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ABSTRACT 

Therapeutic angiogenesis with angiogenic growth factors has emerged as a 

promising alternative to conventional invasive therapies for cardiovascular disease. 

However, clinical trials with vascular endothelial growth factor (VEGF) or basic 

fibroblast growth factor (bFGF) have not yet achieved satisfactory results. Controlled 

delivery of multiple synergistic angiogenic growth factors is considered as an exciting 

alternative therapeutic approach to induce a healthy vasculature network.  The purpose of 

this thesis was to develop a poly(lactic-co-glycolic acid)-based combination drug delivery 

system capable of controlling the release of multiple bioactive angiogenic growth factors 

over a sustained period of time. There are four parts in the thesis. In part I, a model 

protein, bovine serum albumin (BSA), was used to optimize protein stability and release 

from the polymer and to evaluate the correlation between in vitro in vivo stability and 

release kinetics. The release and stability profile could be modified by adjusting loading 

of protein and acid neutralizing agent. There was an extremely high correlation of BSA 

stability and release kinetics between in vitro and in vivo results. In part II, VEGF 

stability was evaluated in solution and a stabilizing formulation with PLGA impants was 

developed for VEGF. The stability of VEGF in solution was increased with increased 

ratios of excess BSA co-encapsulated with the growth factor. With the presence of BSA 

and the acid-neutralization agent, MgCO3, the bioactivity of VEGF was retained within 

the polymer and continuous release of VEGF was observed over a month. In part III, the 

 xvii



 xviii

therapeutic effects of VEGF encapsulated in PLGA implants were tested in a hindlimb 

ischemia model in severe combined immunodeficient mice. The perfusion of hindlimbs 

was almost fully recovered by the released VEGF. Although VEGF did not rescue all the 

hindlimbs, it reconstituted significantly more limbs than the blank control. The induced 

new vasculatures remodeled and became more mature while the number of new vessels 

decreased over time. In part IV, the dose response was evaluated for VEGF and the 

combination delivery system with VEGF and bFGF was tested in the hindlimb ischemia 

model. Ischemic hindlimbs responded in a dose dependent fashion when total dose of 

controlled release VEGF was increased from 0.3 to 3 μg. Combination delivery of bFGF 

(0.1 μg) and VEGF (1.0 μg) induced angiogenesis that was comparable to, if not higher 

than, a 3-fold higher dose of VEGF alone. In conclusion, pH-modified PLGA implants 

provide a promising delivery system for multiple growth factor delivery and therapeutic 

angiogenesis. 

 
Keywords: angiogenesis, growth factors, vascular endothelial growth factor, basic 
fibroblast growth factor, poly(lactic-co-glycolic acid), protein stability, controlled release, 
bovine serum albumin, hindlimb ischemia, SCID mice 



 

CHAPTER 1 

INTRODUCTION 

1.1 Cardiovascular disease (CVD) 

Cardiovascular disease (CVD) is the leading killer in the world making up 16.7 

million, or 29.2% of total global deaths, according to World Health Report 2003 [1]. The 

clinical spectrum of cardiovascular disease is broad, but occluded blood vessels 

contribute to the disease pathology in most of the main types of cardiovascular disease 

including coronary artery disease, heart failure, stroke, and peripheral arterial disease. In 

the United States, about 71 million people are affected by CVD; every year $400 billion 

is spent on caring for Americans with CVD [2]. Clearly, therapies that could restore 

enough blood flow to damaged tissues would be extraordinarily beneficial medically and 

economically. Among those who have cardiovascular diseases a major part have coronary 

artery disease (CAD), which accounts for over one million deaths each year, up to 42% 

of all deaths [3].  

CAD begins when the arterial wall is damaged, e.g. by smoking. The plaque 

buildup causes atherosclerosis and begins to narrow the passageway carrying blood to the 

heart. When plaque and fatty matter narrow the inside of the artery to a point where it 

cannot supply enough oxygen-rich blood to the heart muscle, ischemia occurs. Cardiac 

ischemia is usually a temporary condition in which the heart does not get enough oxygen 

due to a blocked or obstructed coronary artery in the heart. Plaque may completely block 

1 
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the artery, or a blood clot may plug the narrowed opening. Standard treatment for CAD 

includes lifestyle changes such as stopping smoking, low cholesterol diet, physical 

exercise, and diabetes or weight control. Some patients take medications under 

physician’s advice. Patients with more severe cases require an invasive mechanical 

procedure of percutanueous transluminal coronary angioplasty (PTCA) or coronary artery 

bypass surgery (CABG) to restore perfusion in the diseased areas. However, for those 

who undergo angioplasity, approximately 35% experience restenosis, or re-narrowing of 

the vessel, within six months [4]. Then a stent procedure is used along with balloon 

angioplasty to overcome restenosis. Restenosis rates with this procedure are generally 

around 15% to 20%. CABG involves "bypassing" blood flow around one or more 

narrowed vessels. Similarly, vessel closure occurs in more than ten percent of patients 

with heart bypass surgery after 10+ years [5]. In addition, many patients are not viable 

candidates for these procedures due to age and the presence of other disease (i.e., diabetes, 

obesity, and hypertension). 

Due to the limitations of current treatments, developing new therapies is crucial in 

the fight to better manage conquer this disease. Therapeutic angiogenesis that stimulates 

the growth of new blood vessels is proving to be an effective way of bypassing occluded 

arteries and reestablishing blood flow to ischemic tissues. The goal of therapeutic 

angiogenesis is to stimulate the creation of blood vessels without the need of surgery. In 

the future, this novel therapy could potentially replace surgical revascularization and 

angioplasty which are more invasive procedures and also prone to restenosis.  

1.2 Neovascularization 
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Three different processes may contribute to the growth of new blood vessels: 

vasculogenesis, arteriogenesis and angiogenesis. Vasculogenesis is the process of in situ 

formation of blood vessels from endothelial progenitor cells or angioblasts during 

embryonic development [6, 7]. Recently, vasculogenesis has also been shown to occur in 

adults during tumor neovascularization under the regulation of vascular endothelial 

growth factor (VEGF) and placental growth factor (PlGF) [8]. However, there is no 

evidence that vasculogenesis contributes to the new vessel formation in response to the 

stimuli such as ischemia or inflammation.  

Angiogenesis is a process by which new blood capillaries emerge from 

preexisting vessels [9]. In adult organisms, the endothelial cells, smooth muscle cells and 

other vascular cells remain inactive until activated by various stimuli including wounding, 

inflammation, hypoxia and ischemia. The formation of new capillaries consists of six 

major steps including: (a) vasodilation of the parent vessel reducing endothelial cell 

contact, (b) degradation of the basement membrane by a variety of proteolytic enzymes, 

(c) migration and proliferation of endothelial cells at the spearhead of new vessels, (d) 

production of the capillary lumen and formation of tube-like structure, (e) basement 

membrane synthesis, and (f) recruitment of vascular smooth muscle cells [10]. 

Angiogenesis contributes to a number of physiological processes, including wound 

healing, reproductive cycling and ocular maturation. 

Arteriogenesis generally occurs outside the area of ischemia in response to local 

changes in shear stress-induced accumulation of blood-derived mononuclear cells at the 

sites of arterial stenosis [11]. It is characterized by maturation of capillary blood vessels 

into mature arteriolar blood vessels; having smooth muscle cells in the tunica media. The 
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process results in an increase in size and caliber of vessels [12]. Animal studies and 

clinical trials in patients with coronary artery disease have demonstrated conclusively that 

both angiogenesis and arteriogenesis are responsible for restoring blood perfusion [13].  

The comparisons of these three processes are summarized in Table 1.1. 

Table 1.1 Three types of neovascularization 

 Vasculogenesis Angiogenesis Arteriogenesis 

Primary Stimuli Growth and 
Development 

Ischemia or 
hypoxia, 
inflammation 

Shear stress, 
inflammation 

Cell types involved Endothelial stem 
cells 

Endothelial cells, 
smooth muscle 
cells, and pericytes 

Endothelial cells 

Resulting vessels De novo blood 
vessels Capillaries Arterioles 

Contribution to 
adult tissues Not clear Yes Yes 

 

1.3 Molecular and cellular regulation of angiogenesis 

The molecular mechanisms responsible for angiogenesis are extraordinarily 

complex: multiple genes must coordinately express their products in appropriate amounts 

and in an appropriate time-dependent manner. Table 1.2 lists some growth factors that 

have been recognized to be involved in the process of angiogenesis. To date, basic 

fibroblast growth factor (bFGF, also referred as FGF-2) and vascular endothelial growth 

factor (VEGF, also known as vascular permeability factor, VPF) are the most well 

characterized angiogenic growth factors and have been most intensely studied. 
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Table 1.2 Growth factors that promote angiogenesis or arteriogenesis 

Angiogenic cytokines Abbreviation 

Acidic fibroblast growth factor aFGF 

Angiopoietin Ang 

Basic fibroblast growth factor bFGF 

Heparin-binding epidermal growth factor HB-EGF 

Insulinlike growth factor IGF 

Placental growth factor PlGF 

Platelet-derived growth factor PDGF 

Vascular endothelial growth factor VEGF 

Hepatocyte growth factor HGF 

Transforming growth factor-beta TGF-β 

Granulocyte macrophage colony-stimulating factor GM-CSF 

Monocyte chemoattractant protein-1 MCP-1 

Interleukin 8 IL-8 

Interleukin 20 IL-20 

 

Different molecules and their possible roles are listed in Table 1.3. Some major growth 

factors and their receptors will be introduced in detail as described below. 

1.3.1 Hypoxia-inducible factor-1 (HIF-1) 

The major driver to stimulate angiogenesis is local tissue ischemia or hypoxia. The 

oxygen tension drop results in a rapidly increased expression of HIF-1. HIF-1 is a 

transcription factor that regulates a master genetic program that controls many forms of 

energy homeostasis at cellular and systemic levels. HIF-1 is composed of two subunits, 

HIF-1α and HIF-1β. The latter, also known as aryl hydrocarbon nuclear translocator, is a 
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stable subunit whose concentration is quite stable under most conditions. In contrast, 

HIF-1α has a very short circulation half-life (< 5 minutes) due to a proteasome-dependent 

degradation pathway [14]. The stability of HIF-1α, and thus its transcriptional activity is 

precisely controlled by the intracellular oxygen concentration. The increased expression 

of HIF-1α leads to increased transcription of a number of genes involved in angiogenesis, 

including VEGF and VEGF receptor flt-1, angiopoietin-2 and Tie-2, and PlGF [15, 16]. 

HIF-1α seems to be as potent, if not more than, VEGF by itself [17]. Localized delivery 

of a constitutively active HIF-1α has been shown to accelerate dermal wound healing at a 

rate that is comparable to that of a VEGF-A control reagent, but with enhanced rate of 

smooth muscle association with endothelial cells in newly formed vessels, that is, 

enhanced rate of microvasculature maturation [18]. Plasmid DNA encoding a 

constitutively active HIF-1α hybrid gene was tested in a rabbit ischemic hindlimb model. 

Increased blood flow in the ischemia limb was measured by the number of 

angiographically visible collateral arteries and by enhanced vascularity at the capillary 

level in histological sections. The treatment was found to be at least as effective as 

treatment with human phVEGF165 [19].  

1.3.2 Inflammation  

Together with hypoxia, inflammation is an essential stimulus of 

neovascularization. Inflammation may promote angiogenesis in a number of ways. 

Macrophages and T-lymphocytes are often present in myocardial ischemia and ischemic 

injury [20]. These blood-born inflammatory cells are a source of VEGF [21, 22] and a  
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Table 1.3 Major growth factors and their roles in angiogenesis 

Growth 
factor 

Mw 

(kDa) 
Target cells Receptors Heparin 

binding Source Role in 
angiogenesis 

bFGF [14] 18 ECs, SMCs, 
fibroblasts FGFR Yes 

Mast cells, 
Fibroblasts, 
macrophages
, and others 

Released 
from ECM 
and BM 

Stimulates 
connective 
tissue growth 
and 
angiogenesis 

VEGF 45(dimer) ECs Flt1, flk-1 
/KDR Yes 

ECs, bone 
marrow-
derived cells 

Stimulate EC 
proliferation 
and migration, 
vascular 
permeability 

PDGF-BB  
[15, 16] 28-35 (dimer) SMCs, 

pericyte PDGFR-β No 

Platelets, 
fibroblasts, 
astrocytes, 
epithelial 
cells, and 
others 

Recruits smooth 
muscle cells and 
pericytes to 
sprouting vessel 

TGF-β [16] 25(dimer) Mesenchymal 
cells TGF- βR No 

Secreted 
from cells or 
purified from 
platelets 

Inhibits EC 
proliferation 
and migration, 
promotes 
mesenchymal 
cell 
differentiateon 
into 
SMCs/pericytes, 
stimulates ECM 
synthesis 

Ang1 [17] 55 (up to 70 
glycosylated) ECs Tie2 No 

Secreted by 
mesenchymal 
cells 

Aids in vessel 
stabilization by 
strengthening 
the endothelial-
smooth muscle 
cell interactions 

Ang-2 [17] 55 (up to 70 
glycosylated) ECs Tie2 No 

Secreted by 
pericytes/SM
Cs 

Destabilizes 
vessel by 
detaching 
SMCs/pericytes 

EC: endothelial cells; SMC: smooth muscle cells; FGFR: fibroblast growth factor 
receptor; KDR: kinase domain receptor; TGF-βR: TGF-β receptor 
 
host of other angiogenic and arteriogenic factors including bFGF, IL-2, PDGF, IGF-1, 

and MCG-1, TNF-α and metalloproteinases [23]. The presence of neutrophils and 
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macrophages is sufficient to induce a neovascular response in the absence of ischemia 

[24].  Many inflammatory mediators, such as TNF-alpha, IL-1, 6, and 8, directly or 

indirectly promote angiogenesis. Recently, IL-20 was reported to stimulate endothelial 

cell proliferation and migration and suggested to promote tumor angiogenesis and vessel 

remodeling [25, 26]. Inflammation also may upregulate the expression of angiogenic 

growth factors such as VEGF and aFGF by resident cells such as fibroblasts [27, 28].  

1.3.3 VEGF regulation in angiogenesis 

In 1983, VEGF was first identified by Senger et al. whose study showed that this 

protein was able to induce vascular leakage [29]. Thus, VEGF was first named 

“vascular permeability factor (VPF)”. Its endothelial cell-specific mitogenic activity 

was later discovered by Ferrara and Henzel in 1989 and the name was then changed to 

vascular endothelial growth factor [30]. 

VEGF (also referred as VEGF-A) belongs to a gene family that includes VEGF-B, 

VEGF-C and VEGF-D and PlGF [31]. Among these, VEGF-A is a key regulator of 

blood vessel growth and has been identified as the prototype member. VEGF-C and 

VEGF-D have prominent roles in regulating lymphatic angiogenesis [32]. Alternative 

exon splicing of the single gene consisting of eight exons results in four different 

isoforms (121, 165,189 and 206) having 121, 165, 189 and 206 amino acids 

respectively [33] [34]. In some references, there are other isoforms that contain 145 and 

183 amino acids respectively [35]. These isoforms differ by their amino acid length and, 

most importantly, their ability to bind cellular heparan sulfates. The latter feature is 

critical to VEGF biology. Loss of heparin binding results in a substantial loss of 
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mitogenic activity [36]. VEGF121 is an acidic polypeptide that does not bind heparin; 

VEGF165 is secreted but a significant fraction remains bound to the cell surface and 

ECM. In contrast, VEGF189 and VEGF206 bind to heparin with greater affinity than 

VEGF165 and are almost completely sequestered in the extracellular matrix (ECM) [37]. 

Loss of the heparin binding domain results in a significant loss of the mitogenic activity 

of VEGF [38]. VEGFs may become available to endothelial cells by at least two 

different mechanisms: free proteins (VEGF121 and VEGF165) or following protease 

activation and cleavage of the longer isoforms. As a result, VEGF levels are tightly 

regulated and even minor changes can have profound physiological effects. Native 

VEGF is heparin binding, homodimeric glycoprotein of 45,000 daltons [30]. The 

properties of native VEGF closely correspond to those of VEGF165 [36].  

VEGF is particularly important in development of the vascular system because 

loss of even a single VEGF allele results in embryonic lethality at day 11 to 12 [9]. 

VEGFs are highly involved in all aspects of angiogenesis as follows: (a) the formation 

of immature vasculature [39], (b) induction of migration and proliferation of endothelial 

cells [40], (c) vessel dilation and sprouting in the presence of angiopoietin-2 [41], (d) 

stabilization of immature vasculature (VEGF-induced platelet derived growth factor 

secretion by endothelial cells facilitates recruitment of mural cells), (e) sequestration of 

angiopoietin-2 which destabilizes vessels [41], (f) suppression of apoptosis, (g) 

branching, remodeling and pruning of vasculature (protease-mediated release of matrix-

sequestrated VEGF). Endothelial cells (ECs) are the primary target of VEGF.  

VEGF binds two related receptor tyrosine kinases (RTKs), fms-like tyrosine 

kinase receptor (Flt-1) and kinase insert domain-containing receptor (KDR), now known 

9 



 

as VEGFR-1 and VEGFR-2 respectively [42]. VEGFR-2 is the major mediator of EC 

mitogenesis and survival, as well as angiogenesis and microvascular permeability [42]. 

In contrast, VEGFR-1 does not mediate an effective mitogenic signal in EC [43, 44] and 

it may, especially during early embryonic development, perform an inhibitory role by 

sequestering VEGF and preventing its interaction with VEGFR-2. VEGF165 also binds 

to neuropilin-1 (NRP1). Even though this binding does not lead to any signal 

transduction itself, NRP1 helps present VEGF to VEGFR-2 in a more efficient manner, 

increasing the affinity of the ligand to the receptor [45]. This can partially explain why 

VEGF165 has greater mitogenic potency than VEGF121[33]. 

1.3.4 bFGF regulation in angiogenesis 

Basic fibroblast growth factor (bFGF also known as FGF-2) was the first pro-

angiogenic molecule to be identified [46]. It can be regarded as the prototypic growth 

factor of the FGF family which contains at least 23 members. Like VEGF, bFGF binds 

with high affinity with heparan sulfate proteoglycans (HSPGs), important constituents of 

the extracellular matrix (ECM) [47]. The association of FGFs with heparin sulfates and 

glycosaminoglycans of the ECM creates a local reservoir of FGFs on the cell surface and 

protects the growth factors from denaturation and proteolytic degradation [48-51].  

FGFs mediate their signals through four structurally related receptor tyrosine 

kinases on cell surface (FGFR-1, 2, 3 and 4) to induce numerous biological effects. One 

of the best-characterized functions of FGFs is the induction of new blood vessels. In 

general, formation and sprouting of new capillaries involves endothelial cell proliferation 

and cell migration, as well as breakdown of surrounding ECM components. Together 
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with the vascular endothelial growth factor (VEGF), FGFs are the most important 

regulators of these processes.  

bFGF may participate in angiogenesis in two primary ways: by modulating 

endothelial cell activity and by regulating VEGF expression. bFGF is a well-established 

mitogen and chemoattractants for endothelial cells, and has been shown to upregulate 

uPA and collagenase expression on endothelial cells [52, 53] and to induce expression of 

the receptor for uPA [54], thus modulating endothelial cell migration in a feed-forward 

fashion. Hence, one way in which bFGF may participate in angiogenesis is by mediating 

the proteolytic digestion of ECM by invading endothelial cells [55]. A second way is by 

inducing expression of VEGF [54], which has been found to be dependent on bFGF dose 

[56].  

1.3.5 Ang2 and Tie  

Tie1 and Tie2 form a distinct family of receptor tyrosine kinases expressed 

specifically on endothelial cells [57, 58]. Angiopoietin 1-4 is a family of growth factors 

known to function as ligands for Tie2 receptor [59-61]. Among this family Ang1 and 

Ang2 are the best characterized members. Both angiopoietin and Tie families have 

primary roles in the latter stages of vascular development and in adult vasculature, where 

they control remodeling and stabilization of vessels. Ang1 is required for correct 

organization and maturation of newly formed vessels and promotes quiescence and 

structural integrity of adult vasculature. Transgenic mice deficient in Ang1 die at 

embryonic day 12.5 and display decreased complexity with dilated vessels, defects in 

association of endothelia with extracellular matrix and vessel rupture [62].  Very similar 

results were found in Tie2 deficient mice [63, 64]. This similarity suggested that Ang1 
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stimulated Tie2 activation mediates remodeling and plays a role in the recruitment of 

peri-endothelial mesenchymal cells to the vessel [65]. Ang1 induces migration [66], 

tubule formation [67], sprouting and survival [68, 69], but not proliferation of endothelial 

cells [61]. Whereas Ang1 functions as an agonist promoting structural integrity of blood 

vessels, Ang2 has been found to function as an antagonist promoting either vessel growth 

or regression depending on the context [60, 70]. Ang2 binds to Tie2 but it does not 

activate the receptor signaling cascade. Thus Ang2 blocks the stimulatory effects of Ang1 

[60]. However, Ang2 can synergize with VEGF to enhance neovascularization [71], 

indicating that Ang2 might be an agonist in particular microenvironment [72]. 

1.3.6 PDGF 

Platelet derivative growth factor (PDGF) is a potent mitogen and chemoattractant 

for mesenchymal cells including fibroblasts, smooth muscle cells and glial cells [73]. 

PDGF is composed of A, B, C, and D polypeptide chains that form the homodimers 

PDGF-AA, BB, CC, and DD and the heterodimer PDGF-AB [73]. Its biological activitiy 

is linked to two tyrosine kinase receptors, PDGF-α and -β receptors (PDGF-Rα and 

PDGF-Rβ). PDGF-Rα binds to PDGF isoforms AA, BB, AB, and CC, whereas PDGF-

Rβ interacts at a higher affinity with PDGF isoforms BB and DD [74]. It is evident that 

PDGF-BB is the most promising pro-neovascularization candidate, although PDGF-CC 

appears to be angiogenic as well [75].  

