris and Calmino, 1987).
Matsumoto and Li (1998) modified Paris law by introducing the stress intensity factor
due to fiber bridging to predict the fatigue life of fiber reinforced concrete. Zhang et al.
(2001) studied the size effect on fatigue in bending of concrete.

In Nonlinear Fracture Mechanics, the process of fracture in the nonlinear
materials is described by two approaches, i.e. the Crack Tip Opening Displacement

(CTOD) and J contour integral (J-Integral). In the CTOD approach, the initial sharp crack
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is blunted due to the plastic deformation at the crack tip (Well, 1961). The degree of
blunting is in direct proportion to the material toughness. Since nonlinear deformation
occurs, the LEFM factors, G and K, are no longer suitable factor to measure toughness of
the materials. Hence, the CTOD is more meaningful term to measure the fracture
toughness of the plastic materials. Some examples of CTOD approach include Ouyang
and Shah (1992) who used the critical CTOD (CTOD() and the critical stress intensity
parameter (K;¢) to derive the resistance curve (R-Curve). Jeng and Shah (1985) showed
that the critical crack length (a.) cannot be used as a factor to replace the CTOD . since a..
is dependent on the geometry of the specimen and the size of the initial flaw.

The second nonlinear fracture mechanic approach is the J Integral proposed by
Rice (1968). The J integral parameter is a path-independent method that can be used to
define toughness of both linear and nonlinear materials. In LEFM, J integral can be
viewed as either energy or stress intensity parameters (Rice, 1968; Hutchinson, 1968; and
Rice and Rosengren, 1968). Some examples of J-Integral applications include Li et al.
(1987) who were the first to use J-based technique to explain the tension-softening
response of fiber reinforced composites. Marshall and Cox (1988) used the J-integral to
explain how to achieve multiple cracking or pseudo strain hardening. The crack driving

force (J,) that accounts for the energy dissipation in the fiber bridging zone must be
equal to the crack tip toughness (]Tip). If this condition is not satisfied, the Griffith type

crack will overcome (Li and Leung, 1992). Other works related to multiple cracking can
be found in Maalej and Li (1995); Mishra and Li (1995); Leung (1996); Kanda (1998).
Once the cracking point is determined, two different techniques can be employed

for modeling crack propagation in Finite Element Analysis: the discrete and smeared
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cracking approaches. In the former approach, each dominant crack surface and its
orientation are predefined and are explicitly modeled (Ngo and Scordelis, 1967). At each
cracking interface, the nodal displacements of adjoining elements are progressively
disconnected as the crack propagates as shown in Figure 2.9. In other words, as the
tensile load increases, the displacements at the cracking interface will increase and
adjacent elements near the crack that were joined before are now separated. Thus, an
adaptive meshing approach must be employed. However, this makes the model extremely
complex and time consuming (Ngo, 1975). In addition, the finite elements used in this
model require higher-order interpolation fields, which again impose high computational
demand. In general, the discrete-cracking model can be used for solving problem
involving with only a few dominant cracks.

In the smeared cracking approach, cracking is accounted for by modifying the
material properties to reflect the occurrence of cracking. Once a crack occurs, the
strength of concrete perpendicular to the cracking surface diminishes and the shear
stiffness is reduced by a shear reduction factor. The main advantages of this approach is
that (Bolander and Wight, 1989): (1) cracks can occur at any direction; (2) multiple
cracks can simultaneously take place at any integration point; (3) the topology of the
finite element mesh remains unchanged throughout the analysis; (4) the smeared crack
approach can handle situations involving widely spread cracking.

2.3.4 Damage Mechanics

Concrete behaves as a quasi-brittle material in the sense that it cannot withstand a

significant amount of plastic deformation at the macro-scale, but at the micro-scale,

localized damage growth can occur (Lemaitre, 1992). The gradual degradation of the
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material at the macro-scale results from decohesion between aggregates and cement
matrix. Continuum Damage Mechanics (CDM) is one of the methods that can be used to
capture this degradation, also known as the strain softening type behavior. The CDM was
first introduced by Kachanov (1958) as a scalar field quantity to model creep rupture
failure in ductile materials and Krajcinovic (1983) was the first to use CDM to model
brittle materials such as concrete.

The CDM model is derived from the thermodynamics of irreversible processes
and internal state variable theory and can be worked into two space domains (Simo and
Ju, 1987), i.e. stress- and strain-space. Typically, the strain-driven mechanism is
preferred since damage in the material is directly linked to the history of strain, not the
stress history. In the strain-based model, the main hypothesis is that the strain associated
with a damage state under the applied stress is equivalent to the strain associated with its
undamaged state under the effective stress (Lemaitre, 1971). Besides having two space
domains, damage mechanics is classified in two different categories based on material
type. The first model is the isotropic damage model, which is used for modeling ductile
material. In this model, a scalar variable is use to capture the growth of damage. The
second model is anisotropic damage model, which is used for modeling brittle material.
Unlike the former model, a forth order tensor is required in order to account for damage
growth in all directions. Obviously, concrete must be modeled by using anisotropic
damage mechanics.

One drawback of CDM is that the mathematical expression becomes ill-posed at a
certain level of accumulated damage. Ellipticity of the governing equations in quasi-static

problems cannot be assured, whereas hyperbolicity in dynamic problems can be lost
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locally. In numerical simulations, this shortcoming can be observed as extreme sensitivity
to the fineness and orientation of the mesh (Borst et al. 1995 and Peerling et al. 1998). To
overcome this problem, several approaches have been introduced in the past: for
example, nonlocal approaches (Pijaudier-Cabot and Bazant 1987, Simo 1988); rate-
dependent approaches (Needlemen 1988, Sluys 1992); and continuum models enhanced
with higher-order deformation gradients (Aifantis 1984, 1987, 1992, de Borst et al. 1995,
Peerling et al. 1998).

In the nonlocal approach, the state variables that fluctuate at the microscale are
spatially averaged by using a weight function. A characteristic length, which is an
essential parameter for the weight function, is influenced by spacing, size and shape of
inclusions (fibers in the case of FRCC). A major problem of this approach is how to
determine a suitable weight function. Furthermore, additional experiments are needed to
obtain the characteristic length. In rate-dependent damage models, a damage function is
incorporated as a result of classical viscoplasticity. It requires one additional material
parameter, i.e. the damage fluidity coefficient (i). As pn approaches zero, the model
exhibits instantaneous elastic response, and as p approaches infinity it is equivalent to a
rate-independent damage model. In the gradient-enhanced damage model, the equivalent
strain is used and can be obtained by using Taylor’s expansion up to the second order
terms. Hence, the equivalent strain is composed of the local strain and its gradient. To
determine the gradient term, additional boundary conditions are required in the boundary
value problems. However, the physical interpretation of these boundary conditions

remains an open issue (Peerling et al. 1998).
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2.4 Testing Techniques
In order to obtain the material parameters necessary to model the complete

behavior of HPFRCCs in three dimensions, several tests, which consist of uniaxial,
biaxial, and triaxial tests, must be performed under both compression and tension. This
section provides background about these testing techniques for normal- and high-strength
concretes, with and without fibers.
2.4.1 Uniaxial Tests

The uniaxial compression test is widely used in the civil engineering field. In fact,
current design guidelines such as ACI 318-05 (2005) and AASHTO standards (2000) are
based on the parameters obtained from this test. These parameters include the unconfined
compressive strength and the Young’s modulus. The testing procedure can be found in
ASTM D4832-02 standard (2002). Several issues regarding the geometry of the specimen
and the boundary conditions were pointed out by Van Mier et al. (1997). They found that
the friction at the interface between concrete specimen and the loading platens play an
important role influencing the strength and ductility of the post-peak response of
concrete. As a result of the frictional interface between the specimen and loading platens,
the slenderness ratio of the specimen influences both strength and ductility of the post-
peak response. In addition, prism shaped specimens give higher strength than cylindrical
shape specimens.

Unlike ordinary concrete, FRCCs and HPFRCCs are not brittle so the direct
tensile test must be performed to study tensile behavior. Since there is no standard test
procedure in direction tension, several issues must be taken into account when designing

the test setup. These issues include the geometry and alignment of the specimen, and the
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boundary conditions. In terms of geometry, Chandrangsu (2003) showed that the size of
specimens affects the strain value at the peak stress and the difference between small and
large specimens could be as high as three times with small specimens being more ductile
than large specimens. In term of alignment, Toutanji et al (1993) applied a small
confining pressure to the side of a specimen to ensure that the loading direction is always
parallel to the specimen. Since FRCC are not homogeneous, secondary flexural moment
can be developed when fixed loading platens are used. This will cause redistribution of
stress within a specimen and lead to higher fracture toughness than can be achieved with
free rotating boundary conditions (Van Mier and Van Vliet, 2002).
2.4.2 Biaxial Tests

Prior to 1969, solid steel platens were used to apply the compressive loads on
concrete specimens (Kupfer et al, 1969). Hence, the true biaxial loading conditions were
not satisfied because the solid platens restricted transverse expansions due to Poisson’s
effect and induced additional stresses in the specimen. Kupfer et al. (1969) proposed the
use of brush-like platens composed of steel filaments as the loading plates, which would
allow the specimens to move freely in the transverse direction. These platens are attached
to two independent actuators for loading. Under combinations of both compression and
tension, there are three segments in load space, i.e. compression-compression,
compression-tension, and tension-tension (Figure 2.10). It should be noted that due to
symmetry of loadings, only the shaded area needs to be tested.

Under compression-compression, Kupfer et al (1969) reported that the biaxial
strength of normal-strength concrete increases by about 16-27 % over the uniaxial

compressive strength depending on the loading ratio. Lee et al. (2004) confirmed that
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under equal biaxial compression, the compressive strength is about 17% higher than
uniaxial compressive strength. Hussein and Marzouk (2000) tested high-strength concrete
and found that the improvement of equal biaxial compressive strength of high-strength
concrete is less pronounced compared with normal-strength concrete (Figure 2.10).
However, the failure modes and crack patterns of both normal- and high-strength
concrete were almost the same. Yan and Lin (2007) conducted biaxial compression test
on concrete under dynamic loading with strain rates ranging from 107> /s to 102 /s. They
concluded that the dynamic strength increases as the strain rate and lateral confinement
increase. However, the initial tangential stiffness and the failure modes are not affected
by the strain rate. Lan and Guo (1999) tested concrete under repeated biaxial load and
noted that the failure envelopes of concrete subjected to repeated loads had no significant
difference from those subjected to monotonic loads. They also noted that the shape of the
stress-strain envelope curves under repeated biaxial loads is similar to that under repeated
uniaxial loads.

For steel-fiber reinforced concretes, Torrenti and Djebri (1995) utilized the same
test setup as Kupfer et al. (1969) and found out that addition of steel fibers increases
ductility substantially. In addition, orientations and types of fibers influence both failure
modes and the biaxial compressive strength. Yin et al (1989) also tested steel fiber
reinforced concrete under biaxial compression but they used different loading
mechanism. Instead of using two separate actuators to apply biaxial compressive loads,
they used two pairs of crescent shaped distribution beams to convert uniaxial
compressive force to biaxial compressive loads. This loading mechanism is known as a

load bifurcation mechanism. The main drawback of this loading mechanism is the
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limitation of the compressive loading ratios between two directions. Moreover, only
compressive forces can be applied using this kind of loading mechanism. It should be
noted that this loading mechanism originated from Su and Hsu (1988) for testing fatigue
under biaxial compression of concrete. The same conclusion that addition of fibers
increased ductility and strength was drawn.

Under compression-tension, the second and the forth quadrants in Figure 2.10 are
identical due to symmetry of loading. For normal-strength concrete, the compressive
strength decreases as the tensile stress in the other direction is increased (Kupfer et al.,
1969). Introduction of even small amount of tension in one direction could reduce the
compressive strength on the other direction more dramatically for high-strength concrete
than normal-strength concrete (Hussein and Marzouk, 2000). Demeke and Tegos (1999)
tested steel fiber-reinforced concrete (FRC) and noted that the strength of FRC is much
higher than regular concrete strength. They saw enhancements of strength ranging from
one to three times depending on the volume fractions of fibers.

Another test setup for biaxial compression-tension test was proposed by Tschegg
et al. (1995) to test fracture properties under multi-axial stress fields. In this test, a
rectangular concrete block was pre-notched on the top where a tensile force was applied
laterally by using a wedge. The compressive load from an actuator was applied to the
wedge and the top area of the specimen, which created a compressive reaction force at
the bottom of specimen. Hence, the biaxial compression-tension state could be achieved.
Another attempt of fracture testing under biaxial compression-tension was done by
Subramaniam et al (2002). A hollow concrete specimen was subjected to torsional

loading, which creates biaxial compression-tension in the principal direction. They
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concluded that the fracture parameters, such as stress intensity factor (K;) and the
resistance curve of the cracking opening failure mode could be obtained by this method.

In the tension-tension regime, the tensile strength under any given loading
combinations of biaxial tension is almost the same as the uniaxial tensile strength for
normal-strength concrete (Kupfer et al, 1969 and Lee et al., 2004). In addition, material
parameters such as K; and the Paris coefficient in the Paris fatigue law are similar to
those obtained from uniaxial tension (Subramaniam and Shah, 2003).
2.4.3 Triaxial Tests

In triaxial compression tests, there are two methods to apply confining pressure,
namely active and passive confinement (Figure 2.11). In active confinement, a concrete
specimen is placed in a pressure cell filled with pressurized fluid, i.e. the lateral load is
achieved through hydrostatic pressure. Once the pre-defined confining pressure is
reached, longitudinal load is then applied and the axial stress-strain curve and lateral
strain history are obtained. The following conclusions can be drawn from existing
literature (Smith et al., 1989; Imran and Pantazopoulou, 1996; Sfer et al., 2002; and
Gabet et al, 2006): (1) increasing the confining pressure changes the failure mode of
concrete from brittle to ductile strain hardening; (2) the volumetric strain starts with
contraction up to the peak strength, followed by expansion; (3) the flow direction of
plastic is not perpendicular to the yield surface; hence, using associative flow will
overestimate the volumetric strain; (4) there is little difference in the yield surfaces of
normal- and high-strength concrete (Li and Ansari, 1999); (5) increasing confining
pressure decreases the permeability due to collapse of internal pores inside concrete

(Mahboubi and Ajorloo, 2005); (6) the envelope curves of cyclic response for unconfined
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and confined normal concrete are the same as the monotonic response curves. However,
this observation is valid only for the ascending branch of the envelope curve of confined
high-strength concrete subjected to cyclic loading. The descending branch needs to scale
down for each unloading/reloading cycle (Lokuge et al, 2003).

For passive confinement, lateral load is provided by either a steel tube or fiber
reinforced polymer tube wrapped around a concrete specimen. A critital difference
between these two materials is the peak strength, which in turn affects the maximum
confining pressure. As axial load is applied, the concrete expands laterally due to the
Poisson’s effect, but is arrested by the wrapping material, which leads to an increase in
the confining pressure. The passive confining test provides more effective means for
studying concrete behavior under confinement than the active confinement test because
the confining pressure increases with the damage buildup (Pantazopoulou and Zanganeh,
2001). This is favorable for concrete under compression because the ductility increases.
Example of passive confining test setups using steel tube can be found in Ahmad and
Shah (1982); and Panazopoulou and Zanganeh (2001). For FRP wrapping, some
examples for test setups include Spoelstra and Monti (1999); and Panazopoulou and
Zanganeh (2001).

Beside these two common triaxial tests, there is another triaxial test setup that
uses three independent actuators applying load to a concrete cube specimen. This test
setup is described by Schwer (2002) as the “true triaxial test” since the common triaxial
tests previously mentioned can only control two of the three principal stresses. However,
Lan and Guo (1997) observed that the test results under multi-axial compressions

between proportional and non-proportional loading appear to have no effect on response.
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However, the concrete responses under combination of compression and tension are
sensitive to the stress paths. Lin et al (2002) studied the effect of triaxial compressive
loading history on the reduction of tensile strength by correlating ultrasonic velocity with
the degree of damage. Once the level of damage is known, the reduction of tensile

strength can be determined.

2.5 Conclusion
This chapter surveyed the different techniques for modeling the constitutive
response of concrete and HPFRCC. Model classification based upon by the scale was
first discussed followed by models for HPFRCC at the structural, macro, and micro-scale.
An extensive discussion for macro-scale models for concrete was also presented. A
variety of concrete models including plasticity, micro-plane, fracture mechanics, and
damage models were introduced. The chapter closed with a survey of the test techniques

used to obtain the parameters necessary to calibrate the surveyed models.
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proposed in this dissertation
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Figure 2.6 Various forms of hardening (Schwer, 2003)
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Figure 2.7 Cap models for concrete available in LS-DYNA
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(a) Discrete crack model (b) Smeared crack model

Figure 2.9 One-directional crack model (Bangash, 2001)
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CHAPTER 3

EXPERIMENTS

This chapter reports on experiments performed under various loading paths to
understand the complete behavior of HPFRCC in three-dimensional space. The loading
paths selected include uniaxial, biaxial, and triaxial loading conditions (Figure 3.1). The
test are conducted for HPFRCC with both hooked and Spectra fibers. The results from
these tests are then used to construct the failure surfaces, hardening and softening

functions presented in Chapter 4.

3.1 Experimental Program and Preparation of Specimens

3.1.1 Mix Proportions and Properties of fibers

Two different types of fiber are considered in this work, namely hooked and
Spectra. The fibers are embedded in a matrix with 8 ksi strength. The mix proportions for
the mortar mix are given in Table 3.1 and include early age cement type III, fly ash type
C, and Flint sand with ASTM 30-70 gradation. Superplasticizers are employed to
increase flowability.

