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Chapter 1 

 

Introduction 

 

I. Motivation of Research 

The accurate prediction of acoustic fields is important in research, as well as 

commercial and military efforts.  For example, Naval sonar applications include 

detection, localization, tracking, and identification of remote sources, and oceanographic 

measurements for environmental assessment.  The nature of sea water renders useless all 

terrestrial means for remote sensing except sound.  Therefore, an immense amount of 

research over the past decades has produced robust and successful theories, models, tools, 

and empirical environmental data for predicting acoustic fields in a wide variety of 

complex underwater environments.  However, rapid means for assessing the uncertainty 

of acoustic field predictions are lacking.  This thesis presents a new and efficient means 

for acoustic uncertainty assessment in Navy-relevant environments and compares it with 

traditional and more modern techniques. 

Every field prediction requires some modeling of the underwater environment in 

which the acoustic field is calculated. Advances in propagation simulation techniques 

have allowed for the accurate predictions of sound fields in environments with range-
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dependent features, and even when the ocean’s surface, bottom, and/or water column 

have fluctuating or random parameters.  All of these environmental models, however, 

require environmental data about the ocean.  This data is subject to uncertainty not only 

in local measurements, but in the spatial and temporal variations of parameters far from 

the measurement point, or long after the data were collected. Thus, all environmental 

models, and inputs into acoustic propagation calculations, contain a certain amount of 

uncertainty or error.  In essentially all cases, uncertainty in input parameters is the 

dominant source of error in a predicted underwater sound field, outweighing field model 

and calculation errors. To illustrate this, consider an idealized 100-m deep sound channel 

with a free surface, a hard flat bottom, a constant sound speed and a harmonic point 

source at 500 Hz. Figure 1.1a shows the field amplitude over 15 km, with the cylindrical 

amplitude decay (proportional to r1 ) factored out.  Figure 1.1b shows the amplitude 

error arising from a 1 meter error in the sound channel depth.  Even in this ideal sound 

channel, it is clear that a 1 meter uncertainty in bottom depth produces significant 

changes to the predicted field that become increasingly more important at longer ranges. 

(In Figure 1.1, please note the extreme compression of the horizontal axis (range) when 

compared to the vertical (depth) axis.) 
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a) 

 

b) 

Figure 1.1. Field amplitude (a), and field amplitude error (b) for a 1-m depth error in an 
ideal sound channel 
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For standard applications of harmonic acoustic field prediction, a model for 

acoustic propagation is assumed at the chosen frequency ω, and exact values of all 

environmental variables are input into the acoustic model, to obtain a complex-valued 

prediction for the acoustic field at any spatial point.  In contrast, the techniques explored 

in this research treat environmental inputs as random variables, with assumed probability 

distributions or error bounds.  The output of such techniques is a probability distribution 

for the predicted harmonic acoustic field at any spatial point, rather than a single complex 

pressure value.  Such techniques provide a measurement of accuracy for all applications 

for which a deterministic field prediction is useful, as well as providing bounds for the 

possible values of the acoustic field at any point.  Broadband acoustic uncertainty 

calculations for time-dependent waveforms are certainly possible via Fourier 

superposition of time-harmonic results; however, such broadband uncertainty 

assessments are beyond the scope of this thesis. 

 

II. Uncertainty and Randomness 

It is important to make a distinction between uncertainty in a field calculation, and 

randomness in the field.  Figure 1.2 illustrates the difference in terminology for the case 

of an underwater sound channel of depth D. 
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Figure 1.2. Random and uncertain channel depth 

 

For a random channel depth, the local depth varies spatially in an unpredicted 

manner. This can be incorporated into acoustic prediction models as a roughness 

parameter for the bottom, or by introducing a random variable d which is added to the 

mean depth D. 

A parameter can be uncertain, however, without exhibiting any spatial or 

temporal fluctuation. The actual channel depth of the waveguide in Figure 1.2 is a 

constant value – the uncertainty simply represents the fact that the observer does not 

know the value of the depth with certainty.  As a simple example, this would correspond 

to the case where the observer knew the channel depth several hours in the past but does 

not know the progress of the ocean’s tides at the location of interest.  For the purposes of 

an acoustic field prediction model for this case, the sound channel bottom can be treated 

as flat with constant depth, but the uncertainty in depth must somehow be incorporated, 

and transformed into uncertainty in the predicted harmonic acoustic field. 

 

III. Related Research 

While the investigation of uncertainty in acoustic field predictions is a relatively 

new endeavor, there is much prior work that both motivates the solution and provides 
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tools to overcome its obstacles.  The following is a summary of the existing research in 

the categories of wave propagation in random media, Probability Density Function 

methods for turbulent flows, uncertainty in ocean environments, and numerical 

simulation of uncertainty.  This thesis research builds on the successes of all of these 

fields of inquiry, in order to construct a solution to a problem that none fully address – 

the prediction of uncertainty in acoustic field calculations. 

 

Wave Propagation in Random Media

The field of wave propagation in random media (WPRM) deals with media 

having parameters that fluctuate randomly in space and/or time.  There is a significant 

difference between problems involving such “random” variables, which fluctuate over 

the course of a single calculation, and “uncertain” variables, as discussed above.  There 

are similarities, however, in that both the problems of random and uncertain parameters 

deal with the propagation of probability in a field, and thus similar tools may be used, 

with caution. 

WPRM is a mature and robust field of research, classic reviews of which can be 

found in the books by Ishimaru (1978) and Uscinski (1977).  Brown (1972) generated 

partial differential equations for generic moments of a propagating wave distribution.  

Flatté (1983) outlines advances particular to the field of oceanic acoustics.  Successes in 

WPRM are often limited to specific frequency ranges and media properties, thus the field 

remains very active today.  The journal Waves in Random and Complex Media publishes 

much of the current research on this and related topics.  Recently, Colosi et al. (1999) 

presented experimental results demonstrating the need for more accurate prediction 
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techniques for low-frequency acoustic propagation.  Kallistratova (2002) provides a 

review of acoustic propagation research in atmospheric turbulence.  This paper outlines 

the successes based on assumptions of locally homogenous and isotropic turbulence, but 

highlights the profound effect that departures from this assumption have on acoustic 

propagation in the real atmosphere. 

 

PDF methods for Turbulent and Reacting Flows

A different approach to the propagation of probability was originally developed in 

the field of turbulence.  Lundgren (1967) introduced a method for developing the 

governing equations for Probability Density Functions (PDFs) of the variables of interest.  

Advances in this approach in the area of turbulence over the subsequent four decades are 

have been summarized by Pope (2004).  Many researchers are still expanding on these 

techniques.  Xu and Pope (1999) quantified the accuracy of a PDF/Monte Carlo solution 

procedure for turbulent reacting flows.  Wang et al (2005) applied the PDF technique in 

conjunction with the most recent physical models for turbulence/radiation interactions in 

jet flames.  Minier and Peirano (2001) applied the PDF method simultaneously to a fluid 

and particles in turbulent polydispersed two-phase flows.   Tsai et al (2002) introduce a 

finite-mode PDF model for turbulent reacting flows, with results closely matching those 

of the original PDF method. 

While this approach was clearly developed for modeling physical processes in 

random, not uncertain, media, there is still potential application for acoustic field 

prediction.  By recasting the governing equations of acoustics in terms of PDFs for 

uncertain variables, governing equations for the propagation of uncertainty PDFs are 
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obtained.  The challenge, however, lies in developing solution techniques and closure 

models for these equations that do not rely on random behavior of the parameters, as in 

the field of turbulence.  The application of these techniques to acoustic uncertainty 

prediction is further explored in Chapter 2 of this thesis. 

 

Uncertainty in Ocean Environments and Signal Processing

There is also a growing amount of work in the field of uncertainty in ocean 

acoustics as a whole.  Several researchers have examined the effects of environmental 

uncertainty on specific underwater sound applications, such as source localization.  

Shang and Wang (1991) explored the effect of water-depth mismatches on source 

localization via matched-field processing.  Their results showed that the range- and 

depth-shifting effect of a 3% water-depth mismatch could be adequately predicted 

analytically in a 100m Pekeris waveguide at 150 Hz.  Haralabus et al. (1993) presented 

an improved algorithm for source localization in acoustic scattering environments, which 

provides more accurate results with imperfectly known surface statistics than previous 

methods.  Dosso (2003) examined the effect of uncertainties in water depth, sound speed, 

and bottom characteristics on source localization uncertainties, using Bayesian inference 

theory.  Wang et. al (2004) provide computational examples of the relationship between 

sensor network topology and localization uncertainty, outlining a method for obtaining a 

lower bound for the localization error.  These papers deal with uncertainty in a specific 

decision aid developed from acoustic predictions – source localization. While some 

success is made in predicting bounds for the uncertainty in the outcome, and predicting 
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the most likely source location taking environmental uncertainties into account, there is 

no attempt to address the problem of uncertainty in the predicted acoustic field in general. 

Other researches have focused on uncertainty only in source detection. Sha and 

Nolte (2005) show that the optimal sonar detection performance in diffuse noise depends 

primarily on environmental uncertainties and the signal-to-noise ratio at the receivers.  

An analytic approximation for detection performance is provided which accounts for 

environmental uncertainties.  Stone and Osborn (2004) incorporate environmental 

uncertainty in a tracking and detection algorithm, in order to obtain meaningful results 

even in the presence of large prediction errors.  Sibul et. al (2004) use a maximum 

entropy method to calculate confidence intervals for detection of a high frequency, 

narrow-band source in an uncertain environment.  As with the research on source 

localization, the work done in detection in uncertain environments may provide guidance 

for obtaining predictions of the uncertainty in the acoustic field, but does not address the 

problem directly. 

Some researchers, however, are working on the problem of uncertainty in acoustic 

field propagation using different methods than those outlined in this thesis.  Creamer 

(2006) describes environmental variability in terms of a spectral representation of 

stochastic processes.  Finette (2005, 2006) applies this technique, referred to as 

Polynomial Chaos Expansion (PCE), to an isospeed waveguide governed by the narrow-

angle parabolic equation.  These papers address the same general problem of acoustic 

uncertainty prediction as outlined above, but with a significantly different approach than 

the field-shifting technique that is described in Chapter 3 of this thesis.  However, for 

completeness, Chapter 4 of this thesis presents the application of polynomial chaos 
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expansion to a Pekeris waveguide, and compares this technique to the field shifting 

method. 

 

Numerical Simulation of Uncertainty

Finally, others have addressed the problem of uncertainty with the brute force of 

repeated numerical calculations that evenly sample the entire space spanned by the 

uncertain variables, herein referred to as Direct Simulations (DS).  This approach is 

sometimes made more efficient via random sub-sampling of the space spanned by the 

uncertain variables, a technique commonly referred to as Monte-Carlo calculation.  

Shorey et al (1994) used Monte-Carlo methods to provide an upper bound on source 

localization performance in the presence of environmental uncertainty.  Gerstoft and 

Mecklenbräuker (1998) use a directed Monte-Carlo method to provide distributions for 

estimated ocean parameters.  Direct simulations or Monte-Carlo techniques also offer an 

excellent standard for comparisons, as shown in several of the papers reviewed in 

previous sections. While these techniques can be used effectively for certain tasks, a goal 

of this research is to obtain predictions with acceptably similar accuracy to direct 

simulations or Monte-Carlo methods, for a drastically reduced computational cost, 

allowing for real-time prediction of uncertainty. 

 

IV. Underwater Acoustic Field Calculation 

This section summarizes the basic concepts behind the deterministic calculation 

of acoustic fields, which is the foundation for the uncertainty prediction techniques 

explored in this research.  For many applications, underwater acoustic propagation along 
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an azimuth of interest can be considered two-dimensional with range, r, and depth, z, 

coordinates with local cylindrical symmetry.  An underwater sound channel, or 

waveguide, refers to a two-dimensional slice of the field, varying over range and depth.  

All underwater sound channels investigated in this research exhibit the basic structure 

shown in Figure 1.3, with simplifications for some cases. 

 

Figure 1.3. A generic underwater sound channel 

Flat Reflecting Ocean Surface r 

ρb, cb, αb

  Source 
Location  
rs=(rs, zs) 

z 

frequency = f

Depth = H 

cw(z) 

Acoustic Half-Space

 

The surface of the water is assumed flat and perfectly reflecting.  The water 

column is assumed to have a sound speed cw which may vary with depth, but is 

independent of range.  The bottom interface is located at a depth H below the surface.  

The bottom is modeled as a half-space of infinite depth, with its own sound speed cb, an 
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absorption parameter αb, and a density ρb relative to the ocean density.  An acoustic 

source of cyclic frequency ω = 2πf is located at rs, zs. 

The acoustic pressure field P(r,z) is governed by the Helmholtz equation 

( ) 0,1 2
2

2

=⎥
⎦

⎤
⎢
⎣

⎡
+

∂
∂

+⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

∂
∂ zrPk

zr
r

rr
,                                                                                (1) 

where the wavenumber k is defined by 
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In the far field, solutions to the Helmholtz equation can be represented as sums 

over modes of the form 
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Here, km is a modal wavenumber corresponding to the mth mode, and φm(z) is the 

mode shape for that mode.  The modal sum must be terminated at some finite mode 

number M.  At far ranges this M is often chosen as the number of so-called “trapped” or 

“propagating” modes – modes which are fully internally reflected at the bottom interface 

– as modes of higher order lose their energy rapidly in the bottom.  However, M can be 

chosen at a higher value to incorporate the so-called “leaky” modes, which can still 

contribute significantly to the pressure field in some environments, especially at short 

ranges. 

It is worth noting that for a modal sum solution technique, calculating the mode 

shapes and modal wavenumbers allows the pressure at any point in the field to be 

obtained from a simple summation.  Thus, the majority of analytical or computational 

effort in a modal solution is in obtaining the appropriate wavenumbers and mode shapes. 
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The above solution assumes that the values of all parameters in Figure 1.3 are 

known exactly.  In practical applications, values for these parameters will only be known 

to within some specified bounds.  Because the relationship between each parameter and 

the field solution is complicated and nonlinear, it is not transparent how uncertainty in the 

environmental inputs affects the uncertainty of the final field solution.  This lack of 

transparency in the parameter-field coupling highlights the need for accurate and efficient 

approximations for the relationship between environmental and field uncertainties. 

 

V. Overview of uncertainty approximation techniques 

In this research, four different methods of predicting the uncertainty in an acoustic 

field arising from uncertain values of environmental inputs are discussed.  The first and 

most straightforward technique is referred to as Direct Simulation (DS).  For direct 

simulation, if the depth is uncertain, the field calculation can simply be performed at 

many different depth values, over the full range of possible depths.  Allowing for an 

arbitrarily large number of calculations, this technique yields an accurate relationship 

between acoustic pressure and depth.  With the relationship between the pressure and the 

uncertain depth known, the probability distribution for an uncertain depth can be 

transformed to a distribution for the pressure through standard techniques.  Assuming 

infinite computational time were available, this technique would represent the complete 

solution for uncertainty prediction, as the accuracy can be made arbitrarily high with 

more computations.  In practice, field predictions in realistic ocean environments can be 

computationally expensive, and direct simulation at an acceptable level of accuracy is 

seldom feasible in real time.  Nevertheless, direct simulation is useful as a research tool 
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because it provides a reference for all other uncertainty assessment techniques.  With a 

sufficient number of field calculations, the distributions generated by direct simulation 

can be considered exact, for the purposes of determining the approximation errors of 

other techniques.  Closely related to direct simulation are Monte-Carlo techniques.  A 

Monte-Carlo approximation is essentially a direct simulation, where the input states are 

chosen randomly according to their distributions, instead of uniformly across all possible 

values of the inputs.  This provides an approximation for the probability distribution of 

the field directly, but does not predict the relationship between the field and its uncertain 

inputs.  Especially in cases involving several uncertain variables, Monte Carlo sampling 

can drastically reduce the number of field calculations required to obtain the desired level 

of accuracy, but the number is still many orders of magnitude larger than at least one of 

the uncertainty approximation techniques discussed below.  