An increasing body of evidence has shown that PDGF-B plays an important role 

in angiogenesis. PDGF-BB recruits pericytes which presumably lead to increased 

stability of neovasculature. Genetic studies have demonstrated that PDGF-B and PDGF-

Rβ are involved in vessel maturation through the recruitment of SMCs and pericytes to 
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growing vessels during embryonic development. Mice deficient in either PDGF-B [76-78] 

or PDGF-Rβ [79] developed hemorrhages or edemas during the later stages of 

embryogenesis. The vascular defects in PDGF-B or PDGF-Rβ deficient embryos were 

attributed to an inability to attract PDGF-Rβ-positive pericytes to the developing 

capillaries [78]. These results suggest that PDGF-B recruits the PDGF-Rβ-positive 

mesenchymal cells into growing vessels. In vitro, PDGF-B acts on vascular ECs that 

express PDGF-Rβ promoting tube formation [80]. PDGF-B also increases the expression 

of several angiogenic factors that include increased VEGF expression in fibroblasts and 

ECs [81-83]. In preclinical models of myocardial ischemia, PDGF-BB improved 

perfusion as well as function [84].  

1.3.7 Synergy of growth factors 

Given the complexity of vascular endothelial signaling, combined delivery of 

VEGF with other growth factors has been strongly recommended [85, 86]. Therapies 

using VEGF alone or any other single angiogenic factor may produce incomplete 

functioning or unstable endothelial channels with defective arteriovenous and pericellular 

differentiation, characteristic of many tumors [87]. A combination of growth factors is 

preferable in future therapies directed toward neovascularization of tissues, with adequate 

investment of the formed vessels with periendothelial matrix and pericyte/smooth muscle 

cells [86]. Combined administration of growth factors with synergistic or complementary 

activity, such as VEGF plus bFGF [88, 89] or VEGF plus Ang1 or VEGF plus PDGF [90] 

may be more effective in producing a stable vasculature than delivery of single growth 

factors. For example, VEGF, after binding to its receptors, induces enthothelial cell 

proliferation, cell-cell interaction, and tubule formation. The resulting vessels are 
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immature, thin walled, sinusoidal structures that leak, lack branching and complexity. 

The next sequential step in vessel development derives from the expression of Ang1 and 

PDGF. After binding their receptors Tie2 and PDGFb-R respectively, they induce vessel 

budding and branching, and recruit periendothelial support cells, including SMCs and 

pericytes, an action that helps maintain the integrity and stabilization of the newly formed 

blood vessels [85]. It has been demonstrated that a quick release of VEGF followed by a 

delayed release of PDGF will promote a mature vascular network [90], which proved that 

PDGF is distinct as it promotes the maturation of blood vessels by recruitment of smooth 

muscle cells to the endothelial lining of nascent vasculature [91, 92]. It was recently 

reported that VEGF and bFGF exert synergism by regulating PDGF and its receptor 

interaction [88], although the synergy of these two growth factors has been known. In 

addition to having direct mitogenic effects, these two molecules enhance intercellular 

PDGF-B signaling in a cell-type specific manner: VEGF-A enhances endothelial PDGF-

B expression, whereas FGF-2 enhances mural PDGFRβ expression. Costimulation with 

VEGF-A and bFGF was found to cause significant mural cell recruitment in vitro and 

formation of functional neovasculature in vivo, compared with single-agent stimulation 

[88]. It has been described that bFGF can help upregulate the excretion of VEGF. In 

various animal models, bFGF and PDGF-BB were also synergistic due to upregulation of 

PDGF receptors by bFGF [25]. Even though none of these combinations has been tested 

in a clinical trial, future trials are expected to exploit the endogenous synergistic action of 

there growth factors. In this project, two pro-angiogenic factors, bFGF and VEGF, will 

be used for their synergic functions. 

1.4 Animal models of angiogenesis 

14 



 

There are numerous animal studies that have been conducted to test the efficacy 

of therapeutic anigiogenesis. Angiogenic growth factors, especially VEGFs and FGFs 

have been extensively studied in small animals such as mice, rats and rabbits and large 

animals such as dogs and pigs with myocardial or hindlimb ischemia.  

1.4.1 Animal models of myocardial ischemia  

The most widely used animal model of regional myocardial ischemia is an 

ameroid constrictor model in which a size matched ameroud constrictor is placed on the 

proximal circumflex coronary artery (LCX) for 2~3 weeks to allow ameroid closure and 

development of myocardial ischemia [93]. Another myocardial infarction model can be 

developed by ligation of left anterior descending coronary artery (LAD) following 

thoracotomy. This model can cause 20% animal loss [94]. The specific species has a 

crucial influence on the results since animals differ in the number of preexisting arteriolar 

connections. For example, coronary ligation produces transmural infarction in pigs and 

smaller, nontransmural infarcts in dogs [95].  

The effect of recombinant human VEGF165 (rhVEGF165) has been observed in dog 

and porcine models. Single intracoronary dose [96] or a series of two local injections via 

balloon catheter, 3 or 4-week periadventitial infusions via minipump [93, 97], or 

intramyocardial injection [98] were each effective in the pig. 28-day intracoronary 

injections of VEGF also showed effectiveness in the dog [99]. However, intravenous 

administration was ineffective [98]. Gene delivery of VEGFs also had some success in 

animals. Genes encoding VEGF165 and VEGF121 have been transfected in several animal 

studies using naked plamid DNA or adenoviral vectors. Intramyocardial injection of 
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plasmid DNA encoding human VEGF165 (phVEGF165) [100, 101] [102] or adenovirus 

encoding VEGF121 [103, 104] via thoracotomy in a pig ameroid model improved 

collateral perfusion and cardiac function. Intracoronary adenoviral gene transfer induced 

poor localization of targeted expression and much lower gene expression in the 

myocardium [103]. Pericardial delivery of adenoVEGF165 in a dog model did not show 

any increased collateral flow [105]. Recent success with phVEGF165 in the pig model 

suggested that catheter-based intramyocardial injection might be a suitable route for gene 

expression [101]. 

The first study with exogenous FGF was reported by Yanagisawa-Miwa and his 

colleagues in 1992 [106]. In their study, intracoronary administration of bFGF resulted in 

reduced scar size, preservation of myocardial function, and increased capillary and 

arteriolar blood vessels in a canine model of thrombotic coronary occlusion. As discussed 

briefly before, the canine coronary circulation has a well developed native collateral 

circulation capable of preventing infarctions after gradual coronary occlusion with any 

additional intervention. In contrast, human and porcine coronary circulations have a 

sparse collateral network which may respond differently to bFGF-induced angiogenesis 

[107]. Studies by Scheinowitz group showed very minimal effect of bFGF in a porcine 

model [108]. Later, periadventitial administration of bFGF-containing heparin-alginate 

beads in a gradual coronary occlusion model in pigs resulted in improvement of coronary 

flow and reduction in infarct size in the compromised territory [107]. In a different study, 

a single 6 µg/kg intracoronary treatment with bFGF also resulted in significant 

improvement in collateralization as well as regional and global function of chronically 
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ischemic myocardium, while single intravenous infusion was ineffective in this model 

[109].  

Gene therapy with FGF has also achieved improvements in animal models. 

Intracoronary adenoviral FGF-5 gene transfer increased blood flow in ischemic swine 

myocardium [110]. Using collagen based matrix for localized sustained bFGF gene 

delivery was shown to induce arteriogenesis and restoration of myocardial function [111]. 

Assessment of angiogenesis commonly used in animal models of myocardial 

diseases include: histological analysis, the colored microsphere technique [93], coronary 

angiography [93], transthoracic echocardiography [107] and MRI [93]. Histology 

analysis evaluates number and size of capillaries or vessels by immunohistostaining with 

cell markers. The colored microsphere technique evaluates myocardial blood flow by 

injecting dyed polystyrene spheres into the left atrium. Both reference blood samples and 

tissue samples are withdrawn to extract the dyes and then subject to spectrophotometric 

analysis. The myocardial blood flow can be calculated using the formula: Blood flow 

(tissue samples X) = [withdrawal rate (ml/min-1)/weight (tissue samples X) (g)] × [OD 

(tissue sample X)/OD (reference blood samples)]. Angiography evaluates the collateral 

density; both transthoracic echocardiography and MRI can be used to evaluate left 

ventricular (LV) function including LV ejection fraction and target wall thickness. MRI 

can also be used to visualize infarction size and generate a space-time map of myocardial 

perfusion.  
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1.4.2 Animal models of hind limb ischemia  

Acute hindlimb hindlimb ischemic models using the mouse, rat, and rabbit are 

widely in the study of therapeutic angiogenesis [112]. Ischemia can be developed by 

unilateral ligation and dissection of femoral artery and/or iliac artery. The site of ligation 

will determine the severity of ischemia, e.g., iliac artery ligation creates more severe 

ischemia model than femoral artery ligation. The most severe case is to ligate both the 

femoral artery and vein, and iliac artery and vein. In some reports, chronic ischemia is 

developed by occlusion or all proximal portion of the femoral artery with an electrical 

coagulator. In animal models, angiogenic growth factors have been administered 

intraarterially, intravenously, intramuscularly or at the site of injury.    

Commonly used technologies for assessment of angiogenesis in hindlimb 

ischemia preclinical studies include histological analysis, angiography, colored 

microspheres, Laser Doppler Perfusion Imaging (LDPI), Doppler Flowmeter (DF), 

microCT [113-119]. LDPI is based on laser Doppler principle. It generates images that 

reflect the blood flow in hindlimbs. DF is used to evaluate lower limb calf blood pressure 

ratio. MicroCT generates 3-D vessel maps that can be used to quantify vascular volume, 

vessel density and vessel network connectivity. Immunohistostaining is usually 

conducted using CD31/CD34 and smooth muscle actin-alpha (SMA-α) as the cell 

markers to identify endothelial cells and smooth muscle cells, respectively.  

1.5 Clinical trials 

All published clinical trials of recombinant proteins, genes or cells are listed in 

Tables 1.4 and 1.5 for myocardial ischemia and peripheral artery disease, respectively. 

Many of these studies are small and lack proper control groups. 
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1.5.1 Clinical trials using recombinant proteins 

Phase I studies using VEGF165 or FGF showed significant improvement in 

exercise time and perfusion and less angina compared with baseline values in myocardial 

ischemia patients, and some improvement in PAD patients. However, large multi-center 

double-blind randomized, placebo controlled phase II studies did not always show 

improvements.  

The two large phase II trials in myocardial ischemia have obtained disappointing 

results. The vascular endothelial growth factor in ischemia for vascular angiogenesis 

(VIVA) study in 178 patients employed an intracoronary infusion followed by 3 

intravenous infusions of VEGF165, which resulted in no significant benefit in terms of 

exercise duration, angina grade, quality of life, and angiographic or nuclear perfusion at 

60 days [120]. The bFGF initiating revasclarization support trial (FIRST) tested a single 

intracoronary bFGF infusion with placebo in 337 patients. This trial did receive 

significant improvements in functional status and symptom class; however, there was no 

significant difference in exercise time or rest and stress nuclear perfusion compared to 

placebo [121]. 

There has been also one large randomized, double blind trial of single dose or 

double doses (second dose was given 30 days later) of  bFGF in patients with intermittent 

claudication, i.e., the TRAFFIC study [122]. The trial reported significant improvement 

in peak walking time at 90 days. This trial also included 3 subgroups: smoking, diabetes, 

and older age as these factors have potential to influence the primary results. Diabetes, 

age (> median, 68), and non smokers led to lower improvement in peak walking time, 

whereas current smokers showed a greater increase in peak walking time. 
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1.5.2 Clinical trials using gene therapy 

Therapies with gene transfer have resulted in similar trend as with recombinant 

protein therapy. Early phase 1 studies obtained very promising improvements. For 

example, the longest follow-up trial involved 30 patients with refractory angina used 

naked DNA encoding VEGF165. At 90 days, both nitroglycerin consumption and exercise 

time were improved significantly. This improvement continued to 1 year [123]. These 

phase I studies provided basis for later multicenter randomized, double blind, and placebo 

controlled trials. In the Angiogenic GENe Therapy (AGENT), an adenovirus vector 

carrying the FGF-4 gene was intra-coronarily injected in 79 patients with angina. There 

was no significant increase in treadmill time compared with placebo at 12 weeks [124]. 

In the Kuopio Angiogenesis Trial (KAT), neither adenovirus VEGF gene nor VEGF 

plasmid liposome, through intracoronary injection following PCTA, has resulted in 

significant improvements in clinical restenosis rate or minimal lumen diameter, even 

though the adenovirus VEGF treated group did show increased myocardial perfusion 

[125]. In the Euroinject One trial, 80 no-option patients with severe stable ischemic heart 

disease received VEGF165 plasmid in the intramyocardial region via the NOGA-Myostar 

system [126]. After 3 months follow up, there was no significant difference in myocardial 

stress perfusion compared to placebo group. More recently, another phase II study using 

adenovirus VEGF121 (REVASC), however, reported increased exercise duration in 67 

patients with refractory ischemic heart disease [127]. Similarly, in spite of all the phase I 

studies with VEGF gene transfer that have shown increased ABPI or reduced symptoms, 

phase II studies in patients with critical limb ischemia have not obtained satisfying 

improvements. The RAVE trial evaluated adenoVEGF121 in 105 patients with unilateral 

exercise limiting intermittent claudication. After 26 weeks study, there was no change in 
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both the primary endpoint, peak walking time, and secondary endpoint, ABPI and quality 

of life [128].   
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1.5.3 Clinical trials using cell therapy 

There are only limited clinical trial reports using cellular based therapy. In the 

TACT study, a randomized controlled trial using implantation of bone marrow 

mononuclear cells into ischemic legs produced significant improvements in rest pain, 

ABPI and treadmill walking time [129]. Also some ischemic ulcers were healed. In this 

study, peripheral blood mononuclear cells with 500-fold few EPCs were used as the 

placebo control. In TOPCARE-AMI trial, 59 patients with acute myocardial infarction 

(AMI) who received either circulating progenitor cells (CPCs) or bone marrow-derived 

progenitor cells (BMC) intracoronarily obtained significantly increased LV ejection 

fraction and reduced infarct size. This study also showed the safety of progenitor cell 

application [130]. Very recently, there are more clinical trials using peripheral blood stem 

cells (PBSCs) to treat myocardial diseases. In the MAGIC Cell 1 trial, intracoronary 

infusion of the mobilized PBSCs with granulocyte colony-stimulation factor (G-CSF) did 

not achieve any significant improvements compared to placebo control, while it did show 

better results compared to G-CSF alone treated group [131].  

1.5.4 Assessment of therapeutics 

According to the FDA, exercise treadmill time is the primary end point for 

patients with coronary artery disease. However, the end point has high variability on a 

day-to-day basis among patients and can be influenced by other diseases or previous 

treatments. Improvement of health-related quality of life (HRQQL) is another clinical end 

point. Disease specific measures such as Canadian Cardiovascular Society (CCS) score or 

response to the Seattle Angina Questionnaire (SAQ) and preference-based assessment 
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using multi-item questionnaires including the Health Utilities Index (HUI) and EuroQOL 

have been used for this purpose. 

Physical assessment like coronary angiography is commonly used in trials of 

therapeutic angiogenesis. It is an essential tool for trial eligibility and may be useful in 

identifying new collateral growth and treatment complications. Subjective measurement 

and limited spatial resolution are the major limitations with angiography. Other non-

invasive imaging including single photon emission computed tomography (SPECT), 

position emission tomography (PET), and MRI have been utilized in clinical trials to 

assess myocardial perfusion, left ventricular function, or both. Assessments for peripheral 

artery disease include relief of symptoms such as rest pain, skin ulcer, quality of life 

using questionnaires and physical measures such as ankle brachial pressure index (ABPI), 

walking distance, and angiography. 

1.6 Differences between preclinical and clinical studies 

Even though both VEGF and bFGF induce functionally significant angiogenesis 

after single bolus delivery or intramyocardial gene injections, clinical trials with these 

proteins have not by any measure received satisfying results in patients with 

cardiovascular disease. The gaps between preclinical animal models and clinical trials in 

patients have been appreciated and received attention since early 2000 [132]. First, most 

enrolled patients have atherosclerotic vascular disease, whereas model animals are made 

to develop ischemia within a short time period and do not have atherosclerosis, which 

may affect response to the growth factors. Second, most patients in clinical trials are old, 

whereas a typical animal in a preclinical studies are young and healthy. Some data have 

shown that responsiveness to angiogenic therapy decreases with age [133]. Third, 
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animals in the studies represent an unselected population; on the other hand, patients in 

clinical trials have been selected regarding their previous response to prior therapeutic 

interventions. Thus, they are “no option” patients and usually at a severe disease stage. 

Therefore, positive preclinical studies can not guarantee the success of clinical studies; 

negative preclinical trials, however, should lead to a lack of response in clinical trials.  

1.7 Side effects of angiogenesis 

There are a number of potential side effects associated with therapeutic 

angiogenesis, even though a well established scope of risks has not been reached with 

currently available clinical data. High doses of recombinant proteins or prolonged 

exposure to the proteins may cause various side effects including: 

1) Hypotension and oedema 

2) Proteinuria  

3) Tumor growth 

4) Haemorrhage 

5) Diabetic retinopathy 

6) Plaque rupture, and 

7) Angioma formation. 

Gene therapy, usually limits protein expression to a limited local area. Thus, it has 

less possibility to cause systemic side effects. However, there are some side effects 

particularly due to gene delivery including: 

1) Inflammatory response, and  

2) Introducing foreign DNA, which may disturb muscle cell growth and turnover 
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Some of the risks have been confirmed in animal models, however, the limited results 

from clinical trials seem to refute some of the above possibilities or only show a mild and 

transient effect. A larger number of clinical trials need to be included to clarify the list of 

side effects.  

1.8 Delivery strategies 

1.8.1 Routes of administration 

Multiple delivery routes have been tested clinically including intravenous, 

intracoronary, perivascular, intramyocardial and intramuscular administration. Among 

these, intravenous delivery has minimal effect in producing angiogenesis. Intracoronary 

infusion is easily performed with catheter-based techniques. However, it is difficult to 

perform multiple infusions with this administration route; in addition, intracoronary 

infusion, like intravenous infusion, may cause systemic hypotension due to systemic 

exposure to growth factors. Intrapericardial injection cannot be used in post-cardiac 

surgery patients. Site-specific methods like intramyocardial delivery are more appealing 

because of the possibility of targeting the desired areas of the heart, likely higher 

efficiency of delivery, and prolonged tissue retention. 125I labeled bFGF showed higher 

uptake and retention following intramyocardial delivery relative to intracoronary or 

intravenous routes [134]. However, this delivery requires invasive procedures. In patients 

with peripheral artery diseases, intramuscular injection is usually used, and yet there is no 

conclusive results showing this is the optimal delivery. 
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1.8.2 Protein, gene or cell therapy 

Both protein and gene delivery have been tested in clinical trials and thus far have 

been well tolerated. Theoretically, sustained local transgene expression with the first 

generation adenovirus vectors makes gene delivery to some extent ideal for angiogenesis 

[110, 135]. Gene delivery can overcome the inherent instability of angiogenic proteins, 

although side effects of this delivery method remain a poorly and incompletely 

understood. Inflammatory responses to foreign vectors have become a considerable 

concern. Although inflammation can be partially overcome with second generation of 

alternative viral vectors (e.g. AAV) [136], these vectors may result in longer term 

transgene expression, which raises additional safety issues associated with prolonged 

angiogenic stimulation. The possible inflammatory response also prevents viral vector 

gene delivery from multiple administrations. For example, readministration of adenovirus 

vector can lead to significant inflammation at the initial site of delivery [137]. Another 

disadvantage of the gene therapy is inconsistent expression level with the same dose in 

different patients. This is at least partially due to the presence and level of neutralizing 

antibodies. Also, various gene therapy vectors differ in their efficacy of cell transduction, 

duration and extent of transgene expression. The major limitation of protein therapy is 

their short serum half lives. However, a number of approaches are available to extend the 

tissue exposure to these proteins, either by modifying proteins themselves or by 

controlled release formulations [138, 139]. More controlled release angiogenic growth 

factor formulations will be reviewed later in this introduction. At the same time, protein 

delivery has more advantages over gene delivery, such as precise knowledge of delivered 

dose, the ability to combine several proteins into a single formulation and a relatively 
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well defined safety profile. The comparisons between protein and gene delivery is listed 

in Table 1.6. 

Initial trials with cell-based delivery have been finished recently. Although 

transplantation of EPCs represents an exciting and novel approach to stimulate 

angiogenesis, it is still in its early stage of research and the use of EPCs in human may 

have more safety concerns than protein and gene delivery because EPC use may cause 

infection, arrhythmias, recurrent myocardial infarction from microvascular plugging, or 

pathological angiogenesis leading to oncogenic transformation and tumor growth [140].  

In short, protein delivery seems to be the most practical option currently due to 

the numerous uncertainties associated with gene and cell-based therapies. 

Table 1.6 Comparisons between gene and protein therapy 

  Gene therapy Protein therapy 

Dose  Unpredictable Predictable 

Inflammatory response Yes No 

Introducing foreign proteins Yes No 

Serum half life Long Short 

Tissue half life Unpredictable Short, may be modified 

Sustained exposure Yes Yes through controlled 
release formulations 

Systemic exposure Potential for long term, low 
level exposure 

High short term via 
intravascular delivery 

Multiple factors Difficult Yes  

Multiple administration 
Potential for inactivation 
and/or inflammatory 
response at readministration 

Yes 

 

              

1.9 Protein delivery 
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The disappointing clinical results with recombinant proteins (VEGF and bFGF) 

have brought up a few questions: Are these the right factors to induce neovascularization? 