The main parameters in this study were fiber type and volume fractions. As
shown in Figure 3.2, the two types of fiber are 1.5 in-long high strength steel hooked and

1.5 in-long Spectra fiber. The Dramix® hooked fibers are made of high strength steel and
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are a trademark of Bekaert, Belgium. The Spectra™ fibers are made of high molecular
weight polyethylene and are a trademark of Honeywell, US. Compared with other
polymeric fibers, Spectra® fibers have higher strength and higher elastic modulus and
typically used in the aerospace industries. Properties of both types of fibers are given in
Table 3.2. Previous studies (Chandrangsu, 2003) showed that the optimal length for
Spectra fiber for HPFRCC applications is 1.5 inches for the mix proportion chosen. Three
volume fractions are considered in the tests, i.e. 1.0%, 1.5%, and 2.0%. As a result, each
loading path was composed of seven series as shown in Figure 3.1 (including 3 for
Spectra, 3 for hooked and base mortar test). The test series are indentified using three
abbreviated terms: the first term represents the loading conditions (UXC for uniaxial
compression), UXT for uniaxial tension, BXC-C for biaxial compression-compression,
TXCS for triaxial compression with confining pressure of 6 ksi, and TXCM for triaxial
compression with confining pressure of 7.5 ksi); the second term represents the fiber type
(S for Spectra, H for hooked, and M for mortar without fiber); and the third term
represents the volume fraction of fiber. For examples, BXC-C-S1 represents HPFRCC
with 1% Spectra fiber under biaxial compression-compression test, and TXCS-HI1.5
denotes HPFRCC with 1.5% hooked fiber under 6-ksi triaxial compression test.
3.1.2 Specimen Preparation

Water was first pre-mixed with super-plasticizer so that when the liquid part was
mixed with the cement, the chemical reaction between super-plasticizer and cement could
be fully developed. In the mixing process, all dry components (cement, sand, and fly ash)
were first mixed together in the mixing machine for a few minutes. About half of the

liquid part was then added. Once the dry components were fully mixed with the liquid
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part, fibers were slowly added in a small amount at a time and the rest of liquid part was
then intermittently added as well. Extra care was taken to prevent Spectra fiber form
lumping into big balls. Once the mixing process was achieved, the specimens were cast
into plastic molds on a shaking table in order to achieve good compaction.

The specimens were kept in their molds and covered with plastic sheets for about
24 hours. They were then removed from the molds and were placed in water tank for
curing for at least another 28 days. Afterwards, they were removed from the tank and left
to dry for 48 hours prior to testing. In addition, for the uniaxial compression test
specimens, both ends of the cylinder were capped with sulfur before testing to ensure an

even loading surface.

3.2 Uniaxial Tests

3.2.1 Testing procedures

The uniaxial tests were divided into compression and tension tests based on the
loading path. A standard cylinder specimen (3 in X 6 in) was used for the uniaxial
compression test. Three LVDTs were attached along the side of specimen to measure the
longitudinal deformation up to the peak load. To prevent damage to the LVDTs from
rapid deformation increases after the peak load, the LVDTs were removed and the post-
peak deformation was obtained from the machine displacement instead. The full stress-
strain response was then obtained by joining the two parts. In the pre-peak regime, strain
was obtained by dividing the average of the three LVDT deformations with the LVDT
gauge length. In the post-peak regime, strain was obtained by dividing the machine

deformation by the total specimen height. The stress was directly obtained by dividing
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the machine load with the cross-sectional area. To ensure the consistency of the results, at
least three specimens within the same series were tested and the average curve was used.

A dog-bone shape specimen was used for the uniaxial tension test. The
dimensions of dog-bone shape specimen are shown in Figure 3.3. Two LDVTs with
gauge length of 7 in were attached along the sides of the specimen in the loading
direction. Tests were carried out in an MTS machine with a stroke rate of 0.025 inch per
minute. A data acquisition system was used to record the applied load from the machine.
The deformation of specimen was obtained by averaging the readings of the two LVDTs.
Again, to make sure that the test results were consistent, at least six tests were repeated
for each series.

The average curves for both test results are finally used as inputs to determine the
parameters of the plasticity model (Chapter 4). In addition, Young’s modulus is also
obtained from the unconfined uniaxial compressive test.

3.2.2 Test Results

Figure 3.4 shows the average uniaxial compressive stress-strain responses of
mortar and HPFRCC with different types and volume fractions of fibers. Additional
details on each type and each volume fraction of fiber can be found in Appendix A. The
peak strength and its corresponding strain clearly increase in the HPFRCC mixes
compared to the plain mortar specimen. For example, the peak strength of UXC-H for all
volume fractions increased by 25% whereas the corresponding strain at peak was
increased by 50% over the corresponding mortar values. The failure mode was observed
to shift from brittle to ductile once the fibers were added. This was clearly evident in the

softening part of the stress-strain curve. Both enhancements, i.e. the strength and the
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gradual softening, were due to the fact that the dispersed fibers hindered lateral
expansion, which in turn increased the confining pressure. Since the mortar is a pressure
dependent material, increasing confining pressure enhances both the strength and the
ductility of the material (Table 3.3).

Figure 3.5 shows the average uniaxial tensile stress-strain responses of mortar and
HPRCC with different types and volume fractions of fibers. Clearly, the response of
mortar without fiber is brittle under tension. The response of plain mortar (UXT-M) is
linear elastic up the first crack, followed by an abrupt drop associated with the crack
localization. The addition of fibers changed the response dramatically and eliminated
localization after the first cracking. In this study, specimens mixed with both types of
fibers (UXT-H and UXT-S) showed strain-hardening behavior along with multiple
crackings (Figure 3.6). Other enhancements were evident too. For example, the strength
of UXT-H was at least five times that of plain mortar. Similarly, the strength of UXT-S
was four times higher than plain mortar strength. In term of ductility, UXT-S showed
greater ductility than UXT-H. Specifically, at 2% strain, UXT-S could maintain a stress

level of 75% of the tensile strength whereas UXT-H could sustain only 25% (Table 3.4).

3.3 Biaxial Tests
3.3.1 Testing procedures
A total number of 90 specimens with the size of 5.5 in X 5.5 in X 1.5 in were
tested using an existing test setup at UI-MUST-SIM facility at the University of Illinois.
This test setup was composed of four independent actuators each with loading capacity of

112 kips (500 kN) situated on the loading frame. Each actuator was attached with a
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brush-like platen that was designed in such a way that when the load was applied in the
longitudinal direction, the specimen could expand freely in the transverse direction. The
test setup was similar to that used by Kupfer et al. (1969). A non-contact displacement
measurement system called Krypton® system was used for detailed measurement of the
deformation in the test panels (Figure 3.7a). The signal receivers were placed in the
middle of the specimen 1.5 in apart from each other as shown in Figure 3.7c. In each
direction, receivers were aligned into three lines and the two outer receivers were used to
measure the in-plane deformation along each line. The deformation along each line was
then converted to strain and the in-plane strain was obtained by averaging three strains in
each direction. Hence, the horizontal deformation was obtained by averaging the
deformation of receivers (1-3, 4-6, and 7-9 receivers) whereas the vertical deformation
was obtained by averaging the deformations of receivers (1-7, 2-8, and 3-9 receivers). In
addition, an LVDT was attached at the back panel of the specimen to measure the out-of-
plane expansion (Figure 3.7b). The out-of-plane deformation was obtained by adding the
z-direction movement of the middle receiver (No. 5) with the deformation of the LVDT.
The main parameter varied during the tests was the ratio between principal
strains. Due to symmetry in biaxial strain space, the four loading paths shown in Figure
3.8 are sufficient to provide the necessary information regarding the biaxial compression-
compression behavior of HPFRCC. The loading paths are classified as the ratio of the
vertical to the horizontal strain: C-C for ratio of 1; C-0.4C for the ratio of 0.4; C-0.6C for

the ratio of 0.6; UXC for the ratio of 0.
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3.3.2 Testresults

During the first trial experiments, it was found that all specimens exhibited failure
by out-of-plane splitting. This was manifested in the load-displacement curve as a sudden
drop after the peak point (Figure 3.9). This problem was due to the fact that the length of
the fibers was about the same size as the thickness of the specimen. Thus, the fibers were
aligned in the in-plane direction of the specimen. In other words, there was no fiber in the
out-of-plane direction to prevent the splitting crack. To alleviate this problem, each series
was recast into one big specimen with dimensions of 6.5 in X 6.5 in X 18 in and then
sliced into 10 specimens each of size 5.5 in X 5.5 in X 1.5 in. This improved the results
dramatically as show in Figure 3.10. Table 3.5 summarizes the key parameters of the
peak point of HPFRCC under uniaxial and equal biaxial compression.

The uniaxial compressive responses of HPFRCC tested with the biaxial test setup
are shown in Figure 3.11. The longitudinal stress is plotted against both longitudinal and
transverse strains. As can be seen, the strength of UXC-H increases as the fiber volume
fraction increases. However, the strengths of UXC-S under all fiber volume fractions are
about the same value. In term of the effect of the test setups and geometry of specimens,
the comparison of uniaxial response between cylinders and rectangular panels is shown in
Figure 3.12. In the pre-peak region, the Young’s moduli obtained from both setups are
almost identical but the cylinder specimens give higher compressive strength than that of
rectangular specimens. In addition, the amount of fibers in cylinder specimens does not
affect the compressive strength. In the post-peak region, the rectangular panels are more
ductile than the cylinders in the hooked fiber case. However, the ductility in Spectra is

less affected by the setup or geometry of specimens when compare with the hooked fiber.
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The equal biaxial compressive responses of both fiber types are plotted against the
uniaxial compression in Figure 3.13. In the pre-peak regime, the initial slope of both
uniaxial and equal biaxial compressions is identical for both types of fibers. However, the
peak stress of both fibers is improved over the uniaxial compressive strength. In the post-
peak regime, except the BXC-C-S1 and BXC-C-S1.5, the ductility under equal biaxial
compressions is similar to that under uniaxial compression. For the BXC-C-S1 and BXC-
C-S1.5, the receivers were detached from the specimens after reaching the peak load.
Hence, the post-peak strains were discarded in the graph. The failure envelopes of
specimens with both fibers under biaxial state of stress are compared with normal
concrete in Figure 3.14. Under equal biaxial compression (BXC), the ratio between the
peak strength and the unconfined compressive strength is improved from 1.1 in high
strength concrete to 1.5 and 1.6 in HPFRCC constructed with hooked and Spectra,
respectively. The failure envelopes of regular concrete were obtained from Hussein &
Marzouk (2000). The enhancement is attributed to the fibers, which prevent out-of-plane
expansion, which in turn helps to improve the confinement and thus increases the

compressive capacity.

3.4 Triaxial Tests
3.4.1 Testing procedures
Passive triaxial tests were performed using a 500-kip compression machine. A
steel tube 3 in in nominal diameter and 7 in in height was used to encase the HPFRCC
specimens to the necessary confinement (Figure 3.15). The level of passive confinement

was varied by changing the thickness of the tube. Two thicknesses of steel tubes used in
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this study are 1/8 and 1/16 in, which are denoted on the first term of ID as “S” and “M”,
respectively (see Figure 3.1). During the casting process, a thin Teflon sheet was placed
inside the steel tube to minimize friction between specimen and the tube. The HPFRCC
material was cast inside the tube. A clear depth of 0.5 in was left on each end so that a
steel loading plate could fit inside the tube and directly load the specimens.

Three LVDTs were placed along the side of the tube for measuring longitudinal
deformation and two strain gauges were attached to the tube at the mid-height (on
opposite sides of the tube) in both longitudinal and circumferential directions. The
longitudinal strain gauge was used to evaluate the effect of friction between specimen
and the tube whereas the circumferential strain gauge was used to measure the expansion
of the tube which was then converted to confining pressure.

The dog-bone shape steel pieces were cut from the tube and direct tension tests
were performed to obtain the stress-strain curve of the steel tube. Once the stress-strain
curve of steel tube was known, the circumferential strain of the steel tube could then be
converted to circumferential stress and this stress was then converted to confining

pressure using the following formula:

P= (3.1)

where P is the confining pressure, o is the circumferential stress, R and t are the radius
and thickness of steel tube, respectively. From the direct tension tests and the above
formula, the maximum confining pressure of 1/8-in and 1/16-in thick are 6 and 7.5 ksi,

respectively.
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3.4.2 Testresults

The stress-strain responses of HPFRCC under triaxial compression test are plotted
in Figure 3.16. The overall stress-strain response is not influenced by the type and
volume fractions of fiber. This is attributed to the heavy confinement provided by the
steel tube which over shadowed the effect of the fibers. Nevertheless, the strength of both
hooked and Spectra specimens under both confining pressures is slightly greater than
regular mortar. Figure 3.17 illustrates the responses of HPFRCC with 2% Spectra under
all loading conditions tested in this study. The initial slope of the responses under all
loading conditions is the same but the strength is improved as the confining pressure
increases. Another observation is that the minimum volumetric strain (sv’min) of Spectra
specimens, which indicates the ability of specimen to expand laterally in the hardening
regime, was double that of mortar (Figure 3.18). This volumetric strain (g, ) is calculated
by adding the longitudinal strain with the lateral expansions, which are identical in both
transverse directions. The minimum volumetric strain indicated as the lowest contraction
point of the volume strain is numerically defined as the lowest negative number of &,.
Similar to the uniaxial compressive response, €, starts with the contraction as the lateral
expansion at the initial state is still less pronounced than the longitudinal strain. However,
as the load increases, the lateral expansions increase at a higher rate than the longitudinal
deformation and subsequently, the volumetric strain switches from negative to positive.
Table 3.6 summarizes the key parameters that are used to obtain the material parameters

for the failure surface.
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3.5 Conclusion

The chapter begins with discussion of the fiber properties and mix proportions used
in this study. The mixing process to achieve the high performance response is given. In
particular, it is noted that special care should be taken during mixing to avoid problems,
such as segregation due to excessive liquid and balling of fibers, which could jeopardize
the performance of the HPFRCC. The uniaxial tests under both compression and tension
are discussed next. It is noted that the addition of short fibers into the mortar improves
not only the strength but also the ductility in both loading paths, especially the tensile
one. The biaxial compression-compression tests are discussed next, and the special
loading platens that allow specimens to expand freely in the loading plane are described.
The test results reveal that including the fiber significantly increases the material strength
under biaxial loading because the fibers prevent the out-of-plane expansion inducing a
confinement effect. The last section covers the triaxial compression tests, based upon
which, it is concluded that under high pressure confining pressure, the effect of fibers is
diminished. As a consequence, the shape of the yield surface depends mostly on the

strength of the matrix and not on the fiber content.
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Table 3.1 Mixed proportions by weight of cement

Matrix type Mortar
Cement type 3 1
Silica sand (Flint) 1
Aggregates
Coarse aggregate -
Fly ash class C 0.15
Chemical admixtures Super-plasticizer Added when the mix is too dried
Water 0.4
Types of fibers Hooked & Spectra
Fibers
Volume Fraction V¢ (%) 1.0, 1.5,and 2.0
Compressive strength f{ ksi (MPa) 8 (55.2)
Table 3.2 Properties of fibers
Tensile Elastic
Diameter Length Density
Fiber Type strength Modulus
in (mm) in(mm) g/cc ksi (MPa) ksi (GPa)

Hooked 0.015(0.38) | 1.18(30) 7.9

304 (2100) | 29000 (200)

Spectra | 0.0015(0.038) | 1.50(38) | 0.97

374 (2585) | 16960 (117)

51




Table 3.3 Summary of the key parameters of the average test results of mortar and
HPFRCC from uniaxial compression tests

Fiber v , Peak point Post-peak

Types of | yolume ID mogn‘% S strain at

fiber | fraction oduius Strength (f.) | Strain | 40% of f;
(%) ksi (MPa) ksi (MPa) | (%) (%)
1.00 UXC-S1 5421 (37376) | 8.01 (55.19) 0.31 1.23
Spectra | 1.50 | UXC-S1.5 | 6528 (45009) | 7.57 (5221) | 0.22 1.79
2.00 UXC-S2 | 4292 (29592) | 7.24 (49.93) 0.27 1.88
1.00 UXC-H1 3083 (21257) | 8.25(56.91) 0.29 0.52
Hooked 1.50 | UXC-H1.5 | 5360 (36956) | 8.75 (60.30) 0.31 0.62
2.00 UXC-H2 | 5288 (36459) | 8.30(57.23) 0.26 0.85
Mortar UXC-M 3856 (26586) | 6.27 (43.25) 0.21 0.43

Table 3.4 Summary of the key parameters of the average test results of mortar and
HPFRCC from uniaxial tension tests

Fiber First crack Peak strength
Types | yolume . x
of fiber | fraction ID Stress (0.c)" | Strain (g..)* | Stress (opc) Strain (spc)
(%) ksi (MPa) (%) ksi (MPa) (%)
1.00 UXT-H1 | 0.15(1.03) 0.024 0.46 (3.15) 1.61
Spectra 1.50 | UXT-H1.5| 0.14 (0.96) 0.021 0.48 (3.24) 1.24
200 | UXT-H2 | 0.13 (0.93) 0.019 0.45 (3.09) 0.61
1.00 UXT-S1 | 0.16 (1.13) 0.010 0.51 (3.48) 0.28
Hooked 1.50 UXT-S1.5 | 0.19(1.33) 0.013 0.61 (4.24) 0.29
200 | UXT-S2 | 0.18 (1.25) 0.017 0.58 (4.00) 0.30
Mortar UXT-M | 0.12(0.82) 0.013 - -

* referring to Figure 1.1
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Table 3.5 Summary of the key parameters of the average test results of HPFRCC from
biaxial compression tests

Peak point
Volume Uniaxial compression Compression-Compression
Types fraction |  Horizontal Vertical Horizontal Vertical
of fiber Stress | Strain | Stress | Strain | Stress | Strain | Stress | Strain
ksi ksi ksi ksi
(%) (%) (o) (%) (%)
(MPa) (MPa) (MPa) (MPa)
6.35 9.42 9.36
1.00 - -0.53 0.53 0.28 0.49
(43.77) (64.97) (64.50)
5.39 8.61 9.98
Spectra | 1.50 - -0.31 0.43 0.68 0.64
(37.16) (59.37) (68.78)
5.64 9.57 8.40
2.00 - -0.36 0.68 0.71 0.93
(38.91) (66.01) (57.90)
5.23 9.98 10.37
1.00 - -0.37 0.44 0.58 0.70
(36.06) (68.80) (71.52)
7.24 10.06 10.24
Hooked | 1.50 - -0.29 0.56 0.53 0.70
(49.88) (69.33) (70.63)
7.48 9.40 9.54
2.00 - -0.42 0.72 0.81 0.73
(51.59) (64.84) (65.76)

Note: Negative number in € for uniaxial compression case represents tension (expansion).
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Table 3.6 Summary of the key parameters of the average test results of mortar and
HPFRCC from triaxial compression test

Confining pressure
Volume ] ]
6 ksi (41 MPa) 7.5 ksi (52 MPa)
T fraction
ype of
fiber fmax €max 8V,min fmax €max 8v,min
ksi ksi
(%) -) (%) ) (%)
(MPa) (MPa)
21.17 32.17
1.00 0.025 -0.53 0.037 -0.91
(145.95) (221.83)
21.48 32.62
Spectra 1.50 0.040 -0. 61 0.042 -0.71
(148.10) (224.89)
20.47 31.67
2.00 0.045 -0. 61 0.048 -0. 92
(141.16) (218.36)
21.51 30.01
1.00 0.015 -0. 55 0.033 -0. 54
(148.33) (215.38)
22.10 31.24
Hooked 1.50 0.022 -0. 55 0.040 -0. 40
(152.41) (215.39)
22.83 32.21
2.00 0.018 -0. 59 0.041 -0.43
(157.40) (222.05)
18.90 28.76
Mortar 0.013 -0. 33 0.034 -0. 71
(130.31) (198.28)

fmax: Maximum stress

€max: Corresponding longitudinal strain at maximum stress (positive number represents

contraction).