The second technique for determining acoustic uncertainty is referred to as PDF 

propagation.  In standard acoustic prediction, the deterministic pressure at the source 

propagates to the point of interest and the propagation is governed by the Helmholtz 

equation.  In this technique, the pressure at any point is described not as a single value, 

but by a Probability Density Function (PDF), representing its uncertainty.  The governing 

equation for the field, as well as the boundary and initial conditions, are applied to the 

PDF, rather than the deterministic pressure.  If the resulting differential equations can be 

solved for a particular sound channel, the uncertain distribution of pressure is known at 

all locations.  The successes and limitations of this technique are explored in James and 

Dowling (2005), provided herein as Chapter 2. 
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The third technique is referred to henceforth as Field Shifting (FS).  This 

technique exploits a property exhibited by many underwater sound channels, that small 

changes in an environmental parameter approximately correspond to small spatial shifts 

of the field, on a local scale.  Thus, the pressure at a point in the field, at different 

possible values for an uncertain input, can be mapped to the pressure at nearby points in 

the field.  As discussed for direct simulation, once the relationship between pressure and 

an uncertain variable is determined, the uncertain pressure distribution can be obtained 

from the distribution of the uncertain input through standard PDF transformation or 

Monte-Carlo sampling techniques.  The formulation and accuracy of this technique are 

explored in James and Dowling (2008), provided herein as Chapter 3. 

The final technique, polynomial chaos expansion, was not developed through this 

research, but is a technique utilized in several fields of engineering (Field, 2004), such as 

fluid modeling (Xiu et al., 2002b) and advection/diffusion (Witteveen and Hester, 2008).  

The polynomial chaos method was first applied to underwater acoustics by Dr. Steve 

Finette of the Naval Research Laboratory (see Finette 2005, 2006) as discussed above.  

For this technique, the uncertain pressure is represented as an expansion of known basis 

functions and unknown uncertainty coefficients, which are calculated for the sound 

channel of interest.  Chapter 4 describes how this technique can be used in a simple 

range-independent sound channel, and compares the accuracy and efficiency of the PCE 

technique to field shifting,and direct simulations. 
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Chapter 2 

 

PDF Propagation 

 

Abstract 

Acoustic field predictions, whether analytical or computational, rely on knowledge 

of the environmental, boundary, and initial conditions.  When knowledge of these 

conditions is uncertain, acoustic field predictions will also be uncertain, even if the 

techniques for field prediction are perfect.  Quantifying acoustic field uncertainty is 

important for applications that require accurate field amplitude and phase predictions, 

like matched-field techniques for sonar, non-destructive evaluation, bio-medical 

ultrasound, and atmospheric remote sensing.  Drawing on prior turbulence research, this 

paper describes how an evolution equation for the probability density function (PDF) of 

the predicted acoustic field can be derived and used to quantify predicted-acoustic-field 

 

 

 
 
The following chapter was published in 2005 in the Journal of the Acoustical Society of 
America, Volume 118, pages 2802-2810, with the title “A probability density function 
method for acoustic field uncertainty analysis.” 
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uncertainties arising from uncertain environmental, boundary, or initial conditions.  

Example calculations are presented in one and two spatial dimensions for the one-point 

PDF for the real and imaginary parts of a harmonic field, and show that predicted field 

uncertainty increases with increasing range and frequency.  In particular, at 500 Hz in an 

ideal 100-m-deep underwater sound channel with a 1-m root-mean-square depth 

uncertainty, the PDF results presented here indicate that at a range of 5 km, all phases and 

a 10 dB range of amplitudes will have non-negligible probability.  Evolution equations 

for the two-point PDF are also derived. 

 

I. Introduction 

Acoustic predictions can be made using either analytical or numerical means, with 

the latter continually allowing more complicated environments and geometries to be 

tackled (see Jensen et al. 1994 for examples in underwater acoustics). However, even if 

perfect analytical or numerical techniques are used, or model and numerical errors are 

negligible, the accuracy of either analytic or numerical acoustic field predictions will be 

limited if the parameters describing the acoustic environment and the boundary or initial 

conditions used in the solution technique are uncertain.  The effects that uncertain 

environmental, boundary, or initial conditions (hereafter referred to as input parameter 

uncertainties) have on predicted acoustic fields is not readily ascertained from the field 

prediction technique itself, and may depend in a complicated and nonlinear manner on 

the particular input parameters involved. 

Quantifying the uncertainty in predicted acoustic fields produced by input parameter 

uncertainties is potentially important for any application of acoustics that relies on a field 

 17



model to generate predictions.  Such applications include matched-field techniques in 

sonar, non-destructive evaluation, bio-medical ultrasound, acoustic holography, and 

atmospheric and other types of remote sensing.  In these applications, mismatch between 

actual acoustic propagation and predicted acoustic propagation may lead to erroneous 

results.  Plus, recent studies (Sha and Nolte 2005a,b) have determined that sonar 

detection performance is degraded in uncertain environments.  Given the accuracy of 

modern computational techniques, predicted-field uncertainty may dominate other 

sources of uncertainty, especially at higher frequencies and longer source-receiver ranges 

where input parameter uncertainties cause greater predicted-field uncertainties.  Thus, an 

underlying assumption made here is that the interested acoustician has a means for 

predicting acoustic fields but may not have any means to assess the uncertainty of the 

predicted fields. 

The primary purpose of this paper is to present a potentially useful means for 

quantifying predicted-field uncertainty arising from input parameter uncertainties. Here, 

uncertainty is quantified in terms of a probability density function (PDF), and this PDF’s 

evolution equation is derived using mathematical identities developed from the relevant 

fine-grained PDF (Lundgren 1967) and wave mechanics, in a manner similar to that 

developed for the study of turbulence (see Pope 2000).  This PDF approach is new to 

acoustics and the examples presented here are meant to be illustrative, not exhaustive.  

Indeed, analyzing predicted-field uncertainty via PDFs is potentially challenging because 

the relationship between uncertain-input-parameter PDFs and the predicted-field PDFs 

may be complicated and nonlinear.  Furthermore, the additional and possibly difficult 

task of determining a priori input-parameter PDFs is not addressed here.  Thus, future 
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investigations that surpass the one reported here will be necessary to determine the 

ultimate utility of these PDF techniques for quantifying predicted acoustic-field 

uncertainty. 

The material presented here is a new application of the PDF transport formalism 

developed for turbulence and turbulent combustion.  However, fundamental differences 

exist between turbulence PDFs and those in acoustic uncertainty analysis.  For example, 

the turbulent-velocity-fluctuation PDF is intended to statistically describe actual fluid 

velocity fluctuations. Hence, its form is constrained or limited by the nonlinear physical 

conservation laws for mass, momentum, and energy.  In acoustic uncertainty analysis, the 

pressure-field PDF is intended to statistically describe the possible acoustic pressure 

fields that might arise from a set of input parameter uncertainties.  In the acoustic case, 

each possible field obeys linearized versions of the conservation laws, but the input 

parameter uncertainties themselves are not constrained by conservation laws or other 

physical limits.  Therefore, acoustic-field-uncertainty PDFs are inherently less 

constrained than turbulence PDFs.  Although this may mean that acoustic-field-

uncertainty PDFs will be even more elusive than turbulence PDFs, the prospects for 

developing effective PDF prediction techniques for acoustics might actually be better 

than that for turbulence because the underlying phenomena in the acoustic case are linear 

while turbulence is inherently nonlinear. 

For the present discussion, random and uncertain acoustic environments are not the 

same.  The goal of the research effort presented here is to quantify acoustic field 

uncertainties in primarily deterministic environments where one (or perhaps a few) input 

parameter(s) is (are) uncertain.  To this end, one- and two-dimensional cases of ideal 
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range-independent sound channels, each with a single uncertain scalar parameter, are 

presented in Sections II and III.  Acoustic propagation in random environments is 

different because it is likely to require many uncertain input parameters.  Consider a 

random-depth range-dependent sound channel with constant average depth.  Here, a 

randomly rough bottom with a finite horizontal correlation length would necessitate the 

inclusion of an uncertain parameter (depth, slope, etc.) for each range increment – for 

example, a roughness correlation length – between the source and receiver.  Thus, this 

situation could entail many uncertain input parameters at long ranges.  For comparison, 

the example in Section III involves a sound channel with a constant range-independent 

depth that is uncertain, a situation described by a single random variable for any source-

receiver range. 

Wave propagation in random media is commonly analyzed via moments of the 

acoustic (or electromagnetic) field and an extensive literature exists for field-moment 

equations for random media (see Uscinski 1977, Ishimaru 1978).  It is conjectured that 

the PDF methods presented here can be formally connected to these established results 

when the uncertain input parameters are sufficiently numerous and appropriately 

distributed in space, and moments are extracted from the appropriate PDF evolution 

equation.  However, proof of this conjecture is beyond the scope of this paper. 

At least two other means for quantifying predicted-field acoustic uncertainty and its 

impact on signal processing have recently been reported.  Sibul et al. (2004), using 

maximum entropy methods, discusses how randomness and uncertainty in the 

environmental, boundary, and source parameters affects the probability of detection of a 

narrowband sound source.  Finette (2005) describes how uncertainty can be imbedded 
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into ocean acoustic propagation models through expansions of the input parameter 

uncertainties in orthogonal polynomials.  Both of these techniques, and the one described 

in this paper, hold the promise of significant computational efficiency compared to 

Monte-Carlo simulations, the common and robust but computationally expensive means 

for assessing field statistics in uncertain or random media. 

For simplicity, this paper only addresses the PDF equations for time harmonic fields 

at radian frequency ω.  Thus, two probability variables must be considered, R and I, the 

real and imaginary parts of the predicted acoustic field, or A and Θ, the amplitude and 

phase of the predicted acoustic field.  Here the former are emphasized over the later.  An 

advantage of this PDF formulation of the predicted-field uncertainty is that a PDF carries 

more information than its first few moments alone.  This advantage is particularly 

important because the PDF of R and I may depart drastically from joint-Gaussian even 

when the input parameter uncertainty is Gaussian distributed.  Extension of this effort to 

broadband time-dependent pressure fields is possible but is not pursued here. 

The remainder of this paper is divided into four sections.  The next section presents 

the development of the predicted-field PDF transport equation in one spatial dimension.  

This equation is then solved for the case of uncertain wave number or sound speed.  The 

third section extends the development to two spatial dimensions and a numerical solution 

for an ideal waveguide with uncertain depth is presented.  The fourth section shows how 

the techniques presented in the first two sections can be extended to derive an equation 

for the two-point predicted-field PDF.  The final section summarizes this effort, presents 

its conclusions, and describes possible extensions of this work. 
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II. PDF Uncertainty Analysis in One Spatial Dimension 

The purpose of this section is to illustrate how an evolution equation for the PDF of 

a predicted acoustic field can be obtained from the fine-grained PDF (Lundgren, 1967) 

and one-dimensional wave propagation relationships for harmonic waves.  The resulting 

equation is then solved by direct analytical means for the acoustic waves propagating in 

an ideal duct with uncertain wave number (or sound speed).  Here, pressure has a 

harmonic time dependence with radian frequency ω, p x,t( )= Re ˆ p x( )e−iωt{ } where 

, and x is the spatial coordinate.  The PDF of interest is the one-

point, joint PDF for the real and imaginary parts of the pressure, , where R and 

I are the probability sample space variables for the real and imaginary parts of the 

pressure.  Throughout this paper the letter f with subscripts will denote a PDF.  Capital-

letter arguments will refer to probability space variables and lowercase-letter arguments 

will refer to field variables, spatial coordinates, or other parameters. 

ˆ p x( )= pR x( )+ ipI x( )

fP R,I;x( )

The evolution equation for fP R,I;x( ) can be obtained by manipulating its fine-

grained PDF, Pf , a function that can be thought of as a single realization in the infinite 

ensemble of trials represented by fP R,I;x( ) (Lundgren, 1967).  In this paper, and in PDF 

transport work in turbulence (Pope 2001) and turbulent combustion (Dopazo 1994), the 

fine-grain PDF plays the role of a generating function that can be transformed into 

 by computing its expected value.  Here, the fine-grain PDF is written explicitly 

as a product of Dirac delta-functions, 

fP R,I;x( )

f P = δ pR − R( )δ pI − I( ),                                                     (1) 

and its expected value, denoted f P , is 
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f P = δ ˜ R − R( )δ ˜ I − I( )fP
˜ R , ˜ I ;x( )d ˜ R d˜ I 

−∞

+∞

∫
−∞

+∞

∫ = fP R,I;x( ) .                          (2) 

The properties of the fine-grained PDF and the structure of its arguments allow it to be 

the basis for constructing mathematical identities involving its derivatives with respect to 

the independent spatial and probability-space variables.  These identities for Pf  can be 

converted to identities for fP R,I;x( ) by computing an expected value.  Then, substitution 

for the pressure-field derivatives appearing in the identity for fP R,I;x( ) from established 

wave-physics relationships produces an evolution equation for .  This 

procedure is illustrated in the next few paragraphs of this section, and in the first few 

paragraphs of Sections III and IV. 

fP R,I;x( )

An important identity for the fine-grained PDF can be derived from Bayes’ theorem 

for any function or variable b with probability space variable B:  

       bf P = Bδ ˜ R − R( )δ ˜ I − I( )fBP B, ˜ R , ˜ I ( )dBd ˜ R d˜ I 
−∞

+∞

∫ = BfBP B,R,I( )dB
−∞

+∞

∫
−∞

+∞

∫
−∞

+∞

∫  

= fP R,I( ) B
−∞

+∞

∫ fBP B,R,I( )
fP R,I( )

dB = fP R,I( ) B
−∞

+∞

∫ fB |P B R,I( )dB = fP R,I( ) B R,I       (3) 

(see Pope 2000) where  is the joint PDF of B, R, and I, and  is the conditional 

PDF for B given values of R and I.  Here the vertical bar denotes conditioning, i.e. 

BPf PBf |

IRB ,  is the expected value of B given the information Rp R=  and Ip I= .  This use 

of Bayes’ theorem involves the higher-level distributions fBP B,R,I( ) and ( )IRBf PB ,| , 

which may not be available in general.  However, construction of these distributions 

and/or their moments may be possible when an analytical field model exists, as is shown 

in the remainder of this section.  Alternatively, models for the requisite conditional 
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moment IRB ,  may be developed directly as is done in PDF work in turbulence (Pope 

2000, Lou and Miller 2001, Waclawczyk et al. 2004) and turbulent combustion (Dopazo 

1994, Pope 2004, James et al. 2005).  A general means for determining  or its 

moments is beyond the scope of this paper. 

fBP B,R,I( )

For acoustic field uncertainty analysis, the most important relationships that can be 

obtained from the fine-grained PDF involve spatial derivatives.  For example, partial 

differentiation with respect to the independent spatial variable x produces 

( ) ( ) ( ) ( )
x
p

I
f

x
p

R
f

x
pIpRpIp

x
pRp

x
f IPRPI

IRI
R

R
P

∂
∂

∂
∂

−
∂

∂
∂
∂

−=
∂
∂

−′−+−
∂

∂
−′=

∂
∂ δδδδ  ,       (4) 

an identity for Pf .  Here the prime denotes differentiation with respect to the argument.  

Taking the expected value of Eq. (4) and using Eq. (3) produces an identity for 

: fP R,I;x( )

   ∂ f P
∂x

=
∂fP

∂x
= −

∂ f P
∂R

∂pR

∂x
−

∂f P
∂I

∂pI

∂x
 

= −
∂

∂R
f P

∂pR

∂x
−

∂
∂I

f P
∂pI

∂x
= −

∂
∂R

fP
∂pR

∂x
R,I

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ −

∂
∂I

fP
∂pI

∂x
R,I

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟  .         (5) 

This identity can be converted into an evolution equation for ( )xIRf P ;,  by introducing 

wave-propagation physics through the pressure derivatives.  Here, unidirectional plane-

wave [ ] propagation relationships are used: ˆ p x( )∝e+ ikx
IR kpxp −=∂∂  and 

RI kpxp +=∂∂ , where k = ω/c is an uncertain wave number based on the uncertain speed 

of sound c.  These relationships allow the conditional moments in Eq. (5) to be rewritten, 

∂pR ∂x R,I = −kpI R,I = −I k R,I  and ∂pI ∂x R,I = +kpR R,I = R k R,I , so it is 

converted into an evolution equation for ( )xIRf P ;, : 
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∂fP

∂x
= I ∂

∂R
fP k R,I( )− R ∂

∂I
fP k R,I( ) .                                    (6) 

The remainder of this section presents a solution of Eq. (6) for the simple case of an 

acoustic source with uncertain amplitude and zero phase at x = 0 that radiates plane 

waves in the positive x-direction along an ideal constant-cross-sectional area duct having 

a uniform but uncertain speed of sound.  The first step is to rewrite the derivatives in Eq. 

