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Abstract 
 

XIAP Promotes the Innate Immune Response during Cytosolic Bacterial Infection 

 

by 
 

Laura Delbridge Bauler 
 

Chair: Mary X.D. O’Riordan 
 
 
 The role of the innate immune system is to coordinate recognition and control of 

invading pathogens, and to instruct the development of adaptive immunity.  Pathogens 

are detected by pattern recognition receptors on membranes or in the cytosol of host cells. 

The Toll-like receptor (TLR) family senses pathogens at the plasma membrane or within 

the vacuole, while surveillance of the cytosol is provided by the NOD-like receptors 

(NLR) and RIG-I-like receptors.  The TLR family is well characterized, however the 

proteins involved in detection of intracellular pathogens and activation of the innate 

immune signaling pathways have only recently been described. We performed an 

affinity-based method to identify components of the cytosolic innate immune signaling 

pathway that associated with Listeria monocytogenes (Lm), an intracellular pathogen.  

We identified several classes of candidate proteins, and determined that one protein, the 

X-linked inhibitor of apoptosis (XIAP), is critical for in vivo innate immunity to Lm 

infection.  Mice deficient in XIAP display a greater susceptibility to Lm infection.  In 

response to cytosolic Lm, XIAP enhanced signaling through the NF-κB and Jun N-



 

 x

terminal kinase (JNK) pathways.  Additionally, XIAP promoted maximal production of 

pro-inflammatory cytokines upon bacterial infection in vitro or in vivo, or in response to 

combined treatment with Nod2 and TLR2 ligands.  In vivo, we observed that XIAP 

regulates the expression of proinflammatory cytokines and is required for proper 

trafficking of Lm infected phagocytes to the white pulp of the spleen.  Taken together, 

our results indicate that XIAP regulates the cytosolic innate immune response to Lm 

infection by promoting production of proinflammatory cytokines and coordinating TLR 

and NLR signaling.  XIAP enhances proinflammatory cytokine production in vivo, 

promoting control of Lm replication and trafficking of infected phagocytes to the T cell 

zone of splenic follicles.  
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Chapter 1 : Introduction 
 

The cells of the innate immune system, such as macrophages and neutrophils are the first 

responders to microbial invasion.  They detect invading microbes, activate antimicrobial 

responses and regulate the development of adaptive immunity.  The innate immune 

system detects pathogens using extracellular and intracellular pattern recognition 

receptors (PRR).  The Toll-like receptor (TLR) family senses pathogens at the cell 

surface, by recognizing pathogen associated molecular patterns (PAMPs) such as 

lipopolysaccharide (LPS), peptidoglycan, lipotechoic acid and flagellin.  Surveillance of 

PAMPs in the cytosol is provided by two families of sensors: the NOD-like receptors 

(NLR) and RIG-I-like receptors (RLR).  The TLR family is well characterized and many 

of the microbial components recognized by each receptor are known.  However, the 

proteins involved in detection of intracellular pathogens and activation of the innate 

immune signaling pathways have only recently been described and thus much remains 

unknown about regulation of cytosol specific innate immunity.  The goal of my thesis 

work was to further define these cytosolic signaling pathways and examine how the host 

cell integrates extracellular (TLR) and cytosolic (NLR) signaling in response to infection. 

 

Many pathogens can evade aspects of the immune response by growing intracellularly, 

however, the host can still resolve many infections, therefore, it is likely that the cytosolic 
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surveillance system plays an important role in host protection.  Recognition of 

intracellular bacteria and other PAMPs could be important for several reasons: 1) it may 

play a role as a failsafe detection mechanism for pathogens that limit recognition by the 

TLRs; 2) cytosolic detection of pathogens may be an amplification step of the immune 

response, allowing cells to fine tune their response to pathogens, or may be a second 

signal necessary as confirmation of infection; 3) cytosolic anti-microbial mechanisms 

may only be activated when cytosolic bacteria or viruses are present; 4) the innate 

immune response may need intracellular detection mechanisms to aid in expression of 

microbial antigens in major histocompatibility complexes to alert the immune system to 

the presence of infected cells; 5) additionally, cytosolic recognition of pathogens may 

help to instruct the immune response to develop a Th1/CTL response, which is critical 

resolving infection by many intracellular pathogens, rather than a TH2 (antibody) 

response.  

 

Pathogen associated molecular patterns (PAMPs) 

Pathogen associated molecular patterns (PAMPs) are conserved motifs that are unique to 

microorganisms, and are often essential for their survival thus they are highly 

conserved[1].  PAMPs are produced exclusively by microbes, enabling the host to 

differentiate self from non-self.  Some of these motifs are invariant between microbes of 

a given class, such as LPS in Gram-negative pathogens, thus allowing the host to employ 

a limited number of germline encoded receptors to detect microbial infection[2]. 

 

An Evolutionary Perspective 
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Microorganisms affect all living organisms, therefore there is a need for self-defense in 

order to survive and evolve.  This evolutionary pressure led to the refinement of intricate 

immune mechanisms, starting with the innate immune system and leading to the 

development of the vertebrate adaptive immune system.  The fruit fly, Drosophila 

melanogaster, does not possess an adaptive immune response, and therefore must fight 

microbial infection solely using an innate immune response.  Thus, Drosophila has 

proven to be a powerful genetic system yielding a great deal of information about 

conserved pathways in innate immunity.  The archetypal member of the TLR signaling 

pathway, Toll, was first identified in Drosophila; flies that lack Toll are 

immunocompromised[3]. In Drosophila there are two major pathways that regulate 

immunity; Toll, which protects against Gram-positive and fungal pathogens, and Immune 

deficiency (Imd), which protects against Gram-negative pathogens.  The primary 

response induced by microbial recognition is the production of antimicrobial peptides.  

 

Innate immune signaling pathways are well conserved from Drosophila to humans [4]. 

The mammalian TLR pathway is primarily responsible for the detection of extracellular 

pathogens[5].  The Imd pathway is largely homologous to the mammalian TNF pathway 

(Figure 1).  Imd is homologous to the mammalian RIP1 protein involved in TNF 

signaling.  Many of the components of the TNF pathway including RIP, FADD and TAK 

play a key role in initiating immune responses to cytosolic pathogens[6,7,8].  Thus, in 

mammalian systems, the Toll pathway primarily detects pathogens at the cell surface, 

while the homologs of the Imd pathway in mammals are implicated in detecting pathogen 

components in the cytosol.   
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Figure 1.1 Comparison of the Drosophila Imd pathway and the mammalian TNF 
pathway 

Inhibition of apoptosis in Drosophila cells by DIAP1 occurs through binding to the 
initiator and effector caspases, Dronc and DrICE.   Similarly, direct binding and 
inhibition of caspase-3 in mammalian cells is mediated by XIAP.  Mammalian c-IAP1 
and c-IAP2 can directly bind caspases but are poor caspase inhibitors, instead acting to 
regulate apoptosis by indirectly modulating caspase-8 activity.  Binding of TNF to its 
receptor results in recruitment of TRADD, RIP, and TRAF2. The c-IAPs also participate 
in pro-survival signaling through TNFR by associating with TRAF2.   c-IAP1 and -2 
ubiquitylate RIP1, which minimizes association with caspase-8, preventing apoptosis. 
Additionally, the association of RIP, TRAF2, and c-IAP1/2 leads to the activation of 
TAK and subsequent NF-⎢B and JNK activation, resulting in enhanced transcription of 
pro-survival genes.  c-IAP1 and -2 can also inhibit NIK kinase and downstream 
processing of p100, thereby negatively regulating NF-⎢B activation.  Thus, the effects of 
c-IAP1 and -2-dependent signaling on NF-⎢B are likely defined by context.  A TNFR-like 
pathway regulates immune responses to microbial infection in Drosophila.  Gram-
negative bacteria are recognized by the peptidoglycan recognition proteins (PGRP), 
which activate the Imd signaling pathway.  Imd is an insect homolog of mammalian 
RIP1.  Genetic studies place Imd, dFADD, Dredd and DIAP2 upstream of or parallel to 
dTAK activation.  D-TAK activates both the JNK and Relish pathways analogously to 
TAK1 in mammalian cells, promoting induction of anti-microbial peptide genes. 
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Extracellular Detection of Pathogens (TLRs) 

The Toll-like receptors (TLRs) play an essential role in recognizing extracellular and 

vacuolar bound foreign particles and initiating the innate immune response. The TLR 

family has expanded throughout evolution: Drosophila only has one membrane receptor 

for the Toll pathway, while humans have 10 different TLRs and mice have 12 TLR 

family members.  Mammalian TLR- 3, 7, 8 and 9 are expressed on vacuolar membranes, 

while TLR- 1, 2, 4, 5, 6 and 10 are expressed on the cell surface[9].  The vacuolar TLRs 

recognize nucleic acids including dsRNA, ssRNA, and CpG DNA motifs.  The cell 

surface TLRs recognize many bacterial ligands, including lipopeptides, LPS and 

flagellin, as well as some endogenous ligands[2].  The TLR proteins are transmembrane 

receptors containing 19-25 extracellular leucine rich repeats (LRR) and an intracellular 

Toll/interleukin-1 receptor (TIR) domain[10].  The LRR domain forms a horseshoe 

shaped structure that provides binding sites for PAMPs.  The ability of the TLRs to 

recognize a wide variety of PAMPS lies in their marked deviation from the LRR 

consensus sequence, the most crucial deviation being insertions, which are commonly the 

sites of PAMP recognition[9].   Ligand binding by the LRR triggers dimerization of 

several TLR proteins and induces conformational changes, which allows the cytosolic 

TIR domains to recruit adaptor molecules inducing a phosphorylation cascade (Figure 2).  

Phosphorylation of NF-κB and the MAP kinase family leads to activation and 

translocation of transcription factors to the nucleus, where they induce transcription of 

costimulatory molecules and proinflammatory cytokine genes, including TNF and IL-

6[10].  
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Figure 1.2 TLR signaling pathway 

Ligand-binding to TLR recruits the intracellular adaptor molecules Toll-interleukin 1 
receptor (TIR) domain-containing adapter protein (TIRAP) and MyD88 to the cytosolic 
TIR domain of the receptor. IRAK4 and IRAK1 then associate with the complex 
activating TRAF6.  TRAF6 recruits and activates TGF-B activated Kinase 1 (TAK1).  
TAK1 forms a complex with the TAK binding proteins TAB1, TAB2 and TAB3, and 
then activates the IKK complex.  IKK phosphorylates the IκB family and leads to the 
activation of NF-κB.  TAK1 also activates members of the MAP kinase family including 
JNK, p38 and ERK. TLR4 can also signal through a complex of TRAF3, TRIF, TRAM 
and RIP1 to activate TANK binding kinase 1 (TBK1) and subsequently the transcription 
factor IRF3.  Activation of NF-κB, IRF3 and the MAP kinase family leads to activation 
and translocation of transcription factors to the nucleus. 



 

 7

Cytosolic Detection of Pathogens (NLRs and RLRs) 

A primary function of the NLR family, which includes more than 23 proteins, is to sense 

cytosolic PAMPs.  Nod1 and Nod2 were the first described NLR proteins, identified 

based upon their homology to plant NBS-LRR proteins.  The NBS-LRR proteins are 

thought to act as guard proteins in plants that protect against pathogens[11].  The NLR 

proteins contain a LRR domain which mediates ligand sensing, a central nucleotide 

oligomerization domain (NOD) responsible for protein-protein interactions with other 

NOD domain containing proteins, and a domain for the initiation for signaling such as 

caspase recruitment domain (CARD), PYRIN or baculoviral inhibitor of apoptosis 

repeats (BIR) domain[12].  Similar to the TLR proteins, the LRR domain of the NLR 

proteins is thought to recognize microbial products, triggering oligomerization via the 

NOD domain to activate a cellular response governed by the signaling domains.  

 

The two most well characterized NLR proteins, Nod1 and Nod2, participate in innate 

immune sensing of diaminopimelic acid (DAP) and muramyl dipeptide (MDP) 

containing motifs respectively, which are components of peptidoglycan found in the 

bacterial cell wall[13,14]. DAP is primarily found in Gram-negative organisms, while 

MDP is the minimal unit of peptidoglycan in both Gram-positive and Gram-negative 

organisms.  Nod1 and Nod2 signal through a common downstream mediator, RIP2 

(RICK), a protein that interacts with IKKγ to activate the NF-κB signaling pathway[15].  

Additionally, the Nod1 and Nod2 proteins activate MAPK signaling through CARD6 and 

CARD9 respectively[16,17].  At the start of this thesis, the other NLR family members 



 

 8

were not well characterized; their ligands and the subsequent signaling pathways that 

were activated had not yet been identified.  

 

During my thesis research, a more detailed model of cytosolic innate immune signaling 

has emerged.  There are two different models of innate immune activation by NLRs in 

response to intracellular bacteria; Nod1 and Nod2 primarily activate NF-κB and MAPK 

signaling, whereas many other NLRs activate the inflammasome and NF-κB (Figure 3) 

[18].  The inflammasome is a cytosolic complex of proteins that is assembled in response 

to cytosolic bacterial PAMPs and membrane perturbation[19].  The pivotal enzyme in the 

inflammasome is caspase-1, which is activated by NLR proteins[20].   Cleavage activates 

caspase-1 allowing it to process the immature pro-inflammatory cytokines, pro IL-1β and 

pro IL-18, to their mature and active forms; additionally, caspase-1 can induce an 

inflammatory cell death.  TLR signaling induces the transcription and translation of pro-

IL-1β, however a second activation event must activate caspase-1 in order to get cleavage 

and secretion of mature IL-1β.  This observation indicates that the intracellular pathogen 

detection systems synergize with the TLRs to amplify cytokine and chemokine 

production, increasing the stimulatory environment that instructs the cells of the adaptive 

immune response[21].  

 

The RIG-I like family of receptors (RLR) include RIG-I and Mda5, two RNA helicases 

that have recently been identified as essential components for the innate antiviral 

response[22,23].  Upon recognition of ssDNA or dsDNA in the cytosol, these viral 

sensors trigger activation NF-κB and IRF transcription factors resulting in antiviral  
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Figure 1.3 The NLR signaling pathway 

Intracellular pattern recognition receptors detect the presence of bacterial components in 
the cytosol, resulting in the activation of a pro-inflammatory response. Nod1 and Nod2 
sense peptidoglycan-derived muropeptides in the cytosol and form a complex with RICK 
(RIP-like interacting caspase-like apoptosis regulatory protein kinase; also known as 
RIP2). Activation of RICK leads to NF-κB translocation to the nucleus to induce 
transcription of cytokine genes. Nalp3 recognizes MDP and bacterial RNA, as well as 
endogenous uric acid crystals and high concentrations of ATP in the cytosol (Nalp1b, 
which responds to anthrax lethal toxin, is not shown). Activation of Nalp3 results in the 
formation of the inflammasome (which includes Nalp3, apoptosis-associated speck-like 
protein containing a caspase-recruitment domain, and caspase-1), inducing cleavage and 
activation of caspase-1. Active caspase-1 cleaves pro-IL-1β into its mature form, IL-1β, 
which is then secreted. Naip5 and Ipaf sense cytosolic flagellin and activate caspase-1. 
Cytosolic DNA is sensed by an unknown receptor, activating the transcription factor 
interferon regulatory factor 3 (IRF3). 
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immune responses, including expression of type-1 interferons[24].  Several components 

of the TNF signaling pathway including FADD and RIP1 are required for induction of 

type 1 interferon by intracellular dsRNA stimulation[6].  The involvement of FADD and 

RIP1 in mammalian cytosolic immunity is evidence that the Imd signaling pathway of 

Drosophila has likely evolved in mammals to protect cells against intracellular 

pathogens. 

 

Immunity to Listeria monocytogenes  

Immunologists and microbiologists alike have employed Listeria monocytogenes (Lm) to 

study the interaction between the host and pathogen.  Lm is amenable to genetic 

manipulation; since it can infect the mouse, the immune response triggered by Lm in the 

murine model of infection is very well characterized.  Listerial species are commonly 

found in the environment and can be carried by a number of mammalian and avian 

species, including in the gastrointestinal tract of 5-10% of the human population[25].  

Humans are exposed to Lm by ingesting contaminated food products such as 

unpasteurized dairy products and incompletely cooked meat.  Immunocompromised 

individuals and infants are susceptible to infection by Lm, where it most commonly 

causes septicemia and meningitis, but can also lead to septic abortion[25].   

 

The majority of Lm infection studies in the mouse do not occur via the normal 

gastrointestinal route of infection but rather by intraperitoneal (i.p.) or intravenous (i.v.) 

injection of the bacteria.  Thus, the majority of our knowledge about the immune 

response to Lm is from systemic infections, where Lm is initially taken up by phagocytes.  
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Two main sites of Lm replication in the mouse are in the liver and spleen.  Due to the 

availability of well defined mutants and the wealth of information know about the 

immune response to Lm, we chose to use it as a model system to study the cytosolic 

innate immune response.   

 

Lm can be taken up by phagocytosis or can induce its own uptake by secreting an invasin 

protein, internalin A.  Binding of internalin A to E-cadherin on epithelial cells initiates 

phagocytic uptake[26].  After bacterial entry, Lm is then able to escape from the vacuole 

by secreting listeriolysin O (LLO) and the phospholipases C, which induce vacuolar 

membrane damage (Figure 4) [27,28].  Upon rupture of the vacuole, Lm gains access to 

the cytosol, which upregulates production of the surface protein, ActA, which nucleates 

host actin polymerization[29].  Actin-based motility propels the bacteria through the 

cytosol.  When bacteria encounter the cell membrane, they can protrude from the cell and 

be ingested by neighboring cells, allowing Lm to spread from cell to cell without being 

exposed to the extracellular environment.  

 

The innate immune response is critical for controlling Lm replication during the early 

phase of infection[30].  The adaptive immune response, specifically CD8+ T cells, is 

essential to achieve clearance of Lm[31,32,33].  Lm has several PAMPs, including 

lipotechoic acid, flagellin and MDP, which trigger innate immune recognition of the 

pathogen.  TLR and NLR stimulation by Lm induces activation of the NF-κB and MAP 

kinase signaling pathways, resulting in the induction of a proinflammatory response[34].  

NLR activation also leads to assembly of the inflammasome[35].  Upon cytosolic 
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Figure 1.4 Listeria monocytogenes Lifecycle 
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localization of Lm, a distinct pattern of gene expression is rapidly induced, which 

includes a number of proinflammatory cytokine genes.  For example, the interferon beta 

(ifnb) gene is induced by cytosolic bacteria but not by vacuole bound bacteria[34].   

Additionally, TLR activation leads to the upregulation of il1b gene expression; however, 

cleavage and secretion of IL-1β only occur after cytosolic receptor induced 

inflammasome activation.  Mice deficient in the adaptor proteins Myd88 or RICK, 

critical adaptors for the TLR and NLR pathways, are very susceptible to Lm infection, 

indicating the importance of intracellular and extracellular recognition of this pathogen 

for control and clearance by the immune system[7,36]. 

 

Upon pathogen detection, the host sets up a state of inflammation, recruiting innate 

immune cells to the site of infection.  Recognition of Lm by the TLRs and NLRs induces 

the production and secretion of several proinflammatory cytokines including Interferon- γ 

(IFNγ), Interluekin-6 (IL-6), Interleukin-12 (IL-12), Interleukin-1β (IL-1 β) and Tumor 

Necrosis Factor-α (TNF) and several adhesion molecules[25,37].  These 

proinflammatory cytokines promote recruitment and activation of innate immune cells 

including macrophages, dendritic cells (DC), natural killer cells (NK cells) and 

neutrophils[38].  The adhesion molecules direct phagocyte trafficking to the spleen and 

lymph nodes where they can present antigens to the T cells and B cells that make up the 

adaptive arm of the immune response[39].  CD8α+ DC are required for early Lm entry 

into the spleen, suggesting that they are the major population of cells trafficking Lm from 

sites of infection to the spleen[40].  Once in the spleen, Lm is observed in the T cell zone 

of lymphoid follicles, presumably in phagocytes, where other immune cells including 
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dendritic cells and neutrophils are recruited to fight the infection and aid in presentation 

of antigen to T cells[41].  

 

In response to infection by Lm, a series of coordinated interactions occur between the 

cells of the innate immune system resulting in proinflammatory cytokine production and 

subsequent immune cell activation.  Cells infected directly by Lm, such as macrophages 

and epithelial cells, respond by producing several proinflammatory cytokines including 

IL-6, TNF and IL-12[36,42,43].  TNF, IL-12 and IL-18 activate NK cells to produce 

IFNγ, which synergizes with TNF to enhance the microbicidal activity of 

macrophages[38].  Activation of macrophages upregulates expression and activity of 

inducible nitric oxide synthase and NADPH oxidase, the enzymes responsible for 

producing nitric oxide and superoxide. respectively.  Both the oxidative burst of 

macrophages and the production of nitric oxide are critical to controlling Lm infection, 

specifically through their microbicidal effects on Lm in the vacuole, which prevents 

vacuolar escape[44,45,46,47].  IL-6 enhances the production of IFNγ as well as 

promoting recruitment of neutrophils to sites of infection[48,49].  Crosstalk between 

innate immune cells is critical for proper function and pathogen control. 

 

One of the common themes that is emerging is the importance of spatial positioning in 

the developing immune response.  One potential role of cytosolic immunity is to enhance 

signaling in cooperation with the TLR signaling pathway, as seen for IL-1β signaling; 

however, the proteins involved in this synergy and regulation are unknown.  In the 

cytosol, Lm triggers a specific pattern of genes that is responsible for control of infection.  
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LLO-deficient Lm, which are trapped in the vacuole and therefore do not trigger cytosol 

specific genes, also do not promote protective immunity, suggesting that the cytosol 

specific response to infection is critical to protect the host from future infection[50].  

Some of the cytosol specific genes triggered, such as ifnb, are not induced by any of the 

NLR proteins known to respond to Lm.  Therefore, there are additional uncharacterized 

pathways triggered by cytosolic Lm[51].  It has been hypothesized that the defect in 

protective immunity during an LLO-deficient Lm infection is due to a mislocalization of 

the infected phagocytes.  Cell harboring vacuolar Lm are not recruited to the T cell zone 

of the splenic follicles but are instead found in the marginal zone. To clarify some of 

these questions, my thesis research focused on defining the molecular requirements for 

the cytosolic immune response to Lm infection. 
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Chapter 2 :  Identification of host cytosolic proteins that associate with the surface 
of Listeria monocytogenes 

 

ABSTRACT 

The innate immune system is responsible for early detection of pathogens and controlling 

the infection, while instructing the development of the adaptive immune system.  

Pathogens are detected by pattern recognition receptors on membranes or in the cytosol 

of host cells.  Many pathogens limit extracellular detection by the immune system by 

growing intracellularly, however pathogens or pathogen associated molecular patterns 

(PAMPs) can be recognized by cytosolic Nod-like receptors (NLR) or Rig-I like 

receptors (RLR).  Here we describe an approach designed to identify components of the 

cytosolic innate immune signaling pathway that associate with cytosolic Listeria 

monocytogenes (Lm).  We identified several classes of candidate proteins, and 

determined that one protein, the X-linked inhibitor of apoptosis (XIAP), is critical for in 

vivo innate immunity to Lm infection. 