€y min: Minimum volumetric strain (negative number represents contraction).
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(a) Spectra fibers (b) Hooked fibers

Figure 3.2 Photos of (a) 1.5-in. long Spectra fibers and (b) 1.5-in. long hooked fibers
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Figure 3.3 Configuration of tensile specimen
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Figure 3.5 Effect of volume fractions of fibers on uniaxial tensile behavior of HPFRCC
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(a) First few cracks (b) Saturated cracks (c) Localization

Note: Light color line represents minor crack
Dark color line represents major crack

Figure 3.6 Photos showing multiple cracks at different loading states observed in
HPFRCC with Spectra 1% in tensile test
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CHAPTER 4

THEORY OF MACRO-SCALE PLASTICTY MODEL FOR HPFRCC

A macro-scale plasticity model for High Performance Fiber Reinforced Cement
Composites (HPFRCC) is presented in this chapter. First, a brief overview of general
requirement for the plasticity model is given. Then, a four-parameter compressive yield
surface for concrete proposed by Hsieh et al. is discussed and is further modified to
develop a macro-scale plasticity model for HPFRCC. Finally, the tension yield surface is

proposed and added into the developed model in the last section of this chapter.

4.1 Introduction

Because HPFRCC behaves like many geomaterials in an inelastic nonlinear
manner, a simple linear elastic model is not sufficient to describe its stress-strain
behavior. Therefore, a macro-scale plasticity model that is based on phenomenological
observations of HPFRCC behavior is introduced. Phenomenological models employ a
mathematical formulation to describe the macro-scale behavior of a given material
without regard to how it behaves at the micro-scale level (Ogden, 1984). One essential
requirement of this theory is material homogeneity in which material components are
uniformly distributed. In the case of HPFRCC, this requirement is satisfied, in that fibers

are not organized in any specific patterns and are distributed randomly. Even though,
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phenomenological models heavily depend on engineering judgment, such models have
been successfully used by many researchers and are widely accepted to provide good

accuracy with less computational demand than micro-scale models.

4.2 Plasticity Model for Compressive Response of HPFRCC
The behavior of ordinary concrete is first discussed in this section with emphasis on

the requirements for concrete yield surfaces. These requirements are then used to extend
an existing model for concrete to model HPFRCC response. Since HPFRCC behaves
differently in compression and tension, a separate model for tension response is also
proposed.
4.2.1 General characteristics of the plasticity model in concrete

The response of regular concrete under uniaxial compression shown in Figure 4.1
can be divided into two different sides, i.e., compression and tension. In the compression
regime, the response is initially linear elastic up to point A, i.e. the loading/unloading are
on the same path (Figure 4.1). Beyond point A, the concrete starts to develop permanent
plastic deformations as a result of micro-cracks and collapsing air voids inside the
concrete. In other words, the concrete will not be able to fully revert back to the starting
stage when unloading occurs. Under such conditions, the loading and unloading paths no
longer coincide. Concrete will soften in compression beyond the peak stress.

The yield surface of concrete must have the following characteristics: (1) smooth
and convex; (2) pressure-dependent; (3) able to model the difference between
compressive and tensile strength; (4) nonlinear in the meridian plane; and (5) able to

capture the change in volumetric strain. The first condition is derived from the
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consequences of Drucker’s postulates and ensures that the concrete material is stable.
However, this condition does not necessarily apply under the softening regime. The
second condition arises from triaxial compression test results (Schwer, 2002). In Figure
4.2, the load starts at stage I where the particles inside concrete resist the load up to
pressure P;. At this stage, no permanent deformations have taken place yet and therefore,
the concrete material is assumed to behave as an elastic material. Once the pressure
exceeds Py, air voids inside the concrete starts to collapse and hence, the bulk modulus,
which is the slope between pressure and volumetric strain, reduces. Stage II can also be
referred as work-hardening stage. At pressure P,, the concrete particles are fully
compacted; thus the load is now solely resisted by concrete particles and crushing starts
to take place. The third and forth conditions, which are logically necessary conditions,
can be achieved by using a non-circular cross-section with a larger radius on the
compressive meridian. In addition, test results reveal that at low hydrostatic pressure, the
yield surface shape is nearly triangular. However, as the pressure increases, the yield
surface bulges (becomes more circular). The last characteristic also stems from
experimental data, where it has been observed that the volumetric strain starts with
contraction up to peak stress, followed by dilation (expansion) beyond (Figure 4.3).
Moreover, triaxial test results show that the volumetric strain direction does not coincide
with the direction of plastic flow (Smith et. al, 1989). Therefore, the non-associative flow
rule should be used to model concrete.

Concrete plasticity models can be classified according to the number of
parameters required to define the yield surface. The number of parameters range from

two up to five parameters in the literature. A one-parameter model is not enough to fully
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define a concrete yield surface, since concrete is a pressure-dependent material. Some
examples of two-parameter models are the Mohr-Coulomb and Drucker-Prager models;
further examples can be found in Chen (1982), Jansen (1975), and Schreyer and Babcock
(1985). Examples of three-parameter models can be found in William and Warnke
(1975); Chen and Chen (1975); Chen et al. (1980); Elnashai and Nicholson (1986); Lade
(1982); and Lade et al. (1994). Examples of four-parameter models can be found in
Ottosen (1977); Hsieh et al. (1979); Voyiadjis and Abu-Lebdeh (1994); and Imran and
Pantanzopoulou (2001). Examples of five-parameter models can be found in William and
Warnke (1975); Barzegar and Maddipudi (1997); and Balan et al. (2000).
4.2.2 Original HTC model

Hsieh et al. (1979) proposed the four-parameter HTC model by combining an
equilateral triangular cross-section with a circular shape to represent the surface shape in
the deviatoric plane. In the derivation of this yield function, three of five requirements
listed in the previous section are considered. First, the compressive meridian must be
higher than the tensile meridian under the same level of pressure. Consider the two
extreme yield surfaces in the deviatoric plane as shown in Figure 4.4a. The two cross-
sections represent a circle (r = K) and an equilateral triangle (r(cos 0) = k). To satisfy
this first condition, these two cross-sections are merged and the new cross-section
equation becomes r(acos® + b) = k. Second, the yield surface drawn in the meridian
plane is nonlinear. This was achieved by introducing a square term of ‘r’ into the cross-
section equation. Third, the yield function is pressure-dependent, which was
accomplished by adding the pressure term ‘p’ into the equation. The new yield function

of the HTC model is:
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F(p,1,0) =ar? + (acos®@+B)r+Cp—1=0 4.1)
where r and p represent the deviatoric and the hydrostatic components of stress tensors,

respectively (r =2],,p = %) Material constants a, o, B, C can be directly obtained

from experiments. It should be noted that even though the smoothness and convexity
conditions were not considered when deriving the yield function, Eq. (4.1) does satisfy

this requirement. The yield function can also be expressed as a function of invariants as:

J2 \/E 01 Iy _ 4.0
(fc’)2+ch’+Cfc’+ch’ 1= (4.2)

F(Ill J2, 0'1) =A

where A, B, C, and D are material parameters that can be evaluated from four different
loading conditions: unconfined uniaxial compression, equal biaxial compression,
confined triaxial compression, and uniaxial tension (Hsieh et al., 1982).

Three drawbacks of this original model can be identified. First, this model does
not consider post-peak behavior, i.e. post peak response. Secondly, the model does not
consider the evolution of volumetric strain. Lastly, since the associative flow rule is used,
the plastic flow direction is perpendicular to the yield surface, which is contradictory to
actual test results.

4.2.3 Modified HTC model

To address the drawbacks of the original HTC model, Imran and Pantazopoulou
(2001) modified the HTC model by adding softening and potential functions to capture
the post-peak behavior and the change in volumetric strain, respectively. The yield
function of the modified HTC model is composed of two parts: the hardening (F;) and the
softening parts (F,) and the new equation can be written as:

F(o,k, 1) = F,(0,k) + F,(0o,1) (4.3)
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where

1-— k
Fi(0,k) = kk + By/]; + Cko; + DKI; + Epee —— Kt 12 — kf! 4.4)
and
I , ,
FZ(O-’ I‘) = _( I‘) Itransf + (1 r)fc (45)

The first term F,(o,k) remains almost the same as the original equation. The
second term F,(o,r) was introduced to capture the post-peak response. The parameter
1rans in the second term was introduced to capture the failure mode of the post-peak

response of concrete. This parameter represents the magnitude of hydrostatic stress at the

transition point between brittle and ductile failure modes. If the confining pressure is

three times greater than I;"™™

, the failure mode of concrete shifts from brittle to ductile.
The hardening and the softening parameters are derived from Hognestad’s parabolic

equation and the Cosine function, respectively (Figure 4.5).

o= Bopfoma %) (g 4.6)

p,max
1 1 €, — €

r=—=+—-cos <T[ w) 4.7)
2 2 €p,ult — €p,max

In Eq. (4.6) and (4.7), the scalar parameter £, is a measure of the plastic
deformation that can be obtained from the equivalent inelastic work. As shown in Figure
4.5, €pmax and €,y correspond to the value of ¢, at the peak and residual strength,

respectively and ko represents the value of k at the initial yield surface. The equivalent

plastic work can be defined as follows:

o:deP
= = | ==~ 48
[ae= [ 55 (4.8)
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The evolution of the yield surface with respect to the hardening parameter k is
shown in Figure 4.6. Unlike the J,-plasticity model, this model uses a cap surface to limit
the material strength in the hydrostatic loading case. Figure 4.7 and Figure 4.8 show the
yield surface under various softening stages. If the hydrostatic pressure exceeds the
transition pressure (IF3"), the effect of softening factor ‘r’ is diminished. In other words,
the concrete behaves as a perfectly plastic material when the concrete is triaxially loaded

under high hydrostatic pressure that is three times greater than 133"S

Another feature added in this model is the non-associative flow rule. The
Drucker-Prager yield surface is selected as the potential function which is used to control
not only the direction of the plastic flow but also the amount of volumetric plastic strain.

The Drucker-Prager function is defined as:

80) = ac=+ V2 —c 4.9)

where ¢ does not need to be defined since only the gradient of the potential function is

b

used. The parameter ‘ac’ is the slope of the flow direction which in turn controls the

amount of volumetric plastic strain and can be defined as:

ay €p >
ac = -1 (4.10)
(1 - T]) <£p,max
where a,, is the value of ‘ac’ under uniaxial loading and 1 is the ratio of . 2 at zero
p,max

volumetric plastic strain, which is also the same point where the stress reaches the peak
point (Figure 4.3).
4.2.4 Modified HTC model for HPFRCCs

The experimental results of HPFRCCs under uniaxial compression reveal that the

fibers help to prevent the sudden drop that occurs after the load reaches its peak point.
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The fibers act in a manner similar to a thin confining tube surrounding specimen as
shown in Figure 4.9. Because the presence of fibers does not significantly increase the
strength, although it does increase ductility, a third term is introduced into the modified
HTC described in Eq. (4.3). Since the softening shape of HPFRCC:s is different from that
of regular concrete, an exponential function is applied in the third term. Hence, the yield
surface is now composed of three different functions, i.e. a hardening function (F,), a

cosine softening function (F,), and an exponential softening function (F3).

F(o,k r) = F,(0,k) + F,(o,1) + F3(0,5) (4.11)

A 1-k
F,(0,k) = ﬁ + B/, + Ckoy + DKIy + Epee — 12 — kf! (4.12)

kf! kf!
I
F,(o,r) = —(1 — Imp)(1 — D)f! [lgrﬁ - 1] (4.13)
I

Fs(0,s) = —Imp(1 — s)f! [qrﬁ - 1] (4.14)

The parameter Imp controls the level of the stress at the beginning of the
exponential softening curve as shown in Figure 4.10, whereas the exponential factor ‘s’

controls the slope of the softening curve that is expressed as a function of &, (Figure 4.5):

_(D(Sp — Sp'int)] (415)

s = Exp~! [
sp,ult - 8p,int

where the factor ‘w’ controls the slope of exponential curve (Figure 4.11). g, ¢ indicates

the plastic strain at the residual state. At this state, the material becomes perfectly plastic,
i.e. stress does not increase or decrease with an increase in strain.

For the ease of fitting data, the definition of g, is changed from the equivalent

inelastic work to the effective plastic strain and is expressed as:
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2
= [ dey = | /gdsl’:dsl’ (4.16)

Therefore, under uniaxial compression response, the material parameters
€p,max Ep,inty AN €p ¢ €an be obtained by simply subtracting the elastic strain from the

total strain.

4.3 Plasticity Model for Tensile Response of HPFRCC

In contrast to regular concrete where localization and subsequent sudden
softening occur once the strain reaches the first crack, HPFRCC exhibits strain hardening
tensile behavior until crack saturation occurs. In other words, the tensile behavior of
HPFRCC showing strain hardening and then gradual softening makes it a good candidate
for a tension plasticity model. Several points are considered in constructing the maximum
tension yield surface as follows. First, the tension surface has to merge into the
compression surface. In order to prevent sudden change in stress between compression
and tension, the zero pressure point A, which represents the dividing point between both

yield surfaces (Figure 4.12), is chosen. By substituting zero pressure (I; = 0) into the

modified HTC yield function (Eq. 4.11), the corresponding \/E at this point A is

determined as

-2
\/E == 1,]2,HTC = w—; (417)

b2 — 4ac

k! (4.18.1)
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2Ck 2T
b=B+—sin(e+—) 4.18.2
~ ! (4182)

c = —kfl + [(1 — IMP)(1 — r)f{] + [IMP(1 — s)f{] (4.18.3)

Second, using the same method used for constructing the cap surface for the
compression yield surface, the limit point for the tension yield surface is selected as point
B in Figure 4.12 (where ], = 0). At this point, the material is under triaxial tension
(TXT). Since there are no test results for this case, it is assumed in this study that the
maximum principal stress is the same as the uniaxial tensile strength. Therefore, the
second point is expressed as

(I12.4/122) = (3£, 0) (4.19)

Third, an intermediate point C (11_3,\/E) located between the transition and
TXT points is defined by using uniaxial and equal biaxial tensions. At uniaxial tension
(UXT), the first invariant (I;) and square root of the second invariant (\/E) are f; and

f./\/3, respectively, whereas at equal biaxial tension (BXT), I; and \/E are 2af; and

af, /v/3, respectively. The parameter o represents the strength ratio between equal biaxial
and uniaxial tensions. From Table 4.1, the lode angles of UXT and BXT, which are at the
extreme limits of the lode angle (i.e. 8 = m/6 and — m/6, respectively), are constant.
Unlike points A and B, where the lode angles are not constant, the linear interpolation
using the sine function between UXT and BXT points is employed to obtain the

intermediate point. Therefore, the intermediate point is expressed as

I3 =f, [1 + (a—1) (sin 0+ %)] (4.20)
\/E=%[1+(a—1) (sin9+%)] (4.21)
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With these three points, the tension yield surface is proposed to be as follows
Fo=xl2+yl;+z—./],=0 (4.22)
where the material parameters X, y, and z are obtained by substituting I; and the

corresponding \/E of the three identified points into the yield function.

2, Ii; 1 x V21
1, L 1 {y}= NI (4.23)
1%3 L 1 z V23

By inverting the first matrix of the right hand side equation, the solutions of x, vy,

and z are obtained.

-1

X B Iy 1 V]za
{Y} = I%,z Li 1 V22 (4.24)
z I%,3 Il,3 1 A/ ]2,3

where

1

x==[(lz — La)Vlza + (Flua + 1a)yT22] (4.25.1)
1

y =5[22 + B )VIon + (1F1 —1E4)V]22] (4.25.2)

1
Z=3 [(17 11,4 — 11,21_%4)\/]2,1 + (-2 0, + 11,11%,4)\/ J2.2] (4.25.3)
d= (11,1 - I1,2)(11,1 - I1,4)(11,2 - I1,4) (4.25.4)

To rid the denominator term ‘d’ of parameters x, y, and z, multiplying Eq. (4.22)
with ‘d” and let’s define X' = xd, y' = yd, and z' = zd. Then, the tension yield function
now becomes

Fo=x+ylL+7z —d/]; =0 (4.26)

By substituting the value of I; and the corresponding \/]_2 at three points from

Table 4.1, material parameters x’,y’,z’, and d can be obtained as
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X' =xd = f[Qa — DB — 2]\/Iznurc + V3FZ[1 + (o — 1] (4.26.1)
y' =yd = f2[8 — 28(2a — 1) — B2Qa — 1)?]/Jontc — 3V3fE[1 + (a — 1B]  (4.26.2)

z' = zd = 37 [1 — (2a — DBI[Q2a — 1B — 2]/J2u1c (4.26.3)
d =3f3[1 - 2a—-1)B][(2a—1)p - 2] (4.26.4)
B= (sin®) +3 (426.5)

So far only the construction of the maximum tensile yield surface is given, the
evolution of the tension yield surface is not yet discussed. In order to make sure that the
continuity between compression and tension yield surfaces exists at every loading state,
the development of the tension yield surfaces, i.e. expansion under hardening regime and
contraction under softening regime, must be taken into consideration. As the tension yield
surface expands, the compression yield surface must be expanded also to maintain
continuity between these two yield surfaces. Therefore, the hardening and softening
parameters (k, r , and s) are shared for both compression and tension yield functions. By
introducing the hardening and softening parameters into Eq. (4.26), a complete tension
yield function is written as:

Fi(okr,s) =x'I2 + [(y + Z)Vrs —Z]l; + k2’ —d|/]; = 0 (4.27)
where the material parameters x’,y’,z’, and d are obtained from Eq. (4.25). Although the
hardening and the softening parameters of both compression and tension yield functions
are the same, the shapes of the both responses are not the same. Under uniaxial
compression, the shape of the response starts with the parabolic function, followed by a
mix of cosine and exponential functions. However, under uniaxial tension, the shape of

the response composes of bilinear hardening, followed by an exponential softening shape.
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Therefore, the hardening (k) and the softening parameters (r and s) are redefined under

tension as
(ky — ko)
k=———¢ +k : <g <¢ .
e g, + Ko 0<eg,<¢gp, (4.28)
k = 1- kl . ’ ’ ’
= (ep—ep1) +ki : gpy <gp<gp, (4.29)
€2 ~ Epa
g — ¢l
r=s=Exp|— ( (5= 5a). €y < Ep < Eps (4.30)
(Sp 3 p 2)

where kg ,kq,€,1,€p2,and g, 5 are defined in Figure 4.13. The parameter y is defined
as the slope of exponential softening function. The definition of tension effective plastic
strain is defined the same way as in compression. Hence, both compression and tension

effective plastic strains are defined as:

,2

=fdsp5f Fderider ;P20 (4.31)
fz

:fd.s{, Ef §dsp:dsl’ : P<O (4.32)

Since the effective compression plastic strain (ap) is not the same as the tension
effective plastic strain (sg), g, must be updated as the tension yield surface evolves. For
the hardening region (Eq. 4.6), the inverse relationship between €, and k can be obtained

as

2
(1-k)

p = tpmex| 1 [y (4.33)

€

For the softening region (Eq. 4.7 and 4.15), the inverse relationship between €, and

p

softening parameters (r and s) can be obtained as

83



(

Epult — €
(puae = €pmar) cos™'(2r—1)

= J m 4.34
Ep max (gp = Ep int) ( )
l Sp,int - : : ll’l(S)
w

€p,max +

Conversely, if the compression yield surface evolves, the tension effective plastic

strain €/

p must be updated. Under the hardening region, two separate equations are used to

obtain the corresponding €;,. The first equation is when the hardening parameter k is

between k, and k;

(k—Kko)
Ep = € (4.35)
P~k
The second equation is when k is between k; and 1 and can be expressed as
, , (k ko)
€ = €p, (1 — % (spz p,1) (4.36)

Under the softening region, the minimum value of r and s is taken and the corresponding

si, is obtained as

£ =¢ep, — (£p3 - pZ)

n[min(r, s)] (4.37)
The same potential function used for compression (Drucker-Prager model) is used
for tension. However, the slope of plastic flow direction (at) is defined as a constant
value since there is no information on how the volumetric strain expands or contracts
respected to the longitudinal strain. Nevertheless, the potential function defined here is
for future expansion of the model. Once the relationship between volumetric and

longitudinal strains is known, the parameter ‘at’ can be easily adjusted to fit with the

experimental results. Therefore, the potential function for tension is defined as:

(a)—aT +¢_ —c (4.38)
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where ar is the slope of the plastic flow direction used to control the amount of
volumetric plastic strain.