(6) in terms of amplitude, A = R2 + I2 , and phase Θ ( tanΘ = I R) using 

∂ ∂R = R A( )∂ ∂A − I A2( )∂ ∂Θ and ∂ ∂I = I A( )∂ ∂A + R A2( )∂ ∂Θ  to find: 

∂fP

∂x
= −

∂
∂Θ

fP k R,I( ) .                                                     (7) 

For a known input frequency, ω, the solution for fP R,I;x( ) can be obtained in terms of 

the a priori PDFs for the uncertain wave number ( )Kf K  and the uncertain 

amplitude .  The initial condition on  is: ( )Af A Pf

fP x = 0( )=
1
A

fA A( )δ Θ( );                                                  (8) 

the factor of 1 A in Eq. (8) ensures the normalization: ∫ ∫ fP (x = 0)AdAdΘ =1. 

The primary difficulty in solving Eq. (7) comes from relating the conditional 

expectation IRk ,  to the other independent or dependent variables.  For this simple 

case, IRk ,  can be determined analytically in terms of Θ, x, and .  Here, phases 

between 0 and +2π are considered, and the range of the arctangent is set to [0,π].  The 

relationship between wave number and phase is thus  

( )Kf K

Θ =
tan−1 I R( )        for  I > 0
tan−1 I R( )+ π  for  I < 0

⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 

= mod(kx,2π )                                  (9) 
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Thus, for a given R and I, k must take one of the discrete values: 

Kn =
Θ − 2πn

x
 ,  n = 0, ±1, ±2, …                                              (10) 

so the conditional PDF of k, , is a sum of δ-functions appropriately weighted by 

: 

PKf |

( )Kf K

fK |P K R,I( )=
δ K − Kn( ) fK Kn( )

n
∑

fK Kn( )
n
∑

 ,                                               (11) 

where the denominator factor merely provides the requisite normalization.  The 

conditional expectation in Eq. (7) can be evaluated in terms of Kn and fK using Eq. (11): 

k R,I = KfK |P K R,I( )dK =
−∞

+∞

∫
Kn fK Kn( )

n
∑

fK Kn( )
n
∑

                                 (12) 

Formally, the summation is over all possible n; however, only a finite number of the Kn 

occur where fK is nonzero and this set of n is used in the summations. 

The form of Eq. (12), with Kn providing the dominant combination of the independent 

variables x and Θ,  motivates a solution to Eq. (7) based on the Kn as separate variables: 

fP = g A,x( ) h Kn( )
n
∑  .                                                   (13) 

Here, g and h are unknown functions, and, as a recap: A = R2 + I2  is the pressure field 

amplitude, x is the lone spatial coordinate, and Kn is the nth possible wave number value 

at location x for a given value of R and I.  Using Eqs. (12) and (13), Eq. (7) becomes 

∂g
∂x

h
n
∑ −

g
x

Kn ′ h 
n
∑ = −g ∂

∂Θ
k R,I h

n
∑

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ = −

g
x

∂
∂Kn

k R,I h
n
∑

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟  ,                 (14) 
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where derivative relationships, xKxK nn −=∂∂  and xK n 1−=Θ∂∂ , from Eq. (10) 

have been used as well.  In Eq. (14), the unspecified dependence of IRk ,  and the 

argument of h are both Kn, and nK∂∂  implies term by term differentiation of the sums 

that form ∑
n

hIRk , .  The two ends of Eq. (14) can be used to find: 

−
x
g

∂g
∂x

=
∂

∂Kn

k R,I h
n
∑

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ − Kn ′ h 

n
∑

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ h

n
∑                                     (15) 

The left side of Eq. (15) depends only on A and x, while the right side depends only on 

Kn.  Thus, both sides must equal a constant yielding two equations: 

−
x
g

∂g
∂x

= α , and  1+
∂

∂Kn

k R,I h
n
∑ − Knh

n
∑

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ h

n
∑ = α ,               (16),(17) 

where α is the separation constant, and the derivative relationship 

∂ ∂Kn( ) ∑Knh( )= ∑Kn ′ h + ∑ h  has been used to expand the Kn-derivative in Eq. (15) to 

fill the [,]-brackets.  Equations (12) and (17) produce an equation for h: 

∂
∂Kn

∑Kn fK

∑ fK

∑h − ∑Knh
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ = (α −1)∑h ,                                        (18) 

where the n-designation has been dropped from the summations to save space.  The value 

of α can be determined by considering the form of the solution for x approaching zero.  

Here, the pressure PDF must match the conditions at the source where the phase is 

deterministic.  Thus, as x → 0 only one value of n can contribute to the various sums, so 

the terms in parentheses in Eq. (18) become: Kn fK

fK

h − Knh = 0 which means that α = 1, 

and more generally that: 

∑Kn fK ∑h − ∑Knh∑ fK = 0,                                                (19) 
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which is solved by simply setting h = fK .  Returning to Eq. (16), α = 1 implies 

∂g ∂x = −g x , which has the simple solution g A, x( )= ˜ g A( ) x  where ˜ g  is an 

undetermined function of A alone. 

Thus, the solution for the pressure field PDF is 

fP =
˜ g A( )

x
fK

Θ − 2πn
x

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
                                                  (20) ⎟

n
∑

Applying the initial condition, Eq. (8), while recognizing that for any distribution  that 

goes to zero when its argument goes to infinity,  

Kf

lim
x→0

1
x

fK
Θ − 2πn

x
⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 

n
∑

⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 

= δ Θ( ) ,                                          (21) 

allows the identification ˜ g = fA A , so that the final solution for this example is: 

f p R,I;x( )=
fA R2 + I2( )
x R2 + I 2

fK
tan−1 I R( )− 2πn

x

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

n
∑      for I > 0                        (22) 

where 2πn in the argument of  should be replaced by 2π(n+1/2) when I < 0. Kf

The evolution of  based on Eq. (22) for increasing x is shown in the four parts of 

Figure 2.1 for known amplitude A

Pf

o, i.e. fA (A) = δ A − Ao( ), and Gaussian wave number 

distribution centered on 2π λ  with a standard deviation of 0.01 2π λ( ) for x = λ/3, 10λ/3, 

58λ/3, and 178λ/3, where λ is the average acoustic wavelength.  The figure renders  in 

an isometric view with the independent R and I axes lying in a horizontal plane. The 

predicted-field amplitude is independent of x, a direct consequence of the plane wave 

assumption, while  spreads in phase x increases.  The phase starts out known, but as x 

increases, the uncertainty in wave number results in a growing uncertainty in phase.  This 

phase uncertainty growth eventually saturates so that sufficiently far from the source all 

Pf

Pf
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phases are essentially equally likely.  At such distances, the value of the acoustic field 

calculations for a coherent signal processing application would be severely degraded.  

Thus, if more realism can be included, the type of analysis presented here could lead to 

guidelines for knowing when acoustic-field phase predictions are likely to useful. 

Interestingly, the solution to this example problem, Eq. (22), could have been 

obtained by direct PDF transformations (see Papoulis 1965) using known analytical 

results for one-dimensional acoustic waves.  Thus, the value of the preceding derivation 

lies in its illustration of the procedure for generating and solving an equation for the 

evolution of fP .  In more complicated uncertain acoustic environments, direct PDF 

transformation techniques may not be feasible, but methods paralleling this one-

dimensional example may still be possible when exact or approximate values for the 

conditional moments can be found.  In particular, recent PDF-method calculations of 

turbulence (Lou and Miller 2001, Waclawczyk et al. 2004) and turbulent combustion 

(Pope 2004, James et al. 2005) follow such an approach using approximate models for 

the conditional moments. 
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Figure 2.1. Isometric views of the probability density function, fP, for the real, R, and 
imaginary, I, parts of a unidirectional acoustic plane wave propagating in an ideal duct 

with an uncertain wave number at four distances from the sound source. These results are 
based on Eq. (22). Here the wave number uncertainty has a standard deviation of 1% of 

the average wave number and Ao is the sound amplitude produced by the zero-phase 
plane wave source at x=0. The four distances from the source are: (a) x=λ/3, (b) x=10λ/3, 
(c) x=58λ/3, and (d) x=178λ/3, where λ is the average acoustic wavelength. The vertical 

axis is linear not logarithmic. 
 

III. PDF Uncertainty Analysis in Two or More Spatial Dimensions 

An equation for the evolution of fP  in two or more spatial dimensions can be found 

in a manner similar to that given in the previous section where differentiation of Eq. (1) is 

used to produce Eqs. (5) and (6), except here the Laplacian of the fine-grained PDF in 

Eq. (1), 

∇2 f P = −
∂ f P
∂R

∇2 pR −
∂ f P
∂I

∇2 pI +
∂2 f P
∂R2 ∇pR

2 +
∂2 f P
∂I2 ∇pI

2 + 2 +
∂2 f P
∂R∂I

∇pR ⋅ ∇pR     (23) 
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is needed to create the appropriate mathematical identity for fP ,  

∇2 fP = −
∂

∂R
fP ∇2 pR R,I( )−

∂
∂I

fP ∇2 pI R,I( )+
∂2

∂R2 fP ∇pR
2 R,I⎛ 

⎝ 
⎜ ⎞ 

⎠ 
⎟  

              +
∂2

∂I2 fP ∇pI
2 R,I⎛ 

⎝ 
⎜ ⎞ 

⎠ 
⎟ + 2 ∂2

∂R∂I
fP ∇pR ⋅ ∇pI R,I( ) ,               (24) 

and the Helmholtz equation,  is used to convert this identity [Eq. (24)] into 

an evolution equation for 

pkp ˆˆ 22 −=∇

fP .   

          ∇2 fP = 2 fP k 2 R,I + R ∂
∂R

fP k 2 R,I( )+ I ∂
∂I

fP k 2 R,I( ) 

+
∂2

∂R2 fP ∇pR
2 R,I⎛ 

⎝ 
⎜ ⎞ 

⎠ 
⎟ +

∂2

∂I2 fP ∇pI
2 R,I⎛ 

⎝ 
⎜ ⎞ 

⎠ 
⎟ + 2 ∂2

∂R∂I
fP ∇pR ⋅ ∇pI R,I( )     (25) 

This is a general evolution equation for the PDF of acoustic pressure when the wave 

number is uncertain; it is the three-dimensional extension of Eq. (6).  It is derived solely 

from identities and the Helmholtz equation, so it is applicable to all geometries.  

Unfortunately, it contains four conditional expectations and three terms involving 

acoustic pressure gradients.  These terms prevent a direct solution of Eq. (25) because 

they cannot be readily determined from the other dependent and independent variables. 

Without attempting to approximate or model the conditional expectations, their 

effect on PDF evolution can be illustrated by examining a solution to Eq. (25) based on 

direct PDF transformation between the PDF of the uncertain input parameter (an a priori 

PDF) and fP .  In this example, a deterministic acoustic point source radiates sound into 

an isospeed, uniform-density sound channel having uncertain channel depth D, a situation 

that has been the subject of a prior study on environmental mismatch and matched-field 

processing (Shang and Wang, 1991)..  The solution is constructed directly from the 

functional dependence of  on D. p̂
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fP R,I;r,z( )= δ pR r,z,D( )− R( )δ pI r,z,D( )− I( )fD D( )dD
−∞

+∞

∫                       (26) 

Here, r and z are the usual range and depth coordinates used in underwater acoustics, the 

source is located at r = 0 and z = zs, fD  is the a priori PDF of the depth, and 

 is given by ˆ p r,z,D( )= pR + ipI

ˆ p r,z;D( )= iS 8π
r

exp −i π
4

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 

sin kzm D( )zs( )sin kzm D( )z( )
D kzm D( )

exp ikm (D)r(
m
∑ )           (27) 

(see Kinsler et al. 2000) where S sets the source strength, km is the mth mode’s horizontal 

wave number, and kzm is the mth
 mode’s vertical wave number.  The sound channel 

geometry and parameters are provided on Figure 2.2.   

 

Figure 2.2. The ideal range-independent sound channel and coordinate system. 
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The primary difficulty in evaluating of Eq. (26) arises from the delta functions which 

set fP (R,I;r,z)  to zero at nearly all points in the R-I plane.  Thus, for a chosen spatial 

location (r,z), the evaluation of Eq. (26) was done numerically by first finding the locus 

of points in the R-I plane where fP (R,I;r,z)  is nonzero.  This locus traces a contour in the 

R-I plane determined by ˆ p (r,z;D) = R + iI  as D is varied from its lower to its upper 

extreme value.  Nonzero, relative values of fP (R,I;r,z)  were then computed by assigning 

the appropriate value of fD on this locus of points.  The discontinuities where the contour 

crosses itself were ignored.  This simple approach is computationally tractable for a 

single uncertain parameter, but its computational effort grows exponentially with the 

number of uncertain parameters, as the PDF will no longer correspond to a single curve 

in the R-I plane.  

Sample results are presented in Figure 2.3 for a source with acoustic frequency of 

500 Hz, a sound speed of 1500 m/s, a Gaussian distribution of depth having a mean of 

100 m and a standard deviation of 1 m, and source and receiver depths of zs = z = 50 m at 

nominal ranges of 200 m, 1 km, 5 km, and 20 km.  In addition, only the first ten 

propagating modes were included in the sum specified in Eq. (27) as a crude means of 

modeling real-ocean bottom losses that preferentially attenuate higher-order propagating 

modes. 
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Figure 2.3. Isometric views of the probability density function, fP, for the real, R, and 
imaginary, I, parts of the acoustic field propagating in the ideal range-independent sound 
channel of Fig. 2.2 with an uncertain depth at four distances from a 500 Hz sound source.   

These results are based numerical evaluation of Eqs. (26) and (27).  Here the depth 
uncertainty has a standard deviation of 1 m, the average depth is 100 m, the source and 
receiver depths are the same (50 m), and rSIR π800 ==  [see Eq. (27)].  The four 

nominal source-receiver ranges are: a) r = 200 m, b) r = 1 km, c) r = 5 km, and d) r = 20 
km.  As in Fig. 2.1, the vertical axis is linear not logarithmic and darker shades imply 

higher probability. 
 

The down-range evolution of  shown on Fig. 2.3 has several interesting features.  

Near the source, the field uncertainty is low and  resembles a delta-function spike in 

the R-I plane, but it spreads along a thin curve as the range increases.  This curve is 

shown in Figure 2.4 as an overhead view of Figure 2.3 d).  In this example, unlike in the 

one-dimensional one, the spreading curve is neither circular nor centered at the origin, 

Pf

Pf
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and changes shape with range, so acoustic field uncertainty occurs in both amplitude and 

phase.  Furthermore, the shape of , most noticeably at the three longer ranges, is quite 

different from the familiar bell-shaped distribution of a joint Gaussian, indicating that an 

assumption of Gaussian field statistics may be very inaccurate.  Furthermore, for ranges 

greater than 5 km or so, all acoustic-field phases have a non-negligible probability of 

occurring, and there exists at least a 10 dB range of probable amplitudes, so acoustic field 

predictions at a single point at such distances might be considered too uncertain to be 

useful.  Increasing the frequency causes the PDF to exhibit similar levels of uncertainty at 

even shorter ranges. 

Pf

 

Figure 2.4. Overhead view of Fig. 2.3 d).  The spread of fP is non-Gaussian even 
though the a priori input PDF, fD, for the uncertain channel depth was Gaussian.  As in 

Figs. 1 and 3, darker shades imply higher probability 
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Revisiting Eq. (25) in light of the Fig. 2.3 results, it is seen that this complicated 

behavior must arise from the character of the conditional expectations, so any 

simplification or approximation to these expectations must keep this character intact.  

However, if manageable expressions can be developed for these expressions, then PDF 

evolution analysis has potential as a useful tool for acoustic uncertainty analysis.  Such 

expressions have been developed in other fields where PDF analysis has been applied 

(see Dopazo 1994, Pope 2000, James et al 2005). 

 

IV. Multipoint PDF Uncertainty Analysis in Two or More Spatial Dimensions 

In acoustic array signal processing, the spatial structure of the acoustic field may be 

as or more important than the phase and amplitude of the field at any particular point.  

Thus, the two-point PDF of acoustic pressure might also be of interest in uncertain 

acoustic environments.  The following short derivation presents the two-point version of 

Eq. (25).  Generalization to n-point PDF equations can be obtained by appropriate 

extension of the following steps. 