 

INTRODUCTION 

The innate immune response has two main functions: to detect and control initial levels 

of bacterial infection, and to instruct the adaptive immune response by presenting antigen 

in an activating context.  The immune system recognizes extracellular pathogens via the 
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Toll-like Receptors (TLRs) and intracellular pathogens via the Nod-like Receptors 

(NLRs) or Rig-I like Receptors (RLRs).  These families of sensors recognize pathogen-

associated molecular patterns (PAMPs) that are characteristic of microbial organisms, 

such as lipopolysaccharide or peptidoglycan[19].  Recognition of these components by 

the host cell initiates signaling cascades that result in the induction of MAP kinase and 

NF-κB pathways, leading to production of proinflammatory cytokines and other 

costimulatory molecules[12].  The TLR signaling cascades have been extensively 

characterized, but the cytosolic NLR and RLR pathways are less well understood[52].  

Additionally, when both TLR and NLR ligands are introduced simultaneously, some 

reports suggest that the TLR and NLR pathways synergize to enhance the immune 

response, but the mechanisms that govern synergy between these two pathways are 

poorly understood[53]. 

 

Listeria monocytogenes (Lm) is commonly used as a tool to study the immune response 

because Lm is amenable to genetic manipulation and the mouse model of infection is very 

well characterized[25]. The experimental results of these infections can be more easily 

interpreted as they can be fit into a larger context of knowledge already gained from 

similar experiments.  Since Lm is intracellular, the bacterium is exposed to the 

extracellular space upon initial infection; thereafter, it is protected from humoral 

immunity by spreading from cell to cell.  Therefore, the host must develop a cell-

mediated, cytotoxic T cell immune response to clear the infection[33].   
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The immune response to infection is initiated by innate immune recognition of PAMPs. 

Lm has several PAMPs that may induce the innate immune response, including flagellin, 

peptidoglycan, lipotechoic acid, and lipoproteins[54,55,56].  PAMP recognition is critical 

to controlling the infection, as TLR2-deficient mice are more susceptible to infection, 

displaying reduced cytokine and costimulatory molecule production[54].  MyD88, a TLR 

adaptor protein, is crucial for initiating the immune response to Lm[36].  Additional 

TLRs likely also play a role in detecting Lm, as Myd88-deficient mice are more 

susceptible to infection than TLR2-deficient mice[54].  Activation of NLR proteins can 

trigger three main pathways, either NF-κB and MAP kinase signaling or activation of the 

inflammasome.  Lm infection can induce all three pathways.  Two NLR proteins, Nod1 

and Nod2, are activated by cytosolic Lm inducing the NF-κB and MAP kinase 

pathway[57,58].  However mice deficient in both Nod1 and Nod2 do not display 

enhanced susceptibility to systemic infection, indicating that neither of these NLRs is 

solely responsible for the cytosolic sensing of Lm[59].  Additionally, several NLRs are 

responsible for inflammasome activation upon Lm infection including NALP3, Ipaf and 

another unknown receptor that requires ASC[60].  While much is known about detection 

of Lm by the innate immune system, it is clear that there are still sensors important for 

recognizing Lm that are not yet identified.   

 

The immune response to Lm infection is complex, both innate and adaptive immunity are 

required for clearance.  Upon infection, Lm is initially taken up into a vacuole, which it 

escapes by secreting listeriolysin O (LLO), a pore forming protein.  The wildtype strain 

of Lm stimulates both the extracellular TLR and cytosolic NLR signaling pathways upon 
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infection[54,57].  However, a strain deficient in LLO is unable to gain access to the 

cytosol and thus will only stimulate the TLR immune response[25].  Studies comparing 

the immune response induced by these two different stains indicate that specific patterns 

of gene expression are induced upon cytosolic localization of wildtype Lm that differ 

from the patterns seen after infection with the vacuolar, LLO-deficient strain of 

Lm[34,61].  To identify some of the host cell components that contributed to the cytosolic 

immune response to Lm infection, we developed an assay to isolate proteins from the host 

cell cytosol that associated with the surface of Lm.  We identified a number of proteins 

that associated with Lm that could be categorized into three main groups: those associated 

with TGFβ signaling, with TNF signaling, or those involved in ubiquitin modification 

pathways. 

 

RESULTS 

Identification of host cytosolic proteins that associate with Listeria monocytogenes 

Since differential immune responses are induced by vacuole-bound bacteria and cytosolic 

bacteria, and bacteria that gain access to the cytosol are largely intact, I hypothesized that 

the host could recognize components of the bacterial surface.  Since cytosolic Lm rapidly 

replicate, it is unlikely the bacteria were damaged in the vacuole.  Therefore, non-surface 

exposed bacterial components would likely be shielded from the immune system and 

unable to trigger the initial cytosolic immune response.  Bacterial components degraded 

in the vacuole can be released into the cytosol by an unidentified mechanism and 

recognized by the NLR proteins; however, immune detection by this mechanism is 

delayed compared to the immediate response observed upon bacterial release into the 
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cytosol[55].  Preliminary studies suggested that the cytosolic immune response did not 

respond to Lm proteins, as macrophages scrape loaded with bacterial lysates that were 

digested with proteinase K were still able to induce cytosol-specific gene expression (M. 

O’Riordan, unpublished observations).  Since the immune response to cytosolic Lm has 

been shown in several different cell types, we isolated cytosolic proteins from primary 

macrophages and two different epithelial cell lines, Caco2 and HeLa cells.  Our affinity-

based assay was developed in a manner that promoted the identification of cytosolic 

innate immune components and minimized the identification of proteins that non-

specifically associated with Lm (Fig. 2.1).  We observed several different protein bands 

on Coomassie stained gels that consistently associated with Lm in our affinity-based 

assay (Fig 2.2, 2.3).   After determining the identity of these bands by mass spectroscopy, 

we had a number of candidate proteins that might regulate the innate immune response to 

cytosolic Lm (Fig 2.4, 2.5, 2.6).   

 

Interestingly, many of the proteins identified could be classified into one of three groups: 

components of the TGFβ signaling pathway, the TNF signaling pathway or proteins 

involved in ubiquitin modification, such as ABIN, Smad9, and SNX6. TGFβ is an 

immunosuppressive molecule that aids in resolving innate immune responses[63].  Two 

of the other proteins identified from the macrophage assay were members of the IAP 

protein family that regulate TNF signaling, c-IAP1 and c-IAP2[62]. TNF is an 

immunostimulatory molecule that is proinflammatory and functions to enhance the innate 

immune response[64].  Additionally, the TNF pathway is homologous to the Drosophila 

Imd pathway, which regulates the immune response to Gram-negative pathogens.  Many  
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Figure 2.1 Affinity Association Assay.   
Host cells were lysed, nuclei and membranes were removed by centrifugation.  Cytosolic 
protein lysate was incubated with agarose beads for 1h prior to remove any proteins that 
bound non-specifically.  Lm was boiled in SDS-PAGE running buffer to remove bacterial 
surface proteins.  The cytosolic protein lysate was then incubated with boiled Lm or 
protein A/G beads overnight.  Beads or Lm were pelleted and washed to remove any 
unbound proteins.  The resulting proteins were separated by SDS-PAGE gel 
electrophoresis and visualized by Coomassie blue gel stain.  Proteins were identified by 
Mass Spectrometry.   
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Figure 2.2 HeLa and Caco2 binding proteins isolated on Coomassie-stained gels.  
 Listeria  monocytogenes associated cytosolic proteins were isolated by an affinity-based 
assay.  Cytosolic proteins were isolated from host cells that were uninfected or infected 
with Lm to enhance expression of any proteins upregulated upon infection.  Lysates were 
incubated with Lm or protein A/G agarose beads.  The bacteria were pelleted and washed 
to remove any proteins that were not associated with the bacterial pellet. Isolated proteins 
were run on a 10% acrylamide gel and stained with Coomassie blue.  Agarose beads were 
used as a negative control, to enhance stringency of the assay since anything that bound 
to agarose beads would likely be inherently sticky and not likely to regulate the immune 
response to cytosolic Lm.  Bands identified with arrows were isolated and identified by 
mass spectroscopy. 
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Figure 2.3. Bone marrow macrophage Listeria monocytogenes binding proteins.  
Listeria monocytogenes associated cytosolic proteins were isolated by an affinity-based 
assay. Cytosolic proteins were isolated from host cells and incubated with Lm.  The 
bacteria were pelleted and washed to remove any proteins that were not associated with 
the bacterial pellet. Isolated proteins were run on a 10% acrylamide gel and stained with 
Coomassie blue.  (1) Lm proteins. (2) Cytosolic proteins from uninfected macrophages 
incubated with Lm. (3) Cytosolic proteins from uninfected macrophages incubated with 
agarose beads. (4) Cytosolic proteins from macrophages infected for 1h incubated with 
Lm. (5) Cytosolic proteins from macrophages infected for 1h incubated with agarose 
beads.  Bands identified with boxes were isolated and identified by mass spectroscopy. 
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Figure 2.4 Candidate proteins identified from HeLa cytosolic proteins incubated with Listeria monocytogenes 
Proteins identified by mass spectroscopy from the bands submitted from HeLa cell Listeria associated proteins.  Proteins in red are of 
particular interest based upon their known identify and function.  The approximate size of the band isolated is located in the first 
column next to the band name.  The % coverage indicates the portion of the protein that matched the peptides identified by mass 
spectroscopy.  The % identity indicates how similar the peptide sequences were to the protein sequence. 
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Figure 2.5.  Table of Listeria associated proteins from Caco2 cytosolic proteins. 
Proteins identified by mass spectroscopy from the bands isolated from cytosolic Caco2 proteins by affinity association assays with 
Listeria monocytogenes.  Proteins in red are of particular interest based upon their known identity and function. The % coverage 
indicates the portion of the protein that matched the peptides identified by mass spectroscopy.  The % identity indicates how similar 
the peptide sequences were to the protein sequence. 
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Figure 2.6 Table of Listeria associated cytosolic proteins from bone marrow derived macrophages.  
The proteins were identified by mass spectroscopy, after isolation by affinity association with the surface of Listeria monocytogenes.  
Proteins in red are candidates of interest based on their identity and function. The % coverage indicates the portion of the protein that 
matched the peptides identified by mass spectroscopy.  The % identity indicates how similar the peptide sequences were to the protein 
sequence.  

(c-IAP2) 

(c-IAP1) 
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of the components of the TNF pathway in mammalian cells have been implicated in 

cytosolic immunity.  Our results suggest that we did not simply isolate proteins that are 

highly abundant in the host cell cytosol, but identified proteins that could be specifically 

associated with inflammation and immunity. 

 

FXR is not required for innate immunity to Listeria monocytogenes 

We first examined FXR (farnesoid X-activated receptor) as it is a member of the nuclear 

bile acid receptors, and LXR, another member of that family, is rapidly upregulated upon 

cytosolic Lm infection[65].  Additionally, mice deficient in LXR are highly susceptible to 

Lm infection, due to increased apoptosis of macrophages.  FXR regulates bile acid and 

cholesterol homeostasis, however its role during the innate immune response to Lm is 

unknown.  Interestingly, both LXR and FXR regulate apoE gene expression; ApoE-

deficient mice are highly susceptible to Lm infection, displaying a defect in the innate 

immune response[66].  We identified FXR from the Caco2 cytosolic proteins that 

associated with Lm; the peptides obtained from mass spectroscopy covered 27% of the 

protein (Fig. 2.7).  To examine the ability of FXR to control Lm infection, we obtained 

FXR-deficient mice.  FXR-deficient and wildtype mice were infected intraperitoneally 

(i.p.) with 5x105 CFU of Lm.  We examined the innate immune response to infection by 

harvesting at 48h, an early time point during Lm infection when the innate immune 

response plays a critical role in controlling the infection, but prior to the development of 

adaptive immunity.  The spleens and livers were harvested from infected mice at 48hpi 

and enumerated the recovered CFU (Fig 2.8). The wildtype and FXR-deficient mice were 

able to control infection equally well.  Since the LXR-deficient mice were more 
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Figure 2.7 FXR peptides identified by mass spectroscopy.  
Alignment of the 6 peptides of FXR identified from mass spectroscopy of band 2 from 
Caco2 cells.  Several of the identified peptides overlap covering greater portions of the 
protein. 
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Figure 2.8 FXR is not required for the innate immune response to Lm infection 
FXR-deficient mice were infected with 5x105 Lm i.p., the liver and spleen harvested at 
48hpi and CFU were enumerated.  Each spot represents an individual animal.  The bar 
indicates the geometric mean of each group.  The results are pooled from two individual 
experiments, and are representative of 3 individual experiments. 
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susceptible to Lm infection, these results suggest that FXR and LXR do not function 

similarly during Lm infection.  We concluded that FXR does not play a major role in the 

innate immune response to Lm infection.    

 

c-IAP1 is not required to regulate innate immunity to Listeria monocytogenes 

The IAP protein family, originally identified as inhibitors of apoptosis, has recently been 

implicated in a number of other signaling pathways.  Further introduction to the IAP 

proteins can be found in Appendix 1.  There is a wealth of literature that implicates c-

IAP1, c-IAP2 and XIAP in regulating the NF-κB and MAP kinase signaling pathways, 

which among other functions are critical regulators of proinflammatory cytokine 

production by the innate immune system[67,68].  The c-IAP1 and c-IAP2 proteins are 

components of the TNF signaling pathway responsible for activating NF-κΒ.  Their 

genes lie in tandem in the genome, and due to their high degree of similarity, likely 

originated from a gene duplication event[62].  As such, their functions may be partially 

redundant, although deletion of each gene in animals has uncovered unique roles for 

these proteins in defined experimental contexts.   In mice, c-IAP2 regulates the endotoxic 

shock response, possibly by preventing apoptosis of macrophages[69].  Both of the c-IAP 

proteins were identified in our affinity-based assay in macrophages and found peptides 

that align in both proteins due to their extensive homology (Fig. 2.9).  We decided to first 

examine the innate immune response in c-IAP1-deficient animals, as we did not have 

access to the c-IAP2-deficient animals at that time[70].  Wildtype and c-IAP1-deficient 

mice were infected i.p. with 5x105 CFU of Lm.  The liver and spleen were harvested from 

these animals at 48hpi, and enumerated the CFU recovered (Fig. 2.10). We observed  
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Figure 2.9 Alignment of the peptides identified in bone marrow derived 
macrophages that correspond to the IAP proteins. 
There were 9 peptides identified that corresponded to c-IAP1, several of which overlap.  
There were 8 peptides that corresponded to c-IAP2.  Due to substantial homology 
between the two proteins, 3 peptide sequences were found in both genes (they are shaded 
in gray). 
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Figure 2.10 c-IAP1 is not required for the innate immune response to Lm infection 
c-IAP1-deficient mice were infected with 5x105 Lm i.p., the liver and spleen harvested at 
48hpi and CFU were enumerated.  Each spot represents an individual animal. The bar 
indicates the geometric mean of each group.  The results are representative of 2 
individual experiments with at least 5 pairs of animals.   
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similar numbers of Lm in the wildtype and c-IAP1-deficient mice, indicating that a 

deficiency in c-IAP1 does not impair the innate immune response to Lm infection.  

However, these mice still contain an intact c-IAP2 gene, which may compensate for loss 

of c-IAP1.  The c-IAP1/c-IAP2 double deficient mice have not been generated, as it 

would be very difficult to disrupt both of these tightly linked genes.  From this data, we 

can conclude that in the presence of c-IAP2, c-IAP1 is not required for the innate immune 

response to Lm.   

 

The innate immune response to Listeria monocytogenes is regulated by XIAP 

Another IAP family protein, XIAP, has a well established role in regulating the NF-κB 

and MAP kinase pathways and was recently implicated in X-linked lymphoproliferative 

disease (XLP) in humans, a primary immunodeficiency that is characterized by 

susceptibility to Epstein Barr virus.   We wanted to determine if XIAP might regulate the 

cytosolic innate immune response to Lm infection[71].  XIAP-deficient animals were 

previously described, and did not display any striking phenotype, thus the role of XIAP 

was unclear[72].  We infected wildtype and XIAP-deficient animals with 5x105 CFU Lm 

i.p. and harvested the spleens and livers at 2 and 4 days post infection (dpi) to enumerate 

CFU (Fig 2.11).  We observed a 10-fold increase in bacterial CFU in the XIAP-deficient 

animals compared to the wildtype animals at 2dpi, indicating that XIAP regulates the 

innate immune response to Lm infection.    At 4dpi, although the bacterial numbers were 

decreasing, there were still approximately 10 times more bacteria in the XIAP-deficient 

animals than the wildtype animals.  We conclude that XIAP regulates the innate immune 

response to Lm infection.  
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Figure 2.11 XIAP regulates the innate immune response to Lm infection 
XIAP-deficient mice were infected with 5x105 Lm i.p., the liver and spleen harvested at 2 
and 4 dpi and CFU were enumerated.  Each spot represents an individual animal. The bar 
indicates the geometric mean of each group. 
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SAP is not required for innate immune control of Listeria monocytogenes 

A subset of human patients with XLP have mutations in either XIAP or in SLAM 

associated protein (SAP), a gene located very close to XIAP on the X chromosome[73]. 

SAP is an adaptor protein that recruits FYNT, a tyrosine kinase, to the SLAM receptors, 

resulting in activation of numerous immune signaling pathways in lymphocytes[74]. 

Since mutations in either SAP or XIAP can cause XLP, and XIAP is critical for 

regulating the innate immune response to Lm infection, we tested whether SAP was also 

important for the immune response to Lm. Wildtype and SAP-deficient mice were 

infected i.p. with 5x105 CFU Lm; at 48hpi, spleens and livers were harvested from these 

animals to enumerate CFU (Fig 2.12).  We observed no significant difference in the 

numbers of CFU recovered from wildtype and SAP-deficient animals.  These data 

indicate that SAP is not a critical contributor to the innate immune response to Lm 

infection.  Therefore, we infer that the mechanisms of innate immune regulation by SAP 

and XIAP are likely different in the mouse model. 

 

XIAP is not required for immunity to Salmonella enterica Typhimurium 

To determine if the XIAP-deficient mice displayed a general immunodeficiency, we 

examined the immune response to another intracellular bacterial pathogen, Salmonella 

enterica serovar Typhimurium (St).  St is a Gram-negative organism that largely resides in 

the vacuole and causes typhoid disease in mice.  We infected wildtype and XIAP-

deficient mice with 250 CFU of St i.p. and harvested spleens and livers at 48hpi to 

enumerate the bacterial burden (Fig 2.13).  We recovered similar numbers of 
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Figure 2.12 SAP is not required for innate immunity to Lm infection 
SAP-deficient mice were infected with 5x105 Lm i.p., the liver and spleen harvested at 
48hpi and CFU were enumerated.  Each spot represents an individual animal.  The bar 
indicates the geometric mean of each group. The results are representative of 2 
independent experiments with at least 5 pairs of animals. 
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Figure 2.13 XIAP is not required for innate immunity to St infection 
XIAP-deficient mice were infected with 250 St i.p., the liver and spleen harvested at 
48hpi and CFU were enumerated.  Each spot represents an individual animal.  The bar 
indicates the geometric mean of each group. 
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CFU from both wildtype and XIAP-deficient mice at 48hpi.  Thus, we conclude that 

XIAP is not required for the innate immune response to systemic St infection. 

 

Characterization of the association between XIAP and Listeria monocytogenes 

Since we originally identified the IAP family through our affinity-based assay for 

proteins that associate with the surface of Lm, we wanted to determine if XIAP associated 

with the surface of Lm in vivo.  To do this we took several approaches: visualization of 

colocalization by immunofluorescence, in vitro association and intracellular association. 

We were unable to observe colocalization of XIAP and Lm by immunofluorescence or 

using in vitro association techniques, due to technical reasons.  To examine if XIAP 

interacts with Lm in vivo, we infected primary bone marrow derived macrophages with 

Lm and harvested the bacteria at various time points after infection.  We observed 

enhanced association of XIAP with the Lm pellet at 60mpi (Fig 2.14).  While this 

experiment was not quantitative, the association of XIAP with Lm at 60mpi was 

intriguing because until approximately 30mpi Lm is trapped in the vacuole.  The bacteria 

therefore would not be able to interact with cytosolic components.  Thus, we would 

predict there would be very little association of Lm with XIAP at that time point.  These 

results suggest that once Lm gains access to the cytosol, XIAP can associate with the 

bacteria. 

 

DISCUSSION 

We developed an affinity-based assay to identify host cytosolic proteins that can 

associate with the surface of Lm.  Through the use of this method, we identified several 
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Figure 2.14 XIAP Associates with Listeria monocytogenes  in cells. 
Bone marrow derived macrophages were infected with Lm.  At indicated time points, Lm 
was isolated from the host cells by differential centrifugation.  The resulting pellet was 
analyzed by SDS-PAGE and immunoblotted with an anti-XIAP antibody.   
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candidate proteins that may regulate the innate immune response to cytosolic Lm.  Many 

of the protein candidates identified modulate TGFβ or TNF signaling.  We determined 

that neither FXR nor c-IAP1 are required for the innate immune response to Lm infection, 

as mice deficient in either of these proteins were as resistant as wildtype mice to Lm 

infection.  Finally, we identified a new candidate through family association, XIAP, 

which regulates the innate immune response to Lm infection.  

 

TGFβ signaling during Lm infection broadly suppresses many aspects of the immune 

response including decreasing leukocyte migration, reducing macrophage microbicidal 

activity and reactive oxygen species generation, limiting NK cell activation, antibody 

production, T cell proliferation and cytokine production[75].  We speculate that the 

identification that multiple protein components of this pathway associate with Lm may 

indicate a larger role for this pathway in innate immune signaling in response to cytosolic 

pathogens.  It is intriguing to hypothesize that, for proper innate immune signaling to 

occur during cytosolic bacterial infection, the TGFβ pathway components may be used, 

thus limiting the amount of immune suppression that occurs early.  Later during 

infection, when too much immune signaling becomes detrimental to the host, these 

proteins may no longer be needed for immune activation but can mediate suppression.  

 

The mammalian TNF pathway is largely homologous to the Imd pathway in Drosophila.  

The Imd pathway is responsible for detecting Gram-negative pathogens and results in 

activation of NF-kB and MAP kinase homologs[4].  There is evidence in mammalian 

systems that several of the components of the TNF pathway are important for the innate 
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immune response to intracellular pathogens.  For example, FADD, a death domain 

containing adaptor protein critical for the Imd pathway, regulates signaling in response to 

viral infection in mammalian cells[6].  Innate immune signaling pathways are very well 

conserved from Drosophila to mammals; thus, it was encouraging to identify several 

components of the TNF signaling pathway in our affinity-based assay for cytosolic innate 

immune signaling components. 

 

Drosophila has two IAP proteins: dIAP1, which functions to inhibit apoptosis in flies and 

dIAP2, which was identified as a member of the Imd signaling pathway[76,77,78,79].  

Genetic epistasis experiments place dIAP2 upstream of NF-κB and MAP kinase 

pathways but in parallel to the Imd protein, which is homologous to the mammalian RIP 

protein.  c-IAP1 and c-IAP2 associate with and modify RIP1 during TNF signaling to 

regulate NF-κB activation[62].  Thus, it is likely that the IAP proteins have evolved to 

regulate signaling as well as apoptosis.  In our studies, we determined that XIAP, but not 

c-IAP1, is required for the innate immune response to Lm infection.  It is possible that c-

IAP2 was able to compensate for loss of c-IAP1 during Lm infection and that the c-IAP 

proteins may also regulate the innate immune response to cytosolic bacterial infection. 

 

It has become evident that ubiquitin is a very important protein modification that is 

critical for innate immune signaling[80,81,82].  One protein candidate identified, ABIN, 

is an inhibitor of the A20 protein, which functions as a deubiquitinating enzyme.  A20 

deubiquitinates TRAF6, among others, to inhibit both TNF and TLR signaling[83].  