One of a few drawbacks of the proposed model is the kink at the connection
between compression and tension yield surfaces (Figure 4.12). Since only the zeroth
degree continuity is considered when constructed tension yield surface, the slope at the
transition is not smooth. Another drawback is the number of material parameters required
for modeling complete behavior of HPFRCC. However, out of 22 material parameters,
only six are required for determining compression yield surface and only two are required
for tension. The remaining parameters can be obtained from simple uniaxial compression
and tension tests.

Another limitation of this model is that it cannot simulate cyclic behavior. The
consequence of sharing hardening and softening parameters of both yield functions
together appears when cyclic loading occurs. To illustrate this effect, one element
subjected to uniaxial cyclic loading is simulated as shown in Figure 4.14. The load first
starts with compression until reaching the hardening regime, followed by unloading until
it reaches the tension side (Figure 4.14b). At the beginning, a compressive stress develops
as the compressive strain increases and once the stress reaches the initial yield surface,
the hardening parameter increases and the compressive yield surface starts to grow. Since
both yield functions share the same hardening parameter, the tension yield surface also
grows. Once unloading takes place, the pressure drops and the hardening parameter stops
developing (Figure 4.14c). As the pressure drops and switches from positive to negative
(from compression to tension), the algorithm is switched from compression to tension as

well. Since the current tension yield surface is not at the initial state, but at the last point
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where the yield surface stops expanding from the last compressive stress, the stress-strain
response under cyclic loading differs from the monotonic loading scenario shown as a
dotted line in Figure 4.14d. In other words, the tensile elastic region increases in size
when compared with the monotonic case. However, the strength capacity remains the
same as the monotonic case. It should be noted that the strain in the cyclic loading case is
obtained by subtracting the total strain from the permanent damage strain caused by the
compression regime. Since this dissertation focuses only on monotonic loading behavior,
correcting this unrealistic cyclic response is beyond the scope of this study and is
something that can be addressed in future work. Nevertheless, the proposed model is
sufficient to accurately represent monotonic loading behavior under both compression

and tension for HPFRCC.

4.4 Conclusion

A macro-scale plasticity model for High Performance Fiber Reinforced Cement
Composites (HPFRCC) is given in this chapter. The material model is divided into two
parts, i.e. compression and tension. In the former, an existing model is modified for
modeling HPFRCC compressive response. The shape of the compression yield surface is
taken similar to the modified HTC model proposed by Imran and Pantazopoulou (2001).
However, the softening part of the yield function is modified to accommodate the
difference between mortar and HPFRCC. Unlike mortar where the stress drops abruptly
after reaching the peak, the post-peak response of HPFRCC gradually softens. In tension
the modified HTC model is extended to cover tensile behavior. The evolution of variables

shared by both tension and compression surfaces is described.
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Table 4.1 Four points for constructing the tension yield function

First invariant | Second invariant | Lode angle
Experiment
(1) VI2) (6)
. . T
1. Compression yield surface 0 VJzHTC [_E’E]
2. Uniaxial tension (UXT) f f z
. Uniaxial tension — —=
t \/g 6
3. Equal biaxial tension (BXT 2af o Z
. Equal biaxial tension ( ) af; 7 G
.. : T
4. Equal triaxial tension (TXT) 3f; 0 _E’E]

where a is the strength ratio between equal biaxial tension-tension and uniaxial tension
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Figure 4.1 Idealized uniaxial stress-strain of regular concrete (Chen, 1982)
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Figure 4.2 Schematic of geomaterial particle compaction and corresponding pressure-
volume response under triaxial loading condition (Schwer, 2002)
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Figure 4.4 Original yield surface of HTC model (Hsieh et al., 1982)
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CHAPTER 5
IDENTIFICATION OF MATERIAL PARAMETERS AND MODEL

VERIFICATIONS

The model discussed in the previous chapter is calibrated and validated in this
chapter. After implementing the model in the commercial Finite Element software, LS-
DYNA, several exercises are conducted to ensure that the model gives good results with
respect to test data. These exercises include a variety of specimens including two-span

continuous beam, punching shear slab, slender wall, and a coupling beam.

5.1 Identification of Material Parameters

5.1.1 Material Parameters for Compressive Yield Function

As discussed in Chapter 4, a total of 22 material parameters are required to define
the yield and potential functions of both compression and tension parts of the model. The
yield surfaces define the boundary of the elastic region whereas the potential functions
define the plastic flow direction as well as control the magnitude of the volumetric plastic
strain. The material parameters A, B, C, D for the compression yield function are
obtained in two different stages, i.e. at the peak and residual points. These two stages are

selected for two reasons. The first is to ensure that the peak strengths under the three
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basic loading combinations, namely uniaxial (UXC), equal biaxial (BXC), and triaxial
compressions (TXC), match with the experimental results. The second reason is to
guarantee that the lowest softening stress can be achieved. Since the uniaxial
compression state of stress gives the lowest confining pressure out of these three loading
combinations, the lowest possible stress will be controlled by this loading scenario.
Therefore, at the peak point where all the internal hardening and softening parameters are

unity (k =r=s = 1), the yield function becomes:
A
F(o,k=1,r=1,s=1)=F]2+B\/E+C01+Dll—fc’=0 (5.1)
C

At the residual point, the hardening parameter remains unity (k = 1) but the softening

parameters are zero (r = s = 0) and the yield function is expressed as:

Iy

A
F(cr,k=1,r=0,s=0)=F]2+B\/E+C01+D11—fc’l (5.2)
C

1,trans

By substituting the material strengths for the UXC, BXC, and TXC cases into Eq.
(5.1) and the residual strength under UXC into Eq. (5.2), the material parameters A, B, C,

and D can be obtained by solving the following equation:

0.1

1 1 /

3 ﬁ 0 ! (A E I tfc |

fc, fc, trans

3 R o
fc’bz £, , ] ) = c (5.3)
37 ﬁ 0 —2fep £

(01— 02)? (07— 03) \D/
3t 73 —0z —01— 202_ . f. )

where f is the compressive strength; f’,, is the biaxial compressive strength; o; and o,

are the maximum longitudinal stress and its corresponding lateral stress under TXC,
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respectively. In this study, the residual strength is taken as at one percent of the unaixial

compressive strength.

0.1 1 0 1 ) £
A 3 V3 .
fl fl 1,trans
= — 0 —f!
B 3 \/§ ¢ ’
R e ; f (5.4)
C b ~<b 0 —2f!
3f! V3 cb fe
\D/ (61 —03)* (07— 03) o —6 — 2 ,
3f! NE 2 1 2 fe

The remaining two material parameters for the compression yield function, Ej
and I ¢rans, can be obtained once the material parameters A, B, C, and D are known. For
the hardening region, E; ., which defines the cap of the yield surface in the meridian
plane, is determined at the initial yield function. At the initial point, the hardening
parameter is prescribed as Kk, and the yield function is expressed as:

A
F(o,ko) = ﬁ + By/]; + Ckooy + Dkoly +
0'c

Enee(1 — ko)IE

htc( : o) 1 kofc, =0 (55)
kOfc
Under uniaxial compression, the principal stress first reaches the yield surface

at Ko f{. By replacing the invariants I; and J, with the uniaxial state of stress (Kof), Eptc

can be derived as:

E _ 1 A+B
he ™ -1 I3 " V3

—Dky—1 (5.6)
The variable I; ty4n5, Which defines the first invariant at the transition zone, is

directly obtained from the triaxial compression test. The transition zone is defined as a

point in which the post peak behavior changes from softening to perfectly plastic. Once

the first invariant reaches I ¢raps, the softening response is eliminated and HPFRCC

behaves as a perfectly plastic material.
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The remaining compression parameters are the effective plastic strains
(sp,max, €p,int, and sp'ult) and the slope of the exponential softening parameter (s). These
parameters are directly obtained by fitting the stress-strain response with the observed
response under uniaxial compression and are shown in Table 5.2 as a function of fiber

type and volume fraction.

5.1.2 Materials Parameters for Tensile Yield Function

Only the tensile strength and the ratio between equal biaxial to uniaxial tensions
are needed for the tension yield function. The hardening parameter k7, the effective
plastic strains(s{,,l, €p,2,and 8;,3), and the softening slope (s) are obtained by fitting with
the uniaxial test result (Figure 4.13). The initial hardening parameter K is shared with

the compressive yield function and takes the same value. The tension material parameters

are given in Table 5.3 as a function of type of fiber and volume fraction.

5.1.3 Mesh Size Dependency in Softening Response

To eliminate the mesh size dependency associated with softening behavior, the
material parameters related to the softening slope under both compression and tension are
modified to account for this effect. The diagonal length of the element is selected to
represent mesh size. To determine the sensitivity of the softening responses to mesh size,
two simulations, i.e. uniaxial compression cylinder and dog-bone tensile specimen, are
simulated. Under compression, a cylinder with the same dimensions used in the testing in
Chapter 3 is simulated. Three different sizes of elements are used ranging from 0.25, 0.5,
and 1 in. From the simulated results, it turns out that the mesh size has little effect on the

compressive softening slope (Figure 5.1). Therefore, the parameter w controlling the

98



compressive softening parameter is defined as a constant for each type and volume
content of fibers. Under tension, the dog-bone specimen is simulated where the same
element sizes used in the compression simulations are used as well. The simulations show
that the tensile softening slope does depend on the size of the element as shown in Figure
5.2. From the trend lines in both fibers, the softening parameter is directly proportional to
the element size. Hence, the tensile softening slope ‘s’ given in Table 5.3 is expressed in

term of diagonal length of the element.

5.2 Implementation and Simulation in LS-DYNA

5.2.1 Implementation

The proposed model is implemented in LS-DYNA as a user-defined material
subroutine called UMAT. Within the subroutine, the user-defined model is compiled with
INTEL-FORTRAN and linked to the LS-DYNA executable file as a static library as
shown in Figure 5.3 (Moraes & Nicholson, 2001). The user-defined subroutine is called
at every time step for each integration point. Users need to know priori what input
parameters are required and transferred from the main program to the UMAT subroutine
because some static libraries are not available from LS-DYNA. If that is the case, users
need to write their own additional static library. By default, the given inputs from the
main program are the incremental strain (A€), the previous state of stresses (O‘i_l) and
strains (si_l), and the history variables. The outputs from UMAT are the current material
state, e.g. state of stresses (O'i), strains (si) and history variables, which are needed for
the next increment. In the current version (LS-DYNA 971), LS-DYNA allows user to

write up to ten subroutines simultaneously and up to 48 history variables for each
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UMAT. Since LS-DYNA is written in FORTRAN, user-defined subroutines require a
FORTRAN compiler running on the users’ machine.
5.2.2 Material Model for Reinforcing Bars

In all simulations given in section 5.5, a bar reinforcement is modeled by using the
J, plasticity model (MAT 24) in LS-DYNA. The yield function of this model is

expressed as follows (Hallquist, 2007):

oy
F(o,0y) =], — 3 S 0 (5.7)

where |, is the second invariant of the deviatoric stresses and oy is the yield strength,
which is defined as

oy = B[GO — fh(sgff)] (5.8)
From Eq. (5.8), the yield strength is related to three parameters, i.e. the strain rate
factor (), the initial yield strength (o,), and the hardening function fh(sgff). Since the
simulation is under static loading condition, 3 is set to one. The hardening function is

expressed in term of the effective plastic strain sgff, which is defined as:

t
2
&P = f /gsp:spdt (5.9)
0

where €P is the plastic strain tensor. Example of the tabular form fh(sgff) for the
reinforcement is given in Table 5.4.
5.2.3 Contact Algorithm

The CONTACT AUTOMATIC SINGLE SURFACE algorithm is wused to
prevent inter-penetration between parts in this study. The algorithm employs the penalty
method in which slave and master surfaces are automatically defined within the code.

When the slave node penetrates the master surface, the code automatically detects and
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calculates the required force to push the slave nodes back to the master surface. This
required force is determined from fictitious spring stiffness and the penetration
displacement (Figure 5.4). The stiffness of the fictitious spring is calculated from the bulk
modulus, contact area, and volume of the elements on the master surface. Further details
regarding to this contact algorithm can be found in Hallquist (2007). A static coefficient

of friction between all solid parts is assumed to be 0.3.

5.2.4 Element Formulations

To avoid hour-glassing during simulation, a full quadrature is used for an 8-node
solid element (Figure 5.5a). The Hughes-Liu beam element formulation with 2 X 2 Gauss
quadrature integration is used to model reinforcements. This beam element formulation is
selected because it is based on a degenerated brick element formulation (Tavarez, 2001).
Hence, it is compatible with the solid elements used elsewhere. The beam element
contains six degree of freedoms in both translation and rotation. The orientation of the
beam element is defined as shown in Figure 5.5b. The main geometry input parameter of
this element is the nominal diameter of the rebar, not the radius as specified in the manual

(Hallquist, 2007).

5.3 Single Element Exercises
The first exercise to ensure that the proposed model works is to exercise a single
three-dimensional solid element subjected to various loading conditions, i.e. uniaxial,
biaxial, triaxial, and shear loading combinations as shown in Figure 5.6. In all loading

combinations except shear, the load case is further divided into compression and tension.
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A fully integrated solid element with the dimension of 1 in. X 1 in. X 1 in. is used where
a prescribed displacement is specified at nodal points depending on loading conditions.

In the uniaxial loading cases, the prescribed displacements are equally applied at
nodes on two faces opposite to each other in the opposite direction. The computed stress-
strain responses under compression and tension are plotted in Figure 5.7a. In the equal
biaxial case, the prescribed displacement is now applied at four faces in the same plane in
the opposite direction. The biaxial stress-strain responses under compression and tension
are plotted in Figure 5.7b. Notice that strength enhancement occurs under equal biaxial
compression due to the increase in pressure. On the contrary, strength reduction occurs
under equal biaxial tension. This is to be expected since the strength ratio « in the tension
yield function is defined to be 0.5.

In the triaxial case, two different confining pressures are applied to demonstrate the
effect of confining pressure on the strength and ductility response under both
compression and tension. The confining pressure is first applied at the four horizontal
faces. Once the confining pressure reaches the specified level, it is kept constant and the
prescribed displacement in the vertical direction (z-axis) is applied next. Under
compression, the two confining pressure levels are 5 and 10 MPa (Figure 5.7c¢).
Obviously, increasing the confining pressure improves both strength and ductility. Under
tension, the two confining pressure levels are 1 and -1 MPa. It should be noted that the
sign convention of confining pressure is positive under compression and negative under
tension. Two things can be pointed out from the stress-strain responses. First, the strength
and its corresponding strain are dependent upon the confining pressure. As shown in

Figure 4.12, decreasing the confining pressure (or increasingl;) will reduce the
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corresponding \/E on the yield surface and thus, the strength will also be reduced.
Second, the residual strength under tension is usually set to zero. However, for the
confining pressure of -1 MPa case, the triaxial tension state of stress is reached (all
principal stresses are at 1 MPa) before the softening variables reach zero. At this
particular point, the triaxial tension algorithm is triggered and the state of stress is kept
constant. In the shear case, the shear strength is a direct result from combining the
compression and tension yield surfaces together. This loading case should not be
confused with the pure shear force case since the simulation is performed under

displacement controlled. The normal stresses are not zero in this case.

5.4 Simulations of Uniaxial Compression and Uniaxial Tension Tests

In this exercise, two simulations with the same dimension as used in the
experiments are performed to see if the material model can capture the observed overall
responses. In the first simulation, a 3 in X 6 in cylinder is compressed by two steel plates.
Fully integrated solid elements are used as shown in Figure 5.8. A linearly elastic
isotropic material model with the properties of steel is used for steel plates. Two
boundary conditions are enforced at the end nodes of the steel plates. A fully fixed
boundary condition is enforced at the bottom nodes whereas the prescribed displacements
are enforced at the top nodes.

Figure 5.8 illustrates the contour lines of both hardening and softening parameters
under various loading stages. Since the friction between specimen and both steel plates
inhibits the expansion on the top and bottom of the specimen, the hardening parameter

first reaches unity in the middle portion of the specimen. After the peak, softening starts
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to take place as the deformation kept increasing. Figure 5.8c and Figure 5.8d show the
contour lines of the Cosine softening parameter (r) and exponential softening parameter
(s), respectively. Notice that the parameter ‘r’ softens faster than the parameter ‘s’. This
is due to the fact that the development of ‘r’ takes place right after ‘k’ reaches unity but

the development of ‘s’ takes place much later (at €p in¢ ).