Are they administered in a right way and are they effectively formulated? Does their 

presence mimic natural signaling events including the concentration, spatial and temporal 

profiles? Given the complex of the physiological process of neovascularization, a careful 

design of growth factor delivery is required. 

1.9.1 Dose 

The biological effects of angiogenic growth factors are extremely dose dependent. 

Loss of even a single allele resulting in fatal vascular defects in the embryo [9] and 

insufficient levels of VEGF lead to post-natal angiogenesis and ischemic heart disease 

[141]. In ischemic diseases, endogenous growth factors cannot induce sufficient 

neovascularization to fully restore the perfusion; therefore, introduction of exogenous 

growth factors is needed. The dose is a crucial factor and needs to be strictly regulated. 

The local concentration of VEGF, for example, will affect growth factor binding to cell 

surface receptors, and the extent of subsequent downstream intracellular signaling that 

stimulates endothelial cell proliferation, migration and differentiation of endothelial and 

progenitor cells. The concentration should be high enough to induce sufficient 

intracellular signaling. However, excessive expression may saturate the available 

receptors and downregulate receptor expression. More importantly, excessive VEGF may 

trigger some unexpected side effects such as vascular leakage [42], hypertension [80], 

malformed and heamorrhagic vessels [142], abnormal vascular network and edema [142], 

and cardiovascular malfunction [143]. Therefore, an optimal dose of VEGF is required to 

restore blood perfusion and healthy vascular network formation. 
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1.9.2 Temporal delivery 

It has discussed that sustained exposure to angiogenic growth factors is necessary 

for neovascularization processes. A conditional VEGF switch has shown that early 

cessation of the VEGF stimulus results in regression of newly formed vessels [144]. A 

critical duration of exposure, however, resulted in persistence of vessels for months after 

VEGF withdrawal, and improved organ perfusion [145, 146]. Bolus injection of VEGF 

daily for 28 days improved collateral flow while 7 days of injection did not [147]. 

However, excessive exposure of high VEGF doses may induce abnormal vessel growth 

and immune dysfunction [148, 149], suggesting that an optimal duration of VEGF or 

other growth factors would be beneficial. Regional uptake of growth factor delivered by 

bolus injections or systemic delivery is low, because the majority of factor gets cleared 

rapidly from the target site or reaches the site in insufficient quantities [147, 150, 151]. 

Both animal studies and clinical trials have shown that single bolus injection 

intravascularly can not achieve significant therapeutic effects. Frequent injection, 

however, raises problems of economic cost and patient compliance. Hence, a controlled-

release system that releases growth factors in a low but continuous rate over a sustained 

period of time provides both economical benefits and clinical practice advantage.  

In addition, natural vessel formation results from a multi-step sequential cascade 

in which multiple factors play roles at different time points. For example, angiogenesis 

starts with the destabilization of preexisting vessels, proliferation and migration of 

endothelial cells, and the formation of an immature and unstable vessel network [152]. 

Thereafter, the newly formed vessels are further stabilized by the recruitment of smooth 

muscle cells and pericytes [10, 153]. During early stages, pro-angiogenic growth factors 

such as VEGF, bFGF and Ang2 work in concert to induce degradation of extracellular 

33 



 

matrix and vessels and to promote the proliferation and migration of endothelial cells, 

while other factors such as Ang1 and PDGF-BB act in a later stage to stabilize the vessels. 

If some of them coexist at the same time, growth factors can also neutralize the effects of 

each other, Ang1 and Ang2 for example. Thus, the temporal release of growth factors 

needs to be manipulated carefully to maximally mimic the natural process of normal 

vascular network formation. 

1.9.3 Spatial delivery 

Spatial gradients are created naturally due to the diffusive nature of proteins’ 

transport through tissues, and their simultaneous degradation [154, 155]. For example, 

VEGF121 is a fully diffusive protein due to the lack of affinity to extracellular matrix, and 

thus, may potentially provide signal to endothelial cells from relatively long distances. 

VEGF165, in contrast, has a moderate diffusion capability. The spatial gradient of 

angiogenic growth factors may regulate the formation of new vessel networks. The 

directionality of angiogenesis is highly regulated by the spatial gradient of VEGF.  It is 

also critical to control gradient to avoid undesirable side effects at distae sites including 

unexpected vessel formation. Localization the factors to the diseased site and regulating 

their gradients provide directional cues for angiogenesis [155]. 

1.10 Matrices for protein delivery 

Extracellular matrix plays an important key in regulating angiogenesis. Matrix-

bound growth factors released by proteases and/or by angiogenic factors promote 

angiogenesis by enhancing endothelial migration and growth [156]. Naturally, 

endogenous angiogenic growth factors act at the site close to that of cellular production. 
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Once sequestered into the surrounding ECM, growth factor isoforms with heparin-

binding characteristics, e.g., VEGF165, VEGF189 and acidic and basic bFGF, do not 

remain diffusible but associate with heparan sulfate (HS) proteoglycans located in the 

ECM or basement membrane. These associations are important in several aspects: to 

stabilize the growth factor's biologically active conformation, to protect it from 

immediate clearance and proteolytic inactivation, and to limit its activity to cells that 

liberate the growth factor during proteolytic remodeling of ECM [157]. Growth factors 

can be released by ECM-degrading proteases such as matrix metalloproteinases (MMPs) 

or plasmin. The concerted actions of these proteases as well as heparanases that remove 

the HS modulate the bioavailability of the growth factor [158]. As such, it is apparent that 

the ECM plays a highly functionalized role in modulating the stability, activity, release 

and spatial localization of growth factors involved in a morphogenetic response. It is 

desirable that the design of growth factor matrix mimics the natural properties of ECM. 

By this means, a material based delivery system that permits the creation of affinity sites 

that bind growth factors or physico-chemically couples growth factor within the matrix 

will be needed for efficient growth factor delivery. Controlled growth factor release from 

synthetic extracellular matrix upregulates growth factor release in vivo to promote blood 

vessel formation and tissue engineering [159, 160]. 

 Biomaterial properties for therapeutic application require that a) materials are not 

immunogenic and degrade into soluble, nontoxic products that can be completely 

eliminated from the body by metabolism, and b) the growth factors can be released in a 

controlled manner from the biomaterial implant while retaining the structure and function 

of the protein. Clinical biomaterials must be easy to manufacture, easy to handle, cost 
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competitive and socially accepted. Natural and synthetic polymer molecules have been 

employed to deliver growth factors in a timed manner. Natural macromolecules that 

produce gels include polysaccharides such as alginate [161], agarose [162], hyaluronic 

acid [163] and chitosan [164], and proteins such as fibrin [165, 166], collagen, and 

gelatin [167]. However, because of the potential risks of infectious pathogens and 

immunogenicity, the use of animal-derived substances should be avoided when possible 

in medical products. The risks are exascerbated by the common cross-linking of these 

materials, e.g. glutaraldehyde crosslinking of gelatin. The clinical demand for synthetic 

replacements of biological matrices for drug delivery applications has encouraged the 

development of novel classes of synthetic polymers that are capable to demonstrate the 

functions of natural healing matrices. Commerically available synthesized polymers 

include block copolymer poly(ethylene oxide-b-propylene oxide-b-ethylene oxide) (PEO-

PPO-PEO), triblock copolymers of poly(ethylene glycol) and poly(lactic or glycolic acid) 

(PEG-PLGA-PEG), and linear (or star) polymer/copolymers of lactic and glycolic acids, 

PLLA, PGA or PLGA. In the following some of the most commonly used natural and 

synthetic polymers, namely, alginate, fibrin, gelatin and PLGA are briefly discussed. 

1.10.1 Alginate 

Alginate is an anionic polysaccharide commercially produced from the marine 

brown algae and consists of (1-4)-linked beta-D-mannuronic acid (M) and alpha-L-

guluronic acid (G). Gellation occurs when complexed with Ca2+ which ionically 

crosslinks the carboxylate groups in the poly-G blocks. They are widely used because of 

their bioavailability, low toxicity, relatively low cost, and gentle gelling properties. 

Hydrogels are defined as three-dimensional polymer networks swollen by water, which is 

36 



 

the major component of the gel system. Modulation of the crosslinking density by 

varying the MW of the polymer chains and the M to G ratio yields gels with controlled 

mechanical properties [168]. Covalent conjugation of heparin molecules [169] or the 

encapsulation of growth factor together with heparin-sepharose [107, 138] within the 

alginate microspheres has achieved slow and sustained release of bFGF. Sustained 

release of bFGF from heparinized alginate pellets has been applied in animal and human 

treatment of myocardial ischemia. One limitation of alginate is their typically slow and 

unpredictable degradation kinetics [170]. This can be solved by modification of alginate 

into hydrolytically degradable alginate derivatives [171]. Recent studies have shown that 

combination of high and low molecular weight alginates after partial oxidation and 

gamma irradiation allowed sequential release for VEGF and PDGF-BB, which led to a 

higher angiogenic effect than single factor administration in rat myocardial infarction 

model [94]. Another limitation of alginate is stimulation of inflammatory cells [172, 173], 

which may affect its qualification as bulk material for implant devices. 

1.10.2 Fibrin 

Fibrin is the major constituent of blood clots, which is formed by polymerization 

of fibrin monomer. Fibrin can be resorbed by degradation via cellularly produced 

fibrinolytic enzymes. Commercial fibrin precursor preparations, termed “fibrin glue”, are 

the mixture of concentrated fibrinogen and thrombin usually derived by cryoprecipitation 

of human plasma. Fibrin itself was found to stimulate capillary ingrowth without addition 

of growth factors. Binding of bFGF to fibrin was shown to potentiate its proliferative 

capacity for endothelial cell growth and protect it from proteolytic inactivation [165, 174]. 

Preclinical and clinical applications with fibrin glue containing angiogenic growth factors 
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have shown benefits in blood reperfusion. The burst release of the bioactive factors 

incorporated within fibrin can be prevented by either a covalent linkage can be formed 

between the growth factor and the matrix [175, 176] or immobilization of heparin within 

matrix [177]. In both cases, the release of growth factor will depend predominantly on its 

cleavage from the fibrin matrix by cell associated enzymatic activity, i.e., MMPs, 

plasmin or heparinases.  

1.10.3 Gelatin 

Gelatin is prepared by acidic and/or alkaline degradation and denaturation of 

collagen from animal skin, bone or tendon. Functionally important qualities such as 

adhesiveness for cells and proteolytic degradability are retained in gelatin. Acidic and 

basic gelatin has an isoelectric point of 5.0 and 9.0, respectively. Acidic gelatin is capable 

of polyionic complexing with basic bFGF and biologically active bFGF was reported to 

be released as a result of in vivo degradation of the hydrogel [178-181]. The release 

profile was controllable by changing the water content of hydrogels [180, 182]. Since 

Thompson et al. first used gelatin sponges to deliver acidic FGF for localized 

angiogenesis [167], hydrogels prepared from gelatin have been employed as carriers for 

angiogenic molecules. Introduction of bFGF incorporating gelatin hydrogel [113, 183, 

184] or bFGF-impregnated acidic gelatin hydrogel microspheres (AGHM) [185, 186] 

improved angiogenesis in both myocardial infarction and ischemic hindlimbs. Recently, a 

clinical study utilizing a bFGF gelatin hydrogel showed a safe profile and moderate 

improvement in patients with critical limb ischemia [123]. Typically, gelatin exhibits 

poor loading capacities for growth factors and high burst release after growth factor 

incorporation. Several methods have been explored to improve the capture of angiogenic 
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growth factors during loading, as well as to improve retention and control over the 

release. These approaches include covalent attachment to collagen of heparin [187] and 

variation of cross-linking density of collagen with glutaraldehyde [179]. Incorporation of 

anionic carboxylmethyl cellulose (CMC) into the acidic gelatin microspheres reduced the 

initial burst of bFGF through ionic interaction with bFGF [188]. 

1.10.4 PLGA 

PLGA, a copolymer of lactic acid and glycolic acid, is usually synthesized from 

cyclic diesters of these acids. When placed in an aqueous environment the otherwise 

water-insoluble material degrades through chemical hydrolysis yielding naturally 

occurring metabolic byproducts: lactic and glycolic acid. PLGA has attracted immense 

interest over the last two decades due to its favorable properties such as good 

biocompatibility, biodegradability, low immunogenicity, low toxicity and mechanical 

strength. In addition, PLGAs are easy to formulate into different devices for delivering a 

variety of drug classes such as vaccines, peptides, proteins, and macromolecules. Also, 

the US Food and Drug Administration (FDA) have approved a very large number of drug 

delivery products based on this biomaterial. Table 1.7 lists injectable PLGA depots 

marketed in the US [189]. Controlled drug release can be easily achieved by adjusting the 

polymer parameters such as molecular weight, monomer ratio, drug loading, excipient 

loading, glass transition temperature, and several other formulation variables. These 

advantages have also led to various medical and pharmaceutical applications including 

sutures, dental repairs, fracture fixation, ligament reconstruction, vascular grafts, and 

controlled drug delivery carriers.  
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For neovascularization purposes, PLGA has been fabricated into microspheres, 

millicylindrical implants, membranes, scaffolds and nanoparticles to encapsulate VEGF, 

bFGF, PDGF-BB and Ang1 and evaluated in animal models. PLGA-VEGF scaffolds 

have been tested successfully for seeding and transplantation into severely compromised 

immune deficient (SCID) mice of isolated human microvascular endothelial cells, which 

were found to form new vessels in the animals [190]. The first study of dual growth 

factor delivery from a single vehicle was investigated by the group of Mooney. Delivery 

of VEGF and PDGF-BB from a single PLGA scaffold provided a means to both induce 

new vessels and to ensure their maturation into stable vessels wrapped with smooth 

muscle cells [90]. Heparin immobilized PLGA scaffold [191] or microspheres [192] 

released VEGF for a sustained period of time both in vitro and in vivo and induced 

formation of new vascular microvessels. Heparin-conjugated poly(L-lactide-co-glycolide) 

(PLGA) nanospheres (HCPNs) suspended in fibrin gel also showed 3 week zero-order 

release of bFGF without initial burst and stimulated higher blood vessel density than 

daily injections of bFGF or bFGF fibrin gel [193]. A highly porous PLGA sponge 

incorporating VEGF was able to release VEGF at the local site for 2 weeks and induced 

angiogenesis [194]. Recently, bFGF/PLGA cylindrical implants have shown perfusion 

improvement in SCID mouse ischemic hind limbs [195]. Moreover, PLGA, in porous 

membrane form, was found to be capable of promoting neovascularization itself [196]. 

 

 

 

 

40 



 

Table 1.7 PLGA formulations on the market 
Product  Active ingredient Distributer Indication  Formulation 

Lupron Depot® Luprolide acetate TAP Prostate cancer Microparticles 
aNutropin Depot® Growth hormone Genentech Pediatric growth 

hormone deficiency 
Microparticles 

Suprecur® MP Buserelin acetate Aventis Prostate cancer Microparticles 

Decapeptyl® Triptorelin 
pamoate 

Ferring Prostate cancer Microparticles 

Sandostatin 
LAR® depot 

Octreotide acetate Novartis Acromegaly Microparticles 

Somatuline® LA Lanreotide Ispen Acromegaly Microparticles 

TrelstarTM Depot Triptorelin 
pamoate 

Pfizer Prostate cancer Microparticles 

Arestin® Minocycline Orapharma Periodontal disease Microparticles 

Risperidal® 
Consta™ 

Risperidone Johnson & 
Johnson 

Antipsychotic Microparticles 

Profact® Depot Buserelin acetate Aventis Prostate cancer Implant 

Zoladex® Goserelin acetate Astrazeneca Prostate cancer Implant 

Eligard® Leuprolide acetate Sanofi-
Synthelabo 

Prostate cancer In situ forming 
implant 

a: no longer produced due to high cost associated with manufacturing and marketing 

1.11 Protein stability in PLGA 

Just like other proteins, angiogenic growth factors are fragile molecules that 

undergo different pathways of instability and they have limited half life both in vitro and 

in vivo and need to be carefully handled. The integrity of protein structures is essential 

for their proper function in physiological or pathological conditions. Unexpected 

unfolding or degradation of proteins may lead to inactive, sometimes even toxic products. 

Protein instability, generally, can be divided into two chemical and physical processes. 

Chemical instability involves the formation and destruction of covalent bonds, which 

usually occurs in the primary structure and disulfide bonds. Chemical process includes 

hydrolysis (proteolysis), deamidation, racemization, oxidation, disulfide formation and β-
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elimination. The degradation products result from chemical instability must be carefully 

characterized for safe use of the proteins.  Physical stability refers to proteins’ ability to 

retain their secondary, tertiary and quaternary structure, which can be lost by reversible 

or irreversible denaturation through a loss of tertiary structure, aggregation and 

adsorption. 

A major issue with PLGA delivery systems is protein stability during preparation, 

storage and release. There are several factors associated with this polymer that may cause 

destabilization of proteins. The potential inactivation mechanisms involved and 

stabilization approaches during protein encapsulation and release have been reviewed 

[197-201]. During microsphere preparation, proteins are exposed to conditions that are 

known to cause denaturing and aggregation, namely high shear [202, 203], elevated 

temperature, exposure to the air/liquid interface, organic solvents and the oil in water 

(O/W) interface [204, 205].  Higher energy emulsification methods such as by sonicaton, 

homogenization and vortex are detrimental to proteins. The addition of an aqueous 

protein solution to an organic solvent can lead to denaturing of proteins [206, 207].  

Proteins, which are surface active, can diffuse to the O/W interface and aggregate non-

covalently or covalently upon exposure of the hydrophobic core and subsequent disulfide 

scrambling. A solid state protein is desirable when an organic solvent exposure is 

necessary and when the surface-association is the dominating mechanism for protein 

instability. The conformation of lyophilized protein is “trapped” when it is added to 

organic solvent, because the lack of lubricating water [204]. In addition, decreased 

mobility of proteins upon dehydration stabilizes them against shear and elevated 

temperature encountered during emulsification.   
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Proteins are often lyophilized prior to long-term storage. The removal (and uptake) 

of hydrogen-bonding water can destabilize proteins if excipients are not present to 

replace the hydrogen bonds [208].  Residual moisture needs to be controlled to avoid any 

moisture-mediated reactions or polymer degradation. The storage temperature should be 

controlled well below the protein glass transition temperature (Tg) or the Tg of the 

maximally concentrated excipient (Tg’) to minimize molecular mobility and chemical 

degradation reactions.   

During release from polymer microparticles, proteins are exposed to many 

stresses that can compromise the physical and chemical stability of proteins. These 

include protein rehydration, exposure to soluble oligomers, low pH, interactions between 

protein and polymer, loss of stabilizing excipients, and physiological temperature. During 

incubation in an aqueous release medium, water will diffuse into the PLGA matrix, 

resulting in moisture-induced aggregation. Polymer degradation causes decreased 

polymer molecular weight and increased concentration of acidic degradation products 

accumulated within the matrix, which causes local pH to drop. The extent of 

accumulation of acidic degradation products depends on the initial acidic impurity level, 

the rate of formation and release of soluble oligomers, water uptake, the thickness, 

posotity, and extent of plasticization of polymer [209], and the presence of buffering salts. 

Many proteins denature at low pH, providing a driving force for non-covalent 

aggregation via non-covalent interactions [210]. An in vitro release study using 14C-

VEGF showed that about 25% of released VEGF was degraded. The acidic µpH within 

PLGA microsphere was suggested as a possible reason for the degradation [211]. Poorly 
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water soluble bases, such as Mg(OH)2 or MgCO3, can be added to neutralize the pH and 

prevent acid-induced denaturing, aggregation, and peptide bond hydrolysis [212, 213].  

Interactions between protein and polymer, such as adsorption can also affect the 

stability of proteins. Adsorption occurs by a hydrophobic interaction between the 

polymer and the hydrophobic interior of proteins and can often lead to the formation of 

insoluble aggregates or irreversible conformational changes [214]. Even when adsorption 

is reversible, it may accelerate other deleterious reactions by exposing previously buried 

residues or increasing side chain mobility. Adsorption can be minimized by the addition 

of other proteins or surfactants that compete with the protein for hydrophobic interactions 

with the polymer [215].  

Several stabilizers that have been proven to effectively improve protein stability 

in the polymer have been summarized elsewhere [216]. However, individual protein 

needs to be carefully studied for better selection of stabilization strategies. To maximally 

avoid damage, a formulation with simple preparation process is needed. For example, 

preparation of injectable cylindrical implants does not need an emulsion process which 

reduces the chance of protein exposure to W/O surfaces. Also, this process eliminates 

ultrasonization or homogenization process which is also deteriorating steps in 

microsphere preparation.   

1.12 Stability of human recombinant angiogenic growth factors 

RhbFGF is a recombinant human, single chain, nonglycosylated polypeptide that 

contains 154 amino acids, with a MW of 17.1 kDa. At neutral pH, it has 15 negatively 

charged (7 Asp and 8 Glu) and 25 positively charged groups (10 Arg and 15 Lys). 
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Therefore, rhbFGF has a high isoelectric point (pI = 9.8). In rhbFGF, there are 2 solvent 

exposed Cys, 2 Met, 7 Asp, and 5 Asn residues, all of which are potential sites of 

degradation by β-elimination of disulfide, oxidation, chain cleavage and deamidation, 

respectively. Three of the Asp residues and one of the Asn residues are adjacent to Gly 

and are located in regions of the proteins that are predicted to have high flexibility, which 

favors succinimide formation.  

bFGF is a very unstable protein. At alkaline pH, covalent aggregation of rhbFGF 

due to thiol-disulfide exchange or β-elimination was observed. Under acidic conditions, 

degradation products of rhbFGF caused by peptide bond hydrolysis and deamidation 

were generated. Interestingly, aggregation of rhbFGF also occurred at pH 2-5, which was 

also dependent on the buffer species. In addition, rhbFGF was found to have strong 

adsorption onto glass and plastic surfaces, which can cause significant protein loss or 

inactivation during storage.  Its in vitro half life of activity in a buffer at pH 7.0 is about 

24 hours [217].  As discussed before, heparin strongly binds to positively charged bFGF 

(Kd ~ 10-6 M) [218]. It was found that heparin can protect bFGF against acid or heat 

induced inactivation at molar ratio of 1:1 [51]. The polyanion can also inhibit proteolytic 

degradation of bFGF. To prevent the inactivation caused by the Cys oxidation, it was 

found that 1 mM EDTA was required to remove trace heavy metals, which cold catalyzed 

the oxidation [219]. Other than stabilizing excipients, additional formulation approaches 

also have been tested to reduce the chances of bFGF degradation, including use of 

solvent-free microporous PLGA foams produced with supercritical CO2. 