Thus, ABIN inhibition of A20 during Lm infection may allow these innate immune 
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signaling pathways to induce proinflammatory cytokines.   Additionally, many IAP 

family members, including both c-IAPs and XIAP, have a RING finger domain, which 

functions as an E3 ubiquitin ligase.  The addition of ubiquitin to proteins can serve as a 

signaling moiety or can target proteins for proteasomal degradation.  The identification of 

several ubiquitin modifying proteins in our affinity-based method suggests this 

modification is important for the innate immune response to cytosolic Lm infection. 

 

The result that XIAP-deficient mice are more susceptible to Lm infection than St 

infection, suggests two possible roles for XIAP:  that XIAP regulates the immune 

response to Gram-positive bacteria and not Gram-negative bacteria, or that it regulates 

the immune response to cytosolic but not vacuolar pathogens.  It is possible that XIAP 

may aid in detecting a component of Lm that is not exposed in St, due to the 

peptidoglycan being covered by an outer membrane in Gram-negative organisms.    

Additionally, it could be that XIAP aids in detecting a similar component on each 

bacteria, but the localization of the bacterial components is important for inducing the 

immune response.  

 

Our affinity-based method to identify cytosolic host proteins that associated with the 

surface of Lm proved fruitful as we identified components of the TGFβ, TNF and 

ubiquitin modifying pathways that associate with the surface of Lm.  At the time this 

thesis research was initiated, XIAP was not known to be a regulator of the innate immune 

response.  While XIAP regulates both NF-κB and MAP kinase pathways, its ability to 

regulate these pathways during an immune response in vivo was undefined.  Chapter 3 
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and 4 will focus on characterizing the role of XIAP during the innate immune response to 

cytosolic Lm infection. 

 

MATERIALS AND METHODS 

Antibodies and Reagents. 

Anti -XIAP (BD Transduction 610716), anti-HA (Abcam Ab9110).  SNX6-HA PEBB 

construct was obtained from Tony Parks at University of Washington[84]. XIAP-HA-

PEBB, XIAP-GFP PEBB constructs were a gift from Dr. Colin Duckett.  For in vitro 

protein expression, we used the TNT coupled wheat germ (L5030) and TNT Quick 

coupled transcription/translation system (L5020) from Promega, according to the 

manufacturers protocol.  One tenth of the reaction was incubated with 1.2x108 bacteria, in 

500 ul Buffer A (50mM Tris pH 8.0, 5mM EDTA pH 8.0, 150mM NaCl, 0.05% NP-40, 1 

EDTA-free protease tablet/10mls (Roche)) with 1x cytosolic salts(10x= 0.3M HEPES, 

0.03M MgCl2, 1.4M KCl, pH 7.9).  Samples were incubated for 4h at 4C nutating, 

followed by 2 washes in bufferA+ 1x cytosolic salts.  The bacterial pellet was then run on 

an SDS-PAGE gel to visualize any bound proteins.  Protein A/G agarose beads were 

purchased from Santa Cruz Biotechnology (sc-2003).  

   

Affinity Assay 

Cytosolic protein was isolated from host cells by treatment with Lysis buffer (50mM Tris 

pH 8.0, 5mM EDTA pH 8.0, 150mM NaCl, 0.05% NP-40, 1 EDTA-free protease 

tablet/10mls (Roche)).  Cells in lysis buffer were incubated on ice for 5 minutes, vortexed 

for 10 sec and incubated on ice again for 5 minutes.  Lysed cells were centrifuged at 
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1500rpm for 2 min to remove nuclei, the supernatant was transferred to a new tube and 

centrifuged at 14k rpm for 10 minutes to pellet cellular debris.  The supernatant was 

removed and incubated with 30ul protein A/G agarose beads for 1hr at 4C nutating.  

Beads were pelleted by centrifugation at 7500rpm for 2 min, supernatant was removed 

and incubated overnight at 4C nutating with Lm or agarose beads.  Beads or Lm were 

pelleted by centrifugation at 7500 or 13000 rpm respectively for 2 min.  Supernatant was 

removed and beads or Lm were washed 3x in 200mM NaCl+0.5% NP40.  The beads or 

bacteria were resuspended in 2x SDS-PAGE buffer and boiled before running on an 

SDS-PAGE gel and immunoblotted.  To remove Lm surface proteins, Lm was boiled in 

2x SDS-PAGE sample buffer for 30 min.  For mass spectrometry analysis, SDS-PAGE 

gels were stained in 0.25% Coomassie stain (Brilliant blue R-250) in destain solution 

(50% MeOH, 10% acetic acid) for 30 min shaking.  Gels were then destained with 

several washes of diH2O.  Protein bands were identified by mass spectrometry (LC-

MS/MS) at the University of Michigan Protein Structure Facility.    

 

Animals, bacterial strains and infections.  Mice deficient in XIAP (accession 

#U88990) were originally generated on a 129/Sv × 129/SvJ background as described 

[72].  The XIAP-deficient mice were backcrossed onto the C57Bl/6 background for more 

than 10 generations.  Mice were genotyped using the following primers, for wildtype F1-

ctcaagtggtttggtaatgtacgac and  R1-acagctgagtctccatactgccat and for the knockout allele: 

F2-agtgtatgtggaacagaggctgct and R4-acatagcgttggctacccgtgata. Mice deficient in FXR 

were obtained from the Jackson laboratories (007214).  c-IAP1 and SAP-deficient mice 

were obtained from Dr. Colin Duckett (University of Michigan) and Dr. Pamela 
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Schwartzberg (NIH) respectively[70,85].  Six to twelve week old male knockout mice or 

wildtype littermate controls were used for infection experiments.  All animals received 

humane care as outlined by the Guide for the Care and Use of Laboratory Animals 

(University of Michigan Committee on Use and Care of Animals).  Caco2 and HeLa cells 

were obtained from ATCC, # HTB-37 and CCL-2 respectively.  Epithelial cells were 

cultured in MEMα with 10% FBS, 1mM L-Glutamine, 1mM Sodium Pyruvate, 1% Non-

essential Amino Acids.  Cells were passaged by removing media, rinsing in PBS without 

Ca++ or Mg++, finally cells were removed by adding Tryple Express.  After 2-5 minutes 

of incubation 10mls of media was added to dilute out the trypsin.  Cells were transfected 

using Lipofectamine 2000 (Invitrogen) according to the manufacturers protocol. For cell 

culture infections, Listeria monocytogenes strains 10403S (wildtype) was inoculated into 

liquid brain-heart infusion (BHI) broth and incubated at 30°C overnight without 

shaking[86].  Prior to infection, bacterial cultures were washed and resuspended in PBS.  

Epithelial cells were infected at an MOI of 100 for 1h, while macrophages were infected 

at an MOI of 1 for 30 minutes.  For animal infections, L. monocytogenes and S. enterica 

Typhimurium (SL1344) were grown to log-phase in BHI and aliquots were stored at -

70°C.  For each experiment, a vial was back-diluted and allowed to grow to OD600 0.5.  

The bacteria were washed in PBS and diluted before injection.  Mice were injected i.p. 

with 5x105 L. monocytogenes equivalent to 0.5 LD50 for infection by the i.p. route in 

C57Bl/6 mice [87].  Mice were injected i.p. with 250 S. enterica Typhimurium.  The 

number of viable bacteria in the inoculum and organ homogenates was determined by 

plating 10-fold serial dilutions on Luria broth (LB) agar plates.   
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BMDM culture.  Bone marrow macrophages were differentiated in DMEM 

supplemented with 20% heat inactivated FBS, 2mM L-glutamine, 1mM sodium pyruvate, 

0.1% β-mercaptoethanol and 30% L929 conditioned medium.  Bone marrow cells were 

cultured at an initial density of 107 cells per 150mm non-tissue culture treated dish for 6 

days, with fresh medium added at day three.  Cells were harvested with cold PBS without 

calcium and magnesium. 

 

Immunoblot analysis.  Whole cell lysates were generated by adding 2x SDS-PAGE 

sample buffer directly to cell monolayers.  Protein samples were separated by SDS-

PAGE and transferred to PVDF.  Blots were blocked in 5% BSA, incubated with primary 

antibodies, followed by a horseradish peroxidase conjugated secondary antibody. The 

following antibodies were used: XIAP (BD Transduction Laboratories #610717), goat 

anti-mouse IgG-HRP (MP Biomedical #67429). 
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Chapter 3 : XIAP Regulates Cytosol-specific Innate Immunity to Listeria Infection 

 

ABSTRACT 

The Inhibitor of Apoptosis Protein (IAP) family has been implicated in immune 

regulation, but the mechanisms by which IAP proteins contribute to immunity are 

incompletely understood.  We show here that X-linked IAP (XIAP) is required for innate 

immune control of Listeria monocytogenes infection.  Mice deficient in XIAP had a 

higher bacterial burden 48 hrs after infection than wildtype littermates, and exhibited 

substantially decreased survival. XIAP enhanced NF-κB activation upon L. 

monocytogenes infection of activated macrophages, and prolonged phosphorylation of 

Jun N-terminal kinase (JNK) specifically in response to cytosolic bacteria.  Additionally, 

XIAP promoted maximal production of pro-inflammatory cytokines upon bacterial 

infection in vitro or in vivo, or in response to combined treatment with Nod2 and TLR2 

ligands.  Together, our data suggest that XIAP regulates innate immune responses to L. 

monocytogenes infection by potentiating synergy between Toll-like receptors (TLR) and 

Nod-like receptors (NLR) through activation of JNK and NF-κB dependent signaling.  
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INTRODUCTION 

The Inhibitor of Apoptosis (IAP) family of proteins plays a key role in cellular signaling, 

such as apoptosis, by binding to pro-apoptotic proteins, interrupting the intrinsic 

programmed cell death pathway and activating anti-apoptotic mechanisms [88,89,90].  In 

addition to modulating apoptosis, recent genetic studies have revealed that a Drosophila 

IAP protein, diap2, acts as a regulator of anti-microbial immunity [76,77,78,79].  Innate 

immune signaling pathways are well conserved from Drosophila to humans, suggesting 

that IAP proteins may also play a role in mammalian innate immunity [4].  This 

hypothesis is consistent with a study demonstrating that c-IAP2 exacerbates endotoxic 

shock in mice by controlling macrophage apoptosis [69].  Furthermore, a cohort of 

patients with X-linked lymphoproliferative syndrome (XLP) were found to have 

mutations in the gene encoding XIAP, resulting in a primary immunodeficiency [71].  

XIAP, also known as BIRC4 and hILP, contains three baculoviral IAP repeat (BIR) 

domains, the characteristic protein-protein interaction domain of the IAP family[91].    

XIAP also has a carboxy-terminal RING domain with E3 ubiquitin ligase activity that 

directs proteasomal degradation of target proteins [92].  Multiple signaling pathways can 

be modulated by XIAP, including NF-κB, MAP kinase and TGFβ signaling 

[93,94,95,96].  Moreover, XIAP can integrate cellular responses to diverse stimuli by 

interacting directly with ligands such as copper to regulate copper homeostasis [97].   

XIAP has been predominantly characterized as an inhibitor of apoptosis, and interacts 

with many known mediators of programmed cell death, such as JNK, TAK1, TAB1, 

TRAF6, caspases-3, 7 and 9 [90,93,98,99].  However, XIAP-deficient mice do not appear 
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to have striking defects in apoptosis, thus the role of XIAP in vivo is not yet clearly 

understood [72].   

 

The innate immune response protects host organisms against invading pathogens prior to 

the onset of adaptive immunity.  Pathogens stimulate innate immune signaling through 

pattern recognition receptors (PRR), which recognize well-conserved pathogen-

associated molecular patterns (PAMPs) [100].  PAMPs are detected at the host membrane 

by TLRs, and in the cytosol by the NLR and the RIG-I-like helicase (RLR) sensors 

[101,102].  Stimulation of either extracellular or intracellular PRR can result in activation 

of NF-κB and MAP kinase signaling pathways, leading to production of inflammatory 

mediators such as cytokines and costimulatory molecules [10].  Activation of TLRs and 

NLRs together can induce synergy between the signaling pathways, resulting in enhanced 

activation of innate and adaptive immunity [53,103].  Listeria monocytogenes is a 

cytosolic bacterial pathogen used extensively to probe aspects of innate and adaptive 

immunity [25].  L. monocytogenes is recognized by TLRs expressed on the surface of 

phagocytes [25].  After phagocytic uptake, L. monocytogenes escapes from host vacuoles 

by secreting a pore-forming toxin, listeriolysin O (LLO) [104].  Once in the cytosol, L. 

monocytogenes can trigger oligomerization and signaling by Nod1 and other NLRs [57].  

Here we show that XIAP plays a protective role during infection by L. monocytogenes. 

We present evidence that amplifying JNK activation and subsequent pro-inflammatory 

cytokine production in response to cytosolic bacteria is one mechanism by which XIAP 

modulates innate immunity.  
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RESULTS 

XIAP regulates innate immunity to L. monocytogenes  

We first tested the hypothesis that XIAP contributed to anti-microbial immunity by 

infecting xiap+/y and xiap-/y mice with 1x105 L. monocytogenes and determining survival 

over time (Fig. 3.1).  At 7d pi (days post infection), 60% of the XIAP-deficient mice had  

succumbed to infection, whereas all wildtype mice survived.   Similarly, at higher doses 

of L. monocytogenes more xiap-/y than xiap+/y mice succumbed to infection, although 

some xiap+/y mice also became moribund (unpublished data).  Depending upon the 

inoculum, morbidity and mortality of xiap-/y animals occurred between 2 and 5d pi, prior 

to peak development of adaptive immunity, suggesting that XIAP had a protective effect 

during the innate response to bacterial infection.  To better define the role of XIAP during 

innate immunity to intracellular bacterial infection, we infected wildtype and XIAP-

deficient mice intraperitoneally with 5x105 L. monocytogenes, and harvested spleen and 

liver to enumerate bacterial burden at 24, 28 and 72h pi (Fig. 3.2).  By 48h, xiap-/y mice 

had approximately 10-fold more L. monocytogenes in liver and spleen at 48h pi compared 

to the xiap+/y mice, consistent with our observation of their decreased survival.  At 72h pi, 

the difference between the xiap+/y mice and the xiap-/y was even more pronounced, with 

the xiap-/y mice supporting 100-fold greater bacterial numbers.  These results indicate that 

XIAP mediates innate resistance to L. monocytogenes infection. 

 

Mutations in XIAP have been associated with the human immunodeficiency syndrome, 

XLP [71].  One feature associated with this disease is an abnormally low number of 

natural killer T-cells (NKTC), although it is not yet clear how much this phenotype  
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Figure 3.1 XIAP enhances the survival of mice during L. monocytogenes infection. 
Survival curve of L. monocytogenes in xiap+/y and xiap-/y mice.  Mice were injected with 
1x105 L. monocytogenes intraperitoneally, and survival was monitored daily (n=10 
animals per group). 
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Figure 3.2 XIAP regulates the innate immune response in vivo 
CFU isolated from the liver or spleen of mice infected with 5 x105 L. monocytogenes i.p. 
at 24h, 48h and 72h pi.  Each point represents one animal.  Mean CFU is indicated by a 
horizontal line. * indicates p≤ 0.05 and ** indicates p≤0.005. 
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contributes to immunodeficiency.  To determine if mice lacking XIAP exhibit a similar 

phenotype to XLP patients, we quantitated the percentage of NKTC in the spleen of 

xiap+/y and xiap-/y mice (Fig. 3.3A).   No significant difference in the number of splenic 

NKTC was observed between xiap+/y and xiap-/y mice, indicating that survival of NKTC 

in uninfected mice is not affected by a deficiency in XIAP, consistent with a previous 

report [71].  To determine if NKTC survival or activation was dependent on XIAP during 

L. monocytogenes infection, we infected animals and determined the number of splenic 

NK1.1+CD3+ NKTC that expressed CD69, a marker of activation (Fig. 3.3B).  We 

observed similar numbers of activated NKTC in xiap+/y and xiap-/y mice.  These data 

suggest that XIAP does not play an important role in NKTC survival or activation in a 

murine model of listeriosis. 

 

We then tested the role of XIAP during infection of primary macrophages, an innate 

immune effector cell and a well-characterized host for L. monocytogenes replication. We 

infected unactivated bone marrow derived macrophages (BMDM), BMDM activated 

with LPS and IFNγ or peritoneal macrophages with L. monocytogenes and measured 

intracellular bacterial growth over time (Fig. 3.4).  All types of xiap+/y and xiap-/y 

macrophages controlled L. monocytogenes infection equally well.   We conclude from 

these data that XIAP does not contribute directly to restriction of L. monocytogenes 

growth in macrophages, even though XIAP–deficient mice exhibited an increased 

bacterial burden compared to wildtype mice.  Taken together, our results demonstrate that 

XIAP is required for a protective immune response to L. monocytogenes infection in vivo. 
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Figure 3.3 XIAP does not regulate the survival or activation of NKTCs in vivo 
(A) Flow cytometry analysis of NK1.1+CD3+ NKTC in the spleens of uninfected xiap+/y 
and xiap-/y animals (error bars represent s.d.). (B) Splenocytes were harvested from 
infected animals at 48h pi, and stained with NK1.1-biotin, CD3-FITC and CD69-PE 
fluorescent-coupled antibodies for flow cytometry analysis. Results are representative of 
three independent experiments (n=9 animals). 
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Figure 3.4Intracellular growth of L. monocytogenes in unactivated, activated and 
peritoneal macrophages.   
Unactivated macrophages were infected at an MOI of 1.  Activated macrophages were 
stimulated overnight with 10ng/ml LPS and 10ng/ml Interferon-γ.  Activated and 
peritoneal macrophages were infected with an MOI of 10 (error bars represent s.d.). 
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Translocation of NF-κB in response to L. monocytogenes is enhanced by XIAP 

XIAP can activate NF-κB-dependent transcription in response to apoptotic stimuli [94].  

In addition to regulating apoptosis, the canonical NF-κB p50/p65 heterodimer has a well-

established role in proinflammatory cytokine transcription stimulated by TLR and NLR 

signaling [100].  Expression profiling of unactivated macrophages infected with L.  

monocytogenes did not reveal reproducible differences between wildtype and XIAP-

deficient macrophages (Appendix 2).  We then reasoned that activated macrophages 

might be a more relevant environment for studying XIAP function.  We therefore 

investigated whether XIAP regulated NFκB-dependent processes during L. 

monocytogenes infection in activated macrophages by measuring translocation of p50 to 

the nuclear compartment.  Activated BMDM were infected with wildtype L. 

monocytogenes, and translocation of the p50 subunit of NF-κB was analyzed by 

immunoblot (Fig. 3.5A).   As early as 0.5h pi, p50 was detected in the nuclear fraction of 

both xiap+/y and xiap-/y cells, however, in the presence of XIAP there was substantially 

more p50 in the nuclear fraction over time.   We also measured DNA binding activity of 

the p65 subunit of the p50/p65 heterodimer in the nuclear fraction of uninfected and L. 

monocytogenes infected activated macrophages (Fig. 3.5B).  At 1 and 2h pi, infected 

xiap+/y macrophage nuclear lysates contained significantly more NF-κB DNA binding 

activity than infected xiap-/y nuclear lysates, suggesting that XIAP might enhance 

signaling of NF-κB-dependent pathways stimulated by bacterial infection.  

 

In some contexts, XIAP-dependent NF-κB activation can protect against apoptotic 

stimuli; therefore we tested if XIAP modulated apoptosis during L. monocytogenes 
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Figure 3.5 XIAP enhances NF-κB translocation during L. monocytogenes infection.  
(A) Nuclear translocation of p50 in xiap+/y and xiap-/y activated BMDM in response to 
wildtype L. monocytogenes infection.  Cells were activated with 10ng/ml LPS and 
10ng/ml interferon-γ overnight, and infected at an MOI of 10 for 30min.  Upon lysis, the 
nuclear fraction (N) was separated by centrifugation from the cytosolic fraction (C).  Data 
are representative of at least 3 independent experiments. (B) DNA binding activity of 
p50/p65 as measured by ELISA.  Nuclear extracts from xiap+/y and xiap-/y activated 
BMDM that were uninfected or infected with wildtype L. monocytogenes were added to 
96 well dishes coated with a canonical NF-kB consensus DNA binding sequence, 
followed by detection with a p65-specific antibody.  Results are representative of at least 
3 independent experiments (error bars represent s.d.)
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infection.  We first examined apoptosis in activated macrophages during L. 

monocytogenes infection by flow cytometry of infected cells using Annexin V (AnnV), 

an indicator of apoptosis (Fig. 3.6A).  A modest but reproducible increase in apoptosis 

was observed by 3h pi in XIAP-deficient macrophages compared to wildtype 

macrophages, which remained consistent throughout infection (Fig. 3.6 B).  We also 

examined apoptosis in infected liver and spleen at sites of L. monocytogenes replication 

48h pi by performing TUNEL staining (Fig. 3.6C).  Although the extent of apoptosis at 

foci of infection were heterogeneous, there did not appear to be any notable difference in 

the number or distribution of apoptotic cells per focus in xiap+/y compared to xiap-/y livers 

or spleens.  We did not observe any XIAP-dependent difference in the numbers of AnnV+ 

T or B cells present in the spleens of mice at 48h pi (Fig 3.6D).  In addition, caspase-3 

cleavage in infected activated macrophages was not significantly altered (unpublished 

data).  While the infected xiap-/y macrophages exhibited a modest increase in cell death, 

we found no striking evidence for regulation of apoptosis by XIAP in the context of L. 

monocytogenes infection in vivo.  Thus, XIAP regulates NF-κB activation during L. 

monocytogenes infection, but may enhance innate immunity by modulating cellular 

responses other than apoptosis in infected macrophages. 

 

XIAP modulates JNK activation in response to cytosolic L. monocytogenes 

In addition to NF-κB activation, TLR and NLR sensing of microbial infection stimulate 

MAP kinase phosphorylation, leading to activation [81].  Previous reports suggested that 

XIAP could promote JNK phosphorylation via interaction with TAB1 and the MAP3K, 

TAK1[94,96,105].  To determine if XIAP affected JNK phosphorylation during L. 
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Figure 3.6 XIAP has a modest affect on apoptosis during L. monocytogenes infection 
(A,B) Flow cytometry analysis of apoptosis in activated BMDM infected with L. 
monocytogenes at 3h pi (A), 6, 8 and 24hpi (B).  Macrophages were stained at the 
indicated times post infection with Annexin V-FITC and propidium iodide.  Results are 
representative of at least 3 independent experiments (error bars represent s.d. of 
macrophages from 3 mice). (C) TUNEL staining of histological sections of livers and 
spleens from xiap+/y and xiap-/y mice infected with L. monocytogenes for 48 h (n=3 
animals/genotype).  Ten sections per animal were examined. (D) Apoptosis of T cells 
(CD3+) and B cells (B220+) from uninfected and L. monocytogenes infected splenocytes, 
as determined by Annexin V and PI staining.  Results are representative of at least 3 
independent experiments (n=9 animals/ genotype). 
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monocytogenes infection, we performed immunoblot analysis of infected lysates from 

xiap+/y and xiap-/y activated macrophages using a phospho-JNK specific antibody (Fig. 