In the second simulation, the dog-bone shape specimen with same dimensions as
given in Figure 3.3 is simulated. To duplicate the real boundary conditions used in the
test, four cylindrical steel supports are also included in the simulation. Figure 5.9 shows
the contour lines of the hardening and softening parameters at various loading stages. In
the hardening stage, the stress is concentrated at the middle portion of the specimen.
However, in the softening stage, the stress is concentrated at one particular area and this

causes the localization at the end of the simulation.

5.5 Validation using Structural Tests

Several validation exercises are presented in this section to show that the developed

formulation is applicable to a wide range of loading conditions.

5.5.1 Two-Span Continuous Beam

5.5.1.1 Experiments

Chandrangsu (2003) proposed a bridge deck system using HPFRCC to replace the
negative reinforcements. According to AASHTO (2000), reinforcements in the bridge
deck must be provided in both top and bottom layers. However, in this proposed system,

the negative reinforcement, which was required for temperature and shrinkage controls,
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was entirely eliminated and replaced with HPFRCC. Only the positive reinforcement,
which was used to resist bending moment, was provided. To evaluate the performance of
this system, one strip of the bridge deck, which was equivalent to two-span continuous
beam, was tested under monotonic loading (Figure 5.10a).
e Experimental Setup

A two-span continuous beam with dimensions of 4 in X 7 in X 10.5 ft subjected
to monotonic loading was tested as shown in Figure 5.10b. The beam rested on three
supports was subjected to prescribed displacements applied through two loading platens.
Two exterior supports were placed on each side 3 in from the edge and one interior
support was placed at the mid-span. Each loading platen was placed on each span 1.875 ft
apart from the center of the beam. These two loading platens were attached to a hydraulic
Instron machine, which was used to apply the prescribed displacement. Two LVDTs
were placed under the beam at each loading point to measure the deflection at each span.
e Materials

The beam was constructed with HPFRCC with 1.5% Spectra fiber and a No.3
rebar was placed at 2.5 in from the bottom fiber. The material compositions by weight of
HPFRCC were 1-cement: 1-sand: 0.15-fly ash: 0.4-water. The experimentally obtained
uniaxial stress-strain curves of HPFRCC along with the simulated results are shown in
Figure 5.11. For the compressive response, the strain at maximum stress given in the
literature is three times higher than that given in Chapter 3 because the strain in the
literature was obtained from the machine displacement, which always gave higher value
than LVDT deformation. From the direct tension tests, the stress-strain responses showed

the size dependent effect. The upper bound curve denoted as (H) was obtained from the
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small dog-bone size whereas the lower bound curve denoted as (L) was obtained from the
large specimen. Further discussion regarding the specimen size and the size effect can be
found in Chandrangsu (2003). No.3 rebar had the Young’s modulus of 29,000 ksi and the
yield strength of 60 ksi. The ultimate strength was 105 ksi with the corresponding plastic
strain of 4.2%.
5.5.1.2 Finite Element Model
e Mesh Description

The three-dimensional finite element beam consists of beam elements to represent
the No. 3 rebar and solid elements to represent HPFRCC matrix and fixtures. Figure
5.12a shows the finite element mesh with the boundary supports and the loading fixtures.
The beam rests on half cylindrical shaped supports and is pushed down by two half
cylindrical shaped fixtures (Figure 5.12b). Since full bond between the rebar and the
matrix is assumed, the size of the solid element is dictated by the location of the rebar.
Hence, the solid elements are split along the height into two sections based on the clear
cover. The first section extends from the top fiber to the rebar and is meshed with 8
elements along the height. The second section extends from the rebar to the bottom fiber
and is meshed with 4 elements along the height. Both sections are meshed with 8
elements across the width (Figure 5.12c¢). Along the length of the beam, both
reinforcement and matrix is meshed with 200 elements. Hence, this beam consists of
19200 solid elements and 200 beam elements. The smallest mesh size of solid element is
0.63 in X 0.63 in X 0.47 in. Hence, the diagonal length of the smallest element, which is

1 in, will be used for obtaining the tensile softening parameter‘s’ in Table 5.3.
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The fixed boundary conditions were applied by fixing all the bottom nodal
displacements of the supports whereas the top nodes of the loading platens were fixed all
horizontal movements. In addition, the top nodes were enforced with the prescribed
vertical displacement as shown in Figure 5.13.

e Material Models

Three material models are used in this simulation corresponding to three main
components. The modified HTC model for HPFRCC proposed in Chapter 4 is used for
the matrix component of the beam. The material parameters are directly obtained from
Table 5.2 and Table 5.3 where the tensile softening parameter is obtained based on the
diagonal element length of 1 in. To provide a more objective comparison, the model in
Chapter 4 is recalibrated to uniaxial test data in Chandrangsu (2003). In other words, the
simulations in this exercise are performed based on two material parameter sets: (1) One
based on a direct calibration to test data in Chandrangsu (2003); and (2) Material
parameters directly obtained from Table 5.2 and Table 5.3 without any modifications.

A ], plasticity model (MAT24 in LS-DYNA) is used for the reinforcement where
the initial yield strength of No.3 rebar is 60 ksi and the tabular form f}, (sgff) is given in
Table 5.4. Notice that once the stress reaches the ultimate strength, the perfectly plastic
condition is applied. A linearly isotropic elastic model (MAT 1 in LS-DYNA) is used for
supports and loading fixtures where the elastic properties are the same as used in the
rebars.
5.5.1.3 Results and Discussions

Figure 5.14 shows the contour plots of the hardening and softening parameter (k

and r, respectively) at various stages. At the beginning, the hardening parameter is at the
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initial value (Figure 5.14a). As the prescribed displacement increases, the hardening
variable starts to propagate not only from the contact areas at the supports and at loading
platens, but also from the negative and positive moment sections (Figure 5.14b). Once the
hardening parameter reaches unity, softening starts to take over and propagates from the
extreme fiber of the beam in both positive and negative moment sections (Figure 5.14c¢).
It should be noted that the hardening parameter in the compression side reaching one
does not represent crushing of the HPFRCC. Crushing occurs when the softening
parameter reaches zero. However, the hardening parameter in the tension side reaching
one does represent the localization due to formation of a major crack.

The load vs. deflection in span under the point load is shown in Figure 5.15. In the
first case in which material parameters are recalibrated on test results provided in the
literature, both simulation results give similar trend as the experimental results but the
response of the beam with the lower bound tensile capacity (L) is closer to the test results
than with upper bound tensile capacity (H). The notations (L) and (H) indicate the two
different tensile curves of HPFRCC used in the simulations. In the second case where
material parameters are obtained from Table 5.2 and Table 5.3, the simulation result also
gives similar trend as in the first case. Although the compressive Young’s modulus in the
first case is lower than the second case, the load-deflection responses are similar in both
cases. Because the beam is designed as under-reinforced, the tensile response of
HPFRCC matrix governs the overall behavior of the beam. The comparison of deformed
shape at the final stage between test and simulation is shown in Figure 5.16. At this stage,

major cracks in the testing beam occurred at three locations: at the top fiber of the mid-
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span, at the bottom fiber of the left and the right loading platens. The simulation results

match these three locations.

5.5.2 Punching Shear Slab

5.5.2.1 Experiments

A HPFRCC slab subjected to concentrated load was tested as a part of the
proposed bridge deck system described in the previous section (Likhitruangsilp, 2006).
The deck configuration for the punching tests is the same as given in the previous section
(Figure 5.10a). Two different reinforcement layouts, i.e. no reinforcement (0T-0L), one
layer of reinforcement (1T-1L), are considered in this test. For specimens with
reinforcements, rebars are aligned in both directions perpendicular to each other (Figure
5.17).
e Experimental Setup

As shown in Figure 5.18, a square slab with dimensions 31 in X 31 in X 7 in was
tested under a concentrated load placed at the center of the slab. The slab rested on a steel
frame, which was intended to simulate as simply supported conditions. The dimension of
this frame was 32 in X 32 in with an opening in the transverse direction of 6 in at the
middle. The width of this frame was 2 in. A square 4 X 4 in? steel plate placing at the
center of the top of the slab was pushed down at a rate of 0.01 in/min. An LVDT was
placed at the bottom center of the slab to measure the deflection.
e Materials

The slab was constructed using HPFRCC with 1.75% volume fraction of 1.5-in
Spectra fibers. The mixture proportions by weight of this matrix were 1-cement: 2-sand:

l-aggregate: 0.5-water. The compressive strength was 6.5 ksi. Figure 5.20 shows the
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uniaxial stress-strain response of HPFRCC. For reinforcements, No. 3 steel rebars with
the Young’s modulus of 29,000 ksi and the yield strength of 60 ksi were placed in both
transverse and longitudinal directions at the spacing of 4 in. center-to-center. As stated
earlier, there are three configurations of steel layout considered in this test. With one
layer of reinforcement, the clear cover from the bottom of the slab was 2-5/16 in. The
layout of reinforcement is shown in Figure 5.17.

5.5.2.2 Finite Element Model

e Mesh Description

As shown in Figure 5.19a, the punching shear slab model consists of beam and
solid elements. For one layer of reinforcement case, the Hugh-Liu beam elements are
used to represent the No. 3 reinforcements whereas the fully integrated solid elements are
used to represent the HFPFRCC matrix, the steel frame, and the loading plate. Full bond
between matrix and reinforcement is assumed as in the previous simulation and thus, the
size of the solid element is selected to be 1 in X 1 in X 1 in. To simplify the meshing
process, the centroid of the rebars is moved up to 2 in measured from the bottom fiber.
Hence, the slab model consists of 6727 solid elements and 620 beam elements.

In terms of boundary conditions, the bottom nodes of the steel frame are imposed
with a fixed boundary condition. The top nodes of the steel plate are pushed down with
the prescribed displacement and prevented from moving horizontally. The
CONTACT AUTOMATIC SINGLE SURFACE algorithm was used to provide the

contact between the slab, the steel frame, and the loading plate (Figure 5.19).
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e Material Models

The same material models used in the two-span continuous beam simulations are
used here. The material properties of the modified HTC model are obtained from Table
5.2 and Table 5.3. Since there is no existing data for 1.75% Spectra fibers, the material
parameters used in this simulation are based on the response of HPFRCC with 1.5%
Spectra fibers. A minor re-calibration of the material parameters is performed to fit with
the uniaxial responses given in the literature (Figure 5.20). For the reinforcement, since
the literature provides only the yield strength, the steel is assumed here to behave as
elastic perfectly plastic material. Therefore, the hardening function f, (sgff) was set to be
independent of the effective plastic strain. For the steel frame and loading plate, the
material properties are the same as used for the rebars.
5.5.2.3 Results and Discussions

The comparisons of load vs. mid-span deflection curves between simulation and
experiment are shown in Figure 5.21. For the case of 0T-0L, the load-deflection response
is matched well with the experimental result. This is because the biaxial ratio factor (a)
is adjusted to be 0.5. In other words, since the HPFRCC component at the bottom center
of the slab is mostly subjected to biaxial tensile loading condition, the a ratio dictates the
maximum loading capacity. Therefore, the a parameter is adjusted until the maximum
load is fitted with the experimental result. For the case of 1T-1L, the initial slope and the
peak load of simulated response are matched well with the experiment but the softening
response of simulation is less ductile than the test results. This may be attributed to the
fact that the material model for reinforcement is assumed to be perfectly plastic without

hardening. In term of the shape of failure mode, the final deformed shapes of both
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simulation and test are illustrated in Figure 5.22. From the test result, the top steel plate
penetrates into the specimen, which indicates that that top deformation of specimen is
concentrated around the applied area. This can also be observed from the simulation. For
the bottom of the slab, the deflection shape of simulation matches well with the test.

Unfortunately, the crack pattern cannot be captured by this proposed model.

5.5.3 Structural Wall

5.5.3.1 Experiments
Parra-Montesinos et al. (2006) tested the structural wall constructed with

HPFRCC under displacement reversals. In order to resist large displacement demands
imposed by earthquake, the structural wall requires a substantial amount of transverse
reinforcement at the boundary regions for the confinement. However, this would lead to
difficulty in the construction process due to the congestion of the reinforcement. To ease
this problem, HPFRCC used to replace concrete in critical section helps to eliminate the
number of stirrups while not reducing displacement capacity.
e Experimental Setup

A structural wall with a span-to-wall ratio of 3.7 was tested under displacement
reversals. As shown in Figure 5.23, a structural wall with the dimension of 40 in X 40 in
X 136 in was subjected to displacement reversals at the top block through a 100-kip
hydraulic actuator. The dimension of the top block was 16 in X 16 in X 52 in. The base
block was 24 in X 24 in X 72 in and bolted to the strong floor. Lateral support was

provided at mid-height of the wall to prevent out-of-plane movement.
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e Materials

The wall was constructed with two different materials, i.e. normal concrete and
HPFRCC with 2% volume fraction of 1.5-in long steel hooked fiber (Dramix ZP 305).
The mixture proportions by weight of the matrix were 1: 0.48: 2: 0.48 (cement: water:
sand: fly ash). The compressive strengths of concrete and HPFRCC were 7 and 6.5 ksi,
respectively. The HPFRCC was used for the critical section of the wall whereas the
normal concrete was used for the rest of the specimen. The critical section was defined as
the location where the high strain demand occurred. Since the slender wall acted as
cantilever, the critical section was located at the bottom of the wall. For this particular
wall, the critical section was covered from the bottom of the wall up to 40 in (Figure
5.23).

As shown in Figure 5.24, the main reinforcements were aligned in two identical
layers. Each layer composed of 3 of No.5 rebars with the spacing of 2.5 in located at the
end of each side of the wall and 4 of No. 2 rebars with the spacing of 6 in located in the
middle of the wall. The transverse reinforcements were No. 2 rebars with the spacing of 6
in. Since the bottom block and the critical section of the wall were constructed with two
different materials, the cold joint at this section could not be avoided. To strengthen this
cold joint, No.4 dowel bars were placed at the bottom concrete block and were extended
14 in into the wall section. The properties of the reinforcements are listed on Table 5.5.
5.5.3.2 Finite Element Model
e Mesh Descriptions

The finite element model of slender wall consists of two different element types,

i.e. beam and solid elements. As shown in Figure 5.25, the beam element is used to
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represent main reinforcing steel bars, stirrups, and No. 9 bolts. The solid element is used
to represent the matrix of the wall, top and bottom concrete blocks, and the steel plate
that is used to apply the prescribed displacement. Based on given spacing of both main
reinforcements and stirrups, the size of solid element of HPFRCC section is selected to
be 2 in X 2 in X 1 in and that of concrete section of the wall is selected to be 2 in X 3 in
X 1 in. The diagonal element length of HPFRCC section is 3 in. Therefore, for the wall
part, the number of solid elements is 20 across the width X 4 through the height X 52
along the height. For top and bottom concrete blocks, to ensure the continuity between
wall nodes and the top and bottom blocks, the size of solid elements of these blocks is
dictated by that of the wall. Hence, the smallest element size of these blocks is the same
size as used in the wall. Since full bond between reinforcement and matrix is assumed,
the location and mesh size of beam elements are dictated by the size of the solid
elements. The spacing between two layers of reinforcement is modified from 2.5 in to 2
in to simplify the meshing process.

A fixed boundary condition is enforced at the bottom nodes of the bolts. To let the
top steel plate rotate freely in the z-direction (Figure 5.25), only one single line of nodes
through the depth is subjected to prescribed horizontal displacement. In addition, the
boundary condition at this nodal line is prevented from moving in the vertical and out-of-
plane directions.

e Material Models

The structural wall specimen is constructed with three material models, namely

modified HTC model, ], plasticity model, and linearly isotropic elastic model. The

modified HTC model is used for the main wall section for both HPFRCC and concrete
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sections. For the HPFRCC section, the material parameters are divided into two sets.
These two material sets are identical, except those parameters in tension. The material
parameters for tension of the first set (DYNA1), are obtained by fitting with the tensile
response given in the literature and the simulated response is shown in Figure 5.26a. For
the second material set (DYNA2), the material parameters for tension are directly
obtained from Table 5.3 without any modifications. As can be seen in Figure 5.26b, the
simulated tensile response in DYNAZ2 is different from the experimental responses. The
tensile strength in DYNAZ2 is four times higher than that in the literature but the overall
response in DYNA2 is less ductile than in the literature. For compression, since the
literature only provided the compressive strength, the material parameters for
compression are obtained from Table 5.2 for 2% hooked fibers.

For the concrete section, the modified HTC model is reduced to the Drucker-
Prager model by setting material parameters A, C, Ep;. to zero. Other material parameters

for compression are obtained by using the following well-known formula:

!

fcc _ fCON

where f/, is the axial compressive strength of concrete under confining pressure f-ox and
f¢ is the uniaxial compressive strength of concrete. The tensile response is assumed to be
elastic with softening after the peak. The ], plasticity model is used for the
reinforcements where the material parameters are given in Table 5.5. The input data
required for defining the hardening function fh(sgff) is the yield stress vs. the plastic
strain. No reinforcement is provided at the top and bottom blocks because the

deformation of these blocks are not the main concern in this simulation.
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The linearly elastic isotropic material model is used for top and bottom concrete
blocks as well as the top steel plate in which the prescribed displacement is applied. Since
most deformation takes place at the wall section, the elastic model is sufficient to
represent these parts. The material properties for both blocks are the same as used in the
concrete section of the wall. For the top plate, the elastic property of No.9 bolt is applied.
5.5.3.3 Results and Discussions

Figure 5.27 shows the load-drift responses of the structural walls. The envelope
curves of test results under cyclic loadings both positive and negative sides are plotted
against the monotonic curve obtained from simulations. The overall trend of both
simulated results is matched with the test. However, the initial stiffness of DYNA2 is
much higher than the experimental results and DYNAT1. This is due to the fact that the
tensile response used in DYNA2 simulation is different from thetest result. The
maximum load in DYNAI is over-predicted by 20% but the corresponding drift is the
same as in the test. Figure 5.28 shows the contour lines at various loading stages. The
softening region starts to propagate from the location where the dowel bars are
terminated. This location is the same as in the test where the major horizontal crack was
formed (Figure 5.29). It should be noted that the test was performed under cyclic loading.
Hence, the major horizontal crack was formed by propagation of two horizontal cracks
that intersect at the center of the wall. However, the simulation was performed under

monotonic loading and thus, the tension softening region occurred only on one side.
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5.5.4 Coupling Beam

5.5.4.1 Experiments

HPFRCC coupling beams constructed as a part of the reinforced concrete
structural wall systems were tested under displacement reversals in Wight et al (2007).
During a large earthquake, the coupling beams, which are used to connect between two
walls to form the structural wall system, are subjected to large inelastic deformation. The
steel reinforcement detailing is required for high energy dissipation and retaining the
integrity of the beams. However, this stringent detailing requires intensive labor and high
cost. To reduce the congestion of the rebars, HPFRCC is therefore used to replace the
steel confinement reinforcement.
e Experimental Setup

A coupling beam with the length-to-span ratio of 1.75 was tested under
displacement reversals. With this aspect ratio, the coupling beam was subjected to not
only high shear demand, but also flexural deformation under drift of the element. As
shown Figure 5.30a, the coupling beam was subjected to cyclic displacements at the top
concrete block through a 100-kip hydraulic actuator. A fixed boundary condition was
provided by bolting the bottom concrete block to the strong floor. The overall dimensions
of coupling beam with concrete blocks are given in Figure 5.30a.
e Materials

The coupling beam was constructed by using HPFRCC with 1.5% volume
fraction of hooked fiber. The mixture compositions by weight of this matrix were 1:
0.875: 2.2: 1.2: 0.8: 0.005: 0.038 (cement: fly ash: sand: aggregate: water: super-

plasticizer: viscosity modified agent (VMA)). The compressive strength of this matrix
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was 5.5 ksi. The main longitudinal reinforcements were placed into two identical layers.
As shown in Figure 5.30b, each layer composed of 4 of No.4 rebars with a spacing of 11
in and 24 in apart from each other. In addition, 2 of No. 3 rebar with the spacing of 7 in
apart from each other. The main diagonal reinforcements that were placed in the middle
of the cross-section located between two layers of the main reinforcements composed of
4 of No.5 rebars with a spacing of 17 in and 21in apart from each other. Since the
coupling beam and the blocks were constructed with two different materials, to provide
load transition, all main reinforcements including the diagonal rebars were extended 18 in
into concrete blocks on both sides. The web stirrups were No.3 rebars with the spacing
indicated in Figure 5.30. Properties of reinforcements are listed on Table 5.6.
5.5.4.2 Finite Element Model
e Mesh Description

The coupling beam model is composed of solid and beam elements. Solid
elements are used to represent HPFRCC and concrete matrices, and the steel plate
whereas beam elements are used to represent steel reinforcing bars, stirrups, and bolts.
The size of solid elements used in the HPFRCC matrix is dictated by the location of the
diagonal bars. With the diagonal bar slope of 0.5, the size of HPFRCC solid elements is 1
in X 2 in X 1 in. In addition, full bond between concrete blocks and HPFRCC is assumed.
The element size of concrete blocks along the width and the depth is controlled by
HPFRCC section at the interface areas.