Recombinant human vascular endothelial growth factor (rhVEGF) behaves in a 

manner similar to native VEGF in terms of its binding to heparin and its biological 

45 



 

activity. RhVEGF is a homodimeric protein consisting of 165 amino acids per monomer 

with a molecular weight of 38.3 kDa and a pI of 8.5. The protein consists of 2 domains, a 

receptor-binding domain (residues 1-110) and a heparin-binding domain (residues 111-

165). By inspecting the amino acid sequence of VEGF, there are several Met residues 

that may oxidize. The degradation of VEGF in aqueous solutions from pH 5 to 8 has been 

determined. From pH 5-8, the major degradation route at accelerated conditions of 40℃ 

was deamidation at Asn-10 in the –QNH- motif to give a variety of products [220]. The 

deamidation increases with pH. Both acidic and basic catalyzing functions of His in 

deamidation are suggested at this pH range. At or above pH 6.5, some diketopiperazine 

formation occurring at Pro-2 in -APM- motif was observed under accelerated conditions 

for 4 weeks. Therefore, at neutral pH, VEGF degradation is dominated by deamidation, 

less by oxidation, and even less by the diketopiperazine reaction [221-223]. Physical 

instability such as strong adsorption [224] and degradation [211] were also observed with 

this protein in PLGA microspheres. Unfortunately there are not many literature reports on 

stabilization approaches for this protein. Cleland reported that addition of trehalose, at a 

ratio of 1:10 (trehalose:VEGF, w/w), yielded high recovery of rhVEGF after 

encapsulation in PLGA microspheres by the solvent evaporation method [224].   

1.13 Protein release from PLGA 

Proteins and large peptides cannot diffuse through polymer phase that 

encapsulates these molecules. However, there are several mechanisms that can contribute 

to protein mass transport through polymer matrices (i.e., polymer + protein + excipients). 

Protein release from polymer matrix essentially occurs through a combination of 

diffusion (due to drugs’ chemical potential gradient) through aqueous pores and polymer 
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erosion, as well as other mechanisms such as osmotic-mediated events (e.g., polymer 

breakage causing new pores to form) and spontaneous polymer pore closing. There are 

several factors that can affect the release of proteins: polymer hydrophobicity, porosity, 

degradation kinetics, position of protein in the polymer, excipients, polymer Tg, and 

interaction of polymer and protein. 

Upon incubating in an aqueous medium, protein located at or near the particle 

surface is dissolved by the penetrating waterfront and diffuses out into the surrounding 

medium within a very short time. This contributes to the burst release of the total amount 

of protein within the polymer matrix. This burst release is often associated with 

microspheres or nanoparticles as they have much larger surface area/mass ratio than large 

implants (e.g., millicylinders) and proteins can be loosely adsorbed on the surface during 

preparation. Reducing the amount of proteins on the surface or coupling proteins into the 

matrix by ionic interaction can be performed to decrease the burst effect. Release after 

this initial burst depends on porosity and hydrophobicity of polymer, as well as molecular 

interaction forces between polymer and drug molecules [200]. In porous and hydrophilic 

matrices or if there is little affinity between the protein and polymer, water penetration 

into the matrix occurs quickly and the polymer swells upon water uptake. Swelling 

pressure creates channels in polymers by local crack formation or by causing the polymer 

to lower its glass transition and thus deform in favor of a reduction in overall osmotic 

pressure [225]. Protein located in close vicinity dissolves in penetrated water and diffuses 

out through the aqueous pores. In this case, a second phase of continuous release may 

succeed the burst, resulting in total of two release phases of drug release. When polymer 

possesses a dense core structure or the drug interacts strongly with the polymer, a lag 
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phase with minimal drug release may be observed. A lag phase may also be seen if 

polymer hydrophobicity restricts water uptake into the core or when polymer swelling 

causes pores and channels to collapse and block further protein release. Therefore, the 

release kinetics of protein through polymer is largely based on the diffusion of proteins 

through pores and aqueous channels [226, 227]. 

Polymer erosion dominates the final stage of protein release; protein diffuses out 

of the eroding matrix through newly formed and existing pores and channels. PLGA is 

hydrolyzed in aqueous solution and produces oligomers and monomers with acidic end 

groups. The degradation typically follows a self-catalyzed kinetic behavior arising from 

the increasing carboxylic groups as hydrolysis proceeds. The polymer chain degradation 

is accompanied with mass loss of the polymer matrix, which is termed “erosion”. During 

erosion, polymer becomes more hydrophilic and more porous as the small chains of 

oligomers or monomers diffuse out of the matrix, thus providing more channels for 

protein release. 

Besides diffusion and erosion, osmotic pressure created by small molecule 

excipients offers another mechanism for protein release and has to be taken into account 

in formulation optimization. Proteins, because of their large molecular weight and 

relatively low solubility, do not introduce very large osmotic pressures. In contrast, small 

molecular weight salts or sugars introduce enormous osmotic pressures can deform 

otherwise glassy polymers to the point of microscopic crack formation. In addition to the 

formation of new channels, as described above, the osmotic pressure also provides an 

additional driving force for the release of proteins [225].  
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Another factor that dictates protein release may be attributed to the 

thermodynamic morphology change of polymer chains upon incubation. It has been 

observed before that during early stage of release, PLGA microspheres experienced rapid 

microscopic morphology change, i.e., initially porous structures became nonporous, 

which was in accordance with a decline or cessation of the initial burst [228-230]. It was 

suggested that plasticization of PLGA renders the matrix non-porous [230]. A later study 

by the same group showed that pore-closing is a universal event that occurs during the 

entire release period and that closed pores periodically reopen, providing diffusion 

channels for protein release [231]. The mechanisms for this pore closing/reopening cycles 

during incubation is yet to be determined. 

1.14 Project design 

A combination delivery of multiple angiogenic growth factors from a PLGA-

based controlled release system – injectable millicylinderical implants will be developed 

in this project. Two synergistic growth factors, VEGF and bFGF will be encapsulated in a 

single polymer to achieve slow and continuous protein release for 4 weeks. By doing this, 

I hypothesize that angiogenesis will be optimized and more mature and stable blood 

vessels will be formed; a corollary of this hypothesis is that a lower dose of each growth 

factor will also be necessary to attain the same level of angiogenesis when administered 

concomitantly. The project can be divided into 3 parts.  

Part I (chapter 2) will be focused on the stability and release of proteins in the 

polymer using BSA as a model protein. In this part, the aggregation kinetics of BSA in 

vitro and in vivo will be evaluated to obtain an in vitro-in vivo corrleation. In addition, 
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several excipients will be tested for improving protein stability and protein release. 

Finally a formulation will be developed to release soluble BSA for 4 weeks. 

 In Part II (chapter 3) VEGF stability will be studied under conditions relevant to 

formulation in polymer dosage forms. Very few reports have been published to 

characterize VEGF stability in the polymer. According to the structure of VEGF, there 

are two possible chemical reactions in the range of pH 5 to 7, deamidation at Asn-10 in 

the -QNH- motif and oxidation at several Met residues. In addition, there are some 

possible physical instability issues such as aggregation and adsorption during the 

encapsulation and release process. In this part, we are going to study both physical and 

chemical instability mechanisms will be evaluated under encapsulation and release 

conditions. Stabilization approaches will be studied based on the knowledge of instability 

mechanisms. Finally, the stabilization approach will be tested by encapsulating the 

protein in the polymer and evaluates the stability of VEGF released. 

Part III (chapter 4-5) will be focused on examining in vivo angiogenesis in an 

animal ischemia model. An ischemic hindlimb model will be set up by the ligation of the 

femoral and iliac hindlimb artery and vein of immunodeficient mice. The developed 

system with multiple angiogenic factors will be administered by direct implant of the 

controlled release growth factors in the ischemic zone through a small incision. Single 

delivery and combination delivery of angiogenic factors will be compared for their ability 

to induce the angiogenic response. Angiogenic activity will be determined by histological 

analysis including blood vessel density or blood vessel maturation. Therapeutic effects 

will also be monitored by limb survival and the perfusion recovery in the ischemic site by 

using Laser Doppler Perfusion Imaging system. 
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CHAPTER 2 

 IN VITRO AND IN VIVO STABILITY AND CONTROLLED RELEASE OF BSA 
ENCAPSULATED IN INJECTABLE POLY(LACTIC-CO-GLYCOLIC ACID) 

CYLINDRICAL IMPLANTS  
 

2.1 Abstract 

Bovine serum albumin (BSA), which undergoes well-defined and measurable 

insoluble aggregation at highly acidic pH, is widely used as a model protein in protein 

stability and release studies in poly(lactic-co-glycolic acid) (PLGA). The acidic micro-

environment in PLGAs is recognized as one of the major causes of the protein instability 

in the polymer. BSA was encapsulated in PLGA cylindrical implants to evaluate protein 

stability in PLGA and to obtain an optimal controlled release formulation.  In vitro 

aggregation and release kinetics of BSA encapsulated in pH-modifed (+ MgCO3) and 

unmodified (− MgCO3) PLGA was compared with that occurring following subcutaneous 

implantation in the flanks of mice to understand the in vivo relevance of in vitro analysis 

of the PLGA/protein formulations.  Stability and release kinetics were virtually identical 

in both formulations, and BSA aggregation was minimized for the pH-modified 

formulation, confirming quantitatively for the first time in vivo the well-established pH-

modification strategy for protein stabilization in PLGA.  In optimization studies, after 

examining systemically several formulation variables (e.g., protein and base loading) a 

two-phase continuous release profile was obtained when the protein and MgCO3 loading 
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was 15% and 4%, respectively. The total protein release over 6 weeks was 94% with 

negligible aggregation. Therefore, protein stability and release behavior in vivo can be 

safely predicted by using an in vitro test and optimized formulation conditions, which 

proved suitable for BSA stabilization and release, provide a model PLGA formulation for 

future use with clinically relevant proteins, including growth factors for therapeutic 

angiogenesis. 

 

Keywords: poly(lactide-co-glycolide), BSA, protein stability, protein release 

 

2.2 Introduction 

Developing protein delivery systems with long-term controlled release of native 

bioactive protein pharmaceuticals has been a major challenge to pharmaceutical scientists.  

The biodegradable poly(lactide-co-glycolide) (PLGA)-based delivery systems such as 

microspheres, implants, and scaffolds have been utilized for the delivery of many 

bioactive macromolecules to achieve sustained release and has proved to be one of the 

most promising devices. However, few have been successful in developing a formulation 

with both satisfactory release kinetics and maintenance of protein stability.  The major 

obstacle to the development of PLGA-based protein delivery systems is the instability of 

proteins during encapsulation and release incubation.  

It has been shown previously that proteins undergo both physical (such as 

denaturation, adsorption) and chemical (such as hydrolysis, oxidation, deamidation, β-

elimination) instability mechanisms under different stresses encountered during 
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encapsulation, storage, and controlled release incubation. Bovine serum albumin (BSA), 

known as a popular carrier protein, has been widely studied in controlled release drug 

delivery systems [232] because of its abundance in nature, relatively long half-life, and 

buffering effect. Albumin denatures reversibly upon modest heating [233] and partially 

unfolds during lyophilization as most proteins do when stabilizing disaccharides such as 

trehalose or sucrose are not present.  BSA is also known to non-specifically adsorb to the 

surfaces which is a common situation in emulsion-based microsphere preparation 

processes [215]. 

The acidic microclimate generated in PLGA due to the acidic polymer impurities 

and degradation products has proved to be the major cause of albumin physical and 

chemical instability during the release period [234]. Albumin undergoes the unfolding 

from the F form to E form at pH 2.7 [235]. The unfolded BSA is involved in peptide 

bond hydrolysis and produces lower molecular weight peptide fragments [210]. 

Moreover, the expanded domains give a rise in the formation of non-covalent water-

insoluble aggregates due to hydrophobic interactions [236], whereas higher pH regions of 

the polymer are expected to cause covalent water-insoluble aggregates caused by thiol-

disulfide interchange [237].  

A previous study from our group has shown that co-encapsulation of basic 

additives successfully inhibited the acid-induced insoluble aggregation of proteins in 

vitro and demonstrated negligible alteration in higher order protein structure by 

neutralizing the acidic microclimate pH in PLGA implant [210]. Magnesium hydroxide-

stabilized basic fibroblast growth factor/PLGA implants have successfully stimulated 

new blood vessel formation and increased the limb survival rate in a murine hindlimb 
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ischemia model compared to other formulations without the base addition [238]. Some 

other approaches have been studied to improve BSA stability including reducing 

interfaces [239], blocking the free thiol group [237] or incorporation of another buffering 

agent [240]. However, it is not yet proved that such stabilizing strategies can result in the 

same effect in vivo. Compared to the incubation environment of in vitro studies, the 

human body is a much more complicated system. It is not safe to assume that the stability 

and release profiles obtained in release medium will be applicable to in vivo 

administration without more detailed experimental validation.   

The purpose of this study was to a) further improve the stability of BSA, b) 

optimize its release from injectable PLGA implants, and c) investigate the in vitro in vivo 

correlation of stability and release kinetics. In this study, we first studied the effect of the 

poorly soluble basic salt, MgCO3, which has been shoen to effectively neutralize the pH 

within PLGA microspheres [241], on stabilizing BSA in vitro and in vivo. Then in vivo 

stability of the albumin in mice and their correlation with the in vitro stability kinetics 

were determined. Furthermore, several factors anticipated to affect protein stability and 

release were also evaluated for optimization, such as total solids loading in the polymer 

as well as the loading of acid-neutralizing agents (i.e., poorly soluble bases), sugars and 

amino acids.  

 2.3 Materials and Methods 

 2.3.1 Materials 

Poly (DL-lactide-co-glycolide) 50/50 (inherent viscosity 0.63 dl/g in 

hexafluoroisopropanol @ 25oC) was purchased from Durect bioabsorbable polymers 

(Birmingham, AL). Bovine serum albumin (A-3059) was purchased from Sigma Aldrich 
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(St. Louis, MO). 5-(and -6)-carboxyfluorescein, succinimidyl ester (5(6)-FAM, SE) was 

purchased from Molecular Probes, Invitrogen (Carlsbad, CA). Coomassie plus protein 

assay kit was purchased from Pierce (Rockford, IL). Trehalose, MgCO3, acetone, urea, 

and dithiothreitol were of ACS reagent grade or higher and purchased from Sigma 

Aldrich (St. Louis, MO).  

 2.3.2 Preparation of BSA containing injectable PLGA millicylinders 

A solvent extrusion method was used to prepare millicylinders, as we previously 

reported. Briefly, the lyophilized BSA powder, with or without excipients, was ground 

and sieved through a 90 µm screen (Newark Wize Wearing, Newark, NJ). The resulting 

protein powder was suspended into 50% (w/w) PLGA acetone solution, with or without 

MgCO3 or Mg(OH)2. The suspension was then transferred into a 3 ml syringe and 

extruded into a silicone rubber tubing (0.8 mm I.D.). The tubing was then air dried for 24 

h followed by vacuum drying at 40oC for another 48 h. The final millicylinders were 

obtained by destroying the tubing and cutting the polymer into 1 cm pieces for future use. 

 2.3.3 Scanning Electron Microscopy (SEM) 

Images of PLGA millicylinders were obtained by using a Toshiba scanning 

electron microscope (SEM). Samples were coated with conductive gold palladium prior 

to analysis. 

2.3.4 Evaluation of BSA release from PLGA implant 

The 1 cm millicylinders (~ 8 mg) were placed in 1.5 ml polypropylene tubes with 

1 ml release medium (PBST) under mild agitation. At predetermined time points, the 

55 



 

release media were removed and replaced with fresh medium.  The collected release 

samples were assayed by RP-HPLC. The conditions for RP-HPLC involved a non-porous 

HPRP 2D C-18 column (4.6×33 mm, Beckman Coulter, Fullerton, CA) and Waters 

Alliance HPLC system (Milford, Massachusetts). The mobile phase consisted of 

acetonitrile containing 0.1% TFA (A) and water containing 0.1% TFA (B) with a 

gradient of 20% A to 50% A within 23 min. The flow fate was at 0.5 ml/min. The eluents 

were detected by a UV detector at 214 nm. All measurements were performed in 

triplicate (n = 3). 

 2.3.5 Residual protein extraction 

After the release study, the incubated polymers were removed from release 

medium, and dissolved in acetone. The supernatant polymer solution was removed by 

centrifugation. After washing 3 times, the remaining acetone was removed using a 

Eppendorf concentrator (Hamburg, Germany) and the resulting BSA pellet was 

reconstituted with PBST. The concentration was determined for soluble BSA residue by 

Coomassie plus protein assay (Pierce, Rockford, IL). Insoluble BSA, if present, was 

dissolved in a denaturing agent (6M urea in PBST, 1 mM EDTA). This retrieved all the 

non-covalent insoluble aggregates for measurement by the Coomassie protein assay. 

Covalent aggregates were dissolved with a reducing/denaturing solvent (6M urea + 1mM 

EDTA + 10mM dithiothreitol in PBST) before protein assay by Coomassie plus. For 

FAM-BSA aggregation kinetics, the insoluble aggregates were dissolved in the 

reducing/denaturing solvent directly without the denaturing solvent dissolution step 

before Coomassie plus protein assay. All measurements were performed in triplicate (n = 

3). 
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 2.3.6 Evaluation of BSA aggregation kinetics in vitro and in vivo 

To evaluate the aggregation kinetics in vitro, millicylinders were incubated under 

the same condition as in release study. At predetermined time points, millicylinders were 

withdrawn from release media and subjected to residual protein extraction. For in vivo 

evaluation, the millicylinders were subcutaneously injected into the dorsal area of CD 

male mice (Charlies River Labs) with a 12 Gauge trocar (Innovative Research of 

America, Sarasota, FL). At different time points, the mice were euthanized and the 

collected millicylinders from the injection sites were subjected to the residual protein 

analysis, as described in section 2.3.4.   

2.3.7 Water uptake  

The millicylinders were incubated in release medium as in the release study for 1 

day, 3 days and 8 days. The collected millicylinders were wiped with tissue to remove the 

surface water, and then weighed (W1). After freeze drying, the millicylinders were 

weighed again (W2). The formula (W1-W2)/W2 × 100% was used to calculated the 

extent of water uptake. All measures were performed in triplicate (n = 3). 

2.3.8 Preparation of monomeric BSA 

Commercial BSA was formulated in 2.5 mM phosphate buffer (pH 7.0) at the 

concentration of 25 mg/ml. The solution was transferred into an Amicon ultra centrifugal 

filter device, MWCO 100,000 (Millipore, Bedford, MA) and centrifuged at 1000 rpm for 

3 min, repeated 3 times. The obtained solution was analyzed by Coomassie plus protein 

assay and size exclusion chromatograghy.  The solution was then lyophilized in a freeze 

drier (Labconco, Kansas City, MO). 
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2.3.9 Size exclusion chromatography (SEC) 

Shodex PROTEIN KW-802.5 column (Waters, Milford, Massachusetts) and 

Waters 1525 HPLC system (Waters, Milford, MA) were used to determine monomer 

content in BSA samples with detection at 214 nm and 280 nm. The mobile phase 

consisted of 20 mM sodium phosphate buffer (pH 7.4) and 0.2 M sodium sulfate. The 

flow rate was maintained at 1 ml/min. The monomer amount was calculated as the ratio 

of the monomer to the total soluble protein. 

2.4 Results and Discussion 

2.4.1 Preparation of millicylinders 

The prepared millicylinders were of 1 cm in length and 0.8 mm in diameter 

(Figure 2.1). The formed millicylinders were a dense and non-porous polymer matrix 

with protein and excipient powder evenly distributed within the matrix. The preparation 

always yielded ~ 100% loading efficiency. The preparation of millicylinder implants does 

not involve emulsion and micronization processes, which reduces the damaging steps and 

preserves the integrity of proteins. In addition, since the protein is in the solid state form 

during the whole process, there is less chance of protein unfolding. Since this is a 

relatively simple process and has less deteriorating steps, and millicylinders are easy to 

characterize, it becomes an easy approach to study the polymer factors in protein stability.   

2.4.2 Protein aggregation kinetics during incubation 

10% of BSA was incorporated in the polymer with or without 3% MgCO3. 

Protein stability kinetics with the polymer was examined while neutralizing the PLGA 

acidic microclimate pH with acid neutralizating agent (e.g. MgCO3). As discussed above, 

58 



 

BSA unfolds under the acidic environment, and this confirmation change rapidly leads to 

formation of PLGA oligomers, primarily due to hydrophobic interaction. When protein 

oligomers are too large to be soluble in aqueous buffer solution, insoluble aggregates 

appear, which can not be released from the polymer. By analyzing the remaining protein 

within the polymer at different time points, the stability kinetics was determined. As 

displayed in Figure 2.2, the soluble protein in the polymer decreased over time (Figure 

2.2A) and the insoluble protein correspondingly increased (Figure 2.2B). With the 

presence of MgCO3, the majority of the protein remained soluble in the polymer. At the 

end of 28 days incubation, there was still around 62% of remaining protein that was 

water-soluble.  By contrast, without MgCO3, a large portion of BSA aggregated in the 

first day of incubation with only 35% remaining soluble. At the end of 28 days in vitro 

incubation, 86% of BSA remaining in the polymer had formed insoluble aggregates. 