3.7, 3.8).  Upon infection with wildtype L. monocytogenes, JNK phosphorylation 

occurred as early as 0.5h pi in both xiap+/y and xiap-/y cells.  In the xiap-/y macrophages, 

JNK phosphorylation peaked at 0.5h pi.   However, in the presence of XIAP, enhanced 

JNK activation was prolonged up to 6 hours.  This suggests that XIAP augments JNK 

signaling during wildtype L. monocytogenes infection.  To determine the contribution of 

XIAP to cytosol-specific signaling, we compared wildtype L. monocytogenes infection 

with a strain deficient in LLO or heat killed L. monocytogenes (HKLM), which both 

remain trapped in the vacuole.  The LLO- bacteria and HKLM induced JNK 

phosphorylation at 0.5h pi similarly to infection by wildtype bacteria, suggesting that this 

early JNK phosphorylation was linked to signaling from the vacuole, most likely through 

TLRs.  However, JNK phosphorylation in response to vacuolar bacteria quickly 

diminished after 30 min, in contrast to the extended XIAP-dependent JNK activation 

observed during wildtype bacterial infection.  To confirm that enhanced JNK 

phosphorylation in xiap+/y activated macrophages resulted in downstream signaling, we 

examined phosphorylation of c-jun, a target of JNK, by immunoblot (Fig. 3.7) [106].  

Upon infection by wildtype L. monocytogenes, c-jun phosphorylation was prolonged in 

xiap+/y but not xiap-/y cells, similarly to JNK phosphorylation.   Moreover, activation of c-

jun upon infection by LLO- bacteria was considerably decreased compared to wildtype 

bacteria. To determine how XIAP promotes prolonged JNK phosphorylation we 

examined the protein levels of MKP1 and MKP5, two MAP kinase phosphatases 

(Appendix 3).  To determine if XIAP also stimulated activation of other 
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Figure 3.7 XIAP prolongs JNK signaling in response to cytosolic L. monocytogenes. 
Immunoblot of lysates from xiap+/y and xiap-/y activated BMDM that were uninfected or 
infected with wildtype, or LLO- L. monocytogenes or HKLM.    Cells were activated 
overnight with 10ng/ml LPS and 10ng/ml interferon-γ, followed by infection at an MOI 
of 10 for 30 min.  Cells were lysed and subjected to immunoblot analysis using anti-JNK, 
anti-phospho-JNK, anti-phospho-c-jun, and anti-c-jun.  Data are representative of at least 
3 independent experiments. (A) JNK phosphorylation, (B) c-jun phosphorylation  (C,D) 
Blots were quantitated based upon band density, as determined by ImageJ software.  
Band intensities were compared to the first sample of the blot, whose value was 
arbitrarily set to 1. (C) P-JNK blot quantitation. (D) P-cjun quantitation. 



 

 
63

MAP kinase family members, we analyzed phosphorylation of p38 and ERK by 

immunoblot of infected macrophage lysates (Fig. 3.8).  ERK1 and ERK2 were 

phosphorylated equivalently in xiap+/y and xiap-/y macrophages in response to infection 

by all L. monocytogenes strains. As previously shown, p38 phosphorylation was 

decreased during infection by vacuole restricted bacteria compared to wildtype bacteria 

[34].  Phosphorylation of p38 upon infection with wildtype L. monocytogenes was not 

significantly affected by XIAP.  These data demonstrate that XIAP prolongs JNK 

activation specifically in response to cytosolic L. monocytogenes. 

 

L. monocytogenes induced proinflammatory cytokine expression is enhanced by 

XIAP 

Since XIAP modulated JNK and NF-κB signaling in the context of infection, we 

hypothesized that induction of proinflammatory cytokines through these pathways would 

also depend on XIAP.  Activated macrophages were infected with L. monocytogenes for 

3h, and RNA was analyzed by qRT-PCR to determine the expression of a subset of genes 

involved in innate immunity (Fig. 3.9).  Transcription of il6, tnf, il10, mip2 and kc was 

strongly upregulated upon infection in the presence of XIAP, while induction of ifnb, 

il1b, ido and inos was not significantly altered.  To assess if XIAP-dependent gene 

expression correlated to increased protein production, we compared the secretion of IL-6 

and TNF from uninfected and infected activated macrophages (Fig. 3.10).  Upon 

infection by wildtype L. monocytogenes, IL-6 and TNF secretion was induced to a greater 

extent in xiap+/y macrophages than in xiap-/y macrophages, while infection with the LLO- 

mutant induced little IL-6 and TNF secretion by either genotype.  To determine if JNK 
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Figure 3.8 XIAP does not regulate ERK or p38 MAPK signaling in response to 
cytosolic L. monocytogenes  
Immunoblot of lysates from xiap+/y and xiap-/y activated BMDM that were uninfected or 
infected with wildtype, or LLO- L. monocytogenes or HKLM.    Cells were activated 
overnight with 10ng/ml LPS and 10ng/ml interferon-γ, followed by infection at an MOI 
of 10 for 30 min.  Cells were lysed and subjected to immunoblot analysis using anti-
phospho-ERK, anti-ERK-1, anti-phospho-p38, and anti p38 antibodies.  Data are 
representative of at least 3 independent experiments. (A) p38 phosphorylation, (B) ERK 
phosphorylation  (C,D) Blots were quantitated based upon band density, as determined by 
ImageJ software.  Band intensities were compared to the first sample of the blot, whose 
value was arbitrarily set to 1. (C) P-38 blot quantitation (D) P-ERK blot quantitation. 
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Figure 3.9 XIAP enhances proinflammatory cytokine gene expression  
(A,B) qRT-PCR of genes associated with innate immune activation.  BMDM were 
activated overnight with 10 ng/ml LPS and 10 ng/ml interferon-γ, infected with L. 
monocytogenes for 30 min, and harvested at 3h pi for RNA isolation and production of 
cDNA.  Fold induction was calculated using the ΔΔCt method where uninfected samples 
were compared to infected samples, relative to  β-actin levels.  (A) il6, tnf and il1b, (B) 
ifnb, il10, ido, inos, mip2 and kc. 
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Figure 3.10 XIAP promotes secretion of proinflammatory cytokines  
(A,B) ELISA of IL-6 (A) and TNF (B) secretion from activated BMDM infected with 
wildtype or LLO- L. monocytogenes.  Cells were infected with L. monocytogenes at an 
MOI of 10 for 30 min.  Supernatants were collected at 8h pi. Error bars represent the s.d. 
of macrophages from 3 animals. Results are representative of at least 3 independent 
experiments.  * indicates p≤ 0.05 and ** indicates p≤0.005. 
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activation was required for induction of IL-6 gene expression and secretion in response to 

wildtype L. monocytogenes infection, we treated activated macrophages with the JNK 

inhibitor, SP600125 (Fig. 3.11).  IL-6 secretion by infected macrophages was markedly 

diminished by JNK inhibition, indicating that JNK activation is required for IL-6 

induction by L. monocytogenes.  Moreover, since LLO- mutant bacteria stimulated robust 

but temporally limited JNK phosphorylation and little IL-6 secretion, we infer that 

prolonged JNK activation is necessary for maximal IL-6 production during intracellular 

infection by L. monocytogenes.  When L. monocytogenes infected cells were treated with 

an ERK-specific inhibitor, IL-6 secretion was similar to the untreated infected control 

cells.  These results collectively suggest that the presence of XIAP enhances JNK 

activation in response to cytosolic bacteria, resulting in increased production of 

proinflammatory cytokines.  

 

XIAP enables synergy between TLR and NLR signaling  

Innate immune signaling mediated by pattern recognition receptors, located on cellular 

membranes or in the host cytosol, stimulates transcription and secretion of 

proinflammatory cytokines.  We used purified TLR and NLR ligands to better define a 

role for XIAP in innate immune signaling.  Wildtype and XIAP-deficient activated 

macrophages were treated with TLR ligands, and secretion of IL-6 and TNF was 

measured after 24h (Fig. 3.12).  While some PAMPS, such as the lipoprotein Pam3CSK4 

could induce high levels of IL-6 and TNF, we found no XIAP-dependent differences in 

proinflammatory cytokine induction.  These results suggest that XIAP does not contribute 

to cytokine output in response to TLR stimulation alone.       
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Figure 3.11 JNK activation is required for maximal production of IL6 by activated 
macrophages infected with L. monocytogenes  
ELISA of IL-6 secretion from activated BMDM infected with L. monocytogenes and 
treated with the indicated inhibitors.  JNK inhibitor (SP600125) was used at 20 μM, and 
the ERK inhibitor (U0126) was used at 10 μM.  Cells were treated with inhibitors for 1h, 
infected at an MOI of 10 for 30 min, washed with PBS and fresh medium with 50mg/ml 
gentamicin and the indicated inhibitor was added.  Supernatants were collected at 8 and 
24h pi.  Error bars represent the s.d. of macrophages from 3 animals. Results are 
representative of at least 3 independent experiments.  * indicates p≤ 0.05 and ** indicates 
p≤0.005.
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Figure 3.12 XIAP does not appear to enhance TLR signaling  
IL-6 secretion from xiap+/y and xiap-/y activated BMDM treated with the indicated TLR 
ligands as measured by ELISA.  Macrophages were activated overnight with 10 ng/ml 
LPS and 10 ng/ml interferon-γ.  Cells were left untreated or were treated for 24h with 
Pam3CSK4 (2 μg/ml), poly (I:C) (10 μg/ml), LPS (10 ng/ml), Flagellin (10 ng/ml), 
Imiquimod (5 μg/ml) or CpG DNA (1μg/ml).  Results are representative of at least 3 
independent experiments (error bars represent s.d.). 
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During a physiological infection, intracellular pathogens activate both extracellular and 

cytosolic innate immune pathways resulting in a coordinated immune response [25].  One 

well-characterized consequence of microbial sensing by cytosolic NLR proteins is 

activation of caspase-1, which cleaves pro-IL-1β into its mature form [19].  Since XIAP 

can regulate the activity of some caspases, we tested whether XIAP contributed to IL-1β 

production, measured by ELISA, as an indicator of caspase-1 activation (Fig. 3.13).  

Consistent with previous reports, IL-1β production was induced by cytosolic L. 

monocytogenes, but was not dependent upon XIAP [107].  We next examined the 

activation of NLR signaling using MDP, a ligand for Nod2 (Fig. 3.14).  No differences in 

cytokine secretion were observed by treatment with MDP alone, however, during a 

physiological infection bacteria likely present both TLR and NLR ligands to an infected 

host cell.  PAMPs contained by L. monocytogenes include lipoprotein, muramyldipeptide, 

bacterial DNA and flagellin[25].  To better understand the role of XIAP in Nod2 

signaling we examined the ability of XIAP to affect the stability of RICK, a Nod adaptor 

protein (Appendix 4). To determine if XIAP enhanced synergy between TLRs and 

NLRs, we examined IL-6, TNF and IL-1β secretion from xiap+/y and xiap-/y activated 

macrophages in response to the lipopeptide, Pam3CSK4, the Nod2 ligand, MDP, or both 

(Fig. 3.14). When Pam3CSK4 and MDP were used in combination, we saw a substantial 

increase in IL-6 and TNF secretion by xiap+/y but not xiap-/y activated macrophages.  

We did not see any XIAP-dependent enhancement of IL-1β secretion in response to 

Pam3CSK4 and MDP in combination.  To better deconstruct how XIAP might participate 

in integrating TLR and NLR signaling, we analyzed transcription of the  
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Figure 3.13 XIAP does not regulate Inflammasome signaling  

(A) IL-1β from the supernatants of xiap+/y and xiap-/y activated BMDM left uninfected or 
infected with wildtype or LLO- L. monocytogenes as measured by ELISA. Supernatants 
were collected at 8h pi. Results are representative of 3 independent experiments (error 
bars represent s.e.m. of cells from 6 animals). (B) ELISA of IL-1β secretion from xiap+/y 
and xiap-/y activated BMDM left untreated or treated for 8h with MDP (10 μg/ml) and/or 
Pam3CSK4 (0.5 μg/ml). Data are representative of 3 independent experiments with 3 
mice each (error bars represent s.d.).  * indicates p≤ 0.05 and ** indicates p≤0.005. 
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Figure 3.14 XIAP promotes synergistic proinflammatory cytokine production in 
response to TLR and NOD ligands  
ELISA of IL-6 (A) or TNF (B) secretion from xiap+/y and xiap-/y activated BMDM left 
untreated or treated for 8h with MDP (10 μg/ml) and/or Pam3CSK4 (0.5 μg/ml).  Data are 
representative of 3 independent experiments with 3 mice each (error bars represent s.d). * 
indicates p≤ 0.05 and ** indicates p≤0.005. 
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il6 gene from xiap+/y and xiap-/y activated macrophages treated with MDP, Pam3CSK4, 

or both ligands (Fig. 3.15).  Pam3CSK4 induced expression of the il6 gene in an XIAP-

independent manner.  Upon treatment with MDP, xiap+/y but not xiap-/y macrophages, 

responded by upregulating il6 transcript levels approximately 5-fold.  When macrophages 

were treated with both ligands, xiap+/y macrophages exhibited enhanced expression of il6 

compared to treatment of Pam3CSK4 alone, but xiap-/y macrophages did not.  These 

results demonstrate that XIAP promotes synergy between the TLR and NLR pathways, 

resulting in increased production of pro-inflammatory cytokines. 

 

DISCUSSION 

Here we show that XIAP can regulate innate immunity to the bacterial pathogen, L. 

monocytogenes by modulating JNK and NF-κB signaling, resulting in enhanced cytokine 

production.  We found little evidence to suggest that XIAP regulated apoptosis of 

bacterially infected cells in vitro or in vivo, but instead found that XIAP promoted 

synergistic inflammatory cytokine expression induced by extracellular and cytosolic 

innate immune signaling upon bacterial infection of activated macrophages.  Specifically, 

XIAP amplified the cytosolic response to MDP or wildtype L. monocytogenes.  These 

data identify XIAP as a regulator of cytosolic innate immune signaling.  Notably, another 

IAP family member NAIP5 was found to mediate caspase-1 activation in response to 

cytosolic bacterial flagellin [108,109,110].  NAIP5 function in innate immunity could be 

attributed to the atypical domain structure of this IAP protein that exhibits similarities to 

the NLR family of cytosolic sensors [111].   However, these data taken together with our  
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Figure 3.15 Transcription of proinflammatory cytokine genes is synergistically  
enhanced by XIAP in response to TLR and NOD ligands  
qRTPCR analysis of IL-6 gene expression at 3h in xiap+/y and xiap-/y activated BMDM 
treated with MDP (10 μg/ml) and/or Pam3CSK4 (0.5 μg/ml).  The data shown are form 
the same experiment, but are represented on different graphs to show y values more 
accurately.  Data are representative of 3 independent experiments with 3 mice each (error 
bars represent s.d). * indicates p≤ 0.05 and ** indicates p≤0.005. 
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results lead us to speculate that regulation of innate immune signaling is an important role 

of mammalian IAPs.  

 

The IAP family appears to play multiple roles in mammalian biology, including 

protecting cells from apoptotic stimuli, regulating the cell cycle and modulating innate 

immune signaling.  As a whole, these studies are consistent with genetic evidence in 

Drosophila demonstrating that dIAP1 primarily protects insect cells from programmed 

cell death, while dIAP2 is required for anti-microbial function of the Imd pathway 

[76,77,78,79].  The Imd pathway in Drosophila is activated by peptidoglycan recognition 

proteins (PGRPs), while functionally analogous innate immune sensing of peptidoglycan 

in mammalian cells occurs in the cytosol by Nod1, Nod2 and Nalp3 [112].  The Imd 

protein in Drosophila shares sequence homology with the mammalian RIP proteins, and 

a mammalian paralog, RIP2, is an essential signaling adaptor for the cytosolic 

peptidoglycan sensors, Nod1 and Nod2 [4,113,114,115].  Thus, the Imd/RIP innate 

immune signaling module appears to have been co-opted for mammalian cytosolic 

surveillance for peptidoglycan.  Genetic epistasis experiments in Drosophila place dIAP2 

in parallel to TAK1 upstream of JNK and NF-kB signaling pathways [77].  Similarly, in 

mammalian cells, XIAP can modulate JNK and NF-kB signaling through TAK1 in 

endothelial cells and fibroblasts[93,116].  Activation of either Nod1 or Nod2 activates 

TAK1, leading us to hypothesize that during bacterial infection, XIAP may facilitate this 

key association, linking cytosolic sensors to downstream signaling mediators [117,118].   
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During infection, microbial pathogens present multiple PAMPs recognized by the innate 

immune system, eliciting a coordinated protective response.  This concept is illustrated 

by the paradigm of IL-1β processing, where TLRs mediate transcription of pro-IL-1β 

however, cleavage and secretion are dependent upon activation of the caspase-1 

inflammasome by cytosolic PAMPs [119]. However, IL-1β deficient mice are as resistant 

to L. monocytogenes infection as wildtype mice, suggesting that other inflammatory 

cytokines mediate innate immune control of this infection [120].  In contrast, IL-6-, TNF- 

and IFNγ-deficient mice are more susceptible to L. monocytogenes infection at 48h pi 

than wildtype mice, demonstrating a requirement for IL-6, TNF and IFNγ in protection 

from this particular pathogen [47,48,121,122,123].  IFNγ is largely produced by innate 

immune effector cells other than macrophages, thus our observation that ifng 

transcription is decreased in the spleens of L. monocytogenes-infected XIAP mutant mice 

must be due to either a XIAP-dependent cell autonomous defect in a different cell type or 

a non-autonomous defect in an IFNγ producing cell resulting from a defect in 

macrophages [124].  Since XIAP is expressed in many different tissues, it is reasonable to 

suppose that XIAP may have pleiotropic effects in the innate immune response to L. 

monocytogenes [125].   However, macrophages are primary producers of IL-6 and TNF, 

and notably, Nod2 signaling is known to stimulate production of IL-6 and TNF [16,113].  

The deficit in IL-6 and TNF production we observed in infected xiap-/y activated 

macrophages, and the defect in gene expression in vivo likely contributes to the enhanced 

susceptibility of XIAP-deficient animals to L. monocytogenes infection.  Recent reports 

indicate that macrophages treated with LPS become tolerized to re-stimulation with TLR 

ligands [126,127].  Additionally, when macrophages are tolerized by LPS, the role of 
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Nod1 and Nod2 in cytosolic surveillance becomes more critical during infection [59].  In 

our model, macrophages are activated with LPS and IFNγ prior to infection.  We 

examined the role of LPS and IFNγ in XIAP-dependent signaling in activated 

macrophages in Appendix 5.  When activated macrophages are infected with L. 

monocytogenes, the induction of proinflammatory cytokines is XIAP-dependent, 

indicating that XIAP plays a more critical role in regulating the innate immune response 

to cytosolic pathogens in macrophages where the TLR pathway may be tolerized and an 

inflammatory gene expression program initiated.  We use these data to integrate XIAP 

into a cytosolic surveillance model whereby upon recognition of microbial ligands in the 

cytosol by innate immune sensors such as Nod2, XIAP enhances association and function 

of signal transducers such as TAK1 and JNK [93,98].  Recruitment of signaling 

molecules by XIAP upon NLR stimulation would potentiate signaling pathways activated 

by TLRs, leading to maximal proinflammatory cytokine production. 

 

Apoptotic and microbial stimuli activate similar signaling pathways, but may lead to 

different outcomes.  Macrophages as innate immune effector cells can control microbial 

infection by secreting cytokines and other pro-inflammatory molecules or by carrying out 

programmed cell death[128].  It has been hypothesized that when macrophages receive a 

strong inflammatory stimulus, they undergo apoptosis rather than secreting cytokines as a 

means of protecting the host [108,129,130].  Although previous data implicated XIAP in 

modulating apoptosis, our data demonstrate that XIAP also has an important role in 

proinflammatory cytokine production.  However, we suggest that these two functions for 

XIAP may not be completely distinct, as the outcome of XIAP-dependent modulation of 
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JNK and NF- κB pathways may depend on the quality and intensity of the stimulus [105].  

Additionally, the ability of XIAP to regulate innate immunity is likely cell type and 

context dependent, as we did not see reproducible XIAP-dependent transcriptional 

regulation in unactivated macrophages.  Future studies in Chapter 4 will help to elucidate 

the complex role of XIAP in the mammalian immune response. 

 

MATERIALS AND METHODS 

Animals, bacterial strains and infections.  For description of the XIAP-deficient mice 

see Chapter 2 methods.  For cell culture infections, Listeria monocytogenes strains 

10403S (wildtype) and hly- (LLO-) were inoculated into liquid brain-heart infusion 

(BHI) broth and incubated at 30°C overnight without shaking[86].  Prior to infection, L. 

monocytogenes cultures were washed and resuspended in PBS.  HKLM was prepared by 

incubating bacteria at 70°C for 1h.  For animal infection protocols, see Chapter 2 

methods. For evaluation of survival, animals were infected with 1x105 or 5x105 L. 

monocytogenes, and observed every 24h post-infection.  For histology, the spleen and 

liver from infected mice were harvested at 48h pi and fixed in 10% neutral buffered 

formalin.  Paraffin sections were prepared and stained with ApopTag by the Cancer 

Center Research Histology and Immunoperoxidase Lab at the University of Michigan. 

 

BMDM culture.  See Chapter 2 methods for BMDM culture.  BMDM were activated 

overnight in 10 ng/ml LPS (Sigma #L6143) and 10 ng/ml (100units/ml) interferon-γ 

(Peprotech #315-05).  Activated macrophages were infected with L. monocytogenes at an 

MOI of 10, such that bacteria were observed in the cytosol in approximately 99% of the 
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macrophages.  Peritoneal macrophages were harvested by peritoneal lavage.  Cells were 

pooled from two mice prior to plating.  For L. monocytogenes growth curves, cells were 

plated on coverslips at a density of 1.7 x105 cells/ ml in 24 well plates.  Macrophages 

were infected with L. monocytogenes for 0.5h, washed 3 times with PBS, followed by 

addition of fresh medium with 50 μg/ml gentamicin.  At each time point, 3 coverslips 

were lysed in water and plated on LB agar plates for to determine CFU.  IL-6 (R&D 

systems), IL-1β (R&D systems) and TNF (University of Michigan Cellular Immunology 

Core) in the culture medium were measured by ELISA.  Where indicated, cells were 

treated for 30 min with TLR ligands as follows: MDP 10 μg/ml (Bachem #4009623), 

Pam3CSK4 2 μg/ml (Invivogen #tlrl-pms), poly (I:C) 10 μg/ml, LPS 10 ng/ml (Sigma 

#L6143), Flagellin 10 ng/ml (Invivogen #tlrl-flic), Imiquimod 5 μg/ml (Invivogen #tlrl-

imq), CpG DNA 1 μg/ml (IDT CpG F (5’-TCCATGACGTTCCTGACGTT), CpG R (5’-

AACGTCAGGAACGTCATGGA)).  At 8 and 24h post treatment, supernatants were 

harvested for measurement of cytokines by ELISA.  Inhibition experiments were 

conducted as described above, except cells were treated with 20 μM JNK inhibitor, 

SP600125 (Sigma #S5567), or 10 μM ERK inhibitor U0126 (Cell Signaling #9903) for 

1h prior to infection.  For nuclear and cytoplasmic fractionation, cells were lysed in NP-

40 lysis buffer (50mM Tris pH 8, 5mM EDTA pH 8, 150mM NaCl, 0.05% NP-40 

(Igepal), EDTA-free protease inhibitor cocktail (Roche)).  Nuclei were pelleted by 

centrifugation at 1000 rpm for 5 min; the cytosolic fraction was further clarified by 

centrifugation at 14000 rpm for 10 min.  Nuclei were washed and either resuspended in 

2x SDS-PAGE lysis buffer for immunoblot or lysed for NF-kB ELISA by resuspension 

in nuclear lysis buffer (20mM HEPES pH 7.9, 400mM NaCl, 1mM EDTA, 10% glycerol, 
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0.1mM DTT, EDTA-free protease inhibitor cocktail (Roche)) and incubated at 4 ºC for 

30min.  Nuclei were flash frozen and used for NF-κB p65 ELISA analysis (Stressgen 

EKS-446). 