Slight changes in geometry were made to make the mesh fit. For example, the
distance between the two outer diagonal bars is reduced from 20.75 in apart to 20 in.

However, the inner diagonal bars are moved farther from 17 in to 18 in apart. For the
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main reinforcements, No. 3 rebars are moved from 7 in. to 8§ in. apart from each other.
Reinforcements in the top and bottom concrete blocks are excluded in this model.

Two bars are connected from the top concrete block to the strong floor to prevent
the top block from rotating in the z-direction (Figure 5.31). In addition, 8 nodes of the
bottom block located at the same location as in the test are enforced with a fixed
boundary condition to represent contact with the fiber. A single line of nodes of the steel
plate is pushed horizontally with the prescribed displacement and prevented to move in
the vertical and out-of-plane directions.

e Material Models

The same set of material models as used in slender wall is used in this simulation
with modification of material parameters. For the modified HTC model, the material
parameters obtained from Table 5.2 and Table 5.3 for 1.5% hooked fibers are re-
calibrated to fit with the data given in the literature. Figure 5.32 shows the comparison
between the simulated responses and the test results. For the J, plasticity model, the
material parameters are obtained from Table 5.6.
5.5.4.3 Results and Discussions

Figure 5.33 shows the load vs. drift response of the coupling beam. The envelope
curves of both positive and negative loading directions are plotted against the response
obtained from simulation under monotonic loading. The model successfully captured the
overall trend of the response. The peak load is matched with the experimental result but
the corresponding drift is over-predicted by 25%. This is due to the fact that the
displacement reversals are applied in the experiment, which causes the crack to propagate

from both directions, which in turn reduces the stiffness of the beam. In addition, the
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softening response in the experiment happens earlier than the simulation due to the same
reason. Contour lines of the exponential softening parameter reveal that the coupling
beam starts with the crack on tension on both top and bottom of the coupling beam.
Figure 5.34 shows the hardening and softening contour lines at the final stage of loading.
The tension softening propagates at the same location where the major cracks occur in the

test.

5.6 Conclusion

This chapter covers the procedure to obtain the material parameters as well as
verification of the plasticity macro-scale model for HPFRCC given in Chapter 4. The
material parameters for compression yield function are obtained from three tests, namely
uniaxial, biaxial, and triaxial compression tests whereas the material parameters for
tension yield functions are obtained from uniaxial and biaxial tension. The remaining
parameters are obtained by fitting the simulated response with the uniaxial responses.
The softening response under compression shows little effect on the element size.
However, the tensile softening response shows strong dependency on the size of the
element. To compensate for this effect, the material parameters controlling the slope of
tensile softening curve are written as a function of diagonal length of the element. Several
exercises including a two-span continuous beam, a punching shear slab, a slender wall,
and a coupling beam are conducted to verify the proposed model. The simulations are

shown to capture the overall responses as well as the failure locations well.
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Table 5.1 Steps to obtain material parameters

Steps to obtain material parameters

1. The compressive strength (f.), Young’s modulus (E.), and Poisson’s ratio (v) are
obtained from uniaxial stress-strain compressive response.

2. Based on peak strengths under uniaxial, equal biaxial, and triaxial compressions,
material parameters A, B, C, and D are obtained by using Eq. (5.4).

3. The hardening parameter for the compression yield funciton E;;. is obtained next
from the initial condition ky(Eq. (5.6)).

4. The softening parameter for the compression yield function Iy rans 1s directly
obtained from triaxial compression test.

5. The effective plastic strains (Sp,max' €p,int aNd sp,ult) and the slope of exponential
softening parameter (s) are obtained by curve fitting with the uniaxial
compressive response.

6. The tensile strength (f;) is obtained from the uniaxial direct tension test.

7. The ratio between equal biaxial tension-tension and uniaxial tensile strength is
obtained from biaxial tests.

8. The effective plastic strains (sp,l, €p,2, and apj3) and the softening slope (o) is

obtained by curve fitting with the uniaxial tensile response.
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Table 5.2 Material parameters of compression yield surface and its potential function

Hooked Spectra

Parameter* | Mortar
1.0 % 1.5% 2.0 % 1.0 % 1.5% 2.0 %

f. 43.25 56.91 60.3 57.23 56.06 53.46 50.47

E. 25463.3 | 25620.7 | 25723.4 | 35228.4 | 20359.84 | 25931.6 | 22024.2
A 2.8548 | 2.7212 2.702 2.7464 2.7663 27975 | 2.8174
B 0.7022 | 1.3331 1.5908 | 1.5878 1.7897 1.7449 | 1.6172
C 2.6419 | 1.6452 | 0.9484 | 2.1228 1.0053 1.5965 | 1.0293
D 0.3570 | 0.6767 | 0.8191 | 0.8322 0.9554 0.9339 | 0.8728
Entc -0.3570 | -0.6767 | -0.8191 | -0.8322 | -0.9554 | -0.9399 | -0.8728

ligans | -301.26 | -309.89 | -318.37 | -325.03 | -329.51 | -332.57 | -326.04

Ko 0.37 0.37 0.37 0.37 0.37 0.37 0.37
£pmax 0.001 | 0.001 | 0.001 | 0.0015 | 0.002 | 0.001 | 0.001
Epint 0.001 | 0.001 | 0.001 | 0.0015 | 0.002 | 0.001 | 0.001
Epult 0.005 | 0.007 | 0.008 | 0.006 | 0.011 0.008 | 0.006

® 1.0 0.7 0.8 0.4 0.5 0.2 0.2
IMP 0.70 0.8 0.6 0.8 0.7 0.7 0.9

Ay comp 0.63 0.63 0.63 0.63 0.63 0.63 0.63

o 0.34 0.34 0.34 0.34 0.34 0.34 0.34
£y max -0.005 | -0.005 | -0.005 | -0.005 | -0.005 | -0.005 | -0.005
Ratiot 1.21 1.42 1.53 1.53 1.62 1.60 1.55

* Based on 25™™ x 25™™M x 25M™ single element and the unit of stress is MPa
1 Ratio between biaxial compression-compression strength to uniaxial compressive

strength (not the material parameter for yield function)
1 Assumed value based on Hussein & Marzouk (2000)
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Table 5.3 Material parameters of tension yield surface and its potential function

Hooked Spectra

Parameter | Mortar
1.0 % 1.5% 2.0% 1.0 % 1.5% 2.0%

f; 0.818 3.48 4.24 4 3.15 3.24 3.09
ot 1.0 1 1 1 1 1 1
k, - 0.7 0.9 0.7 0.9 0.9 0.9
€p1 - 0.0005 0.002 0.0005 0.008 0.007 0.003
€p,2 - 0.0025 0.005 0.004 0.021 0.02 0.015
3.50E-
€p,3 - 0.018 0.018 0.018 0.035 | 2.70E-02 0
o ) 0.0149d | 0.0084d | 0.0143d | 0.0156d | 0.0058d | 0.0143d
+0.15 +0.45 +0.4 +0.1 +0.15 +0.4
Ay,ten - 2 2 2 2 2 2

* Based on 25™™ x 25™MM x 25™MM gingle element and the unit of stress is MPa

1 Since there is no existing data, the ratio between biaxial tension-tension strength and
tensile strength is assumed to be 1.0. This assumption is based on the experimental results
of the normal strength concrete under biaxial loadings (Hussein & Marzouk, 2000).

1 d is diagonal length of solid element

Table 5.4 Material parameters of No. 3 rebar used in two-span continuous beam

ggff fh (ggff)

() | ksi (MPa)

0 | 60(414)

0.04 | 105 (724)

1.00 | 105 (724)
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Table 5.5 Properties of structural wall reinforcements

Nominal Yield point Ultimate point
Steel No. diameter Stress Strain' Stress Strain®
in (mm) ksi (MPa) (%) ksi (MPa) (%)
#2 0.25 (6.35) 62.0 (427.48) 0.214 | 63.2(435.75) | 0.228
#4 0.50 (12.70) | 92.3 (636.39) 0318 | 111.8(770.84) | 1.878
#5 0.63 (15.88) | 85.5(589.50) 0.295 | 101.4(699.13) | 1.567
! Based on assumed Young’s modulus of 29000 ksi (200 GPa)
* Based on assumed tangent modulus of 1250 ksi (8618 MPa)
Table 5.6 Properties of coupling beam reinforcements
Nominal | Young’s Yield point Ultimate point | Failure
diameter | modulus | Stress | Strain | Stress | Strain | strain
Steel No.
in ksi ksi ksi
(%) (o) (%)
(mm) (GPa) (MPa) (MPa)
0.375 28532 76.55 116.3
#3 0.27 10.23 | 13.63
(9.525) | (196.72) | (527.79) (801.86)
0.5 25035 72.50 106.9
#4 0.29 11.02 | 17.12
(12.7) | (172.61) | (499.87) (737.05)
0.625 23463 62.55 98.65
#5 0.29 10.94 | 17.29
(15.875) | (161.77) | (431.27) (680.17)
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Figure 5.1 Mesh size dependency under compressive softening response (UXC-H1)
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Figure 5.4 Penalty method for contact algorithm (Tavarez, 2001)
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(a) 8-node solid element (b) Hughes-Liu beam element

Figure 5.5 Orientation of solid and beam elements used in LS-DYNA (Hallquist, 2007)
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Figure 5.6 Single element test under various loading conditions
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Figure 5.7 Stress-strain responses under various loading conditions
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Figure 5.8 Contour plots of cylinder specimen at various loading stages
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Figure 5.9 Contour plots of dog-bone specimen at various loading stages
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Figure 5.10 Continuous beam test setup (Chandrangsu, 2003)
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TEST (H): Tensile strength of 0.66 ksi & TEST (L): Tensile strength of 0.53 ksi
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(b) Material parameters obtained from Table 5.2 and Table 5.3

Figure 5.11 Responses of HPFRCC with 1.5% Spectra fiber under uniaxial loadings
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Figure 5.14 Contour plots of the hardening and softening parameters at various loading
stages (without magnification)
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Figure 5.16 Deformed shape of continuous beam at the final stage
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Figure 5.18 Punching shear slab test setup (Likhitruangsilp, 2006)
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Figure 5.19 Finite element model of punching shear slab
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Figure 5.20 Responses of HPFRCC with 1.75% Spectra fiber under uniaxial loadings
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Figure 5.21 Comparison of load-deflection at mid span between test and simulation
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Figure 5.22 Deformed shape of slab at the final stage
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Figure 5.29 Deformed shape of the slab after testing
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CHAPTER 6

SUMMARY, CONCLUSIONS, AND FUTURE RESEARCH

6.1 Summary and Conclusions

The overall objective of this study is to develop a macro-scale, multi-axial
constitutive model for High Performance Fiber Reinforced Cementitious Composites
(HPFRCC). The developed model focuses on phenomenological behavior at the macro-
scale level and captures responses such as cracking, softening, and hardening. An
experimental program was conducted in order to gain a better understanding of the
behavior of HPFRCC under basic loading combinations. Once the behavior of HPFRCC
was understood from the experimental program, a material model was developed and
verified in the analytical program of this research. Specifically, a macro-scale constitutive
model for HPFRCC was developed and calibrated against the experimental results. The
proposed model was then used to simulate several HPFRCC structural tests to validate its

predictions.

6.1.1 Experimental Program

In the experimental program, two types of fibers, namely Hooked (H) and Spectra
(S), with three different volume fractions, which are 1%, 1.5%, and 2%, were mixed with

mortar having 8 ksi compressive strength.Hence, seven combinations including control

151



mortar without fiber were considered in this study. For these seven material

combinations, three loading paths including uniaxial, biaxial, and triaxial were selected

for the test program. The following conclusions can be drawn from the test results:

Under uniaxial tension, strain hardening behavior accompanied with multiple
cracking was achieved in all specimens mixed with both types of fibers. Both strength
and ductility of HPFRCC were generally improved compared with mortar without
fiber.

Inclusion of fibers increased ductility under all compressive loading paths except
under triaxial compression with high confinement. This indicated that the shape of the
compressive yield surface mostly depends on the strength of the matrix and not on the
fiber content.

Under uniaxial compression, the inclusion of fibers had little effect on the pre-peak
response but significant effect on the peak and post-peak responses. Both strength
enhancement and gradual softening were due to short fibers hindering lateral
expansion, which in turn increased the confining pressure. Since mortar is a pressure
dependent material, increasing confining pressure enhances both strength and
ductility of the material.

Under biaxial compression, although the shape of the failure surface of HPFRCC was
found to be similar to concrete, the strength ratio between equal biaxial and uniaxial
compressions significantly increased (1.5 and 1.6 for hooked and Spectra,
respectively) when compared with regular concrete (1.1 and 1.2 for high strength and

ordinary concrete, respectively). The enhancement was attributed to the fibers, which
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prevented out-of-plane expansion, which in turn helped to improve the confinement
and thus increased the compressive capacity.

e Under triaxial compression, the overall stress-strain response was not influenced by
either types or volume contents of fibers. This was attributed to the heavy

confinement provided by the steel tube which over shadowed the effect of fibers.

6.1.2 Analytical Program

The main objectives of the analytical program were to develop the material model
for HPFRCC and to calibrate and verify the material model against actual structural tests
that involved the use of HPFRCC. The macro-scale plasticity model was developed on
the basis of the test results conducted in the experimental program. Unlike concrete,
HPFRCC strain hardens after first cracking and then gradually softens once reaching the
peak. This unique behavior of HPFRCC makes it a good candidate for a tension plasticity
model. Due to clear differences in HPFRCC behavior under compression and tension, the
proposed model was divided into two parts. Under compression, an existing four-
parameter concrete model, which was originated by Hsieh et al. (1979) and later modified
by Imran and Pantazopoulou (2001), was adjusted in the softening part of the yield
function to accommodate the difference between mortar and HPFRCC. The inclusion of
fibers in HPFRCC was evident in the ductility of the descending part of the stress-strain
response. Under tension, the tensile yield surface was constructed by extending the
compressive yield surface. In addition, three tensile loading combinations, namely
uniaxial, biaxial, and triaxial tensions, were used to construct the new yield surface as
well. The main reason for extending the compressive yield surface to tension is to make

sure that continuity between compression and tension yield surfaces at every loading state
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exists. Internal parameters, i.e. hardening and softening parameters, were therefore shared
by both yield functions to ensure continuity.

After developing the macro-scale plasticity model, the material parameters were
calibrated using the test results given in Chapter 3. Then, several exercises, which
included a two-span continuous beam, punching shear slab, slender wall, and coupling
beam, were conducted to ensure that the model provides good results compared with test
data. The procedure to obtain material parameters is: 1) six material parameters for the
compression yield functions are obtained from uniaxial, biaxial, and triaxial compression
tests; 2) two parameters for the tension yield functions are obtained from uniaxial and
biaxial tension tests; 3) the remaining parameters, which control the shape of uniaxial
compressive and tensile responses, are obtained by curve fitting with the uniaxial
responses. The two material parameters (w and y) that control the slope of the softening
response under compression and tension are dependent on the size and orientation of the
elements. To get rid of the mesh dependency, these two parameters were expressed as the
function of the diagonal length of the element. Comparisons to test results show that
simulations using the proposed material model can capture the overall responses as well
as the failure mode and location well.

In conclusion, a few characteristics of the proposed model can be drawn. First, a
unique feature of the proposed yield surface for HPFRCC is that it contains a single yield
surface covered both compression and tension. This will ensure numerical stability when
crossing between compression and tension occurs. Second, the accumulated effective

plastic strain (sp) defined as a scalar product of plastic strain tensors is used to measure

the damage index for controlling the evolution of the plastic surfaces. The main
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advantage of defining €, this way is that the material parameters related to €, at various

stages can directly be obtained by subtracting the elastic strain from the total strain under

uniaxial responses. Third, the model can also be used for ordinary concrete by simply

modifying the material parameters.

6.2 Future Research

This research has been mainly focused on the development of a macro-scale,

multi-axial plasticity model for concrete. Some improvements and features can be added

to increase the capability of the developed models:

To reduce a number of material parameters and to simplify the compression yield
function, two softening parameters can be combined into one parameter. This will
subsequently reduce the components of the yield function. Instead of using a
combination of Cosine and Exponential softeniOng functions, a polynomial function
can be used. Wang et al. (1978) proposed a second order polynomial function with
four material constants to model the descending part. This polynomial function was
constructed from three points, i.e. peak, inflection, and residual points. The inflection
point located between the peak and residual point is in a way used to control the slope
of the softening curve. Furthermore, they proposed the same form of polynomial
function with another set of material parameters for the ascending part. This will help
to further simplify the expression of both hardening and softening parameters.