The kinetics of soluble and insoluble BSA in the polymer implants during in vivo 

incubation at subcutaneous sites was nearly identical to the in vitro kinetics (Fig. 2.2). To 

estimate the in vitro and in vivo correlation, we plotted all the in vitro and in vivo data 

together, with in vitro data as the x-axis, and in vivo data as the y-axis (Figure 2.3). The 

regression line is very well corresponding to the linear line y = x, and the correlation r2 = 

0.99. Therefore, there was a very high correlation between in vitro and in vivo regarding 

the protein’s stability kinetics and it is safe to predict the in vivo behavior using the vitro 

results for this type of formulation.  
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Figure 2.1 Morphology of millicylinders by digital camera (A) and scanning electron 

microscope (SEM) (B). The scale bar represents 500 µm. 
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Figure 2.2: Percentage of soluble (A) and insoluble (B) BSA remaining in the polymer 

after incubation in vitro (solid and open circle) and in vivo (solid and open 

triangle). The polymer contained 10% BSA with 3% MgCO3 (open circle and 

open triangle) or without (solid circle and solid triangle). 

61 



 

 

In vitro
0 20 40 60 80 100

In
 v

iv
o 

0

20

40

60

80

100

Soluble BSA, no MgCO3

Insoluble BSA, no MgCO3

Soluble BSA, with MgCO3

Inoluble BSA, with MgCO3

Regression line

 

Figure 2.3: In vitro and in vivo correlation. All data were calculated by 

ratios vs the BSA loading and expressed as mean ± SE (n = 3). r2 = 0.99 
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2.4.3 Factors that affect protein release and stability 

2.4.3.1 Neutralizing agent species 

Two commonly used neutralizing agents, MgCO3 and Mg(OH)2, were evaluated 

for their effects on protein stability and release. When 5% Mg(OH)2 is added in the 

polymer with 10% BSA, the protein release was fast in the first week and reached a 

plateau thereafter (Figure 2.4). With the substitution of MgCO3, the release profile was 

slower and more continuous over the 28-day incubation. This may be because MgCO3 

has a higher solubility (Ksp = 2.6×10–5 vs Mg(OH)2 : Ksp = 1.8×10–11), and thus has 

higher capability of taking up water from the release medium into the polymer. The water 

uptake causes the formation of interconnected aqueous pores for the protein to be 

released out. Protein residual analysis showed minimal difference in stability between the 

two formulations, except that MgCO3 formulation showed a little higher release (Table 

2.1). Again, this difference may be due to the solubility difference between the two 

neutralizing agents. MgCO3 has a higher capability of neutralizing the acidic environment. 

For our continuous release purpose, MgCO3 is preferred and was used in the later studies. 

Table 2.1: Recovery summary of BSA after 28 days release of formulation O and P 

Formu. 
BSA 

loading 
(%) 

5% base Cum. Rel. 
(%) 

Soluble 
residue 

(%) 

Non-
covalent 
aggregate 

(%) 

Covalent 
aggregate 

(%) 

Total 
recovery 

(%) 

O 10 MgCO3 60.2 23.6 7.1 10.2 101.1 

P 10 Mg(OH)2 55.0 30.6 8.4 5.8 99.8 
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Figure 2.4: Effect of Mg base type on the BSA release profile from PLGA 50/50 

millicylinders.  The millicylinders contained contained 10% BSA, and 5% MgCO3 (O) 

or Mg(OH)2 (P). 
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2.4.3.2 Decreasing protein loading 

BSA was utilized as a model protein in many previous protein studies because of 

its abundance and relatively low cost. However, most proteins are expensive and can not 

be used in bulk quantities. To reduce the future protein use in this PLGA formulation, we 

tried a lower protein loading (1%) and used other excipients (such as sucrose) as the bulk 

excipient. Sucrose is widely used in polymer formulation as it stabilizes proteins in 

solution because it is preferentially excluded from the protein surface, which increases 

protein chemical potential [242]. In this study, the varying sucrose loading was tested for 

its effect on protein release and stability. The totalb water-soluble particle loading ranged 

from 15% to 35%. Figure 2.5 shows the distribution of protein in the PLGA after 

encapsulation. All the formulations had displayed evenly distributed protein and 

excipient powder within polymer matrix. The release rate increased with the increase in 

loading of the total soluble particles (Table 2.2 and Figure 2.6). Increasing total loadings 

from 15% to 30% (formualtion A to D) all showed incomplete release after 28 days, 

while the formulation E with the loading 35% had 97% protein release. Moreover, the 

residual protein analysis showed a decrease in insoluble aggregates as the loading 

increased, suggesting that faster release of protein provided less protein for aggregation 

within the polymer matrix. The stabilizing effect attributed to sucrose may also play a 

role in decreasing protein aggregation. Although we have achieved significant 

improvement in the protein stability with 10% BSA and 3% MgCO3, high aggregation 

rate in these formulations containing sucrose as a bulk excipient to substitute for BSA can 

be explained by the lack of buffering capability of the sugar. BSA, as a protein, can act as 

a buffer species itself within the polymer, which also helps stabilize the microclimate pH 

together with MgCO3. Moreover, sucrose facilitates water uptake into the polymer 
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because of its highly hydrophilic property, and thus there are more pores or water 

channels formed at the beginning of incubation. Sucrose can diffuse out of the polymer 

through these quickly formed channels and lose its stabilizing effect on the protein, which 

can not diffuse as fast due to its larger hydrodynamic diameter. The capability of sucrose 

to stabilize proteins is proportional to its concentration [243]; maintaining a high enough 

concentration of sucrose [244] or a specific sucrose/protein ratio [245] is required for 

optimal protein stability. The difference of release rate of sucrose and protein makes it 

difficult to maintain the same sucrose level during the release. 

2.4.3.3 MgCO3 content 

Since MgCO3 was proved to be crucial in maintaining protein stability within the 

polymer matrix, two different levels of MgCO3 loading within PLGA were tested. As 

summarized in Table 2.2, the total release of protein was significantly increased with 5% 

base content compared to 3%. As shown in Table 2.2, the total cumulative release 

increased from 40.5% to 68.4% in the formulations A and F, respectively (15% total 

soluble particle loading); 41.5% to 82.2% in the formulations B and G (20% total soluble 

particle loading); and 61.9% to 80.9% in the formulations C and H (25% total soluble 

particle loadings). Moreover, the insoluble aggregates were greatly reduced with the 

higher base content, which again confirmed the importance of the base on protein 

stability. The reason why the base contents increased both release and stability can be 

illuminated by the water uptake study during the first week of incubation. The 

millicylinders from formulations C and H were used to test water uptake. As shown in 

Table 2.3, formulation H had a significantly higher water uptake than formulation C after 

1 and 3 days of incubation (p < 0.05 for both). The higher loading of the base generated 
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more aqueous pores or channels for the release of both protein and PLGA degradation 

products, thus increasing the protein stability. The total loading showed very limited 

effect on protein release when the base loading was 5%, suggesting that water uptake 

effect had reached a maximum. It should be noted that all the formulations with 5% base 

loading, just like those with 3% base loading, reached their plateau in the first week 

(Figure 2.7). The protein release in this PLGA matrix mainly is attributed to diffusion and 

polymer erosion, as illustrated in Figure 2.8. In the first stage of release, the protein 

diffuses out of the matrix upon water penetration and pore formation by the soluble 

particles and the salt. Whereas the later stage of release is dominated by the polymer 

erosion; the polymer degradation associated with mass loss created a more porous 

structure for protein release (Figure 2.8). Since degradation products also can diffuse out 

through enormous number of pores, the base effect is not as significant in the later phase 

than before. 
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Figure 2.5: Morphology of millicylinders with different sucrose loadings by 

scanning electron microscopy (SEM).  The millicylinders contained 3% MgCO3, 

1% BSA and A: 14% (solid circle), B: 19% (open circle), C: 24% (solid 

triangle), D: 29% (open triangle), and E: 34% (solid square) sucrose, 

respectively. The scale bars represent 500µm. 
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Table 2.2: Recovery summary of BSA after 28 days release of formulation A 
through H

Form. Total solid 
loading (%) 

BSA 
content 

(%) 

MgCO3 
(%) 

Cum. 
Rel. (%) 

Soluble 
residue 

(%) 

Non-
covalent 
aggregate 

(%) 

Covalent 
aggregate 

(%) 

Recovery 
(%) 

A 15 1 3 40.5 32.9 16.0 5.5 94.9 

B 20 1 3 41.5 36.2 19.4 2.9 99.9 

C 25 1 3 61.9 17.6 12.8 5.1 97.4 

D 30 1 3 76.4 10.9 12.7 2.5 102.5 

E 35 1 3 97.2 4.1 0.0 0.00 101.3 

F 15 1 5 68.4 14.0 3.1 6.7 92.2 

G 20 1 5 82.2 11.6 0.9 2.5 97.2 

H 25 1 5 80.9 6.9 0.0 2.2 90.0 

 

 

 

Table 2.3: Water uptake study (25% total solid loading) 

 
Time (days) Formulation C Formulation H 

1 46.5 ± 1.5 55.4 ± 1.4 

3 187 ± 4.0 201 ± 2.0 

8 230 ± 2.2 232 ± 2.3 
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Figure 2.6: Effect of sucrose loading at low base content on the BSA 

release profile from PLGA 50/50 millicylinders. The millicylinders 

contained 3% MgCO3, 1% BSA and A: 14% B: 19% C: 24%, D: 29% 

and E: 34% sucrose, respectively. 

70 



 

71 

Time (days)
0 5 10 15 20 25 30

C
um

ul
at

iv
e 

re
le

as
e 

of
 B

S
A

 (%
)

0

20

40

60

80

100

120

F: 15%
G: 20%
H: 25%

Figure 2.7: The effect of sucrose loading at high base content on BSA 

release profiles from PLGA 50/50 millicylinders. The millicylinders 

contained 5% MgCO3 and 15 % (F), 20% (G), and 25% (H) total soluble 

particles including 1% BSA and 14%, 19, and 24% sucrose, respectively. 



 

2.4.3.4 Amino acid effect 

To further explore more candidates to optimize protein release and stability, a 

positively charged amino acid, histidine, was tested in the formulation. Histidine was 

substituted for some sucrose in the formulation (the final weight ratios of histidine to 

sucrose in the formulation were 2:1, 1:1 and 1:2 in formulation I, J, and K, respectively). 

Amino acids, like proteins, have amphiphilic properties, and can act as buffering agents 

in the solution. Furthermore, these molecules are also preferentially excluded from the 

protein surface, like sucrose. Unfortunately, no difference was observed with the addition 

of histidine as in Figure 2.9. Like previous formulations, the total protein release was 

between 65% ~ 70% after 28 days. Amino acid addition did not increase the protein 

stability either, compared with the formulation F, which did not include histidine (Table 

2.4). The results indicated the contribution of histidine is negligible, perhaps because the 

buffering effect and preferential exclusion effect is not strong enough. Another possibility 

is that histidine, due to its small molecular size and high solubility in water, also readily 

diffuses out of polymer so that little remains in the polymer during the release period to 

act as a buffering species. 
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Figure 2.8: The morphology of millicylinders after incubation in PBST 
for 1 (A, B) and 7 (C, D) days. Panels A, C are from formulation C (3% 
MgCO3, 1% BSA and 24% sucrose); Panels B, D are from formulation 
H (5% MgCO3, 1% BSA and 24% sucrose). 
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Figure 2.9: The effect of histidine to sucrose ratio on the BSA release profiles from 
PLGA 50/50 millicylinders. The millicylinders contained 5% MgCO3, 1% BSA and I: 
14% (histidine: sucrose= 2:1), J: 19% (histidine: sucrose= 1:1), and K: 24% (histidine: 
sucrose = 1:2) sucrose, respectively. 
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Table 2.4: Recovery summary of BSA after 28 days release of formulations I, J 
and K 

Formu. 
Total 

loading 
(%) 

MgCO3 
content 

(%) 

Histidine: 
Sucrose 

Cum. 
Rel. (%) 

Soluble 
residue 

(%) 

Non-
covalent 
aggregate 

(%) 

Covalent 
aggregate 

(%) 

Total 
recover
y (%) 

I 15 5 2:1 65.0 21.1 7.2 4.5 94.9 

J 15 5 1:1 69.5 27.2 5.3 4.7 106.8 

K 15 5 1:2 64.6 20.8 8.8 7.4 101.6 

 

2.4.3.5 Protein loading  

As complete release could not be achieved for the low protein loading (1%), 

higher loadings of the protein were tested also. In the formulation L, M, and N, 10%, 

12%, and 15% of the protein was loaded in the polymer respectively, together with 3% 

MgCO3. The higher protein loading did show a more continuous release during the 28 

days incubation. All the three formulations continuously released protein for the 28 days 

and did not reach a plateau at the end of incubation (Figure 2.10). However, the release of 

the formulation L and M were rather slow, only 19% and 32% were released over 28 

days, respectively. Formulation N seemed to show an ideal release manner in the first two 

weeks, 47% of the protein was released during this period. However, the release slowed 

down after that and only 4% was released in the next two weeks. Nevertheless, 15% of 

protein loading seemed to be optimal for the controlled release application. To maximize 

the later stage protein release, salt content was increased from 3% to 4% in the 

formulation Q. As we expected, the higher salt-loaded formulation showed more 

continuous release through the whole 28 day period, and it continued to release protein 
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thereafter (Figure 2.11). After 6 weeks’ incubation, a total of 93.8 ± 0.1% of protein was 

released from the polymer. The release profile showed two phases of zero-order release, 

the first faster release phase during the first two weeks and the slower second phase 

release thereafter. The residual protein analysis obtained 2.3 ± 0.6% of soluble protein 

remaining in the polymer and there were not detectable insoluble aggregates. Therefore, 

with this formulation, total 96.1% of soluble protein was recovered after 6 weeks 

incubation. 

Table 2.5: Recovery summary of BSA after 28 days release of 
formulation L, M and N 

Formu. 
Total 

loading 
(%) 

MgCO3 
content 

(%) 

Cum. 
Rel. (%) 

Soluble 
residue 

(%) 

Non-
covalent 
aggregate 

(%) 

Covalent 
aggregate 

(%) 

Total 
recovery 

(%) 

L 10 3 18.61 16.39 48.82 11.65 95.47 

M 12 3 32.42 15.63 41.02 6.72 95.79 

N 15 3 50.71 12.3 33.23 5.86 102.10 

 

2.4.4 Monomer effect 

High orders of protein oligomers are more prone to aggregate than the monomer, 

as they typically already have altered their conformations and with higher exposed 

hydrophobic cores. Reducing the number of oligomers in the commercially available 

protein may benefit maintenance of protein stability. Centrifugation through an Amicon 

ultra centrifugal filter device filtered most of the dimers and higher oligomers and the 

supernant contained essentially all monomer. The BSA from Sigma contains only ~ 91% 

monomer (Table 2.6). After protein processing such as lyophilization and grinding, only 

89% of monomer remained.  After purification process, the monomer content rose to 

97% after lyophilization and grinding. Even though the ultimate benefits need to be 
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further studied, the purification process can at least increase the percentage of available 

intact protein for use.  

 
Table 2.6 Monomer contents of BSA before and after processing 

Protein Monomer content (%) 

BSA out of bottle 91.0 

BSA lyophilized and ground 89.2 

Purified BSA lyophilized and ground 96.6 

Purified BSA lyophilized with trehalose and 
ground 

97.7 

 

 

 

2.5 Conclusions 

The preparation of PLGA millicylinders is a simple and highly reproducible 

process. The obtained millicylinders are easy to characterize and thus provide an optimal 

dosage form to study proteins stability and release behavior when encapsulated in the 

PLGA polymer. The protein within the polymer becomes insoluble due to both non-

covalent and covalent aggregation depending on the formulation conditions. The in vivo 

aggregation kinetics is very highly correlated with that occuring in vitro. Therefore, 

protein stability and release behavior from these types of formulations in vivo can be 

safely predicted using the in vitro conditions described here. There are many factors that 

may affect protein release and stability. Higher excipient and protein loading often leads 

to higher release rate; MgCO3 has higher capability of maintaining continuous release 

than does Mg(OH)2. An ideal release profile can be obtained when the protein and 

MgCO3 loading are optimized (i.e., 15%, 4%, respectively). The release profile was slow 
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and continuous from the optimal formulation. The final optimized formulation will be 

utilized in the next study with vascular endothelial growth factor.  
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Figure 2.10: Effect of BSA loading on release from PLGA 50/50 millicylinders.  The 
millicylinders contained 3% MgCO3, 10% (L), 12% (M), and 15% (N) BSA, 
respectively. 
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Figure 2.11: The release profile of BSA from optimally formulated PLGA 50/50 
millicylinders.  The millicylinders contained 15% BSA, and 4% MgCO3. 



 

 

CHAPTER 3 

DEVELOPMENT OF POLY(LACTIC-CO-GLYCOLIC ACID) 
MILLICYLINDRICAL IMPLANTS FOR THE CONTROLLED RELEASE OF 

BIOACTIVE HUMAN RECOMBINANT VASCULAR ENDOTHELIAL 
GROWTH FACTOR 

 

3.1 Abstract 

Poly(lactic-co-glycolic) acid (PLGA) millicylindrical implants that stabilize and 

slowly release vascular endothelial growth factor (VEGF) were developed for site-

specific and sustained angiogenesis stimulation. Various excipients were examined for 

potential VEGF stabilization during conditions relevant to the growth factor’s 

encapsulation in, and release from, PLGA. VEGF was analyzed by SDS-PAGE, reverse 

phase HPLC, heparin affinity chromatography, ELISA, and a bioassay using human 

umbilical vein endothelial cells (HUVECs). After lyophilization and brief exposure to 

moisture, trehalose and heparin did not improve VEGF stability during lyophilization, 

whereas the presence of BSA afforded ≥ 97% of VEGF immunoreactivity. Under 

moderately dilute solutions at pH 5 (near pH of maximum stability), VEGF rapidly 

disappeared from solution and lost integrity. By increasing solution content of BSA, 

VEGF concentration and integrity steadily increased irrespective of the assay used 

toward a maximum value.  At elevated content (≥ 5-fold weight excess), BSA stabilized 

VEGF for over 4 weeks, indicating its potential use as a stabilizer in VEGF controlled 
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release devices. Based on these stability data and previous studies to minimize the acidic 

microlimate pH in PLGA, a PLGA millicylindrical implant was prepared containing 15% 

total protein loading (e.g., 0.5% VEGF, and BSA as a bulk excipient) and 4% MgCO3. 

The release of immunoreactive growth factor from 0.5% VEGF implant was slow and 

continuous for 28 days and totally 71% was released from PLGA over the 28 day release 

period and 25% immunoreactive VEGF remaining in the implant after the 4-week release 

accounting for 96% immunoreactive protein over the entire release interval. Released 

VEGF was also shown bioactive over the whole period of protein release.  Hence, 

stabilization of VEGF with BSA and MgCO3 provides an unsurpassed injectable PLGA 

controlled release implant relative to previous formulation approaches in terms of VEGF 

stability and long-term controlled release. This implant is suitable for future preclinical 

evaluation in various ischemic animal models.  

 

Keywords: PLGA implants, rhVEGF, protein stability, controlled release, angiogenesis 

 

3.2 Introduction 

VEGF has been extensively studied as a potent endothelial cell-specific mitogenic 

factor, in preclinical and clinical studies to stimulate neovascularization (angiogenesis). 

However, intravenous bolus injection of bFGF has been shown to have no angiogenic 

effect in a myocardial ischemic model [246]. The possible reason is the “first pass” 

uptake by lungs which contains heparan sulfates, to which bFGF binds avidly, this leads 

to rapid lowering of the peak concentration delivered to the myocardium. Since VEGF 

strongly binds to heparin, the similar effect can be predicted when delivered 
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intravenously. In addition, more desirable systemic administration routes such as 

intracoronary injection also lead to lower VEGF uptake and retention relative to local 

administration by intramyocardial and intrapericardial injection. [134, 247, 248] The dose 

in system circulation also needs to be strictly regulated as excessive VEGF may result in 

unexpected side effects such as vascular leakage [42], hypotension [80], malformed and 

heamorrhagic vessels [142]. Therefore, local expression or delivery of low levels of 

VEGF is expected to be beneficial to induce sufficient and normal neovascularization.  

Gene delivery and controlled release of recombinant proteins have been employed 

to achieve local sustained expression of angiogenic growth factors. However, gene 

delivery is often not preferred due to its potential of triggering inflammatory responses 

and highly variable and typically inadequate transfection efficiency [13]. Many 

controlled-release protein formulations have been developed and tested in animal models 

to improve collateral blood circulation. VEGF encapsulated in alginate hydrogel beads 

have released VEGF in a sustained manner for 1 to 3 weeks with or without modification 

of alginate [94, 249-252]. Gelatin was also used for controlled release of VEGF based on 

its in vivo biodegradation rate [179, 181, 253]. However, because of the potential risks of 

infectious pathogens and immunogenicity, the use of animal-derived substances is not 

usually desirable for the development of angiogenic growth factor delivery systems. 

