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Abstract 

CHD8, a Novel ATP-dependent Chromatin Remodeling Enzyme 

by 

Brandi Arianne Thompson 

 

Chair:  Daniel A. Bochar 

ATP-dependent chromatin remodeling by the CHD family of proteins plays 

an important role in the regulation of gene transcription.  The CHD family can be 

subdivided into three families; CHD1-2, CHD3-5, and CHD6-9.  While the first 

two subfamilies have been extensively studied, very little is known about the 

CHD6-9 subfamily. 

In this study we demonstrate that CHD8 is a nucleosome-stimulated 

ATPase, capable of remodeling the nucleosome structure.  In addition, the 

tandem Chromodomains of CHD8 are capable of directly binding recombinant 

histones H3 and H4.  We also demonstrate that CHD8 interacts directly with the 

transcriptional regulator β-catenin and that CHD8 is recruited specifically to the 

promoter regions of several genes responsive to β-catenin.  Utilizing shRNA 

against CHD8, we demonstrate that CHD8 performs a negative role in regulating 



xv 

β-catenin target gene expression.  This regulation is evolutionarily conserved as 

RNAi against kismet, the apparent Drosophila ortholog of CHD8, similarly results 

in the activation of β-catenin target genes.  

WDR5, RbBP5, and Ash2L are core components of the MLL1-WDR5 

methyltransferase complex which alters chromatin structure through the covalent 

modification of histones.  MLL1, the catalytic subunit of the complex, catalyzes 

the methylation of histone H3 lysine 4, a hallmark of active chromatin.  We 

demonstrate that CHD8 exists in a multi-subunit complex with WDR5, RbBP5, 

and Ash2L that may also contain MLL1.  Both WDR5 and MLL1 have previously 

been reported to regulate the expression of Hox genes, a family of genes 

involved in development.  We demonstrate that CHD8 is recruited specifically to 

the promoter regions of several genes within the HoxA locus.  Utilizing shRNA 

against CHD8, we demonstrate that CHD8 performs a negative role in regulating 

Hox gene expression.  We show that CHD8, like WDR5 and MLL1, regulates 

Hox gene expression. 

Taken together, these results demonstrate that CHD8 functions in the 

transcriptional regulation of both β-catenin target genes and Hox genes and 

suggest that this regulation is through the ATP-dependent modulation of 

chromatin structure within the 5’ promoter regions of these genes.  Our results 

suggest that through regulating the expression of β-catenin target genes and Hox 

genes CHD8 may play a role in both tumorigenesis and development 

respectively.
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Chapter I 

 

Introduction 

 

 

Chromatin Structure 

Inside the cell there are detailed instructions for the development, function, 

and characteristics of a given organism.  These instructions are written in the 

language of DNA.  It is our DNA or DNA in combination with the environment that 

determines things as trivial as eye color and hair color to things as significant as 

the development of diseases such as sickle cell anemia and cancer.  The 

International Human Genome Sequencing Consortium estimates that the human 

genome consists of 20,000-25,000 genes.  At present, 19,599 genes have been 

identified and confirmed and another 2,188 DNA segments have been identified 

that may also be genes (117).  How does all of this information fit inside of an 

individual cell which is not visible to the naked eye? 

In eukaryotes such as humans, the genome is packaged as chromatin 

inside the nucleus of each cell.  The fundamental unit of chromatin is the 

nucleosome.  The nucleosome core is an octamer composed of two of each 
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histone H3, H4, H2A, and H2B (69).  Approximately 146 base pairs of DNA are 

wrapped around this histone octamer core to form each individual nucleosome.  

When visualized by electron microscopy, the primary chromatin structure 

consisting of nucleosomes assembled along DNA resembles “beads on a string”.  

This chromatin fiber then folds upon itself multiple times and ultimately results in 

the highly condensed chromatin structure observed at the level of metaphase 

chromosomes. 

Chromatin structure determines the transcriptional activity of genes.  While 

the formation of chromatin aids the cell in packaging the entire genome inside the 

nucleus, it also serves as a hindrance for cellular processes such as 

transcription, replication, recombination, and repair (62).  Therefore, factors that 

can alter chromatin structure are essential for and provide additional regulatory 

points in these cellular processes.   

Chromatin Remodeling Enzymes 

Factors that can alter chromatin structure are termed chromatin 

remodeling enzymes.  Two classes of chromatin remodeling enzymes exist.  The 

first class is composed of enzymes that alter chromatin structure by the covalent 

modification of histones (36, 63, 142).  The second class is composed of 

enzymes which use the energy of ATP hydrolysis to alter chromatin structure (7, 

74, 86, 113).  Both classes of remodeling enzymes regulate the accessibility of 

packaged DNA. 
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Covalent Modification of Histones 

Multiple enzymes are capable of altering chromatin structure through the 

covalent modification of histones (10, 36, 63, 142).  Histone acetyltransferases, 

methyltransferases, kinases, and ubiquitin ligases, as well as the enzymes that 

remove these modifications, are examples of this type of remodeling enzyme.   

While these modifications can occur along the length of the histone 

protein, the majority of the documented covalent post-translational modifications 

occur on the non-globular N-terminal histone tail.  The tail region can represent 

up to 30% of the mass of a given histone (35).  Greater than 60 different 

modifications of the major core histones have been identified to date.  These 

modifications can be grouped into eight different categories as follows: 

acetylation, methylation, phosphorylation, ubiquitylation, ribosylation, 

sumoylation, deimination, and izomerization.  At this time, the known 

modifications are lysine acetylation, lysine and arginine methylation, serine and 

threonine phosphorylation, lysine ubiquitylation, glutamate poly-ADP ribosylation, 

lysine sumoylation, arginine deimination, and proline isomerization (131). 

It is suspected that these post-translational modifications of histones 

produces a “histone code” which is then read by various cellular factors involved 

in controlling the state of chromatin (55).  This code is written by enzymes known 

as “writers” and removed by “erasers”.  The code is then read by protein 

“readers” that recognize these covalent modifications (131). 



4 

ATP-dependent Chromatin Remodelers 

ATP-dependent chromatin remodeling enzymes possess a conserved 

Snf2 helicase domain.  This domain is capable of binding and hydrolyzing ATP 

(33).  This class of chromatin remodeling enzymes alters chromatin structure by 

disrupting DNA-histone contacts, moving histones to a new location on the same 

piece of DNA, moving histones to new DNA, or replacing histones with histone 

variants (40, 66, 134) (Figure 1.1). 

ATP-dependent chromatin remodeling enzymes can be separated into 

families based on the presence of additional domains, and these enzymes 

usually fall into one of the following four main families:  Swi/Snf, Iswi, Ino80, or 

CHD.  These enzymes also typically exist in multi-subunit complexes with other 

proteins which regulate or aid the remodeler in functioning.  These additional 

subunits can also help classify these remodelers into distinct families.   

Swi/Snf 

Drosophila brahma (BRM), mammalian BRG1 (Brahma related gene 1), 

and yeast SNF2 are examples of proteins which are categorized into the Swi/Snf 

(mating type switching/sucrose non-fermenting) family of proteins.  In addition to 

the Snf2 helicase domain, all of these proteins possess a bromodomain which 

has been reported to bind acetylated histone tails (77, 132).  In humans, the BAF 

and BRM complexes are two members of the Swi/Snf family of remodelers.  

Swi/Snf complexes function in various cellular processes such as DNA 

replication, repair, and transcription (132). 
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Iswi 

Mammalian SNF2H and yeast Isw1 are examples of enzymes which are 

categorized as Iswi (imitation switch) remodeling enzymes.  In addition to the 

Snf2 helicase domain, proteins within this family possess a SANT (SWI3, ADA2, 

NCOR, TFIIIB) domain.  This domain is reported to have the ability to bind 

histone tails (77, 132).  The chromatin accessibility complex (CHRAC) (126), 

nucleosome remodeling factor (NURF) complex (122, 124), and ATP-utilizing 

chromatin assembly and remodeling factor complex (ACF) (53) are examples of 

complexes which are classified as Iswi complexes.  The Iswi protein within each 

complex acts as the ATPase subunit of the given complex (34).  While the Iswi 

family was initially identified in Drosophila, paralogues of the Drosophila Iswi 

protein have been found in complexes in yeast (79, 123, 127), xenopus (43, 76), 

and humans (4, 12, 13, 44, 67, 68, 95, 119, 137). 

Ino80 

SRCAP (SNF2-related CREB-activator protein) and p400 are examples of 

proteins which are categorized as Ino80 (inositol requiring 80) remodeling 

proteins.  Members of this family of proteins have a split ATPase domain (3, 

132).  The Ino80 complex was first identified in yeast.  This complex is reported 

to remodel chromatin, facilitate in vitro transcription, and exhibit DNA helicase 

activity (108).  The DNA helicase activity of the complex has been attributed to 

the presence of RuvB proteins.  The Ino80 complex is thought to be involved in 

both transcriptional regulation and DNA repair (3, 77, 108). 
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CHD 

The CHD (Chromodomain helicase DNA binding) proteins are another 

example of an ATP-dependent chromatin remodeling family.  Like all 

ATP-dependent remodeling enzymes, members of this family possess a 

conserved Snf2 helicase domain.  In the CHDs, this domain is C-terminal to 

tandem chromodomains believed to function in histone binding.  The CHD family 

of proteins can be further divided into subfamilies based on the presence of 

additional domains.  These subfamilies are CHD1-2, CHD3-5, and CHD6-9. 

CHD1-2 Subfamily 

In addition to the double chromodomains and Snf2 helicase domain, 

CHD1 and CHD2 possess a DNA-binding domain near their C-terminus (77).  In 

yeast, the CHD1 protein is reported to be involved in RNA pol II transcriptional 

elongation and termination (2, 64, 111).  CHD1 is also reported to exhibit ATPase 

activity in yeast and drosophila.   Mouse CHD1 may also contain histone 

deacetylase activity.  Both human and yeast CHD1 are reported to bind histones 

methylated on H3 lysine 4, a hallmark of active transcription.  Mutational analysis 

performed in mouse indicates that loss of CHD2 results in defects in both growth 

and viability (77). 

CHD3-5 Subfamily 

In addition to the tandem chromodomains and the Snf2 helicase domain, 

members of the CHD3-5 subfamily possess tandem PHD (plant homeo domain) 

Zn-finger-like domains N-terminal to the chromodomains (77).  In vertebrates, the 
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CHD3/CHD4 (Mi2) proteins were identified as components of the NURD 

(Nucleosome Remodeling and Deacetylation) complex.  As the name indicates, 

this complex has the ability to both remodel nucleosomes and deacetylate 

histones.  A four subunit histone deacetylase core comprised of HDAC1/2 and 

RbAp46/48 is responsible for the deacetylase activity exhibited by the NURD 

complex (121, 129, 136, 141).  This subfamily of proteins has been implicated in 

both lymphocyte differentiation and T cell development (77). 

CHD6-9 Subfamily 

In addition to the Snf2 helicase domain and the tandem chromodomains, 

the CHD6-9 subfamily of CHD proteins possess two other types of domains 

(Figure 1.2).  C-terminal to the Snf2 helicase domain is a SANT [switching-

defective protein 3 (SWI3), adaptor 2 (ADA2), nuclear repressor co-repressor 

(NCOR), transcription factor IIIB (TFIIIB)] domain followed by two BRK (Brahma 

and Kismet) domains (45, 77).  The function of the SANT and BRK domains is 

not clearly defined in the context of the CHD subfamily proteins. 

While the CHD1-2 and CHD3-5 subfamilies have been extensively 

studied, the CHD6-9 subfamily is not well studied.  ATPase activity, an indicator 

of potential chromatin remodeling activity, has been observed for some members 

of the CHD6-9 subfamily.  However, actual chromatin remodeling activity has not 

been shown for any of the subfamily members (45, 77).  Our studies attempt to 

elucidate the function of CHD8, a CHD6-9 subfamily member. 
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Specific Aims 

Hypothesis:  CHD8 exists in a multi-subunit complex with other factors that 

are required for the function of CHD8. 

Aim 1:  Identify the polypeptide composition of the endogenous CHD8 

complex (es) 

A. Purify the CHD8 complex (es) from HeLa cells 

B. Confirm CHD8 associated polypeptides 

C. Analyze the transcriptional requirement of the CHD8 associated 

polypeptides 

Hypothesis:  CHD8 functions as an ATP-dependent chromatin remodeling 

enzyme. 

Aim 2:  Determine whether CHD8 acts as an ATP-dependent chromatin 

remodeling enzyme 

A. Perform in vitro chromatin remodeling assays of the CHD8 complex 

B. Analyze the domains and regions essential for chromatin remodeling 

activity of CHD8 
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Figure 1.1:  ATP-dependent chromatin remodeling enzymes.  ATP-dependent chromatin 
remodeling enzymes alter chromatin structure by utilizing the energy of ATP hydrolysis.  These 
enzymes can alter chromatin structure by disrupting DNA histone contacts, moving histones to a 
new location on the same piece of DNA, moving histones to new DNA, or replacing histones with 
histone variants.  Members of this class of remodeling enzyme share a conserved Snf2 helicase 
domain capable of binding and hydrolyzing ATP.  
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Figure 1.2:  Domain structure of the CHD6-9 subfamily of proteins.  The CHD 
(Chromodomain Helicase DNA binding) family of proteins are key regulators of chromatin 
structure.  Members of the CHD6-9 subfamily of CHD proteins share multiple conserved domains.  
Included is the number of amino acids (AA) and the percent identity (I) as compared to human 
CHD8.  Duplin, an N-terminal fragment of CHD8, was identified in rat.  
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Chapter II 

 

CHD8 is an ATP-dependent Chromatin Remodeling Factor That Regulates 

β-catenin Target Genes 

 

 

Introduction 

The eukaryotic genome is packaged inside the nucleus in the form of 

chromatin.  The fundamental unit of chromatin, the nucleosome, is formed by 

wrapping ~146bp of DNA around a histone octamer core composed of two of 

each histone H2A, H2B, H3, and H4 (69).  While the formation of nucleosomes 

aids cells in packaging their genome inside the nucleus, it can also hinder cellular 

processes such as transcription, replication, and repair (62).  Therefore, factors 

that can alter chromatin structure are important for regulation of these cellular 

processes.  Factors that can regulate the accessibility of this packaged DNA are 

termed chromatin remodeling enzymes.  Two classes of chromatin remodeling 

enzymes have been identified.  One class alters chromatin structure via the 

covalent modification of histones (36, 63, 142).  The other class of enzymes uses 

the energy of ATP hydrolysis to alter chromatin structure (7, 74, 86, 113). 
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ATP-dependent Chromatin Remodeling 

All ATP-dependent chromatin remodeling enzymes share a conserved 

Snf2 helicase domain capable of binding and hydrolyzing ATP (33).  This class of 

remodeling enzymes uses the energy of ATP hydrolysis to alter chromatin 

structure by disrupting the DNA/histone interactions, moving the histone 

octamers to new DNA, moving the histone octamers to a new location on the 

same piece of DNA, or replacing histones with histone variants (40, 66, 134).  

These remodeling events are essential for transcription, replication, repair, and 

recombination of the genome (31, 89, 110).  

ATP-dependent Chromatin Remodeling and Cancer 

Alterations of chromatin structure have been reported to be involved in the 

development of human cancers.  The human SWI/SNF complex, a known ATP-

dependent chromatin remodeling complex (7, 31, 74, 86, 110, 113), is one 

example.  Alteration of this complex has been implicated in tumor formation.  

BRG1, the catalytic subunit of the SWI/SNF complex is mutated in multiple 

cancer cell lines (25, 42, 97, 98).  Approximately 10% of all primary cancers 

exhibit a loss in expression of BRG1 (97).  In mouse models, haploinsufficiency 

of BRG1 results in a predisposition to tumor formation (19).  Ini/Snf5, a core 

subunit of the SWI/SNF complex, is inactivated in a variety of cancers (105, 106, 

128).  In mice, mutations in this subunit indicate that this protein acts as a tumor 

suppressor (100, 101).  These data demonstrate that the SWI/SNF complex 

plays a role in tumor formation and highlights the importance of studying other 
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ATP-dependent chromatin remodeling complexes and the role they may play in 

carcinogenesis. 

Wnt Signaling Pathway and Cancer 

The Wnt signaling pathway plays a role in many developmental pathways 

(20), but it also is involved in tumorigenesis.  The role of Wnt signaling in 

colorectal cancer was first discovered in patients with Familial Adenomatous 

Polyposis.  This disorder is caused by mutations that inactivate the APC 

(adenomatous polyposis coli) protein (41, 87).  Wnt signaling regulates β-catenin 

accumulation and nuclear localization (20).  In the absence of Wnt ligand, β-

catenin is phosphorylated by GSK3β, a component of the APC complex (52).  

β-catenin is then targeted for ubiquitination and degradation by the proteosome 

(56, 78).  In the presence of Wnt ligand, dishelved (Dvl) inhibits the APC complex 

preventing β-catenin phosphorylation.  β-catenin is then allowed to accumulate 

and translocate into the nucleus.  Inside the nucleus, β-catenin binds to TCF/LEF 

and activates transcription of β-catenin responsive genes (8, 83).  

Wnt Signaling and Chromatin Remodeling 

In the absence of Wnt signaling, TCF/LEF interacts with co-repressors 

such as groucho/TLE (17, 102) and CtBP (15, 16), creating a closed chromatin 

structure.  Multiple proteins, such as p300/CBP (47, 82, 120) and BRG1 (5), can 

interact with β-catenin and play a role in opening the chromatin structure.  An in 

vitro study of β-catenin mediated transcription demonstrated the need for p300 

and an unidentified ATP-dependent chromatin remodeling enzyme (125).  It was 
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determined that this unidentified remodeler is not a component of the Swi/Snf 

complex as purified Swi/Snf was unable to activate transcription.  The 

identification of this unknown ATP-dependent remodeling factor is necessary to 

fully understand β-catenin mediated transcription. 

Duplin and β-catenin 

In rat, a protein termed Duplin was previously reported to bind β-catenin 

and inhibit Wnt or β-catenin dependent TCF activation (103).  This is particularly 

interesting given that analysis of Duplin revealed that it is an N-terminal fragment 

of human CHD8, a member of the CHD (chromodomain, helicase, DNA-binding) 

family of proteins.  The CHD family proteins are key regulators of chromatin 

structure (33, 39, 45, 77). 

The CHD6-9 Subfamily 

Remodeling enzymes can be divided into multiple families based on their 

domain architecture.  One of these families, the CHD family of chromatin 

remodeling enzymes, can be further divided into 3 subfamilies: CHD1-2, CHD3-

5, and CHD6-9.  While the CHD1-2 and CHD3-5 subfamilies have been 

extensively studied, little is known about the CHD6-9 subfamily of proteins (45, 

77).  Members of this subfamily share multiple conserved domains.  They have 

two chromodomains, a Snf2 helicase domain, a SANT domain, and two BRK 

domains.  The presence of a conserved Snf2 helicase domain, the domain 

associated with the binding and hydrolysis of ATP, suggests that these proteins 

are potential ATP-dependent chromatin remodeling enzymes.  ATPase activity 
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has been observed for CHD6 and CHD9 (75, 109), but has not previously been 

observed for CHD8.  Chromatin remodeling activity has also not previously been 

shown for any of the CHD6-9 subfamily members.   

Hypothesis and Summary of Results 

As previously stated, in vitro studies of β-catenin mediated transcription 

suggested a need for an unidentified ATP-dependent chromatin remodeling 

enzyme (125).  We hypothesized that CHD8 was this unidentified enzyme 

involved in regulating β-catenin mediated transcription.  Here we demonstrate 

that full length human CHD8 binds β-catenin both in vitro and in vivo.  We show 

that this binding requires the armadillo repeats of β-catenin.  Our studies 

performed in HCT116 cells demonstrate that CHD8 binds to the region proximal 

to the promoter of the β-catenin responsive genes Axin2, Dkk1, and Nkd2.  We 

show that RNAi of human CHD8 increases the expression of Axin2, Dkk1, and 

Nkd2.  In Drosophila S2 cells, RNAi experiments targeting the CHD8 ortholog, 

kismet, resulted in increased expression of nkd, a β-catenin responsive gene.  

We performed ATPase assays using CHD8 which indicate that CHD8 possesses 

nucleosome stimulated ATPase activity.  Restriction enzyme accessibility assays 

and nucleosome sliding assays performed with CHD8 demonstrate that CHD8 is 

an ATP-dependent chromatin remodeling factor that has the ability to slide 

nucleosomes.  Collectively, our data provide evidence supporting the hypothesis 

that CHD8 is an ATP-dependent chromatin remodeling enzyme that functions in 

part by regulating the transcription of β-catenin responsive genes. 
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Materials and Methods 

Cell Culture and Reagents 

Dulbecco’s modified Eagle medium (Invitrogen) with an additional 10% 

fetal bovine serum (Hyclone) and 1X penicillin-streptomycin-glutamine 

(Invitrogen) was used to culture both HeLa and HCT116 cells.  Both cell lines 

were cultured at 37°C in 5% CO2.  HeLa Flag-βcat cells were grown under the 

same conditions as described above, with the exception of 5 μg/ml of puromycin, 

which was added as a selection agent.  HeLa nuclear extracts were prepared 

from cells purchased from the National Cell Culture Center (Minneapolis, MN).  

Schneider’s Drosophila medium (Invitrogen) with an additional 10% fetal bovine 

serum and 1X penicillin-streptomycin-glutamine (Invitrogen) was used to culture 

Drosophila S2 cells at 24°C.  SF9 cells were cultured at 24°C in 1X Grace’s 

Insect medium (Invitrogen) containing an additional 10% fetal bovine serum and 

1X penicillin-streptomycin-glutamine.   

CHD8 rabbit polyclonal antibodies were raised against a 20 amino acid 

peptide (HTETVFNRVLPGPIAPESK) conjugated to keyhole limpet hemocyanin 

(Open Biosystems).  This 20 amino acid peptide was also conjugated to Affi-Gel 

10 (Bio-Rad) and used to affinity purify the CHD8 antibodies described above.  

Both the anti-trimethyl histone H3 Lys4 (07-473) and anti-acetyl histone H4 (06-

866) antibodies were purchased from Upstate (Millipore).  All oligonucleotides 

were synthesized by Integrated DNA Technologies (Coralville, IA).  Primer 

sequences are listed in Table 2.1. 
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Recombinant Protein Production 

The Bac-N-Blue baculovirus expression system (Invitrogen) was used to 

prepare recombinant baculoviruses containing Flag-tagged human CHD8 and 

Snf2H.  SF9 cells at a concentration of (1 X 106 cells/ml) were infected with the 

recombinant baculoviruses at a multiplicity of infection (MOI) equal to 2.  Cells 

were harvested 4 days post infection.  After harvesting, cells were washed with 

phosphate buffered saline (PBS) and resuspended in immunoprecipitation (IP) 

buffer (0.2 mM EDTA, 10% glycerol, 0.2 mM phenylmethylsulfonyl fluoride 

[PMSF], and 20 mM Tris-HCl [pH 7.9]), with 500 mM KCl, 1% NP-40, 1 μg/ml 

aprotinin, 1 μg/ml leupeptin, and 1 μg/ml pepstatin.  A Dounce homogenizer was 

then used to lyse the cells.  After douncing, lysates were centrifuged at 

(15,806 X g) for 15 minutes at 4°C.  Cleared lysates were dialyzed against IP 

buffer containing 50 mM KCl.  Dialyzed lysates were then combined with 500 μl 

of anti-Flag M2 conjugated agarose beads (Sigma) and rotated overnight at 4°C.  

Flag-IPs were washed with 10 column volumes (CV) of each of the following 

buffers: IP buffer with 150 mM KCl, IP buffer with 350 mM KCl, and IP buffer with 

150 mM KCl.  Flag-IPs were eluted with a buffer containing 400 μg/ml Flag 

peptide (Sigma), 150 mM KCl, 0.2 mM EDTA, 10 mM β-mercaptoethanol (BME), 

10% glycerol, 0.2 mM PMSF, 20 mM Tris-HCl (pH 7.9), 1 μg/ml aprotinin, 1 μg/ml 

leupeptin, and 1 μg/ml pepstatin.   

Glutathione S-transferase (GST)-β-catenin expression constructs were 

generated by polymerase chain reaction (PCR) using full length GST-β-catenin 

as a template or were gifts from K. A. Jones (125).  Escherichia coli BL21 cells 
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were used to express GST and GST fusion proteins.  After harvesting, cells were 

resuspended in 150 mM KCl, 0.2 mM EDTA, 10 mM BME, 10% glycerol, 0.2 mM 

PMSF, 20 mM Tris-HCl (pH 7.9).  Resuspended cells were passed through a 

French pressure cell twice and lysates were then centrifuged at 105,000 X g for 

60 minutes at 4°C.  In order to remove partial fusion products, the GST-β-catenin 

N-terminal fragment was further purified using DEAE and Butyl Sepharose (GE 

Healthcare) chromatography.  GST and GST fusion proteins were affinity purified 

on Glutathione-Sepharose (GE Healthcare).  Samples were then subjected to 

sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE).  The 

concentration of GST and GST fusion proteins in the cell lysates were 

determined by analysis of Coomassie stained gels compared to standards of 

known concentration.   

Protein Interaction Studies 

In vitro studies of the interaction between CHD8 and β-catenin were 

performed using the recombinant proteins described above.  Cleared cell lysates 

containing 10 μg of the indicated GST fusion protein were combined with 20 μl of 

packed Glutathione-Sepharose beads in a 1 ml final volume of 150 mM KCl, 

0.2 mM EDTA, 10 mM BME, 10% glycerol, 0.2 mM PMSF, 20 mM Tris-HCl (pH 

7.9).  Samples were rotated at 4°C for at least 3 hours.  The samples were then 

washed twice for 10 minutes each with 1 ml of a buffer containing 150 mM KCl, 

0.2% NP-40, 0.2 mM EDTA, 10 mM BME, 10% glycerol, 0.2 mM PMSF, and 

20 mM Tris-HCl (pH 7.9).  Samples were resuspended in 500 μl of the same 

buffer and combined with 1 μg of purified recombinant CHD8.  These samples 
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were then rotated for at least 3 hours at 4°C.  The samples were washed three 

times for 10 minutes each with 1 ml of buffer containing 350 mM KCl, 0.2% 

NP-40, 0.2 mM EDTA, 10 mM BME, 10% glycerol, 0.2 mM PMSF, and 20 mM 

Tris-HCl (pH 7.9).  Samples were eluted by boiling in SDS-PAGE loading buffer.  

Eluted samples were subjected to SDS-PAGE and Western blot analysis. 