Following Lundgren (1967), the equation for the two-point acoustic field PDF, f12, 

can be built from the two-point fine-grained PDF,  

f 12 = δ pR1 − R( )δ pI1 − I( )δ pR 2 − R( )δ pI 2 − I( )                              (28) 

where the extra numerical subscripts throughout this section refer to the two field points, 

1xr  and 2xr . Computing the Laplacians of this equation with respect to the first and second 

field points produces two equations like Eq. (23) with “1” and “2” subscripts.  Taking the 

expected value of these two equations and substituting from the Helmholtz equation 
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results in two equations for 12f  with conditional moments that depend on the complex 

pressure at 1xr  and 2xr .  The first of these equations is 

    ∇1
2 f12 = 2 f12 k 2 1,2 + R1

∂
∂R1

f12 k 2 1,2( )+ I1
∂

∂I1

f12 k 2 1,2( ) 

+
∂2

∂R1
2 f12 ∇1pR1

2 1,2⎛ 
⎝ 
⎜ ⎞ 

⎠ 
⎟ +

∂2

∂I1
2 f12 ∇1pI1

2 1,2⎛ 
⎝ 
⎜ ⎞ 

⎠ 
⎟ + 2 ∂2

∂R1∂I1

f12 ∇1pR1 ⋅ ∇1pI11,2( )       (29) 

where 2121 ,,,... IIRR  has been abbreviated as 2,1... .  The second equation is identical 

to Eq. (29) with the “1”-subscripts on ∇ , pR, pI, R, and I replaced by “2”-subscripts. 

For an N-dimensional geometry, the two-point PDF exists in a 2N-dimensional space 

consisting of all possible locations of both points (where the value of  at each point is 

a function of R

12f

1, I1, R2, and I2).  The two equations for  describe its evolution in this 

space.  For an n-point joint PDF, there would be n such equations, with the expectations 

conditioned on the pressure values at all n points. 

12f

 

V. Summary and Conclusions 

This paper has presented a technique for constructing the evolution equation for the 

probability density function (PDF) of an uncertain harmonic acoustic field in an uncertain 

environment.  The technique was illustrated through examples involving one and two 

independent spatial dimensions.  One-point and multi-point PDFs and their equations 

were considered.  It has been assumed throughout this research effort that the PDFs of 

uncertain acoustic fields contain information that may be valuable in applications of 

acoustics.  The following three conclusions can be drawn from this effort. 
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First, the wavelength scaling for distances, or ranges, that arises in both examples 

suggests that the behavior of the acoustic-field PDF for fixed frequency and increasing 

range – as investigated here – will be essentially the same for fixed ranges and increasing 

frequencies.  Thus, even for small input parameter uncertainties, there will be a range at 

any fixed frequency, or a frequency at any fixed range, beyond or above which the use of 

a perfect acoustic field model may no longer be useful for predicting the phase of the 

acoustic field.  Thus, the present harmonic-field results provide some insight into 

broadband-sound acoustic uncertainty, even though it was not explicitly addressed.  

Second, uncertain wave propagation involving one or more independent spatial 

dimensions may not be adequately described by an expected value and a variance (the 

first two moments of a PDF).  In the two-dimensional example provided in Fig. 2.3, the 

resulting PDF is far from joint-Gaussian, even when the only uncertain input parameter is 

Gaussian.  Although this effect may be less pronounced if a larger number of uncertain 

input parameters is considered, it prevents an immediate retreat to field-moment-based 

techniques, like those used for wave propagation in random media, for acoustic 

uncertainty analysis.  Additional investigation could determine if the predicted-field PDF 

approaches Gaussian behavior when more input parameters are uncertain. 

Third, the PDF equations derived here contain complications that were partially 

overcome in the two examples through the existence of an analytical field model.  In the 

one-dimensional case, for example, the conditional expectation was replaced by the 

simple relationship between wavenumber, phase, and distance for one-dimensional 

propagation.  Significant complications arise, however, in realistic geometries where, at 

best, a computational field model is available.  When there is no invertible, analytic 

 38



relationship between the uncertain parameters and the pressure, the PDF evolution 

equations contain terms that cannot be explicitly evaluated.  If tractable and robust 

expressions can be found for these terms, the methods described here may become useful 

tools in acoustic uncertainty analysis. 

As a final note, the equations presented herein are not the only candidates for 

describing the evolution of acoustic-field PDFs.  For example, when the acoustic waves 

travel in nearly the same direction, a PDF equation could be developed from the 

parabolic approximation to the Helmholtz equation instead of from the Helmholtz 

equation itself.  The different conditional expectations that arise in such an effort may 

prove to be more or less tractable in certain situations.  Uncertainty in acoustic-ray 

equations could also be analyzed by the PDF-equation construction approach described 

here.  In addition, this approach might be successfully applied to other fields where 

physical laws are stated via partial differential equations for relevant field quantities such 

as electricity and magnetism, wave propagation in solids and other media, or physical 

systems involving thermal or species diffusion.  In general, not all PDF equations so 

generated can be applied to boundary value problems, but they might still provide insight 

into the origins and propagation of uncertainty in a variety of physical systems. 
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Chapter 3 

 

The Field Shifting Approximation 

 

 

Abstract 

In underwater acoustics, the accuracy of computational field predictions is 

commonly limited by uncertainty in environmental parameters.  An approximate 

technique for determining the probability density function (PDF) of computed field 

amplitude, A, from known environmental uncertainties is presented here.  The technique 

can be applied to several, N, uncertain parameters simultaneously, requires N+1 field 

calculations, and can be used with any acoustic field model.  The technique implicitly 

assumes independent input parameters and is based on finding the optimum spatial shift 

between field calculations completed at two different values of each uncertain parameter.  

This shift information is used to convert uncertain-environmental-parameter distributions 

 

 

The following chapter was published in 2008 in the Journal of the Acoustical Society of 
America, Volume 124, pages 1465-1476, with the title “A method for approximating 
acoustic-field-amplitude uncertainty caused by environmental uncertainties.” 
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into PDF(A).  The technique’s accuracy is good when the shifted fields match well.  Its 

accuracy is evaluated in range-independent underwater sound channels via an L1 error-

norm defined between approximate and numerically converged results for PDF(A).  In 

50-m- and 100-m-deep sound channels with 0.5% uncertainty in depth (N=1) at 

frequencies between 100 and 800 Hz, and for ranges from 1 km to 8 km, 95% of the 

approximate field-amplitude distributions generated L1 values less than 0.52 using only 

two field calculations.  Obtaining comparable accuracy from traditional methods requires 

of order 10 field calculations, and up to 10N when N>1. 

 

I.  Introduction 

 The solutions to the partial differential equations governing many areas of science 

and engineering are often highly sensitive to changes in the boundary conditions.  Thus, 

errors or uncertainties in boundary conditions produce corresponding errors and 

uncertainties in the predicted-field solutions that often overshadow all other sources of 

error.  Since a direct relationship between boundary condition parameters and predicted 

field values is rarely analytical and invertible, standard error propagation techniques 

cannot be applied to determine predicted-field uncertainties.  Thus, the task of 

determining predicted-field uncertainty from boundary-condition uncertainty must be 

application specific and must utilize the unique properties of the particular partial 

differential equations, boundary conditions, and field solutions of interest.  The 

established approaches for this uncertainty-determination task, Monte-Carlo and direct 

numerical sampling methods, typically involve a computational burden that increases 

exponentially with the number of uncertain parameters.  This paper describes a technique 
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to approximately determine the effect of environmental uncertainty on predicted-

acoustic-field amplitudes in underwater sound channels that is more efficient. 

 It is important to make a distinction between uncertain environmental parameters, 

which produce uncertain field predictions, and randomly-fluctuating environmental 

parameters, which produce random field solutions.  The present work focuses only on the 

former, while the field of wave propagation in random media addresses the latter; a 

recent deep-water review can be found in Colosi et al. (1999).  Uncertainty in shallow-

ocean acoustics has received increased attention in recent years (see Livingston et al. 

2006 and references therein).  Much of this research can be classified into three 

categories: determination of environmental parameter uncertainty, prediction of acoustic 

decision aid uncertainty, and prediction of acoustic field uncertainty. For example, in the 

first category, Gerstoft and Mecklenbräuker (1998) and Lin et al. (2006) address the 

problem of assessing uncertainty in environmental parameter inversion, when the input 

measurements occur in an uncertain environment.  The technique described in this paper 

addresses the reverse question; what is the impact of environmental parameter 

uncertainty on the prediction of acoustic field amplitude?  

 In the second category, assessments of uncertainty in various sonar-based tactical 

decision aids for source detection and localization have also been completed.  In Gerstoft 

et al. (2006), geoacoustic inversion data from the first category of research is used to 

estimate transmission loss in an uncertain field.  A Monte-Carlo approach to estimating 

the uncertainty of several relevant acoustic observables is outlined in Heaney and Cox 

(2006), and an application of Monte-Carlo to matched-field processing can be found in 

Shorey et al. (1994).  A maximum entropy method to calculate confidence intervals for 
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detection of a high-frequency narrow-band source in an uncertain environment is given in 

Sibul et al. (2004).  In addition, environmental uncertainty has been incorporated in a 

tracking and detection algorithm in order to obtain meaningful results even in the 

presence of large prediction errors (Stone and Osborn 2004).  Similarly, optimal sonar 

detection performance in diffuse noise has been found to depend primarily on 

environmental uncertainties and the signal-to-noise ratio at the receivers (Sha and Nolte 

2005).  The effect of water-depth mismatches on source localization via matched-field 

processing is explored in Shang and Wang (1991) and D’Spain et al. (1999).  An 

improved source localization algorithm that provides more accurate results with 

imperfectly known surface statistics than previous methods is described in Haralabus et 

al. (1993).  The effect of uncertainties in water depth, sound speed, and bottom 

characteristics on source localization uncertainties, using Bayesian inference theory is 

examined in Dosso (2003) and Dosso et al. (2007a).  Even if the field’s distribution 

cannot be determined completely, upper or lower bounds for the uncertainty in various 

decision aids are highly useful in many applications.  A method for obtaining a lower 

bound for the localization error in a sensor network is provided in Wang et al. (2004). In 

LePage and McDonald (2006), a lower limit is calculated for the deterioration of 

performance of time reversal in the presence of sound speed uncertainties.  A common 

feature of a large portion of the work referenced above is the reliance on either Monte-

Carlo or direct numerical sampling techniques to explicitly link environmental and 

acoustic-field uncertainties in the scenario(s) of interest.  

 In contrast, research efforts in the third category – where the present work belongs 

– focus on determining the uncertainty in acoustic field propagation calculations that 
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arises from uncertainty in or imperfect knowledge of the acoustic environment without 

continuing on to assess how such uncertainties impact sonar performance.  Here, the 

broadly applicable and mathematically-sophisticated technique of polynomial chaos has 

been applied to sound propagation in uncertain ocean waveguides (Finette 2005 and 

2006, Creamer 2006).  The polynomial chaos technique is able to provide uncertainty 

predictions throughout a spatial field for spatially varying uncertain parameters and its 

convergence criteria are best met when the uncertain spatially varying parameters have 

finite correlation length.  The field-uncertainty prediction technique described in this 

paper differs from the polynomial chaos work in that it uses simpler mathematics, it 

provides uncertainty predictions at a selected point in space, and it addresses 

environmental parameters with infinite correlation length. 

 The goal of the present work is to produce an acoustic uncertainty determination 

scheme that is simple (and fast) enough to be used in real time in sonar applications.  To 

this end, the technique has only been developed for approximate determination of the 

probability density function (PDF) of the predicted-acoustic-field amplitude, A; phase 

uncertainty is not addressed.  As shown herein, the technique may be readily applied to a 

countable number, N, of uncertain environmental parameters while only requiring N+1 

field calculations.  In addition, the technique is compatible with any type of acoustic 

propagation model, analytical or computational.  The technique is found to work well 

when the changes in an uncertain parameter primarily lead to a spatial shift in the 

predicted acoustic field.  Fortunately, such spatial field shifts can often be found (Dosso 

et al. 2007b).  In addition, optimum spatial shifting may provide the basis for a higher-

moment model that closes acoustic-PDF transport equations (James and Dowling 2005).  
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 The remainder of the paper is divided into three sections. Section II describes the 

method when applied to one or more uncertain environmental parameters to produce a 

prediction for the resulting uncertainty in acoustic amplitude at a point in the field.  

Section III introduces an L1 error-norm as a metric for evaluating the accuracy of 

approximate PDFs.  Using this error norm, the success of the approximate technique is 

reported for a variety of sound channels, of various dimensions, bottom properties, water 

column properties, and source frequencies.  The accuracy of the proposed method is then 

compared to a simple linear approximation technique that utilizes the same number of 

field calculations, and to the more-computationally-intense direct numerical sampling 

method.  Section IV summarizes the findings, including the successes and limitations of 

the approximate technique, and also states the conclusions drawn from this study. 

 

II. Acoustic Amplitude PDF Prediction from Optimum Spatial Shifts 

This section describes an approximate technique for determining the PDF of 

acoustic amplitude for N uncertain environmental parameters based on N + 1 acoustic 

field calculations.  The inputs are an acoustic-field calculation routine, the environmental 

parameters necessary for completing a field calculation, and the PDFs for the uncertain 

environmental parameters.  First, the technique is illustrated via an example calculation 

conducted at the range-depth location (r,z) for a single uncertain parameter.  Instructions 

and formulae for extending the technique to multiple uncertain parameters follow. 
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Figure 3.1. Schematic of a generic range-independent sound channel that is described by 
eight parameters: overall depth H, mixed layer depth d1, thermocline lower limit d2, 

mixed layer sound speed c1, deep water-column sound speed c2, bottom sound speed c3, 
bottom density ρ3, and bottom absorption coefficient γ3.  Here mean water column depths 

of 50 m and 100 m are considered along with bottom types typical of sand, silt, and 
gravel. 

 

For one uncertain environmental parameter, an approximate field-amplitude PDF 

at any point can be computed using two range-depth acoustic-field calculations.  The 

examples shown here are from range-independent sound channels, and rely on KRAKEN 

(Porter and Reiss, 1984) for the field calculations with a unity strength source.  The basic 

idealized range-independent sound channel used in this study is shown in Figure 3.1.  It is 

specified by eight parameters: overall sound channel depth H, mixed layer depth d1, 

mixed layer sound speed c1, thermocline lower limit d2, deep water-column sound speed 

c2, bottom sound speed c3, bottom density ρ3, and bottom absorption coefficient γ3.  Of 

course more sophisticated sound channel parameterizations that include multiple bottom 

layers, for example, are possible but were not pursued here.  For the current example, the 
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water column depth, H, is presumed uncertain but the distribution of possible H values, 

PDF(H), is presumed known.  The first step is to perform two field calculations at 

differing values of the uncertain parameter.  Here, this means one field calculation with H 

= H  (the reference calculation) and a second with H = H  (the sensitivity-assessment 

calculation).  Setting H = H + σ H  is recommended, where H  and σ H  are the 

expected value and standard deviation of H, respectively.  Throughout this manuscript 

uncertain input parameters are assumed to be Gaussian-distributed, reference and 

sensitivity-assessment calculations are taken one standard deviation apart, -brackets 

indicate an expected value, and σ( ) is the standard deviation of ( ).  In the present 

example with uncertain H, the lower portion of the sound channel is merely extended for 

the sensitivity-assessment calculation; the channel was not uniformly stretched. 

The second step involves selecting the range, R, and depth, Z, dimensions of 

windows in the computed fields that will be used to determine the optimal spatial shift.  

Smaller windows allow for better local approximations, however the window must also 

be large enough to contain the approximate spatial shift corresponding to the H − H  

change in uncertain input.  It is possible to optimize the window size choice via an 

iterative scheme but results from such an approach are not reported here.  In the present 

effort, the following formulae were used: 

Z = 2.0c2 f   ,  and  R = 0.15Z r H( )tanθc                               (1a,b) 

where f is the acoustic frequency (in Hz), θc = sin−1 c2 c3( ) is the critical angle for 

penetration into the bottom of the idealized sound channel.  The approximate PDF results 

were only mildly sensitive to the constants, 2.0 and 0.15, in the window-size formula; 
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changing them by ±30% only caused mild degradation of the approximate field-shifting 

technique’s accuracy. 