PLGA, by contrast, is a synthetic copolymer incorporated in multiple FDA 

approved drug delivery systems for delivery of peptides and proteins for 2 weeks to 6 

months. This polymer is hydrolyzed in a physiological environment and produces 

naturally occurring metabolic byproducts: lactic and glycolic acid. In addition, control of 

microclimate pH has recently been shown to stabilize growth factors such as basic 
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fibroblast growth factor and bone morphogenetic protein [210]. Thus, PLGA is generally 

considered a more promising carrier for protein delivery. King and Patrick prepared 

VEGF loaded PLGA/PEG microspheres that released VEGF for 10 days [254]. Cleland 

applied rhVEGF/PLGA microspheres in the ocular disease models and promoted 

increased local angiogenesis [224]. A pharmacokinetic study with 14C-VEGF 

microspheres showed a longer retention at the local site and low plasma concentration 

following subcutaneous injection [211]. Despite various studies incorporating VEGF in 

stimulating angiogenesis, the stability profile of VEGF has not yet been fully determined, 

especially during its long term stability during release incubation within the polymer 

matrix. The protein has been shown to lose heparin affinity [224] or follow incomplete 

release kinetics from PLGA upon incubation at the release conditions [211]. 

The goal of the current study was to stabilize VEGF in injectable PLGA 

formulations. Several different stability indicating assays were utilized to assess protein 

integrity under extreme conditions simulating polymer incubation in the presence of 

potential stabilizers. Once suitable stabilizers were found for VEGF under these 

conditions, pH neutralized PLGA implants were evaluated for VEGF stability and release 

with the developed stabilizers. 

3.3 Materials and Methods 

3.3.1 Materials 

Recombinant human vascular endothelial growth factor (rhVEGF, 5 mg/ml) was a 

generous gift from Genentech. Poly(lactic-co-glycolic acid) 50/50 (i.v. 0.58 dl/g) was 

purchased from Durect LACTEL absorbable polymers (prod # B6010-2, Pelham, AL); 
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Bovine serum albumin, heparin, and succinic acid were purchased from Sigma-Aldrich 

(St. Louis, MO); Coomassie Plus protein assay reagent kit was purchased from Pierce 

(Rockford, IL). Human VEGF ELISA development kit was purchased from Peprotech 

Inc. (Cat. # 900-K10, Rocky Hill, New Jersey);  ABTS (2,2'-azino-di-(3- 

ethylbenzthiazoline-6-sulfonate)) liquid substrate solution was purchased from Sigma 

(A3219, St. Louis, MO); Coomassie brilliant blue R-250 staining solution (Prod #: 161-

0436), 10× Tris/Glycine/SDS running buffer (Prod #:161-0744), and Laemmli sample 

buffer (Cat. #: 161-0737) were purchased from Bio-rad (Hercules, CA). Gelcode® blue 

stain reagent was purchased from Pierce (Prod # 24590, Rockford, IL); Human umbilical 

vascular endothelial cells (HUVEC, Cat. #: S200-05n), endothelial cell growth medium 

(Cat. #: 211-500), and endothelial cell basal medium (Cat. #: 210-500) were purchased 

from Cell Applications (San Diego, CA). Other reagents such as acetonitrile, sodium 

phosphate, sodium chloride, acetic acid, Tween 20, beta-mercaptoethanol (β-ME), and 

methanol were purchased from Sigma and of chemical pure grade or higher. 

3.3.2 pH effects on VEGF stability 

500 µg VEGF was dialyzed against 5 mM succinate buffer for 48 hours, and then 

the obtained VEGF solution was mixed with 4.5 mg BSA and 500µg trehalose. The 

solution pH was adjusted to pH 3, 5 and 7 respectively using 1N HCl or NaOH standard 

solutions, then subject to freeze drying (Labconco, Kansas City, MO). for 24 hours. The 

lyophililzed powders were placed in 1.5 ml eppendorf centrifuge tubes with a few holes 

on the cap and then incubated in a desiccator which contained saturated KNO3 solution 

on the bottom to control humidity at 93% RH. The desiccator was kept in a 37oC forced 
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convection incubator for 4 days and the powders were reconstituted with 1 ml water for 

SDS-PAGE analysis (see below). 

3.3.3 SDS-PAGE 

SDS-PAGE was carried out in the Bio-Rad Mini Protean apparatus, using 4-15% 

ready precast polyacrylamide gels. 20 µl protein solutions were loaded in each well after 

boiling with the sample buffer for 5 minutes. Electrophoresis was performed at 200 mV 

for 1 hour. The protein was stained with coomassie brilliant blue R-250 staining solution 

overnight and then destained with a mixture of 10% acetic acid, 45% water and 45% 

methanol for another 2-3 hours until clear bands showed up. When coomassie brilliant 

blue was not sensitive enough to detect lower concentration of VEGF another staining 

solution, Gelcode® blue stain reagent was employed. The destaining process was carried 

out in water for 1 hour to see clear protein bands (see below). 

3.3.4 Solution stability 

VEGF was dialyzed against 5 mM succinate buffer pH 5.0 for 48 h, and the 

obtained VEGF concentration was measured by Coomassie Plus protein assay. VEGF (30 

µg) was mixed with BSA at the weight ratios 1:0, 1:1, 1:5, 1:10 and 1:20 respectively and 

the solutions were diluted to 1 ml with 5 mM succinate buffer. The solutions were 

incubated in a 37oC oven under mild agitation. The solutions were analyzed by SDS-

PAGE, RP-HPLC, ELISA, and heparin affinity chromatography (see below). 

85 



 

3.3.5 Heparin affinity chromatography 

Heparin affinity chromatography was performed on a HPLC (Alliance HPLC 

Systems, Waters Corporation, Milford, MA, USA) equipped with a heparin affinity 

column (POROS® Heparin 50 µm Column, PEEK™, 2.1 mm x 30 mm, Applied 

biosystems, Foster city, CA). The mobile phase consisted of solvent A: 10 mM phosphate 

buffer, pH 7.0 and solvent B: 10 mM phosphate buffer + 3 M NaCl. The proteins were 

eluted by a gradient method: 0-1minute: hold at 95% A; 1-3.5 minutes: 95% A to 80% A; 

3.5-6.0 minutes: hold at 80% A. The flow rate was 1 ml/min. The proteins were detected 

by absorption at 214 nm and 280 nm. 

3.3.6 Enzyme linked immunosorbent assay (ELISA) 

The ELISA was performed according to the manufacturer’s instructions. Briefly, 

96-well ELISA microplates were pre-coated with VEGF primary antibody overnight at 

room temperature. After washing, 100µl VEGF standards (0 ~ 2 ng/ml) and samples were 

added into each well in triplicate and incubated at room temperature for 2 h. After 

washing, 100 µl biotinylated secondary antibody was added into each well at 0.25 µg/ml 

and incubated for another 2 hours. The detection was carried out by adding 100 µl avidin-

HRP conjugate at 1: 2000 dilution for 30 minutes followed by addition of 100 µl ABTS 

substrate. There was a washing step before each addition. The color development was 

monitored with a plate reader (Dynex MRX II, Richfield, MN) every 5 min for 45 min at 

405nm having a reference wavelength at 630 nm.  
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3.3.7 Preparation of millicylinders 

Millicylinder implants were prepared using the same method as described in 

chapter 2. Basically, the lyophilized VEGF powder, with or without excipients, was 

ground and sieved through a 90 μm sieve. The resulting protein powder was suspended 

into 50% (w/w) PLGA acetone solution, with or without MgCO3. The suspension was 

then transferred into a 3 ml syringe and extruded into a silicone rubber tubing (0.8 mm 

I.D.) with a syringe pump (Harvard Apparatus, Holliston, MA). The tubing was then air 

dried for 24 hours followed by vacuum drying at 40oC for another 48 h. The final 

millicylinders were obtained by destroying the tubing and cutting the polymer into 1 cm 

pieces for future use. 

3.3.8 Evaluation of protein release from millicylinders 

Total protein loading assay was performed by digesting the polymer with acetone 

and centrifuging to collect the insoluble protein pellets for 3 times followed by 

evaporating residual acetone in a vacuum centrifuge. The reconstituted protein samples 

were analyzed by ELISA and bioassay. 

For BSA release profile determination, the 1 cm millicylinders (~ 8 mg) were 

placed in 1.5 ml polypropylene tubes with 1 ml release medium (PBST) under mild 

agitation. At predetermined time points, the release media were removed and replaced 

with fresh medium.  The collected release samples were assayed by RP-HPLC for BSA 

concentration. RP-HPLC conditions were the same as in method 2.3.3. For VEGF release 

profile determination, the release medium contained PBST + 1% BSA, and the released 

samples were analyzed by ELISA and bioassay. 
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Residual protein after incubation was also extracted from remaining polymer 

using acetone digestion and centrifugation. The reconstituted protein was analyzed by 

ELISA and bioassay. 

3.3.9 Bioassay 

HUVEC wells were cultured in 10 cm dish with endothelial cell growth media 

and maintained in a 37oC incubator with 5% CO2. For assays, cells were plated in a 6-

well plate and let grown to confluence. Before treatment, cells were switched to 

endothelial cell basal media for 4 hours to eliminate any effects of serum in the media. 

Diluted or non-diluted VEGF standards or samples were added to wells and incubated for 

different time periods (1, 5, 10, 15, 30 minutes) at 37oC. 100 µl lysis buffer was added 

into each well to collect cell lysates. After sonication and centrifugation to remove 

insoluble debris, supernatants were analyzed for protein concentration by modified 

Lowry protein assay. To determine levels of VEGF bioactivity in these cells, equal 

amounts of protein were then subjected to western blotting for the activated 

(phosphorylated) form of MAPK, one of the major VEGF signaling pathway proteins.  

3.3.10 Western blotting 

Equal amounts of protein were loaded in self-prepared 12.5% acrylamide gels, 

and proteins were separated using a Bio-Rad SDS-PAGE system for 50 minutes at 200 

mV. The gels were blotted onto nitrocellulose membranes for 1 hour at 100 mV in an ice 

water bath. The membranes were blocked at room temperature in Tris-Buffered Saline 

Tween-20 (TBST) containing 5% milk for 2 hours. After washing with TBST the 

membranes were incubated with the primary antibody (Rabbit anti- phosphor-MAPK, 
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1:1000 dilution in milk) overnight at 4oC on a rocker. After washing with TBST 3 times 

for 5 minutes in TBST, the membranes were further incubated with the secondary 

antibody (Goat anti-rabbit, 1:2000 dilution in milk) for one hour at room temperature on 

a rocker. The membranes were washed with TBST 4 times for 5 minutes and then washed 

with TBS for 20 minutes. Enhanced chemiluminescence reagent (ECL) was added for 1 

minute. A second antibody was used as an internal control to determine equal loading. 

The primary antibody against GAPDH (1:5000 dilution in milk) was added and incubated 

overnight at 4oC or 1 hour at room temperature on a rocker. The membranes were washed 

with TBST 3 times for 5 minutes, and then the secondary antibody (goat anti-mouse, 

1:2000 dilutions in milk) was added and incubated for 1 hour at room temperature on a 

rocker. The membranes were washed with TBST 4 times for 5 minutes and then washed 

with TBS for 20 minutes. The membranes were revealed in enhanced chemiluminescence 

reagent (ECL) for 1 minute and then exposed to auto radiographic film. The level of 

pMAPK for each lane was normalised to the level of GAPDH as an internal loading 

control. 

3.4 Results and Discussion 

3.4.1 pH effects on VEGF stability 

To evaluate the pH effect on VEGF stability, the protein powder was lyophilized 

over a broad range of pH values measured in the polymer and exposed to an intermediate 

moisture level (93% RH). Proteins are exceptionally prone to aggregation at moisture 

levels intermediate between the solid and solution states [198]. For example, BSA [255, 

256] and tetanus toxoid [257] display low aggregation rate at both low and high water 

contents and a maximal aggregation rates at intermediate moisture levels. We used the 
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extreme condition to accelerate any deteriorating process. BSA was co-lyophilized with 

VEGF to minimize VEGF adsorption to container surfaces so that pH effect can be 

studied without adsorption antifacts. SDS-PAGE results showed that some VEGF was 

lost at pH 3. Loss of original molecular weight at pH 3 implied that VEGF is not stable 

under this condition, which may have been influenced by the instability of BSA at acidic 

pH (Figure 3.1). Although pH 5 and pH 7 conditions exhibited minimal losses in BSA 

stability, the original molecular weight of VEGF was maximally retained at pH 5 (Figure 

3.1). 

3.4.2 Excipient effects on VEGF stability during lyophilization 

Lyophilization is another deterioration step during the protein formulation process. 

Dedydration processes facilitate conformation changes of proteins, some of which are not 

reversible as the denaturation and aggregation occur after reconstitution [258-260]. 

Disaccharides such as trehalose can help stabilize proteins during the lyophilization 

process, because it forms hydrogen bonds with protein molecules as a substitute for 

removed water during lyophilization, and as a glass former to decrease molecular 

motions in the solid sample [261, 262]. In this study, however, immunoreactivity and 

heparin binding affinity were not improved by co-lyophilizing trehalose with VEGF 

(Table 3.1). Heparin, as discussed in Chapter 1, is a crucial component in natural VEGF 

release in vivo, and has been explored in different delivery systems to monitor the release 

of bFGF [163, 191, 263-265]. Thus, heparin was evaluated in the lyophilization process 

for its effect on VEGF stability. No improvement was observed with heparin regarding 

protein immunoreactivity. Since heparin itself interferes with heparin affinity 

chromatography, heparin affinity was not measured. BSA, however, imparted 
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significantly higher VEGF stability recovery by ELISA, although BSA did not elevate 

the heparin affinity of VEGF relative to no excipient. These results strongly suggested 

that BSA at least helps to preserve VEGF protein conformation.  

3.4.3 BSA effects on VEGF stability in solution 

VEGF adsorption to the surface of a size exclusion column was reported by 

Cleland [224]. In our study, the observed VEGF elution peak from SEC column had a 

long tail (data not shown), which made analysis very difficult. The sustained retention 

time through the column was thought to be due to the strong adsorption of VEGF onto 

the surfaces of the column. Therefore, BSA was initially hypothesized to reduce the 

adsorption of VEGF. The molecular weight of VEGF was analyzed by SDS-PAGE. 

Coomassie brilliant blue staining solution was used first and was not sentitive enough to 

observe the protein band due to the low concentration of VEGF (30µg/ml). This staining 

method was successful in staining VEGF band, however, the background was strong in 

the gels after destaining step (Figure 3.2 A, B). At later time points, a commercial 

staining reagent Gelcode® was used. This staining reagent is based on the colloidal 

properties of coomassie G-250 dye for protein staining on polyacrylamide gels. After 

staining, a water equilibration step further enhances staining sensitivity and yields a clear 

background (Figure 3.2C).  

As seen in Figure 3.2, without BSA, VEGF was hydrolyzed beginning in the the 

first week and the protein band totally disappeared by 4 weeks. Similarly, there was only 

a very limited amount of VEGF remaining in the solution with BSA/VEGF ratio 1 to 1. 

By contrast, when BSA and VEGF ratio was higher than 5:1, the majority of VEGF 

retained its native molecular weight. No apparent change in SDS-PAGE band intensity 
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was seen over 4 weeks in all solutions with BSA/VEGF ≥ 5:1. Besides SDS-PAGE, 

different assays were conducted to evaluate the stability of VEGF in solution including 

RP-HPLC, heparin affinity chromatography and ELISA (Figure 3.3). In the absence of 

albumin, VEGF lost all heparin affinity within 2 weeks, and only ~ 46% and 40% VEGF 

was recovered by RP-HPLC and ELISA, respectively at 4 weeks. As albumin content 

was increased in the solutions from BSA/VEGF = 1:1 to 20:1, the remaining VEGF 

heparin affinity was increased from 13% to 88% over 4 weeks; increases in VEGF 

remaining by RP-HPLC (from 89% to 100%) and ELISA (from 46% to 91%) were also 

observed. 

3.4.4 VEGF-BSA/PLGA implants 

Since BSA was found essential for maintaining VEGF integrity during 

lyophilization and solution incubation, VEGF was co-encapsulated with BSA in a PLGA 

implant and the release was evaluated for both proteins. There were six formulations 

prepared, as shown in Table 3.2. Each formulation had a total protein loading of 15%. 

Except formulation 1, all the formulations included 4% MgCO3 as it known to be crucial 

for neutralizing acidic microclimate pH and maintaining protein stability in PLGA. 

Trehalose, heparin, EDTA and bFGF were included in some formulations because a 

combination delivery system that delivers both VEGF and bFGF would be desirable in 

the future [90]. Trehalose, heparin and EDTA are also the stabilizing agents reported in 

bFGF formulations [210]. RP-HPLC was utilized to determine the release profile of BSA 

from PLGA millicylindrical implants. Formulations 2-6 showed very similar release 

profiles, in which BSA was slowly and continuously release for 4 weeks (Figure 3.4). At 

the end of the 28 days release, 85-90% of BSA was released from the implants. This 
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result was consistent with that reported in Chapter 2. Formulation 1, which did not 

include MgCO3 in the formulation, had an incomplete release profile. This again 

confirmed the importance of the acid neutralizing agent in protein release from PLGA. 

ELISA was used to determine VEGF release and integrity from PLGA implants. As 

shown in Figure 3.5, the VEGF release behavior was very similar to BSA. There was also 

a two phase zero order kinetics in its release profile: a faster first phase in the first 10 

days and a slower second phase release there after. The release was continuous for 28 

days and totally 71% was released from PLGA over the whole releasing period. Residual 

protein analysis showed that there was 25% immunoreactive VEGF remaining in the 

implant (Table 3.3). Therefore, totally 96% of VEGF was recovered by ELISA after 28 

days incubation. 4 week of continuous VEGF release made the BSA incorporating PLGA 

implants a unique and promising system for VEGF delivery as current efforts can not 

achieve slow and continuous protein release [266] or only provide short term release of 

10 days [267]. 

3.4.5 Assessment of bioactive VEGF drug stability and release experiments 

The effectiveness of VEGF on endothelial cells was determined by a bioassay in 

HUVEC cells. The HUVECs were pre-screened to express VEGFR-2, the receptor that is 

involved in angiogenesis signaling pathway. The time course results showed that the cells 

had the highest response, i.e. Pmapk/GAPDH intensity ratio, when treated with VEGF for 

5 minutes (Figure 3.6A). GAPDH was stained as an internal control to confirm the same 

total protein loading on the gel. As lyophilization is one of the steps of implant 

preparation, the bioactivity of VEGF during lyophilization was also evaluated. The 

western blot results showed that VEGF maintained its bioactivity when lyophilized with 
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BSA at 1:150 w:w ratio (Figure 3.6A) but it lost most of its bioactivity without the 

presence of BSA (Figure 3.6B). Since BSA itself did not stimulate HUVEC cells (Figure 

3.6C), BSA helps to preserve the bioactivity of VEGF through lyophilization process, 

which again confirmed the essential role of BSA in VEGF stability. Lyophilized VEGF 

with BSA was utilized for further implant preparation. A protein loading assay, in vitro 

release, and residual protein extraction were conducted and the reconstituted protein 

samples were diluted 50 to 100 times before cell treatment. The release samples at 

different time points as well as the residual VEGF all showed the capability of 

stimulating HUVECs, which indicated that VEGF maintained its bioactivity throughout 

the entire release period (Figure 3.7). Efforts have been made to obtain quantitative 

results regarding VEGF release using western blot. However, the assay is not yet 

sensitive enough to provide quantitative information. A standard curve can not be 

established using band intensity from western blot. A more quantitative bioassay, cell 

proliferation assay, will be used in the future to determine the concentration of bioactive 

VEGF. 

3.5 Conclusions 

Under moderately dilute solutions at pH 5 (near pH of maximum stability), VEGF 

rapidly disappears from solution and loses integrity. By increasing solution content of the 

carrier protein, BSA, VEGF concentration and integrity steadily increases irrespective of 

the assay used toward a maximum value.  At elevated content (≥ 5-fold weight excess), 

BSA stabilizes VEGF for over 4 weeks, indicating its potential use as a stabilizer in 

VEGF controlled release devices. Slow and continuous release of fully immunoreactive 

VEGF over 28 days can be achieved by co-encapsulating BSA in PLGA millicylinder 
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implants. Initial bioactivity analysis indicated the growth factor retained significant 

bioactivity during the realease experiment.The release kinetics follows a two-phase zero-

order kinetics. By comparing different assays, ELISA and bioassay are the two most 

sensitive ways to assess VEGF integrity. To our knowledge, the slow-release 

formulations decribed here have surpassed the duration and stability of any PLGA 

formulations reported to date for VEGF. 
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Table 3.1: Excipient effects on protein stability during lyophilization 

Test # 
Formulation (VEGF = 30 μg/ml)a Heparin 

affinityb 
ELISAb 

Heparin Trehalose BSA 

1 - - - 92.7 ± 2.5 90.4 ± 1.9 

2 - - 1:5 90.6 ± 4.7 94.7 ± 0.3* 

3 - - 1:30 93.5 ± 2.0  97.0 ± 0.1** 

4 1:4 - - - 90.4 ± 2.7 

5 1:8 - - - 90.9 ± 1.5 

6 - 1:10 - 85.8 ± 1.2  90.2 ± 1.3 

7 - 1:20 - 94.0 ± 6.5 89.1 ± 1.2 
acomponent given as VEGF/component (w/w) 
bValues given as mean ± SE (n=3)  
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Figure 3.1: SDS-PAGE images of VEGF and BSA after lyophilization from 
various pH solutions and brief exposure to moisture and mild heat. 500 µg 
VEGF was dialyzed and then co-lyophilized with 4.5 mg BSA and 500 µg 
trehalose. The solution pH was adjusted to 3, 5 and 7, respectively before 
lyophilization. The lyophilized powders were then incubated at 93% RH and 
37oC for 4 days and subjected to SDS-PAGE. The protein bands were stained 
with coomassie brilliant blue R-250 reagent. 