Methods described by Dignam et al. (27) were used to prepare nuclear 

extracts for in vivo studies involving CHD8 and β-catenin.  Nuclear extracts were 

prepared from approximately 1 X 107 HeLa cells or HeLa cells stably expressing 

Flag-tagged β-catenin.  Extracts were then dialyzed against IP buffer containing 

50 mM KCl.  Dialyzed samples were combined with 20 μl of packed anti-Flag M2 

conjugated agarose beads (Sigma) and rotated overnight at 4°C.  Flag-IPs were 

washed 30 minutes each with 1 ml of each of the following buffers: IP buffer with 

150 mM KCl, IP buffer with 350 mM KCl, and IP buffer with 150 mM KCl.  

Precipitated material was eluted by boiling in SDS loading buffer.  Eluted 

samples were subjected to SDS-PAGE and Western blot analysis. 

ChIP Assays 

The chromatin immunoprecipitation (ChIP) assay was adapted from the 

protocol described by Upstate.  For each ChIP, approximately 1 X 106 cells were 

crosslinked by treatment with formaldehyde for 10 minutes at 37°C.  The 

formaldehyde was added directly to the cell media at a final concentration of 1%.  

Cells were then washed twice with cold PBS containing 1 mM PMSF, 1 μg/ml 

pepstatin, and 1 μg/ml aprotinin.  Cells were harvested by scraping after the 
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addition of 200 μl of cold SDS Lysis Buffer (1% SDS, 10 mM EDTA, 50 mM Tris-

HCl [pH 8.1]) containing 1 mM PMSF.  DNA was sheared into ~200-1000bp 

fragments by sonication.  Lysates were centrifuged at 20,800 X g for 10 minutes 

at 4°C.  Cleared supernatants were diluted 10 fold in ChIP Dilution Buffer 

(0.01% SDS, 1.1% Triton X-100, 1.2 mM EDTA, 16.7 mM Tris-HCl, [pH 8.1], 

167 mM NaCl) containing 1 mM PMSF, 1 μg/ml pepstatin, and 1 μg/ml aprotinin.  

The diluted supernatants were pre-cleared by adding 38 μl of packed protein A 

agarose blocked with salmon sperm DNA.  Samples were rotated at 4°C for 

30 minutes.  After brief centrifugation, the pre-cleared supernatants were 

collected and rotated overnight at 4°C with the indicated antibodies.  

Chromatin/antibody complexes were collected by rotating each IP with 38 μl of 

packed protein A agarose/salmon sperm DNA for 1 hour at 4° followed by 

centrifugation at 4°C for 1 minute at 500 X g.  Protein A/antibody/chromatin 

complexes were washed for 30 minutes at 4°C with 1 ml of each of the following 

buffers: one wash with Low Salt Immune Complex Wash Buffer (0.1% SDS, 1% 

Triton X-100, 2 mM EDTA, 20 mM Tris-HCl [pH 8.1], 150 mM NaCl, and 1 mM 

PMSF), one wash with High Salt Immune Complex Wash Buffer (0.1% SDS, 1% 

Triton X-100, 2 mM EDTA, 20 mM Tris-HCl [pH 8.1], 500 mM NaCl, and 1 mM 

PMSF), one wash with LiCl Immune Complex Wash Buffer (0.25M LiCl, 1% 

NP-40, 1% deoxycholate, 1 mM EDTA, 10 mM Tris-HCl [pH 8.1], and 1 mM 

PMSF), and two washes with TE Buffer (1 mM EDTA, 10 mM Tris-HCl [pH 8], 

and 1 mM PMSF).  After washing, samples were eluted by incubation at room 

temperature for 30 minutes with 500 μl of elution buffer (1% SDS, 0.1 M 
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NaHCO3).  Crosslinking was reversed by adding 20 μl of 5 M NaCl to each eluate 

and heating at 65°C for 4 hours.  Eluates were deproteinated by addition of 10 μl 

of 0.5 M EDTA, 20 μl of 1 M Tris-HCl (pH 6.5), and 2 μl of 10 mg/ml proteinase K 

and incubated at 45°C for 1 hour.  Samples were purified by phenol/chloroform 

extraction and the DNA was recovered by ethanol precipitation.   

ATPase Assays 

Each ATPase reaction contained 1 mM ATP, 7.5μCi of [γ-32P]ATP in 

50 mM NaCl, 0.5 mM dithiothreitol, 5 mM MgCl2, 25 mM Tris (pH 7.9), and 10nM 

of the indicated enzyme.  As indicated, plasmid DNA or nucleosomes purified 

from HeLa cells were added to a final concentration of 5 ng/μl.  The reactions 

were then incubated at 30°C for 1 hour.  Polyethyleneimine-cellulose thin-layer 

chromatography plates (Sigma) were spotted with 1 μl of the reaction products.  

These plates were then resolved using 0.5 M LiCl in 1 M formic acid.  Dry plates 

were imaged and quantified using a Typhoon Trio+ Imager and ImageQuant TL 

software (GE Healthcare). 

Restriction Enzyme Accessibility Assays 

The restriction enzyme accessibility assay was adapted from methods 

outlined by Smith and Peterson (114).  A major change in the protocol was the 

use of fluorescently labeled DNA fragments generated by PCR using a 

combination of fluorescent and non-fluorescent primers.  These reactions utilized 

pGEM3z-601 DNA from J. Widom as a template (71).  Two forward primers (601 

forward) were used that had the same DNA sequence, but were either unlabeled 
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or fluorescently labeled with 5’-Alexa Fluor 488-N-hydroxysuccinimide ester.  A 

labeled to unlabeled primer ratio of 0.1/0.9 was used in each PCR reaction.  The 

reverse primer (601 reverse) was unlabeled.  The 277bp PCR product was 

verified by electrophoresis in a 2% agarose gel followed by detection using a 

Typhoon Trio+ Imager (GE Healthcare).  The fluorescently labeled PCR products 

were then ethanol precipitated and used to reconstitute mononucleosomes. 

Mononucleosomes were reconstituted using methods adapted from Luger 

et al (73).  Mononucleosome reconstitution reactions were assembled using a 

1:0.875 molar ratio of the 277bp fluorescently labeled DNA to core histones 

purified from HeLa nuclear pellets.  Reconstitution reactions (100 μl) contained 

10 μg labeled DNA, 5.16 μg histones, and 0.1 μg bovine serum albumin in 2 M 

NaCl.  Mononucleosomes were formed via salt dialysis of the reconstitution 

reactions at 4°C.  The reactions were dialyzed against a decreasing buffer 

gradient from a high salt buffer (1 mM EDTA, 2 M NaCl, 0.2 mM PMSF, 10 mM 

Tris pH 8.0) to a low salt buffer (1 mM EDTA, 0.2 mM PMSF, 10 mM Tris pH 8.0) 

over a 3 day period.  After dialysis, reconstitutions were verified by loading 

reactions onto a 5% non-denaturing acrylamide/bisacrylamide (37.5:1) 0.2X Tris-

borate-EDTA gel.  Labeled nucleosomes were detected using a Typhoon Trio+ 

Imager (GE Healthcare). 

Restriction enzyme accessibility assays were performed in triplicate.  Each 

15 μl reaction contained 1 mM ATP or AMPPNP, 50 nM reconstituted 

mononucleosomes, and 20U HhaI or PmlI in remodeling buffer (3 mM MgCl2, 

50 mM NaCl, 2 mM dithiothreitol, 1 μM ZnCl2, 0.1 mg/ml bovine serum albumin, 
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20 mM Hepes [pH 8.0]).  The final concentration of CHD8 was 0.009 μM (1X) or 

0.017 μM (2X).  In reactions containing CHD8 (K842R), the final concentration 

was 0.017 μM.  Reactions were incubated for 30 minutes at 30°C.  For time 

course experiments, reactions contained 0.017μM CHD8 and were incubated at 

30°C for the indicated time.  Reactions were quenched by adding 15 μl of 2X 

stop solution (10 mM Tris [pH 8.0], 0.6% SDS, 40 mM EDTA, 5% glycerol, 

0.1mg/ml proteinase K) and incubating at 50°C for 20 minutes.  Samples were 

analyzed on a 3% agarose gel and bands were quantified using a Typhoon Trio+ 

Imager and ImageQuant TL software (GE Healthcare).  Data points represent the 

average value of each triplicate. 

For remodeling experiments using mononucleosomes containing TCF 

binding sites, two derivatives of pGEM3z-601 were used as templates.  The 

TCF-mid and TCF-5’ templates were generated by the PCR-based overlap 

extension method of site-directed mutagenesis (80) using the primers 601-1, 

601-2, and 601-3 in combination with the mutation containing primers 601-mut 5’ 

or 601-mut mid.  Fluorescently labeled DNA fragments using the TCF-mid and 

TCF-5’ templates were prepared as described above.  Mononucleosome 

reconstitution reactions were assembled as above using a (1:1) molar ratio of 

fluorescently labeled TCF DNA fragments to HeLa core histones.   

Nucleosome Sliding Assays 

For the nucleosome sliding assays, fluorescently labeled nucleosomes 

were prepared using the methods described above.  The DNA fragment lacking 
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the 601 nucleosome positioning sequence was PCR amplified using the 601 

downstream forward and 601 downstream reverse primers and pGEM3z-601 as 

the template.  Two control fragments were also prepared for determining the 

electrophoretic mobility of mononucleosomes positioned at the end or the middle 

of the DNA fragment.  The fragment containing the nucleosome positioning 

sequence at the end was prepared by PCR amplification using the 601 slid 

forward and 601 slid reverse primers with pGEM3z-601 as a template.  The 

second control fragment was the standard 601 product.   

Nucleosome sliding assays were prepared similar to the restriction 

enzyme accessibility assays but minus the restriction enzyme.  Reactions were 

prepared on ice.  Each 15 μl reaction was composed of remodeling buffer, 1 mM 

ATP or AMPPNP, and 50 nM reconstituted mononucleosomes.  The 

concentration of CHD8 was 0.017 μM.  Reactions were incubated at 30°C for the 

indicated times.  Reactions were then quenched by adding 3 μl of a termination 

solution (30% glycerol, 10 mM Tris [pH 7.8], 1 mM EDTA, 334 μg/ml HeLa 

nucleosomes, and 334 μg/ml salmon sperm DNA) and incubating at 30°C for 15 

minutes.  Samples were loaded on a 5% non-denaturing 

acrylamide/bisacrylamide (37.5:1) 0.2X Tris-borate-EDTA gel.  Bands were 

quantified using a Typhoon Trio+ Imager and ImageQuant TL software (GE 

Healthcare).  
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RT-PCR and Quantitative PCR 

Total RNA was isolated from the indicated cell lines using the RNeasy and 

Qiashredder kits (Qiagen) as outlined by the manufacturer.  cDNA was produced 

using random decamers (Ambion) and Superscript II (Invitrogen) as described by 

the manufacturers.  Real-time quantitative PCR reactions were prepared using 

cDNA, iQ Sybr Green Supermix (BioRad), and the indicated primers.  Each 

reaction was performed in triplicate using the MyiQ single color real-time PCR 

detection system (BioRad).  Quantification was preformed as described by M. W. 

Pfaffl (94) using the levels of polymerase II (Pol II) transcribed α-tubulin 

(Drosophila) or pol III transcribed H1 (human) for normalization.  For quantitative 

ChIP experiments, reactions were prepared with the indicated ChIP DNA, iQ 

Sybr Green Supermix, and the specified primers.  Each reaction was performed 

in triplicate and analyzed using the MyiQ single color real-time PCR detection 

system.  DNA levels were expressed relative to the level of input. 

RNAi Knockdown Experiments 

The RNAi experiments in HCT116 cells employed the UI2-puro SIBR 

shRNA vectors (21).  The CHD8 RNAi experiments used a shRNA vector 

containing two cassettes (493 and 6410).  Primers for the creation of this 

construct are listed in Table 2.1.  A shRNA vector containing a cassette directed 

against luciferase, UI2-puro SIBR luc 1601, was used as a control (21).  Ten 

micrograms of the indicated construct was transfected into HCT116 cells using 

Lipofectamine-2000 as described by the manufacturer (Invitrogen).  Selection of 
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transfected cells was performed through the addition of 5 μg/ml of puromycin to 

the cell culture medium 24 hours post transfection.  Cells were grown an 

additional 36 hours before being harvested for Western blot analysis and RNA 

isolation.  Methods described by Worby et al. (133) were used with minor 

adjustments to perform RNAi experiments in Drosophila S2 cells.  A total of 

12 μg of double stranded RNA (dsRNA) was used.  Four days after the addition 

of double stranded RNA, cells were harvested.  Primers for the creation of the 

kismet and axin dsRNA templates are listed in Table 2.1.  PCR reactions 

employed Drosophila S2 genomic DNA as a template.  The control dsRNA 

template was created using primers directed against bacterial β-lactamase and 

pBSIISK as a template.   

Results 

CHD8 Exhibits Nucleosome Stimulated ATPase Activity 

Within the CHD family of proteins, there is a high degree of identity in the 

catalytic Snf2 helicase domain, suggesting a similar function for these family 

members.  While members of the CHD1-2 and CHD3-5 subfamilies have 

previously been shown to be involved in ATP-dependent chromatin remodeling 

(45, 77), members of the CHD6-9 subfamily of proteins have not been examined 

for this potential remodeling activity.  Many ATP-dependent chromatin 

remodeling enzymes that have Snf2 helicase domains within their sequence 

exhibit ATPase activity that is stimulated by the presence of DNA and/or 

nucleosomes.  This activity can therefore be used as an indicator of potential 
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remodeling activity.  Both CHD6 and CHD9 have been reported to exhibit 

ATPase activity (75, 109), but the ATPase activity of CHD8 has not been 

examined.  

In order to determine whether CHD8 possesses ATPase activity, assays 

measuring ATP hydrolysis were performed in the presence of DNA and/or 

nucleosomes.  A baculovirus expression system was used to prepare 

recombinant CHD8 (rCHD8) containing an N-terminal epitope tag (Flag) for 

purification.  Recombinant CHD8 was purified from SF9 cells and subjected to 

SDS-PAGE analysis to confirm the presence of expressed protein (Figure 2.1A).  

ATPase reactions were prepared using recombinant CHD8 or Snf2H and 

[γ-32P] ATP.  Reactions were performed in the presence or absence of plasmid 

DNA or nucleosomes purified from HeLa cells.  Snf2H is a known ATP-

dependent chromatin remodeling enzyme that has previously been shown to 

possess nucleosome stimulated ATPase activity (12), and therefore was used as 

a control.  The ATPase reactions were assayed for 32Pi release using thin-layer 

chromatography and phosphorimaging analysis.  The results of the assay are 

shown as % ATP hydrolyzed.  In the presence of rCHD8, the % ATP hydrolyzed 

in the reaction containing free DNA (plasmid DNA) was comparable to the 

amount of ATP hydrolyzed in the no DNA control (Figure 2.1B).  However, when 

rCHD8 was incubated in a reaction containing nucleosomal DNA there was a 

significant increase in the % ATP hydrolyzed when compared to the reactions 

with no DNA or free DNA (Figure 2.1B).  This result is comparable to the results 

seen for reactions containing rSnf2H (Figure 2.1B), which is known to possess 
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nucleosomal stimulated ATPase activity.  These results indicate that CHD8, like 

many ATP-dependent chromatin remodeling enzymes, exhibits ATPase activity 

which is stimulated by the presence of nucleosomal DNA. 

As previously mentioned, CHD8 possesses a Snf2 helicase domain within 

the N-terminal portion of the protein.  Within the Snf2 helicase domain there is 

conserved sequence (GXGKT) that is required for the hydrolysis of ATP (130).  

In all other ATP-dependent remodeling enzymes, mutation of the conserved 

lysine within this sequence to arginine results in a significant loss of ATPase 

activity (22, 30, 59, 123).  This conserved lysine is at position 842 in CHD8.  In 

order to test whether the observed ATPase activity of CHD8 is due to the Snf2 

helicase domain, recombinant mutant CHD8 (rK842R) was prepared using a 

baculovirus expression system (Figure 2.1A).  Purified rK842R was then tested 

for ATPase activity.  Recombinant wild-type or mutant CHD8 was incubated with 

[γ-32P] ATP in the presence of nucleosomal DNA.  When the lysine at position 

842 is mutated to arginine, nucleosome stimulated ATPase activity is significantly 

reduced as compared to wild-type CHD8 (Figure 2.2).  Together, these results 

demonstrate that CHD8 possesses nucleosome stimulated ATPase activity 

which requires the Snf2 helicase domain for the hydrolysis of ATP. 

CHD8 is an ATP-dependent Remodeling Factor 

After determining that CHD8 possesses nucleosome stimulated ATPase 

activity, we then wanted to directly test whether CHD8 is an ATP-dependent 

chromatin remodeling enzyme.  An assay commonly used to test proteins for 



29 

chromatin remodeling activity is the restriction enzyme accessibility assay (114).  

These accessibility assays are based on the fact that free DNA is vulnerable to 

cleavage by restriction endonucleases.  When mononucleosomes are 

reconstituted through salt dialysis of core histones and DNA, restriction sites are 

less accessible to cleavage by restriction enzymes.  However, when 

mononucleosomes are incubated with ATP-dependent chromatin remodeling 

enzymes in the presence of ATP, the DNA histone contacts can be disrupted 

resulting in increased accessibility of the DNA to restriction enzyme cleavage.   

Restriction enzyme accessibility assays testing CHD8 utilized the 601 

nucleosome positioning sequence from pGEM3z-601 (71).  Fluorescently labeled 

primers were used to PCR amplify a 277bp DNA fragment containing the 601 

sequence.  When reconstituted into nucleosomes, the 601 fragment contains an 

HhaI restriction site near the dyad axis.  The fluorescently labeled 601 fragment 

was reconstituted into mononucleosomes by salt dialysis with core histones 

purified from HeLa cells.  These mononucleosomes were then used for the 

restriction enzyme accessibility assays.  Reactions, performed in triplicate, also 

contained HhaI in the presence or absence of recombinant CHD8 or the CHD8 

(K842R) mutant.  Each reaction also included ATP or AMPPNP, the non-

hydrolyzable ATP analog.  In the presence of ATP and CHD8, we observed an 

increase in the fraction cut compared to reactions lacking CHD8 (Figure 2.3, 

compare lanes 1 and 2).  When the concentration of CHD8 added to the 

reactions was doubled, we observed a further increase in the fraction cut 

indicating that the activity is dependent on the amount of CHD8 (Figure 2.3, lane 
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3).  In order to test whether the remodeling activity exhibited by CHD8 requires 

the energy produced by ATP hydrolysis, reactions were performed substituting 

ATP with the non-hydrolyzable ATP analog AMPPNP.  These reactions produced 

similar levels of cutting comparable to the basal level of cutting seen in the 

absence of CHD8 (Figure 2.3, compare lanes 4 and 5 to lane 1).  Reactions were 

also performed using the recombinant CHD8 (K842R) which contains a mutation 

in the region of the Snf2 helicase domain that is required for the binding and 

hydrolysis of ATP.  As with the reactions using AMPPNP, reactions that 

contained CHD8 (K842R) in the presence of ATP did not show an increase in 

restriction enzyme accessibility (Figure 2.3, lane 6).  These data demonstrate 

that CHD8 is a chromatin remodeling enzyme and that the remodeling activity of 

CHD8 requires the binding and hydrolysis of ATP. 

A time course of restriction enzyme accessibility was also performed.  For 

these experiments, reactions were prepared similar to those described above.  

Reconstituted mononucleosomes were incubated with HhaI and ATP in the 

presence or absence of recombinant CHD8.  Reactions, performed in triplicate, 

were quenched at the indicated time points (Figure 2.4).  In the time course 

experiment, we observed an increase in the fraction cut over time when CHD8 

was present.  This increase in accessibility was rapid in the beginning but 

appeared to approach a linear range as time progressed (Figure 2.4).  However, 

the same was not true for reactions in which CHD8 was absent.  These reactions 

did not show a significant increase in accessibility over time (Figure 2.4).  This is 
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similar to results observed for yeast SWI/SNF, a known ATP-dependent 

chromatin remodeling enzyme (114). 

Another assay used to measure ATP-dependent chromatin remodeling is 

the nucleosome sliding assay.  These assays are based on the fact that the 

position of a nucleosome on a DNA template affects its electrophoretic mobility 

through a polyacrylamide gel (32).  DNA with a nucleosome positioned at the end 

of a template migrates faster through a polyacrylamide gel than a template with a 

nucleosome positioned near the center.  Therefore, this assay can be used to 

monitor changes in the position of a nucleosome on a template.  

Mononucleosomes were reconstituted by salt dialysis of HeLa purified core 

histones and a fluorescently labeled template lacking a nucleosome positioning 

sequence.  The resulting nucleosomes were distributed to multiple positions on 

the template (Figure 2.5, lanes 3-6).  Mononucleosomes were also reconstituted 

using DNA templates with a nucleosome positioning sequence located near the 

middle or end of the template as standards for approximating the position of the 

nucleosomes (Figure 2.5, lanes 1 and 2).  Sliding reactions were prepared using 

reconstituted mononucleosomes in the presence or absence of CHD8, ATP, and 

AMPPNP.  In the absence of CHD8, nucleosomes were randomly positioned 

along the DNA template (Figure 2.5, lane 3).  The same was true for reactions in 

which CHD8 was present in the absence of ATP (Figure 2.5, lane 4) or in the 

presence of the non-hydrolysable ATP analog AMPPNP (Figure 2.5, lane 6).  

However, when both CHD8 and ATP were added to the reaction, nucleosomes 

slid to two prominent positions along the DNA template (Figure 2.5, lane 5).  
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These results are similar to the reported activity of both CHD1 and CHD3 which 

tend to slide nucleosomes towards the center of the template (99).  The activity 

of CHD8 is similar to CHD1 in that the major product is not positioned exactly at 

the center, but is between the center and end of the DNA template.  While CHD3 

slides nucleosomes to a major position closer to the center, both CHD3 and 

CHD8 slide nucleosomes to a minor position near the end of a DNA template.  

These data suggest that members of the CHD6-9 subfamily may remodel 

nucleosomes in a manner similar to that of the other two CHD subfamilies.   

To investigate the possibility that the major and minor species of slid 

nucleosomes may, over time, merge into one species, nucleosome sliding time 

course experiments were performed.  Reactions were prepared as described 

above in the presence or absence of CHD8 and were quenched at the indicated 

time points (Figure 2.6).  Consistent with the previous nucleosome sliding 

experiment, nucleosomes were randomly positioned along the DNA template in 

the absence of CHD8 (Figure 2.6, lane 3).  When reactions containing CHD8 

were allowed to proceed, progression into two prominent species was observed 

(Figure 2.6, lanes 4-10).  The two species appeared simultaneously and did not 

merge into one species over an 80 minute time period.  These results suggest 

that the major and minor species are the final products of CHD8 nucleosome 

sliding, and are not intermediates to a final single nucleosome position.  Taken 

together with the sections above, these results demonstrate that CHD8 is, in fact, 

an ATP-dependent chromatin remodeling enzyme that also possesses the ability 

to slide nucleosomes along a DNA template.   
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CHD8 Directly Interacts with β-catenin 

While the experiments described above demonstrate that CHD8 is an 

ATP-dependent chromatin remodeling enzyme, additional studies were needed 

in order to further define the cellular function of CHD8.  Sakamoto et al. reported 

that an N-terminal fragment of rat CHD8, termed Duplin, binds β-catenin and 

inhibits Wnt or β-catenin dependent activation of TCF mediated transcription 

(103).  Unknown to Sakamoto et al., this truncated form of Duplin resulted from a 

splicing event in which intron 11 of rat CHD8 was not removed.  Our 

bioinformatic searches failed to identify any similar splicing events in either 

mouse or human databases (data not shown).  We therefore sought to 

investigate whether full-length human CHD8 can also interact with β-catenin.   

Several recombinant GST fusion proteins were prepared for use in the 

in vitro study of the potential interaction between human CHD8 and β-catenin.  

E. coli BL21 cells were used to express full length GST-β-catenin and four 

additional GST-β-catenin fusion proteins which had various regions of the 

β-catenin protein deleted (Figure 2.7A).  Each purified GST fusion protein was 

bound to glutathione-Sepharose, and after washing, the samples were incubated 

with recombinant CHD8.  Washed samples were then eluted and subjected to 

SDS-PAGE followed by Coomassie staining and Western blot analysis using 

α-CHD8 antibodies (Figure 2.7B and C).  Coomassie staining of the SDS-PAGE 

gel confirmed the presence of GST and each GST fusion protein in the pulldown 

experiment (Figure 2.7B).  Western blot analysis showed that CHD8 interacts 

with full length GST-β-cat, GST-β-catΔN, and GST-ARM (Figure 2.7C).  
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However, CHD8 did not interact with GST-N, GST-C, or GST alone (Figure 

2.7C).  These results indicate that CHD8 has the ability to interact with full length 

β-catenin (GST-β-cat), β-catenin lacking the N-terminus (GST-β-catΔN), and the 

armadillo repeats of β-catenin alone (GST-ARM).  Armadillo repeats are a stretch 

of approximately 42 amino acids (a.a.) found in various proteins, usually as 

tandem repeats (93).  Previous studies of β-catenin have reported that the 

armadillo repeats are responsible for the interaction between β-catenin and most 

β-catenin binding partners (49).  The same appears to be true for CHD8.  Our 

data demonstrates that CHD8 directly interacts with β-catenin in vitro and that 

this interaction requires the armadillo repeats of β-catenin. 

After demonstrating that human CHD8 directly interacts with β-catenin 

in vitro, we wanted to examine whether this interaction also occurs in vivo.  For 

in vivo experiments examining the interaction between CHD8 and β-catenin, cells 

were harvested from a HeLa cell line stably expressing Flag-tagged 

β-cateninactive or the parental HeLa cell line.  The Flag-tagged β-cateninactive 

construct contained alanine substitutions within the glycogen synthase kinase-3β 

(GSK3β) binding region of β-catenin.  These substitutions prevent the binding of 

the APC complex to β-catenin, allowing β-catenin to accumulate instead of being 

targeted for degradation by the proteosome (1, 88, 138).  Nuclear extracts were 

prepared from the harvested cells and incubated with α-Flag M2 agarose.  Flag-

immunoprecipitations were washed, eluted, and subjected to SDS-PAGE 

followed by Western blot analysis using the indicated antibodies (Figure 2.8).  

Flag-β-catenin and CHD8 were immunoprecipitated from the nuclear extracts of 
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cells stably expressing Flag-β-catactive, but CHD8 did not immunoprecipitate from 

nuclear extracts of the parental control (Figure 2.8).  These data demonstrate 

that human CHD8 directly interacts with β-catenin both in vitro and in vivo, and 

suggest that this association may serve to target CHD8 to β-catenin responsive 

promoters in vivo.   