 The third step involves finding the optimum spatial shifts, Δro  and Δzo, that 

minimize the normalized root-mean-square amplitude difference, D, between the two 

windowed sound fields: 

D r,z, H ;Δr,Δz,H − H( )=  
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A(r,z,H) is the field amplitude at (r,z) when the water column depth is H, and the 

integration takes place in the region of the overlap between the two field windows.  Here, 

 is the average amplitude in the overlap region for the field calculated at 

water column depth H.  The limits of integration pre-factors shown in (2a,b) presume Δr 

and Δz to both be positive.  When Δr is negative the upper and lower range-integration 

limits change to 

( HzrzrA ,,,,ˆ ΔΔ )

r + Δr + R 2  and r − R 2, respectively, and the range-integration pre-

factor becomes 1 R + Δr( ).  Similarly, when Δz is negative the upper and lower depth-

integration limits change to z + Δz + Z 2  and z − Z 2, respectively, and the depth-

integration pre-factor becomes 1 Z + Δz( )..  Since the field amplitudes in each shifted 

window are divided by the mean amplitude in the window, D is a dimensionless measure 

of the accuracy of each possible shift.  Figure 3.2 shows contour plots of two amplitude 

fields at f = 400 Hz centered on (r,z) = (3.0 km, 25 m) when H − H  = σH = 0.25 m, 
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H = H  = 50 m, c1 = c1  = 1500 m/s, d1 = d1  = 10 m, c2 = c2  = 1450 m/s, d2 = d2  

= 20 m, c3 = c3  = 1575 m/s, ρ3 = ρ3  = 1700 kg/m3 and γ 3 = γ 3  = 1.0 

dB/wavelength.  Nominal bottom properties throughout this manuscript are taken from 

Table 1.3 in Jensen et al. (1994).  Here the optimum shifts are Δro  = 26.12 m in range and 

Δzo= 0.13 m in depth. These optimum spatial shifts approximately quantify the effect of 

changing H from H  to H .   
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a) 

b) 

Figure 3.2. Representative contour plots of small sections of an acoustic field at f = 400 
Hz centered on (r,z) = (3.0 km, 25 m) in a sound channel when the channel depth is H  

= 50 m (a), and when it is H + σ H  = 50.25 m (b). 
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The fourth step involves extending the approximate-shift relationship to larger or 

smaller changes in the uncertain parameter.  To accomplish this, the optimum spatial 

shifts are used to determine constants in assumed proportionalities between changes in 

uncertain parameters and shifts in the spatial coordinates.  For the present example 

involving uncertain channel depth, H, these proportionalities are: 

Δr
r

= α
H − H( )

H
,   and   Δz

z
= β

H − H( )
H

 .                                (3a,b) 

The proportionality constants α and β are determined from the optimum shift 

information.  These relationships are inspired by the form of the waveguide invariant 

(Brekhovskikh and Lysanov 1991, D’Spain and Kuperman 1999), and the observation 

that small mismatches or changes in environmental parameters often lead to spatial shifts 

in matched field source location (D’Spain et al. 1999), and in measured and computed 

acoustic fields (Kim et al. 2003, Dosso et al. 2007b).  Naturally, (3) provides just one 

simple parameterization; other choices are possible.  Thus, the calculations for the fourth 

step merely involve inverting (3) with H = H  to find the constants: 

α =
Δro

r
⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 

H − H
H

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ ,   and   β =

Δzo

z
⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 

H − H
H

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ .                        (4a,b) 

For the example fields shown in Figure 3.2, α = 1.74, and β = 1.04.  It is important to 

note that α and β are only locally constant - appropriate values must be recalculated at 

each point of interest.  With these two constants determined, the field amplitude at the 

point of interest (r,z) for an arbitrary water column depth, H, can be approximated by the 

field amplitude at a shifted location in the field calculated at HH = .  Since the 

acoustic field was also calculated at H = H , the arbitrary-water-column depth field 
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amplitude can also be approximated via spatial shifting in this second field calculation.  

These shifts are of the same form as (3): 

Δr 
r

= α 
H − H ( )

H 
,   and   Δz 

z
= β 

H − H ( )
H 

 ,                                (5a,b) 

where α  and β  are found via an algebraic inversions similar to (4)  
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Linear interpolation between the two approximations yields a final weighted 

approximation for ,  A r,z,H( )

A r,z,H( ) ≈ 

( ) ( ) ( )[ ]HzzrrAHzzrrA
HH
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HzzrrA ,,,,,, Δ−Δ−−Δ−Δ−⎟
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⎜
⎜
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−

−
+Δ−Δ− .      (7) 

Equation (6) provides the fundamental simplification of the approximate field shifting 

technique.  The advantage lies in the fact that A r,z, H( ) and A r,z,H ( ) have been 

calculated in the first step while A r,z,H( ) has not.  Thus, (6) allows many field 

calculations at different H-values to be bypassed.  However, it is approximate as shown 

in Figure 3.3(a) where amplitude vs. water column depth sensitivity curves are plotted at 

a receiver range of 6.0 km and depth of 25 m.  The two curves in Fig. 3.3(a) are similar 

but not identical.  The dashed curve from (6) is based on two field calculations while the 

solid curve was obtained from 41 field calculations at H-values spanning H ± 3σ H .  

The straight dotted line in Fig. 3.3(a) is a simple two-point linear fit to the values of 

A r,z, H( ) and A r,z,H ( ) at the spatial location of interest:   
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A(r,z,H) ≈ A r,z, H( )+
A r,z,H ( )− A r,z, H( )

H − H

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ H − H( ).                           (8) 

The remaining frames of Fig. 3.3 show approximate field-shift sensitivity curves obtained 

from (7) when the various environmental parameters of the Fig. 3.1 sound channel are 

individually uncertain.  The line types in Fig. 3.3(a) are followed in the subsequent 

frames of Fig. 3.3.  These calculations were performed for the same frequency, geometry, 

and environmental parameters as Fig. 3.2.  The standard deviations of the various input 

parameters are listed in the Fig. 3.3 caption.  In this case, the various results show good 

agreement between the results of (6), when applied to each environmental parameter, and 

direct calculations, even though the various sensitivity curves are clearly nonlinear.  
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Figure 3.3. Sensitivity curve comparisons at f = 400 Hz and (r,z) = (6.0 km, 25 m) 
between approximate results from (7) (dashed curve) and (8) (dotted line) using field 

computations similar to that shown in Fig. 3.2 and numerically converged results (solid 
curve) based on 41 field computations for each of the eight parameters that specify the 
Fig. 3.1 sound channel: (a) uncertain depth with H  = 50 m, and σ H H  = 0.005, (b) 

uncertain mixed layer sound speed with c1  = 1500 m/s, and σ c1
c1  = 0.001, (c) 

uncertain deep-channel sound speed with c2  = 1450 m/s, and σ c2
c2  = 0.0001, (d) 

uncertain mixed layer depth with d1  = 10 m, and σd1
d1  = 0.01, (e) uncertain depth to 

the bottom of the thermocline with d2  = 20 m, and σ d2
d2  = 0.005, (f) uncertain 

bottom sound speed with c3  = 1575 m/s, and σ c3
c3  = 0.005, (g) uncertain bottom 

density with ρ3  = 1700 kg/m3, and σρ3
ρ3  = 0.05, and (h) uncertain bottom sound 

absorption coefficient with γ 3  = 1.0 dB/wavelength, and σγ 3
γ3  = 0.10 (note that the 

dashed and dotted curves overlap for this case).  In each plot, the horizontal axis spans 
three standard deviations of the uncertain parameter. 
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a) b) 

c) d) 

e) f) 

g) h) 
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 The fifth and final step of the technique is to generate an approximate field-

amplitude PDF from the sensitivity data using standard transformation techniques (see 

Papoulis 1965) and the known input uncertain-parameter distribution, PDF(H) in this 

example.  Figure 3.4(a) shows both the approximate and numerically-converged PDFs 

obtained from the sensitivity curves in Figure 3.3(a), when the input water column depth 

distribution has σH = 0.25 m.  Note that the amplitude PDF is approximated well by the 

technique described here.  Furthermore, the actual amplitude PDF is clearly non-

Gaussian even though the uncertainty is only 0.5% of the mean depth, and the input PDF 

is Gaussian.  This happens because the acoustic amplitude depends on water depth in a 

nonlinear manner, and, in this case, values of H above and below H  can produce 

acoustic amplitudes that are below that produced by H ≈ H .  The remaining frames of 

Figure 3.4 show PDF(A) obtained from numerically-converged direct-sampling 

calculations, the field shifting technique, and simple linear fitting when the various 

environmental parameters of the Fig. 3.1 sound channel are individually uncertain. In Fig. 

3.4 the line types, frequency, geometry, and environmental parameters and their 

uncertainties are the same as those in Fig. 3.3.  In each case, the field-shift-produced 

PDF(A) show better agreement with the numerically-converged PDF(A) than the PDF(A) 

developed from simple linear fitting.  However, the two approximate approaches will 

perform similarly when the relevant amplitude sensitivity curve is linear, such as in Figs. 

3(h) and 4(h). 
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Figure 3.4. Same as Fig. 3.3, except here the acoustic-field amplitude PDFs are plotted 
for the case when each of the eight parameters that specify the Fig. 3.1 sound channel is 

uncertain.
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a) b) 

c) d) 

e) f) 

g) h) 
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 The field shifting technique can be readily extended to multiple uncertain input 

parameters with a few modifications to the five steps enumerated above.  Here, for 

simplicity, independence of the input uncertain parameters is assumed as well.  

Incorporation of dependencies between uncertain inputs, while not inconsistent with the 

proposed approximation method, was beyond the scope of this effort. 

 For multiple uncertain parameters, the first four steps of the single-parameter 

method are performed independently for each uncertain input parameter, ψi, 1 ≤ i ≤ N.  

This involves one reference calculation and N sensitivity-assessment field calculations.  

The N-uncertain-parameter extension of (3) can be readily formulated: 

Δr
r

= α i
i=1

N

∑ ψ i − ψ i( )
ψ i

,   and   Δz
z

= β i
i=1

N

∑ ψ i − ψ i( )
ψ i

 ,                             (9a,b) 

where the αi and βi are determined from: 

α i =
(Δro)i

r
⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 

ψ i − ψ i

ψi

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ ,   and   βi =

(Δzo)i

z
⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 

ψ i − ψi

ψi

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ .                       (10a,b) 

where (Δro)i and (Δzo)i  are the optimum range and depth shifts for variations in ψi.  The 

N-uncertain-parameter extensions of (5) and (6) follow from (9) and (10).  The N-

uncertain-parameter extension of (7) is: 

A(r,z,ψ1,ψ2,...,ψN ) ≈ A0 +
ψi − ψi

ψ i − ψi

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ Ai − A0[

i=1

N

∑ ]                                 (11) 

where ( )NzzrrAA ψψψ ,...,,,, 210 Δ−Δ−=  is the reference field calculation 

evaluated at the appropriate shift location, and the 

( )Niiiiii zzrrAA ψψψψψψ ,...,,,,...,,,)(,)( 1121 +−Δ−Δ−=  are the N sensitivity-
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assessment calculations, each evaluated at its appropriate-shift location.  Similarly, the N-

uncertain-parameter extension of (8), the simple linear approximation, is: 

A(r,z,ψ1,ψ2,...,ψN ) = A r,z, ψ1 , ψ2 ,..., ψN( )+  

ψi − ψi

ψ i − ψi

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ A r,z, ψ1 , ψ2 ,..., ψi−1 ,ψ i, ψi+1 ,..., ψN( )− A r,z, ψ1 , ψ2 ,..., ψN( )[ ]

i=1

N

∑      (12) 

To illustrate these formulae, consider the Fig. 3.1 sound channel with uncertain 

depth H and mixed-layer sound speed c1 at f = 250 Hz and r = 4.0 km, with all other 

parameters evaluated at the mean values given in Fig. 3.3.  Here, three field calculations 

were performed for the field shifting and simple linear techniques – the reference 

calculation at H  and c1 , the depth sensitivity assessment calculation at H = H + σ H  

and c1 , and the mixed-layer sound-speed sensitivity assessment calculation at H  and 

c 1 = c1 + σ c1
.  Figure 3.5 shows the amplitude PDF results from the approximate field-

shifting technique (dashed curve), numerically converged direct sampling (solid curve), 

and simple linear fitting (dotted curve) for σ H H  = 0.005, and σ c1
c1  = 0.001.  In 

this case, the field-shifting PDF is clearly more accurate than the one obtained from 

simple linear fitting.  For reference, the direct sampling PDF shown in Figure 3.5 

required more than 400 field calculations. 
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Figure 3.5. Approximate and numerically converged PDFs of the acoustic field amplitude 
for two uncertain parameters: depth, H, and mixed layer sound speed, c1, at f = 250 Hz 
and r = 4.0 km with all other parameters, including line types, the same as for Fig. 3.3.  

The numerically converged PDF comes from more than 400 field calculations. 
 

When multiple parameters are uncertain, the proportionality constants, αi and βi, 

may depend slightly on the values of the other uncertain parameters, ψj for j ≠ i.  

However, anticipated applications of the approximate field-shifting technique are likely 

to involve only small relative changes in the uncertain parameters, so any dependence of 

the proportionality constants on the other environmental parameters is suppressed.  

Although this suppression reduces accuracy, this accuracy reduction primarily occurs in 

cases where the uncertain input parameters have relatively wide distributions and the 

utility of acoustic field predictions may have been lost because the final amplitude 

uncertainties are many decibels.  
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A comparison of numerically converged and approximate PDFs is shown in 

Figure 3.6 when three environmental parameters are uncertain.  The line types and 

parameters are the same as in Figs. 3-5, except that for this example f = 600 Hz and r = 

1.0 km with σd1
d1  = 0.01.  Again the field-shifting PDF is closer to the direct 

sampling result than the one obtained from simple linear fitting.  Here, the direct 

sampling PDF shown in Fig. 3.6 required more than 9,000 field calculations. 

 

Figure 3.6. Approximate and numerically converged PDFs of the acoustic field amplitude 
for three uncertain parameters: depth, H, mixed layer sound speed, c1, and mixed layer 

depth, d1, at f = 600 Hz and r = 1.0 km with all other parameters, including line types, the 
same as for Fig. 3.3.  The numerically converged PDF comes from more than 9,000 field 

calculations. 
 

 As might be expected, when uncertainties in the input parameters and the number 

of uncertain input parameters both increase, larger discrepancies are possible between the 

approximate and numerically converged distributions.  In practice, however, this loss of 

accuracy is balanced by the fact that as the input parameters, and thus the acoustic 
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amplitude, become more uncertain, precise information about the amplitude distribution 

becomes less important for the anticipated applications of this technique.  For example, a 

prediction of 12 dB of amplitude uncertainty may have the same impact on a sonar 

decision aid as 10 dB or 15 dB of uncertainty. 

 

III. Assessment of Accuracy 

 The examples in the previous section demonstrate that it is possible to apply the 

approximate-PDF technique with great computational savings, but they do not provide a 

statistically compelling indication of the reliability or the accuracy of the technique.  In 

this section, the accuracy of this technique is explored over variations in sound channel 

parameters.  This technique’s accuracy is then compared to simple linear PDF 

transformation using the same number, N+1, of field calculations, and to the direct 

numerical sampling method, which has a computational burden that increases 

exponentially with N.  

 Although the accuracy of an approximate PDF can be reported by comparing its 

moments to those determined from an exact distribution, approximate PDF accuracy is 

quantified here via an L1 error norm: 

L1 = PDFa (A) − PDFc (A) dA
o

∞∫  ,                                             (13) 

where PDFa and PDFc are approximate and numerically converged PDFs, respectively.  

This choice was made because L1 provides a dimensionless single-number overall 

evaluation of PDF matching, and because it has a simple geometric interpretation as the 

non-overlapping area of PDFa and PDFc. in plots like Figs. 4-6.  The more common L2 

error norm, which would have PDFa (A) − PDFc (A) 2  as the integrand, was bypassed for 
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accuracy assessments because it is not dimensionless.  The lowest possible value for L1 is 

zero, indicating a perfect match between the two PDFs (perfect accuracy), while the 

highest possible value for the L1 is two, indicating no overlap between the two PDFs 

(complete inaccuracy). 

 For the L1-calculations, the numerically converged PDF in (13) was obtained from 

direct numerical sampling.  For each uncertain parameter – for example H – direct 

numerical sampling involves K equally-spaced-in-H computations of  that span 

the range of possible H values.  For N uncertain parameters, this corresponds to K

A r,z,H( )

)

N field 

calculations.  Interpolation in the resulting data yields an acoustic-amplitude sensitivity 

curve (or surface) for changes in all uncertain inputs.  This sensitivity data, combined 

with the distributions for all the uncertain inputs, yields a numerically converged 

amplitude PDF via standard PDF transformation techniques, as noted for the field-

shifting technique.  The value of K required to generate smooth  and PDF(A) 

curves varies with the complexity of the sensitivity curves; values between 11 and 41 

were used for the calculations presented here.  