 

 

 

A

B

C

BSA

VEGF

BSA

VEGF

BSA

VEGF

A

B

C

BSA

VEGF

BSA

VEGF

BSA

VEGF

BSA

VEGF

BSA

VEGF

BSA

VEGF

BSA

VEGF

BSA

VEGF

BSA

VEGF
Standard      0:1      1:1     5:1       10:1     20:1 

Figure 3.2: SDS-PAGE images of VEGF and BSA solutions after mild heat treatment. 
30 μg/ml VEGF was incubated with BSA at weight ratios of BSA : VEGF = 0:1, 1:1, 
5:1, 10:1, 20:1 (w:w) (from left to right) in 5 mM succinate buffer, pH 5 at 37oC under 
mild agitation for 1 week (A), 2 weeks (B) and 4 weeks (C) before analysis. Staining 
in 1 and 2 weeks gels was by coomassie brilliant blue, and staining in 4 week gel was 
by Gelcode® blue.  
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Figure 3.3: VEGF recovery by RP-HPLC (A), heparin affinity chromatography (B) 
and ELISA (C) after mild heat treatment. 30 μg/ml VEGF was incubated with BSA 
at ratios of BSA : VEGF = 0:1, 1:1, 5:1, 10:1, 20:1 (w:w) in 5 mM succinate buffer, 
pH 5 at 37oC under mild agitation before analysis over 4 weeks. 



 

 

Formulationa VEGF BSA MgCO3 Trehalose Heparin EDTA bFGF 

1 0.5% 14.5% - - - - - 

2 0.5% 14.5% 4% - - - - 

3 0.5% 14.5% 4% 2% - - - 

4 0.5% 14.5% 4% - 0.17% - - 

5 0.1% 15% 4% 2% - - - 

6 0.1% 15% 4% 2% 0.01% 0.01% 0.01% 

Table 3.2: Comparison of VEGF-BSA/PLGA millicylindrical implant formulations 

aComparison given as % w/w 
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Figure 3.4: Release profiles of BSA from PLGA formulations 1 through 
6. The comparisons of formulations are listed in Table 3.2. 
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Figure 3.5: Release profile of VEGF from the PLGA millicylinder implants 
of formulation 2 determined by ELISA (Mean ± SE, n =3). 

Table 3.3 Mass recovery of VEGF from PLGA millicylindrical implants 
determined by ELISA after 28 days release (mean ± SE, n = 3) 

Cumulative release (%) Residual (%) Total recovery 
(%) 

71.1 ± 1.97 25.0 ± 6.65 96.1 ± 8.62 
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A 

B 

C 

Figure 3.6: Time course (TC )and dose response (DR) of HUVEC stimulation to 
VEGF lyophilized with BSA (A, VEGF: BSA=1:150) and Arabic gum (B, 
VEGF:Arabic gum=1:150), and to BSA alone (C) after lyophilization of the 
proteins. The cells were starved for 4 hours before treatment. In A and B, the 
cells were treated with 1 µg reconstituted VEGF for 1, 5, 10, 15, or 30 min or 
with 0.25, 0.5, 1, 4, or 8 µg VEGF for 5 min. In both cases VEGF was 
previously lyophilized with BSA or Arabic gum and reconstituted. In C, 
HUVECs were treated with BSA at different dose levels and for different time 
periods; VEGF-BSA mixture (1:150) was used as a positive control. 



 

 

 

Figure 3.7: Western blot of pMAPK of cell lysates after treatment with 
VEGF from: release samples at different time points (1-28 d), residual VEGF 
extracted from remaining polymer (residual), and extracted VEGF from 
polymer before incubation (loading). All the samples were diluted 50 to 100 
times before cell treatment. The first column is blank control without VEGF. 
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CHAPTER 4 
 

CONTROLLED RELEASE OF VASCULAR ENDOTHELIAL GROWTH 
FACTOR FROM POLY(LACTIC-CO-GLYCOLIC ACID) IMPLANTS IN A 

MURINE ISCHEMIC HINDLIMB MODEL 
 

 

4.1 Abstract 

The effectiveness of controlled release vascular endothelial growth factor (VEGF) 

from poly(lactic-co-glycolic acid) (PLGA) implants was tested in a murine ischemic 

hindlimb model. The model was developed by ligation and excision of femoral and 

external iliac artery and vein. Following surgery, the hindlimb perfusion was recorded by 

laser Doppler perfusion imaging (LDPI) system and blood vessel structure and density 

were measured using the tissues adjacent to the implants. After 6 weeks, 97 ± 9% of 

perfusion was recovered in the VEGF treated group, which was significantly higher than 

the blank group (59 ± 9%, p <0.05). During treatment, 15 of 18 hindlimbs in the VEGF 

treatment group were cured and had little or no signs of necrosis, whereas only 10 of 18 

hindlimb in the blank group remained intact. Histological analysis showed that VEGF 

stimulated significantly higher blood vessel density than the blank control (p<0.001 at 2 

and 4 weeks, p<0.05 at 6 weeks). Some new blood vessels survived and became more 

mature over 6 weeks, as indicated by an increase in average blood vessel cross-sectional 

area and thickness. Therefore, controlled release of VEGF from PLGA implants 

stimulated significant angiogenesis in ischemic hindlimbs of severely compromised 
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immune difficient (SCID) mice. The high dose of VEGF (8 µg) employed also caused 

formation of local hematoma, which suggests that a dose-response study is needed to 

optimize VEGF dose, and combination treatment with other angiogenic growth factors 

may be required for the formation of healthy and regulated vasculature network.  

 

Keywords: VEGF, poly(lactic-co-glycolic) acid, hindlimb ischemia, animal model, limb 
perfusion, angiogenesis, controlled release 
 

4.2 Introduction 

Peripheral vascular disease (PVD) affects currently 27 million people Western 

countries and [268] is often associated with coronary artery disease. Strategies to enhance 

peripheral blood flow in patients have attracted the most attention. Non-invasive 

therapies for the treatment of PAD have been focused on the localized delivery of 

therapeutic growth factors, which has become a promising alternative option for patients  

[178, 269]. The appropriate approach to deliver angiogenic proteins has been the focus of 

significant research. The major issue in the delivery of these protein drugs is their rapid 

degradation in the body [147, 270]. Bolus injections into ischemic sites or into the 

systemic circulation, despite promising preclinical studies [93, 271, 272], have resulted in 

limited improvements in clinical trials [273]. Delivering angiogenic growth factors 

utilizing controlled drug delivery strategies offers potential to promote angiogenesis at a 

specific site, while leaving the circulation free from high concentrations of growth factors.  

Polymer based delivery systems that allow localized and sustained exposure of 

therapeutic agents may provide tremendous benefits in inducing angiogenesis for the 

treatment of PVD. Various biomaterials including alginate, heparin-gelatin, fibrin, and 
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poly(lactic-co-glycolic) acid, poly(ethylene) glycol have been employed to develop 

controlled release vehicles for basic fibroblast growth factor (bFGF) or vascular 

endothelial growth factor (VEGF).  PLGA, a synthetic copolymer from lactic acid and 

glycolic acid, has been extensively used for drug delivery applications because of its 

many advantages over other biomaterials, namely biocompatibility, biodegradability, 

FDA approval for use, and established methods to form different dose forms. PLGA-

incorporated VEGF and bFGF has been tested for therapeutic angiogenesis using 

scaffolds [274, 275], microspheres [276, 277], and milllicylinder implant forms [278]. 

We have previously developed a PLGA millicylindrical implant that releases bioactive 

VEGF over 4 weeks in two-phase zero-order kinetics.  

The goal of this study was to test the novel VEGF protein stabilizing implants on 

therapeutic angiogenesis. In this report, a unilateral hindlimb ischemia was developed in 

severely compromised immune deficient (SCID) mice to minimize the inflammatory 

response. Inflammation can positively affect angiogenesis in many ways [86, 279, 280]. 

Inflammatory cells such as macrophages, lymphocytes, mast cells, and fibroblasts, and 

the angiogenic growth factors they produce, can stimulate vessel growth [281]. Moreover, 

the inflammatory response upregulates endogenous growth factors such as VEGF, bFGF, 

and TNF-α [282]. Normal mice have a strong capability of recovering from ischemia 

without any treatment [119]. Similarly, a foreign protein, recombinant human VEGF is 

introduced into mice, it can be expected that immune response against this foreign 

molecules would occur in healthy mice. Therefore, use of the SCID-murine hindlimb 

ischemia model also avoids undesired recovery of ischemic hindlimbs in drug free groups. 

To maximally avoid effects caused by immune response that associates with the 
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implantation, immune compromised mice model was need to provide conclusive results 

in terms of the effectiveness of delivered VEGF.   

 

4.3 Materials and Methods 

4.3.1 Materials 

VEGF/PLGA implants and blank PLGA implants were prepared by the solvent 

extrusion method from Chapter 3 (see 3.3.6). One centimeter implants containing ~8 µg 

VEGF or 1 cm blank implants were used for the animal study. Ketamine (100mg/ml) was 

purchased from Fort Dodge Animal Health (Fort Dodge, Iowa) and xylazine (20mg/ml) 

was purchased from LLOYD labs (Shenandoah, Iowa). 30% hydrogen peroxide was 

purchased from Sigma. Hematoxylin QS antigen unmasking solution (H-3300), 

ImmEdge pen (H-4000), normal rabbit serum (S-5000), normal goat serum (S-1000), 

VECTASTAIN Elite ABC kit (PK-7200), DAB substrate solution (SK-4100), 

biotinylated rabbit anti-rat IgG (H+L) (BA-4000), and biotinylated goat anti mouse IgG 

(H+L) (BA-9200) were purchased from Vector Labs (Burlingame, CA). Rat anti-mouse 

CD34 monoclonal antibody was purchased from Genetex (GTX28158, San Antonio, TX) 

and mouse anti-human SMA-alpha was purchased from Biocare Medical (CM001B, 

Concord, CA). Other reagents such as xylene, 10% formalin, ethanol, PBS, and permount 

were purchased from Sigma. 

4.3.2 Animal procedure 

The animal procedure was approved by and under the guidelines of the University 

of Michigan Committee on Use and Care of Animals. A severe hindlimb ischemia model 
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was used in this study. SCID mice (n = 36) were randomly divided into two groups, one 

VEGF group and one blank group. Animals were anesthetized by IP injection of a 

ketamine (80mg/kg) and xylazine (10mg/kg) cocktail. The entire lower extremity and 

abdomen of each mouse was shaved to remove hair and sterilized with and alcohol pad. 

An incision was made on the right limb through the dermis, along the thigh all the way to 

the inguinal ligament and extending superiorly towards the abdomen of the mouse. The 

femoral artery and vein, external iliac artery and vein were all ligated using 5-0 nylon, 

then cut. The non-absorbable suture was used for vessel ligation to prevent pre-mature 

vascular recovery resulting from hindlimb perfusion due to degradation of the suture. The 

different groups of millicylinders were then placed over the sites of ligation, covering the 

area. The incision was closed with several sutures with 5-0 nylon. Then animals were 

allowed to recover from anesthesia and returned to their cages. The other non-operated 

limb allowed the animals to remain ambulatory if the operated limb was to become 

disabled. The mice were under investigation for 6 weeks after surgery. At 2, 4, and 6 

weeks, six mice from each group were euthanized and the tissues surrounding the 

implants were collected and subjected to histological analysis. The mice to be euthanized 

at different time points were determined before the surgery. 

4.3.3 Laser Doppler Perfusion Imaging (LDPI) 

Hindlimb blood flow recovery was measured using a laser Doppler perfusion 

imaging (LDPI) system (Perimed, Sweden). Animals were anesthetized using the 

standard process, the hair on the hindlimb was removed by shaving and the use of a 

chemical hair remover Nair, and mice were laid on their back for imaging. The imaging 

is non-invasive and non-damaging, as it simply involves exposing the limb to a laser and 
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capturing the reflected light for analysis. All mice imaged had previously been subjected 

to creation of hindlimb ischemia, and these mice were imaged one day following creation 

of ischemia, and 1, 2, 4, and 6 weeks following the surgery. To count for variables that 

may affect blood flow temporally, the results at any given time were expressed against 

simultaneously obtained perfusion measurements as a ratio, i.e., left (ischemic)/right 

(normal) limb perfusion. 

4.3.4 Tissue processing 

At 2, 4, and 6 weeks, the tissues that surrounded implants were collected from the 

euthanized mice for histological analysis. The tissues were fixed in 10% neutral buffered 

formalin for 24 h and then embedded with paraffin. Four µm sections were cut by a 

microtome (RM 2235, Leica, Germany) and mounted onto superfrost/plus microscope 

slides. All slides were then incubated in at 56oC for 1 h to soften wax and facilitate 

deparaffinization.  

4.3.5 Immunohistochemistry (IHC) 

CD34 IHC 

The deparaffinized and hydrated paraffin sections were first incubated in 3% 

hydrogen peroxide to block endogenous peroxidase activity and then boiled in antigen 

unmasking solution for 10 min to expose the surface antigen. After blocking with rabbit 

serum, sections were immunostained with a monoclonal antibody against mouse for 16 h 

at 4oC (1:200 diluted), and then incubated with a biotinylated rabbit anti-rat secondary 

antibody (1:200 diluted) for 1 h at room temperature. The sections were then applied with 
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VECTASTAIN elite ABC and DAB substrate solution for brown color development. The 

stained sections were then counterstained with hematoxylin QS for 30 s.  

Smooth muscle actin-alpha IHC 

Similar to CD34 IHC, the sectioned were blocked with BSA and then 

immunostained with a primary antibody mouse anti-human smooth muscle alpha actin-

HRP conjugate (1:100 diluted) at 37oC for 1 h.  The color was developed using the DAB 

substrate solution for 2~10 min until the desired stain intensity developed. The sections 

were counterstained with hematoxylin. 

4.3.6 Histological analysis 

The tissue sections were stained with hemotoxylin & eosin to facilitate 

histological analysis. The immunostained slides were used for quantification analysis. 

Sections from each sample were visualized at 100×, 200×, and 400× with an Olympus 

light microscope (BX-51B, Tokyo, Japan) connected to a digital image capture system. 

CD34 positive blood vessel density was manually counted using the software Image J 

downloaded from NIH website. Blood vessel density and average size of blood vessels 

were counted or measured at 400× magnification. The thickness of blood vessels were 

measured using SMA-α stained slides. In addition, the granulation layer thickness was 

also determined for VEGF treated sections.  

4.3.7 Statistics 

Experimental results are expressed as mean ± SE. Differences between groups 

were analyzed by unpaired two-tailed Student’s t-test.  

 



 

4.4 Results and Discussion 

4.4.1 Laser Doppler perfusion imaging 

To determine the blood flow recovery in the ischemic murine model with respect 

to VEGF treatment, Doppler analysis was performed at 1 day, and 1, 2, 4, and 6 weeks 

following surgery. In both groups, a significant decrease in the perfusion ratio occurred in 

the first day confirming that the excision of the femoral and iliac arteries and veins had 

successfully induced hindlimb ischemia (Figure 4.1). Both groups showed improved 

blood perfusion in the first week; the intensity ratio increased from 13% to 69% in the 

VEGF treatment group, and 21% to 52% in the blank group. The VEGF treated group 

continued to show blood recovery for 6 weeks, and 97% was recovered by the end of 

treatment. In contrast, the reperfusion slowed down in the blank group after the first 

week, and only 59% was recovered by the end of 6 weeks. Animals in the VEGF group 

had a significantly higher blood reperfusion rate than those in the blank group at the end 

point (p<0.05). However, the relatively high blood flow recovery was unexpected in the 

control group. One possible reason is that the surgery conducted in the animals did not 

induce as severe ischemia in the blank group as in VEGF group; the LDPI at the first day 

following surgery showed significant difference between the two groups (p < 0.01). 

Another possibility is that the endogenous VEGF was stimulated due to the local 

ischemia. Further histological analysis showed that the second reason was unlikely since 

there was almost no new blood vessels stimulated in blank group (Figure 4.5, 4.6, and 

4.7). Therefore, the performance during the surgery may have caused inconsistent and 

high variability in developing severe ischemia. 
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4.4.2 Limb survival  

The physical examination was to evaluate the function of the ischemic limbs. The 

operated hindlimbs experienced different levels of necrosis after the surgery. The degree 

of functional loss was recorded at the time of euthanization. Table 4.1 summarizes the 

physical examination results. The hindlimbs were classified into five levels according to 

the limb exmination: normal, necrosed nail, necrosed toe, necrosed foot, and necrosed 

limb. The first three levels represent total recovery or mild himdlimb damage, and the 

latter two levels severe functional loss. To better compare the two groups, the first three 

levels together with normal limbs were categorized as surviving limbs and the latter two 

as severely necrosed limbs, as shown in Figure 4.2. A very high fraction (15 of 18) 

hindlimbs in the VEGF group survived ischemia, and 3 of them experienced severe 

necrosis. By contrast, in the blank group, there were only 10 of 18 limbs that survived 

ischemia and had minor necrosis and 8 lost their foot or limb. Consistent with LDPI 

results, the blank group also showed some improvement, although not greater than the 

VEGF treated group, which again suggested that the blank group had a significant 

baseline recovery after the surgery. Even though animals in the VEGF treated group 

recovered a majority of blood flow, full limb function recovery was not observed, 

probably because the outburst of new collaterals at the ischemic site were not efficient 

enough in remodeling the vasculature network in the lower limb. This lack of full 

functional recovery suggested that VEGF alone was not adequate to build up strong and 

healthy vasculature network and another supplemental or synergistic angiogenic growth 

factor may need to be used together with VEGF. 
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4.4.3 Histological analysis 

The tissues at the ischemic sites were collected for histological analysis. As 

shown in Figure 4.3, the VEGF implants were surrounded with a thick layer of highly 

vascularized new tissues, demonstrating that significant angiogenesis was stimulated by 

the released VEGF and newly born collaterals facilitated new tissue formation. This new 

tissue formation started as early as the second week. In contrast, the blank group had no 

tissue growing around the polymer and the remaining implants could be retrieved easily 

at the implantation site. At 2 weeks, some inflammatory cells like macrophages appeared 

in both VEGF and blank group indicating that inflammation occurred quickly in response 

to the implantation. This inflammation was transient and the number of macrophages 

observed in the slides of later time points decreased (Figure 4.4). Hematoxylin and eosin 

staining differentiates nucleus and cytoplasm. The red blood cells were stained intensely 

red. At 2 weeks, a very high number of blood vessels were stimulated in VEGF groups 

and the tissue structure became porous (Figure 4.4). There were also new blood vessels 

formed in the blank group, probably due to angiogenesis stimulated by the inflammatory 

response. At the later time points, the number of blood vessels decreased in the blank 

group, which was consistent with the decreased inflammatory cells. By contrast, the 

tissues in VEGF treated group became highly porous and connective tissues were formed 

at this stage. Hematoma was also observed at 4-week and 6-week tissue sections. Due to 

the extremely large number of blood vessels stimulated in the VEGF-treated group 

(Figure 4.7) compared to the blank group, it is not hard to explain the appearance of 

hematoma: most of the new blood vessels were not mature and stable; the highly 

permeable and leaky blood vessel structure remodeled and merged together, and thus 

formed such a blood reservoir. This result indicated that the released VEGF from PLGA 
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implants stimulated too many abnormal blood vessels, which will need to be improved in 

the future dose adjustment and/or co-delivery with other angiogenic growth factors. 

The tissues sections were immunostained with CD34 and SMA-α, two typical 

antigens to evaluate angiogenesis. CD34 antigen is expressed on the surface of vascular 

endothelial cells and immunostaining with CD34 antibody can help identify the blood 

vessels. Figure 4.5 shows representative slides with CD34 staining. At all time points, 

there were significant numbers of blood vessels in VEGF treated group, whereas there 

were little visible blood vessels in the blank group. The CD34 positive blood vessel 

density was counted manually using the microscopic images and the result was shown in 

Figure 4.7. The blood vessel density peaked at the two week time point with 386 ± 40 

blood vessels/mm2, and then decreased to 180 ± 77 /mm2 at 6 weeks. At all the three time 

points, the blood vessel density in the VEGF-treated group was significantly higher than 

that in the blank group (p < 0.001). Average size of cross-sectional area of blood vessels 

was also measured using CD34 positive vessels in the VEGF treated group, but not in the 

blank group as there were too few blood vessels in the field. As shown in Figure 4.8, the 

new born blood vessels at 2 weeks had a small size with the average 20 ± 3 µm2, and the 

size steadily increased to 167 ± 19 µm2 at 6 weeks. The increased size of blood vessels 

together with the decreased blood vessel density can be explained by the biological 

process of angiogenesis: the first stimulated capillaries were highly unstable and 

permeable; only a small portion of these vessels survived and remodeled to become more 

mature and stable large vasculatures. The granulation tissues associated with 

angiogenesis were observed in the VEGF treated group but not in the blank group (Figure 

4.9A). The thickness of the granulation tissue layer increased from 2 to 4 weeks and then 
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decreased at 6 weeks (Figure 4.9B), indicating that angiogenesis started to slow down or 

stop due to the lack of continuous release of VEGF after 4 weeks.  

SMA-α is the antigen expressed on the surface of smooth muscle cells, which 

exists in the wall of vasculatures, and SMA-α positive staining is the index of maturation 

of blood vessels. The thickness of blood vessel walls were measured based on SMA-α 

positive vessels, as shown in Figure 4.10. Similar to the average size of blood vessels, the 

thickness of blood vessels increased from 2.33 ± 0.23 µm at 2 weeks to 5.22 ± 0.67 µm at 

4 weeks, and to 6.71 ± 0.88 µm at 6 weeks, which again indicated the maturation of 

surviving blood vessels over time. By contrast, the thickness of blood vessels in the blank 

group did not change with time and remained at a low level during the treatment (p < 

0.05 at 4 weeks, p < 0.001 at 6 weeks as compared to the VEGF-treated group). 