CHD8 Localizes to Promoter Regions of β-catenin Responsive Genes 

After establishing that human CHD8 directly binds β-catenin, we wanted to 

test whether this association localizes CHD8 to the promoters of β-catenin 

responsive genes.  For this study, we chose to examine the binding of CHD8 to 

the promoters of Axin2, Dkk1, and Nkd2, as these are three well studied 

β-catenin responsive genes (48).  The PS2 gene, an estrogen responsive gene, 

was used as a control.  Chromatin immunoprecipitation (ChIP) experiments were 

performed in order to examine the in vivo binding of CHD8 to these genes.  

HCT116 cells, a colorectal carcinoma line with an activated Wnt signaling 

pathway (61, 84), were used in the ChIP experiments.  The cells were treated 

with formaldehyde to crosslink the chromatin inside the cell.  Lysates were 

sonicated and pre-cleared before incubation with α-CHD8, α-AcH4, and α-

MeH3K4 antibodies.  Antibody-protein complexes were precipitated and washed 

before the crosslinking was reversed.  Recovered DNA was amplified using 

primers designed to amplify locations within the 5’ and 3’ regions of each gene 

(Figure 2.9A).  Reactions were analyzed using a real-time PCR detection system.  

CHD8 was present at the 5’ region, and not the 3’ region, of all three β-catenin 

responsive genes (Figure 2.9B).  CHD8 was not present at the 5’ or 3’ region of 
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the control gene, PS2.  ChIPs for acetyl histone H4 (α-AcH4) and tri-methyl 

histone H3 Lys4 (α-MeH3K4), two marks of active chromatin (9), were also 

performed.  The pattern of CHD8 binding did not seem to correlate with levels of 

acetyl histone H4, however there was similarity between CHD8 and levels tri-

methyl histone H3 Lys4.  This methyl mark is typically enriched at regions near 

transcription start sites (6, 11, 60, 104).  These results suggest that CHD8 is 

binding the promoter regions, near the transcription start site, of these β-catenin 

responsive genes. 

In order to further define the precise region where CHD8 binds to these 

β-catenin responsive genes, we performed additional ChIP experiments.  Primers 

were designed to amplify sections within the proximal promoter region, coding 

sequence, and 3’ UTR of the Axin2 gene (Figure 2.10A).  ChIPs were performed 

as described above using α-CHD8 and α-AcH4 antibodies.  Our results 

demonstrate that CHD8 binds specifically to the proximal promoter region of the 

Axin2 gene and possibly the 5’ coding sequence but not the remaining coding 

sequence or the 3’ UTR.  The results of the AcH4 ChIP again do not correlate 

with the CHD8 ChIP, but the results do eliminate any questions regarding the 

ability of the primers to amplify the regions examined.  Taken together our results 

indicate that CHD8 localizes to the promoter regions of β-catenin responsive 

genes.  We therefore hypothesize that the interaction of CHD8 with β-catenin 

serves to localize CHD8 to β-catenin responsive promoters where CHD8 

functions in the regulation of β-catenin responsive genes.   
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CHD8 Regulates β-catenin Mediated Transcription 

After demonstrating that human CHD8 directly interacts with β-catenin and 

binds to the promoter region of β-catenin responsive genes, we wanted to test 

the hypothesis that CHD8 affects the transcription of β-catenin responsive genes.  

In order to examine the role that CHD8 plays in the transcription of β-catenin 

responsive genes, RNAi experiments were performed.  HCT116 cells were 

transfected with shRNA vectors containing hairpin cassettes directed against 

CHD8 or the control luciferase.  The shRNA vectors contained a puromycin 

resistance marker (21) which allowed the transfected cells to be selected by 

treatment with puromycin 24 hours post transfection.  Cells were harvested for 

RNA isolation and western blot analysis 36 hours post puromycin treatment.  

cDNA prepared from the isolated RNA was analyzed by real-time quantitative 

PCR using primers targeting the Axin2, Dkk1, and Nkd2 genes.  Western blot 

analysis of lysates from the transfected cells was also performed to confirm that 

CHD8 was indeed knocked down in these cells compared to control cells (Figure 

2.11B).  Westerns were probed with α-actin as a loading control.  The results 

showed that CHD8 was significantly depleted in the cells treated with shRNA 

directed against CHD8.   

Given the association of CHD8 with β-catenin and the localization of 

CHD8 to several endogenous β-catenin targets in a colorectal cell line harboring 

an activated Wnt signaling pathway, we predicted that depletion of CHD8 would 

have a negative impact on transcription.  Unexpectedly, depletion of CHD8 

results in a modest but reproducible induction of all three target genes (Figure 
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2.11A).  These results clearly demonstrate that CHD8 does participate in 

regulation of endogenous β-catenin target genes.  However, these results 

suggest that the normal function of CHD8 may be to negatively regulate the 

transcription of these target genes.   

In addition to CHD8, there are 3 other members within the CHD6-9 

subfamily of CHD proteins, and in HCT116 cells, transcripts are detectable for all 

four proteins (Data not shown).  Therefore it is possible that our results were 

complicated by the presence of the other members of this subfamily.  In order to 

rule out this possibility and further confirm our results, we turned to Drosophila.  

kismet is the only CHD8 ortholog in Drosophila, and the use of a Drosophila 

system would eliminate possible complications of having multiple protein family 

members present during the RNAi experiments.  Drosophila S2 cells were 

treated with double stranded RNA directed against kismet, axin, or both axin and 

kismet.  RNAi directed against axin was used to activate the Wnt signaling 

pathway.  Axin is a negative regulator of the Wnt signaling pathway, and 

therefore, loss of Axin by RNAi would result in an increase in Wnt signaling.  In 

Drosophila, the nkd gene, like its mammalian ortholog, is activated upon Wnt 

signaling (85).  In cells where Axin was knocked down, RNAi of kismet resulted in 

a 5 fold increase in expression of the nkd gene when compared to the control, 

further confirming the results seen in human cells (Figure 2.12).  There were two 

additional observations of interest.  First, the fold activation of nkd was greater 

than seen in human cells, suggesting that the other CHD8 paralogs may indeed 

compensate for loss of CHD8.  Second, the depletion of Kismet also resulted in a 
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5 fold activation of nkd, even in the uninduced state.  This suggests that 

Kismet/CHD8 is involved in regulating Wnt target genes, even in the absence of 

pathway activation.  The results in both Drosophila and human cells demonstrate 

that CHD8 does play a role in regulating transcription of β-catenin responsive 

genes and that CHD8 functions as a negative regulator of these targets. 

CHD8 Remodels Mononucleosomes Containing TCF Binding Sites 

Our data demonstrates that CHD8 is an ATP-dependent chromatin 

remodeling enzyme that possesses both nucleosome stimulated ATPase activity 

and the ability to slide nucleosomes.  In addition, CHD8 directly binds β-catenin 

and is present at the promoter region of β-catenin responsive genes.  After 

demonstrating that CHD8 regulates transcription of β-catenin responsive genes, 

we wanted to determine whether CHD8 could remodel DNA containing TCF 

binding sites, and to ultimately test whether recombinant TCF and β-catenin can 

modulate the chromatin remodeling activity of CHD8.  The downstream targets of 

the Wnt signaling pathway are members of the T-cell factor (TCF) family of 

sequence specific transcription factors.  During activation of the Wnt signaling 

pathway, β-catenin interacts with TCF bound to specific sites at β-catenin 

responsive genes (8, 83).  In order to determine whether CHD8 could remodel 

DNA containing TCF binding sites, fluorescently labeled DNA templates were 

prepared which were derivatives of the pGEM3z-601 template (71).  One 

template, TCF-mid, had a single TCF binding site near the middle of the 

sequence.  The other template, TCF-5’, had a TCF binding site located at the 5’ 

end of the sequence.  Mononucleosomes were reconstituted by salt dialysis of 
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HeLa core histones and the two fluorescently labeled 601 TCF binding site DNA 

templates.  Reactions, performed in triplicate, were prepared using reconstituted 

mononucleosomes, ATP, and PmlI in the presence or absence of wt recombinant 

CHD8.  In the presence of CHD8, an increase in the fraction cut was observed 

for mononucleosomes reconstituted from both the 5’ and middle mutant 

templates (Figure 2.13).  These data demonstrate that CHD8 can indeed 

remodel DNA which contains TCF binding sites.  This, therefore, provides a 

valuable system to look at the effects of TCF and β-catenin on the in vitro 

chromatin remodeling activity of CHD8. 

Discussion 

The CHD family of proteins are critical regulators of chromatin structure.  

While members of the CHD1-2 and CHD3-5 subfamilies have been extensively 

studied, further studies are needed to elucidate the function of the CHD6-9 

subfamily of proteins.  Members of the CHD6-9 subfamily share a conserved 

Snf2 helicase domain C-terminal to their double chromodomains (45, 77).  The 

Snf2 helicase domain of known ATP-dependent remodeling enzymes has been 

shown to be responsible for the binding and hydrolysis of ATP (33).  The 

presence of this domain within the sequence of the CHD6-9 proteins suggests 

that members of this subfamily may function as ATP-dependent chromatin 

remodeling enzymes.  While ATPase activity has been reported for CHD6 and 

CHD9, ATP-dependent chromatin remodeling activity has not previously been 

shown for a member of the CHD6-9 subfamily (75, 109).  We chose to focus our 

studies on CHD8 because an N-terminal fragment of rat CHD8, termed Duplin, 
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was previously reported to bind β-catenin and inhibit Wnt or β-catenin dependent 

TCF activation (103).  Multiple proteins such as p300/CBP (47, 82, 120) and 

BRG1 (5) have been reported to interact with β-catenin and alter chromatin 

structure.  However, an in vitro study of β-catenin mediated transcription 

demonstrated the requirement of an unidentified ATP-dependent chromatin 

remodeling enzyme (125).  We hypothesized that CHD8 is this ATP-dependent 

chromatin remodeling enzyme which functions in part by regulating β-catenin 

mediated transcription. 

Unlike in rat, there is no evidence of a truncated form of CHD8 in humans.  

Therefore, we first wanted to examine whether full length human CHD8 interacts 

with β-catenin.  Using GST-pulldown experiment with recombinant proteins, we 

demonstrate that CHD8 binds directly to β-catenin in vitro.  Data obtained from 

these experiments also indicate that CHD8 binds to the armadillo repeats within 

the β-catenin protein.  Immunoprecipitation experiments performed with HeLa 

cells stably transfected with a Flag-β-catactive construct demonstrated that full 

length human CHD8 also can bind to β-catenin in vivo. 

After confirming that full length CHD8, like Duplin, binds β-catenin, we 

examined whether human CHD8 can regulate the transcription of β-catenin 

responsive genes, by binding to the promoters of β-catenin target genes.  

β-catenin is a component of the canonical Wnt signaling pathway (20).  In the 

absence of Wnt ligand, β-catenin is phosphorylated by the APC complex (52).  

This phosphorylation event targets β-catenin for ubiquitination and degradation 

by the proteosome (56, 78).  In the presence of Wnt ligand, disheveled inhibits 
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the APC complex preventing phosphorylation of β-catenin.  β-catenin is then 

allowed to accumulate and translocate into the nucleus where it binds to TCF 

and mediates transcription of β-catenin target genes such as Axin2, Dkk1, and 

Nkd2 (8, 48, 83).  Using ChIP experiments, we examined whether CHD8 binds to 

the promoter regions of these β-catenin responsive genes.  Data from our 

experiments demonstrates that CHD8 binds to the 5’ and not the 3’ end of Axin2, 

Dkk1, and Nkd2.  Additional analysis of CHD8 binding to the Axin2 gene utilized 

primers that amplified locations along the length of the gene.  This data 

demonstrates that CHD8 binds to the proximal promoter region and not the 

remaining coding or 3’ UTR sequences of Axin2. 

To directly test whether CHD8 regulates transcription of β-catenin 

responsive genes, RNAi experiments were performed in HCT116 cells.  This 

colorectal carcinoma cell line has an activated Wnt signaling pathway (61, 84).  

We observed that when CHD8 is depleted by RNAi, expression of the Axin2, 

Dkk1, and Nkd2 genes increases.  Although our initial hypothesis was that CHD8 

should function in the transcriptional activation of these β-catenin responsive 

genes, our results clearly demonstrate that CHD8 performs a negative role in 

their regulation.   

Since there are other members of the CHD6-9 family that are expressed in 

the HCT116 cell line, we wanted to rule out any possible complications resulting 

from the presence of these other proteins.  We chose to address this by 

performing RNAi experiments in Drosophila cells.  Kismet is the only CHD8 

ortholog in Drosophila, and therefore by targeting Kismet for depletion, we would 
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be able to avoid any complications resulting from the other human paralogs.  Our 

RNAi experiments in Drosophila S2 cells demonstrated that when Kismet and 

Axin are depleted, expression of the Wnt target gene nkd is increased to a level 

higher than seen in human cells.  These results confirm the observations we 

made in HCT116 cells, and suggest that the other human paralogs of CHD8 may 

also regulate these target genes.  Together, the results in human and Drosophila 

cells demonstrate that CHD8 plays a negative role in regulating transcription of 

β-catenin responsive genes. 

Although the presence of a Snf2 helicase domain suggests that members 

of the CHD6-9 family are ATP-dependent remodeling enzymes, this activity has 

not been reported.  ATPase activity has, however, been previously shown for 

CHD6 and CHD9 (75, 109).  Here we demonstrate that CHD8 possesses 

ATPase activity that is stimulated by the presence of nucleosomes.  This ATPase 

activity requires an intact Snf2 helicase domain as a lysine to arginine mutation in 

the conserved GXGKT sequence within this domain results in loss of ATPase 

activity.  This conserved sequence was previously identified as a region 

responsible for the binding and hydrolysis of ATP in other Snf2 helicase domain 

containing proteins (22, 30, 59, 123, 130).  These results suggest that CHD8 may 

indeed function as an ATP-dependent chromatin remodeling enzyme.   

To directly test our hypothesis that CHD8 is an ATP-dependent chromatin 

remodeling enzyme, we performed restriction enzyme accessibility assays (75, 

109).  This assay is commonly employed to measure chromatin remodeling 

activity and relies on the fact that ATP-dependent remodeling enzymes increase 
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the access of restriction enzymes to nucleosomal DNA.  When CHD8 was used 

in this assay, we observed an increase in restriction enzyme accessibility, 

consistent with CHD8 being an ATP-dependent remodeler.  Substitution of wild 

type CHD8 with mutant CHD8 (K842R) or ATP with AMPPNP, the non-

hydrolysable form of ATP, resulted in the loss of this increased accessibility; 

confirming that this activity resides in CHD8 and requires the hydrolysis of ATP.  

Collectively, the results from the ATPase and restriction enzyme accessibility 

experiments demonstrate that CHD8 is a bona fide ATP-dependent chromatin 

remodeling enzyme.  Our results provide the first evidence of chromatin 

remodeling activity for a CHD6-9 subfamily member.  Our data suggests that 

CHD6, 7, and 9 may also possess ATP-dependent chromatin remodeling activity, 

given that the members of this subfamily share a conserved Snf2 helicase 

domain.   

In the studies presented here, we demonstrate that CHD8 is an ATP-

dependent chromatin remodeling enzyme.  We show that CHD8 binds both 

β-catenin and the promoter proximal region of β-catenin responsive genes.  We 

demonstrate that CHD8 can play a negative role in the transcription of these 

genes.  Together, these results suggest that CHD8 may regulate transcription of 

β-catenin responsive genes by remodeling chromatin in the promoter proximal 

regions of these genes.  Through regulating the localization of β-catenin, the Wnt 

signaling pathway is intimately involved in tumorigenesis.  The data we present 

here is further evidence of a connection between the modification of chromatin 
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structure and disease states such as cancer, and suggest that CHD8 may be a 

future therapeutic target in the treatment of human cancer.    
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TABLE 2.1:  Oligonucleotide sequences. 

Name Sequence (5’  3’) 

601 forward CGGGATCCTAATGACCAAGGAAAGCA 

601 reverse CTCGGAACACTATCCGACTGGCA 

601 slid forward GTGATGGACCCTATACGCG 

601 slid reverse ACTCACTATAGGGCGAATTC 

601 downstream forward GCAGGCATGCAAGCTTGAG 

601 downstream reverse AGCGCCCAATACGCAAACC 

601-1 CGGGATCCTAATGACCAAGGAAAGCA 

601-2 CTCGGAACACTATCCGACTGGCA 

601-3 GTTCCACGCTGTTCAATACATGC 

601-mut 5’ GCCGAGGCCGCTCAGATCAAAGGAGACAGCTC
TAGC 

601-mut mid GCACCGCTTAAACAGATCAAAGGGCTGTCCCC
CGCG 

β-catenin GST-N forward CGTGGATCCATGGCTACTCAAGCTGATTTG 

β-catenin GST-N reverse ATGACGTCATGCATGTTTCAGCATCTGTG 

β-catenin GST-C forward CGTGGATCCAATGAGACTGCTGATCTTGG 

β-catenin GST-C reverse ATGACGTCATTACAGGTCAGTATCAAACC 

Axin2 ChIP 5’ forward GGACTCCCAGATTCAGCACG 

Axin2 ChIP 5’ reverse GGTGTTGACTGAGCTGGATTCTT 

Axin2 ChIP 3’ forward GGTGCCCTACCATTGACACAT 

Axin2 ChIP 3’ reverse CGCAACATGGTCAACCCTC 

PS2 ChIP 5’ forward CCTGGATTAAGGTCAGGTTGGA 

PS2 ChIP 5’ reverse GCTACATGGAAGGATTTGCTGAT 

PS2 ChIP 3’ forward CCAGCGACCAAGTGACACAA 

PS2 ChIP 3’ reverse GGTTTCATCTCCTACGCCAATTT 

DKK1 ChIP 5’ forward ATTCAACCCTTACTGCCAGGC 

DKK1 ChIP 5’ reverse AAGGCTACCAGCGAGCGTTAT 

DKK1 ChIP 3’ forward AACTGGCAGGATGTCTGCTGT 
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DKK1 ChIP 3’ reverse GCACTTCAGAAAACAAGCGCA 

NKD2 ChIP 5’ forward AAGCCACTGAGTTGGACACGT 

NKD2 ChIP 5’ reverse TTTGTCCTTGGTTTGAGCAGG 

NKD2 ChIP 3’ forward AGCAAACAGCAACTGACTGCA 

NKD2 ChIP 3’ reverse GGCATCGAGGGCAGAAGAG 

Axin2 ChIP -1050 forward GCCCCTACCCTTCTTAGTTTGA 

Axin2 ChIP -1050 reverse TGTGCCAAGAATCCCAAACTC 

Axin2 ChIP +2358 forward CGCCCCATTATGAGACCATT 

Axin2 ChIP +2358 reverse GCCTTTACCACGGCTCTTAAGT 

Axin2 ChIP +6614 forward TTCCGGATTGAGGACACATG 

Axin2 ChIP +6614 reverse AAGAAGTCTCACGACCTCCTGG 

Axin2 ChIP +12005 forward TGTGCCCTCTCCCAATCAA 

Axin2 ChIP +12005 reverse ACATGGATGCCAAATGCACT 

Axin2 ChIP +16687 forward TGCCTGATTTAGCCCTCTGTAG 

Axin2 ChIP +16687 reverse TGTTCCCACTGCTTCAAACC 

Axin2 ChIP +21929 forward TGGCTGTTTTTGCAGTCCG 

Axin2 ChIP +21929 reverse GGTCAGTGCCAAAACATGACAT 

Axin2 ChIP +27113 forward GCTCAGACATGCTGTGAAAGC 

Axin2 ChIP +27113 reverse AAGAGGCTCAAATCCCAACG 

Axin2 ChIP +29519 forward CCAGGTTGATCCTGTGACTGA 

Axin2 ChIP +29519 reverse CATTTCCACGAAAGCACAGC 

CHD8 shRNA 493 top GCTGTTAAGGATAACAATCTTAGGGGTTTTGGC
CTCTGACTGACTCCTAGAAGTTATCCTTAAC 

CHD8 shRNA 493 bottom TCCTGTTAAGGATAACTTCTAGGAGTCAGTCAG
AGGCCAAAACCCCTAAGATTGTTATCCTTAA 

CHD8 shRNA 6410 top GCTGTTGTTCTCCATCTTCATTTGGGTTTTGGC
CTCTGACTGACTCAAAGAGATGGAGAACAAC 

CHD8 shRNA 6410 bottom TCCTGTTGTTCTCCATCTCTTTGAGTCAGTCAG
AGGCCAAAACCCAAATGAAGATGGAGAACAA 

DKK1 RT forward TGGAATATGTGTGTCTTCTGATCAAA 

DKK1 RT reverse AAGACAAGGTGGTTCTTCTGGAAT 

NKD2 RT forward TGGACGAGAACACGGAGC 
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NKD2 RT reverse GGACCCAGGGCCGAAT 

Axin2 RT forward ACAGTGGATACAGGTCCTTCAAGAG 

Axin2 RT reverse CGTCAGCGCATCACTGGAT 

H1 RT forward ACTCCACTCCCATGTCCCTTG 

H1 RT reverse CCGTTCTCTGGGAACTCACCT 

dControl RNAi forward 
(β-lactamase) 

TAATACGACTCACTATAGGGAGATATGGCTTCA
TTCAGCTCCGG 

dControl RNAi reverse 
(β-lactamase) 

AATTAACCCTCACTAAAGGGAGACATTTCCGTG
TCGCCCTTAT 

dKismet RNAi forward TAATACGACTCACTATAGGGAGATGTTACCACA
GTGCCTGGAAGTGA 

dKismet RNAi reverse AATTAACCCTCACTAAAGGGAGAATTGTTGTGA
GTTTCCCTGCTGGC 

dAxin RNAi forward TAATACGACTCACTATAGGGAGACTCTACATCC
AGCAGATGTC 

dAxin RNAi reverse AATTAACCCTCACTAAAGGGAGATCGGATTTCC
AGTCTTCTTTT 

dNkd RT forward TAAAATTCTCGGCGGCTACAA 

dNkd RT reverse CGCACCTGGTGGTACATCAG 

dβ-tubulin RT forward AGACCTACTGCATCGACAAC 

dβ-tubulin RT reverse GACAAGATGGTTCAGGTCAC 
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Figure 2.1:  CHD8 possesses nucleosome stimulated ATPase activity.  (A) SDS-PAGE of 
recombinant wt CHD8 (rCHD8) and recombinant mutant CHD8 (rK842R) purified from SF9 cells.  
(B) ATPase assays performed to detect the potential ATPase activity of CHD8.  Recombinant 
CHD8 or Snf2H was incubated with [γ-32P] ATP in the presence or absence of plasmid DNA or 
nucleosomes purified from HeLa cells.  ATPase reactions were analyzed by thin layer 
chromatography and phosphorimaging to detect the release of 32Pi.  Reactions prepared in the 
absence of enzyme or in the absence of DNA or nucleosomes were used as controls. 
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Figure 2.2:  Mutation of lysine 842 in CHD8 results in a loss of ATPase activity.  ATPase 
assays performed to compare the ATPase activity of recombinant wt CHD8 (rCHD8) and 
recombinant mutant CHD8 (rK842R).  Recombinant wt or mutant CHD8 was incubated with [γ-
32P] ATP and nucleosomes purified from HeLa cells.  ATPase reactions were analyzed by thin 
layer chromatography and phosphorimaging to detect the release of 32Pi.  A reaction prepared in 
the absence of enzyme was used as a control.  
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Figure 2.3:  CHD8 increases restriction enzyme accessibility of mononucleosomes in the 
presence of ATP.  Restriction enzyme accessibility assays were performed to detect increased 
restriction enzyme accessibility of mononucleosomes in the presence of CHD8.  Recombinant 
CHD8 or CHD8 (K842R) was incubated with mononucleosomes, restriction enzyme HhaI, and 
ATP or AMPPNP.  Reactions were performed in triplicate and the average plotted on the graph.  
A representative gel is shown in the inset.  Arrows indicate the position of both uncut and cut 
template migration in the gel.    
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Figure 2.4:  Increase in restriction enzyme accessibility of mononucleosomes in the 
presence of CHD8 approaches linear range over time.  Restriction enzyme accessibility 
assays were performed over a 30 minute time period.  Mononucleosomes were incubated with 
HhaI and ATP in the presence or absence of CHD8.  Reactions were performed in triplicate and 
quenched at the indicated time points.  Each point on the graph represents the average of the 
triplicate for that given time point.   
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Figure 2.5:  CHD8 slides mononucleosomes to two prominent positions along the DNA 
template.  Nucleosome sliding assays were performed using reconstituted mononucleosomes 
prepared from a fluorescently labeled DNA template lacking a nucleosome positioning sequence 
(lanes 3-6).  DNA templates with a nucleosome positioning sequence located at the end (lane 2) 
or middle (lane 1) of the template were used as controls for approximating the position of the slid 
nucleosomes along the test template.  DNA templates with middle, end, or no nucleosome 
position sequence are labeled M, E, or N respectively.  Reactions were prepared in the presence 
or absence of CHD8, ATP, or AMPPNP as indicated.  