 

Apoptosis assays.  BMDM were plated and activated overnight in 10ng/ml LPS and 

10ng/ml interferon-γ.  Cells were infected for 30 min at an MOI of 10, bacteria were 

removed by 3 washes with PBS, and fresh medium containing 50 μg/ml gentamicin 

added.  At 3h pi, the medium was removed and spun to collect any non-adherent cells; 

the remaining cells were removed from the dish by incubating with ice cold PBS without 

calcium and magnesium for 20 min at 4°C.  Cells were stained with Annexin V and 

propidium iodide according to the manufacturer’s protocol (BD Biosciences #556420). 

Flow Cytometry. Splenocytes were harvested from uninfected or L. monocytogenes 

infected mice.  BMDM were harvested from plates with ice cold PBS without Ca+ or 

Mg+.  Cells were blocked with Fc block (BD Pharmingen 553142) for 15 min on ice.  

Cells were incubated in staining buffer (PBS, 10%FBS) with the indicated antibodies for 

20 min on ice, followed by 3 washes in staining buffer.  When necessary cells were 

incubated with secondary antibodies in staining buffer on ice for 20 min, and washed 3 

times in staining buffer.  Flow cytometric acquisition was performed on a FACSCanto.  

The data was analyzed using FlowJo software.  The following antibodies were used: from 

BD Pharmingen; B220-PE (553089), NK1.1-biotin (553163), CD69-PE (553237); from 

Southern Biotech CD3 (1530-02), Streptavidin-APC (7100-11L). 
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Immunoblot analysis.  See Chapter 2 methods for detailed protocol.  The following 

antibodies were used: β-actin (Sigma #A5441), NF-κB p50 (Santa Cruz Biotechnology 

#8414), USF-1 (Santa Cruz Biotechnology #8983), Phospho-JNK (Cell Signaling 9251), 

JNK1 (Santa Cruz Biotechnology #571), Phospho-p38 kit (Cell Signaling 9210), 

Phospho-c-jun (Santa Cruz Biotechnology #822), Phospho-ERK (Cell Signaling 4377), 

ERK-1 (Santa Cruz Biotechnology #94), goat anti Rabbit IgG-HRP (MP Biomedical 

#67438), goat anti-mouse IgG-HRP (MP Biomedical #67429). 

 

RNA isolation and quantitative RT-PCR analysis.  For RT-PCR, total RNA was 

harvested from infected or treated cells at 3h pi with the RNeasy Mini Kit (Qiagen).  The 

RNA was used in a reverse transcriptase (RT) reaction with Moloney murine leukemia 

virus (MMLV) RT (Invitrogen).  cDNA obtained from the RT reaction was used for 

qRT-PCR amplification and quantitation by SYBR Green (Stratagene MX3000p).  Data 

was analyzed using the ΔΔCt method (ΔΔCt = 2(ΔCt sample-ΔCt normalizer)) with b-

actin used as a normalizer for in vitro experiments and gapdh used as a normalizer for in 

vivo experiments.  

 

Statistical Analysis.  A two-tailed t-test was used for statistical analysis; p values of 

≤0.05 were considered significant, while p values ≤0.001 were considered highly 

significant. 
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Chapter 4 : Regulation of innate immunity in vivo by XIAP 
 

 

ABSTRACT 

The success of the innate immune response relies on a series of complex interactions 

between the cells of the innate immune system to coordinate both control of the pathogen 

and effective instruction of the adaptive immune response.  Detection of cytosolic 

bacteria is required during a Listeria monocytogenes (Lm) infection to promote protective 

immunity.  Immunization with a strain of Lm deficient in listeriolysin O (LLO), which is 

trapped in the vacuole, does not protect against a secondary infection.  Here we show that 

XIAP regulates the expression of proinflammatory cytokines in vivo.  Additionally, XIAP 

is required for trafficking of Lm infected phagocytes to the white pulp of the spleen, 

where approximately 42% of the follicles exhibit disrupted T cell zones.  Thus, we 

propose that XIAP promotes the proinflammatory cytokine environment necessary to 

effectively traffic Lm to the white pulp of the spleen. 

 

INTRODUCTION 

The ability of a vertebrate organism to clear infection relies upon both the innate and the 

adaptive immune response.  During a Lm infection the innate immune system is critical 

for preventing rampant bacterial replication, while providing signals to the adaptive 

immune response to enable differentiation of CD8+ cytotoxic T cells[30].  Upon Lm 
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infection, phagocytes are recruited to engulf the bacteria; once taken up into a vacuole, 

Lm can be killed or it can mediate its own escape into the cytosol[131]. Exposure of host 

cells to Lm rapidly stimulates the immune response by activating immune cells, which is 

essential for host survival[25].  Activation of phagocytes induces expression of cytokines 

and cytokine receptors.  Animals that are deficient in inflammatory cytokines or their 

receptors including, IFNγ, TNF or the TNFRp55 receptor, are very susceptible to Lm 

infection[122,132,133].  Another main function of phagocytes is to present antigen to the 

adaptive immune system.  To do this, the phagocyte must traffic to the spleen or lymph 

nodes and display pathogen specific epitopes to T cells.  Phagocytes respond to cytokine 

and chemokines gradients that direct localization in the spleen.  In animals where the 

recognition of these chemical gradients are disrupted, such as in CCR2-deficient mice, 

phagocytes do not properly traffic and the animals succumb to Lm infection[134].  

During a wildtype Lm infection, cells infected with cytosolic bacteria migrate to the T 

cell zone of the splenic white pulp, and then substantial apoptosis of the T cells 

occurs[41,135,136].  The specific role innate immune signaling may play in phagocyte 

trafficking and development of the adaptive immune response is unclear. 

 

The location of bacteria in a phagocyte and the organization of innate immune cells in the 

spleen are both critical for the development of a productive immune response.  When 

mice are infected with heat-killed Lm, or the LLO-deficient strain of Lm, neither of which 

can escape into the cytosol, the infected phagocytes do not localize to the white pulp of 

the spleen but instead concentrate in the marginal zone and red pulp.  This results in an 

nonproductive adaptive immune response, which prevents long-term protective 
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immunity[50,137].  Additionally, the induction of early IFNγ in vivo during an Lm 

infection requires LLO expression[138].  LLO is a pore forming protein secreted by Lm 

that enables vacuolar escape, but in addition it is known to activate innate immune 

pathways, such as the inflammasome[139].   These results suggest that escape into the 

cytosol by the bacteria or expression of the LLO antigen, or both, are critical for splenic 

localization and development of a protective adaptive immune response[137]. 

 

Our work has implicated XIAP, an IAP family member, in regulating the innate immune 

response to cytosolic Lm infection.  Specifically, we have shown that XIAP plays a 

critical role in promoting proinflammatory cytokine production in macrophages during 

cytosolic Lm infection.  Additionally, our data suggest that XIAP regulates synergy 

between the TLR and NLR signaling pathways, resulting in enhanced proinflammatory 

cytokine production.  However these results are from studies using primary macrophages 

in culture and may not reflect the complex interactions that occur between innate immune 

cells in vivo.  To understand the role of XIAP in vivo during Lm infection, we have 

examined several aspects of the immune response including in vivo cytokine expression 

and production, and tissue morphology and composition in the infected organs.  We have 

determined that XIAP regulates the localization of the bacteria during infection, which is 

required for control of bacterial replication. 

 

RESULTS 

XIAP promotes proinflammatory cytokine expression in vivo during L. 

monocytogenes infection 
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Our previous work has shown that when macrophages are infected with cytosolic Lm, 

XIAP promotes enhanced cytokine expression.  We wanted to determine if immune cells 

obtained from infected animals would also display enhanced expression of 

proinflammatory cytokines.  We first examined the expression of several 

proinflammatory cytokines by quantitative RT-PCR analysis of splenic RNA (Fig. 4.1).  

Mice were infected with 5x105 CFU of Lm intraperitoneally (i.p.), and the spleens and 

livers were isolated at 48 hours post infection (hpi).  Livers were homogenized and the 

bacterial CFU were enumerated to assess infection.  Spleens were also homogenized and 

the resulting lysates were used to extract RNA for qRT-PCR analysis of proinflammatory 

cytokine gene expression. We examined the expression of several proinflammatory 

cytokines including, IL-6, TNF and IFN-γ produced during the innate immune response 

that are critical for clearing L. monocytogenes infection[47,48,122].   The expression of 

il6 and ifng were significantly enhanced in the presence of XIAP during infection, while 

expression of tnf and ifnb were not altered.  We also measured the expression of il17, 

which encodes a cytokine known to enhance expression of il6, but observed no 

reproducible differences in il17 expression between wildtype and XIAP-deficient 

splenocytes[140].    These data support the results from our in vitro macrophage model 

and demonstrate that XIAP promotes the expression of proinflammatory cytokine genes 

in response to L. monocytogenes infection in vivo. 

 

XIAP-deficient animals produce IL-6 at a level disproportionate to bacterial load 
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Figure 4.1 In vivo L. monocytogenes infection induces XIAP-dependent 
proinflammatory cytokine expression. 
 qRT-PCR of genes associated with innate immune activation.  Mice were infected with 
Lm, splenocytes were harvested at 48h pi for RNA isolation and production of cDNA.  
Fold induction was calculated using the ΔΔCt method where uninfected samples were 
compared to infected samples, relative to  β2M levels. * indicates p≤ 0.05 and ** 
indicates p≤0.005. (error bars represent s.d.). 
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The XIAP-deficient animals have 10-fold more bacteria at 48hpi.  To determine if the 

bacterial load affected the amount of IL-6 produced, we examined the production of IL-6 

by macrophages in response to varied amounts of Lm.  Primary bone marrow derived 

macrophages from wildtype and XIAP-deficient animals were activated overnight with 

LPS (10ng/ml) and IFNγ (10ng/ml) and then infected with Lm at an MOI of 1, 10 or 100 

for 30 min (Fig 4.2).  At 24hpi, the amount of IL-6 in the culture supernatant was 

quantified by ELISA.  The XIAP-deficient macrophages produce less IL-6 than wildtype 

macrophages when stimulated with the same bacterial load.  However, we observed 

similar levels of IL-6 in wildtype cells infected at an MOI of 10 and in XIAP-deficient 

cells infected at an MOI of 100.  This suggests that per bacteria, the XIAP-deficient 

macrophages produce less IL-6.  However, in vivo, the XIAP-deficient animals have 10-

times more bacteria, therefore, we would predict that the amount of IL-6 produced would 

be similar in wildtype and XIAP-deficient animals.  To determine the proinflammatory 

cytokine production in vivo during Lm infection, we quantitated the number of 

splenocytes producing IL-6 after a 48h Lm infection.  Splenocytes were harvested from 

uninfected mice or animals infected with Lm for 24 or 48hpi.  IL-6 secreting cells were 

quantitated by ELISPOT analysis.  The number of IL-6 secreting cells was similar in the 

wildtype and XIAP-deficient animals at 24 and 48hpi (Fig 4.3).  Taken together these 

data suggest that since the number of bacteria in the XIAP-deficient mice is 10-fold 

higher than the wildtype animals, the increase in bacterial burden likely accounts for the 

similar number of IL-6 secreting cells seen in wildtype and XIAP-deficient splenocytes. 
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Figure 4.2 XIAP-deficient macrophages produce less IL-6 than wildtype cells 
ELISA of IL-6 secretion from activated BMDM infected with wildtype L. 
monocytogenes. Wildtype or XIAP-deficient macrophages were infected with Lm at a 
MOI of 1, 10 or 100 bacteria per cell for 30 min.  Supernatants were collected at 8h pi. * 
indicates p≤ 0.05, for comparison between wildtype and XIAP-deficient samples at the 
same MOI.  The amount of IL-6 produced by the wildtype sample infected with an MOI 
of 10 and the XIAP-deficient sample infected at an MOI of 100 is not statistically 
different. (error bars represent s.d.). 
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Figure 4.3 IL-6 production in XIAP-deficient mice is equal to wildtype due to a 10-
fold increase in bacterial burden 
ELISPOT analysis of IL-6 producing splenocytes harvested from uninfected or Lm 
infected animals.  Mice were infected with 5x105 Lm i.p., spleens were harvested at 48h, 
dissociated and plated in 96 well plates for ELISPOT analysis.  IL-6 secretion was 
analyzed after a 24h incubation.  Livers were also harvested and bacterial burden was 
enumerated. Left y-axis indicates ELISPOT analysis.  Right y-axis indicates bacterial 
CFU.  The median CFU of each group is indicated by a horizontal line. Each group 
contained 5 mice.  This data is representative of 3 independent experiments. (error bars 
represent s.d.). P values indicated are for CFU data. 
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Decreased IL-12 expression in XIAP-deficient macrophages correlates with 

decreased IFNγ in XIAP-deficient mice 

IFNγ activation of innate immune cells is critical for controlling Lm replication during 

infection[47].  IFNγ production is stimulated by IL-12 and IL-18 and is produced by 

natural killer dendritic cells, natural killer cells, dendritic cells and T cells[124,141].  We 

observed decreased ifng expression in splenocytes from XIAP-deficient infected animals 

compared to wildtype.  Furthermore, activated macrophages infected with Lm depend 

upon XIAP to promote proinflammatory cytokine production.  To determine if the reason 

for decreased ifng expression in vivo was due to decreased il12 or il18 expression by 

phagocytes, we examined the expression of il12 and il18 by qRT-PCR analysis of RNA 

isolated from uninfected or infected activated wildtype or XIAP-deficient macrophages 

(Fig4.4).  We observed similar levels of il18 gene expression but decreased levels of il12 

gene expression in the XIAP-deficient macrophages compared to wildtype cells.  These 

results suggest that the decreased expression of il12 in macrophages may contribute to 

the decreased expression of ifng observed in vivo and the increased susceptibility of the 

XIAP-deficient animals during Lm infection.  

 

XIAP-deficient animals display altered splenic morphology after Lm infection 

To better understand the role of XIAP in vivo during a Lm infection, we harvested spleens 

and performed histological analysis.  Wildtype and XIAP-deficient animals were infected 

i.p. for 48h, at which time the spleens were isolated and prepared for cryosectioning.  

Spleens were also obtained from uninfected animals as a control.  CFU were enumerated 

from the livers of infected animals to monitor the bacterial burden. Spleen sections were 
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Figure 4.4 XIAP-deficient macrophages display decreased il12 gene expression  

qRT-PCR of genes associated with IFNγ expression. Wildtype or XIAP-deficient 
macrophages were infected with Lm at a MOI 10 bacteria per cell for 30 min.  RNA was 
isolated 3hpi, and cDNA was synthesized to perform qRT-PCR. Fold induction was 
calculated using the ΔΔCt method where uninfected samples were compared to infected 
samples, relative to  β-actin levels. * indicates p≤ 0.05 (error bars represent s.d.). 
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 stained with hematoxylin and eosin to visualize the splenic architecture (Fig 4.5).  In the 

wildtype animals at 48hpi, the follicles of the spleen were enlarged due to lymphocyte 

recruitment.  The follicles also contained a lesion, where cells were depleted.  Previous 

work has shown an increase in the number of apoptotic cells in the area of clearing in the 

follicles, suggesting these cell are undergoing programmed cell death[135].  In the XIAP-

deficient animals the follicles are smaller and there are fewer lesions compared to those 

observed in the wildtype animals.   

 

XIAP-deficient spleens contain similar cell populations to wildtype animals  

We reasoned that the lesions observed in the wildtype animals would likely result in an 

alteration of immune cell populations when compared to the XIAP-deficient animals.  

Therefore, we quantitated the splenocyte population in the wildtype and XIAP-deficient 

animals by flow cytometry.  Splenocytes were isolated from uninfected mice and mice 

infected with Lm for 48h.  Cells were with stained with various fluorescent antibodies to 

label different cell populations.  We specifically examined T and B cells, phagocyte 

populations and activation of immune cells (Fig 4.6, 4.7, data not shown).  We observed 

no significant differences in the cell populations of the wildtype or XIAP-deficient 

animals after Lm infection.  This data indicates that the histological differences that were 

observed in H&E stained sections are likely not attributable to differences in the size of 

the cell populations between the wildtype and XIAP-deficient splenocytes.  
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Figure 4.5 XIAP-deficient animals display altered splenic morphology after Lm 
infection 
Hematoxylin and Eosin staining of histological sections of spleens from wildtype and 
XIAP-deficient mice infected with Lm i.p. at 5x105 for 48 h (n=3 animals/genotype).  Ten 
sections per animal were examined and representative sections are shown.. 
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Figure 4.6 B and T lymphocyte populations are not altered in the XIAP-deficient 
animals 
Flow cytometric analysis of B220+CD3+ splenocytes from uninfected and Lm infected 
animals. Splenocytes were harvested from infected animals at 48h pi, and stained with 
B220-PE and CD3-FITC antibodies for flow cytometry analysis. Results are 
representative of at least three independent experiments (n≥9 animals). 
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Figure 4.7 XIAP does not regulate expression of the CD69 activation marker by 
splenocytes during Lm infection  
Flow cytometric analysis of CD69+ and CD3+ splenocytes from uninfected and Lm 
infected animals. Splenocytes were harvested from infected animals at 48h pi, and stained 
with CD69-APC and CD3-APC-Cy7 fluorescent-coupled antibodies for flow cytometry 
analysis. Results are representative of at least three independent experiments (n≥9 
animals). 
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XIAP-deficient animals exhibit altered localization of intracellular Lm in the spleen 

To determine which cell populations were involved in the clearance observed in the 

splenic follicles, we characterized the tissue morphology of the spleen sections by 

immunofluorescence histology.  By analyzing the B and T cell populations of wildtype 

mice infected with Lm for 48h, we found a clearing of T cells at sites of bacterial 

replication (Fig 4.8).  This alteration of the T cell zone was rarely observed in the XIAP-

deficient animals.  To further characterize the cell populations at the site of infection, we 

stained with antibodies to cell surface proteins characteristic of macrophages, dendritic 

cells and neutrophils.  At sites of Lm replication, we observed recruitment of neutrophils, 

such that the area of T cell clearance was filled with neutrophils (Fig 4.9).  Recruitment 

of neutrophils to sites of Lm replication was also observed in the XIAP-deficient animals, 

however the Lm were often not found in the follicles but instead located in the marginal 

zone around the follicles (Fig 4.10).  We conclude that XIAP signaling promotes the 

transport of bacteria to the white pulp of the spleen.  Additionally, T cell clearance was 

correlated with the localization of bacteria in the T cell zone of the follicle. 

 

DISCUSSION 

We show that XIAP promotes expression of proinflammatory cytokines in the spleen 

during in vivo infection with Lm, enabling a productive immune response.  The XIAP-

deficient phagocytes display decreased IL-6 production, however in vivo, perhaps due to 

enhanced bacterial loads, the secretion of IL-6 is similar to that of wildtype animals. 

XIAP-deficient animals also display altered splenic morphology.  In wildtype animals, 

the bacteria were trafficked to the T cell zone and localized with neutrophils; a pattern
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Figure 4.8 XIAP-deficient mice exhibit disrupted splenic T cell zones during Lm 
infection 
Immunofluorescence microscopy of spleen samples from uninfected and Lm infected 
animals.  Mice were infected with 5x105 Lm i.p., spleens were harvested at 48hpi for 
immunofluorescence visualization and livers were harvested to enumerate the bacterial 
burden in the animals. Spleens were frozen in OCT and sectioned into 5uM sections for 
immunostaining.  Sections were stained with anti-B220-FITC and anti-CD3-PE 
antibodies, followed by secondary antibodies to amplify the visible fluorescence. Number 
in top right indicates the percent of follicles that display disrupted structure. 
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Figure 4.9 L. monocytogenes and neutrophils localize to the T cell clearing in the 
wildtype animals 
Immunofluorescence microscopy of spleen samples from uninfected and Lm infected 
animals.  Mice were infected with 5x105 Lm i.p., spleens were harvested at 48hpi for 
immunofluorescence visualization and livers were harvested to enumerate the bacterial 
burden in the animals. Spleens were frozen in OCT and sectioned into 5uM sections for 
staining.  Sections were stained with anti-GR-1-FITC, anti-Listeria-AMCA and anti-
CD3-PE antibodies, followed by secondary antibodies to amplify the visible 
fluorescence.  Yellow insets indicate areas that have been enlarged. 
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Figure 4.10 Altered localization of L. monocytogenes and neutrophils in the XIAP-
deficient animals compared to wildtype animals.   
Immunofluorescence microscopy of spleen samples from uninfected and Lm infected 
animals.  Mice were infected with 5x105 Lm i.p., spleens were harvested at 48hpi for 
immunofluorescence visualization and livers were harvested to enumerate the bacterial 
burden in the animals. Spleens were frozen in OCT and sectioned into 5uM sections for 
staining.  Sections were stained with anti-GR-1-FITC and anti-Listeria-PE antibodies, 
followed by secondary antibodies to amplify the visible fluorescence.  White pulp was 
determined by dense DAPI staining. Yellow insets indicate areas that have been enlarged. 
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that correlated with clearance of the T cells.  In XIAP-deficient animals, the bacteria were 

not trafficked to the spleen, which may impact productive DC: T cell interactions that 

occur in the T cell zone[136]. 

  

XIAP regulates the production of proinflammatory cytokines by activated macrophages 

in response to cytosolic bacteria.  In addition, it also regulates the expression of 

proinflammatory cytokines in the spleen during in vivo infection with Lm.  When mice 

are infected with the LLO-deficient strain of Lm, which is unable to gain access to the 

cytosol, the bacteria are trafficked to the marginal zone of the lymphoid follicles in the 

spleen[142].  Since we observed altered localization of the bacteria in the XIAP-deficient 

mice, and our data suggest that XIAP regulates signaling in response to cytosolic Lm, we 

propose that XIAP-dependent cytosolic signaling is required for bacterial localization to 

the T cell zone in the spleen.  Based on published studies with the LLO-deficient strain of 

Lm, development of a productive adaptive immune response to Lm infection requires 

cytosolic innate immune signaling.  This suggests that the XIAP-deficient animals may 

not develop a fully functional adaptive immune response to Lm infection.  

 

During a Lm infection in the wildtype animals, there is heterogeneity in the morphology 

of the spleen follicles.   We observed three different situations: undisturbed follicles, 

follicles containing Lm and T cells, and follicles containing Lm, neutrophils but not T 

cells (Fig 4.11).  Our model to explain this heterogeneity is that phagocytes that traffic 

Lm to the spleen from the site of infection can undergo three different immune  
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Figure 4.11 Heterogeneity of follicles observed in Lm infected wildtype animals 
Depiction of the three different types of follicles observed in the spleens of wildtype 
animals infected with Lm for 48h.  1) Uninfected, unaltered follicle.  2) Follicle 
containing Lm and T cells without recruitment of neutrophils. 3) Follicle containing Lm 
and neutrophils in the absence of T cells. 
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responses: 1) A non-productive infection where the bacteria are unable to escape from the 

vacuole, thus they do not get trafficked to the white pulp, 2) A semi-productive infection 

where Lm is able to escape and replicate in the cytosol, however the phagocyte controls 

replication and presents antigen to T cells, 3) A productive infection, where Lm gets into 

the cytosol, replicates and then spreads to surrounding cells, however the phagocyte can 

still present antigen to T cells.  In the case of a semi-productive infection, it is likely that 

while the bacteria are properly localized to the white pulp, the bacteria are not 

extracellular, therefore, neutrophils are not recruited.  During a productive infection, not 

only do the bacteria get to the proper location, but in addition, neutrophils are recruited to 

control bacterial spread and replication and in doing so, likely damage the T cells causing 

death and clearance.   