A r,z,H(

 The L1 values found in this investigation varied from less than 0.001 to more than 

1.0.  For the PDFs shown in Figs. 4(a)-(h), 5, and 6, the L1 values are 0.26, 0.42, 0.03, 

0.23, 0.06, 0.15, 0.16, .015, 0.13, and 0.20, respectively, for the field-shifting-technique 

PDFs, and are 0.71, 0.52, 0.12, 0.52, 1.06, 1.25, 0.49, 0.16, 0.88, and 0.37, respectively, 

for the simple-linear-fit PDFs.  Furthermore, the means and standard deviations of the 

field-shifting-technique PDFs are within 2% and 20%, respectively, of the numerically 

converged values.  Such L1 and moment-difference errors are presumed to be small 
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enough for successful use of the approximate field-shifting PDF technique in many 

applications for uncertainty analysis.   

 The overall accuracy of the approximate-PDF technique for a single uncertain 

parameter – the sound channel depth H – in the idealized Fig. 3.1 sound channel was 

assessed by performing many calculations at several receiver locations (r = 1 km, 2 km, 4 

km, 6 km, 8 km, z = d1 + d2( ) 2, H 2, and 3 H 4 ) for a variety of environmental 

parameters to obtain a broad sample of L1 values.  The source was always located at r = 0 

and z = H 2, and the input channel-depth distribution, PDF(H), had standard deviation 

of σ H H  = 0.005.  This input uncertainty level was chosen to incorporate cases of high 

and low amplitude uncertainty, as well as high and low approximation accuracy.  The 

results of this study are shown in Figure 3.7 which provides two scatter plots of L1 vs. the 

number of propagating modes for sound frequencies between 100 Hz and 800 Hz and 

bottom properties of soft silt (c3 = 1575 m/s, ρ3 = 1700 kg/m3, γ3 = 1.0 dB/wavelength), 

sand (c3 = 1650 m/s, ρ3 = 1900 kg/m3, γ3 = 0.8 dB/wavelength), and gravel (c3 = 1800 

m/s, ρ3 = 2000 kg/m3, γ3 = 0.6 dB/wavelength) when H  = 100 m [Fig. 3.7(a)] and when 

H  = 50 m [Fig. 3.7(b)].  The other water column properties were not altered from their 

Fig. 3.2 values. 
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a) 

b) 

Figure 3.7. Scatter plots of L1-values vs. the number of propagating modes in the sound 
channel for frequencies from 100 Hz to 800 Hz and source receiver ranges from 1 km to 
8 km: (a) 100-m-deep channel with receiver depths of 15 m (pluses), 50 m (circles), and 
75 m (triangles), and (b) 50-m-deep channel with receiver depths of 15 m (pluses), 25 m 

(circles), and 37.5 m (triangles).  All other parameters are as specified in Fig. 3.3. 
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The primary finding is that the number of modes in the sound channel and the 

quality of initial shifted-field matching (the third step in the technique’s basic procedure) 

were the best indicators for the potentially high L1 values for a single uncertain variable.  

Here, the number of propagating modes was determined directly from the KRAKEN 

output and it is used as a surrogate for the complexity of acoustic propagation in the 

idealized sound channels.  Comparisons of the panels of Fig. 3.7 show that L1 increases 

when the sound channel is shallower and the sound speed’s depth dependence occupies a 

larger fraction the channel depth.  However, the overall assessment of the approximate 

field-shifting technique is positive, as 95% of all the cases investigated with a 0.5% 

uncertainty in channel depth return L1 values less than 0.52 even though 26% of the 

points in Figure 3.7 have σ A A  greater than 0.4. 

 The outlying high-L1 points occur when the difference between A r,z, H( ) and 

A r,z,H ( ) in the local region around (r,z) is not readily described by a spatial shift.  As 

Figure 3.7 illustrates, this can occur as the number of propagating modes in the field 

increases, but for an arbitrary uncertain input parameter there may exist conditions for 

which small changes do not correspond to spatial shifts.  However, the occurrence of 

high-L1 values can be anticipated without knowing PDFc(A).  Figure 3.8 shows a log-log 

scatter plot of all the Fig. 3.7 L1 data vs. Dmin = D r,z, H ;Δro,Δzo,σ h( ).  Although the L1 

points are scattered, the trend of increasing L1 with increasing  is clear; when  is 

less than 0.25, 95% of the approximate field-shift-produced PDFs generated L

minD minD

1 values 

below 0.35.  Higher values of  indicate that changes in the uncertain parameter at the 

point of interest do not produce simple spatial shifts of the field, and the resulting field-

shift-produced PDFs may have higher L

minD

1 errors.  Hence, these Dmin calculations, which do 
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not require knowledge of PDFc(A) and are already part of the approximate field-shift PDF 

technique, can indicate, at least approximately, when the final approximate PDF(A) result 

for that (r,z) location may be inaccurate.  

 

Figure 3.8. Log-log plot of L1 vs. the normalized root-mean-square amplitude difference 
at the optimum field shift, , for the calculations shown in Fig. 3.7.  Although there is 

scatter, increasing L
minD

1 is clearly correlated with increasing . minD
  

Similar L1 accuracy assessments were conducted for two uncertain parameters, 

channel depth H and water column sound speed c1, using the idealized Fig. 3.1 sound 

channel.  Figure 3.9 displays L1 vs. number of modes for the same frequencies, ranges, 

and parameters used for Fig. 3.7 with H  = 50 m, σ H H  = 0.005, c1  = 1500 m/s, 

σ c1
c1  = 0.001, and a receiver depth of 25 m.  Here, 95% of the cases investigated 

yielded L1 below 0.57.  Again, high-L1 outliers can exist where changes in one or both 

uncertain parameters do not directly correspond to a spatial shift in the field, but these 
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can be anticipated from their associated  values, as was illustrated for one uncertain 

parameter in Fig. 3.8. 

minD

 

Figure 3.9. . L1 vs. the number of propagating modes in the Fig. 3.1 sound channels 
where the channel depth, H, and surface sound speed, c1, are uncertain with H  = 50 m, 

σ H H  = 0.005, 1c  = 1500 m/s and 11
ccσ  = 0.001. All other parameters are as 

specified in Fig. 3.3. 
 

 A sample of three-uncertain-parameter L1-results is shown in Figure 3.10 for 

channels having the same uncertainties as in Fig. 3.9, but including the mixed layer 

depth, d1, as an additional uncertain parameter with 1d  = 10 m, and 11
ddσ  = 0.01.  

The frequencies, ranges and receiver depth are identical to Fig. 3.7, and the bottom types 

are silt and sand with the same properties. 
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Figure 3.10. Same as Fig. 3.9 except the mixed layer depth, d1, is also uncertain with 
1d  = 10 m, and 11

ddσ  = 0.01.  All other parameters are as specified in Fig. 3.3. 
 

 The results shown in Figs. 7, 9, and 10 can be condensed to show the overall 

accuracy of the field shifting technique compared to the simple linear approximation by 

plotting L1 from the field shifting technique vs. the L1 from simple linear fitting.  This 

plot is provided with logarithmic axes as Fig. 3.11 where results from one, two and three 

uncertain parameters are plotted as pluses, circles, and triangles, respectively.  The 

diagonal line has a slope of unity and indicates where field shifting and simple linear 

fitting are equally accurate (i.e. they produce equal L1 values).  Results that fall below 

and to the right of this diagonal line indicate that the field-shifting technique is superior 

to simple linear fitting.  Of the 600 cases plotted in Fig. 11, only 3% are better handled by 

the simple linear approximation, and for these cases the average difference in L1 is 0.1.  
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These results indicate that the spatial-shift-based approximate-PDF technique performs 

well in an idealized sound channel when compared to the simple linear approximation. 

 

Figure 3.11. Log-log plot of L1 from the field shifting technique vs. L1 from simple linear 
fitting. All previous results from one, two and three uncertain parameters are plotted as 

pluses, circles, and triangles, respectively.  The diagonal line has a slope of one and falls 
where the field-shifting and linear fitting PDF results are equal.  Points below and to the 

right of this line indicate that the field-shifting technique is superior to simple linear 
fitting. 

 

 The final quantitative comparison provided in Fig. 3.12 is merely a demonstration 

that the field shifting technique can be successfully applied when all eight parameters 

specifying the Fig. 3.1 sound channel are uncertain.  Here, the sound channel parameters 

have the same expected values and uncertainties as in Fig. 3.3, except σ H H  = 0.0025, 

σ c1
c1  = 0.0001.  These two uncertainties were lowered so that all eight parameters 

contribute significantly to the final amplitude PDF.  The L1 values for the two 

approximate distributions shown in Fig. 3.12 are 0.12 for the field shifting technique 
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(dashed curve), and 0.45 for simple linear fitting (dotted curve).  The field shifting 

technique yields errors of 0.4% and 2% for the amplitude mean and standard deviation, 

respectively, while the linear approximation yields errors of 8% and 19%.  Both 

approximate PDFs are based on nine field calculations while the numerically-converged 

distribution (solid curve) to which they are compared is based on one million.  

 

Figure 3.12. Comparison of acoustic amplitude PDFs from field-shifting (dashed line), 
simple linear fitting (dotted line), and numerically converged direct sampling (solid line) 
for f = 400 Hz at (r,z) = (6.0 km, 25 m) when all eight parameters of the Fig. 3.1 sound 

channel are uncertain.  All other parameters and uncertainties are as specified in Fig. 3.3, 
except σ H H  = 0.0025 and 11

ccσ  = 0.0001. 
 

IV. Summary and Conclusions 

 This paper describes an approximate technique for determining the probability 

density function (PDF) of acoustic amplitude (A) when the acoustic amplitude is 

calculated from an acoustic field model having one or more uncertain environmental 
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parameters as inputs.  For N uncertain parameters, the inputs to the technique are the 

uncertain-parameter PDFs, and N+1 field calculations: one reference calculation without 

parametric variation and N sensitivity-assessment calculations at close-by values of each 

uncertain parameter.  The technique is based on finding locally optimum spatial shifts 

between the calculated reference field and each sensitivity-assessment field so that the 

effects of arbitrary variations in uncertain input parameters can be approximated by easily 

calculated spatial shifts in the N+1 field calculations.  The technique can be used with any 

suitable acoustic propagation model.  It addresses the problem of quantifying acoustic 

field uncertainty in computational underwater acoustics and offers a less computationally 

demanding approach than direct numerical sampling or more sophisticated polynomial 

chaos techniques.  This optimum-shift-based approximate-PDF technique was 

numerically tested in a variety of idealized range-independent shallow-water sound 

channels, and it appears to be potentially useful based on its relatively high accuracy 

from relatively few field calculations. 

 The following (enumerated) conclusions are drawn from this research effort.  (1) 

Given that real time uncertainty analysis may be a valuable asset for sonar-based tactical 

decision aids, the approximate-PDF technique described here may be fast and accurate 

enough to be implemented in real time sonar applications.  Furthermore, its simplicity 

may allow it or the optimum-shift concept to be utilized to save computational effort in 

environmental inversion, especially when nonlinear parametric sensitivity is needed for 

multiple parameters.  (2) When interpreted properly, the L1 error norm is a useful overall 

indication of approximate PDF accuracy.  Here, L1 values up to 0.5 indicate converged-

to-approximate PDF matching within engineering accuracy; L1 of 0.5 typically implies up 
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to two dB error for the standard deviation.  (3) The primary limitation of the technique is 

that at some locations within a sound channel the field variations produced by changes in 

environmental parameters are not well described by a spatial shift, as stated in Dosso et 

al. (2007b).  However, calculations completed as part of the field shifting technique can 

reveal when high L1 is likely.  Extension of the field shifting technique to acoustic phase 

and more geometrically complex environments awaits future research effort. 

 And, as a final comment, it must be noted that the parameter uncertainties for 

which the field shifting technique has been developed and tested are relatively small in 

absolute terms, yet such uncertainties are large enough to produce nonlinearity in the 

acoustic amplitude vs. uncertain parameter curves.  Thus, the lasting contribution from 

this work may be (7) or (11), the formulae for estimating nonlinear sensitivity to 1 or N 

parameters from only 2 or N + 1 field calculations, respectively.  The actual PDF 

production part of the technique may be less valuable because any acoustic uncertainty 

calculation that starts from typical ocean environmental parameter uncertainties may 

return a PDF(A) that is too broad to justify further use of a high-fidelity propagation code.  

In this circumstance where environmental uncertainties are high, environmental 

assessment and inversion to reduce the input parameter uncertainties is likely a requisite 

first step.  
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Chapter 4 

 

Comparisons of Polynomial Chaos and Field Shifting in a 

Pekeris Waveguide 

 

 

I. Introduction 

Polynomial Chaos Expansion is a general technique for approximating stochastic 

processes (Field, 2004) which has been utilized in various fields of engineering research, 

such as fluid mechanics (Xiu et al., 2002a and 2002b), and heat transfer (Witteveen and 

Hester, 2008).  This technique was first applied to acoustic uncertainty approximation by 

Steve Finette and other researchers at the Naval Research Laboratory in Washington, 

D.C. (Finette, 2005, Creamer, 2006).  In Finette (2006), this technique is used in an ideal 

isospeed sound channel with a hard bottom where acoustic propagation is governed by 

the narrow-angle parabolic approximation to the wave equation to generate moments for 

the probability of the field.  In this chapter, this work is extended to the case of a Pekeris 

waveguide having a penetrable bottom where acoustic propagation is governed by the 

Helmholtz equation, to generate approximate field amplitude PDFs.  The accuracy and 
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computational efficiency of these PDF approximations are compared to that of the Field 

Shifting technique presented in Chaper 3. 

 

II. Deterministic Solution and Direct Simulation 

For the Pekeris waveguide shown in Figure 4.1, the deterministic field amplitude 

can be calculated analytically by solving the Helmholtz equation.  Here, only the far-field 

result will be considered, but leaky modes will be included.  For all results in this chapter, 

a harmonic source of known frequency is assumed. 

 

 

Flat Reflecting Ocean Surfacer 

ρ2, c2, α2

  Source 
Location  
rs=(rs, zs) 

z 

frequency = f 

Depth = H 

c1, ρ1

Acoustic Half-Space 

Figure 4.1 – The Pekeris waveguide 
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The Helmholtz equation governing the acoustic pressure in the sound channel is 
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where k = k1 in the water column, and k = k2 in the bottom.  As shown in Kinsler et al. 

(2000), applying the boundary conditions leads to a transcendental equation for the 

vertical wavenumbers kzm
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Using the method of complex effective depth as shown in Zhang and Tindle 

(1993), the wavenumbers for both propagating and leaky modes in the presence of 

bottom absorption can be computed analytically.  After obtaining the wavenumbers, the 

pressure field in the water column is given explicitly by 
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The number of calculated modes used in all subsequent results was set at the 

lowest M for which 310−<rikMe .  Modes with a higher mode number are assumed to 

contribute insignificantly to the solution. 

The most straightforward technique for obtaining distributions of uncertain field 

amplitude in the presence of an uncertain sound speed is direct simulation.  In this 
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technique, the deterministic field amplitude (the absolute value of equation 3) is 

calculated at NDS discrete values of the sound speed, over the range of possible values.  In 

this paper, only sound speeds up to 3 standard deviations lower or higher than the mean 

are considered.  For the reference direct simulation calculations, which represent the 

nearly exact solution to which other approximation techniques are compared, an NDS of 

101 was chosen.  The computational cost of direct simulation for one uncertain variable 

is directly proportional to NDS. 

The sensitivity curves vary dramatically in complexity over the range of 

environments considered.  For low frequencies, soft bottoms, short ranges, and small 

uncertainties in the sound speed, the sensitivity curves are very linear.  Figure 4.2 shows 

the sensitivity curve, and resulting probability density function, for the case of a 100 Hz 

source, a silt bottom, a sound speed uncertainty of 1 m/s, a receiver range of 4 km, and a 

receiver depth of 50 m. 
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Figure 4.2 Direct Simulation sensitivity curve (a), and PDF (b), for a case with 4 
propagating modes and a 1 m/s sound speed uncertainty 
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 Figure 4.3 is the sensitivity curve and corresponding PDF for the case of a 1000 

Hz source, a gravel bottom, a sound speed uncertainty of 10 m/s, a receiver range of 10 

km, and a receiver depth of 50 m.  This curve is notably more complex than its linear 

counterpart in Figure 4.2, and illustrates the difficulties of accurate sensitivity 

approximation in cases of long range, high number of propagating modes, and high 

parameter uncertainty.  In practice, however, in situations where the amplitude is as 

uncertain as in Figure 4.3, precise knowledge of the probability density function may be 

less necessary or useful, as field predictions in such an environment will be known ahead 

of time to be highly uncertain. 
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Figure 4.3 Direct Simulation sensitivity curve (a), and PDF (b), for a case with 74 
propagating modes and a 10 m/s sound speed uncertainty. 
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III. Overview of Field Shifting 

The field shifting technique utilized here for amplitude approximation in an 

underwater sound channel is described in detail in Chapter 3.  Application to the Pekeris 

waveguide is straightforward, as the technique is independent of model or sound channel. 