CHD8 + ++
ATP +

AMPPNP +

1 2 3 4 5 6

Positioning sequence E NM N N N



54 

 

 

 

 

 

 

 

 

 

Figure 2.6:  Two prominent species persist over time.  Nucleosome sliding assays were 
performed over an 80 minute time period.  Fluorescently labeled DNA templates without a 
nucleosome positioning sequence were reconstituted into mononucleosomes (lanes 3-11) for use 
in the assay.   DNA templates with a nucleosome positioning sequence located at the middle 
(lane 1) or end (lane 2) of the template were used as controls for approximating the position of 
the slid nucleosomes along the template.  DNA templates with middle, end, or no nucleosome 
position sequence are labeled M, E, or N respectively.  Reactions were prepared with ATP in the 
presence or absence of CHD8.  
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Figure 2.7:  CHD8 interacts with β-catenin in vitro.  (A) A diagram of the recombinant GST 
and GST-β-catenin fusion proteins used in B and C.  (B) Cleared lysates containing 10μg of the 
indicated GST or GST fusion protein were incubated with glutathione-sepharose.  After washing, 
samples were resuspended and incubated in a buffer containing 1μg of recombinant CHD8.  
Washed samples were then eluted in SDS loading buffer and subjected to SDS-PAGE.  The 
bottom portion of the gel was Coomassie stained.  (C) The top portion of the SDS-PAGE gel 
prepared in B was subjected to Western blot analysis using α-CHD8 antibody.  
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Figure 2.8:  CHD8 interacts with β-catenin in vivo.  Cells were harvested from a HeLa cell line 
stably expressing Flag-tagged β-catenin or the parental HeLa cell line.  Nuclear extracts were 
prepared and incubated with α-Flag M2 conjugated agarose beads.  Flag-IPs were washed and 
then eluted with SDS loading buffer.  Eluted samples were subjected to SDS-PAGE and Western 
blot analysis using α-CHD8 and α-β-catenin antibodies.  
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Figure 2.9:  CHD8 is bound to the 5’ end of Axin2, Dkk1, and Nkd2.  (A) ChIP primers were 
designed to amplify the 5’ and 3’ regions of each gene of interest.  (B)  HCT116 cells were treated 
with formaldehyde to crosslink histones and DNA during the ChIP protocol.  After sonication and 
pre-clearing, cell lysates were incubated with α-CHD8, α-acetyl histone H4, and α-trimethyl 
histone H3 Lys4 antibodies to form chromatin-antibody complexes.  Complexes were precipitated 
and washed before crosslinking was reversed.  Quantitative PCR reactions were performed in 
triplicate using DNA recovered from the ChIP protocol and primers designed to the Axin2, Dkk1, 
Nkd2, and PS2 genes.  DNA levels were expressed relative to the level of input for the ChIP 
experiments.  Samples precipitated using IgG served as a control and were less than 0.001% for 
all experiments (not shown).  
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Figure 2.10:  CHD8 is specifically recruited to the proximal promoter region of the Axin2 
gene.  (A) Primers were designed to amplify various regions spanning the length of the Axin2 
gene.  (B) HCT116 cells were treated with formaldehyde to crosslink histones and DNA for the 
ChIP protocol that followed.  After sonication and pre-clearing, cell lysates were incubated with α-
CHD8 and α-acetyl histone H4 antibodies to form chromatin-antibody complexes.  Complexes 
were precipitated and washed before crosslinking was reversed. Quantitative PCR reactions were 
performed in triplicate using primers designed to the indicated regions of Axin2 and DNA 
recovered from the ChIP protocol.  DNA levels were expressed relative to the level of input for the 
ChIP experiments.  Samples precipitated using IgG served as a control and were less than 
0.001% for all experiments (not shown).  
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Figure 2.11:  Depletion of CHD8 in HCT116 cells results in increased expression of Axin2, 
Dkk1, and Nkd2.  (A) HCT116 cells were transfected with shRNAs directed against CHD8 or the 
luciferase control.  Puromycin treatment was used to select for transfected cells.  Post puromycin 
treatment, cells were harvested for RNA isolation and western blot analysis.  Expression of the 
Axin2, Dkk1, and Nkd2 genes was analyzed by RT-PCR.  Multiple experiments were performed.  
The data shown is a representative experiment.  (*=P<0.05 by Student’s t test, **=P<0.001 by 
Student’s t test) (B) Cell lysates prepared from the shRNA transfected HCT116 cells were 
subjected to SDS-PAGE followed by Western blot analysis with the indicated antibodies.  The α-
actin blot was used as a loading control.  
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Figure 2.12:  Depletion of Drosophila Kismet increases expression of nkd.  Drosophila S2 
cells were transfected with control, kismet, axin, or both axin and kismet double stranded RNAs.  
Cells were harvested four days post RNAi treatment.  Expression of the nkd gene was analyzed 
by RT-PCR.  Multiple experiments were performed.  The data shown is a representative 
experiment.  (*=P<0.05 by Student’s t test, **=P<0.001 by Student’s t test).  
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Figure 2.13:  CHD8 remodels mononucleosomes containing TCF binding sites.  Restriction 
enzyme accessibility assays were performed using reconstituted mononucleosomes prepared 
from fluorescently labeled DNA templates with TCF binding sites near the 5’ end (lanes 1 and 2) 
or the middle (lanes 3 and 4) of the template.  Mononucleosomes were incubated with restriction 
enzyme PmlI and ATP in the presence or absence of recombinant CHD8.  Reactions were 
performed in triplicate and the average plotted on the graph.  A representative gel is shown in the 
inset.  Arrows indicate the position of both uncut and cut template migration in the gel.  
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Chapter III 

 

CHD8 is a Component of a WDR5 Containing Complex and Regulates 

Expression of Hox Genes 

 

 

Introduction 

CHD8, an ATP-dependent Chromatin Remodeling Enzyme 

Previously, we investigated whether CHD8, a member of the CHD family 

of proteins, possesses the ability to modify chromatin structure.  Through the use 

of ATPase assays, we demonstrated that CHD8 possesses nucleosome 

stimulated ATPase activity and that this activity requires the Snf2 helicase 

domain for the hydrolysis of ATP.  Many ATP-dependent chromatin remodeling 

enzymes that have Snf2 helicase domains within their sequence exhibit ATPase 

activity that is stimulated by the presence of DNA and/or nucleosomes.  

Therefore, the stimulated ATPase activity exhibited by CHD8 was an indication of 

potential remodeling activity.  We then performed restriction enzyme accessibility 

assays to directly test CHD8 for chromatin remodeling activity.  These assays 
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demonstrated that CHD8 possesses ATP-dependent chromatin remodeling 

activity.  In addition, nucleosome sliding assays performed with CHD8 

demonstrated that CHD8 possesses the ability to slide nucleosomes, an activity 

exhibited by various chromatin remodeling enzymes.  Together, our data 

demonstrated that CHD8 is indeed an ATP-dependent chromatin remodeling 

enzyme. 

Chromatin Remodeling Enzymes in Multi-subunit Complexes 

Most known ATP-dependent chromatin remodeling enzymes exist within 

multi-subunit complexes with other proteins that assist the remodeling enzyme in 

functioning (40, 96, 132).  These associated proteins may perform required 

activities or serve to regulate, target, or modify the specificity of the complex.  

The ATP-dependent chromatin remodeling complexes identified to date can be 

grouped into multiple families based on the domain architecture of their catalytic 

subunit (40, 132).  Four of the well characterized families of human chromatin 

remodeling complexes are the SWI/SNF, ISWI, NURD/Mi-2/CHD, and INO80 

families.  The complexes within these families have anywhere from two to 

seventeen complex components (132).  Identification of remodeling complex 

components is essential to understanding the function of a given chromatin 

remodeling enzyme. 

The MLL-WDR5 Methyltransferase Complex 

In addition to ATP-dependent chromatin remodeling, post-translational 

covalent histone modification such as methylation and acetylation are involved in 
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regulating chromatin structure.  Similar to ATP-dependent chromatin remodeling 

enzymes, factors that establish or recognize covalent histone modifications often 

exist in multi-subunit complexes.  Methylation of histone H3 lysine 4 (meH3K4), a 

hallmark of active chromatin, is catalyzed by the MLL1 complex.  This complex is 

composed of the methyltransferase MLL1 and three additional core components, 

WDR5, RbBp5, and Ash2L.  These core components have been reported to form 

a stable trimeric complex that can interact with the Set1 family of proteins which 

includes MLL1 (28).  One of the core components, WDR5, has also been 

reported to recognize methylated histone H3 K4 (135).   

WDR5 Regulates Expression of Hox Genes 

In a search for proteins that recognize methylated histone H3 K4, a mark 

of active chromatin, Wysocka et al. identified WDR5.  Through the use of RNAi 

targeting WDR5 and chromatin immunoprecipitation assays, they observed that 

WDR5 knockdown results in a decrease in histone H3 K4 trimethylation at HoxA9 

and HoxC8 loci.  In addition, this knockdown results in decreased expression of 

both HoxA9 and HoxC8 genes.  In Xenopus, WDR5 depletion results in abnormal 

Hox gene expression and abnormal development (135).  Identification other 

factors which regulate the expression of Hox genes is key to understanding 

vertebrate development. 

Hox Genes 

Hox genes are a highly conserved group of genes known to be involved in 

regulating patterns of development (50).  In most species, Hox genes exist in 
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clusters and are expressed along the anterior-posterior embryonic axis where 

they play a role in specifying the identity of individual body segments (26, 50).  

Phenotypic changes termed homeotic transformations can occur when Hox gene 

function is disrupted.  In Drosophila, homeotic transformation is observed when 

the Hox gene ultra bithorax is mutated.  The result of this Hox gene mutation is 

the development of additional wings, four instead of two (50).  This abnormal 

development demonstrates the significance of Hox genes in the normal 

development of body segments.  It also highlights the importance of identifying 

and studying factors which regulate the expression of Hox genes. 

Hypothesis and Summary of Results 

As previously mentioned, our initial experiments demonstrate that CHD8 is 

a genuine ATP-dependent chromatin remodeling enzyme.  Given that most 

ATP-dependent chromatin remodeling enzymes exist in multi-subunit complexes, 

we hypothesize that CHD8 also exists in a multi-subunit complex with other 

factors involved in or required for the function of CHD8.  Here we perform a 

partial purification of the CHD8 complex from HeLa cells.  Analysis of this 

partially purified complex estimated that CHD8 is a component of an 

approximately 900 kDa complex.  Affinity purification followed by MS/MS analysis 

of the CHD8 complex identified multiple associated proteins which are known to 

be involved in altering chromatin structure.  Immunoprecipitation experiments 

performed in HEK293 cells and GST pulldown experiments confirmed that CHD8 

directly interacts with WDR5, a core component of the MLL1 methyltransferase 

complex.  Through the use of co-infection experiments in SF9 cells, we 
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demonstrate that CHD8 also directly interacts with RbBp5 and Ash2L, other 

components of the MLL methyltransferase complex.  Western blot analysis of the 

partially purified CHD8 complex from HeLa nuclear extract and additional 

co-infection experiments performed in SF9 cells suggest that CHD8 forms a 

complex with WDR5, RbBp5, Ash2L, and MLL1.  RNAi targeting CHD8 in 

NT2/D1 cells demonstrates that depletion of CHD8 results in increased 

expression of the HoxA1-A4 genes.  Chromatin immunoprecipitation experiments 

performed in both HeLa and NT2/D1 cells indicate that CHD8 is present at the 

promoter region of multiple genes of the HoxA locus.  Our RNAi and ChIP 

experiments demonstrate that CHD8, like WDR5, plays a role in regulating Hox 

genes.  Collectively, our data provide evidence supporting the hypothesis that 

CHD8 exists in a multi-subunit complex (es) with other polypeptides that are 

involved in the function of CHD8. 

Materials and Methods 

Cell Culture and Reagents 

Dulbecco’s modified Eagle medium (DMEM) (Invitrogen) with an additional 

10% fetal bovine serum (Hyclone) and 1X penicillin-streptomycin-glutamine 

(Invitrogen) was used to culture HeLa, HEK293, and NTERA2 cl. D1 (NT2/D1) 

cells.  Both HeLa and 293 cells were cultured at 37°C in 5% CO2.  NT2/D1 cells 

were cultured at 37°C in 10% CO2.  HeLa nuclear extracts were prepared from 

cells purchased from the National Cell Culture Center (Minneapolis, MN).  SF9 

cells were cultured at 24°C in 1X Grace’s Insect medium (Invitrogen) containing 
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an additional 10% fetal bovine serum and 1X penicillin-streptomycin-glutamine 

(Invitrogen).   

CHD8 rabbit polyclonal antibodies were raised against a 20 amino acid 

peptide (HTETVFNRVLPGPIAPESK) conjugated to keyhole limpet hemocyanin 

(Open Biosystems).  This 20 amino acid peptide was also conjugated to Affi-Gel 

10 (Bio-Rad) and used to affinity purify the CHD8 antibodies described above.  

The anti-acetyl histone H4 antibody (06-866) was purchased from Upstate 

(Millipore).  The anti-Flag M2 antibody (F3165) and normal rabbit IgG (I8140) 

were purchased from Sigma.  The anti-RbBP5 (A300-109A) and anti-Ash2L 

(A300-489A) antibodies were purchased from Bethyl.  The anti-WDR5 antibody 

(22512-100) was purchased from Abcam.  The anti-MLL-C antibody was 

received as a kind gift from Y. Dou (28).  All oligonucleotides were synthesized 

by Integrated DNA Technologies (Coralville, IA).  Primer sequences are listed in 

Table 3.1. 

Purification of Endogenous CHD8 

Methods published by Dignam et al. (27) were used to prepare HeLa 

nuclear extracts.  Buffer A (20 mM Tris-HCl [pH 7.9], 0.2 mM EDTA, 10 mM 

β-mercaptoethanol [BME], 10% glycerol, 0.2 mM phenyl-methylsulfonyl fluoride 

[PMSF]) was used to perform fractionations with the indicated concentration of 

KCl.  Size exclusion chromatography was performed with 350 mM KCl in buffer 

A.  Columns and resins were obtained from the following manufacturers: P11 
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phosphocellulose (Whatman), DEAE-FF (Sigma), and Superose 6 HR 10/30 (GE 

Healthcare). 

CHD8 was affinity purified using ~10 mg of sample obtained from the 

partial fractionation of HeLa nuclear extract by P11 and DEAE chromatography 

as described (12).  The input was pre-cleared with 250 μl of packed protein A 

agarose (Repligen).  Anti-CHD8 antibody or normal rabbit IgG (~660 mg) was 

crosslinked to 500 μl of packed protein A agarose using standard methods (46).  

Antibody-protein A agarose beads were incubated with the pre-cleared inputs 

overnight at 4°C in buffer IP (20 mM Tris-HCl [pH 7.9], 0.2 mM EDTA, 10% 

glycerol, 0.2 mM PMSF, 1 μg/ml aprotinin, 1 μg/ml leupeptin, and 1 μg/ml 

pepstatin) containing 150 mM KCl.  Washes were performed with 10 column 

volumes of buffer IP with the indicated components as follows:  2 washes with 

150 mM KCl, 2 washes with 150 mM KCl and 1% NP40, 2 washes with 150 mM 

KCl, 4 washes with 1 M KCl, 2 washes with 150 mM KCl and 200 mM guanidine 

hydrochloride, and 2 washes with 150 mM KCl.  Samples were eluted with 500 μl 

of 100 mM glycine (pH 3.0) and neutralized with 50 μl of 1 M Tris (pH 7.9).  Peak 

fractions were identified by subjecting samples to SDS/PAGE followed by silver 

staining and western blot analysis using the α-CHD8 antibody.  Peak fractions 

were TCA (Trichloroacetic acid) precipitated with a 1/10 volume of TCA and then 

subjected to SDS/PAGE followed by Colloidal Blue staining (Invitrogen).  Bands 

were analyzed by in-gel trypsin digestion and tandem mass spectrometry 

(MS/MS) at the Michigan Proteome Consortium (University of Michigan). 
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Conventional purification was performed using ~2 g of HeLa nuclear 

extract followed by P11 and DEAE chromatography as described (12).  The 0.5M 

P11/DEAE fraction was dialyzed against buffer B (20 mM HEPES [pH 7.6], 

0.2 mM EDTA, 10% glycerol, 10 mM BME) containing 700 mM ammonium 

sulfate.  Following centrifugation to remove precipitated proteins, the sample was 

then loaded on a 20 ml Butyl Sepharose column equilibrated with 700 mM 

ammonium sulfate in buffer B.  The column was eluted using a gradient of 

700 mM to 0 mM ammonium sulfate in buffer B.  Peak fractions from the Butyl 

column were pooled and then dialyzed against buffer EQ (10 μM CaCl2, 40 mM 

KCl, 10% glycerol, 0.2 mM PMSF, 10 mM BME) containing 10 mM KxPO4 

[pH 7.8].  Samples were loaded on a Hydroxyapatite column equilibrated in buffer 

EQ containing 10 mM KxPO4 (pH 7.8).  The column was eluted with a gradient of 

10 mM to 600 mM KxPO4 (pH 7.8) in buffer EQ.  Peak CHD8 containing fractions 

were pooled and dialyzed against buffer BS (20 mM KxPO4 [pH 7.8], 0.2 mM 

EDTA, 10% glycerol, 0.2 mM PMSF, 10 mM BME) with 50 mM KCl.  Samples 

were loaded on a MonoS 5/5 equilibrated in buffer BS containing 50 mM KCl.  

The column was eluted with a gradient of 50 mM to 400 mM KCl in buffer BS.  

Peak CHD8 containing fractions were pooled and dialyzed against buffer A with 

100 mM KCl.  Samples were loaded on a MonoQ 5/5 equilibrated in buffer A 

containing 100 mM KCl.  The column was eluted with a gradient of 100 mM to 

500 mM KCl in buffer A.  Peak CHD8 containing fractions were pooled.  Size 

exclusion chromatography was performed with a Superose 6 column equilibrated 

with buffer A (350 mM KCl).  Columns and resins were obtained from the 
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following manufacturers: Butyl Sepharose, Mono S 5/5, Mono Q, Superose 6 (GE 

Healthcare) and Hydroxyapatite (BioRad).  For each step of the purification, 

fractions were subjected to SDS/PAGE followed by silver staining and western 

blot analysis with α-CHD8 antibody to identify the peak CHD8 fractions. 

Production of Recombinant Proteins 

The Bac-N-Blue baculovirus expression system (Invitrogen) was used to 

prepare recombinant baculovirus containing Flag-tagged human CHD8.  SF9 

cells at a concentration of (1 X 106 cells/ml) were infected with the recombinant 

baculovirus at a multiplicity of infection (MOI) equal to 2.  Cells were harvested 4 

days post infection.  After harvesting, cells were washed with phosphate buffered 

saline (PBS) and resuspended in buffer IP with 500 mM KCl, 1% NP-40, 1 μg/ml 

aprotinin, 1 μg/ml leupeptin, and 1 μg/ml pepstatin.  A Dounce homogenizer was 

then used to lyse the cells.  After douncing, lysates were centrifuged at 

(15,806 X g) for 15 minutes at 4°C.  Cleared lysates were dialyzed against buffer 

IP containing 50 mM KCl.  Dialyzed lysates were then combined with 500 μl of 

anti-Flag M2 conjugated agarose beads (Sigma) and rotated overnight at 4°C.  

Flag-IPs were washed with 10 column volumes (CV) of each of the following 

buffers: buffer IP with 150 mM KCl, buffer IP with 350 mM KCl, and buffer IP with 

150 mM KCl.  Flag-IPs were eluted with buffer A containing 400 μg/ml Flag 

peptide (Sigma), 150 mM KCl, 1 μg/ml aprotinin, 1 μg/ml leupeptin, and 1 μg/ml 

pepstatin.   
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Escherichia coli BL21 cells were used to express GST.  After harvesting, 

cells were resuspended in buffer BC150 (150 mM KCl, 0.2 mM EDTA, 10 mM 

BME, 10% glycerol, 0.2 mM PMSF, 20 mM Tris-HCl [pH 7.9]).  Resuspended 

cells were passed through a French Pressure Cell twice and lysates were 

centrifuged at (105,000 X g) for 60 minutes at 4°C before collecting the 

supernatants.  Samples were then subjected to sodium dodecyl sulfate-

polyacrylamide gel electrophoresis (SDS-PAGE).  The SDS-PAGE gels were 

Coomassie stained and used to determine the concentration of GST and GST 

fusion proteins in each cell lysate.  GST-WDR5 was received as a kind gift from 

R.C. Trievel (24). 

Protein Interaction Studies 

In vivo experiments examining the interaction between CHD8 and WDR5 

were conducted in HEK293 cells.  Lipofectamine-2000 (Invitrogen) was used 

according to the manufacturer’s instructions to transfect cells with a construct 

expressing Flag-tagged WDR5 or the parental Flag vector.  Before harvesting, 

cells were washed twice with cold PBS.  Cells were lysed with lysis buffer 

(150 mM NaCl, 1% NP-40, 0.25% sodium deoxycholate, 0.1% SDS, 50 mM Tris-

HCl [pH 7.4], 1 mM EDTA, and 0.2 mM PMSF).  Lysates were incubated with 

20 μl of α-Flag M2 agarose beads (Sigma) overnight at 4°C.  Beads were 

washed with 1 ml of lysis buffer prior to elution with SDS loading buffer.  Samples 

were subjected to SDS-PAGE and Western blot analysis using the indicated 

antibodies.   
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In vitro studies of the interaction between CHD8 and WDR5 utilized 

recombinant proteins.  Glutathione-Sepharose beads (Sigma) were washed once 

with cold PBS and once with cold BC150 containing 0.2% NP-40.  Beads were 

then resuspended in BC150 containing 0.2% NP-40 to produce a 50% slurry and 

divided into 40 μl aliquots.  Equal concentrations of GST and GST-WDR5 (1 μg) 

were added to each tube of beads.  BC150 containing 0.2% NP-40 was added to 

bring volumes up to 500 μl before rotating overnight at 4°C.  Beads were washed 

twice for 10 minutes per wash with 1 ml of BC150 containing 0.2% NP-40.  After 

washing, beads were incubated with 1 μg of recombinant Flag-CHD8 in 500 μl of 

BC150 containing 0.2% NP-40 overnight at 4°C with rotation.  Beads were 

washed three times with 1 ml of BC150 containing 0.2% NP-40 for 10 minutes 

per wash at 4°C.  Bound proteins were eluted with 40 μl of 2X SDS loading 

buffer.  Samples were subjected to SDS-PAGE, Coomassie staining, and 

Western blot analysis with the indicated antibodies. 

Co-infection experiments performed in SF9 cells utilized recombinant 

baculoviruses containing Flag-CHD8, Flag-WDR5, WDR5, Ash2L, RbBp5, and 

MLL-C.  Flag-CHD8, Flag-WDR5, Ash2L, and RbBp5 were created using the 

Bac-N-Blue baculovirus expression system (Invitrogen).  WDR5 and MLL-C 

baculoviruses were received as a kind gift from Y. Dou (28).  Cells were plated at 

a density of 5 X 106 cells per 10 cm plate.  After plating, cells were allowed to 

attach for 45 minutes at 24°C.  Media was aspirated before adding 1 ml of each 

of the indicated baculoviruses.  Additional media was added to bring the volume 

of each plate up to 5 ml.  Plates were then rocked gently at room temperature for 
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1 hour.  After incubation, media was added to each plate for a final volume of 

10 ml.  Plates were incubated at 24°C for 3 days before harvesting.  Cells were 

collected and centrifuged at 500 X g for 2 minutes at room temperature.  Cell 

pellets were washed once with cold PBS.  Cells were resuspended in 500 μl of IP 

lysis buffer (150 mM KCl, 0.2 mM EDTA, 1% NP-40, 10% glycerol, 0.2 mM 

PMSF, 20 mM Tris-HCl [pH 7.9]).  Lysate were centrifuged at 20,800 X g for 

15 minutes at 4°C.  Lysates were then incubated overnight at 4°C with 20 μl of 

packed anti-Flag M2 agarose beads (Sigma).  Beads were washed 3 times with 

IP lysis buffer prior to elution with 40 μl of 2X SDS loading buffer.  Samples were 

then subjected to Western blot analysis using the indicated antibodies. 

Co-infection experiments treated with micrococcal nuclease or ethidium 

bromide were performed as described above with a few modifications.  Instead of 

1 ml, 100 μl of RbBp5 was used to infect the SF9 cells.  The protocol for ethidium 

bromide treatment was adapted from Lai et al. (65).  Lysates were incubated with 

200 μg/ml of ethidium bromide for 30 minutes on ice.  Precipitates were removed 

by centrifugation at 20,800 X g for 5 minutes at 4°C.  Samples were then 

incubated with α-Flag M2 agarose as described above.  All washes contained 

200 μg/ml of ethidium bromide.  For micrococcal nuclease treated samples, cells 

were harvested and treated as above.  Prior to elution, beads were incubated for 

1 hour at 37°C with 15 units of micrococcal nuclease (Roche) in 50 μl of digestion 

buffer (50 mM NaCl, 10 mM Tris, 4 mM CaCl2, pH 7.0).  Beads were then 

washed for 10 minutes with 1 ml of digestion buffer and eluted as above.   
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Purification of HeLa Core Histones 

HeLa nuclear pellets were prepared using methods described by Dignam 

et al (27).  Cells were purchased from the National Cell Culture Center 

(Minneapolis, MN).  Nuclear pellets were homogenized by douncing in a chilled 

buffer containing 20 mM Tris (pH 7.9), 25% glycerol, 0.42M NaCl, 1.5 mM MgCl2, 

0.2 mM EDTA, 0.5 mM PMSF, and 0.5 mM DTT.  Purification of core histones 

was performed using hydroxyapatite chromatography as described by Cote et al. 

(23) with minor changes.  HAP buffer (50 mM NaPO4 [pH 6.8], 1 mM BME, 

0.5 mM PMSF) was prepared and chilled to 4°C.  The DNA content of the 

homogenized nuclear pellet was estimated by diluting 1000 fold in 2 M NaCl in 

order to measure the OD260 of the pellet.  Approximately a 42 mg DNA equivalent 

of the homogenized pellet was added to 75 ml of HAP buffer with 0.6 M NaCl.  

This mixture was stirred gently at 4°C for 10 minutes.  While stirring, 35 g of 

Hydroxyapatite Bio Gel HTP (BioRad) was added to the mixture.  Additional 

HAP buffer containing 0.6 M NaCl was added to allow the mixture to be poured 

into a column.  The column was washed overnight at 4°C with HAP buffer 

containing 0.6 M NaCl at a flow rate of ~1ml/min.  Core histones were eluted with 

HAP buffer containing 2.5 M NaCl.  The peak fractions were identified by 

Bradford analysis.  The peak fractions were pooled and concentrated using a 

Centriprep YM-10 concentrator (Amicon). 
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Restriction Enzyme Accessibility Assay 

The restriction enzyme accessibility assay was adapted from methods 

outlined by Smith and Peterson (114).  A major change in the protocol was the 

use of fluorescently labeled DNA fragments generated by PCR using a 

combination of fluorescent and non-fluorescent primers.  These reactions utilized 

pGEM3z-601 DNA from J. Widom as a template (71).  Two forward primers (601 

forward) were used that had the same DNA sequence, but were either unlabeled 

or fluorescently labeled with 5’-Alexa Fluor 488-N-hydroxysuccinimide ester.  A 

labeled to unlabeled primer ratio of 0.1/0.9 was used in each PCR reaction.  The 

reverse primer (601 reverse) was unlabeled.  The 277bp PCR product was 

verified by electrophoresis in a 2% agarose gel followed by detection using a 

Typhoon Trio+ Imager (GE Healthcare).  The fluorescently labeled PCR products 

were then ethanol precipitated and used to reconstitute mononucleosomes. 