Instead of separately defining two effective plastic strains in compression and tension,
the conjugate effective stress, which is tied with a single effective plastic strain, can

be used (Shaw, 2008). An example of conjugate effective stress is comprised of |,
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and I; terms. The I; is used as the indicator of loading condition since I; is positive
under tension and negative under compression. This conjugate effective stress is

expressed as

_ Bl tch (6.1)

0. =
€ 1+c
where ¢ is the material parameters ranged from 0 to 1 for materials that are weak in

tension. The uniaxial state of stress, o, can be rewritten as

o0+ co

O =7 e s o: fortension (6.2)

_c—cc_(l—c) _
%e =1 1¢c _(1+c)0'

for compression (6.3)

Clearly, o, under compression is different from tension. The value of ‘c’ is actually the

strength ratio between compression and tension.

e This research has been mainly focused on the behavior under monotonic loading.
However, the model could be extended to simulate behavior under cyclic loading
with some modifications. These modifications may include the reductions of strength
and stiffness due to permanent deformations. In contrast to the constant Young’s
modulus used in this study, the Young’s modulus could be expressed in term of the
effective plastic strain. Therefore, as permanent deformations accumulate, Young’s

modulus is reduced and thus, decreases the unloading stiffness.
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APPENDIX A
STRESS-STRAIN RESPONSES OF HPFRCC UNDER VARIOUS LOADING
CONDITIONS (SUPPLEMENT TO CHAPTER 3)
A.1 Uniaxial Compression Test

A.1.1 Uniaxial compression responses of mortar with hooked fiber
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Figure A.1 Uniaxial compression response of mortar with hooked fiber: (a) 1.0% volume
fraction; (b) 1.5% volume fractions; (c) 2.0% volume fractions
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A.1.2 Uniaxial compression responses of mortar with Spectra fiber
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Figure A.2 Uniaxial compression response of mortar with Spectra fiber: (a) 1.0% volume
fraction; (b) 1.5% volume fractions; (c) 2.0% volume fractions

A.1.3 Uniaxial compression responses of mortar
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Figure A.3 Uniaxial compression response of mortar
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A.2 Uniaxial Tension Test

A.2.1 Uniaxial tensile response of mortar with hooked fiber
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Figure A.4 Uniaxial tensile response of mortar with hooked fiber: (a) 1.0% volume
fraction; (b) 1.5% volume fractions; (c) 2.0% volume fractions

A.2.1 Uniaxial tensile response of mortar with Spectra fiber
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Figure A.5 Uniaxial tensile response of mortar with Spectra fiber: (a) 1.0% volume
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A.2.1 Uniaxial tensile response of mortar
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A.3 Triaixial Case
A.3.1 Triaxial compression under 6 ksi (41 MPa) confining pressure
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(a) Mortar with hooked fiber
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Figure A.7 Stress-strain response under triaxial compression test with confining pressure
of 6 ksi (41 MPa)
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Figure A.8 Volumetric strain versus longitudinal strain responses of HPFRCC under
confining pressure of 6 ksi (41 MPa): (a) Hooked; (b) Spectra; (c) Mortar

A.3.2 Triaxial compression under 6 ksi (41 MPa) confining pressure
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Figure A.9 Stress-strain response of HPFRCC under triaxial compression test with
confining pressure of 7.5 ksi (52 MPa) (a) Hooked; (b) Spectra; (c) Mortar
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APPENDIX B

SUMMARY OF CLASSICAL PLASTICITY THEORY

The main intention of this section is only to give a brief review of general
plasticity. A full treatment of plasticity can be found in most standard advanced
mechanics textbooks, e.g. Chen (1982), Ottosen and Ristinmaa (2005).

B.1 Geometrical interpretation of stress invariants

A convenient way to visualize yield functions is to draw them in the Haigh-
Westergaard (H-W) coordinate system because yield surfaces are mostly expressed in
terms of invariants used as coordinates in this system. In this coordinate system, principal
stress tensors, which are expressed as the axis in the Cartesian coordinate systems, are
modified into three stress invariant components. These invariants are values of stress
tensors that do not depend on the reference coordinate systems and can be derived from

the characteristic equation:

|6 — 08| = |ojj — 08;j| = —0® + L;0? — Lo+ 13 =0 (B.1)
where
I, = tr(o) = oy : 15 nvariant (B.2.1)
12 = E [tr(o-)z - tr(o'z)] = E [Gmmcnn - GmnGnm] : an Invariant (B22)
1
I; = det(o) = & EiikEparOipOjqOkr : 3"Invariant (B.2.3)
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The deviatoric stress components, which are the components of stress that
deviates from the hydrostatic axis, also have a characteristic equation, and again the

coefficients are called invariants of the deviatoric stress tensors:

IS — 08| = [Sij = Soy| = =5 + ;5> + ;S +]3 = 0 (B.3)
where
]1 = tr(S) = Sii =0 : 1Stlnvariant (B41)
! ! 1 . B.4.2
J2 = 2 [tr($)? — r($)] = 2 [S55Si — SwicSu] = Esijsji : 2"d[nvariant ( )
1
]3 = det(S) = §SIJS]kSk1 . 3Fdlnvariant (B.4.3)

Consider an arbitrary stress component P (6, 0,, 63) located at the cone shaped
yield surface represented by dotted lines in Figure B.1a. The stress components at point P
is decomposed into two terms: a hydrostatic term (&, ON) and a deviatoric term (p, NP).
These two terms are considered in two separate planes in this coordinate system. The first
plane known as the deviatoric or m-plane is the plane perpendicular to the hydrostatic
axis. The hydrostatic axis represents the line where 6; = 6, = 03 and is denoted as n; in
Figure B.la. The projections of the 6;-, 6,-, and c3-axes on the deviatoric plane are
shown in Figure B.1b. At this plane, the deviatoric component is further decomposed into
p and 0. The first subcomponent p is the magnitude of the deviatoric stress normal to the
hydrostatic axis whereas the second subcomponent 6 represents the loading condition of
the current state of stress. The angle 0 is always measured from m/6 departed from
principal stress axis. The second plane is the meridian plane, which the plane

perpendicular to the deviatoric plane. As shown in Figure B.lc, the horizontal and
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vertical axes of this plane are the hydrostatic component § and the deviatoric
component p, respectively.
Mathematically, the position of arbitrary stress P in the principle stress coordinate

systems (o4,0,,03) can be replaced with the Haigh-Westergaard coordinate systems

(& p,0) as:

e ~ sin? [—_3\51—3 (B.5)

E=ﬁ;p= 2]2:9=§sin‘ 5 2/2

From Eq. (B.5), two unique properties of the Haigh-Westergaard components can
be perceived. First, the component p is a positive definite value because the product of
square root always gives a positive number. Second, the Lode angle 8, which is the
product of the Arcsine function divided by three, has symmetrical properties in the
deviatoric plane. This implies that any yield surfaces drawn in the deviatoric plane can be
completely characterized within —1t/6 < 6 < /6 and the remaining sectors of the yield
surface are repeated. Within the range of —m/6 to /6, there are three meridian planes of
interest when deriving the yield surfaces. They are the tensile meridian (6 = —1/6), the
compressive meridian (6 = 1/6), and the shear meridian (6 = 0).

B.2 Drucker’s postulates and their consequences

Drucker (1950) showed that if the two conditions described below hold for a
given mentioning, then the material is said to be stable. A stable material, in this context,
is any material that always produces positive work when an external agency is inserted
into the system (Shaw, 2004). The first condition states that with any given stress
increment, the incremental strain must always generate positive work. Further, since the

work increment is composed of elastic and inelastic parts and the elastic part is positive
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definite, it is sufficient to say that inelastic work is also positive definite. The first

condition can be mathematically written as:

Acj;Ag;; = Ao (Asﬁ- + Asﬁ) >0 or AO'ijAEiI; >0 (B.6)

Drucker’s second condition applies when the material experiences cyclic loading.
Two cases of uniaxial cyclic loadings are shown in Figure B.2. In the first case, the load
starts from zero up to o at point B followed by unloading to o* or point A. In the second
case, again the load starts from zero but does not unload at point B. The material is
further loaded for Ac up to point C followed by unloading to o* at point D. The
difference in strain between these two cases represents a permanent deformation or the
plastic strain. It should be noted that this plastic strain is unrecoverable. To guarantee that
a material is stable under cyclic loading, Drucker’s second condition requires the shaded

area ABCD to be greater than zero. Mathematically, the second condition can be

expressed as:

1
(0 —0")AeP + EAO'AEP =0 (B.7)

One special case for the second condition is a case in which o is equal to o*, then
the first condition is recovered. In other words, if the stress o is equal to ¢*, then the first
term of Eq. (B.7) becomes zero and Eq. (B.6) is recovered.

The Drucker’s postulates are not applicable for softening materials because the
slope of stress-strain curve is negative. In other words, with an increase in incremental
strain, the corresponding incremental stress decreases. Therefore, the work increment for

softening material will be negative.
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The three consequences from Drucker’s postulates (Shaw, 2004) can be described
as follows: (1) the incremental plastic strain is normal to the current yield surface (Figure
B.3a); (2) the yield surface must be convex (Figure B.3b); (3) incremental stress and the
incremental plastic strain have a linear relationship.

B.3 Consistency condition and consistency parameter

The consistency condition states that any given set of stress tensors is said to be
admissible if and only if those stress tensors are either inside or at the yield surface. In
Figure B.4, the admissible domains in both one- and two-dimensional cases are shown in
the shaded area. If the state of stress falls inside these shaded areas, then the stress tensors

are admissible. This condition can also be mathematically written as:

F(o,q) <0 (B.8)
where o represent the current state of stress tensors and q represent the internal
parameters that are used to indicate the size of the admissible domain.

From Eq. (B.8), there are two possible scenarios for the admissible stress tensors.
The first scenario is the circumstance when the state of stress falls inside the admissible
domain and the yield function F is less than zero. The second scenario is the case when
the state of stress is at the boundary of the admissible domain and the yield function F is

equal to zero. The admissible domain can be defined as:

E; = {(0,9) € SX R™|F(o,q) < 0} = int(E;) U JE4 (B.9)
where E; represents the admissible domain, the union int(E;) and 0E,, which can be

defined as

9E, = {(0,q) € S x R®|F(0,q) = 0} : Boundary of E, (B.10.1)
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int(E;) = {(0,q) € S X R™|F(0,q) < 0} :Interior of E; (B.10.2)

where R™ is the real number in m-dimensional space. Focusing on the second case,
where the current state of stress is on the current yield surface, the subsequent state of

stress must also satisfy the consistency condition.

F(¢i+D, qi+D) = F(6®,q®) + AF(6eW,qV) < 0 (B.11)
where the superscript (i) represents the current state and (i+1) represents the next state.
Since the current state of stress is at the boundary, the current yield function is zero.
Thus, the increment of the yield function must be less than or equal to zero and so Eq.

(B.11) can be replaced as follows:

AF(o,q) <0 (B.12)
In Eq. (B.12), two possible outcomes can occur with a given set of incremental strains.
The first occurs when the given incremental strains are under unloading condition; in this
case the incremental yield function (AF) will be less than zero. The second occurs when
the given incremental strains are under loading condition; the incremental yield function
(AF) will be zero. As a consequence, by using Taylor’s expansion up to the first order, the

incremental form of the yield function can be expressed as:

JdF J0F
AF(G,q)—%:Ao+£-Aq—O (B.13)

Furthermore, since the first outcome represents the unloading case, the next
incremental stress tensors will be in the elastic region. Hence, the plastic component of
the given incremental strain will be zero. However, the plastic component for the second

outcome is not equal to zero. In other words, the increment of total strains for the second
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outcome is now composed of two components, i.e. the elastic and the plastic parts, and it

can be mathematically expressed as:

Agtotal = Ag® + AgP (B.14)
where the elastic component Ag€ is reversible and is the only component that is used to
calculate the stress tensors. In contrast, the plastic component A€P represents permanent
deformations that occur due to, for example, collapsing of air voids or the crushing of
particles inside concrete when a compressive load is applied.

Since only the elastic strain components are used to calculate the stress tensors,

the stress-strain relationship can be written as:

Ao = C: Ag® (B.15)
To write in an expression of incremental plastic strains, Eq. (4.14) is substituted

into Eq. (B.15). The incremental stress tensors become

Ac = C: (Ae™R! — AgP) (B.16)
where C is the forth-order stiffness tensor and subscripts ‘e’ and ‘p’ represent the elastic
and the plastic components, respectively. Depending on the types of material, the elastic
stiffness tensor C can have from 2 up to 21 independent variables. Since HPFRCC is
homogeneous, the elastic behavior of HPFRCCs can be assumed to be linearly isotropic.

Thus, only two independent variables are needed for the elastic stiffness matrix C:

\Y%
C=C (Siijl + 8115]-]() + m&jskl (B17)

_E [1
T A+ 2
where E and v represent Young’s modulus and Poisson’s ratio, respectively. Substituting

the incremental stress tensors from Eq. (B.16) into Eq. (B.13), the incremental yield

function can be rewritten as:
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oF oF
= —.C: (Agtotal — AgP —.Ag = B.1
AF = ——:C (Ae AgP ) + 7q Aq =0 (B.18)

The two unknowns in Eq. (B.18) are the incremental plastic strain tensors (AgP)

and the increment of internal variables (Aq). These two unknowns are defined as:

aG

where the parameter yq4 is the consistency parameter that indicates the magnitude of the
incremental plastic strains. The parameter G represents the potential function that defines
the plastic flow direction. The selection of the potential function G depends on the type of
flow rules. If the associative flow rule is selected, the potential function is defined to be
the same as the yield function (G = F). However, if the non-associative flow rule is used,
the potential function is defined differently from the yield function (G # F). In the latter
case, the plastic flow direction is not normal to the current yield surface. The incremental
of the internal parameters (Aq) is defined as a function of ‘h’ (M( ) stands for Function).

Some examples of ‘h’ are typically defined as:

(B.20.1)
= aG'aG for the effecti lastic strai
= |35i54 for the effective plastic strain g
0G
h = oo for the inelastic work W, (B.20.2)

Substituting the plastic incremental strains AgPand the internal variables Aq from

Eq. (B.19) into Eq. (B.18), the consistency equation can be rewritten as:

oF 0G\ OF
AF=%:C:(A£—yd%)+£'M(h)=O (B.21)
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By manipulating Eq. (B.21) to isolate the consistency parameter yq4, the final

equation becomes:

S—E:C:As
VAT O oG _oF s B.22)
do’ "do dq

Once the consistency parameter is determined, the incremental plastic strains
(A€P) and the increment of internal variables (Aq) can be obtained from Eq. (B.19). Then
the corresponding incremental stress tensors are determined from Eq. (B.16). Finally, the
state of stress and the internal variables are updated.
B.4 Integration of constitutive equations

The main unknown in the plasticity model is the plastic component for a given set
of incremental strains. Once the plastic component is determined, the elastic component
can then be calculated by subtracting the plastic part from the total strain and the
corresponding state of stress and the internal variables can finally be updated. From the
definition of the incremental plastic strains, the incremental plastic strains are composed

of two components, i.. the consistency parameter (yq) and the plastic flow
direction (Z_i)' To calculate these components, first the plastic flow direction is defined
and the corresponding consistency parameter is determined from the consistency
condition. Depending on the calculation method, the plastic flow direction is defined
from the variables of two different states, i.e. current (Gn, sp’n) or next (6n+1,sp_n+1)

state. For the current state, the plastic flow direction can be directly calculated from the
given parameters. On the other hand, if the next state is involved in the calculation, trial-

error iteration is required to calculate the plastic flow direction. To generalize the
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incremental plastic strain, Ortiz and Popov (1985) proposed the generalized mid-point
rule in which the plastic flow direction can be obtained from a middle point between the

current and the next state (Figure B.5):

0Gp4q
b= B.23
AgP = vy Fp ( )
where
Gpio = G[(l — )0, + a0p4q, (1 — ey p + ocsp,n+1] (B.24)

The parameter a is used to identify the location where the plastic flow is
calculated. If the parameter « is equal to zero, the plastic flow is directly calculated from
the current state of stress and the calculation method is said to be explicit. On the other
hand, if the parameter « is greater than zero, the plastic flow direction is located between
the current and the next states. Since the parameters in the next state remain unknown
during the calculation, iteration is needed. Hence, the calculation method is said to be
implicit. For the special case where the parameter a is one, the plastic flow direction is
located at the next state. Once the location of the plastic flow direction is known, the
consistency parameter is obtained from the consistency condition, which states that for
any admissible state of stress, the corresponding yield function must be less than or equal
to zero. For the case where the current state of stress is on the current yield surface (F,, =
0), the next loading incremental stress must give a zero incremental yield
function(AF,, = 0) since the subsequent yield function is zero (F,.; = 0).

Both integration methods were implemented in this work, i.e. explicit and
implicit. For the former (a = 0), the incremental form of the yield function is used to

derive the consistency parameter. Since the yield function depends on two unknown
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parameters, i.c. stress tensors (6)and the internal variables (sp), by applying the chain

rule, the incremental yield function can be rewritten as:

OF OF
AF(o,¢,) = 5g Ao+ 35, Ag,, (B.25)

From the definition of the incremental stress and the effective plastic strain (Asp)

given earlier, the incremental yield function can be expanded in terms of the plastic

strains:

oF oF
AF(o,e,) = g C: (Mg — AeP) + 35, VAeP: AeP (B.26)

.. . .. (3G . .
For the explicit scheme where the plastic flow direction (5) is obtained from the

current state of stress, the consistency condition becomes

oF aG\ G ,6G aG
o U Ve D IRV i i B.27
AF(o, &) aq.c.(m Y 60>+ 2%, Yd [55:52=0 (B.27)

By rearranging above equation, the consistency parameter can be derived as a

function of the current state:

doF
%CAS

y =
“TOF 96 oF [3G 06 (8.28)
do’ " do asp do ' do

It should be noted that since the consistency parameter for the explicit approach is

solely based on the current state of stress, the stability or the accuracy of this method
depends on a given set of incremental strains (A€). Table B.1 summarizes the calculation

steps for the explicit approach.
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For the implicit method, the consistency parameter of the sub-increment (i) is
derived from the yield function for the next state (Fn+1 or F(O‘n+1, sp,nﬂ)). To simplify

the equation of consistency parameter, the parameter o in Eq. (B.24) is one in this study.
Notice that the yield function F,,,; actually depends only on one unknown parameter ygq.