The accuracy of the field shifting approximation depends on the accuracy of its 

assumptions in the sound channel of interest.  The accuracy of the first assumption, that 

changes in the uncertain variable correspond to spatial shifts of the field, can be measured 

with the mean square error of the optimum shift.  This means that when a field shifting 

approximation is inaccurate due to a failure of this assumption, it is apparent through a 

calculated quantity, without need to check the accuracy by performing a direct 

simulation. 

The second assumption of field shifting, that spatial shifts are linear with respect 

to varying sound speed, has no direct test for accuracy within the technique itself.  This is 

a limitation of the fact that only two field calculations are performed to obtain the field 

shifting solution.  Fitting a nonlinear dependence of spatial shift on uncertain input would 

simply require more field calculations.  It will be shown in section V that for a wide 

range of cases in the sound channel described in Figure 4.1, the assumption of linear 

shifts yields approximations of acceptable accuracy. It is however worth noting that in 

certain cases characterized by a low number of propagating modes (3-10), there are 

receiver locations where spatial shifts with a low mean square error (and thus a high 

prediction of accuracy) are observed, but the shift varies nonlinearly with c1, resulting in 

a poor field shifting approximation to the PDF of acoustic amplitude.  For field shifting to 

be applied robustly to all low-mode cases, more than 2 field calculations may be required. 
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IV. Overview of Polynomial Chaos Expansion 

The application of polynomial chaos expansion for underwater acoustic 

uncertainty approximation is provided by Finette (2006). Finette also outlines the solution 

in an ideal waveguide with a constant sound speed and perfectly hard bottom, for a field 

described by the narrow-angle parabolic approximation to the Helmholtz equation.  This 

technique is modified here for the Pekeris waveguide in Figure 4.1, governed by the exact 

Helmholtz equation. 

As shown in the paper by Finette, the stochastic pressure field in a waveguide 

with a Gaussian uncertainty in sound speed can be approximated by a weighted sum of 

scaled Hermite polynomials: 

( ) ( ) (ξγ
π

θ π
q

q
q Hezre

r
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Here, θ represents a possible outcome in the uncertainty problem, ξ is a zero-

mean, Gaussian random variable with unit variance, 1c  is the mean sound speed in the 

water column, σ is the standard deviation of c1, the γq are the uncertainty coefficients to 

be solved for, and the scaled Hermite polynomials He are given explicitly by the 

recursion relation 

( ) ( ) ( ) 1,0,1 0111 ==++= −−+ HeHeHenHenHe nnn ξξξξ                                    (5) 

Thus, for the uncertainty problem outlined above, the complete polynomial chaos 

approximation to the stochastic pressure field amounts to a solution for the coefficients γq 

at some truncated order Q. 
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Substituting the polynomial chaos expansion for the pressure (equation 4) into the 

Helmholtz equation, multiplying the result by Hel, and ensemble averaging yields a set of 

coupled differential equations for the uncertainty coefficients 
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Using the formulae for the scaled Hermite polynomials in equation 5, and 

applying the orthogonality condition, the ensemble averages in equation 6 can be 

computed explicitly, yielding a partial differential recursion equation for the uncertainty 

coefficients γ 
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which can be expressed in vector-matrix form as 
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Mirroring Finette’s solution for the ideal waveguide, this equation can be solved 

by diagonalizing the coupling matrix [A]. Define the eigenvector matrix associated with 

[A] as .  Multiplying equation 8 by [G][ ] { } { }[ ..., 21 gg=G ]

ients 1ˆ == G

-1 yields an uncoupled 

differential equation for the transformed uncertainty coeffic γ   [ ] γ
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The diagonal matrix [ ] [ ][ ]GAG 1−  contains the eigenvalues λl of [A]. Thus the lth 

transformed uncertainty coefficient satisfies a differential equation of the form 
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This is simply the familiar deterministic Helmholtz equation, with λl taking the 

place of k2. Furthermore, by the properties of the coupling matrix [A] in this sound 

channel, the eigenvalues λl are actually centered about the mean value of . The 

solution for each coefficient mirrors the deterministic solution provided in equation 3: 
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The coefficient Cl is determined from the initial condition, by first multiplying 

equation 11 by the eigenvector matrix G, and inserting this into the expression for P(0,z): 
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Multiplying the equation by Her and ensemble averaging yields 
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Here, 0rδ  is unity when index r = 0, and zero otherwise.  Integrating over the 

waveguide depth, and applying the orthonormality of the modes yields 

0
1

r

Q

u
uruCg δ=∑

=

.                                                                                                                (14) 

Multiplying this by the inverse eigenvector matrix yields the coefficients Cu in 

closed form 

1uu aC = ,                                                                                                                          (15) 

where au1 is the uth element of the inverse of the first eigenvector.  Thus, the full solution 

for the transformed uncertainty coefficient is 
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For this sound channel, each transformed uncertainty coefficient is equivalent to 

the deterministic pressure when lk λ=1 , scaled by the quantity 4
1 2

π

π
i

l era .  The 

amplitudes of these transformed uncertainty coefficients are plotted as circles vs. lλω  

for an example case of Q = 40 in Figure 4.4, with al1 divided out.  The solid line is the 

exact sensitivity curve for field amplitude with respect to sound speed, scaled by 
π2
r .  

It is clear that each transformed uncertainty coefficient of index l corresponds to a sample 

of the sensitivity curve.  The further weighting of each coefficient by al1 effectively 

lowers the relative contribution of coefficients corresponding to k1 values further from the 

mean.
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Figure 4.4. Scaled transformed uncertainty coefficients vs. lλω  
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Multiplying these transformed coefficients by the eigenvector matrix and 

inserting the result into equation 4, the full stochastic pressure field is given by 
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Using the definition of ξ as a normal random variable representing the uncertainty 

in sound speed, we can obtain an explicit expression for P(r, z; c1) – the pressure field as 

a function of the uncertain sound speed: 
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The polynomial chaos expansion is truncated at a finite order, Q.  The accuracy of 

the solution is highly dependent on the chosen Q, and does not increase monotonically 

with increasing Q.  To illustrate the relationship between accuracy and Q, Figure 4.5 

shows two plots of the uncertainty coefficients lγ  vs. l in an example sound channel for 

two different values of Q.  Figure 4.6 shows the corresponding sensitivity curves for each 

value of Q, generated using equation 18, as well as the direct simulation result for 

comparison. The coefficients have a peak magnitude at some l, and decrease in 

magnitude as l increases or decreases. The accuracy of the approximation corresponding 

to each Q increases as the magnitude of the highest order uncertainty coefficient 

decreases with respect to the peak value. 
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Figure 4.5 – Uncertainty coefficients vs. coefficient index l for a) Q = 40, b) Q= 50 
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Figure 4.6 – Amplitude sensitivity curves for polynomial chaos (dashed) and direct 
simulation (solid), for a) Q = 40, b) Q= 50 
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This can be quantified by defining a quantity β, 

maxl

Q

γ

γ
β = ,                                                                                                                      (19) 

as the ratio of the magnitude of the highest order uncertainty coefficient (order Q) to the 

magnitude of the largest uncertainty coefficient.  When this value approaches unity, the 

resulting approximation is highly inaccurate, and can contain many oscillatory artifacts. 

As this value decreases, the accuracy of the approximation increases. 

This measure of accuracy is plotted vs. Q for an example case, shown in Figure 

4.7.  There is an oscillatory dependence of accuracy on Q. The exact behavior of this 

curve depends on all of the environmental inputs, as well as the receiver location.  Thus, 

for a given sound channel, there is no fixed value of Q which ensures accuracy for all 

receiver locations; rather it is necessary to select an appropriate value of Q for each 

situation. 
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Figure 4.7 Coefficient ratio β vs. truncation order Q. 
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It is worth mentioning that this parameter β is useful as an internal predictor of 

accuracy for the polynomial chaos technique with regards to truncation error.  If Q has 

been chosen poorly for a particular problem, such that truncation error is high, this is 

immediately apparent in the high value of the quantity β, which comes directly from 

quantities computed within the polynomial chaos technique.  

 

V. Comparisons of Accuracy and Efficiency 

The previous sections outlined the procedure for obtaining field amplitude as a 

function of sound speed in the water column for the direct simulation, field shifting, and 

polynomial chaos techniques. As described in Chapter 3, such sensitivity curves can be 

transformed to PDFs, and the accuracy of the approximate PDFs measured with respect 

to the reference PDF (obtained by direct simulation) with the L1 error norm.  The lower 

the value of L1, the higher the accuracy of the PDF approximation, with values of L1 

below 0.5 corresponding to an acceptable degree of accuracy for many applications. 

For comparison, results are first presented for the case of a direct simulation 

approximation.  This approximation is obtained by using a smaller number of field 

calculations than the reference curve, and interpolating linearly to generate an 

approximate PDF.  Figures 4.8 through 4.10 display the L1 error of a direct simulation 

approximation using 21 field calculations, over a wide range of environmental inputs and 

receiver locations.  The three bottom types considered are silt, sand, and gravel, with 

sound speed, density, and absorptivity values obtained from Table 1.3 in Jensen et al. 

(1994).  The frequency is varied from 100 Hz to 1 kHz, receiver range from 1 km to 10 

km, and receiver depths of 30 m, 50 m, and 80 m.  The mean water column sound speed 
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for all cases is 1500 m/s, with a standard deviation of 1 m/s in Figure 4.8, 5 m/s in Figure 

4.9, and 10 m/s in Figure 4.10. 
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Figure 4.8. L1 values for direct simulation at 1 m/s sound speed uncertainty.  21 field 
calculations were used in the approximation.  The dashed line corresponds to an L1 of 0.5.  

The reference PDF in each case involves 101 field calculations. 
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Figure 4.9. L1 values for direct simulation at 5 m/s sound speed uncertainty.  Again 21 
field calculations were used in the approximation.  The dashed line corresponds to an L1 

of 0.5. 
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Figure 4.10. L1 values for direct simulation at 10 m/s sound speed uncertainty.  Again 21 
field calculations were used in the approximation.  The dashed line corresponds to an L1 

of 0.5. 
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As seen in the figures above, as the number of propagating modes increases, or 

the uncertainty in sound speed increases, the lower limit of the L1 error increases as well.  

This is due to the fact that as the sensitivity curve becomes more complicated 21 sample 

points yields a less accurate approximation of the relationship between amplitude and 

sound speed.  This is also apparent from Figures 4.2 and 4.3, where linear interpolation 

between 21 sample points would provide a far more accurate approximation to the curve 

corresponding to 4 propagating modes and a 1 m/s sound speed uncertainty (Figure 4.2) 

than the case of 74 propagating modes and 10 m/s sound speed uncertainty (Figure 4.3). 

L1 values for the field shifting technique, over the same range of environmental 

inputs and receiver locations used in Figures 4.8 though 4.10, are provided in Figures 

4.11 through 4.13.  As noted in Chapter 3, these field shifting approximations utilize only 

2 field calculations, in contrast to the 21 field calculations of the direct simulation 

approximation above, or the 101 field calculations of the direct simulation reference 

curves. 
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Figure 4.11. L1 values for Field Shifting, 1 m/s sound speed uncertainty.  The dashed line 
corresponds to an L1 of 0.5. 

 98



0 10 20 30 40 50 60 70 80
10-3

10-2

10-1

100

Number of propagating modes

L 1

 

Figure 4.12. L1 values for Field Shifting, 5 m/s sound speed uncertainty.  The dashed line 
corresponds to an L1 of 0.5. 
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Figure 4.13. L1 values for Field Shifting, 10 m/s sound speed uncertainty.  The dashed 
line corresponds to an L1 of 0.5. 
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For the cases in Figure 4.11, with a sound speed uncertainty of 1 m/s, 95% of the 

field shifting L1 values fall below 0.10.  As discussed in section III, there are higher 

values of L1 which correspond to cases of low propagating mode number, where the 

assumption of linear shifts fails.  There are also cases of higher L1 at higher propagating 

mode number, which correspond to poor quality shifts.  The lower accuracy of these 

latter cases is well predicted by the higher RMS error of the shift in the field shifting 

calculation. 

For the 5 m/s standard deviation cases in Figure 4.12, 95% of the L1 values fall 

below 0.24. In Figure 4.13, 95% of the L1 values fall below 0.40.  It is clear from this 

trend that in general, the accuracy of field shifting decreases with increasing uncertainty.  

Although this is the dominating trend, due to the nature of the sensitivity approximations 

and the definition of L1 there are individual cases where the L1 is actually lower at a 

higher value of uncertainty. 

As seen in each of Figures 4.11 through 4.13, unlike the direct simulation 

approximation, the accuracy of field shifting does not always decrease as the complexity 

of the sensitivity curve increases due to a higher number of propagating modes, for the 

environments considered.  At a fixed value of sound speed uncertainty, the lower and 

upper bounds of accuracy for the field shifting technique are fairly constant over a wide 

range of environmental inputs and frequencies. 

Figure 4.14 plots the L1 error of the field shifting technique vs. the L1 error of the 

21-point direct simulation approximation, for the 10 m/s uncertainty cases of Figures 4.10 

and 4.13.  The dashed lines correspond to an L1 of 0.5 for each technique.  The dotted line 

indicates the line of equivalent accuracy of the two techniques.  Points to the left of the 
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dotted line correspond to cases for which the 21-point direct simulation approximation is 

more accurate than the field shifting approximation.  Points to the right of the dotted line 

correspond to cases where the field shifting approximation is more accurate.  Here, field 

shifting is more accurate in 50% of the 300 cases plotted, for just under 10% of the 

computational cost in terms of field calculations. 
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Figure 4.14. L1 error of field shifting vs. L1 error of 21-point direct simulation, for the 
case of 10 m/s sound speed uncertainty.  The dashed lines correspond to an L1 of 0.5 for 

each technique.  The dotted line indicates equal accuracy of the two techniques. 
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As discussed in section IV, the accuracy of the polynomial chaos approximation 

is highly dependent on the choice of truncation order, Q.  In addition, for the case of a 

single uncertain variable, Q directly corresponds to the number of field calculations 

required to obtain a PDF approximation.  If the accuracy of the 21-point direct simulation 

approximation (shown in Figures 4.8-4.10) is considered sufficient for an acoustic 

prediction application, then the computational cost of an alternative approximation 

technique must be lower than this to have greater utility.  For comparison, Figures 4.15 

through 4.17 provide the L1 errors of the polynomial chaos approximation when Q is 

fixed at 21. 
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Figure 4.15. L1 values for polynomial chaos at 1 m/s uncertainty in sound speed, when Q 
is fixed at 21. 
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Figure 4.16. L1 values for polynomial chaos at 5 m/s uncertainty in sound speed, when Q 
is fixed at 21. 
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Figure 4.17. L1 values for polynomial chaos at 10 m/s uncertainty in sound speed, when 
Q is fixed at 21. 
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When compared to Figs. 4.8-4.10 for direct simulations and 4.11-4.13 for field 

shifting, Figures 4.15-4.17 show that for a simple Perkeris waveguide a blanket choice of 

Q = 21 in the polynomial chaos expansion technique produces worse results that either of 

the other techniques.  This point is further illustrated in Figure 4.18 which presents the L1 

values for the polynomial chaos approximation (with Q=21) vs. the L1 values for the 21-

point direct simulation approximation at a sound speed uncertainty of 10 m/s, analogous 

to Figure 4.14 for field shifting.  For the case of a single uncertain variable, these two 

approximations have the same computational cost in terms of field calculations (though 

polynomial chaos involves additional computational operations, these are considered to 

be much less computationally expensive than the field calculation steps).  For 87% of the 

cases plotted, the 21-point direct simulation approximation is more accurate than the 

polynomial chaos approximation with a fixed Q of 21. 
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Figure 4.18. L1 error of polynomial chaos with Q=21 vs. L1 error of 21-point direct 
simulation, for the case of 10 m/s sound speed uncertainty.  The dashed lines correspond 
to an L1 of 0.5 for each technique.  The dotted line indicates equal accuracy of the two 

techniques. 
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It is apparent from the large scatter in L1 values in Figs. 4.15-18 that selecting a 

low, fixed value for Q does not result in accurate PCE uncertainty approximations for a 

wide range of environmental parameters.  This is consistent with the results shown in 

Figure 4.7, where it is apparent that the accuracy of the polynomial chaos approximation 

(as predicted by the uncertainty coefficient ratio β) varies cyclically with truncation order 

Q.  At a fixed value of Q, some environmental inputs or receiver locations will yield low 

values of β, and thus high accuracy, while others correspond to high values of β, and low 

approximation accuracy. 