Mononucleosomes were reconstituted using methods adapted from Luger 

et al (73).  Mononucleosome reconstitution reactions were assembled using a 

1:0.875 molar ratio of the 277bp fluorescently labeled DNA to core histones 

purified from HeLa nuclear pellets.  Reconstitution reactions (100 μl) contained 

10 μg labeled DNA, 5.16 μg histones, and 0.1 μg bovine serum albumin in 2 M 

NaCl.  Mononucleosomes were formed via salt dialysis of the reconstitution 

reactions at 4°C.  The reactions were dialyzed against a decreasing buffer 

gradient from a high salt buffer (1 mM EDTA, 2 M NaCl, 0.2 mM PMSF, 10 mM 

Tris [pH 8.0]) to a low salt buffer (1 mM EDTA, 0.2 mM PMSF, 10 mM Tris 

[pH 8.0]) over a 3 day period.  After dialysis, reconstitutions were verified by 
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loading reactions onto a 5% non-denaturing acrylamide/bisacrylamide (37.5:1) 

0.2X Tris-borate-EDTA gel.  Labeled nucleosomes were detected using a 

Typhoon Trio+ Imager (GE Healthcare). 

Restriction enzyme accessibility assays were performed in triplicate.  Each 

15 μl reaction contained 1 mM ATP, 50 nM reconstituted mononucleosomes, and 

20U HhaI in remodeling buffer (3 mM MgCl2, 50 mM NaCl, 2 mM dithiothreitol, 

1 μM ZnCl2, 0.1 mg/ml bovine serum albumin, 20 mM Hepes [pH 8.0]).  The final 

concentration of CHD8 was 0.017 μM.  In reactions containing GST, the final 

concentration of GST was 0.009 μM (0.5X) or 0.017 μM (1X).  In reactions 

containing GST-WDR5, the final concentration of GST-WDR5 was 0.009 μM 

(0.5X) or 0.017 μM (1X).  Reactions were incubated for 30 minutes at 30°C.  

Reactions were quenched by adding 15 μl of 2X stop solution (10 mM Tris [pH 

8.0], 0.6% SDS, 40 mM EDTA, 5% glycerol, 0.1mg/ml proteinase K) and 

incubating at 50°C for 20 minutes.  Samples were analyzed on a 3% agarose gel 

and bands were quantified using a Typhoon Trio+ Imager and ImageQuant TL 

software (GE Healthcare).  Data points represent the average value of each 

triplicate. 

RT-PCR, Quantitative PCR, and PCR 

For real-time quantitative PCR, total RNA was isolated from the indicated 

cell lines using the RNeasy and Qiashredder kits (Qiagen) as outlined by the 

manufacturer.  cDNA was produced using random decamers (Ambion) and 

Superscript II (Invitrogen) as described by the manufacturers.  Real-time 
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quantitative PCR reactions were prepared using cDNA, iQ Sybr Green Supermix 

(BioRad), and the indicated primers.  Each reaction was performed in triplicate 

using the MyiQ single color real-time PCR detection system (BioRad).  

Quantification was preformed as described by M. W. Pfaffl (94) using pol III 

transcribed H1 (human) for normalization.  For quantitative ChIP experiments, 

reactions were prepared with the indicated ChIP DNA, iQ Sybr Green Supermix, 

and the specified primers.  Each reaction was performed in triplicate and 

analyzed using the MyiQ single color real-time PCR detection system.  DNA 

levels were expressed relative to the level of input.  For non-quantitative ChIP 

experiments, reactions were prepared with the indicated ChIP DNA and the 

specified primers.  Non-quantitative ChIP experiments employed standard PCR 

techniques.  

ATRA Induction Experiments 

For the Hox gene induction experiments and chromatin 

immunoprecipitation experiments, ~7.75 X 105 NT2/D1 cells were plated on a 

10 cm dish.  Cells were treated with 1 X 10-5 M all-trans retinoic acid (ATRA) 

dissolved in DMSO (induced) or an equivalent volume of DMSO alone 

(uninduced).  Cells were grown ~38 hours before being harvested for RNA 

isolation.   

RNAi Knockdown Experiments 

The RNAi experiments in NT2/D1 cells employed the UI2-puro SIBR 

shRNA vectors (21).  The CHD8 RNAi experiments used a shRNA vector 
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containing two cassettes (493 and 6410).  Primers for the creation of this 

construct are listed in Table 3.1.  A shRNA vector containing a cassette directed 

against luciferase, UI2-puro SIBR luc 1601, was used as a control (21).  Five 

micrograms of the indicated construct was transfected into NT2/D1 cells (~7.75 X 

105) using Lipofectamine-2000 as described by the manufacturer (Invitrogen).  

Selection of transfected cells was performed through the addition of 5 μg/ml of 

puromycin to the cell culture medium 24 hours post transfection.  Cells were 

treated 25 hours later with ATRA at a final concentration of 1 X 10-5 M.  Cells 

were then grown a ~38 hours before being harvested for RNA isolation.   

ChIP Assays 

The chromatin immunoprecipitation (ChIP) assay was adapted from the 

protocol described by Upstate.  For each ChIP, approximately 1 X 106 cells were 

crosslinked by treatment with formaldehyde for 10 minutes at 37°C.  The 

formaldehyde was added directly to the cell media at a final concentration of 1%.  

Cells were then washed twice with cold PBS containing 1 mM PMSF, 1 μg/ml 

pepstatin, and 1 μg/ml aprotinin.  Cells were harvested by scraping after the 

addition of 200 μl of cold ChIP Lysis Buffer (1% SDS, 10 mM EDTA, 50 mM Tris-

HCl [pH 8.1], 1 mM PMSF).  DNA was sheared into ~200-1000bp fragments by 

sonication.  Lysates were centrifuged at 20,800 X g for 10 minutes at 4°C.  

Cleared supernatants were diluted 10 fold in ChIP Dilution Buffer (0.01% SDS, 

1.1% Triton X-100, 1.2 mM EDTA, 16.7 mM Tris-HCl, [pH 8.1], 167 mM NaCl) 

containing 1 mM PMSF, 1 μg/ml pepstatin, and 1 μg/ml aprotinin.  The diluted 

supernatants were pre-cleared by adding 38 μl of packed protein A agarose 
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blocked with salmon sperm DNA.  Samples were rotated at 4°C for 30 minutes.  

After brief centrifugation, the pre-cleared supernatants were collected and rotated 

overnight at 4°C with the indicated antibodies.  Chromatin/antibody complexes 

were collected by rotating each IP with 38 μl of packed protein A agarose/salmon 

sperm DNA for 1 hour at 4° followed by centrifugation at 4°C for 1 minute at 

500 X g.  Protein A/antibody/chromatin complexes were washed for 30 minutes 

at 4°C with 1 ml of each of the following buffers: one wash with Low Salt Immune 

Complex Wash Buffer (0.1% SDS, 1% Triton X-100, 2 mM EDTA, 20 mM Tris-

HCl [pH 8.1], 150 mM NaCl, and 1 mM PMSF), one wash with High Salt Immune 

Complex Wash Buffer (0.1% SDS, 1% Triton X-100, 2 mM EDTA, 20 mM Tris-

HCl [pH 8.1], 500 mM NaCl, and 1 mM PMSF), one wash with LiCl Immune 

Complex Wash Buffer (0.25M LiCl, 1% NP-40, 1% deoxycholate, 1 mM EDTA, 

10 mM Tris-HCl [pH 8.1], and 1 mM PMSF), and two washes with TE Buffer 

(1 mM EDTA, 10 mM Tris-HCl [pH 8], and 1 mM PMSF).  After washing, samples 

were eluted by incubation at room temperature for 30 minutes with 500 μl of 

elution buffer (1% SDS, 0.1 M NaHCO3).  Crosslinking was reversed by adding 

20 μl of 5 M NaCl to each eluate and heating at 65°C for 4 hours.  Eluates were 

deproteinated by addition of 10 μl of 0.5 M EDTA, 20 μl of 1 M Tris-HCl (pH 6.5), 

and 2 μl of 10 mg/ml proteinase K and incubated at 45°C for 1 hour.  Samples 

were purified by phenol/chloroform extraction and the DNA was recovered by 

ethanol precipitation. 
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Results 

CHD8 is a Component of a Large Multi-subunit Complex 

In the previous chapter, we performed multiple experiments demonstrating 

that CHD8 is an ATP-dependent chromatin remodeling enzyme.  As most ATP-

dependent chromatin remodeling enzymes exist in multi-subunit complexes with 

other proteins that are required for targeting or regulating the remodeler, we 

hypothesize that CHD8 would also exist in a multi-subunit complex.  The 

identification and characterization of these proteins is therefore key to the 

understanding of CHD8.   

In order to determine whether CHD8 exists in a multi-subunit complex, a 

partial purification of CHD8 from HeLa nuclear extract was performed. HeLa 

nuclear extract was first fractionated using P11 phosphocellulose 

chromatography.  P11 fractions were eluted stepwise with a buffer containing 

various concentrations of KCl (0.1 M, 0.3 M, 0.5 M, and 1 M).  Western blot 

analysis using α-CHD8 antibody indicated that the fraction eluted with 0.5 M KCl 

was the peak CHD8 containing fraction (Figure 3.1).  This fraction was purified 

further by DEAE-Sepharose chromatography.  Fractions were eluted stepwise 

with a buffer containing varying concentrations of KCl (0.1 M and 0.35 M).  The 

fraction eluted with 0.35 M KCl was further purified using a Superose 6 size 

exclusion column.  Fractions eluted from the Superose 6 column were subjected 

to Western blot analysis using α-CHD8 antibodies.  The elution profile of CHD8 

obtained from the size exclusion column was consistent with a complex of 
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~900 KDa (Figure 3.1).  Since the molecular weight of a CHD8 monomer is 

predicted to be ~290 KDa, this profile suggests that CHD8 exists in a multi-

subunit complex. 

In order to verify the existence of a multi-subunit CHD8 complex and 

identify the individual components, a conventional purification of CHD8 was 

performed.  Nuclear extract from 200 liters of HeLa cell culture (~2 g) was 

chromatographed using sequential combinations of hydrophobic, ionic, affinity, 

and size exclusion separation columns.  In the first step of the purification, HeLa 

nuclear extract was fractionated over P11 phosphocellulose followed by DEAE-

Sepharose chromatography as described above.  Figure 3.2A outlines the 

purification protocol.  The DEAE 0.35 M KCl fraction was then further fractionated 

using a butyl Sepharose column eluted with a gradient of 0.7 M to 0 M 

ammonium sulfate.  The peak CHD8 containing fractions from the butyl 

Sepharose column were then subjected to hydroxyapatite chromatography.  

Fractions were eluted from the hydroxyapatite column using a gradient of KXPO4 

from 0.01 M to 0.6 M.  The peak CHD8 containing fractions from the 

hydroxyapatite column were then fractionated further using Mono S and Mono Q 

columns.  Fractions were eluted from the Mono S and Mono Q columns using a 

gradient of KCl from 0.05 M to 0.4 M or 0.1 M to 0.5 M, respectively.  SDS-PAGE 

followed by silver staining and Western blot analysis of the fractions eluted from 

the Mono Q column identified fraction 25 as the peak CHD8 containing fraction 

(Figure 3.2B).  In the final step of the conventional purification, the peak fraction 

from the Mono Q column was fractionated using a Superose 6 size exclusion 
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column equilibrated in 0.35 M KCl.  Fractions were subjected to SDS-PAGE 

followed by silver staining and Western blot analysis.  Fraction 24 was identified 

as the peak CHD8 containing fraction in this step of the conventional purification 

(Figure 3.2C).  Unfortunately, the amount of purified product obtained from the 

conventional purification was insufficient for polypeptide identification by MS/MS 

analysis. 

Given that we were unable to use a conventional purification to isolate the 

CHD8 complex, affinity purification was performed as an alternative approach.  

For this experiment, α-CHD8 antibodies were crosslinked to protein A agarose.  

As a control, normal rabbit IgG antibodies were also crosslinked to protein A 

agarose.  HeLa nuclear extract partial purified by the P11 and DEAE 

chromatography steps described above was applied to each column (Figure 3.3).  

As outlined in Figure 3.3, the columns were washed several times under a variety 

of conditions.  The glycine eluted samples were then subjected to SDS-PAGE 

followed by Western blot analysis using α-CHD8 antibodies.  The peak CHD8 

containing fraction identified by Western blot analysis was precipitated using 

TCA.  This precipitated sample was subjected to SDS-PAGE followed by 

colloidal blue staining.  This staining revealed multiple bands present in the 

fraction eluted from the α-CHD8 column and not from the control column (Figure 

3.3).  The predominant bands visualized by colloidal blue staining were subjected 

to trypsin digestion and MS/MS analysis.  CHD8 was identified as the ~290 KDa 

protein eluted off the α-CHD8 column (Figure 3.3).  MS/MS analysis also 

identified several proteins known to be involved in the modification of chromatin 
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structure (Table 3.2).  These included multiple components of the Swi/Snf, 

NURD, CoREST, and WDR5/MLL chromatin remodeling and modifying 

complexes.  Since the partial purification of CHD8 shown in Figure 3.1 suggested 

that the bulk of CHD8 is present in an ~900 KDa complex and the total molecular 

mass of the proteins identified by MS/MS is well over 900 kDa, our MS/MS 

suggests that there may be multiple CHD8 containing complexes.  Additional 

experiments, such as repeating the conventional purification, need to be 

performed to explore this further.  

CHD8 Forms a WDR5 Containing Complex 

The affinity purification identified multiple proteins as possible components 

of a CHD8 complex.  We therefore sought to confirm the association of each 

protein that was identified by MS/MS.  Our first candidate for consideration was 

WDR5, as a previous study suggested a possible interaction.  In an attempt to 

identify components of the MLL1 histone methyltransferase complex, Dou et al. 

performed an affinity purification of WDR5, a known MLL1 interacting protein 

(29).  Surprisingly, over 25 different polypeptides were identified, one of which 

was CHD8.  However, further characterization was not done to confirm this 

association, and therefore CHD8 may represent a contaminant in their 

purification.  We did not identify MLL1 by MS/MS analysis of our CHD8 affinity 

purification and we also did not detect MLL by Western blot analysis (data not 

shown).  As WDR5 was common to both of these affinity purifications, we 

speculated that CHD8 and WDR5 exist in a separate complex in the absence of 

MLL1. 
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The first step in verifying the association of CHD8 with WDR5 was to 

determine whether CHD8 and WDR5 interact in vivo.  We performed 

experiments in HEK293 cells transfected with Flag-tagged WDR5 or the control 

Flag vector.  Harvested cells were immunoprecipitated using α-Flag M2 agarose 

beads.  After washing, Flag immunoprecipitations were subjected to SDS-PAGE 

followed by Western blot analysis with α-Flag and α-CHD8 antibodies 

(Figure 3.4).  Western blot analysis using α-CHD8 antibodies indicated that 

CHD8 was present in the input samples prepared from cells transfected with 

either the control Flag vector or Flag-WDR5.  However, when samples were 

immunoprecipitated with α-Flag agarose, CHD8 was only detected in samples 

obtained from cells transfected with Flag-WDR5 (Figure 3.4).  Western blot 

analysis using α-Flag antibodies detected the presence of Flag-WDR5 only in 

cells transfected with the Flag-WDR5 vector and not the control vector 

(Figure 3.4).  This experiment demonstrates that WDR5 interacts with CHD8 

in vivo and provides evidence in support of our MS/MS analysis. 

In order to determine whether the interaction between CHD8 and WDR5 is 

a direct interaction, in vitro GST pulldown experiments were performed.  

Recombinant CHD8 was incubated with GST or GST-WDR5 bound to 

glutathione-Sepharose beads.  After multiple washes, samples were eluted and 

subjected to SDS-PAGE followed by Western blot analysis and Coomassie 

staining.  Staining of the bottom portion of the SDS-PAGE gel indicated the 

presence of GST and GST-WDR5 in the appropriate samples (Figure 3.5).  

When the top portion of the gel was subjected to Western blot analysis with 
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α-CHD8 antibodies, recombinant CHD8 was detected when GST-WDR5 was 

present and not in the presence of the GST control (Figure 3.5).  The results of 

this experiment demonstrate that CHD8 directly interacts with WDR5 and 

therefore further confirms the results obtained from our affinity purification. 

In addition to being in a complex with MLL1, WDR5 has been reported to 

form a stable trimeric complex with two other components, RbBP5 and Ash2L 

(118).  Both of these proteins were identified in our MS/MS analysis.  Therefore, 

after confirming the interaction between WDR5 and CHD8, we wanted to verify 

the interaction between CHD8 and the other components of the WDR5 complex, 

RbBP5 and Ash2L.  In order to confirm these interactions, we performed 

co-infection experiments in SF9 cells.  We prepared recombinant baculoviruses 

designed to express Flag-CHD8, Ash2L, and RbBP5.  SF9 cells were co-infected 

with Flag-CHD8 and either Ash2L or RbBP5.  After harvesting, cell lysates were 

incubated with α-Flag M2 agarose beads.  Flag immunoprecipitations (Flag-IPs) 

were then washed and subjected to SDS-PAGE followed by Western blot 

analysis with the indicated antibodies (Figure 3.6).  In cells co-infected with 

Flag-CHD8 and RbBP5, Western blot analysis α-RbBP5 antibodies detected the 

presence of RbBP5 in both the input and Flag immunoprecipitated samples 

(Figure 3.6).  In cells co-infected with Flag-CHD8 and Ash2L, Western blot 

analysis using α-Ash2L antibodies detected Ash2L in both the input and Flag 

immunoprecipitated samples (Figure 3.6).  Western blot analysis using α-CHD8 

antibodies detected CHD8 in all samples.  Together, these results demonstrate 
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that CHD8 directly interacts with both RbBP5 and Ash2L and confirms the 

association as detected by our MS/MS analysis.  

Above we demonstrate that CHD8 can directly interact with WDR5, 

RbBP5, and Ash2L.  These three proteins not only form a stable trimeric 

complex, but also are the core of the MLL1 histone methyltransferase complex 

(28, 118).  We therefore wanted to determine whether CHD8 can form a complex 

with all three proteins in the presence of MLL1.  The presence of CHD8 in a 

MLL1-WDR5 complex would potentially link chromatin remodeling and 

modification in a single complex.  Co-infection experiments were employed in 

order to examine this possibility.  We prepared recombinant baculoviruses 

designed to express Flag-CHD8, Flag-WDR5, WDR5, Ash2L, RbBP5, and 

MLL-C.  Each co-infection utilized various combinations of these baculoviruses.  

After harvesting, cell lysates were immunoprecipitated with α-Flag M2 agarose 

beads.  Flag-IPs were washed and then subjected to SDS-PAGE and Western 

blot analysis with the indicated antibodies (Figure 3.7).  In cells co-infected with 

Flag-WDR5, Ash2L, and RbBP5, Western blot analysis detected all three 

proteins in the α-Flag immunoprecipitated sample.  In addition, cells co-infected 

with F-WDR5, Ash2L, RbBP5, and MLL-C, all four proteins were detected in the 

Flag-IP (Figure 3.7).  These results are consistent with previously reported data 

demonstrating that Ash2L, WDR5, and RbBP5 can form a stable trimer in the 

absence of MLL-C and that when present, MLL-C can bind to this trimer (28).  In 

cells co-infected with Flag-CHD8, Ash2L, WDR5, and RbBP5, Western blot 

analysis of the Flag immunoprecipitated lysates detected all four proteins 
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(Figure 3.7).  These data suggest that, like MLL1, CHD8 can form a complex with 

the WDR5, Ash2L, and RbBP5 trimer.  When this co-infection was performed in 

the presence of MLL-C, all five proteins, including MLL1, were detected in the 

Flag immunoprecipitation (Figure 3.7).  This result indicates that while we were 

not able to detect MLL1 in our affinity purified material, MLL1 may interact with 

the CHD8/WDR5/Ash2L/RbBP5 complex.   

While our data are compelling, the possibility does exist that the 

interactions we observed are not direct, but instead bridged through DNA.  In 

order to examine this possibility, immunoprecipitations were performed in the 

presence of ethidium bromide or micrococcal nuclease.  Both reagents would 

disrupt possible interactions bridged through DNA either by disrupting 

DNA-protein interactions (ethidium bromide) or by cleaving the DNA between 

sites of interaction (micrococcal nuclease).  In these experiments, SF9 cells were 

co-infected with Flag-CHD8, WDR5, RbBP5, Ash2L, and MLL-C.  After 

harvesting, the lysate was treated with 200 μg/ml of ethidium bromide or left 

untreated for use in the micrococcal nuclease experiment.  Both lysates were 

then incubated with α-Flag M2 agarose.  After multiple washes were performed, 

the untreated sample was incubated with micrococcal nuclease and then 

subjected to additional washing.   All immunopreciptations were eluted and 

subjected to SDS-PAGE followed by Western blot analysis with the indicated 

antibodies (Figure 3.8).  In samples treated with ethidium bromide, there was a 

decrease in Flag-CHD8 immunoprecipitated by the α-Flag agarose suggesting 

that the treatment affected the overall efficiency of the IP, however, it did not 
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disrupt the interaction between F-CHD8, MLL-C, RbBP5, WDR5, and Ash2L.  No 

effect was seen upon treatment with micrococcal nuclease.  The results of these 

experiments demonstrate that the interaction observed between these five 

proteins is direct and not bridge by DNA. 

The results presented here clearly demonstrate the existence of a 

CHD8/WDR5/Ash2L/RbBP5 complex which may associate with MLL1.  The 

MS/MS analysis identified numerous other CHD8 associated polypeptides 

suggesting that CHD8 exists in multiple complexes.  We therefore wanted to 

determine if the CHD8/WDR5/Ash2L/RbBP5 complex is the major CHD8 

containing complex in human cells.  As size exclusion chromatography can often 

separate distinct complexes, we therefore subjected partially fractionated HeLa 

nuclear extract to Superose 6 size exclusion chromatography.  Fractions 

obtained from the Superose 6 column were then subjected to SDS-PAGE 

followed by Western blot analysis with the indicated antibodies (Figure 3.9).  In 

this analysis, all five proteins were detected in fraction 18.  This experiment 

supports our observation that CHD8 forms a complex with RbBP5, WDR5, Ash2L 

and possibly MLL1.  It is important to note that while fraction 18 was the peak of 

RbBP5, MLL1, WDR5, and Ash2L, it was not the peak CHD8 containing fraction.  

Fraction 24, not 18, was identified as the peak CHD8 containing fraction.  Given 

that the bulk of CHD8 exists outside of this complex, this data supports the idea 

that CHD8 forms multiple complexes and that the CHD8/WDR5/Ash2L/RbBP5 

complex is not the major CHD8 containing complex in HeLa cells. 
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WDR5 Alone Does Not Affect the Remodeling Activity of CHD8 

As discussed in Chapter II, we used restriction enzyme accessibility 

assays to determine that CHD8 is an ATP-dependent chromatin remodeling 

enzyme.  These assays are based on the fact that free DNA is vulnerable to 

cleavage by restriction endonucleases.  When mononucleosomes are 

reconstituted through salt dialysis of core histones and DNA, restriction sites are 

less accessible to cleavage by restriction enzymes.  However, when 

mononucleosomes are incubated with ATP-dependent chromatin remodeling 

enzymes in the presence of ATP, the DNA histone contacts can be disrupted 

resulting in increased accessibility of the DNA to restriction enzyme cleavage.  

After obtaining data demonstrating that CHD8 exists in a multi-subunit complex, 

we wanted to determine whether the identified proteins influence the remodeling 

activity of CHD8.   

Restriction enzyme accessibility assays utilized the 601 nucleosome 

positioning sequence from pGEM3z-601 (71).  Fluorescently labeled primers 

were used to PCR amplify a 277bp DNA fragment containing the 601 sequence.  

When reconstituted into nucleosomes, the 601 fragment contains an HhaI 

restriction site near the dyad axis.  The fluorescently labeled 601 fragment was 

reconstituted into mononucleosomes by salt dialysis with core histones purified 

from HeLa cells.  Restriction enzyme accessibility reactions were performed in 

triplicate.  Each reaction contained reconstituted mononucleosomes, HhaI, and 

ATP in the presence or absence of recombinant CHD8.  Reactions were also 

performed in the presence and absence of recombinant GST or GST-WDR5.  As 
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before, when CHD8 is present we observe an increase in the fraction cut when 

compared to reactions without CHD8 (Figure 3.10, compare lanes 1 and 2).  

Since the WDR5 used in this experiment is fused to GST, we also prepared 

reactions in the presence of GST as a control.  Addition of GST to reactions 

containing CHD8 did not affect the level of cutting observed (Figure 3.10, 

compare lanes 3 and 4 to lane 2).  We also did not observe a significant change 

in the level of cutting when reactions were prepared in the presence of CHD8 

and GST-WDR5 (Figure 3.10, compare lanes 5 and 6 to lanes 2-4).  Therefore, 

we conclude that WDR5 alone does not affect the ATP-dependent chromatin 

remodeling activity of CHD8.  However, as CHD8 not only interacts with WDR5, 

but with the WDR5/Ash2L/RbBP5 complex, a different result may be observed 

when other complex components are present.  Future experiments will examine 

this possibility.  

CHD8 Regulates Expression of Hox Genes 

Previous studies have reported that WDR5 is recruited to Hox loci and 

regulates Hox gene expression (51, 135).  The expression of these genes, which 

are involved in regulating patterns of development, is also reported to be 

regulated by MLL1 (81).  Since our previous studies demonstrate that CHD8 

directly interacts with WDR5 and suggests that CHD8 can form a complex with 

both WDR5 and MLL, we wanted to investigate the possibility that CHD8 also 

regulates Hox gene expression.   
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In order to examine a possible role for CHD8 in Hox gene expression, we 

performed experiments using NTERA2 cl. D1 (NT2/D1) cells.  The NT2/D1 cell 

line is a human embryonal carcinoma cell line in which Hox genes can be 

induced upon the addition of all-trans retinoic acid (ATRA) (14, 51).  We treated 

NT2/D1 cells with ATRA dissolved in DMSO or an equivalent volume of DMSO 

alone.  Cells were grown for ~38 hours prior to harvesting for RNA isolation.  

Real time quantitative PCR was then performed using primers designed to 

amplify HoxA1, HoxA2, HoxA3, and HoxA4 (Table 3.1).  We observed a greater 

than 500 fold increase in HoxA1 expression upon treatment with ATRA (Figure 

3.11).  We also observed an ~75 and 10 fold increase in expression of HoxA2 

and HoxA3 respectively.  These results demonstrate that this system is suitable 

for the study of HoxA gene expression.   