 

Proinflammatory cytokines and chemokines regulate cell recruitment and localization 

during an infection.  An explanation for the altered trafficking of Lm in the XIAP-

deficient animals could be decreased chemokine production.  Once such chemokine, 

CCR2, is required for recruitment of inflammatory monocytes to sites of bacterial 

infection; CCR2 and both of its ligands, MCP-1 and MCP-3, all contribute to optimal 

defense against Lm infection.  Cytosolic infection of macrophages with Lm induces 

MCP-3 expression, allowing infected cells to recruit other immune cells, such as TipDCs, 

to help fight off infection[143].  Since these chemokines are regulated during a cytosolic 

bacterial infection it is possible that XIAP may function to modulate the expression of 

these chemokines as well. 
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The ability of the host to develop protective immunity depends upon the location of the 

innate immune cells during the immune response.  Cells infected with Lm recruit innate 

immune cells to the site of infection to control bacterial replication as well as to collect 

antigens for presentation to the cells of the adaptive immune system.  A recent study by 

Kang et al, shows that cytosolic signaling is critical for innate immune cell recruitment 

and activation at sites of Lm replication[144].  XIAP promotes production of 

proinflammatory cytokines in response to cytosolic bacteria, potentially regulating the 

recruitment of innate immune cells to the site of infection.  

 

Our results suggest that XIAP-mediated signaling in response to cytosolic Lm infection is 

critical not only for the innate immune response to Lm infection, but also for the 

localization of Lm infected phagocytes to the splenic white pulp.  Future studies will 

determine the precise role of XIAP in innate immune control of bacterial replication, as 

well as how XIAP specifically regulates cytosol-specific immunity.  Additionally, we 

will determine if the adaptive immune response develops properly in the XIAP-deficient 

mice following primary Lm infection, providing protective immunity against Lm 

infection.  

 

MATERIALS AND METHODS 

Animals, bacterial strains and infections.  Description of the animals used and methods 

used for infection can be found in Chapter 2.  Methods for cell culture infections can be 

found in Chapter 3.  For adaptive immune response experiments mice were infected with 

a primary dose of 5x104 i.p. followed by a secondary infection of 5x106 i.p., mice were 
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harvested 48h after the second infection. The number of viable bacteria in the inoculum 

and organ homogenates was determined by plating 10-fold serial dilutions on Luria broth 

(LB) agar plates.  For histology, the spleen and liver from infected mice were harvested 

at 48h pi and frozen in OCT media on dry ice.  Blocks and sections were stored at -80C.  

5uM sections were cut by the ULAM histology core, and stained with H&E.  For 

immunofluorescence sections were fixed in acetone for 5 min at RT followed by 3 

washes in PBS for 2 min each.  Sections were blocked in sterile 1% BSA with 0.1% 

NaN3 in PBS for 45 min at RT.  Slides were stained in PBS with 0.05% Tween-20 for 45 

min at RT, antibodies were diluted 1:100.  The slides were washed 3 times with PBS 

before secondary antibody staining (same as primary antibody staining).  Slides were 

then washed 3 times with PBS and coverslips were mounted with Prolong Gold Antifade 

(Invitrogen).  Slides were dried overnight at RT in the dark.  Slides were visualized using 

a Olympus BX60 upright immunofluorescence microscope, photographs were taken 

using an Olympus DP70 color digital video camera and Olympus DP Controller/Manager 

software. The following antibodies were used: Anti-CD3-biotin (BDBiosciences 

553059), Anti-CD19-FITC (Southern Biotech 1575-02), Anti-GR-1 (Southern Biotech 

Ly6G 1900-08), Anti-Listeria (Fisher DF2302-50-0), Streptavidin-PE (Jackson 

Immunoresearch 016-070-084), Anti-Rat FITC (Jackson ImmunoResearch 112-096-003), 

Anti-Rabbit AMCA (Jackson ImmunoResearch 111-156-003).  DAPI (4',6-Diamidino-2-

phenylindole, hydrochloride) was diluted 1:10,000 and was obtained from Fisher 

(46190).   

 

BMDM culture.  Methods can be found in Chapter 2 and 3.  
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Flow Cytometry. Splenocytes were harvested from uninfected or L. monocytogenes 

infected mice.  BMDM were harvested from plates with ice cold PBS without Ca+ or 

Mg+.  Cells were blocked with Fc block (BD Pharmingen 553142) for 15 min on ice.  

Cells were incubated in staining buffer (PBS, 10%FBS) with the indicated antibodies for 

20 min on ice, followed by 3 washes in staining buffer.  When necessary cells were 

incubated with secondary antibodies in staining buffer on ice for 20 min, and washed 3 

times in staining buffer.  Flow cytometric acquisition was performed on a FACSCanto.  

The data was analyzed using FlowJo software.  The following antibodies were used: from 

BD Pharmingen; B220-PE (553089), NK1.1-biotin (553163), CD69-PE (553237); from 

Southern Biotech CD3 (1530-02), Streptavidin-APC (7100-11L). 

 

RNA isolation and quantitative RT-PCR analysis.  See Chapter 3 methods. 

 

ELISPOT assay for cytokine-producing cells.  An ELISPOT kit specific for IL-6 was 

purchased from eBioscience (88-7864-88). Polyvinylidene difluoride-backed microtiter 

plates (Fisher MAIPS4510) were coated with unlabeled capture antibody overnight.   

Plates were washed with ELISPOT coating buffer and blocked with complete RPMI-

1640 (10% FBS, 1mM L-Glutamine) for 1h at RT.  Splenocytes were serially diluted in 

complete RPMI and added in triplicate to the plate, plates were incubated at 37°C, in 5% 

CO2 for 24h.  After washing, the detection antibody conjugated to biotin was added to 

the plates and incubated for 2h at RT. After washing, a Streptavidin-horseradish 

peroxidase reagent was added and incubated at RT for 45 min. Plates were washed and 
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spots were visualized by adding TMB solution (Fisher NC9779701) for 10-30 minutes 

until color develops, development was stopped by adding H2O. Plates were dried and 

spots were quantified with an Immunospot Series 1 ELISPOT analyzer (Cellular 

Technology Ltd.). 

 

Statistical Analysis.  As stated in Chapter 3.
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Chapter 5 : Perspectives and Future Directions 
 

XIAP regulates cytosol specific innate immune signaling 

My studies have identified XIAP as a regulator of cytosolic innate immunity to Lm 

infection.  Specifically, I have shown that XIAP-deficient animals are more susceptible 

than wildtype mice to Lm during the innate immune response.  XIAP promotes the 

induction of proinflammatory cytokines by enhancing and prolonging JNK 

phosphorylation.  Additionally, XIAP coordinates synergistic proinflammatory cytokine 

production resulting from simultaneous TLR and NLR stimulation.  In vivo I have shown 

that XIAP regulates cytokine production and directs the localization of Lm to the white 

pulp of the spleen.  Taken together, these data indicate that XIAP regulates innate 

immunity by regulating proinflammatory cytokine production, which directs the cells of 

the immune response to become activated and to traffic to the lymphoid follicles, which 

is required to clear Lm infection. 

 

IAPs and Immunity 

In addition to our identification of XIAP as a regulator of innate immunity, it has become 

clear that other IAP proteins also regulate immunity.  In Drosophila there are two IAP 

proteins; dIAP1 is involved in protection against apoptosis, while the dIAP2 protein is 

part of the Imd innate immune signaling cascade[76,77,79].  Innate immune signaling 
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pathways are well conserved from Drosophila to humans, suggesting that IAP proteins 

may also play a role in mammalian innate immunity [4].  Several other mammalian IAPs 

have also been shown to be involved in immunity including NAIP5 and c-IAP2 in mice 

and XIAP in humans.  Starting in the murine model, NAIP5 is involved in detecting 

cytosolic flagellin, resulting in proinflammatory cytokine production and restriction of 

Legionella pneumophila intracellular growth[108,109,110,145,146,147].  Studies in c-

IAP2-deficient mice illustrate the role of c-IAP2 in promoting proinflammatory 

cytokines, exacerbating LPS induced endotoxic shock[69].  Recently XIAP has been 

implicated in the human disease, X-linked lymphoproliferative syndrome (XLP), 

resulting in primary immunodeficiency[71].  These studies indicate that IAP proteins 

regulate immunity as well as apoptosis.  

 

What governs the requirement for XIAP? 

Interestingly, when unactivated XIAP-deficient macrophages are infected, they are able 

to respond to Lm infection as well as unactivated wildtype macrophages.  However, this 

response is decreased when compared to wildtype activated macrophages.  Microarrays 

performed in unactivated wildtype or XIAP-deficient macrophages did not show any 

significant differential induction of genes upon infection.  This suggests that for XIAP to 

enhance the innate immune response, macrophages must be activated to induce a state of 

readiness in the macrophage.  The bactericidal environment in activated macrophages is 

critical for control of Lm replication[148].  We activated macrophages with both LPS and 

IFNγ, but found that it was the LPS stimulation that was critical to allow XIAP to 

enhance proinflammatory cytokine production.  We and others have shown that treatment 
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of macrophages with LPS induces Nod2 gene expression[149]. The cytosolic sensors 

Nod1 and Nod2 are known to be critical for control of Lm infection in mice previously 

stimulated with LPS, indicating that the NLR receptors may be activated in response to 

TLR stimulation[59].  There are two hypothesis that can explain the role of XIAP in these 

TLR stimulated macrophages: 1) that in response to TLR stimulation, XIAP promotes the 

transcription or translation of proteins important for immune defense against cytosolic 

pathogens, or 2) that XIAP requires certain proteins induced by TLR stimulation to 

promote proinflammatory cytokine production.  Since we have shown that XIAP 

promotes Nod2 transcription, as well as requiring the Nod2 protein for synergistic 

production of proinflammatory cytokines in response to TLR and NLR stimulation, it is 

likely that XIAP functions in both roles.  

 

Are phagocytes in vivo less bactericidal in the absence of XIAP? 

During the innate immune response to infection, the production of proinflammatory 

cytokines is critical for pathogen control and development of adaptive immunity.  We 

observed decreased production of several proinflammatory cytokines, including IL-6 and 

TNF in the absence of XIAP, which would likely affect many aspects of the immune 

response in vivo.  Proinflammatory cytokines serve to recruit innate immune cells as well 

as activate them to be more bactericidal[47,48].  Mice that are deficient in either IL-6 or 

the TNF receptor display enhanced susceptibility to Lm infection[48,122].  Among other 

roles, IL-6 is required for the production of IFNγ.  In the XIAP-deficient animals, both il6 

and ifng expression is decreased in vivo in the spleen[49].  IFNγ is important for its role 

in activating phagocytes to become more bactericidal; a decrease in IFNγ could allow 
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rampant proliferation by the bacteria, overwhelming the innate immune response, as seen 

in the XIAP-deficient animals.  While XIAP-deficient macrophages in culture were able 

to control Lm infection when stimulated with exogenous IFNγ and LPS, in vivo they may 

not receive the proper activation signals and thus may not be as bactericidal.  This 

hypothesis could be tested by isolating phagocytes from infected animals and performing 

a growth curve in vitro, without additional ex vivo proinflammatory cytokine stimulation.  

If the cells from the XIAP-deficient mice are less bactericidal, we can conclude that the 

decreased proinflammatory cytokine environment of the XIAP-deficient animals affects 

the ability of the phagocytes to control Lm replication. 

 

Does XIAP function as an E3 ubiquitin ligase during innate immune signaling? 

XIAP, c-IAP1 and c-IAP2 all have a RING domain, which enables these proteins to 

function as E3 ubiquitin ligases.  Additionally, they contain a ubiquitin-associated 

domain (UBA), which enables proteins to bind to ubiquitin[150,151].  Ubiquitylation is a 

mechanism used by cells to target proteins to participate in signaling networks, such as 

the TLR and NLR signaling pathways[152].  The role of ubiquitin modification during 

TLR and NLR signaling is very complex, and involves a number of E3 ubiquitin ligases, 

as well as deubiquitylating enzymes to properly control 

signaling[118,153,154,155,156,157,158].  However, there are still ubiquitin ligases 

involved in innate immune signaling that have not been identified.  It is intriguing to 

hypothesize that XIAP may function as a ubiquitin ligase during innate immune 

signaling.  In support of this hypothesis, the E3 ligase domain and the UBA domain of 

XIAP are both required for NF-κB activation[105,151].  Additionally, our preliminary 
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data suggests that XIAP stabilizes RIP2 during Lm signaling.  Taken together, I propose 

that XIAP regulates the induction of proinflammatory cytokines by promoting 

ubiquitylation of the components of the TLR and NLR signaling pathways, possibly 

ubiquitylating MEKK2, NEMO or RIP2.  Since many of these proteins feed into the same 

pathways, XIAP may be the node that coordinates activation of critical signaling 

molecules from both TLR and NLR stimulation. 

 

Future Directions 

After discussing the implications of my work and the role of XIAP in innate immunity, a 

number of hypothesis can be developed to further define how XIAP functions to regulate 

immunity.  As discussed above, the role of the E3 ubiquitin ligase domain of XIAP in 

promoting ubiquitylation of proteins during the innate immune response is currently 

unknown.  In addition, while the BIR domains of XIAP have been well characterized for 

their role in inhibiting apoptosis, little is known about their function during the immune 

response.  The BIR1 domain of XIAP is known to associate with TAB1, allowing XIAP 

to interact with the TAK1 complex and induce NF-κB activation, however the role of the 

other BIR domains is unclear[94].  The role of XIAP in regulating Nod2 signaling is also 

currently unknown.  Our preliminary data suggests that XIAP promotes stability of the 

RIP2 protein; it is possible that this stabilization enables signaling through Nod2.  

Finally, there is a great deal that is unknown about how XIAP functions during an in vivo 

response to Lm infection.  We would like to determine if XIAP functions to regulate 

signaling primarily in phagocytes, or also in other immune cells during cytosolic bacterial 

infection, by performing adoptive transfer experiments.  Additionally, we would like to 
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examine the trafficking patterns of wildtype and XIAP-deficient phagocytes during a Lm 

infection, to determine how a deficiency in XIAP affects localization.  Finally, we would 

like to determine if the defect in the innate immune response in XIAP-deficient animals 

affects the development of a protective immune response to Lm infection.  Overall my 

thesis work has implicated XIAP in cytosolic innate immune signaling, and suggests that 

the IAP proteins are multifunctional modulators of signaling.
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Appendix 1: Introduction to IAP proteins 
 

Inhibitor of Apoptosis Proteins (IAPs) 

The IAP (Inhibitor of Apoptosis) family of genes is well known for their role in 

regulating programmed cell death in organisms from insects to humans[90].  IAP proteins 

function to suppress apoptosis, specifically by binding to and inhibiting caspases, along 

with activating other pathways to promote cell survival, such as NF-κB and JNK1.  The 

IAP protein family is characterized by BIR domains (baculoviral IAP repeats), which are 

protein-protein interaction domains.  IAP proteins contain between one and three BIR 

repeats, many also contain a carboxyl-terminal RING finger domain that possess E3 

ubiquitin ligase activity[105].  There are eight mammalian IAP proteins: XIAP (Birc4, 

MIHA, hILP), c-IAP1 (Birc2, MIHB, Hiap2), c-IAP2 (Birc3, MIHC, Hiap1), NAIP 

(Birc1), Livin (melanoma IAP (ML-IAP), Birc7), Survivin (Birc5, TIAP), Testis specific 

IAP (Ts-IAP, Birc8, hILP2), and Bruce (Birc6, Apollon, Bir containing ubiquitin 

conjugating enzyme) (Fig. A.1.1).  XIAP is the most well characterized IAP protein, it 

has three BIR domains and a RING finger domain.  XIAP is expressed ubiquitously in all 

normal tissues.  It is able to directly bind to and inhibit caspases 3, 7 and 9[72].   XIAP is 

also involved in a number of other signaling pathways including JNK1, NF-κB and Smad 

signaling[159].  XIAP-deficient mice have been generated and characterized, however no 

altered phenotype was identified when compared to wildtype mice[72]. The c-IAP 

proteins are the closest homologs of XIAP in the IAP family.  The c-IAP proteins contain 
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three BIR domains, a CARD domain and a RING finger domain.  They bind to TRAF1 

and TRAF2 proteins, regulating downstream NF-κB activity in response to TNF 

signaling[160].  When ectopically expressed, the c-IAP proteins can inhibit apoptosis, 

however their caspase binding activity does not result in inhibition[161].  Additionally, c-

IAP1 can regulate XIAP and c-IAP2 protein levels by ubiquitylating and targeting these 

proteins for degradation[162]. 

 

XIAP 

XIAP is the most well characterized IAP protein, possibly due to its ability to directly 

bind to and inhibit caspases[163,164,165].  XIAP is frequently overexpressed in cancers, 

allowing the cells to prevent apoptosis and continue to proliferate[166].  XIAP is 

involved in a number of signaling pathways including TGFβ and BMP receptor 

signaling, NF-κB and JNK activation.  Additionally XIAP has been shown to regulate 

copper homeostasis by promoting the ubiquitylation and degradation of COMM1, a 

protein that promotes efflux of copper form the cell.  XIAP can bind copper directly, 

which causes destabilization and degradation, leading to lower levels of XIAP.  When 

XIAP is bound to copper it is unable to inhibit caspases[97]. Despite all of the functions 

of XIAP that have been described, there were no observable defects in the XIAP-

deficient mice, however both c-IAP1 and c-IAP2 were shown to be upregulated, possibly 

compensating for the XIAP-deficiency[72].  During TGFβ and BMP signaling, XIAP 

bridges the BMP receptor to TAB1, a downstream signaling molecule.  The BIR1 domain 

of XIAP is required for this interaction[94,95].  TAB1 recruits TAK1, which is 

responsible for activating the JNK and NF-κB signaling pathways.  For JNK induction by 
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XIAP during TGFβ signaling, Smad4 is also required[159]. XIAP activation of the JNK 

pathway requires the ILPIP protein, which promotes the association of XIAP with TAK1 

and TRAF6.  XIAP does not activate JNK using MEKK1, MKK4, MKK7 or 

ASK1[93,96,98].  Ectopic expression of XIAP has also been shown to activate JNK and 

NF-κB signaling pathways independent of TGFβ signaling[93,96,116].  Additionally, 

point mutations preventing XIAP from inhibiting caspase activity do not affect XIAPs 

ability to activate JNK or NF-κB.  XIAP requires the E3 ligase activity of its RING 

domain in order to activate NF-κB[105].  Possibly the mechanism used by XIAP to 

regulate NF-κB signaling is through interaction and ubiquitylation of MEKK2, this 

induces a second wave of NF-κB activation[167].  It is well established that NF-κB 

activation occurs in waves that are regulated by the IKB proteins.  IKBα controls 

early/immediate NF-κB activation, while IKBβ mediates delayed activation.  IKBα 

associates with MEKK3 and IKBβ with MEKK2.  While the IAP proteins were initially 

characterized to primarily regulate apoptosis, the literature suggests that they play a much 

larger role in cells by regulating a variety of signaling pathways.  

 

The c-IAP1 and c-IAP2 proteins 

The c-IAP proteins are components of the TNF signaling pathway, where they promote 

activation of NF-κB while inhibiting induction of apoptosis [168].  Signaling through the 

TNFR1 receptor mainly results in induction of apoptosis, as the TNFR1 receptor contains 

a death domain in its cytoplasmic tail.  TNFR2 however does not contain a death domain, 

and recruits TRAF1, TRAF2, c-IAP1 and c-IAP2[168].  Binding of TNF to the TNFR1 

receptor recruits TRADD and FADD, two death domain containing proteins.  Through 
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FADD, pro-caspase 8 is recruited.  Subsequent oligomerization of pro-caspase 8 leads to 

activation by autoproteolytic cleavage and results in induction of apoptosis[169].  TNF 

signaling can also lead to NF-κB activation via TRADD, RIP, TRAF2 and MEKK3 

recruitment.  Both the c-IAP1 and c-IAP2 proteins have been shown to ubiquitylate RIP. 

When RIP is poly-ubiquitylated it functions to activate NF-κB, however ubiquitin also 

serves as a tag for degradation regulating RIP levels by targeting to the 

proteasome[62,170,171].  Ubiquitylated RIP associates with the TAB1 and TAB2 

proteins, recruiting TAK1, which upon oligomerization autophosphorylates.  The IKK 

complex is also recruited to ubiquitylated RIP, where activated TAK phosphorylates 

IKK.  Active IKK phosphorylates IKBα releasing NF-κB allowing it to translocate to the 

nucleus where it can initiate target gene transcription[172].    It has been suggested that 

the c-IAP proteins function to promote cell survival during TNF signaling by limiting 

signaling through the TNFR1 receptor, possible through RIP degradation or by 

suppressing caspase 8 activity[172,173].   Work with Smac mimetics has found that non-

ubiquitylated RIP associates with caspase 8 and FADD leading to caspase 8 activation 

suggesting that one mechanism the c-IAPs prevent apoptosis is by ubiquitylating RIP to 

prevent caspase 8 activation[174].  The physiological roles of c-IAP1 and c-IAP2 have 

been investigated by gene depletion in mice.  While the c-IAP1-deficient mice have no 

obvious defects in their ability to respond to proapoptotic stimuli, they have marked 

increases in c-IAP2 protein levels, suggesting c-IAP2 can compensate for c-IAP1 

function in vivo.  c-IAP2 protein levels are regulated by c-IAP1 ubiquitylation[70].  The 

c-IAP2-deficient mice are resistant to LPS induced sepsis, due to an attenuated 

inflammatory response.   LPS sepsis is characterized by a robust proinflammatory 
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cytokine burst that overwhelms the immune response.  In the c-IAP2-deficient mice the 

levels of proinflammatory cytokines are reduced because the macrophages responsible 

undergo rapid cell death.  The importance of the c-IAP proteins in promoting NF-κB 

activity and preventing apoptosis is clearly indicated by the ability of the c-IAP2-

deficient mice to survive LPS induced sepsis[69]. 
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Figure A1.1 Domain structure of the IAP protein family.  
The characteristic BIR domains are indicated by red rectangles, CARD domains by 
purple rectangles, RING domains by green ovals, and Ubiquitin binding domains in 
orange hexagons. Abbreviations:  IAP, inhibitor of apoptosis; XIAP, X-linked IAP; hILP, 
human IAP-like protein; Ts-IAP, testis-specific IAP; c-IAP, cellular IAP; ML-IAP, 
melanoma-IAP; NAIP, neuronal apoptosis inhibitory protein; dIAP, Drosophila IAP; 
BIR, baculoviral IAP repeat; CARD, caspase recruitment domain; UBA, ubiquitin 
binding domain.   
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Appendix 2:  Microarray Results of the gene expression of Wildtype and XIAP-

deficient unactivated bone marrow derived macrophages induced by cytosolic 

bacteria 

 

To determine if XIAP specifically regulated any genes during a cytosolic bacterial 

infection that would enable us to predict the role of XIAP during Lm infection, we 

performed a microarray.  Unactivated bone marrow derived macrophages were infected 

with wildtype Lm or the LLO-deficient strain of Lm for 30 minutes.  RNA was collected 

at 3hpi to determine gene expression by microarray.  Using a two-fold cut off for 

differential gene expression we determined that while a number of genes were induced 

upon cytosolic Lm infection, there were very few genes that were differentially regulated 

between the wildtype and XIAP-deficient macrophages (Fig. A2.1).  We also examined 

the ability of unactivated macrophages to produce IL-6 in response to Lm infection.  

Macrophages were infected with Lm for 30 min and supernatants were collected at 8hpi 

to quantitate IL-6 production.  When the macrophages are not activated prior to infection, 

both the wildtype and XIAP-deficient cells produce equal levels of IL-6, however after 

activation, XIAP enhances production of IL-6 in response to Lm infection (Fig. A2.2).  In 

order to determine if the reason for XIAP-dependent responses in the activated 

macrophages was due to an increased production of certain innate immune genes, we 



 

 
122

examined the expression of the several key mediators of cytosolic immunity (Fig. A2.3).  