This is illustrated in Figure 4.19, which plots L1 error vs. coefficient ratio β for the 

10 m/s uncertainty cases in Figure 4.18.  As β increases, the L1 error of the corresponding 

approximation increases as well.  The dashed line indicates a β of 3x10-3.  As 

approximations with β values below this threshold exhibit minimal truncation error, such 

a threshold can be used as a requirement for an accurate selection of Q. 

 109



10-6 10-5 10-4 10-3 10-2 10-1 10010-3

10-2

10-1

100

Coefficient Ratio, β

L 1

 

Figure 4.19. L1 error vs. coefficient ratio β for the polynomial chaos approximation with 
Q = 21, at a 10 m/s sound speed uncertainty.  The dashed line corresponds to a β of  

3x10-3, a threshold below which truncation error can be considered small. 
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There are no existing techniques for predicting an accurate truncation order based 

on the values of environmental inputs and receiver locations, though these may arise from 

further research into polynomial chaos expansion.  At present, any “optimum” value for 

Q must be found iteratively. 

Figure 4.20 shows the L1 values for the polynomial chaos technique when Q is 

chosen iteratively.  For each of the cases plotted, Q is set at a starting value of 10, and the 

resulting coefficient ratio β calculated.  If the resulting β is below the threshold 3x10-3, 

this Q corresponds to a low truncation error, and the calculation is terminated.  If β is 

above this threshold, Q is increased by 1, and the calculation repeated as necessary.  

Thus, the value of Q used for each approximation in Figure 4.20 represents the lowest 

value of Q for which the coefficient ratio meets the required threshold.  

Figure 4.21 shows the optimum values for Q corresponding to the approximations 

in Figure 4.20, determined through the iterative technique outlined above. 
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Figure 4.20. L1 values for polynomial chaos when Q is chosen iteratively based on a 
maximum threshold for β.  The sound speed uncertainty is 10 m/s.  The dashed line 

corresponds to an L1 value of 0.5. 
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Figure 4.21. Optimum values for Q corresponding to the approximations in Figure 4.20. 
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Figure 4.22 shows the L1 values for polynomial chaos with iteratively-selected Q 

vs. the L1 values for field shifting, for the case of 10 m/s sound speed uncertainty.  The 

polynomial chaos approximation is more accurate than field shifting for 97% of the cases 

shown, but each approximation requires a minimum of Q field calculations (with the 

values of Q shown in Figure 4.21), in contrast to the two field calculations for field 

shifting.  In practice, iteratively determining Q may require up to Q(Q + 1)/2 field 

calculations. 
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Figure 4.22.  L1 error of polynomial chaos vs. L1 error of field shifting, when Q is 
selected iteratively. The sound speed uncertainty is 10 m/s.  The dashed lines correspond 

to an L1 of 0.5 for each technique.  The dotted line indicates equal accuracy of the two 
techniques. 

 

 115



As seen in the figures above, when Q is chosen appropriately, the polynomial 

chaos approximation yields more accurate approximations than the field shifting 

technique in most cases.  For fixed, low values of Q, however, the accuracy of individual 

approximations decreases dramatically, and the field shifting approximation becomes 

more accurate. 

For the uncertainty problem outlined above, part of the computational effort of 

each technique consists of a certain number of wavenumber calculations (solutions to the 

transcendental equation 2), and a certain number of modal sums.  In general, the 

computation of wavenumbers and mode shapes is the most expensive part of a modal 

solution, though in this idealized sound channel it can be performed relatively quickly.  

As discussed in section II, the direct simulation technique requires NDS complete field 

calculations, where NDS=101 in the reference results above, though significantly lower 

NDS may provide acceptable approximations for many applications, as seen in the results 

in Figures 4.8-4.10 for NDS=21. 

For the field shifting technique, the modal wavenumbers and modes are only 

determined for 2 discrete values of sound speed.  Thus, the most expensive part of the 

field calculation must only be performed twice, in contrast to NDS times in the direct 

simulation solution.  The additional computational effort of field shifting consists of 

performing modal sums for a grid of points in the region of interest, calculating the RMS 

error of each possible shift, and performing the final modal sum at each shifted field 

location. 

For the polynomial chaos technique, it was shown that the calculation of each λl is 

equivalent performing a deterministic solution at lk λ=1 .  Thus, for a fixed truncation 
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order Q, the polynomial chaos technique involves Q complete field calculations.  The 

additional computational effort of polynomial chaos consists of an eigenvalue 

computation for the tridiagonal coupling matrix of order Q, and a single sum of the Q 

uncertainty coefficients multiplied by the scaled Hermite polynomials.  As discussed in 

section IV, this assumes an appropriate value for Q is known.  If a sufficiently accurate 

choice of Q must be determined through iteration, the number of field calculations 

required increases by the same amount. 

 

VI. Conclusions 

It has been shown that both the field shifting and polynomial chaos expansion 

techniques for approximating acoustic uncertainty can be applied to the full-wave 

solution of the Pekeris waveguide, for the case of uncertain sound speed in the water 

column.  Both of these techniques can be extended to cases of multiple uncertain 

variables (James and Dowling, 2008 and Finette, 2006), but it is important to note that 

conclusions drawn from the above results are limited to the case of a single uncertain 

sound speed. 

The field shifting technique is seen to be acceptably accurate for many 

applications when its primary assumptions hold true in the sound channel of interest.  

Namely, that changes in the uncertain input approximately correspond to spatial shifts in 

the field, and that these spatial shifts are linear with respect to the uncertain input.  The 

validity of the first assumption can be measured by the RMS value of the optimum spatial 

shift.  The second assumption is found to be acceptably accurate in this sound channel, as 

95% of the L1 values of these cases fall below 0.3 in the results above.  Cases with higher 
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values of L1 correspond to a low number of propagating modes, or a high error in the 

RMS shift. A further advantage of field shifting is the small number of field calculations 

required to obtain an approximation – only 2 for the case of a single uncertain variable, 

and 1 additional field calculation for each additional uncertain variable of interest.  As 

shown in Figure 4.14, direct simulation can require up to 21 field calculations to obtain 

similar accuracy for the environments and sound speed uncertainties examined.  As 

discussed in Chapter 3, this number increases exponentially for each uncertain variable 

added. 

The polynomial chaos technique can provide an extremely accurate 

approximation for the amplitude distribution, if the truncation order Q is chosen 

appropriately.  There is a direct correspondence between the quantity β defined in 

equation 19 and the accuracy of the resulting distribution.  For the 10 m/s uncertainty 

cases in Figure 4.20 where Q was chosen such that β was less than 3x10-3, 95% of the L1 

values fell below 0.09.  For the case of a single uncertain variable, however, this comes at 

a relatively high computational cost.  Polynomial chaos requires a minimum of Q field 

calculations, where Q is often considerably higher than the number of direct simulation 

calculations required to obtain comparable accuracy.  The fact that Q must either be 

optimized by some form of iteration, or set acceptably high such that β is acceptable for 

all receiver locations and parameter values of interest, implies that in practice the number 

of field calculations required is much higher than this optimum value of Q.  However, as 

stated above, the required number of field calculations for a direct simulation result of 

specified accuracy grows exponentially with the number of additional uncertain 

variables, while the required truncation order Q may not.  Thus, polynomial chaos is 
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likely most useful as an efficient alternative to direct simulation for cases of more than 

one uncertain variable. 
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Chapter 5 

 

Summary and Conclusions 

 

I. Summary  

This thesis research presented here addresses the problem of predicting the 

uncertainty in acoustic field calculations that arises from uncertainty in environmental 

parameters.  In Chapter 1, established techniques for deterministic field prediction were 

discussed, as well as related research in the areas of randomness in acoustic fields, and 

prediction of uncertainty for specific acoustic decision aids. 

Chapter 1 also introduced the existing standard for acoustic uncertainty 

calculation, direct simulation.  This technique requires calculation of the field at many 

possible values of all uncertain inputs, and its computational expense is prohibitive for 

use in real-time applications.  The goal of this thesis research was to explore and develop 

alternative techniques for uncertainty prediction which provide acceptable accuracy at 

drastically reduced computational cost. 

Chapter 2 provided a derivation of governing equations for the propagation of 

probability distributions for an acoustic field.  The published paper illustrates that 

boundary value problems can be formulated for field PDFs that can be explicitly solved 
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for acoustic wave propagation in a one-dimensional case.  Unfortunately, solution of 

these boundary value problems for two-dimensional waveguide propagation requires 

models for conditional expectations, which do not presently exist for general cases. 

Chapter 3 introduces a new alternative technique for predicting approximate 

probability distributions for an acoustic field, based on the assumption that small changes 

in environmental inputs correspond to local spatial shifts of the acoustic field..  This field 

shifting approximation was applied successfully – individually and simultaneously – to 

all eight environmental parameters specifying a range-independent sound channel with a 

depth-dependent sound speed profile and a fluid bottom. 

Chapter 4 provides an extension of the polynomial chaos expansion work done by 

other researchers (Creamer, 2005 and Finette, 2006) and several detailed comparisons of 

DS, FS, and PCE for a single uncertain variable, water column sound speed, in a Pekeris 

waveguide.  Here the PCE technique was modified to predict probability distributions for 

the field in a Pekeris waveguide, and the PCE wave propagation model was extended 

from the narrow-angle parabolic-approximation equation to the Helmholtz equation.  The 

comparisons presented involved both accuracy and computational efficiency when the 

PCE technique was applied with both a fixed and an optimized truncation order. 
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II. Conclusions 

The following conclusions can be drawn from the results of this research: 

 

1. Direct Simulation is highly accurate, but computationally expensive

As discussed in Chapter 1, section V, and illustrated by Figures 4.8-4.10, direct 

simulation can provide an arbitrarily accurate picture of the probability in an uncertain 

acoustic field by increasing the number of field calculations, NDS.  The required number 

of field calculations to achieve a specified level of accuracy in environmental sensitivity 

calculations grows exponentially with the number of uncertain environmental inputs, 

making this technique’s computational cost prohibitive for real-time applications.  This 

limitation establishes the need for faster approximation techniques for acoustic 

uncertainty prediction. While this conclusion is supported by the results of this research, 

it is not unique to this thesis.  The high accuracy and high computational cost of direct 

simulation are supported by existing research in underwater acoustics, such as Shorey et 

al. (1994) and Gerstoft and Mecklenbräuker (1998). 

 

2.  Boundary value problems can be written explicitly for the propagation of probability 

distributions.

Equation 25 in Chapter 2 provides a general evolution equation for pressure PDFs 

in two or more dimensions, analogous to the Helmholtz equation for deterministic 

pressure.  With the boundary conditions set by the uncertainties in all environmental 
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parameters, this represents a boundary value problem for the uncertain distribution of 

acoustic pressure in a sound channel. 

 

3.  Closure models for conditional expectations are required to obtain solutions to the 

governing equations for pressure distributions.

As described on Chapter 2, section V, the governing equation for the propagation 

of probability in an acoustic field (Equation 25) contains terms that cannot be evaluated 

without exact or approximate knowledge of the relationship between pressure derivatives 

and uncertain parameters in the sound channel.  Such relationships do not exist for 

realistic sound channels, thus further modeling would be required to obtain approximate 

solutions to these governing equations in non-trivial cases. 

 

4. Field shifting is an accurate approximation technique in sound channels for which its 

assumptions are valid.

Figure 3.8 in Chapter 3 illustrates the relationship between the accuracy of the 

field shifting approximation for uncertain channel depth (measured by its L1 value), and 

the validity of the local-shift assumption (measured by the RMS error of the optimum 

spatial shift).  For this sound channel and uncertain parameter, when the RMS error of the 

shift is below 0.25, 95% of the field shifting approximations exhibited an L1 value of less 

than 0.5, indicating acceptable accuracy for many applications. 

 

5. Field shifting is computationally efficient compared to direct simulation techniques.
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As discussed in Chapter 3, section II, when there are N uncertain parameters in a 

sound channel, field shifting requires N + 1 field calculations.  Figure 3.12 in Chapter 3 

illustrates distributions obtained from both field shifting and direct simulation for a case 

with 8 uncertain parameters.  The solid direct simulation curve required 106 field 

calculations and Monte Carlo sampling, while the dashed field shifting curve required 

only 9.  The tradeoff in accuracy for field shifting in this case is an L1 error of only 0.12, 

which is proposed as acceptable for all envisioned applications of this research. 

 

6. Polynomial chaos expansion provides highly accurate approximations for the case of 

uncertain sound speed in a Pekeris waveguide, when the truncation order is chosen 

appropriately.

As shown in Figure 4.20 in Chapter 4, the polynomial chaos expansion 

approximation yields L1 values below 0.09 for 95% of the cases presented, when the 

truncation order Q is chosen according to the technique described in section V.  Such L1 

values are proposed to represent a very high degree of accuracy acceptable for envisioned 

applications. 

 

7. Polynomial chaos expansion has a relatively high computational cost in comparison to 

field shifting in a Pekeris waveguide with uncertain sound speed.

As discussed in section V of Chapter 4, appropriate values for the truncation order 

Q must be determined iteratively, or set sufficiently high based on knowledge of the 

sound channel.  As a polynomial chaos expansion of order Q is directly analogous in 

computational effort to NDS direct simulation calculations, the computational cost of the 
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polynomial chaos method is significantly higher than field shifting for the cases 

presented. 

 

III. Future Work 

 This thesis research has introduced two new techniques for uncertainty 

approximation in acoustic field prediction: PDF propagation and field shifting.  In 

addition, a third, existing approximation technique, polynomial chaos expansion, has 

been applied to the problem of a Pekeris waveguide and compared to both field shifting 

and direct simulation.  Further research in all three of these methods may broaden the 

scope of their potential applications, as well as increase their accuracy and/or efficiency. 

 As discussed in Chapter 2, the PDF propagation technique yields boundary value 

problems for acoustic uncertainty which cannot be solved without further modeling of the 

terms containing conditional expectations.  Further research in this area may yield 

approximate models for these conditional expectations for specific uncertainty problems, 

which would allow for the calculation of acoustic field uncertainty distributions from a 

given set of environmental parameter uncertainties.  In addition, the theory behind the 

PDF propagation technique is not limited to underwater acoustic propagation.  The same 

concepts may be applied to other forms of wave propagation, such as electromagnetics, 

for which the resulting conditional expectations may have tractable approximate models. 

 The field shifting technique introduced in Chapter 3 relies on two fundamental 

assumptions about the dependence of acoustic pressure on uncertain parameters: that 

small changes in an environment parameter correspond to spatial translation of the local 

field, and that such translations evolve linearly with changes in the environmental 
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parameter.  In the most general case, the evolution of the acoustic field arising from 

variation in an environmental input can be described by a transformation matrix.  For the 

simple field shifting technique introduced in Chapter 3, this transformation matrix is 

assumed to be a translation, but more generic transformations could also be applied.  In 

addition, the evolution of this transformation matrix for arbitrary changes in the 

environmental input may be nonlinear.  By assuming the evolution to be linear, the field 

shifting technique requires only two field calculations to fit the linear curve.  By 

performing more field calculations, a nonlinear evolution of the transformation matrix 

could be approximated.  Thus, the field shifting technique introduced in this thesis is a 

simplification of a more general concept better described as “field transformation.”  As 

shown by the results in Chapters 3 and 4, these assumptions of translation and linearity 

yield acceptably accurate approximations for many cases, at the minimum computational 

cost for the technique.  However, application of these concepts to generic transformation 

matrices and nonlinear evolution may yield more accurate uncertainty approximations for 

some applications.  Whether the increase in accuracy is high enough to justify the greater 

computational cost is a topic for further research. 

 Finally, the polynomial chaos expansion technique was applied in chapter 4 to an 

idealized sound channel with only one uncertain parameter.  Further research in 

polynomial chaos expansion may apply the technique to more realistic sound channels, 

and more uncertain parameters.  The conclusions drawn in Chapter 4 apply only to the 

implementation of this technique in the Pekeris waveguide with uncertain sound speed.  

While the application of polynomial chaos expansion to underwater acoustic prediction is 

a relatively new field of research, polynomial chaos research in other engineering fields 
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(Field, 2004) indicates that the efficiency of polynomial chaos compared to direct 

simulation may increase significantly in more complicated sound channels with more 

uncertain parameters. 
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