We then performed RNAi experiments to examine the role that CHD8 

plays in transcription of these Hox genes.  NT2/D1 cells were transfected with 

shRNA vectors containing hairpin cassettes directed against CHD8 or luciferase 

as a control.  These shRNA vectors also contained a puromycin resistance 

marker (21) which allows for transfected cells to be selected by treatment with 

puromycin 24 hours post transfection.  Cells were treated with ATRA 25 hours 

later.  Cells were harvested for RNA isolation and Western blot analysis ~38 

hours post ATRA treatment.  cDNA prepared from the isolated RNA was 

analyzed by real-time quantitative PCR using primers targeting the HoxA1, 

HoxA2, HoxA3, and HoxA4 genes (Figure 3.12).  We observed that depletion of 

CHD8 results in an increase in expression of all four Hox genes.  Interestingly, 
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the greatest effect was seen on HoxA4 expression, the gene with the lowest level 

of induction with ATRA.  The effect due to the loss of CHD8 decreased as the 

level of induction by ATRA increased.  The results of this experiment suggest 

that CHD8 negatively regulates the expression of the Hox genes studied here 

and indicate that the extent of negative regulation inversely correlates with the 

level of gene expression.   

CHD8 is Recruited to the Hox Locus 

After demonstrating that loss of CHD8 results in disruption of the normal 

Hox gene expression pattern, we wanted to determine if this regulation was 

direct by asking whether CHD8 associates with the promoters of these Hox 

genes.  Chromatin immunoprecipitation (ChIP) experiments were performed to 

examine the in vivo binding of CHD8 to various genes of the HoxA locus.  Given 

that our affinity purification was performed from HeLa nuclear extract, we first 

performed ChIP experiments in these cells.  HeLa cells were treated with 

formaldehyde to crosslink the chromatin inside the cell.  Lysates were sonicated 

and pre-cleared before incubation with α-CHD8 or α-control antibodies.  

Antibody-protein complexes were precipitated and washed before the 

crosslinking was reversed.  Recovered DNA was amplified using primers 

designed to amplify locations within the promoter region of each HoxA gene 

(Figure 3.13).  Reactions were analyzed using standard PCR techniques.  CHD8 

was present at the promoter region of multiple HoxA genes, particularly, the 

HoxA1, A7, A11, and A13 genes.  This result demonstrates that CHD8 can 

indeed directly interact with various HoxA promoters, and suggests that the 
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changes in HoxA gene expression are due to CHD8 functioning at these 

promoters.   

Our initial ChIP experiments in HeLa cells clearly demonstrate that CHD8 

can directly bind to target HoxA promoters.  Given that our Hox gene expression 

studies with CHD8 RNAi were performed in the inducible NT2/D1 cell line, it was 

important to determine whether CHD8 could also directly bind to Hox gene 

promoters in these cells.  Therefore chromatin immunoprecipitation experiments 

were performed in the NT2/D1 cell line.  For these ChIP experiments, NT2/D1 

cells were first treated with ATRA dissolved in DMSO (induced) or an equivalent 

volume of DMSO alone (uninduced).  Cells were grown ~38 hours before being 

treated with formaldehyde to crosslink the chromatin in vivo.  α-CHD8 and 

α-Acetyl H4 (data not shown) antibodies  were used in these ChIP experiments.  

Recovered DNA was amplified using primers designed to amplify locations within 

the promoter region of the HoxA1, A2, A3, and A4 genes (Figure 3.14).  

Reactions were analyzed using a real-time PCR detection system.  In the 

uninduced state, CHD8 was bound to the HoxA1, A2, and A4 promoters, but we 

observed the highest percentage of CHD8 bound to the promoter region of the 

HoxA1 gene.  Surprisingly, upon induction with ATRA, we observed a decrease 

in CHD8 at the HoxA1 promoter and an increase in CHD8 at the HoxA2 and 

HoxA4 promoters.  This result shows that CHD8 clearly relocalizes upon 

treatment with ATRA, and that the sites of this relocalization are the promoters of 

genes most influenced by the activity of CHD8.   
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In the ChIP experiments performed with the α-Acetyl H4 antibodies (data 

not shown), low levels of histone H4 acetylation was detected at the HoxA1, A2, 

and A4 promoters prior to induction.  We observed an increase in histone H4 

acetylation at all three promoters when gene expression was induced with ATRA.  

Given that this acetyl mark is typically associated with active chromatin, this was 

the expected result.  We did not, however, detect CHD8 or histone H4 acetylation 

at the HoxA3 promoter.  We believe that this is due to a misidentification of the 

promoter region of the HoxA3 gene in several public databases.  Additional 

experiments, such as 5’RACE, should be performed to correctly identify the 

promoter region of HoxA3.  In total, the ChIP experiments in HeLa and NT2/D1 

cells demonstrate that CHD8 does indeed bind to the promoter region of genes 

within the HoxA locus and suggests that CHD8 regulates the expression of these 

genes by binding and remodeling chromatin at these promoter regions.  

Discussion 

The eukaryotic genome is packaged inside the nucleus of cells in the form 

of chromatin.  The fundamental unit of chromatin, the nucleosome, is composed 

of 146 base pairs of DNA wrapped around a histone octamer core.  While the 

formation of chromatin aids the cell in packaging DNA inside the nucleus, it 

serves as a hindrance for cellular processes such as replication, transcription, 

and repair.  Chromatin remodeling enzymes are crucial cellular components 

since they possess the ability to regulate the accessibility of this packaged DNA.    

Most ATP-dependent chromatin remodeling enzymes exist in multi-subunit 

complexes with other proteins that are involved in or required for the normal 
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function of the remodeler.  Our previous work identified CHD8 as an 

ATP-dependent chromatin remodeling enzyme.  In the studies presented here, 

we test the hypothesis that CHD8, like most other ATP-dependent chromatin 

remodeling enzymes, exists in a multi-subunit complex with proteins that play a 

role in the function of CHD8. 

In order to estimate the size of the potential CHD8 complex, we performed 

P11, DEAE, and Superose 6 chromatography using HeLa nuclear extract as the 

starting material.  The elution profile of CHD8 obtained from the Superose 6 size 

exclusion column is consistent with a CHD8 complex of ~900kDa.  We then 

sought to identify the individual components of the CHD8 complex.  Two different 

approaches were utilized, conventional and affinity purification.  The conventional 

purification used a series of hydrophobic, ionic, affinity, and size exclusion 

columns to purify the CHD8 complex from HeLa nuclear extract.  The affinity 

purification was performed using α-CHD8 antibodies crosslinked to protein A 

agarose to purify the CHD8 complex from a HeLa nuclear extract partially 

purified by P11/DEAE chromatography.  Although the conventional purification 

did not yield a sufficient quantity of sample, the affinity purification was 

successful.  MS/MS analysis of the affinity purified sample identified CHD8 and 

multiple factors known to be involved in altering chromatin structure.  Among the 

factors identified were members of the MLL/WDR5, NURD, Swi/Snf, and 

CoREST chromatin modifying and remodeling complexes. 

Following our MS/MS analysis of the affinity purified CHD8 associated 

proteins, we sought to verify the interaction between the associated proteins and 
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CHD8.  Since CHD8 was previously reported to be a component of a 

MLL1/WDR5 methyltransferase complex purified from cells stably expressing 

Flag-WDR5 (29), we first focused our efforts on confirming the interaction 

between CHD8 and WDR5.  The presence of CHD8 in a MLL/WDR5 containing 

complex is particularly interesting because it would potentially link chromatin 

remodeling and modification in a single complex.  However, we did not detect 

MLL1 by MS/MS or Western blot analysis of our affinity purified sample.  Also, 

the Dou et al. study (29) did not confirm the interaction between CHD8 and the 

MLL/WDR5 complex.  Together, this information lead us to speculate that CHD8 

exists in a WDR5 complex in which MLL is not present.   

In order to confirm the CHD8/WDR5 interaction, we transfected 293 cells 

with Flag-WDR5 and immunoprecipitated the lysates with α-Flag agarose.  CHD8 

was detected in the Flag immunoprecipitated sample.  The result of this 

experiment demonstrates that CHD8 and WDR5 interact in vivo.  By performing 

GST pulldown assays with recombinant GST-WDR5 and CHD8, we confirmed 

this interaction in vitro and demonstrate that CHD8 directly interacts with WDR5. 

After confirming the interaction between CHD8 and WDR5, we sought to 

confirm the association of CHD8 with other components of the MLL/WDR5 

complex.  In addition to WDR5, we identified RbBP5 and Ash2L, in our affinity 

purification.  Both proteins are core components of the MLL/WDR5 

methyltransferase complex.  In an attempt to confirm these interactions, we 

performed co-infection experiments in SF9 cells using Flag-CHD8, Ash2L, and 

RbBP5.  Western blot analysis of Flag immunoprecipitations performed using 
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lysates from the co-infected cells detected the presence of both Ash2L and 

RbBP5.  This result confirmed the interaction between CHD8 and these two 

proteins. 

After confirming the interaction between CHD8 and the individual core 

components of the MLL/WDR5 complex, we wanted to determine whether CHD8 

could form a complex with RbBP5, Ash2L, and WDR5.  We performed a series of 

co-infection experiments using SF9 cells and Flag-CHD8, Flag-WDR5, WDR5, 

Ash2L, RbBP5, and MLL-C.  Full length MLL1 is insoluble when overexpressed, 

therefore the C-terminal portion of the protein is typically used.  This C-terminal 

portion contains the catalytic Set domain (28).  WDR5, RbBP5, and Ash2L are 

reported to form a stable trimer in the absence of MLL1.  When present, MLL1 

can bind this trimeric complex (28).  The results of our co-infection experiments 

are consistent with previously reported data.  When CHD8 and the components 

of the trimeric complex were used, RbBP5, Ash2L, WDR5, and CHD8 were 

detected in the Flag IP.  Surprisingly, we also detected CHD8 in experiments 

performed using CHD8 and the members of the trimeric complex in the presence 

of MLL-C.  Together, these data suggest that CHD8 can form a complex with the 

trimer, WDR5, Ash2L, and RbBP5, in the presence and absence of MLL-C.  

However, it is possible that in our immunoprecipitations CHD8 is interacting with 

each protein individually and not as a complex.  We believe that this is unlikely.  

In addition to the data demonstrating that RbBP5, WDR5, and Ash2L form a 

stable trimer that can interact with MLL-C (28), recent reports demonstrate that 

WDR5 binds to arginine 3765 of MLL1.  This arginine is located within the Win 
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(WDR5 interaction) motif of MLL1, a previously unidentified motif.  WDR5 uses 

the same binding pocket thought to be the site of histone H3 binding to bind to 

MLL1 (91, 92, 115).  Given the existence of the stable trimer and the interaction 

between WDR5 and MLL, we believe it is unlikely that CHD8 is interacting with 

each protein individually and not as a complex.   

Additional studies of the CHD8/WDR5/RbBP5/Ash2L complex were 

performed to determine if the complex is bridged through DNA.  Neither ethidium 

bromide nor micrococcal nuclease treatment disrupted the complex.  The result 

of this experiment demonstrates that the complex is not bridged by DNA.  The 

interactions are direct. 

Proteins within a given complex or complexes of a comparable size should 

elute in the same fraction off a Superose 6 size exclusion column.  To see if this 

is true for the CHD8 complex, we subjected the fractions eluted from our 

Superose 6 size exclusion column to Western blot analysis.  CHD8, WDR5, 

RbBP5, Ash2L, and MLL were all detected in the same fraction.  However, this 

fraction was not the peak CHD8 containing fraction.  This data suggests that 

while CHD8 forms a complex with these proteins, multiple CHD8 complexes may 

exist.  The identification of numerous CHD8 associated proteins by MS/MS 

analysis of our affinity purified sample supports this data. 

Other groups have reported that WDR5 is recruited to Hox loci and 

regulates Hox gene expression (51, 135).  Since CHD8 exists in a WDR5 

containing complex, we wanted to examine whether the same is true for CHD8.  
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In RNAi experiments targeting CHD8 in NT2/D1 cells, we observed that 

knockdown of CHD8 results in increased expression of the HoxA1-HoxA4 genes.  

CHD8 appears to negatively regulate expression of these genes.  To determine 

whether this regulation is possibly due to the presence of CHD8 at the promoter 

region of HoxA genes, chromatin immunoprecipitation experiments were 

performed.  Our results indicate that CHD8 is bound to the promoter region of 

multiple HoxA genes in both HeLa and NT2/D1 cells.  In humans four Hox gene 

clusters exist, HoxA, HoxB, HoxC, and HoxD.  Among these four gene clusters, 

the HoxA and HoxD clusters are reported to have the most significant affect on 

limb development.  Deletion of genes within the HoxA or HoxD clusters results in 

abnormal limb development.  However, abnormal development is not observed 

when genes within the HoxB or HoxC clusters are deleted (140).  Through the 

regulation of HoxA genes, CHD8 may play a role in limb development. 
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TABLE 3.1:  Oligonucleotide sequences. 

Name Sequence (5’  3’) 

601 forward CGGGATCCTAATGACCAAGGAAAGCA 

601 reverse CTCGGAACACTATCCGACTGGCA 

CHD8 shRNA 493 top GCTGTTAAGGATAACAATCTTAGGGGTTTTGGC
CTCTGACTGACTCCTAGAAGTTATCCTTAAC 

CHD8 shRNA 493 bottom TCCTGTTAAGGATAACTTCTAGGAGTCAGTCAG
AGGCCAAAACCCCTAAGATTGTTATCCTTAA 

CHD8 shRNA 6410 top GCTGTTGTTCTCCATCTTCATTTGGGTTTTGGC
CTCTGACTGACTCAAAGAGATGGAGAACAAC 

CHD8 shRNA 6410 bottom TCCTGTTGTTCTCCATCTCTTTGAGTCAGTCAG
AGGCCAAAACCCAAATGAAGATGGAGAACAA 

H1 RT forward ACTCCACTCCCATGTCCCTTG 

H1 RT reverse CCGTTCTCTGGGAACTCACCT 

hoxa1rt6F TTC AAC AAG TAC CTG ACG CGC 

hoxa1rt6R TTCATTCGGCGGTTCTGGA 

hoxa2rt1F AAGTACCTTTGCAGACCCCGA 

hoxa2rt1R TTGTGCTTCATCCTCCGGTTC 

hoxa3rt1F GATGGCCAATCTGCTGAACCT 

hoxa3rt1R TTAGCATGCCCTTGCCCTTCT 

HOXA4rtfor GCTCTGTTTGTCTGAGCGCC 

HOXA4rtrev AATTGGAGGATCGCATCTTGG 

HOX4.ChIP -431F GGATCTGCGGTTGAGAAAATG 

HOX4.ChIP -531R AGGCTAACAGGCGAAAGGAAG 

HOX3-3.ChIP -411F TGCACACTAGCCCCAGAATATT 

HOX3-3.ChIP -520R CAGAGGCAGGTGAGCACTTACT 

HOX2.ChIP -443R AAGATTTTGGTTGGGAAGGG 

HOX2.ChIP -343F CAGACCGAGAGAGATCAGTTTTGA 

hoxa1-ChIPc-rev-811 GCCCCTCCAAGTCGAATTACA 

hoxa1-ChIPc-for-722 TTCCAGGAGGGTCTTCGAAAC 

hoxa1 ChIPa-for-166 GTCACCTAGACGGCGGAGC 
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hoxa1 ChIPa-rev-74 GCTGAGCCTCCTGCAAAAGTT 

hoxa1 ChIPb-for-175 CGACTGCGCGTCACCTAGA 

hoxa1 ChIPb-rev-62 TGTCAGCCAATGGCTGAGC 

hoxa3 ChIPa-for-391 CCCCAAACCTGAGAGAGGC 

hoxa3 ChIPa-rev-303 CCTCCATGTGAACTTTTCCAGC 

hoxa3 ChIPb-for-209 TATTGCCTTTCTGATTTGGACAAC 

hoxa3 ChIPb-rev-121 CCTGCAGAGGAACAGAAGGG 

hoxa5 ChIPa-for-440 ACCTCCCCCCAATCCTCTG 

hoxa5 ChIPa-rev-351 TCCCTCGCAGTTCCATTAGG 

hoxa5 ChIPb-for-177 CCTCCACCCAACTCCCCTAT 

hoxa5 ChIPb-rev-81 ACGACTTCGAATCACGTGCTT 

hoxa7 ChIPa-for-474 AGTCTAAGTCCGGCCTGTCG 

hoxa7 ChIPa-rev-386 CTTGTGGGCAGGACTCAGCT 

hoxa7 ChIPb-for-121 GATTCTTTGGCCGCATATTTG 

hoxa7 ChIPb-rev-33 CAGCAGTCCTCACAGGTGGTC 

hoxa9 ChIPa-for-200 TAGAGCGGCACGATCCCTT 

hoxa9 ChIPa-rev-112 CCGCACGCTATTAATGGTCC 

hoxa9 ChIPb-for-344 GCCTTCTTGATGGCGTGATT 

hoxa9 ChIPb-rev-256 TGTCTCTGTACTCTCCCGTCTCC 

hoxa11 ChIPa-for-261 AGTTACACCGGCGATTACGTG 

hoxa11 ChIPa-rev-173 CCGGCTTCCTTTCTTTGTAGC 

hoxa11 ChIPb-for-130 GGAAAAGGCCCGGACTAGC 

hoxa11 ChIPb-rev-35 TGACGTGGAAATCTATCCCCA 

hoxa13 ChIPa-for-476 TTCTGAGCTAGGCTGGTCCC 

hoxa13 ChIPa-rev-386 TTGCGATCTGGAGCAGTGG 

hoxa13 ChIPb-for-399 GCTCCAGATCGCAACCCA 

hoxa13 ChIPb-rev-311 CCTTCCCTTCCTTTATCCCAGT 
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TABLE 3.2:  MS/MS identified sequences. 

Known Complex Protein 
SWI/SNF BAF47 
 BAF53 
 BAF60a 
 BAF60b 
 BAF155 
 BAF170 
 BAF250 
 BAF270 
  
NURD HDAC1 
 HDAC2 
 MBD2 
 MBD3 
 MTA2 
 MTA3 
 p66 
 RbAP48 
  
WDR5/MLL ASH2L 
 HCFC1 
 Rbbp5 
 WDR5 
  
CoREST CoREST 
 HDAC1 
 HDAC2 
  
Splicing/Processing CPSF1 
 CPSF5 
 Puf60 
 SF3A1 
 SF3B1,2,3 
 Symplekin 
 U2AF116 
 U2AF65 
 U5snRNP40 
 U5snRNP200 
 U5snRNP220 
  
Other HSP70 
 MED27 
 WDC146 
 YY1 
 ZO-1 
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Figure 3.1:  CHD8 is a component of a large complex in HeLa nuclear extracts. (A) HeLa 
nuclear extract was fractionated by phosphocellulose (P11) chromatography utilizing stepwise 
elution with the indicated KCl concentrations (0.1 M, 0.3 M, 0.5 M, 1.0 M).  Western blot analysis 
was performed using affinity-purified anti-CHD8 antibodies.  The 0.5 M P11 fraction was further 
fractionated by DEAE-Sephacel chromatography and eluted stepwise with 0.35 M KCl. Samples 
were further resolved by chromatography on a Superose 6 HR 10/30 column.  Western blotting 
was performed using affinity-purified α-CHD8 antibodies.  Arrows (bottom) indicate the elution 
position of thyroglobulin (670 kDa) and the void volume of the column (2 MDa).   
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Figure 3.2:  Conventional purification of CHD8.  (A) Purification scheme.  HeLa nuclear extract 
was fractionated by chromatography as described in Methods.  The horizontal and diagonal lines 
indicate stepwise and gradient elution, respectively. Concentrations are given in molars.  (B) 
Silver stain and Western blotting analysis.  Select fractions from the MonoQ column were 
subjected to SDS-PAGE followed by Silver staining (Top) or Western blotting analysis using α-
CHD8 antibodies (Bottom).  The arrow indicates the peak CHD8 fraction that was further resolved 
on a Superose 6 column.  (C) Silver stain and Western blotting analysis.  Select fractions from the 
Superose 6 column were subjected to SDS-PAGE followed by Silver staining (Top) or Western 
blotting analysis using α-CHD8 antibodies (Bottom).    
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Figure 3.3:  Affinity purification of CHD8.  (A) Purification scheme.  HeLa nuclear extract was 
fractionated by chromatography as described in Methods.  The horizontal and diagonal lines 
indicate stepwise and gradient elution, respectively. Concentrations are given in molars.  Also 
listed are the wash steps applied to the affinity columns.  (B) Silver stain analysis.  TCA 
precipitated material from the α-CHD8 or protein A purified normal rabbit IgG affinity columns 
were subjected to SDS-PAGE followed by Colloidal Blue staining.  The arrow indicates the 
polypeptide identified as CHD8 by MS/MS analysis.    
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Figure 3.4:  CHD8 interacts with WDR5 in vivo.  293 cells were transfected with Flag-WDR5 or 
the control vector.  Immunoprecipitations (IP) were performed with anti-Flag M2 antibodies.  After 
washing, purified samples were subjected to SDS-PAGE followed by Western blot analysis using 
the indicated antibodies.   
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Figure 3.5:  CHD8 interacts with WDR5 in vitro.  Recombinant CHD8 was incubated with 
recombinant GST or GST-WDR5 as indicated at the top of the figure.  After washing, glutathione-
agarose-purified samples were subjected to SDS-PAGE.  The top of the gel was subjected to 
Western blot analysis using α-CHD8 antibodies. The bottom of the gel was analyzed by 
Coomassie staining.  
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Figure 3.6:  CHD8 directly interacts with RbBP5 and Ash2L.  Cellular extracts were prepared 
from SF9 cells following co-infection with the indicated viruses.  Immunoprecipitations were 
performed with anti-Flag-M2 antibodies.  After washing, purified samples were subjected to SDS-
PAGE followed by Western blotting analysis using the antibodies indicated to the right of the 
figure.    
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Figure 3.7:  CHD8 directly interacts with the core WDR5/RbBP5/Ash2L complex.  Cellular 
extracts were prepared from SF9 cells following co-infection with the indicated viruses.  
Immunoprecipitations were performed with anti-Flag-M2 antibodies.  After washing, purified 
samples were subjected to SDS-PAGE followed by Western blotting analysis using the antibodies 
indicated to the right of the figure.    
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Figure 3.8:  DNA does not mediate the interaction of CHD8 with the WDR5/RbBP5/Ash2L 
complex.  Cellular extracts were prepared from SF9 cells following co-infection with CHD8, 
WDR5, RbBP5, Ash2L, and MLL-C viruses.  Immunoprecipitations were performed with anti-Flag-
M2 antibodies.  After treatment with nothing (N), ethidium bromide (Eth), or micrococcal nuclease 
(MN) samples were washed.  Purified samples were subjected to SDS-PAGE followed by 
Western blotting analysis using the antibodies indicated to the right of the figure.   
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Figure 3.9:  CHD8, WDR5, RbBP5, Ash2L, and MLL1 elute in the same fraction off a 
Superose 6 column.  HeLa nuclear extract was fractionated by phosphocellulose (P11) 
chromatography utilizing stepwise elution with the 0.5 M KCl.  The 0.5 M P11 fraction was further 
fractionated by DEAE-Sephacel chromatography and eluted stepwise with 0.35 M KCl.  Samples 
were further resolved by chromatography on a Superose 6 HR 10/30 column.  Western blotting 
was performed using antibodies indicated to the right of the figure.  Arrows (bottom) indicate the 
elution position of thyroglobulin (670 kDa) and the void volume of the column (2 MDa). 
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Figure 3.10:  The remodeling activity of CHD8 is not stimulated by WDR5.  Recombinant 
CHD8 was assayed for increased restriction enzyme accessibility on mononucleosomes.  
Reactions were performed with no additions, or with indicated concentrations of GST or GST-
WDR5.  Representative data is shown in the inset.  The top band is the uncut template, and the 
bottom band is the resulting cut fragment.  
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Figure 3.11:  ATRA induces HoxA gene expression in NT2/D1 cells.  Following treatment of 
NT2/D1 cells with ATRA or the DMSO vehicle, total RNA was harvested, and expression of the 
indicated genes was analyzed by real-time RT-PCR.  For each treatment, threshold cycle values 
were normalized to the levels of polymerase III (Pol III)-transcribed H1 RNA.  .  Shown is the fold 
change relative to treatment with DMSO.    
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Figure 3.12:  CHD8 regulates HoxA gene expression in NT2/D1 cells.  NT2/D1 cells were 
transfected with a control shRNA or a CHD8 shRNA.  Following selection of the transfected cells 
with puromycin, cells were treated with ATRA.  Total RNA was then harvested and expression of 
the indicated genes was analyzed by real-time RT-PCR.  For each treatment, threshold cycle 
values were normalized to the levels of polymerase III (Pol III)-transcribed H1 RNA.  Shown is the 
fold change relative to the control shRNA treatment.    
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Figure 3.13:  CHD8 is bound to the HoxA gene cluster in HeLa cells.  Chromatin from HeLa 
cells was cross linked in vivo with formaldehyde.  Cells were lysed, and chromatin 
immunoprecipitations were performed with α-CHD8 or protein A purified normal rabbit IgG.  
Immunoprecipitates were extensively washed and the cross linking was reversed.  Bound DNA 
was detected by standard PCR using primers to the promoters of the indicated genes.  
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Figure 3.14:  CHD8 is bound to the HoxA gene cluster in NT2/D1 cells.  Chromatin from the 
NT2/D1 embryonal carcinoma cell line was cross linked in vivo with formaldehyde.  Cells were 
lysed, and chromatin immunoprecipitations were performed with the indicated antibody.  
Immunoprecipitates were extensively washed and the cross linking was reversed.  Bound DNA 
was detected by quantitative PCR with primer pairs to the promoter region of the gene indicated 
below.  Control IgG precipitated samples in all experiments were less than 0.001% of input and 
therefore are not shown.    
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Chapter IV 

 

The Double Chromodomains of CHD8 Recognize Both Modified and 

Unmodified H3/H4 Histones 

 

 

Introduction 

CHD8 Domain Structure 

CHD8, a member of the CHD6-9 subfamily of CHD proteins, possesses 

multiple domains that are conserved within this subfamily of proteins (Figure 1.2).  

Within the N-terminal portion of the protein, there are double chromodomains 

(chromatin organization modifiers).  A chromodomain is an ~50 amino acid 

sequence found in many proteins known to be involved in chromatin regulation 

(45, 77).  Chromodomains have been shown to mediate chromatin interactions 

by targeting DNA, histones, and RNA (18, 77).  The presence of the double 

chromodomains is a unique characteristic of all CHD proteins.  Carboxy-terminal 

to the tandem chromodomains is the Snf2 helicase domain.  This domain is also 

present in all CHD proteins.  The Snf2 helicase domain received this name 

based on its similarity to the catalytic subunit (Snf2) of the Swi/Snf complex (45).  
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This domain is responsible for the binding and hydrolysis of ATP thereby 

providing the energy necessary to remodel nucleosomes.  In the CHD6-9 

subfamily, carboxy-terminal to the Snf2 helicase domain are two additional 

domains commonly found in other chromatin remodeling enzymes, the SANT 

and BRK domains.  However, in the context of the CHD6-9 proteins, the function 

of these domains is unknown.   