We did not observe a significant increase in c-IAP1 or c-IAP2 gene expression during 

activation of cells or due to Lm infection.   Both Nod1 and Tak1 gene expression was 

induced by activation, but not infection in an XIAP-dependent manner.  Interestingly 

Nod2 and RIP2 were induced by activation and infection and this was enhanced by 

XIAP.  These data suggest that XIAP does not differentially regulate signaling in 

unactivated macrophages, but is necessary for enhancing expression of specific innate 

immune genes in response to cytosolic bacteria and macrophage activation. 
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Figure A.2.1 XIAP regulated genes involved in immunity 
Macrophages were infected with Lm for 30min and RNA was harvested at 3hpi for 
microarray analysis.  Genes that were differentially regulated by cytosolic bacteria 
compared to a vacuole-trapped strain were selected based upon a two-fold cut off. The 
table represents genes that are involved in the immune response.  Bold indicates the 
genes were upregulated, non-bold text are genes that were downregulated by cytosolic 
bacteria.  Genes that were more greatly altered in the wildtype cells are indicated by X+, 
while X- indicates the difference was greater in the XIAP-deficient macrophages. The 
number indicates the fold difference between wildtype and XIAP-deficient macrophages.   
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Figure A2.2  Activation of macrophages allows XIAP to promote proinflammatory 
cytokine production 
ELISA of IL-6 production from unactivated and activated macrophages infected with Lm 
for 30 min.  Supernatants were harvested at 8hpi.  Data is representative of 3 independent 
experiments.  ** indicates p< 0.001.  P value indicated compares wildtype unactivated 
and activated macrophages.   
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Figure A2.3 Gene expression of innate immune genes important for cytosolic 
immunity 
qRT-PCR analysis on RNA from three sets of macrophages: unactivated, activated or 
activated and infected.  Macrophages were activated overnight with LPS (10ng/ml) and 
IFNg (10ng/ml).  Cells were infected with Lm for 30 min and RNA was collected at 3 
hpi.  Data represents the fold induction of each gene over the expression levels in the 
unactivated macrophages. Fold induction was calculated using the ΔΔCt method where 
uninfected samples were compared to infected samples, relative to  β-actin levels.  Data 
is representative of 3 independent experiments.   
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Appendix 3 : The MAP kinase phosphatases 1 and 5 are not responsible for 

prolonging JNK activation during XIAP innate immune signaling. 

 

The MAP kinase phosphatase family is responsible for dephosphorylating proteins to 

downregulate signaling.  MKP1 and MKP5 have both been shown to dephosphorylate 

JNK; therefore, we investigated if XIAP affected the stability of these proteins during Lm 

infection.  We hypothesized that XIAP would prolong JNK phosphorylation by targeting 

MKP1 or MKP5 for degradation by ubiquitylation, thus preventing JNK 

dephosphorylation.  Macrophages were treated with cyclohexamide to prevent protein 

translation, or treated with LLNL to inhibit protein degradation during Lm infection (Fig. 

A3.1).  We observed no decrease in protein levels of either MKP1 or MKP5 during Lm 

infection, in the wildtype or XIAP-deficient cells.  Additionally, we did not observe any 

effect on the protein levels after addition of cyclohexamide, suggesting that infection 

with Lm does not induce translation.  We were able to observe protein degradation due to 

the increase in protein after addition of LLNL, however, this was not altered in the 

absence of XIAP.  These data suggest that XIAP does not promote JNK activity by 

targeting the MKP proteins.   
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Figure A3.1 XIAP does not regulate MKP1 or MKP5 levels during Lm infection 
Immunoblot of lysates from xiap+/y and xiap-/y activated BMDM that were uninfected or 
infected with Lm.    Cells were activated overnight with 10ng/ml LPS and 10ng/ml 
interferon-γ.  Cells were incubated with cyclohexamide or LLNL for 1h prior to infection 
to inhibit protein translation and degradation respectively. After 1 h pretreatment, cells 
were infection at an MOI of 10 for 30 min in the presence of inhibitors.  Cells were lysed 
and subjected to immunoblot analysis using anti-MKP1 and anti-MKP5.  Data are 
representative of at least 3 independent experiments.  
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Appendix 4 : XIAP stabilizes RIP2 protein levels 

 

We observed an XIAP-dependent enhancement of proinflammatory cytokine production 

in response to MDP, the Nod2 ligand, and synergistically to MDP and Pam3CSK4, a 

TLR2 ligand.  Therefore, we wanted to determine how XIAP affected Nod2 signaling. 

Nod2 uses the adaptor protein, RIP2 to induce NF-κB and MAP kinase activation.  XIAP 

may modulate RIP2 to promote signaling in response to Nod2 ligands.  We examined 

RIP2 protein levels during Lm infection in wildtype and XIAP-deficient cells to 

determine if XIAP affected RIP2 stability (Fig. A4.1).  We observed enhanced protein 

stability in the wildtype cells compared to the XIAP-deficient cells. This stabilization was 

independent of Lm infection, as uninfected cells lacking XIAP also had less RIP2 protein.  
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Figure A4.1 XIAP stabilizes RIP2  
Immunoblot of lysates from xiap+/y and xiap-/y activated BMDM that were uninfected or 
infected with Lm.    Cells were activated overnight with 10ng/ml LPS and 10ng/ml 
interferon-γ, prior to infection with Lm at an MOI of 10 for 30 min.  Cells were lysed and 
subjected to immunoblot analysis using anti-RIP2 and anti-JNK.  JNK is used as a 
loading control.  Data are representative of at least 3 independent experiments.  
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Appendix 5 : XIAP-dependent proinflammatory cytokine production requires  

LPS activation of macrophages 

 

Recent literature indicates that LPS stimulation causes tolerization of macrophages to 

restimulation by other TLR ligands[126,127].  Additionally, when macrophages are 

stimulated with LPS, the role of Nod1 and Nod2 in cytosolic immunity becomes more 

critical during infection with Lm[59].  Stimulation of macrophages with IFNγ activates 

them enhancing their bactericidal ability[148].  Due to these observations we wanted to 

determine if either TLR stimulation by LPS or IFNγ signaling was more critical to 

promoting a state of activation in the macrophages, allowing XIAP to promote cytosolic 

signaling.  Therefore, we examined IL-6 production by macrophages stimulated with 

LPS, IFNγ, or both (Fig. A5.1).  We determined that LPS stimulation of macrophages 

sets up a state of readiness allowing XIAP to promote cytosolic signaling.  This is 

possibly due to enhanced expression of Nod2 and RIP2 in the wildtype cells compared to 

the XIAP-deficient macrophages.  These data suggest that prior TLR stimulation of cells 

sets up a state of readiness that enables the cytosolic innate immune response to enhance 

production of proinflammatory cytokines. 
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Figure A5.1 LPS stimulation enables XIAP to promote the cytosolic immune 
response to Lm infection.  
ELISA of IL-6 secretion from xiap+/y and xiap-/y activated BMDM infected with wildtype 
Lm, LLO- Lm or treated with MDP (10 μg/ml) and/or Pam3CSK4 (0.5 μg/ml). (A) 
10ng/ml LPS stimulation (B) 10ng/ml IFNg stimulation (C) 10ng/ml LPS and 10ng/ml 
IFNg. left untreated or treated for 8h Data are representative of 3 independent 
experiments with 3 mice each (error bars represent s.d). * indicates p≤ 0.05 and ** 
indicates p≤0.005.

LPS 

IFNγ 

LPS + IFNγ 



 

 
132

 
 
 
 
 
 
 
 
 
 

References



 

 
133

REFERENCES 
1. Medzhitov R, Janeway CA, Jr. (1997) Innate immunity: the virtues of a nonclonal 

system of recognition. Cell 91: 295-298. 
2. Janssens S, Beyaert R (2003) Role of Toll-like receptors in pathogen recognition. Clin 

Microbiol Rev 16: 637-646. 
3. Lemaitre B, Nicolas E, Michaut L, Reichhart JM, Hoffmann JA (1996) The 

dorsoventral regulatory gene cassette spatzle/Toll/cactus controls the potent 
antifungal response in Drosophila adults. Cell 86: 973-983. 

4. Hoffmann JA, Reichhart JM (2002) Drosophila innate immunity: an evolutionary 
perspective. Nat Immunol 3: 121-126. 

5. Arancibia SA, Beltran CJ, Aguirre IM, Silva P, Peralta AL, et al. (2007) Toll-like 
receptors are key participants in innate immune responses. Biol Res 40: 97-112. 

6. Balachandran S, Thomas E, Barber GN (2004) A FADD-dependent innate immune 
mechanism in mammalian cells. Nature 432: 401-405. 

7. Kobayashi K, Inohara N, Hernandez LD, Galan JE, Nunez G, et al. (2002) 
RICK/Rip2/CARDIAK mediates signalling for receptors of the innate and 
adaptive immune systems. Nature 416: 194-199. 

8. Chin AI, Dempsey PW, Bruhn K, Miller JF, Xu Y, et al. (2002) Involvement of 
receptor-interacting protein 2 in innate and adaptive immune responses. Nature 
416: 190-194. 

9. Bell JK, Mullen GE, Leifer CA, Mazzoni A, Davies DR, et al. (2003) Leucine-rich 
repeats and pathogen recognition in Toll-like receptors. Trends Immunol 24: 528-
533. 

10. Takeda K, Kaisho T, Akira S (2003) Toll-like receptors. Annu Rev Immunol 21: 335-
376. 

11. Ausubel FM (2005) Are innate immune signaling pathways in plants and animals 
conserved? Nat Immunol 6: 973-979. 

12. Akira S, Uematsu S, Takeuchi O (2006) Pathogen recognition and innate immunity. 
Cell 124: 783-801. 

13. Chamaillard M, Hashimoto M, Horie Y, Masumoto J, Qiu S, et al. (2003) An 
essential role for NOD1 in host recognition of bacterial peptidoglycan containing 
diaminopimelic acid. Nat Immunol 4: 702-707. 

14. Tanabe T, Chamaillard M, Ogura Y, Zhu L, Qiu S, et al. (2004) Regulatory regions 
and critical residues of NOD2 involved in muramyl dipeptide recognition. Embo J 
23: 1587-1597. 

15. Carneiro LA, Travassos LH, Girardin SE (2007) Nod-like receptors in innate 
immunity and inflammatory diseases. Ann Med 39: 581-593. 

16. Hsu YM, Zhang Y, You Y, Wang D, Li H, et al. (2007) The adaptor protein CARD9 
is required for innate immune responses to intracellular pathogens. Nat Immunol 
8: 198-205. 

17. Stehlik C, Hayashi H, Pio F, Godzik A, Reed JC (2003) CARD6 is a modulator of 
NF-kappa B activation by Nod1- and Cardiak-mediated pathways. J Biol Chem 
278: 31941-31949. 

18. Ozoren N, Masumoto J, Franchi L, Kanneganti TD, Body-Malapel M, et al. (2006) 
Distinct roles of TLR2 and the adaptor ASC in IL-1beta/IL-18 secretion in 
response to Listeria monocytogenes. J Immunol 176: 4337-4342. 



 

 
134

19. Delbridge LM, O'Riordan MX (2007) Innate recognition of intracellular bacteria. 
Curr Opin Immunol 19: 10-16. 

20. Mariathasan S, Newton K, Monack DM, Vucic D, French DM, et al. (2004) 
Differential activation of the inflammasome by caspase-1 adaptors ASC and Ipaf. 
Nature 430: 213-218. 

21. Miao EA, Alpuche-Aranda CM, Dors M, Clark AE, Bader MW, et al. (2006) 
Cytoplasmic flagellin activates caspase-1 and secretion of interleukin 1beta via 
Ipaf. Nat Immunol 7: 569-575. 

22. Yoneyama M, Kikuchi M, Natsukawa T, Shinobu N, Imaizumi T, et al. (2004) The 
RNA helicase RIG-I has an essential function in double-stranded RNA-induced 
innate antiviral responses. Nat Immunol 5: 730-737. 

23. Yoneyama M, Kikuchi M, Matsumoto K, Imaizumi T, Miyagishi M, et al. (2005) 
Shared and unique functions of the DExD/H-box helicases RIG-I, MDA5, and 
LGP2 in antiviral innate immunity. J Immunol 175: 2851-2858. 

24. Kawai T, Akira S (2007) Antiviral signaling through pattern recognition receptors. J 
Biochem (Tokyo) 141: 137-145. 

25. Pamer EG (2004) Immune responses to Listeria monocytogenes. Nat Rev Immunol 4: 
812-823. 

26. Gaillard JL, Berche P, Frehel C, Gouin E, Cossart P (1991) Entry of L. 
monocytogenes into cells is mediated by internalin, a repeat protein reminiscent 
of surface antigens from gram-positive cocci. Cell 65: 1127-1141. 

27. Bielecki J, Youngman P, Connelly P, Portnoy DA (1990) Bacillus subtilis expressing 
a haemolysin gene from Listeria monocytogenes can grow in mammalian cells. 
Nature 345: 175-176. 

28. Smith GA, Marquis H, Jones S, Johnston NC, Portnoy DA, et al. (1995) The two 
distinct phospholipases C of Listeria monocytogenes have overlapping roles in 
escape from a vacuole and cell-to-cell spread. Infect Immun 63: 4231-4237. 

29. Kocks C, Gouin E, Tabouret M, Berche P, Ohayon H, et al. (1992) L. 
monocytogenes-induced actin assembly requires the actA gene product, a surface 
protein. Cell 68: 521-531. 

30. Nickol AD, Bonventre PF (1977) Anomalous high native resistance to athymic mice 
to bacterial pathogens. Infect Immun 18: 636-645. 

31. Bishop DK, Hinrichs DJ (1987) Adoptive transfer of immunity to Listeria 
monocytogenes. The influence of in vitro stimulation on lymphocyte subset 
requirements. J Immunol 139: 2005-2009. 

32. Carrero JA, Calderon B, Unanue ER (2006) Lymphocytes are detrimental during the 
early innate immune response against Listeria monocytogenes. J Exp Med 203: 
933-940. 

33. Mielke M, Ehlers S, Hahn H (1988) The role of T cell subpopulations in cell 
mediated immunity to facultative intracellular bacteria. Infection 16 Suppl 2: 
S123-127. 

34. O'Riordan M, Yi CH, Gonzales R, Lee KD, Portnoy DA (2002) Innate recognition of 
bacteria by a macrophage cytosolic surveillance pathway. Proc Natl Acad Sci U S 
A 99: 13861-13866. 



 

 
135

35. Mariathasan S, Weiss DS, Newton K, McBride J, O'Rourke K, et al. (2006) 
Cryopyrin activates the inflammasome in response to toxins and ATP. Nature 
440: 228-232. 

36. Seki E, Tsutsui H, Tsuji NM, Hayashi N, Adachi K, et al. (2002) Critical roles of 
myeloid differentiation factor 88-dependent proinflammatory cytokine release in 
early phase clearance of Listeria monocytogenes in mice. J Immunol 169: 3863-
3868. 

37. Mocci S, Dalrymple SA, Nishinakamura R, Murray R (1997) The cytokine stew and 
innate resistance to L. monocytogenes. Immunol Rev 158: 107-114. 

38. Wherry JC, Schreiber RD, Unanue ER (1991) Regulation of gamma interferon 
production by natural killer cells in scid mice: roles of tumor necrosis factor and 
bacterial stimuli. Infect Immun 59: 1709-1715. 

39. Lewinsohn DM, Bargatze RF, Butcher EC (1987) Leukocyte-endothelial cell 
recognition: evidence of a common molecular mechanism shared by neutrophils, 
lymphocytes, and other leukocytes. J Immunol 138: 4313-4321. 

40. Neuenhahn M, Kerksiek KM, Nauerth M, Suhre MH, Schiemann M, et al. (2006) 
CD8alpha+ dendritic cells are required for efficient entry of Listeria 
monocytogenes into the spleen. Immunity 25: 619-630. 

41. Conlan JW (1996) Early pathogenesis of Listeria monocytogenes infection in the 
mouse spleen. J Med Microbiol 44: 295-302. 

42. Bauler LD, Duckett CS, O'Riordan MX (2008) XIAP regulates cytosol-specific 
innate immunity to Listeria infection. PLoS Pathog 4: e1000142. 

43. Arnold R, Scheffer J, Konig B, Konig W (1993) Effects of Listeria monocytogenes 
and Yersinia enterocolitica on cytokine gene expression and release from human 
polymorphonuclear granulocytes and epithelial (HEp-2) cells. Infect Immun 61: 
2545-2552. 

44. Endres R, Luz A, Schulze H, Neubauer H, Futterer A, et al. (1997) Listeriosis in 
p47(phox-/-) and TRp55-/- mice: protection despite absence of ROI and 
susceptibility despite presence of RNI. Immunity 7: 419-432. 

45. Shiloh MU, MacMicking JD, Nicholson S, Brause JE, Potter S, et al. (1999) 
Phenotype of mice and macrophages deficient in both phagocyte oxidase and 
inducible nitric oxide synthase. Immunity 10: 29-38. 

46. Myers JT, Tsang AW, Swanson JA (2003) Localized reactive oxygen and nitrogen 
intermediates inhibit escape of Listeria monocytogenes from vacuoles in activated 
macrophages. J Immunol 171: 5447-5453. 

47. Dai WJ, Bartens W, Kohler G, Hufnagel M, Kopf M, et al. (1997) Impaired 
macrophage listericidal and cytokine activities are responsible for the rapid death 
of Listeria monocytogenes-infected IFN-gamma receptor-deficient mice. J 
Immunol 158: 5297-5304. 

48. Dalrymple SA, Lucian LA, Slattery R, McNeil T, Aud DM, et al. (1995) Interleukin-
6-deficient mice are highly susceptible to Listeria monocytogenes infection: 
correlation with inefficient neutrophilia. Infect Immun 63: 2262-2268. 

49. Liu Z, Simpson RJ, Cheers C (1994) Role of IL-6 in activation of T cells for acquired 
cellular resistance to Listeria monocytogenes. J Immunol 152: 5375-5380. 



 

 
136

50. Berche P, Gaillard JL, Sansonetti PJ (1987) Intracellular growth of Listeria 
monocytogenes as a prerequisite for in vivo induction of T cell-mediated 
immunity. J Immunol 138: 2266-2271. 

51. O'Connell RM, Vaidya SA, Perry AK, Saha SK, Dempsey PW, et al. (2005) Immune 
activation of type I IFNs by Listeria monocytogenes occurs independently of 
TLR4, TLR2, and receptor interacting protein 2 but involves TNFR-associated 
NF kappa B kinase-binding kinase 1. J Immunol 174: 1602-1607. 

52. Inohara N, Nunez G (2003) NODs: intracellular proteins involved in inflammation 
and apoptosis. Nat Rev Immunol 3: 371-382. 

53. van Heel DA, Ghosh S, Butler M, Hunt K, Foxwell BM, et al. (2005) Synergistic 
enhancement of Toll-like receptor responses by NOD1 activation. Eur J Immunol 
35: 2471-2476. 

54. Torres D, Barrier M, Bihl F, Quesniaux VJ, Maillet I, et al. (2004) Toll-like receptor 
2 is required for optimal control of Listeria monocytogenes infection. Infect 
Immun 72: 2131-2139. 

55. Herskovits AA, Auerbuch V, Portnoy DA (2007) Bacterial ligands generated in a 
phagosome are targets of the cytosolic innate immune system. PLoS Pathog 3: 
e51. 

56. Hayashi F, Smith KD, Ozinsky A, Hawn TR, Yi EC, et al. (2001) The innate immune 
response to bacterial flagellin is mediated by Toll-like receptor 5. Nature 410: 
1099-1103. 

57. Opitz B, Puschel A, Beermann W, Hocke AC, Forster S, et al. (2006) Listeria 
monocytogenes activated p38 MAPK and induced IL-8 secretion in a nucleotide-
binding oligomerization domain 1-dependent manner in endothelial cells. J 
Immunol 176: 484-490. 

58. Park JH, Kim YG, McDonald C, Kanneganti TD, Hasegawa M, et al. (2007) 
RICK/RIP2 mediates innate immune responses induced through Nod1 and Nod2 
but not TLRs. J Immunol 178: 2380-2386. 

59. Kim YG, Park JH, Shaw MH, Franchi L, Inohara N, et al. (2008) The cytosolic 
sensors Nod1 and Nod2 are critical for bacterial recognition and host defense after 
exposure to Toll-like receptor ligands. Immunity 28: 246-257. 

60. Warren SE, Mao DP, Rodriguez AE, Miao EA, Aderem A (2008) Multiple Nod-like 
receptors activate caspase 1 during Listeria monocytogenes infection. J Immunol 
180: 7558-7564. 

61. McCaffrey RL, Fawcett P, O'Riordan M, Lee KD, Havell EA, et al. (2004) A specific 
gene expression program triggered by Gram-positive bacteria in the cytosol. Proc 
Natl Acad Sci U S A 101: 11386-11391. 

62. Mahoney DJ, Cheung HH, Mrad RL, Plenchette S, Simard C, et al. (2008) Both 
cIAP1 and cIAP2 regulate TNFalpha-mediated NF-kappaB activation. Proc Natl 
Acad Sci U S A 105: 11778-11783. 

63. Letterio JJ, Roberts AB (1998) Regulation of immune responses by TGF-beta. Annu 
Rev Immunol 16: 137-161. 

64. Rahman MM, McFadden G (2006) Modulation of tumor necrosis factor by microbial 
pathogens. PLoS Pathog 2: e4. 



 

 
137

65. Joseph SB, Bradley MN, Castrillo A, Bruhn KW, Mak PA, et al. (2004) LXR-
dependent gene expression is important for macrophage survival and the innate 
immune response. Cell 119: 299-309. 

66. Roselaar SE, Daugherty A (1998) Apolipoprotein E-deficient mice have impaired 
innate immune responses to Listeria monocytogenes in vivo. J Lipid Res 39: 
1740-1743. 

67. Dong C, Davis RJ, Flavell RA (2002) MAP kinases in the immune response. Annu 
Rev Immunol 20: 55-72. 

68. Ghosh S, May MJ, Kopp EB (1998) NF-kappa B and Rel proteins: evolutionarily 
conserved mediators of immune responses. Annu Rev Immunol 16: 225-260. 

69. Conte D, Holcik M, Lefebvre CA, Lacasse E, Picketts DJ, et al. (2006) Inhibitor of 
apoptosis protein cIAP2 is essential for lipopolysaccharide-induced macrophage 
survival. Mol Cell Biol 26: 699-708. 

70. Conze DB, Albert L, Ferrick DA, Goeddel DV, Yeh WC, et al. (2005) 
Posttranscriptional downregulation of c-IAP2 by the ubiquitin protein ligase c-
IAP1 in vivo. Mol Cell Biol 25: 3348-3356. 

71. Rigaud S, Fondaneche MC, Lambert N, Pasquier B, Mateo V, et al. (2006) XIAP 
deficiency in humans causes an X-linked lymphoproliferative syndrome. Nature 
444: 110-114. 

72. Harlin H, Reffey SB, Duckett CS, Lindsten T, Thompson CB (2001) Characterization 
of XIAP-deficient mice. Mol Cell Biol 21: 3604-3608. 

73. Sayos J, Wu C, Morra M, Wang N, Zhang X, et al. (1998) The X-linked 
lymphoproliferative-disease gene product SAP regulates signals induced through 
the co-receptor SLAM. Nature 395: 462-469. 