By expanding the yield function with respect to y4, the yield function becomes

oF
Fns1 = a;; - Ayg (B.29)

Or within the sub-increment during iteration, the yield function of the sub-increment (1)

turns into:

@
RO OFn 4 ( (+1) (i)) (B.30)
n+1 — aYd yd Yd )

By rearranging the known parameters in step (i), the consistency for the next sub-

increment (i+1) can be expressed as:

(B.31)

@Y . BF(vg)) D . o . :
where 0, dF(yO1 ) is defined as g which is the partial derivative of the yield function
d

with respect to the consistency parameter (yq). Notice that this form is essentially the

same form as the so-called Newton-Raphson method using derivatives (Press et al.,

1997). By expanding the 9, dF(yg)) term, the derivative becomes

0, F (YD) = oF(v) _ [aF. 0o , OF 0gp)" (B.32)

)%y oo ova " 0e, dva
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By substituting the incremental stress equation and the definition of incremental plastic

strain, the derivative d,,F(yq) becomes

oF 9 y.. 090Gy 9FD 9 . fac aG
—— . (s — D _) L o =7 B.33
OyaFva) 06 dyq (G Ya C'ac * dgp,  Oyq &0 TYd 55756 ( )

Since the trial state of stress (O'(t)) and the current effective plastic strain (sp,n) do not

depend on yq, the derivative d,,F(yq4) is collapsed into:

JF 9G OJF |0G 0G

=36 %36 T3z, |35 30 B.34
9y, F(va) 76" '60+63p o iae ( )
Therefore, the consistency parameter for the next sub-increment becomes
®
y(i+1) _ Y(i) 4 F (yd )
© T T or 06 oF [G 0 (B.35)
do’ “"do Jdg, Voo 'do

This formula is essentially the same as the cutting-plane algorithm proposed by
Ortiz and Simo (1986). The basic concept behind their method is to use the elastic

predictor to over-project the trial state of stress (ot13) to be outside the yield surface at

the first trial step ( (i) = (0) ). Then, at each trial step (i), the plastic corrector (GS_)H) at
each trial step (i) is determined and used to slowly push the trial stress tensors back to the
current yield surface (Figure B.6). Therefore, at the end of each trial step, the yield
function slowly converges to zero and the iteration stops once the yield function reaches

zero. The calculation step is shown on Table B.2 and the comparison between the explicit

and the implicit methods are shown on Table B.3.
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Table B.1 Calculation steps for explicit scheme

EXPLCIT APPROACH (a = 0)

1. Calculate the trial state of stress 6® = o, + C: Ae
2. Calculate the trial yield surface F(G(t), sgl))
3. Check the trial yield surface
a. IF F(O'(t), ag’)) < 0 THEN update the next state of stress
(6041 = 69)and skip STEP 4
b. IF F(c®,e(”) > 0 THEN go to STEP 4

4. Plastic process
a. Calculate the consistency parameter ()
b. Calculate the incremental plastic strain (A€P)and the
corresponding incremental stress (Aag).
c. Calculate the increment of the effective plastic strain (Aep) and

update internal variables (k, r, s, and a).

Note: for the explicit scheme, there is no need to calculate F(O‘n+1, Asglﬂ))
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Table B.2 Calculation steps for implicit scheme

IMPLICIT APPROACH (0. = 1)

1. Calculate the trial state of stress 6® = o, + C: Ae
2. Calculate the trial yield function F(O'(t), sgn))
3. Check the trial yield function
a. IF F(O'(t), ag’)) < 0 THEN update the next state of stress
(6041 = 69) and skip STEP 4
b. IF F(c®,e(”) > 0 THEN go to STEP 4
4. Plastic Process (at sub-increment (1))

a. Determine F(yg_l)), ade(YS_l))

b. Determine yg) = yg_l) - %

Yd

Update 6 = ¢* — yS)C: g—i

Update SS) =&pn t Yg)\/%

Update history variables (k, r, and s)

e

&

@

lmz)

Check F(y{") < TOL

i. IF YES, STOP

ii. IF NO, REPEAT STEP a.

Note: Initial condition (0): y((io) =0 ¢ = ¢® sg)) = €pn
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Table B.3 Comparison between explicit and implicit schemes
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Hydrostatic axis

G3
A P(O_l, Oy, 03) (01, 05, 03)
1

v

(b) Deviatoric plane perpendicular (c) Meridian plane
to the hydrostatic axis

Figure B.1 Geometric representation of the stress state in the principal stress space
(Ottosen and Ristinmaa, 2005)
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c 1 ,
C’*Ag A — Aoe C, o+Ac
(o—o*)A€P 5
°[7/ AT D \

b i~ Subsequent
| : > e Elastic region ! yield surface
AgP “Yield surface

Figure B.2 Stress cycle for stable materials produced by external agency must always
give the positive work (shaded area ABCD >0) (Ottosen & Ristnimaa, 2005)

G3
OF
Aed =y, —
ij Yd 8Gij
F<0
F=0
O] (o))
(a) The first consequence of the (b) Yield surface that does not
Drucker’s postuate is the normality satisfy the convexity condition.
condition

Figure B.3Graphical representations of the Drucker’s postulates and their consequences
(Shaw, 2004)
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k Previous step yield surface

* Admissible F(c,q) =0
domain in stress ; - ’
." oK,
. Interior of v
‘\\Admissible domaiﬁ\
L inH(E,) [
K K /
* 4 > G F(o,q) <0
o o o (0,9)
(a) One-dimensional model (b) Two-dimensional model

Figure B.4 Elastic range and admissible domain in stress space (Simo & Hughes, 2001)

(o)) : trial state of stress

® _ )] QY
o0, =C. le) —¢
(¢)") : current state of stress ”kl( S )

j

@ 1,@) _
F(csij K )—O
Albsequent Yield Surface)

(Mid-point state)

ELASTIC
DOMAIN

F(ol k)=0

ij

(Initial Yield Surface)

Figure B.5 Geometric interpretation of the generalized midpoint rule (Ortiz and Popov,
1985)
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Elastic predictor

0) _ __trial
n+1 _6n+1

(-)Drepresents the iteration step (i)

(o)

Elastic
domain

<+— Tangent (limiting) cut

N F(Gns1,Kni1) = 0

Figure B.6 Geometric interpretation for the case of perfect plasticity of a general return
mapping algorithm based on an elastoplastic split of the constitutive equations (Ortiz &
Simo, 1986)
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APPENDIX C

DERIVATION OF CONSISTENCY PARAMETER

This appendix covers derivation of the consistency parameters for both

compression and tension that involves tensorial manipulations such as double

contraction, and dot products. Moreover, the derivatives of yield and potential functions

with respect to stress tensors are discussed in this section as well. Before deriving the

consistency parameter, the invariants of stress tensors and the derivatives of invariants

with respect to stress tensors are discussed.

C.1 Invariants of stress tensors

I, =tr(e) = o

Iy
S=o--215
6 -3 °
Kk
Sij = oij — 5~ 0y
1 1
]2 = ES S= Efllsll
3 = det(S) = §Sijsikskj
3V3
sin(30) = _T/]ZS

2

: First invariant of stress tensors

: Deviatoric stress tensors

: Deviatoric stress tensors (index notation)

: Second invariant of deviatoric stress tensors

: Third invariant of deviatoric stress tensors

: Lode angle

C.2 Derivatives of Invariants with respect to stress tensors

0l _ 9(ow)
Jdo aGi]'

= OjkOjk = 0;; = 8

1

3], _aJ, as_a(g&s)im

dc 0S do  0S 06
1

9, O (5 Sklslk) 3Smn

aGij B OSmn aGij

= Sj;
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: Derivative of first invariant
with respect to stress tensors

: Derivative of second invariant
with respect to stress tensors

: Derivative of second invariant
with respect to stress tensors
(index notation)



dJ3; 0]z 0S 0(det(S)) 9S _ ¢ : Derivative of third invariant

do 0S do S ' do with respect to stress tensors
1 : Derivative of third invariant
0(5SmnSmaS .
UE _ (3 mn+ma a“).askl =SSy _EJZSi' = t;; with respect to stress tensors
doj; 05k Jd0;; 1377 (index notation)

C.3 Compression Yield Function (F-) and Potential Function (g.)

Recall compression yield and potential function given in Chapter 4. The
compression yield function composes of three parts, i.e. hardening (F;), Cosine softening
(F,), and Exponential softening (F3). The potential function used here is the Drucker-
Prager yield function used to control the amount of volumetric strain.

e Compression yield function

F.(o,k r,s) = F;(0,k) + F,(0,1) + F5(0,5)

where
A 1-k ,
F1(0,k) = —J, + B\/]; + Ckoy + DKI; + Ehtcglf — kf,
Kf, kfe
I ,
F,(o,1) = —(1—Imp)(1—r)< —1>fC
I1,trans
I ,
F;(0,s) = —Imp(1 —s) —1]f,
I1,trans
where

b 2 2
(2] =—1+ﬂsin<6+—n)

3 3 3

: Maximum principal stress

e Compression potential function

I
gc(c,ap) = ac\/—l§ + /2], — cc

where
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ac = T ( P —T]>
¢ (1—71) 8p,max

a, = Slope of volumetric strain (g,) vs. normal strain without confinement

n = Ratio of &, /&, max at zero slope (a = 0)

C.4 Derivative of Compression Yield Function with respect to Stress Tensor

(0F¢/ do)

By using chain rule, the derivative of yield function with respect to stress tensors
can be decomposed into three parts based on invariants, i.e. first invariant I; (A,), second
invariant J, (A,), and third invariant |3 (A3). The derivatives of invariants with respect to

stress tensors are given in C.2

OFc 0dFc a1, dFc 8], 9Fc 0],

96 9, do 9], 06 0d]; Oo

dF¢
% = A16 + Azs +A3t
where
dFc Ck (1-k) (1 —Imp)(1 —0f., Imp(1—s)f,
1 = 6—11 = ? + Dk + ZEhtC kf(’: Il - Iirans - I:tirans

2
0Fc A B 3Ckcos (9 + ?) 5 Ck ( Zn)
= = sin

Ay=—=—+ + =+ 0+—
27 0],  Kf. 22 2(cos30) J3 /3], 3
27
A _9F¢ Ckcos<9+7)
3T, (cos 30)],
dJ3
s
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Note that the A,and Az terms contained cos 30 as denominator, which causes

zero dividing, will be discussed later.

C.5 Derivative of vield function with respect to effective plastic strain (9F/ asp)

Besides having the derivatives of yield function with respect to the stress tensors,
the derivatives of yield function with respect to effective plastic strain (aFC / asp) are
also of interest. Based on the number of internal variables, dF¢/ d¢, are divided into
three components, i.e. hardening (B;), Cosine softening (B,), and Exponential softening
(B3). Unlike dF:/ do, not all components are required for each loading step. For
example, if the effective plastic strain (sp) is less than €j may (under hardening regime),

only B, is required and all other components are set zero.

aFC _ aFC ok aFC Jr aFC Js

9z, Ok 0e,  or O, @s 0c,

9F
- = BlHl + B2H2 + B3H3
Ogp
where
) ) A Epecl?

+C61+D11_ _f(;

Bi=3k "ok~ ier)? K2f]

oF: 0F, I ,
Bzzﬁzﬁz(l—lmp) Ifm_l fc

dFc OF; I ,
Ba =% = s — P\ — 1 )fe

ok

H1:a:(1_ko)[

1 1 l
\/ Sp 8p,rnax Sp.max
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H, = ﬁ T sin [n(sp _ Sp'max)

gy, Z(Sp,ult - Sp,max) €p,ult ~ €pmax

ds -

E - (gp,ult - 8p,int)

H; =

_@(Sp - 81o,int)l

Exp I
€p,ult — €p,int

C.5 Derivative of potential function with respect to stress tensors (0g-/ 0o)

The last derivative required for obtaining the consistency parameter is the
derivative of potential function with respect to stress tensors (dgc/ o). This component

is also used to determine the plastic strain tensors.

agc 0 Il
%—%(a%*ﬂ’fcﬂ)

Ogc _ac g, 1

= + S
do /3 2],

C.6 Consistency Parameter for Compression

Based on the assumption that the material in the elastic range is linearly isotropic,

the first term in denominator of the consistency parameter equation becomes

dF¢ dgc  dF¢ dgc
. C: = Cijkl
Jdo Jdo aGi]' E)le

= (Assy 4 ALS: + Agti) (262 (5 + 865) + — 806 | )| (PS80 + —eS
= (A8 + AzS;; + Astyy) E(ikil‘kilik)ﬂLl_zV i0K1 ﬁk]"‘\/z—lz Kl
0F;  0g [ (1+v) 3],
=5 C5o=126G _Alac\/g—(l 29 + A, /2], + As o

Note: For linearly isotropic elastic material, C is written as:

1 v
Cijkl =2G I:E (Siksjl + 8118]'1() + Eﬁilﬁkl ]
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Back to the discussion related to cos(36) in A, and Az terms in section C.4 and

. oF 0 .
consider the last two term of 79" C: £ for the compression:

A2J2_12+A3<3]3 AL B 3CkCOS( )]3+ sm<6+23—n) 2],

ﬁ)z K, 205, | Z(cos30) 2 /3,

N _Ckcos(6+%) ( 3], >

(cos 30)], 2],

Ck

A B 2n
= 2 b i 9 -
Vel [kfc+2\/12+\/3123m< ’ B)l

Aﬁ+ B +\/§c1< _ (e+2n)
=— — sin -
kf.VT2 T2 3 3

Therefore, the first term of denominator of the consistency parameter equation

becomes

dFc 08¢ _ (+v) B V2Ck 2m
s G5 ZG[AlaC\/_ m kf ‘/2]2+\/E+ 7 sm(6+ 3)

By substituting dg¢/ do into the second term of denominator, it becomes

OFC 26gc agc 2
— : = (B;H B,H B:H —(a2+1
3¢, /3 36 9o (B;H; + B;H; + B3H3) 3(ac+ )

C.7 Tension Yield Function (Fy) and Potential Function (gy)

Recall the tension yield and potential functions given in Chapter 4.
e Tension yield function (Fy)
Fr(okr,s) =x1 + [y +z)Vrs — 2']l; + kz' — d\/E
where
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x = f[(2a — DB — 2]\/J51 + V3fZ[1 + (o — 1B]
y = f2[8 — 2B(2a — 1) — B*(2a — 1)?]\/J,1 — 3V3EE[1 + (0 — 1)P]
z' = 3f[1 - (2a — DPJ[(2a — 1P - 2]y/21

d = 3f7[1 — (2o — DP][(20 — 1B — 2]

— (sin® 1
B:(sm)+§

2¢
VIz1 =+/] =— ,
S R N e PO
where
, A
Tk
b B+2Ck i (e+2n)
= ——sin —
V3 3

¢ = —kf. + [(1 — Imp)(1 — r)f,] + [Imp(1 — s)f,]
e Tension potential function (gt)
Iy
=ar—++2J;—c
gt T3 Jo —cr

where
ar = material parameter controlled slope of volumetric strain with respect to

normal strain

C.8 Derivative of Tension Yield Function with respect to Stress Tensor (0F1/ 0o)

The same derivation in compression is repeated here for tension.

oF; , ,
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where

oF

A= =20+ ¢ + 2V -7
1

, aFT ox’ dy 0z 0z 0z’ od) oo 1 d
A=, {I % ‘K%*%)“—‘% k39~ Wae}a—l;zj—

ox’ ay 0z 0z’ 0z’ ad 3V3 s 1d
— )12 ___ A T / - - _ = -
- {Il g T [(ae * ae) a0| a0~V ae} 4cos(30) 3

2

] 3v3 J; ) 1.d
N TesGE |2
cos( )] I,

2

. _ 0Fp , 0%’ dy 0z 0z 0z ad) 9o
A =55 {Ila_eHKae ae)‘/g_a_e MRFTI ma_e}a_h

ox’ ay 0z 0z’ 0z’ ad V3 1
2 _9z o _ gpodlf__ N> b
{I ath [( 96 ae) VTS = 30|t KGe ~ V)2 ae} ( 2 cos(30) ]§/2>

_ V31
=+ - 2 cos(36)]:2”7

C.9 Derivative of vield function with respect to effective plastic strain (9F/ 68p)

OFT OFT ok OFT or OFT Js

aap ok 68p 9e. T or or asp T ds (')sp
J0Ft o . .
P
where
, aFT ox’ dy’ 0z 0z 0z’ ad
Bi=gp =ligpth Kak ak>\/__ﬁl ka2 Vg
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, / [(0y 0z 1, JE 0z o0z ad
_ T _ 272 vy e - o~ _Z -
B2 = or i 6r+11 _<6r+6r>m+2(y_*_z) r 6r_+k6r \/Ear

, _0Fp 0x [(dy 0z 1, !\F 0z'] 0z’ ad
B3—¥—11£+11 (gi‘g)\/ﬁ‘f-i(y +Z) g—gi'kg—\/ng

-k

(s — ko) ose <t
o Ok “pa

1===

% | a-ky) o
, Ep1 <€ =¢
(Sp.Z €p 3)

, ar ds —v(e, — & , ,

H2=H3=—,=_,=_ ] ! 7 Expl y'(p ’p,Z) :Sp’2<8pS8
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e Derivative of internal parameters with respect to hardening parameter (k)
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e Derivative of internal parameters with respect to softening parameter (r)
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e Derivative of internal parameters with respect to softening parameter (s)
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C.10 Derivative of potential function with respect to stress tensors (dgr/ do)
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C.11 Consistency Parameter for Tension

By assuming that the material in the elastic range to be linearly isotropic as in the
compression, the first term in denominator of the consistency parameter equation

becomes

aFT agT aFT agT
:C: = Ci'kl
do do aGi]' ) ale

= (A3 + ApS;; + A t--)(ZG[l(S- 81 + 8idic) + ——— 30 ]) 2T S+
19%ij 29jj 3%j 2 ik®jl il1Vjk 1—2v U kl \/§ kl \/E kl

aFT agT , (1 + V) / ' ]3
—:C—=2G|Ajar——=<+ A,/2], + A5 | —
do dc 1T oy T 02 Jat A

Now consider the last two term containing A, and A terms,

[ 1 [ 1
Co— o (33 3v3 Jz3| 1d 1 3),
A2l +4s <\/?]2> - ![[*] 4cos(36)]5 B E\/_]_ZJ! Vel t ![[*] 2 cos(36)_% J!< /2] )
2

2

—

. d
V2
Therefore, the first equation of denominator in consistency parameter equation
becomes
aFT agT , (1 + V) d
—:C—=2G|A
do do l V3o (1-2v) \/_

By Substituting dgy/ do into the second term of denominator in consistency

parameter equation, it becomes

aFT 2 agT ) agT
de, |3 06 " do
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