Chromodomain Function 

The chromodomain (chromatin organization modifier) was first recognized 

as a sequence shared by the Drosophila proteins, HP1 and Polycomb, which are 

known to be involved in regulating chromatin structure (90).  Early studies 

implicated chromodomains in heterochromatin formation, nucleosome binding, 

and the regulation of homeotic genes (45).  Since their initial characterization, 

chromodomains have been identified in multiple organisms from protists to 

mammals (45).  Some of the known chromodomain functions now include 

remodeling of chromatin structure (77), modified histone tail binding, RNA 

binding, targeting of complexes, and targeting to chromatin (18)  Mutation studies 

performed in mouse and Drosophila lend additional information on the function of 

chromodomains present in the CHD proteins.  In mouse, CHD1 chromodomain 

mutations result in nuclear redistribution.  Deletion of the Drosophila CHD3/4 

chromodomains results in weakened mobilization, nucleosome binding, and 

ATPase function (77).  The chromodomains of these proteins are unique in that 

they exist in tandem. 
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Tandem Chromodomains 

Proteins that contain chromodomains can be divided into three categories.  

The first category is composed of proteins that possess an N-terminal 

chromodomain followed by a chromo shadow domain.  Examples of proteins 

within this category are Drosophila and Human HP1 (70).  The second category 

is composed of proteins which possess a single chromodomain.  Mammalian 

modifier 3 (70) and Drosophila Polycomb (90) belong to this category of 

chromodomain containing proteins.  The third category is composed of proteins 

that possess double chromodomains.  CHD proteins are the only known 

members of this category of chromodomain containing proteins (45, 77).  While 

additional studies are needed to determine the significance of tandem 

chromodomains, recent studies of CHD1 suggest a possible function.  The 

double chromodomains of CHD1 are reported to cooperate and form a 

recognition site for histone binding (38, 45). 

CHD1 Chromodomains Bind Histones 

Human CHD1, like the other CHD proteins, possesses tandem 

chromodomains N-terminal to a Snf2 helicase domain (45, 77).  In an attempt to 

determine the function of the tandem chromodomains of human CHD1, Flanagan 

et al. performed fluorescence polarization assays using synthetic histone tail 

peptides to determine the chromodomains affinity for binding to various 

modifications.  They determined that CHD1 preferentially binds to tri and 

monomethylated lysine 4 of histone H3 and not other modifications or unmodified 
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histones.  Methylation of this lysine is typically associated with active chromatin.  

Additional studies demonstrated that the binding occurs through two aromatic 

residues within the tandem chromodomains.  They also report that both 

chromodomains are required for binding.  The two chromodomains cooperate to 

bind a single methylated histone tail (38).  These studies provide insight into the 

function of double chromodomains and suggest that other CHD proteins may 

also bind histones in this fashion. 

Hypothesis and Summary of Results 

As previously stated, the chromodomains of CHD1 were found to bind a 

methylated lysine on the histone H3 tail (38).  We hypothesized that the 

chromodomains of CHD8, like those of CHD1, also bind to a methylated lysine in 

histones.  Here we demonstrate that the chromodomains of CHD8 bind purified 

HeLa core histones, with a high affinity for binding histones H3/H4.  CHD8 

chromodomains do not appear to have a preference for binding to a specific 

modification on histone H3 tails as they are able to bind histones containing H3 

modified at lysines 4, 9, and 27.  We demonstrate that CHD8 chromodomains 

also possess the ability to bind unmodified recombinant histone H3-H4 tetramers.  

Mutation of specific aromatic residues, which align with CHD1 chromodomain 

residues required for histone binding, does not disrupt CHD8 binding to histones.  

Pulldown experiments performed with histone H3 tails demonstrate that the 

chromodomains of CHD8 are unable to bind to the tail of histone H3.  We also 

show that the chromodomains of CHD8 can bind to histone H3-H4 tetramers in 

which the tails are deleted.  We demonstrate that the CHD8 chromodomains do 
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not bind to histone H3 directly through lysine 36 or 79.  Together, these data 

support our hypothesis that the chromodomains of CHD8 bind histones, but also 

demonstrate that the CHD8 chromodomains do not bind to histone H3 or H4 

tails, but bind to the histone core. 

Materials and Methods 

Purification of HeLa Core Histones 

HeLa nuclear extracts were prepared from cells purchased from the 

National Cell Culture Center (Minneapolis, MN).  Nuclear pellets were prepared 

using methods described by Dignam et al (27).  Nuclear pellets isolated from 

HeLa cells were homogenized by douncing in a chilled buffer containing 20 mM 

Tris (pH 7.9), 25% glycerol, 0.42M NaCl, 1.5 mM MgCl2, 0.2 mM EDTA, 0.5 mM 

PMSF, and 0.5 mM DTT.  Purification of core histones was performed using 

hydroxyapatite chromatography methods described by Côté et al. (23) with minor 

changes.  HAP buffer (50 mM NaPO4 [pH 6.8], 1 mM BME, 0.5 mM PMSF) was 

prepared and chilled to 4°C.  The DNA content of the homogenized nuclear pellet 

was estimated by diluting 1000 fold in 2 M NaCl in order to measure the OD260 of 

the pellet.  Approximately a 42 mg DNA equivalent of the homogenized pellet 

was added to 75 ml of HAP buffer with 0.6 M NaCl.  This mixture was stirred 

gently at 4°C for 10 minutes.  While stirring, 35 g of Hydroxyapatite Bio Gel HTP 

(BioRad) was added to the mixture.  Additional HAP buffer containing 0.6 M NaCl 

was added to allow the mixture to be poured into a column.  The column was 

washed overnight at 4°C with HAP buffer containing 0.6 M NaCl at a flow rate of 
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~1ml/min.  Core histones were eluted with HAP buffer containing 2.5 M NaCl.  

The peak fractions were identified by Bradford analysis.  The peak fractions were 

pooled and concentrated using a Centriprep YM-10 concentrator (Amicon). 

Production of Recombinant Proteins 

The GST-Chromos expression construct was prepared by PCR amplifying 

the chromodomains of CHD8 using the following primers:  CGG GAT CCG AGT 

GAA GAA GAT GCA GCC, CGG GAT CCT TAT GGG TGC CTT GAC TGA ATC 

CG.  This PCR fragment was then cloned into a GST-expression vector, pGST-

Parallel2 (107).  The GST-Chromos mutant constructs were prepared using 

primers which introduced a tyrosine (Y) to leucine (L) mutation of one or two 

residues within the chromodomains of CHD8.  The GST-Chromos (single) mutant 

was produced by PCR using CHD8 Y676L (AGA AGA ATT CTT TGT CAA GTA 

CAA GAA CTT AAG CTA TCT GCA TTG) and pGEX3p (CCG GGA GCT GCA 

TGT GTC AGA GG) with GST-Chromos as a template.  The GST-Chromos 

(double) mutant was produced by PCR using CHD8 Y673L Y676L (AGA AGA 

ATT CTT TGT CAA GCT TAA GAA CTT AAG CTA TCT GCA TTG) and pGEX3p 

(CCG GGA GCT GCA TGT GTC AGA GG) with GST-Chromos as a template.  

The mutant PCR products were then digested with restriction enzymes and 

cloned into the wild type GST-Chromos vector.   

Escherichia coli BL21 cells were used to express GST and GST-Chromos 

fusion proteins.  After harvesting, cells were resuspended in buffer BC150 

(150 mM KCl, 0.2 mM EDTA, 10 mM BME, 10% glycerol, 0.2 mM PMSF, 20 mM 
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Tris-HCl [pH 7.9]).  Resuspended cells were lysed by passage twice through a 

French Pressure Cell, and lysates were centrifuged at 105,000 X g for 60 

minutes at 4°C before collecting the supernatants.  Samples were then subjected 

to sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE).  The 

SDS-PAGE gels were Coomassie stained and used to determine the 

concentration of GST and GST fusion proteins in each cell lysate.  GST-WDR5 

was received as a kind gift from R.C. Trievel (24). 

The pET-histone expression plasmids used to express recombinant 

histones H3 and H4 (tailed and tailless) were received as a kind gift from K. 

Luger (72, 73).  Recombinant histone proteins were expressed, purified, and 

refolded using methods described by Luger et al. (73).  The histone H3 C110A, 

K36C, and K79C mutant constructs mutant were a kind gift from M. Simon (112).  

K36C and K79C mutant constructs also contained the C110A mutation.  These 

recombinant mutant histones were expressed, purified, and refolded into 

tetramers with recombinant histone H4 using methods described by Luger et al. 

(73).  In the production of fluorescently labeled K36C and K79C histones, 

fluorescein-5-maleimide was used to label the recombinant mutant histone H3 

proteins according to instructions supplied by the manufacturer (Thermo 

Scientific).  After labeling, the mutant histone H3 proteins were refolded with 

recombinant histone H4 to form tetramers and purified using the Luger et al. 

protocol (73).  The vector for the production of the H3 histone tail and the K4C, 

K9C, K27C, and K36C the H3 histone tail mutants were a kind gift from R.C. 

Trievel.  These construct were prepared by cloning the H3 tail (1-40) or tail 
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mutants into the Champion pET SUMO Expression System, and were expressed 

and purified as recommended by the manufacturer (Invitrogen).   

GST Pulldown Assays 

BC150 plus 0.2% NP40 and BC350 (350 mM KCl, 0.2 mM EDTA, 10 mM 

BME, 10% glycerol, 0.2 mM PMSF, 20 mM Tris-HCl [pH 7.9]) were prepared and 

chilled to 4°C.  Glutathione agarose beads (Sigma) were washed one time with 

cold PBS and one time with cold BC150 plus 0.2% NP40 prior to use in the 

assays.  Beads were resuspended in BC150 plus 0.2% NP40 to produce a 50% 

slurry before dividing into 40 μl aliquots.  Extracts that contained equal 

concentrations of GST, GST-Chromo (wt or mutant), or GST-WDR5 were added 

to each tube of beads.  BC150 plus 0.2% NP40 was added to bring volumes up 

to 500 μl before rotating overnight at 4°C.  After the overnight incubation, 

glutathione agarose beads were centrifuged at 1,000 X g for 2 minutes at 4°C.  

Beads were washed twice by rotating for 10 minutes per wash with 1ml of BC150 

plus 0.2% NP40.  After washing, 14 μg of the indicated histones were added to 

beads resuspended in total volume of 500 μl of BC150 plus 0.2% NP40.  

Pulldowns were then rotated overnight at 4°C.  Samples were centrifuged at 

1,000 X g for 2 minutes at 4°C to pellet the beads.  Pulldowns were washed twice 

with BC150 plus 0.2%, once with BC350, and once with BC150 plus 0.2%.  Each 

wash was performed using 1ml of buffer with rotation at 4°C for 10 minutes.  

Proteins bound to the recovered beads were eluted by adding 40 μl of 2X SDS 

loading buffer and heating to 70°C for ~5 minutes.  Samples were resolved on a 

15% Tris-glycine SDS-PAGE gel with a 5% stacker.  Gels were subjected to 
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Western blot analysis, Coomassie staining, or imaging using a Typhoon Trio+ 

Imager (GE Healthcare). 

Western Blot Analysis 

Samples from the GST pulldown experiments were loaded on a 15% Tris-

glycine SDS-PAGE gel with a 5% stacker.  Proteins were wet transferred onto 

Immobilon-P Transfer Membrane (Millipore) using a BioRad transfer system.  

After blocking, membranes were incubated ~1 hour with a 1:2000 dilution in 

TTBS of α-trimethyl-H3K4 (07-473), α-trimethyl-H3K9 (07-422), or α-trimethyl-

H3K27 (07-449) antibodies (Upstate).  After three 5 minute washes with TTBS, 

membranes were incubated ~1 hour with α-rabbit IgG (Fc) AP conjugate (S373B) 

secondary antibody (Promega) diluted 1:12,500 in TTBS.  Membranes were 

again washed 3 X 5 minutes with TTBS.  Proteins were detected using the 

NBT/BCIP detection system (Roche). 

Results 

The Chromodomains of CHD8 Bind HeLa Core Histones 

CHD8, like the other members of the CHD family of proteins, has double 

chromodomains N-terminal to a Snf2 helicase domain.  Chromodomains within 

other proteins have been shown to bind both DNA and histone tails.  The double 

chromodomains of human CHD1 have been reported to interact with lysine 4-

methylated histone H3 tails (H3K4me), a hallmark of active chromatin (38).  

Given that other chromodomain containing proteins interact with histone tails, we 

wanted to examine whether the chromodomains of CHD8 also bind histone tails.  
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As a first step, we wanted to determine if the chromodomains of CHD8 can bind 

histones. 

Recombinant GST and GST fusion proteins were prepared for use in the 

in vitro study of the potential interaction between histones and the 

chromodomains of human CHD8.  E. coli BL21 cells were used to express GST 

or the GST-Chromos fusion protein.  In this fusion protein, GST was fused to the 

double chromodomains of CHD8.  Cleared lysates from cells expressing GST 

and the GST-Chromos fusion protein were incubated with glutathione agarose 

beads.  After washing, the samples were incubated with core histones purified 

from HeLa cells.  Washed samples were then eluted and subjected to SDS-

PAGE followed by Coomassie staining.  Our results demonstrate that the 

chromodomains of CHD8 do in fact interact with core histones (Figure 4.1, lane 

5).  The chromodomains appear to have a higher affinity for histones H3 and H4 

(Figure 4.1, lane 5).  The control GST did not pulldown the core histones, 

indicating that the interaction seen between GST-Chromos and the core histones 

is not merely due to an interaction between core histones and GST (Figure 4.1, 

lane 3). 

The Chromodomains of CHD8 Do Not Appear to Have a Higher Affinity for 

Binding to Specific Modifications on the Tails of Histone H3 

The chromodomains of multiple proteins have been reported to exhibit a 

preference for binding to specific modifications on histone tails.  Fischle et al. 

reported that the chromodomains of Polycomb (Pc) have a high affinity for 
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binding methylated lysine 27 on histone H3 tails, while Heterochromatin Protein 1 

(HP1) has an affinity for binding methylated lysine 9 (37).  CHD1, a family 

member of CHD8, was reported to have a high affinity for binding to methylated 

lysine 4 on the tail of histone H3 (38).  After determining that the chromodomains 

of CHD8 bind histones, we wanted to examine whether they have a higher 

affinity for specific histone modifications. 

GST pulldown experiments were performed as described above.  GST or 

the GST-Chromos fusion protein bound to glutathione agarose was incubated 

with purified HeLa core histones and samples were subjected to SDS-PAGE 

followed by Western blot analysis.  Membranes were probed with primary 

antibodies targeting modifications on histone H3 tails known to interact with the 

chromodomains of other proteins.  Bands corresponding to histone H3 were 

detected when membranes were probed with α-trimethyl H3 lysine 27, α-trimethyl 

H3 lysine 9, and α-trimethyl H3 lysine 4 antibodies (Figure 4.2).  Our results 

demonstrate that the chromodomains of CHD8 have the ability to associate with 

core histones composed of H3 methylated on lysines 4, 9, and 27 of the H3 tail.  

The chromodomains do not appear to discriminate between the modifications 

studied here when binding to core histones. 

The Chromodomains of CHD8 Bind Recombinant H3-H4 Tetramers 

While the chromodomains of human CHD1 have been reported to interact 

with lysine 4 methylated histone H3 tails, they do not interact with unmodified H3 

tails (38).  Our data obtained from GST pulldown assays utilizing purified HeLa 
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core histones suggests that the CHD8 chromodomains have the ability to bind 

modified histones.  Since the core histones used in our assays were purified from 

human cells, it is likely that the histones within the octamers were modified.  To 

gain additional information about the binding specificity of the CHD8 

chromodomains, we examined whether the double chromodomains have the 

ability to bind unmodified histones. 

Since our previous experiments indicated that the chromodomains of 

CHD8 have a higher affinity for binding histones H3 and H4, we prepared 

recombinant histone H3 and H4 proteins.  The recombinant proteins were 

expressed and purified by chromatography before being refolded into histone H3-

H4 tetramers.  GST pulldown experiments were prepared as previously 

described.  GST or the GST-Chromos fusion protein bound to glutathione 

agarose beads was incubated with and without purified HeLa core histones or 

recombinant histone H3-H4 tetramers.  As in our previous experiments, GST-

Chromos pulls down purified HeLa core histones (Figure 4.3, lane 7).  When 

incubated with recombinant histone H3-H4 tetramers, GST-Chromos also pull 

down histones H3 and H4 (Figure 4.3, lane 8).  The control GST did not pulldown 

the core histones or recombinant H3-H4 tetramers (Figure 4.3, lanes 4 & 5).  

Since the recombinant histones were unmodified, our results indicate that, unlike 

CHD1, the chromodomains of CHD8 have the ability to bind unmodified and 

possibly modified histones H3 and H4. 
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Mutation of Aromatic Residues in the Putative Binding Domain of CHD8 

Chromos Does Not Affect Binding 

Two aromatic residues within the chromodomains of human CHD1 have 

been reported to be responsible for the recognition of methylated lysines in 

histone H3 (38).  Other chromodomain containing proteins, such as HP1, have 

been shown to use a three residue aromatic cage to recognize methylated 

histone H3 tails (54).  With evidence demonstrating that aromatic residues in the 

chromodomains of other proteins are responsible for binding to histones, we 

wanted to examine whether aromatic residues in the chromodomain of CHD8 are 

also responsible for binding to histones. 

We compared the amino acid sequence of human CHD8 with that of the 

other CHD6-9 subfamily members and CHD1.  Sequence analysis identified 

multiple aromatic residues within the chromodomains of CHD8 that are 

conserved among these five proteins.  The aromatic tyrosines (Y) at positions 

672 and 675 within the chromodomains of CHD8 were particularly interesting due 

to their alignment with the aromatic tryptophan (W) residues in CHD1 (Figure 4.4, 

yellow).  These two tryptophans within the chromodomains of CHD1 have been 

reported to be required for binding to methylated K4 on the histone H3 tail (38).  

To examine whether tyrosines 672 and 675 are required for the binding of CHD8 

chromodomains to histones H3 and H4, we produced tyrosine to leucine (L) 

mutations at these two positions by PCR.  Two mutant GST-Chromos fusion 

proteins were prepared.  The single mutant had amino acid 675 mutated from Y 

to L.  The double mutant had two Y to L mutations, one at tyrosine 672 and 
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another at tyrosine 675.  We performed GST pulldown assays as described 

above.  GST, GST-Chromos (single), and GST-Chromos (double) bound to 

glutathione agarose beads were incubated with purified HeLa core histones and 

recombinant histone H3-H4 tetramers.  Our results indicate that mutation of one 

or both aromatic tyrosine residues within the chromodomains of CHD8 does not 

disrupt binding to histones H3 and H4 (Figure 4.5).  These two aromatic 

residues, Y672 and Y675, within the chromodomains of CHD8 are not required 

for binding to histones H3 and H4. 

CHD8 Does Not Bind H3 Peptide Tails 

Our experiments described thus far demonstrated that the 

chromodomains of CHD8 can bind unmodified histone H3-H4 tetramers.  Our 

GST pulldown experiments using purified HeLa core histones and western blot 

analysis using modification specific antibodies suggested that the 

chromodomains of CHD8 might also bind modified histones.  To further define 

the interaction between CHD8 chromodomains and histones, we asked whether 

the chromodomains of CHD8 bind to the tails of histones or to the core amino 

acids. 

To begin to answer this question, we prepared several recombinant fusion 

proteins which had SUMO fused to wt and mutant histone H3 tails.  The mutant 

histone tail fusion proteins had lysine (K) to cysteine (C) mutations in lysines 4, 9, 

27, or 36.  These lysines can be methylated and have been shown to interact 

with the chromodomains of other proteins (37, 38, 58).  We performed GST 
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pulldown experiments using methods previously described.  GST or GST-

Chromos bound to glutathione agarose was incubated with wt or mutant H3 tail 

fusion proteins.  The GST-Chromos fusion protein did not interact with wt or 

mutant histone H3 tail fusion proteins (Figure 4.6).  Our results indicate that the 

chromodomains of CHD8 do not bind to the tail of unmodified histone H3. 

CHD8 Chromodomains Bind Tailless Histones H3 and H4 

In order to further investigate whether the chromodomains of CHD8 bind 

to the core or tails of histones, we prepared histone H3-H4 tetramers using 

different combinations of full length recombinant H3 or H4 and recombinant 

histone H3 or H4 in which the tails were deleted (Δ).  GST pulldown experiments 

were performed as previously described.  GST or GST-Chromos bound to 

glutathione agarose beads were incubated with recombinant H3-H4, ΔH3-ΔH4, 

ΔH3-H4, or H3-ΔH4 tetramers.  In this experiment, the GST-Chromos fusion 

protein interacted with all four recombinant histone tetramers while GST alone 

did not (Figure 4.7).  Our results demonstrate that the chromodomains of CHD8 

can bind to tailless histone H3-H4 tetramers.  This evidence indicates that the 

chromodomains of CHD8 bind to the core of unmodified histone H3 and/or H4.   

CHD8 Binds H3-H4 Tetramers Containing Mutations in Histone H3 

Our previous experiments demonstrated that the chromodomains of CHD8 

bind to unmodified recombinant histone H3-H4 tetramers.  In order to pinpoint the 

residues within the histones that CHD8 binds to, we designed an assay which 

would use fluorescein to label residues within the amino acid sequence of each 
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histone to determine whether binding occurs at or near that specific site.  

Fluorescein-5-malemide can bind to sulfhydryl groups on cysteines.  If we mutate 

a specific histone residue to a cysteine and then treat with fluorescein, we would 

be able to determine whether the presence of a bulky fluorescein group at that 

position affects binding of the chromodomains.  Within the amino acid sequence 

of Xenopus histone H3 one cysteine already exists at position 110.  This cysteine 

would have to be mutated in order to avoid double fluorescein labeling in our 

assays.  

The first part of this assay required the production of mutant histone 

proteins in which specific residues were mutated to cysteines.  Recombinant 

histone H3 with a cysteine (C) to alanine (A) mutation at residue 110 was 

prepared and used to form H3 (C110A)-H4 tetramers.  We prepared H3 (K36C)-

H4 tetramers using recombinant histone H3 with the C110A mutation and a 

lysine to cysteine mutation at residue 36, a residue known to interact with the 

chromodomain of other proteins (58).  GST pulldown assays were performed as 

previously described.  GST or the GST-Chromos fusion protein bound to 

glutathione agarose beads was incubated with wt H3-H4, H3 (K36C)-H4, or H3 

(C110A)-H4 tetramers.  The GST-Chromos fusion protein was able to interact 

with both the wt and mutant H3-H4 tetramers (Figure 4.8).  Our results 

demonstrate that mutation of histone H3 residues 36 and 110 does not disrupt 

binding of the CHD8 chromodomains to histone H3-H4 tetramers.  Therefore, 

these residues are not required for binding of the CHD8 chromodomains to 

histone H3-H4 tetramers. 
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Binding of the CHD8 Chromodomains to H3-H4 Tetramers is Not Disrupted 

by the Presence of a Fluorescein Labeled Residue 

Fluorescein is a large molecule.  Therefore, labeling of a specific histone 

residue with fluorescein would disrupt interaction with a histone binding protein if 

the labeled cysteine is in or near the binding pocket.  After preparing histone H3 

with mutations of specific amino acid residues to cysteines, fluorescein-5-

maleimide was used to label the sulfhydryl groups of the recombinant histone 

proteins.  The histone H3 (K36C) protein was fluorescein labeled and used to 

produce fluor H3 (K36C)-H4 tetramers.  GST pulldown assays were performed 

as previously described.  GST or the GST-Chromos fusion protein bound to 

glutathione agarose was incubated with wt H3-H4 or fluor H3 (K36C)-H4 

tetramers.  The GST-Chromos fusion protein was able to interact with fluorescein 

labeled H3 (K36C)-H4 tetramers as indicated by the fluorescent band 

corresponding to H3 detected in this pulldown (Figure 4.9). 

Recombinant histone H3 with the C110A mutation and a lysine to cysteine 

mutation at residue 79 was also fluorescein labeled and used to form H3-H4 

tetramers.  GST pulldown experiments were performed as described above.  

GST or GST-Chromos bound to glutathione agarose was incubated with H3 

(C110A)-H4 or H3 (K79C)-H4 tetramers.  The chromodomains were able to bind 

the fluor H3 (K79C)-H4 tetramers as indicated by the fluorescent band 

corresponding to histone H3 (Figure 4.10).  Together our results demonstrate 

that the presence of fluorescein labeled groups at residues 36 or 79 does not 

interrupt binding of the chromodomains to histone H3.  Since fluorescein is a 
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large molecule, our results suggest that the chromodomains are also not binding 

near residues 36 or 79. 

Discussion 

CHD8 contains multiple domains that are conserved among the members 

of the CHD6-9 subfamily.  The double chromodomains, located N-terminal to the 

Snf2 helicase domain, are particularly interesting due to previous reports 

demonstrating that the chromodomains of other proteins bind to modified histone 

tails.  The chromodomains of polycomb (Pc) and heterochromatin protein 1 

(HP1) bind histone H3 tails methylated at lysines 27 and 9 respectively, 

modifications typically associated with heterochromatin and repression (37).  The 

chromodomains of CHD1, a member of the CHD family of proteins, were 

reported to bind histone H3 lysine 4 methylated tails, a modification typically 

associated with active chromatin and activation (38).  We hypothesized that 

CHD8, like CHD1, binds to histones via double chromodomains.  Given the 

association between histone modifications, activation, and repression, 

investigating possible binding of the CHD8 double chromodomains to histones 

could provide information related to the function of CHD8. 

In order to determine whether the chromodomains of CHD8 bind to 

histones, we performed GST pulldown experiments with purified HeLa core 

histones and a fusion protein in which GST was fused to the double 

chromodomains of CHD8.  The data obtained from our pulldown experiments 

indicated that the double chromodomains of CHD8 do in fact bind core histones 
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(Figure 4.1).  In our pulldown assay the chromodomains seemed to have a 

higher affinity for binding to histone H3 and H4 and not H2A or H2B.  Since the 

core histones used in this initial experiment were purified from HeLa cells, one 

would assume that these histones would be modified.  We wanted to examine 

whether the CHD8 chromodomains, like those of proteins such as CHD1 (38), 

have an affinity for binding to a specific histone modification.  We first looked at 

three histone tail modifications known to interact with the chromodomains of 

other proteins.  Western blot analysis of samples taken from our pulldown assay 

with HeLa core histones indicated that the chromodomains of CHD8 can bind to 

core histones containing histone H3 trimethylated on lysines 4, 9, or 27 

(Figure 4.2).  The chromodomains did not seem to have a preference for binding 

to core histones with one of these modifications as compared to the others. 