74. Veillette A (2006) Immune regulation by SLAM family receptors and SAP-related 
adaptors. Nat Rev Immunol 6: 56-66. 

75. Fitzpatrick DR, Bielefeldt-Ohmann H (1999) Transforming growth factor beta in 
infectious disease: always there for the host and the pathogen. Trends Microbiol 
7: 232-236. 

76. Gesellchen V, Kuttenkeuler D, Steckel M, Pelte N, Boutros M (2005) An RNA 
interference screen identifies Inhibitor of Apoptosis Protein 2 as a regulator of 
innate immune signalling in Drosophila. EMBO Rep 6: 979-984. 

77. Leulier F, Lhocine N, Lemaitre B, Meier P (2006) The Drosophila inhibitor of 
apoptosis protein DIAP2 functions in innate immunity and is essential to resist 
gram-negative bacterial infection. Mol Cell Biol 26: 7821-7831. 

78. Kleino A, Valanne S, Ulvila J, Kallio J, Myllymaki H, et al. (2005) Inhibitor of 
apoptosis 2 and TAK1-binding protein are components of the Drosophila Imd 
pathway. EMBO J 24: 3423-3434. 

79. Huh JR, Foe I, Muro I, Chen CH, Seol JH, et al. (2007) The Drosophila inhibitor of 
apoptosis (IAP) DIAP2 is dispensable for cell survival, required for the innate 
immune response to gram-negative bacterial infection, and can be negatively 
regulated by the reaper/hid/grim family of IAP-binding apoptosis inducers. J Biol 
Chem 282: 2056-2068. 

80. Hacker H, Karin M (2006) Regulation and function of IKK and IKK-related kinases. 
Sci STKE 2006: re13. 



 

 
138

81. O'Neill LA (2002) Signal transduction pathways activated by the IL-1 receptor/toll-
like receptor superfamily. Curr Top Microbiol Immunol 270: 47-61. 

82. Sun L, Chen ZJ (2004) The novel functions of ubiquitination in signaling. Curr Opin 
Cell Biol 16: 119-126. 

83. Boone DL, Turer EE, Lee EG, Ahmad RC, Wheeler MT, et al. (2004) The ubiquitin-
modifying enzyme A20 is required for termination of Toll-like receptor 
responses. Nat Immunol 5: 1052-1060. 

84. Parks WT, Frank DB, Huff C, Renfrew Haft C, Martin J, et al. (2001) Sorting nexin 
6, a novel SNX, interacts with the transforming growth factor-beta family of 
receptor serine-threonine kinases. J Biol Chem 276: 19332-19339. 

85. Czar MJ, Kersh EN, Mijares LA, Lanier G, Lewis J, et al. (2001) Altered lymphocyte 
responses and cytokine production in mice deficient in the X-linked 
lymphoproliferative disease gene SH2D1A/DSHP/SAP. Proc Natl Acad Sci U S 
A 98: 7449-7454. 

86. Freitag NE, Rong L, Portnoy DA (1993) Regulation of the prfA transcriptional 
activator of Listeria monocytogenes: multiple promoter elements contribute to 
intracellular growth and cell-to-cell spread. Infect Immun 61: 2537-2544. 

87. Edelson BT, Unanue ER (2002) MyD88-dependent but Toll-like receptor 2-
independent innate immunity to Listeria: no role for either in macrophage 
listericidal activity. J Immunol 169: 3869-3875. 

88. Salvesen GS, Duckett CS (2002) IAP proteins: blocking the road to death's door. Nat 
Rev Mol Cell Biol 3: 401-410. 

89. Eckelman BP, Salvesen GS, Scott FL (2006) Human inhibitor of apoptosis proteins: 
why XIAP is the black sheep of the family. EMBO Rep 7: 988-994. 

90. Deveraux QL, Takahashi R, Salvesen GS, Reed JC (1997) X-linked IAP is a direct 
inhibitor of cell-death proteases. Nature 388: 300-304. 

91. Sun C, Cai M, Gunasekera AH, Meadows RP, Wang H, et al. (1999) NMR structure 
and mutagenesis of the inhibitor-of-apoptosis protein XIAP. Nature 401: 818-822. 

92. Mufti AR, Burstein E, Duckett CS (2007) XIAP: cell death regulation meets copper 
homeostasis. Arch Biochem Biophys 463: 168-174. 

93. Sanna MG, da Silva Correia J, Ducrey O, Lee J, Nomoto K, et al. (2002) IAP 
suppression of apoptosis involves distinct mechanisms: the TAK1/JNK1 signaling 
cascade and caspase inhibition. Mol Cell Biol 22: 1754-1766. 

94. Lu M, Lin SC, Huang Y, Kang YJ, Rich R, et al. (2007) XIAP induces NF-kB 
activation via the BIR1/TAB1 interaction and BIR1 dimerization. Mol Cell 26: 
689-702. 

95. Yamaguchi K, Nagai S, Ninomiya-Tsuji J, Nishita M, Tamai K, et al. (1999) XIAP, a 
cellular member of the inhibitor of apoptosis protein family, links the receptors to 
TAB1-TAK1 in the BMP signaling pathway. EMBO J 18: 179-187. 

96. Sanna MG, Duckett CS, Richter BW, Thompson CB, Ulevitch RJ (1998) Selective 
activation of JNK1 is necessary for the anti-apoptotic activity of hILP. Proc Natl 
Acad Sci U S A 95: 6015-6020. 

97. Mufti AR, Burstein E, Csomos RA, Graf PC, Wilkinson JC, et al. (2006) XIAP Is a 
copper binding protein deregulated in Wilson's disease and other copper toxicosis 
disorders. Mol Cell 21: 775-785. 



 

 
139

98. Sanna MG, da Silva Correia J, Luo Y, Chuang B, Paulson LM, et al. (2002) ILPIP, a 
novel anti-apoptotic protein that enhances XIAP-mediated activation of JNK1 and 
protection against apoptosis. J Biol Chem 277: 30454-30462. 

99. Srinivasula SM, Hegde R, Saleh A, Datta P, Shiozaki E, et al. (2001) A conserved 
XIAP-interaction motif in caspase-9 and Smac/DIABLO regulates caspase 
activity and apoptosis. Nature 410: 112-116. 

100. Janeway CA, Jr., Medzhitov R (2002) Innate immune recognition. Annu Rev 
Immunol 20: 197-216. 

101. Franchi L, McDonald C, Kanneganti TD, Amer A, Nunez G (2006) Nucleotide-
binding oligomerization domain-like receptors: intracellular pattern recognition 
molecules for pathogen detection and host defense. J Immunol 177: 3507-3513. 

102. Thompson AJ, Locarnini SA (2007) Toll-like receptors, RIG-I-like RNA helicases 
and the antiviral innate immune response. Immunol Cell Biol 85: 435-445. 

103. Fritz JH, Girardin SE, Fitting C, Werts C, Mengin-Lecreulx D, et al. (2005) 
Synergistic stimulation of human monocytes and dendritic cells by Toll-like 
receptor 4 and NOD1- and NOD2-activating agonists. Eur J Immunol 35: 2459-
2470. 

104. Schnupf P, Portnoy DA (2007) Listeriolysin O: a phagosome-specific lysin. 
Microbes Infect. 

105. Lewis J, Burstein E, Reffey SB, Bratton SB, Roberts AB, et al. (2004) Uncoupling 
of the signaling and caspase-inhibitory properties of X-linked inhibitor of 
apoptosis. J Biol Chem 279: 9023-9029. 

106. Bogoyevitch MA, Kobe B (2006) Uses for JNK: the many and varied substrates of 
the c-Jun N-terminal kinases. Microbiol Mol Biol Rev 70: 1061-1095. 

107. Ozoren N, Masumoto J, Franchi L, Kanneganti TD, Body-Malapel M, et al. (2006) 
Distinct roles of TLR2 and the adaptor ASC in IL-1B/IL-18 secretion in response 
to Listeria monocytogenes. J Immunol 176: 4337-4342. 

108. Molofsky AB, Byrne BG, Whitfield NN, Madigan CA, Fuse ET, et al. (2006) 
Cytosolic recognition of flagellin by mouse macrophages restricts Legionella 
pneumophila infection. J Exp Med 203: 1093-1104. 

109. Ren T, Zamboni DS, Roy CR, Dietrich WF, Vance RE (2006) Flagellin-deficient 
Legionella mutants evade caspase-1- and Naip5-mediated macrophage immunity. 
PLoS Pathog 2: e18. 

110. Zamboni DS, Kobayashi KS, Kohlsdorf T, Ogura Y, Long EM, et al. (2006) The 
Birc1e cytosolic pattern-recognition receptor contributes to the detection and 
control of Legionella pneumophila infection. Nat Immunol 7: 318-325. 

111. Kaparakis M, Philpott DJ, Ferrero RL (2007) Mammalian NLR proteins; 
discriminating foe from friend. Immunol Cell Biol. 

112. Girardin SE, Philpott DJ (2004) Mini-review: the role of peptidoglycan recognition 
in innate immunity. Eur J Immunol 34: 1777-1782. 

113. Kobayashi KS, Chamaillard M, Ogura Y, Henegariu O, Inohara N, et al. (2005) 
Nod2-dependent regulation of innate and adaptive immunity in the intestinal tract. 
Science 307: 731-734. 

114. Girardin SE, Tournebize R, Mavris M, Page AL, Li X, et al. (2001) CARD4/Nod1 
mediates NF-kappaB and JNK activation by invasive Shigella flexneri. EMBO 
Rep 2: 736-742. 



 

 
140

115. Inohara N, Koseki T, Lin J, del Peso L, Lucas PC, et al. (2000) An induced 
proximity model for NF-kappa B activation in the Nod1/RICK and RIP signaling 
pathways. J Biol Chem 275: 27823-27831. 

116. Hofer-Warbinek R, Schmid JA, Stehlik C, Binder BR, Lipp J, et al. (2000) 
Activation of NF-kappa B by XIAP, the X chromosome-linked inhibitor of 
apoptosis, in endothelial cells involves TAK1. J Biol Chem 275: 22064-22068. 

117. da Silva Correia J, Miranda Y, Leonard N, Hsu J, Ulevitch RJ (2007) Regulation of 
Nod1-mediated signaling pathways. Cell Death Differ 14: 830-839. 

118. Chen CM, Gong Y, Zhang M, Chen JJ (2004) Reciprocal cross-talk between Nod2 
and TAK1 signaling pathways. J Biol Chem 279: 25876-25882. 

119. Trinchieri G, Sher A (2007) Cooperation of Toll-like receptor signals in innate 
immune defence. Nat Rev Immunol 7: 179-190. 

120. Zheng H, Fletcher D, Kozak W, Jiang M, Hofmann KJ, et al. (1995) Resistance to 
fever induction and impaired acute-phase response in interleukin-1B-deficient 
mice. Immunity 3: 9-19. 

121. Kopf M, Baumann H, Freer G, Freudenberg M, Lamers M, et al. (1994) Impaired 
immune and acute-phase responses in interleukin-6-deficient mice. Nature 368: 
339-342. 

122. Pfeffer K, Matsuyama T, Kundig TM, Wakeham A, Kishihara K, et al. (1993) Mice 
deficient for the 55 kd tumor necrosis factor receptor are resistant to endotoxic 
shock, yet succumb to L. monocytogenes infection. Cell 73: 457-467. 

123. Rothe J, Lesslauer W, Lotscher H, Lang Y, Koebel P, et al. (1993) Mice lacking the 
tumour necrosis factor receptor 1 are resistant to TNF-mediated toxicity but 
highly susceptible to infection by Listeria monocytogenes. Nature 364: 798-802. 

124. Chang SR, Wang KJ, Lu YF, Yang LJ, Chen WJ, et al. (2007) Characterization of 
early gamma interferon (IFN-gamma) expression during murine listeriosis: 
identification of NK1.1+ CD11c+ cells as the primary IFN-gamma-expressing 
cells. Infect Immun 75: 1167-1176. 

125. Duckett CS, Nava VE, Gedrich RW, Clem RJ, Van Dongen JL, et al. (1996) A 
conserved family of cellular genes related to the baculovirus iap gene and 
encoding apoptosis inhibitors. Embo J 15: 2685-2694. 

126. Crabtree TD, Jin L, Raymond DP, Pelletier SJ, Houlgrave CW, et al. (2001) 
Preexposure of murine macrophages to CpG oligonucleotide results in a biphasic 
tumor necrosis factor alpha response to subsequent lipopolysaccharide challenge. 
Infect Immun 69: 2123-2129. 

127. Bagchi A, Herrup EA, Warren HS, Trigilio J, Shin HS, et al. (2007) MyD88-
dependent and MyD88-independent pathways in synergy, priming, and tolerance 
between TLR agonists. J Immunol 178: 1164-1171. 

128. Aliprantis AO, Yang RB, Mark MR, Suggett S, Devaux B, et al. (1999) Cell 
activation and apoptosis by bacterial lipoproteins through toll-like receptor-2. 
Science 285: 736-739. 

129. Amer AO, Swanson MS (2005) Autophagy is an immediate macrophage response to 
Legionella pneumophila. Cell Microbiol 7: 765-778. 

130. Swanson MS, Molofsky AB (2005) Autophagy and inflammatory cell death, 
partners of innate immunity. Autophagy 1: 174-176. 



 

 
141

131. North RJ (1970) The relative importance of blood monocytes and fixed 
macrophages to the expression of cell-mediated immunity to infection. J Exp Med 
132: 521-534. 

132. Buchmeier NA, Schreiber RD (1985) Requirement of endogenous interferon-gamma 
production for resolution of Listeria monocytogenes infection. Proc Natl Acad Sci 
U S A 82: 7404-7408. 

133. Havell EA (1989) Evidence that tumor necrosis factor has an important role in 
antibacterial resistance. J Immunol 143: 2894-2899. 

134. Kurihara T, Warr G, Loy J, Bravo R (1997) Defects in macrophage recruitment and 
host defense in mice lacking the CCR2 chemokine receptor. J Exp Med 186: 
1757-1762. 

135. Merrick JC, Edelson BT, Bhardwaj V, Swanson PE, Unanue ER (1997) 
Lymphocyte apoptosis during early phase of Listeria infection in mice. Am J 
Pathol 151: 785-792. 

136. Aoshi T, Zinselmeyer BH, Konjufca V, Lynch JN, Zhang X, et al. (2008) Bacterial 
entry to the splenic white pulp initiates antigen presentation to CD8+ T cells. 
Immunity 29: 476-486. 

137. Muraille E, Giannino R, Guirnalda P, Leiner I, Jung S, et al. (2005) Distinct in vivo 
dendritic cell activation by live versus killed Listeria monocytogenes. Eur J 
Immunol 35: 1463-1471. 

138. D'Orazio SE, Troese MJ, Starnbach MN (2006) Cytosolic localization of Listeria 
monocytogenes triggers an early IFN-gamma response by CD8+ T cells that 
correlates with innate resistance to infection. J Immunol 177: 7146-7154. 

139. Hara H, Tsuchiya K, Nomura T, Kawamura I, Shoma S, et al. (2008) Dependency of 
caspase-1 activation induced in macrophages by Listeria monocytogenes on 
cytolysin, listeriolysin O, after evasion from phagosome into the cytoplasm. J 
Immunol 180: 7859-7868. 

140. Fossiez F, Djossou O, Chomarat P, Flores-Romo L, Ait-Yahia S, et al. (1996) T cell 
interleukin-17 induces stromal cells to produce proinflammatory and 
hematopoietic cytokines. J Exp Med 183: 2593-2603. 

141. Plitas G, Chaudhry UI, Kingham TP, Raab JR, DeMatteo RP (2007) NK dendritic 
cells are innate immune responders to Listeria monocytogenes infection. J 
Immunol 178: 4411-4416. 

142. Brzoza KL, Rockel AB, Hiltbold EM (2004) Cytoplasmic entry of Listeria 
monocytogenes enhances dendritic cell maturation and T cell differentiation and 
function. J Immunol 173: 2641-2651. 

143. Jia T, Serbina NV, Brandl K, Zhong MX, Leiner IM, et al. (2008) Additive roles for 
MCP-1 and MCP-3 in CCR2-mediated recruitment of inflammatory monocytes 
during Listeria monocytogenes infection. J Immunol 180: 6846-6853. 

144. Kang SJ, Liang HE, Reizis B, Locksley RM (2008) Regulation of hierarchical 
clustering and activation of innate immune cells by dendritic cells. Immunity 29: 
819-833. 

145. Lamkanfi M, Amer A, Kanneganti TD, Munoz-Planillo R, Chen G, et al. (2007) The 
Nod-like receptor family member Naip5/Birc1e restricts Legionella pneumophila 
growth independently of caspase-1 activation. J Immunol 178: 8022-8027. 



 

 
142

146. Coers J, Vance RE, Fontana MF, Dietrich WF (2007) Restriction of Legionella 
pneumophila growth in macrophages requires the concerted action of cytokine 
and Naip5/Ipaf signalling pathways. Cell Microbiol 9: 2344-2357. 

147. Wright EK, Goodart SA, Growney JD, Hadinoto V, Endrizzi MG, et al. (2003) 
Naip5 affects host susceptibility to the intracellular pathogen Legionella 
pneumophila. Curr Biol 13: 27-36. 

148. Shaughnessy LM, Swanson JA (2007) The role of the activated macrophage in 
clearing Listeria monocytogenes infection. Front Biosci 12: 2683-2692. 

149. Takahashi Y, Isuzugawa K, Murase Y, Imai M, Yamamoto S, et al. (2006) Up-
regulation of NOD1 and NOD2 through TLR4 and TNF-alpha in LPS-treated 
murine macrophages. J Vet Med Sci 68: 471-478. 

150. Blankenship JW, Varfolomeev E, Goncharov T, Fedorova AV, Kirkpatrick DS, et 
al. (2008) Ubiquitin binding modulates IAP antagonist stimulated proteasomal 
degradation of c IAP1 and c IAP2. Biochem J. 

151. Gyrd-Hansen M, Darding M, Miasari M, Santoro MM, Zender L, et al. (2008) IAPs 
contain an evolutionarily conserved ubiquitin-binding domain that regulates NF-
kappaB as well as cell survival and oncogenesis. Nat Cell Biol 10: 1309-1317. 

152. Sun SC (2008) Deubiquitylation and regulation of the immune response. Nat Rev 
Immunol 8: 501-511. 

153. Abbott DW, Yang Y, Hutti JE, Madhavarapu S, Kelliher MA, et al. (2007) 
Coordinated regulation of Toll-like receptor and NOD2 signaling by K63-linked 
polyubiquitin chains. Mol Cell Biol 27: 6012-6025. 

154. Deng L, Wang C, Spencer E, Yang L, Braun A, et al. (2000) Activation of the 
IkappaB kinase complex by TRAF6 requires a dimeric ubiquitin-conjugating 
enzyme complex and a unique polyubiquitin chain. Cell 103: 351-361. 

155. Kanayama A, Seth RB, Sun L, Ea CK, Hong M, et al. (2004) TAB2 and TAB3 
activate the NF-kappaB pathway through binding to polyubiquitin chains. Mol 
Cell 15: 535-548. 

156. Hasegawa M, Fujimoto Y, Lucas PC, Nakano H, Fukase K, et al. (2008) A critical 
role of RICK/RIP2 polyubiquitination in Nod-induced NF-kappaB activation. 
EMBO J 27: 373-383. 

157. Yang Y, Yin C, Pandey A, Abbott D, Sassetti C, et al. (2007) NOD2 pathway 
activation by MDP or Mycobacterium tuberculosis infection involves the stable 
polyubiquitination of Rip2. J Biol Chem 282: 36223-36229. 

158. Wang C, Deng L, Hong M, Akkaraju GR, Inoue J, et al. (2001) TAK1 is a ubiquitin-
dependent kinase of MKK and IKK. Nature 412: 346-351. 

159. Birkey Reffey S, Wurthner JU, Parks WT, Roberts AB, Duckett CS (2001) X-linked 
inhibitor of apoptosis protein functions as a cofactor in transforming growth 
factor-beta signaling. J Biol Chem 276: 26542-26549. 

160. Samuel T, Welsh K, Lober T, Togo SH, Zapata JM, et al. (2006) Distinct BIR 
domains of cIAP1 mediate binding to and ubiquitination of tumor necrosis factor 
receptor-associated factor 2 and second mitochondrial activator of caspases. J 
Biol Chem 281: 1080-1090. 

161. Eckelman BP, Salvesen GS (2006) The human anti-apoptotic proteins cIAP1 and 
cIAP2 bind but do not inhibit caspases. J Biol Chem 281: 3254-3260. 



 

 
143

162. Silke J, Kratina T, Chu D, Ekert PG, Day CL, et al. (2005) Determination of cell 
survival by RING-mediated regulation of inhibitor of apoptosis (IAP) protein 
abundance. Proc Natl Acad Sci U S A. 

163. Sun C, Cai M, Meadows RP, Xu N, Gunasekera AH, et al. (2000) NMR structure 
and mutagenesis of the third Bir domain of the inhibitor of apoptosis protein 
XIAP. J Biol Chem 275: 33777-33781. 

164. Chai J, Shiozaki E, Srinivasula SM, Wu Q, Datta P, et al. (2001) Structural basis of 
caspase-7 inhibition by XIAP. Cell 104: 769-780. 

165. Riedl SJ, Renatus M, Schwarzenbacher R, Zhou Q, Sun C, et al. (2001) Structural 
basis for the inhibition of caspase-3 by XIAP. Cell 104: 791-800. 

166. Tamm I, Kornblau SM, Segall H, Krajewski S, Welsh K, et al. (2000) Expression 
and prognostic significance of IAP-family genes in human cancers and myeloid 
leukemias. Clin Cancer Res 6: 1796-1803. 

167. Winsauer G, Resch U, Hofer-Warbinek R, Schichl YM, de Martin R (2008) XIAP 
regulates bi-phasic NF-kappaB induction involving physical interaction and 
ubiquitination of MEKK2. Cell Signal 20: 2107-2112. 

168. Rothe M, Pan MG, Henzel WJ, Ayres TM, Goeddel DV (1995) The TNFR2-TRAF 
signaling complex contains two novel proteins related to baculoviral inhibitor of 
apoptosis proteins. Cell 83: 1243-1252. 

169. Tschopp J, Martinon F, Hofmann K (1999) Apoptosis: Silencing the death receptors. 
Curr Biol 9: R381-384. 

170. Varfolomeev E, Goncharov T, Fedorova AV, Dynek JN, Zobel K, et al. (2008) c-
IAP1 and c-IAP2 are critical mediators of tumor necrosis factor alpha 
(TNFalpha)-induced NF-kappaB activation. J Biol Chem 283: 24295-24299. 

171. Park SY, Seol JW, Lee YJ, Cho JH, Kang HS, et al. (2004) IFN-gamma enhances 
TRAIL-induced apoptosis through IRF-1. Eur J Biochem 271: 4222-4228. 

172. Varfolomeev E, Vucic D (2008) (Un)expected roles of c-IAPs in apoptotic and 
NFkappaB signaling pathways. Cell Cycle 7: 1511-1521. 

173. Wang CY, Mayo MW, Korneluk RG, Goeddel DV, Baldwin AS, Jr. (1998) NF-
kappaB antiapoptosis: induction of TRAF1 and TRAF2 and c-IAP1 and c-IAP2 to 
suppress caspase-8 activation. Science 281: 1680-1683. 

174. Petersen SL, Wang L, Yalcin-Chin A, Li L, Peyton M, et al. (2007) Autocrine 
TNFalpha signaling renders human cancer cells susceptible to Smac-mimetic-
induced apoptosis. Cancer Cell 12: 445-456. 

 
 
 
 
 
 