It is possible, although we think unlikely, that the core histones bound to 

the CHD8 chromodomains in our initial GST pulldown assay were unmodified.  In 

order to test whether the chromodomains of CHD8 can bind to unmodified 

histones, we prepared recombinant histones H3 and H4.  We prepared histone 

H3-H4 tetramers since the chromodomains exhibited an affinity for histones H3 

and H4 in our experiments using purified HeLa core histones.  Our results from 

the GST pulldown experiments using recombinant H3-H4 demonstrate that the 

chromodomains can indeed bind unmodified histones (Figure 4.3).  The fact that 

CHD8 chromodomains can bind unmodified H3-H4 tetramers does not eliminate 

the possibility that the chromodomains can also bind modified histones.  Our 

initial GST pulldown experiments using HeLa core histones in addition to western 
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blot analysis provide evidence in favor of this possibility.  It is likely that CHD8 

binds modified as well as unmodified histones. 

After determining that the chromodomains of CHD8 can bind unmodified 

and possibly modified histones, we questioned whether CHD8 chromodomains 

bind to histone tails or the cores.  We designed several experiments to provide 

answers to this question.  In preparations for assays which would be performed 

using fluorescein, we prepared recombinant histone H3 with a C110A mutation.  

With C110 being the only cysteine in the H3 sequence, we were able to design 

assays in which various H3 residues could be mutated to cysteine and labeled 

with fluorescein-5-maleimide.  Any interaction at or near the labeled residue 

would in theory be disrupted by the presence of a bulky fluorescein group.  

Residues 36 and 79, in the tail and core of histone H3 respectively, are known to 

be methylated.  Fluorescein labeling of H3 residues 36 or 79 did not disrupt 

binding of the CHD8 chromodomains to H3-H4 tetramers (Figure 4.9 and 4.10).  

Our data demonstrated that residues 36 and 79 are not in the binding pocket 

where the chromodomain-histone interaction occurs. 

To gain additional information about which region of the histone CHD8 

chromodomains bind to, we prepared several recombinant proteins with SUMO 

fused to histone H3 tails.  Each tail contained K to C mutations in residues known 

to interact with the chromodomains of other proteins.  In GST pulldown assays, 

CHD8 chromodomains did not interact with the wt histone H3 tail or H3 tails 

containing a mutation at residue 4, 9, 27, or 36 (Figure .4.6).  The results of this 

experiment suggested that CHD8 chromodomains bind to either histone H4 
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and/or the core of histone H3.  To gain more clarity we performed GST pulldown 

experiments with H3-H4 tetramers composed of different combinations of tailed 

and tailless versions of each histone protein.  CHD8 chromodomains were able 

to interact with tetramers even when both the H3 and H4 tail was deleted 

(Figure 4.7).  This demonstrates that the chromodomains interact with the core 

and not the tail of unmodified histones. 

After demonstrating that CHD8 chromodomains do indeed bind histones, 

we sought to define the residues within the chromodomains of CHD8 that are 

required for this interaction.  Sequence alignment of the CHD8 chromos with 

CHD1, 6, 7, and 9 identified two aromatic residues as the same position as the 

residues required the interaction between CHD1 and methylated H3K4 (38).  

Mutation of these two aromatic residues, 672 and 675, within the chromodomains 

of CHD8 did not disrupt the interaction between the chromodomains and 

histones (Figure 4.4 and 4.5).  We have yet to identify the residues that are 

required for binding, however analysis of our alignment identified several 

aromatic residues that are conserved between these five CHD proteins 

(Figure 4.4, pink).  These putative binding sites could be tested in the future 

using the same method. 

After performing our initial GST pulldown experiments which demonstrate 

that CHD8 chromodomains bind to the core of histone H3-H4 tetramers, another 

group reported data related to binding of CHD8 to histones.  Yuan et al. reported 

that CHD8 binds to unmodified, dimethylated, and trimethylated K4 peptides 

(139).  Given that lysine 4 is located within the tail region of histone H3, this 
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report conflicts with our data.  It is important to note that the Yuan et al. study 

used CHD8 containing samples from an affinity purification performed with a 

GST-hStaf column.  Therefore, their experiments could be affected by the 

presence of other complex components that interact with hstaf.  Our studies, 

conducted with recombinant CHD8 and not a complex, examined and identified a 

direct interaction between CHD8 chromodomains and histones.  However, it is 

possible that CHD8 chromodomains bind to the core of unmodified histones and 

to the tails and/or core of modified histones.  This is a scenario we intend to 

study in the future. 
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Figure 4.1.  CHD8 chromodomains bind H3/H4 tetramers.  Purified HeLa core histones (Input) 
were incubated with recombinant GST or GST-Chromos as indicated at the top of the figure.  
After washing, glutathione-agarose-purified samples were subjected to SDS-PAGE.  Gels were 
analyzed by Coomassie staining.  
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Figure 4.2.  Western blot analysis of histones bound to GST-Chromos.  Purified HeLa core 
histones (Input) were incubated with recombinant GST-Chromos as in Figure 4.1.  After washing, 
glutathione-agarose-purified samples were subjected to SDS-PAGE and Western blot analysis 
with the antibodies indicated at the bottom of the figure.    
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Figure 4.3:  CHD8 chromodomains bind recombinant H3/H4 tetramers.  Purified recombinant 
H3/H4 tetramers or HeLa core histones were incubated with recombinant GST or GST-Chromos 
as indicated at the top of the figure.  After washing, glutathione-agarose-purified samples were 
subjected to SDS-PAGE.  Gels were analyzed by Coomassie staining.  
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Figure 4.4:  Clustalw alignment of CHD1 and CHD6-9 chromodomains.  The histone binding 
region of CHD1 was aligned with the CHD6-9 subfamily members using the Clustalw program.  
Residues within the sequence of CHD8 that were mutated in our studies, 672 and 675 are shown 
in yellow.  These residues within the CHD8 sequence align with the residues responsible for 
histone binding by CHD1 (yellow).  Additional conserved aromatic residues which could 
potentially be mutated in order to identify the histone binding sites within CHD8 are shown in pink. 
(Stars=identical residues, two dots=strong conservation, one dot=weak conservation) 

CHD8            -----------------GSSEEDAAIVDKVLSMRIVKKELPSGQYTEAEEFFVKYKNYSY 
chd9            -------------------SEEDAAIVDKILSSRTVKKEISPGVMIDTEEFFVKYKNYSY 
chd6            --------ASTLAWQAEEPPEDDANIIEKILASKTVQEVHPGEPPFDLELFYVKYRNFSY 
chd7            -----DSPSNTSQSEQQESVDAEGPVVEKIMSSRSVKKQKESGEEVEIEEFYVKYKNFSY 
CHD1            EEEFETIERFMDCRIGRKGATGATTTIYAVEADGDPNAGFEKNKEPGEIQYLIKWKGWSH 
                                          :  : :    :             : :*::.:*: 
 
CHD8            LHCEWATISQLEK-DKRIHQKLKRFKTKMAQMRHFFHE-----------DEEPFNPDYVE 
chd9            LHCEWATEEQLLK-DKRIQQKIKRFKLRQAQRAHFFADM----------EEEPFNPDYVE 
chd6            LHCKWATMEELEK-DPRIAQKIKRFRNKQAQMKHIFTEP----------DEDLFNPDYVE 
chd7            LHCQWASIEDLEK-DKRIQQKIKRFKAKQGQNK-FLSEI----------EDELFNPDYVE 
CHD1            IHNTWETEETLKQQNVRGMKKLDNYKKKDQETKRWLKNASPEDVEYYNCQQELTDDLHKQ 
                :*  * : . * : : *  :*:..:: :  :    : :           :::  :  : : 
 
CHD8            VDRILDESHSIDKDNGEPVIYYLVKWCSLPYEDSTWELKEDVDEGKIREFKRIQSRH--- 
chd9            VDRVLEVSFCEDKDTGEPVIYYLVKWCSLPYEDSTWELKEDVDLAKIEEFEQLQASR--- 
chd6            VDRILEVAHTKDAETGEEVTHYLVKWCSLPYEESTWELEEDVDPAKVKEFESLQVLPEIK 
chd7            VDRIMDFARSTD-DRGEPVTHYLVKWCSLPYEDSTWERRQDIDQAKIEEFEKLMSREP-- 
CHD1            YQIVERIIAHSNQKSAAGYPDYYCKWQGLPYSECSWEDGALISKKFQACIDEYFSRKK-- 
                 : :       : . .     *  ** .***.:.:**    :.      :.          
 
CHD8            --------- 
chd9            --------- 
chd6            HVERPASDS 
chd7            ETER----- 
CHD1            --------- 
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Figure 4.5:  Mutation of conserved aromatic residues in the CHD8 chromodomains does 
not alter binding to core histones or recombinant H3/H4 tetramers.  Purified recombinant 
H3/H4 tetramers or HeLa core histones were incubated with recombinant GST or GST-Chromos 
with the indicated mutations as outlined at the top of the figure.  After washing, glutathione-
agarose-purified samples were subjected to SDS-PAGE.  Gels were analyzed by Coomassie 
staining.    
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Figure 4.6:  CHD8 chromodomains do not bind wild type or mutant H3 tails.  Purified 
recombinant sumo-fused wild type or mutant H3 histone tails were incubated with recombinant 
GST or GST-Chromos indicated at the top of the figure.  After washing, glutathione-agarose-
purified samples were subjected to SDS-PAGE.  Gels were analyzed by Coomassie staining.

Input:
Peptide

Pull down:
GST

75 KDa
50 KDa
37 KDa

25 KDa

15 KDa

20 KDa

Pull down:
GST-

Chromos
Input:

Peptide
Pull down:

GST

Pull down:
GST-

Chromos

W
T

K
4C

W
T

K
4C

W
T

K
4C

K
9C

K
27

C

K
36

C

K
9C

K
27

C

K
36

C

K
9C

K
27

C

K
36

C



145 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.7:  CHD8 chromodomains bind both recombinant H3/H4 tetramers and tailless 
H3/H4 tetramers.  Purified recombinant H3/H4 tetramers or tailless H3/H4 tetramers (Input) were 
incubated with recombinant GST or GST-Chromos as indicated at the top of the figure.  After 
washing, glutathione-agarose-purified samples were subjected to SDS-PAGE.  Gels were 
analyzed by Coomassie staining.  
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Figure 4.8:  CHD8 chromodomains bind recombinant H3 (K36C/C110A)/H4 tetramers.  
Purified recombinant H3(K36C/C110A)/H4 tetramers or wild type recombinant H3/H4 tetramers 
were incubated with recombinant GST or GST-Chromos as indicated at the top of the figure.  
After washing, glutathione-agarose-purified samples were subjected to SDS-PAGE.  Gels were 
analyzed by Coomassie staining.  
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Figure 4.9:  CHD8 chromodomains bind recombinant H3/H4 tetramers flourescein labeled 
at K36.  Purified recombinant H3/H4 tetramers flourescein labeled at K36 or wild type 
recombinant H3/H4 tetramers were incubated with recombinant GST or GST-Chromos as 
indicated at the top of the figure.  After washing, glutathione-agarose-purified samples were 
subjected to SDS-PAGE.  Gels were analyzed by Coomassie staining (Top) or fluorescent 
imagining with a Typhoon Trio+ Imager (Bottom).    
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Figure 4.10:  CHD8 chromodomains bind recombinant H3/H4 tetramers flourescein labeled 
at K79.  Purified recombinant H3/H4 tetramers flourescein labeled at K79 or wild type 
recombinant H3/H4 tetramers were incubated with recombinant GST or GST-Chromos as 
indicated at the top of the figure.  After washing, glutathione-agarose-purified samples were 
subjected to SDS-PAGE.  Gels were analyzed by Coomassie staining (Top) or fluorescent 
imagining with a Typhoon Trio+ Imager (Bottom).    
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Chapter V 

 

Conclusion 

The highly condensed nature of chromatin structure presents a significant 

barrier to cellular processes that use DNA as substrate.  Therefore, enzymes that 

alter chromatin structure can have a significant impact on these cellular 

processes such as transcription, replication, repair, and recombination.  

Remodeling enzymes not only affect normal cellular processes, but can also 

affect disease states such as cancer.  Therefore, the study of enzymes that can 

alter chromatin structure is crucial for understanding human health.  When 

embarking on this study, we sought to further define the function of CHD8, a 

member of the CHD6-9 subfamily of CHD proteins.  While the CHD1-2 and 

CHD3-4 subfamilies were well studied, little information was known about the 

CHD6-9 subfamily.  To gain additional information on CHD8 we tested two major 

hypotheses; 1) CHD8 is an ATP-dependent chromatin remodeling enzyme and 

2) CHD8 exists in a multi-subunit complex with other proteins required for the 

function of CHD8.  Our findings support both hypotheses and suggest that CHD8 

plays a role in both cancer and development. 
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In Chapter II, we performed experiments to test the hypothesis that CHD8 

is an ATP-dependent chromatin remodeling enzyme.  Members of the CHD 

family of proteins possess a conserved Snf2 helicase domain, a domain present 

in all ATP-dependent chromatin remodeling enzymes.  While members of the 

CHD1-2 and CHD3-4 subfamilies have previously been reported to be 

ATP-dependent chromatin remodelers, this activity has not been observed for a 

member of the CHD6-9 subfamily.  However, both CHD6 and CHD9 were 

reported to possess nucleosome or DNA stimulated ATPase activity (75, 109), an 

indicator of potential chromatin remodeling activity.  Our studies demonstrate that 

CHD8 also possesses ATPase activity, and this activity requires the Snf2 

helicase domain.  To directly test for remodeling activity, we performed restriction 

enzyme accessibility assays.  Our results clearly demonstrate that CHD8 is an 

ATP-dependent chromatin remodeling enzyme.  When nucleosome sliding 

assays were performed using CHD8, we observed sliding of nucleosomes when 

both CHD8 and ATP were present.  This result indicates that CHD8 can remodel 

chromatin by moving histone octamers to new locations along DNA.  Our data is 

the first evidence of chromatin remodeling activity for a member of the CHD6-9 

subfamily.  Given the high level of similarity between the Snf2 helicase domains 

within this subfamily and the fact that ATPase activity has been documented for 

other subfamily members, our results suggest that the other members of this 

subfamily also possess chromatin remodeling activity.  

In Chapter II we also test the hypothesis that β-catenin interacts with 

human CHD8 and regulates transcription of β-catenin responsive genes.  An 
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N-terminal fragment of CHD8 in rat, termed Duplin, was previously shown to bind 

β-catenin and inhibit TCF-dependent transcription (103).  However, there is no 

evidence of this truncated form of CHD8 in human cells.  β-catenin has been 

reported to interact with multiple proteins involved in opening the chromatin 

structure; however, an in vitro study of β-catenin mediated transcription 

demonstrated the requirement of p300 and an unknown chromatin remodeling 

enzyme (125).  The interaction of Duplin with β-catenin, and the requirement of 

an unknown chromatin remodeling factor in β-catenin mediated transcription 

suggest that CHD8 could possibly be this unidentified remodeler.  We 

demonstrate that human CHD8 interacts with β-catenin both in vitro and in vivo.  

This interaction occurs through the armadillo repeats of β-catenin.  We also ChIP 

CHD8 to the 5’ promoter region of several β-catenin responsive genes.  By 

targeting CHD8 for depletion in human HCT116 and Drosophila S2 cells, we 

demonstrate that knockdown of CHD8 results in increase expression of β-catenin 

responsive genes.  These results demonstrate that CHD8 negatively regulates 

the transcription of these β-catenin responsive genes.   

Together, the data presented in Chapter II support our initial hypothesis 

that CHD8 is an ATP-dependent chromatin remodeling enzyme.  Our data also 

suggest a model in which CHD8 regulates the transcription of β-catenin 

responsive genes by remodeling chromatin in the 5’ promoter region of these 

genes.  The most likely explanation is that CHD8 remodels the chromatin into a 

closed state, and therefore represses transcription.  CHD8 may also repress 
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transcription of β-catenin responsive genes by recruiting other proteins to the 

promoter region which function as transcriptional co-repressors.   

In Chapter III, we test the hypothesis that CHD8 exists in a multi-subunit 

complex with other proteins that may be required for the function of CHD8.  In 

order to estimate the size of the potential CHD8 complex, we performed a partial 

purification of HeLa nuclear extract using P11, DEAE, and Superose 6 

chromatography.  The elution profile from the Superose 6 size exclusion column 

is consistent with an ~900kDa CHD8 containing complex.  We performed both a 

conventional and affinity purification to identify the individual complex 

components.  MS/MS analysis of the affinity purified sample identified CHD8 and 

multiple other factors known to be involved in altering chromatin structure.  

Among these proteins were the core components of the MLL methyltransferase 

complex; WDR5, RbBP5, and Ash2L.  We initially focused on confirming the 

interaction between CHD8 and WDR5, as CHD8 was identified in a previous 

study of a MLL histone methyltransferase complex purified via an affinity-tagged 

WDR5 (29).  We demonstrate that CHD8 interacts with WDR5 both in vitro and in 

vivo, confirming this association.  Our co-infection experiments demonstrated 

that CHD8 also forms a complex with RbBP5, Ash2L, and WDR5 and suggest 

that this complex may also include MLL.  Western blot analysis of fractions from 

the Superose 6 size exclusion column demonstrate that CHD8, WDR5, RbBP5, 

Ash2L, and MLL1 elute in the same fraction as would be expected for 

components of a complex.  However, since this fraction is not the peak CHD8 

containing fraction, our analysis indicates that the bulk of CHD8 exists outside of 
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this complex.  Together, our results demonstrate that CHD8 exists in a complex 

with WDR5, RbBP5, and Ash2L that may also contain MLL.  Our results also 

suggest that multiple CHD8 complexes exist.  These data support our initial 

hypothesis that CHD8 is a component of a multi-subunit complex and opens the 

door for future studies which would confirm the existence of additional CHD8 

containing complexes. 

In Chapter III, we also hypothesized that CHD8 may be involved in the 

regulation of Hox gene expression.  As WDR5 was previously shown to regulate 

Hox gene expression (135), and we demonstrate that CHD8 directly interacts 

and forms a complex with WDR5, we wanted to determine whether CHD8 could 

also regulate Hox gene expression.  Supporting this hypothesis, we demonstrate 

using ChIP assays that CHD8 binds to the promoter region of several HoxA 

genes in both NT2/D1 and HeLa cells.  By using RNAi targeting CHD8 in induced 

NT2/D1 cells, we demonstrate that depletion of CHD8 results in increased 

expression of HoxA1-HoxA4.  Our results indicate that CHD8 negatively 

regulates the expression of these genes, similar to the results from the β-catenin 

responsive genes. 

When comparing the results from our Hox gene induction, RNAi 

experiments, and ChIP assays, we made several interesting observations.  We 

noticed that the increased expression observed when CHD8 is depleted inversely 

correlates with the level of Hox gene expression induced by ATRA.  In other 

words, the higher the expression observed when a given HoxA gene is induced, 

the lower the increase in expression observed when CHD8 is depleted.  We see 
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the smallest increase in Hox gene expression for the gene that had the highest 

expression when induced (compare Figure 3.11 with 3.12).  This seems to 

suggest that CHD8 has a greater effect on Hox genes which are expressed at 

lower levels.  We also made a second interesting observation when examining 

our ChIP data.  In the uninduced state, the highest level of CHD8 binding is 

observed for HoxA1 while lower levels are observed for HoxA2 and A4.  Upon 

ATRA induction, we observe a significant decrease in the level of CHD8 binding 

to the HoxA1 promoter and an increase in binding to the HoxA2 and A4 

promoters (Figure 3.14).  This result seems to suggest that CHD8 is moving to 

the promoter region of genes that are being expressed at lower levels.  This 

observation correlates with the previous observation that CHD8 has a greater 

effect on Hox genes that are expressed at lower levels.  Upon Hox gene 

induction, the highest level of CHD8 binding is observed for the gene that has the 

lowest ATRA induced expression (compare Figure 3.11 with Figure 3.14). 

Taken together, the results in Chapter III provide evidence in support of 

our initial hypothesis that CHD8 exists in a complex with other proteins that may 

be required for the function of CHD8.  Our data also suggest a model in which 

CHD8 regulates the transcription of Hox genes by remodeling chromatin in the 5’ 

promoter region of these genes.  As with the β-catenin responsive genes, it is 

possible that CHD8 remodels the promoter regions into a closed state which 

prevents efficient transcription.  It is again also possible that CHD8 represses 

transcription by recruiting co-repressors to these genes.  It is interesting to 

speculate that the inverse correlation of Hox gene expression with the level of 



155 

CHD8 bound to the promoter serves as a possible mechanism for feedback 

regulation.   

In Chapter IV, we test the hypothesis that the chromodomains of CHD8 

function in the binding of methylated lysines in histones.  As previously stated, 

the chromodomains of CHD1 were found to bind methylated lysine 4 on the 

histone H3 tail (38).  We wanted to determine whether the chromodomains of 

CHD8 could also bind methylated lysines in histones.  We demonstrate that the 

chromodomains of CHD8 bind purified HeLa core histones, with a high affinity for 

histones H3/H4.  CHD8 chromodomains do not appear to have an obvious 

preference for binding to a specific modification on histone H3 tails, as they are 

able to bind histones containing H3 modified at lysines 4, 9, and 27.  We 

demonstrate that CHD8 chromodomains also possess the ability to bind 

unmodified recombinant histone H3-H4 tetramers.  Mutation of specific aromatic 

residues, which align with residues in the chromodomains of CHD1 required for 

histone binding, does not disrupt CHD8 binding to histones.  Pulldown 

experiments performed with histone H3 tails demonstrate that the 

chromodomains of CHD8 are unable to bind to the N-terminal tail of histone H3.  

We also show that the chromodomains of CHD8 can bind to histone H3-H4 

tetramers in which the tails are deleted.  Finally we demonstrate that the CHD8 

chromodomains do not bind to histone H3 directly through lysine 36 or 79.  

Together this data supports our hypothesis that the chromodomains of CHD8 

bind histones, but not to the histone H3 or H4 tails as expected.   
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After analyzing the data presented in Chapter II, III, and IV, we are able to 

propose a model describing how CHD8 functions.  CHD8 is an ATP-dependent 

remodeling enzyme which can associate with globular histone cores via the 

tandem chromodomains.  This association with histones is limited to the 

promoter regions of its target genes.  At these promoters, CHD8 remodels the 

chromatin and thereby negatively or positively regulates transcription of this 

given target gene.  Although the molecular mechanism for determining negative 

or positive regulation is currently unclear, given our identification of multiple 

CHD8 interacting proteins it is tempting to speculate that the decision results 

from the association of CHD8 with different binding partners at a given promoter.  

Our western blot analysis of size exclusion purified HeLa nuclear extracts 

(Figure 3.9) supports the existence of these numerous complexes.   

Our studies of HoxA genes and β-catenin responsive genes indicate that 

CHD8 negatively regulates these genes, as knockdown of CHD8 results in 

increased expression of these genes.  While CHD8 negatively regulates these 

genes, our chromodomain data suggests that CHD8 may also positively regulate 

other genes.  In Chapter IV, our Western blot analysis detected CHD8 bound to 

histone H3 methylated on lysines 4, 9, and 27 of the H3 tail.  Methylated lysine 4 

is typically associated with active genes while methylation of lysine 9 and 27 is 

associated with repressed genes.  What mechanism would CHD8 use to both 

negatively and positively regulate genes?  It is possible that CHD8 remodels the 

promoter region into an “open” or “closed” chromatin state and/or recruits factors 

that act as activators or repressors to the promoter region.  Whether CHD8 is 
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involved in negatively or positively regulating a given target gene may partially 

depend on the composition of the given CHD8 complex which is associated with 

the target gene promoter.   

The three main steps of the transcription cycle are initiation, promoter 

clearance, and elongation.  During different steps of the cycle, the C-terminal 

domain (CTD) of Pol II becomes phosphorylated at various serine residues.  In 

the initiation step, Pol II is recruited to the promoter and the CTD is 

unphosphorylated.  During the early stages of elongation after the Pol II clears 

the promoter region, the CTD becomes phosphorylated at serine 5.  As 

elongation proceeds, the CTD becomes phosphorylated at serine 2 in the late 

stages of elongation. 

What about the difference in Kismet and CHD8?  Studies performed by 

Kennison and Tamkun suggest that Kismet functions as an activator of homeotic 

gene expression (57).  In contrast, our results demonstrate that knockdown of 

CHD8 results in increased expression of the human homeotic genes HoxA1-4.  

Our results therefore suggest that CHD8 negatively regulates Hox gene 

expression. 

Further research by the Tamkun group suggests a model for Kismet’s 

involvement in the transcription cycle (116).  In their model, Kismet is recruited to 

promoter regions through interactions with activators or components of the 

general transcription machinery.  Once at the promoter, Kismet recognizes H3K4 

methylated nucleosomes via the chromodomains.  Kismet then remodels the 
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nucleosomes allowing Pol II elongation to proceed.  Their model also depicts 

CHD1 playing a role in the later steps of elongation, downstream of Kismet 

involvement (116). 

Our data demonstrates that CHD8 negatively regulates the expression of 

both β-catenin responsive genes and Hox genes.  Above we presented the 

following model describing how CHD8 functions.  CHD8 is an ATP-dependent 

remodeling enzyme which can associate with globular histone cores via the 

tandem chromodomains.  This association with histones is limited to the 

promoter regions of its target genes.  At these promoters, CHD8 remodels the 

chromatin and thereby negatively or positively regulates transcription of this 

given target gene.  Our data suggests that CHD8, like Kismet, may also play a 

role in promoter clearance.  However, with respect to the β-catenin responsive 

genes and Hox genes studied here, it appears that CHD8 remodels the 

nucleosomes to produce a barrier to transcriptional elongation and thereby 

pausing Pol II and elongation. 

In summary, the data presented in this thesis adds additional information 

to the field of chromatin remodeling.  Through regulating the localization of β-

catenin, the Wnt signaling pathway is intimately involved in development and 

tumorigenesis.  The regulation of HoxA gene expression is also strongly tied to 

development and disease.  The data we present here is further evidence of a 

connection between the modification of chromatin structure, and human 

development and disease states such as cancer.  This suggests that CHD8 may 

be a future therapeutic target in the treatment of human diseases.  
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