4.5 Conclusions 

Controlled release of VEGF from PLGA implants stimulated significant 

angiogenesis in ischemic hindlimbs of SCID mice. The perfusion of hindlimbs can be 

almost fully recovered by the sustained VEGF delivery. Although the angiogenesis 

stimulated by VEGF did not fully rescue all the hindlimbs, it reconstituted considerably 

more limbs than the blank control. The high dose of VEGF stimulated a tremendous 

amount of new blood vessels, some of which survived and became more mature over 

time. Immature blood vessels merged together and formed local hematomae, which 

suggests that a dose-response study is needed to optimize VEGF dose and a combination 

treatment with other angiogenic growth factors may be required for the formation of 

healthy and regulated vasculature network.  
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Figure 4.1 Recovery of hindlimb perfusion by laser Doppler perfusion 
imaging. The perfusion recovery was the internsity ratio of right limb 
(ischemic)/left limb (intact). n = 6 for all time points. *: p< 0.05, **: 
p<0.01 compared to the blank group. 



 

 

 

  
Extent of limb 
damage 

2 weeks 4 weeks 6 weeks Total 

VEGF Blank VEGF Blank VEGF Blank VEGF Blank 
Normal 1 0 1 3 4 1 6 4 
Necrosed nail 0 1 2 0 0 0 2 1 
Necrosed toe 4 4 2 1 1 0 7 5 
Necrosed foot 1 1 0 2 1 4 2 7 
Necrosed limb 0 0 1 0 0 1 1 1 
Total 6 6 6 6 6 6 18 18 

Table 4.1 Physical examination of himdlimb functions following surgery. 
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Figure 4.2. Physical examination of limb survival following surgery. Survived 
limbs include normal limbs and those with necrosed nails or toes; severly 
necrosed limbs include limbs that lost entire foot or limb. 
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Figure 4.3 Tissues at the implantation site in the VEGF treatment group 
(A) and in the blank group (B); and the comparison the tissues that 
surrounded implants (C) after 2 weeks post surgery.  
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Figure 4.4 Representative images from hematoxylin & eosin stained sections 
of muscle tissues adjacent to the VEGF implants (D, E, F) and the blank 
implants (A, B, C) at 2 weeks (A, D), 4 weeks (B, E), and 6 weeks (C, F) 
following surgery. Scale bar represents 100 µm. 



 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.5 Representative images from CD34-stained sections of muscle tissues 
adjacent to the VEGF implants (D, E, F) and the blank implants (A, B, C) at 2 
weeks (A, D), 4 weeks (B, E), and 6 weeks (C, F) following surgery. Scale bar 
represents 50 µm. 
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Figure 4.6 Representative images from SMA-α-stained sections of muscle 
tissues adjacent to the VEGF implants (D, E, F) and the blank implants (A, B, 
C) at 2 weeks (A, D), 4 weeks (B, E), and 6 weeks (C, F) following surgery. 
Scale bar represents 50 µm. 
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Figure 4.7. Blood vessel densities in muscle tissues adjacent to the VEGF 
implants and blank implants at different time points following surgery. The 
values are represented as mean ± SE, *: p<0.05, ***: p<0.001 compared to the 
blank group at the corresponding time point. 
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Figure 4.8. The average size of blood vessels existing in the tissues adjacent to the 
VEGF implants at different time points following surgery. The values are represented 
as mean ± SE. 
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Figure 4.9. The thickness of granulation layer tissues that grew around the VEGF 
implants at different time points following surgery. The values are represented as 
mean ± SE. 
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Figure 4.10. Thickness of blood vessels that exist in muscle tissues adjacent to the 
VEGF implants and blank implants at different time points following surgery. The 
values are represented as mean ± SE, *: p<0.05, ***: p<0.001 compared to the blank 
group at the corresponding time point. 
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CHAPTER 5 

COMBINATION DELIVERY OF VASCULAR ENDOTHELIAL GROWTH 
FACTOR AND BASIC FIBROBLAST GROWTH FACTOR IN HINDLIMB 

ISCHEMIA 

 
 

5.1 Abstract 

As over stimulation of angiogenesis was observed with a high dose of VEGF (8 

µg) in PLGA implants, the effect of lowering VEGF dose and a combination delivery 

system containing both VEGF and bFGF were studied in SCID murine ischemic 

hindlimbs.  VEGF at 0.3, 1, and 3 μg, 1 μg VEGF + 0.1 μg bFGF, and 0.1 μg bFGF were 

encapsulated in pH-modified PLGA 50/50 implants, previously demonstrated to exhibit 

excellent protein stability and > 1 month controlled release. Hindlimb ischemia in SCID 

mice was created through femoral and iliac artery and vein occlusion.  Implants were 

placed at the site and time of injury and both intramuscular injection of 1 μg VEGF and 

blank PLGA implants served as controls. Reperfusion in ischemic limbs was recorded by 

laser Doppler perfusion imaging and tissues surrounding the implants were subjected to 

smooth muscle actin-alpha and CD31 immunohistostaining biweekly after implantation. 

Blood vessel density, vessel size, and thickness of blood vessel walls were measured 

using the immunostained tissue slides. After 6 weeks treatment, limb survival rates 

ranged from 60% to 70% at the VEGF dose from 0.3 to 3 μg, and combination delivery 
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of VEGF and bFGF reconstituted 80% hindlimbs, in contrast to 50% of limb recovery for 

the 0.1 μg bFGF group. All treatment groups had higher limb survival rates than controls 

(30% for both i.m. injection and blank implant group) and significantly higher blood 

vessel densities than controls (p < 0.05). Hindlimb reperfusion in surviving limbs was 

steadily improved from 44 ± 2% to 93 ± 14% when the VEGF dose ranged from 0.3 to 3 

μg. One μg VEGF + 0.1 μg bFGF fully recovered hindlimb perfusion (101 ± 9%), 

whereas 0.1 μg bFGF alone recovered 78 ± 4%. There was only 47 ± 7% perfusion 

recovery in local injection group and 44 ± 2% in blank group. In summary, there was a 

dose-dependent response of ischemic hindlimbs to controlled release VEGF from 0.3 to 3 

μg. Combination delivery of VEGF and bFGF showed enhances therapeutic effects and 

induces higher angiogenesis than single delivery of either growth factor. The injectable 

implants and combination delivery system described here provided more significant 

angiogenic activity compared to previously reported delivery methods using the same 

animal model. Therefore, pH-modified PLGA impants provide a promising drug delivery 

system for controlled release of multiple growth factors for therapeutic angiogenesis. 

5.2 Introduction 

Therapeutic angiogenesis offers great promise as a treatment for cardiovascular 

disease. However, to date, no clinical benefits has been demonstrated with current 

strategy of delivering single factors, specifically bFGF and VEGF, most often by 

injection, into the bloodstream or tissue site [13]. The limited success of current efforts 

may be related to both the growth factor delivery and the requirement for multiple signals 

for the completion of neovascularization [90]. Most commonly, single proteins have been 
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delivered by bolus injection into the site of disease or by systemic administration. This 

strategy is limited as most proteins are unstable in nature and have very short circulation 

half lives. Very high level of proteins is required for a detectable effect and thus may 

cause unexpected side effects after systemic administration of high doses [39]. 

Localized and controlled delivery of growth factors at the desired sites is one 

approach to accomplish these limitations. The biodegradable polymer, poly(lactic-co-

glycolic acid) (PLGA), has been utilized to deliver different proteins or peptides and has 

demonstrated to be a flexible vehicle for sustained release of drugs. Injectable PLGA 

implants containing basic fibroblast growth factor (bFGF) has been reported by our group 

to be able to release bioactive factor over a month and to stimulate angiogenesis in 

ischemic hindlimbs of SCID mice [195]. As reported previously (chapter 4), elevated 

doses (8 µg) of controlled release VEGF from PLGA stimulated significant angiogenesis 

and haemotoma occurred in some animals presumably due to the unstable and unhealthy 

new blood vessels that were induced by VEGF. Therefore, learning how to control 

growth factor dose to produce a significant therapeutic effect without inducing other 

unexpected adverse effects is one important aspect in developing a therapeutic strategy 

with these proteins. In this study, the effect of VEGF dose was tested in the SCID murine 

hindlimb ischemia model to investigate this question. For comparison, single bolus 

injection of VEGF at the local site was also tested as a negative control group. 

Given the complexity of vascular endothelial signaling, combined delivery of 

VEGF with other growth factors has been strongly recommended [85, 86]. Therapies 

using VEGF alone or any other single angiogenic factor may produce incomplete 

functioning or unstable endothelial channels with defective arteriovenous and 
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pericelllular differentiation, which is characteristic of many tumors [87]. Thus, it is 

commonly believed that a combination of growth factors is preferable in future therapies 

directed toward neovascularization of tissues as combined administration of growth 

factors with synergistic or complementary activity may be more effective in producing a 

stable vasculature than delivery of single growth factors [86]. VEGF and bFGF, both pro-

angiogenic growth factors have been reported to have potent synergistic effect [88, 89, 

283, 284]. bFGF modulates endothelial cell migration and may mediate the proteolytic 

digestion of extracellular matrix (ECM) by invading endothelial cells [55]. The 

breakdown of ECM leads to a leaky and permeable site in a preexisting blood vessel and 

is the first step of complex process of neovascularization. Under the regulation of VEGF, 

endothelial cells migrate and proliferate at this site [40] and form a new tube of 

endothelial cells, that is, a new capillary. The complementary effect of VEGF and bFGF 

can result in a quicker and stronger stimulation of new vessels at the early stage of 

angiogenesis. It was recently reported that VEGF and bFGF exert synergism by 

regulating PDGF and its receptor interaction [88]. In addition to having direct mitogenic 

effects, these two molecules enhance intercellular PDGF-B signaling in a cell-type 

specific manner, that is, VEGF enhances endothelial PDGF-B expression, whereas bFGF 

enhances mural PDGFR-β expression. Co-stimulation with VEGF and bFGF caused 

significant mural cell recruitment in vitro and formation of functional neovasculature in 

vivo, compared to single factor stimulation [88]. In the present study, a combination 

delivery system containing both VEGF and bFGF was also tested in ischemic hindlimb 

for their potential synergistic effects relative to single growth factor delivery. 

5.3 Chemicals and Materials 
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Basic fibroblast growth factor was purchased from Peprotech (bFGF #100-18B, 

Rocky Hills, NJ). Vascular endothelial growth factor (VEGF) was the gift from 

Genentech (San Francisco, CA). Poly(lactic-co-glycolic acid) (50:50, inherent viscosity = 

0.58 dL/g) was purchased from Durect Absorbable polymers (Birmingham, AL). 

Ketamine (100mg/ml) and xylazine (20mg/ml) were purchased through the University. 

30% hydrogen peroxide was purchased from Sigma. Hematoxylin QS Antigen 

unmasking solution (H-3300), ImmEdge pen (H-4000), normal rabbit serum (S-5000), 

normal goat serum (S-1000), VECTASTAIN Elite ABC kit (PK-7200), DAB substrate 

solution (SK-4100), biotinylated rabbit anti-rat IgG (H+L) (BA-4000), biotinylated goat 

anti mouse IgG (H+L) (BA-9200), and anti-rat secondary antibody (BA-4001) was 

purchased from Vector Labs (Burlingame, CA). Mouse anti-human SMA-alpha was 

purchased from Biocare Medical (CM001B, Concord, CA) and rat anti-mouse CD31 

(PECAM-1) was from BD Pharmingen (#557355, San Diego, CA). Tyramide signal 

amplification TSA biotin system kit was purchased from Perkinelmer Life Sciences, Inc 

(Downers Grove, IL) and peroxide block, Proteinase K, and DAB chromagen were from 

DAKO (Denmark). All other reagents including sucrose, EDTA, heparin, xylene, 10% 

formalin, ethanol, PBS, 30% hydrogen peroxide and permount were purchased from 

Sigma (St Louis, MO). 

5.4 Methods 

5.4.1 Preparation of implants and solution formulation 

VEGF/PLGA implants and blank PLGA implants were prepared by the solvent 

extrusion method, as describe in Chapter 3 (see 3.3.6). One cm implants containing ~3, 1, 

and 0.3 µg VEGF, 0.5 cm implant containing 1µg VEGF and 0.5 cm implant containing 
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0.1 bFGF (see below for the method) or 1 cm blank implants were used for the animal 

study. 

bFGF was first purified to remove the low molecular weight excipients from the 

bottle using Amicon® ultra-centrifugal filter tube (Millipore, Billerrico, MA). Purified 

bFGF was mixed with PBST containing BSA, trehalose, EDTA, and heparin to achieve 

the final weight ratio of 0.002: 12.7: 2.3: 0.01: 0.01 respectively in polymer, and then 

lyophilized for 48 hours. The lyophilized protein powder was ground through a 90 μm-

sieve and mixed into 50% PLGA acetone solution (w/w, 300 mg PLGA) containing 3% 

Mg(OH)2 in the final formulation [195]. The remaining steps were the same as the 

implant preparation described above.  

To connect the VEGF implant and bFGF implant together, 0.5 cm of each 

component was placed in a cut silicone tubing head to tail. The two components were 

then glued with 40% PLGA acetone solution followed by air-drying for 24 hours.  

 

Table 5.1 Formulation for the treatment and control groups  

Groups Name Protein Dose (µg) Form. 

1 V3 VEGF 3 Implant 

2 V1 VEGF 1 Implant 

3 V0.3 VEGF 0.3 Implant 

4 V+B VEGF + bFGF 1+0.1 Implant 

5 B0.1 bFGF 0.1 Implant 
6 Inj V1 VEGF 1 PBS Solution* 
7 Blank - 0 Implant 
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Figure 5.1. Scanning Electron Microscopy of combination delivery system containing 1 
µg VEGF and 0.1µg bFGF. VEGF and bFGF component was prepared individually and 
connected with 40% PLGA/acetone solution. 

5.4.2 Animal procedures 

In Table 5.1 all the treatment and control groups are listed. 84 CB-17 SCID male 

mice were used in this experiment. The mice were first randomly labeled with eartags 

and divided into 21 groups according to the numbers in the eartags, 4 in each group and 

returned to 21 cages. The cages were labeled from 1 to 21. The first 7 cages were treated 

with the 7 formulations and euthanized at 2 weeks. The second 7 cages were euthanized 

at 4 weeks and the third 7 cages at 6 weeks.  Surgical procedures were the same as in 

chapter 4 (see 4.3.2). VEGF in PBS solution was injected intramuscularly at the site of 

injury.  
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Except for the CD31 staining described below, all remaining analysis of the 

angiogenic response was as described in Chapter 4. 

5.4.3 CD31 immunohistochemistry 

Formalin-fixed, paraffin-embedded tissue blocks were sectioned at 4 µm and 

rehydrated before antigen retrieval. Endogenous peroxidase activity was blocked with 

hydrogen peroxidase for 30 min and then proteinase K for another 30 min, and an 

additional blocking step was employed using a blocking reagent supplied in the tyramide 

signal amplification biotin system kit. Sections were then incubated overnight in primary 

CD31 antibody (1:250 dilutions) at 4oC. Then secondary antibody (1:200 dilutions) was 

applied for 30 min at room temperature. Signal was amplified using tyramide 

amplification (TSA biotin system, PerkinElmer Life Sciences). The color was developed 

using DAB chromagen for a few seconds and then counterstained with Harris 

hematoxylin for 4 s. After dehydration, the slides were coverslipped with permount.  

5.5 Results and Discussion 

5.5.1 Limb survival 

The hindlimbs that were operated to occlude blood vessels became dark in color 

immediately after the surgery and persisted for the first week, which is an indication of 

hindlimb ischemia. Some animals also started to show partial loss of hindlimb function 

following the first week. Hindlimbs were examined at the time of euthanization 

according to the severity of limb necrosis and separated into 5 categories: normal, 

necrosed nail, necrosed toe, necrosed foot, and necrosed limb. The number of hindlimbs 

in each category was recorded for each group, as summarized in Table 5.2. Some animals 
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died before their due date either because of anesthesia (1 mouse) or severe stress (9 mice), 

and these animals were not included in any image taking or calculation. As the first three 

categories involved litte or no limb functional loss, the hindlimbs in these three categories 

were considered as surviving limbs; the remaining two categories involved severely 

damaged/necrosed hindlimbs. In figure 5.2A the fully recovered hindlimb (right limb) 

after 6 weeks’ treatment showed no difference in color and function compared to the 

intact limb (left limb). As in Figure 5.2B, the combined growth factor (V+B) group 

rescued the most hindlimbs; 80% of hindlimbs were recovered or only had minor 

functional loss. 70%, 67%, and 58% of hindlimbs were recovered in single VEGF (V3, 

V1, and V0.3) groups, respectively. However, a slightly lower recovery rate, 50%, was 

seen in the bFGF (B0.1) group. Nevertheless, all treatment groups had a higher hindlimb 

recovery rate than the 30% limb recovery recorded in both injV1 and blank groups.  

Table 5.2 Summary of hindlimb function loss 

Groups 

2 weeks  4 weeks  6 weeks 

1 2 3 4 5 6 7  1 2 3 4 5 6 7  1 2 3 4 5 6 7 

Normal   1          2         1   
Necrosed nails 2 1 1 1     2     1       1  1 
Necrosed toes  2 1 1 1  1  2 4 3 3 1  1  1  2 1 1 2  
necrosed foot 1  2  2 2 2      3 1 2  1 4 1 1  1  
necrosed limb    1  1     1   1 1  1  1   1 2 
Total 3 4 4 3 3 3 3  4 4 4 5** 4 3 4  3 4 4 2 3 4 3 

**: one mouse at 6 week time point was euthanized at 4 weeks due to severe 
sickness. 

5.5.2 Limb reperfusion 

Blood reperfusion was recorded at 1, 7, 14, 28, and 42 days following the surgery 

on an LDPI system. As some animals died or lost their limbs, these animals were 

excluded from LDPI imaging; only those with surviving limbs were subjected to 

reperfusion imaging. In Figure 5.3, reperfusion recovery results are expressed by the 
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intensity ratio of ischemic to normal limbs. Occlusion of the femoral artery and vein 

resulted in reduced blood flow by up to 75% in the SCID mice, according to the 

measurement on the first day post surgery. The blood perfusion started to recover in the 

following days, but both Inj V1 and blank groups never achieved full recovery in 

surviving limbs by 6 weeks. Both groups showed increased perfusion in the first 4 weeks 

but then receded by 6 weeks. There was only 47 ± 7 and 44 ± 2% perfusion restored at 6 

weeks of in these two groups, respectively. This pattern serves as a baseline perfusion 

recovery for all the treatment groups. Therefore, the animals can partially recover blood 

flow at ischemic site, probably due to the excretion of endogenous VEGF and other 

related angiogenic growth factors by the stimulus of hypoxia and the wound. These 

growth factors trigger temporary angiogenesis at the ischemic sites to provide temporary 

blood reperfusion. However, angiogenesis stimulated by endogenous growth factors is 

not strong enough to maintain continuous blood reperfusion.  

The low dose VEGF group (V0.3) also showed lack of capability of recovering 

perfusion, i.e., 44 ± 2% reperfusion was seen at 6 weeks. The medium dose VEGF (V1) 

group rapidly increased blood flow at the first 2 weeks, and then the reconstitution started 

to drop thereafter, with a final value of 56 ± 4% at 6 weeks. All the other three groups 

had steadily increased reperfusion over the duration of treatment. The high dose VEGF 

(V3), combination VEGF-bFGF (V+B) and and single bFGF (B0.1) groups achieved 93 

± 4, 101 ± 9, and 78 ± 4% reperfusion at 6 weeks, respectively, all of which were 

significantly higher than the blank control (V+B: p <0.01, V3 and B0.1: p <0.05).  

The perfusion recovery is highly dependent on the ligation site and animal model. 

In addition, immune competence and diabetes have significant effects on the post-ischmia 
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recovery after treatment with angiogenic growth factors [119, 285]. Immune deficient 

mice had more difficulty recovering by themselves than immune competent mice. In this 

study, nearly full blood perfusion recovery in SCID mice by the treatment of VEGF 

delivered with PLGA injectable implants demonstrated similar or better therapeutic 

angiogenesis relative to other delivery methods including protein delivery systems or 

gene delivery [119, 285-288]. 

5.5.3 Vessel density and morphology 

The tissue samples surrounding the implants were retrieved at the time of 

euthanization to examine local angiogenesis. Tissue sections were subjected to CD31 and 

smooth muscle actin-α (SMA-α) immunohistochemistry and then the density and 

morphology of blood vessels were measured to determine the level of angiogenesis and 

maturation of blood vessels (Figure 5.4). CD31 marker is expressed specifically in 

endothelial cells and it helps identify blood vessels clearly. SMA-α is a marker that is 

expressed in both pericytes and smooth muscle cells associated with endothelial cells in 

larger mature blood vessels [91]. Delivery of VEGF and bFGF induced an enormous 

amount of CD31-stained new blood vessels at two weeks, while there was significantly 

less SMA-α positive vessel at this time point (Figure 5.4A). As shown in Figure 5.4B, 

Controlled released VEGF or bFGF induced the formation of new blood vessels and 

resulted in increased blood vessel density immediately after treatment. The extent of 

blood vessel density increase showed dependence on VEGF dose.  For example, V3 

group showed extremely high blood vessel density which was >4 times that observed in 

the blank group at 2 weeks (Figure 5.6) and V1 exhibited about 3 times higher density.  

By contrast, V0.3 did not show any significant difference in blood vessel density than the 
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blank group at this time point, and this trend continued over the following weeks. 

Interestingly, the combination group (V+B) had a very similar increase in blood vessel 

density compared to V3 and V1 groups, and the B0.1 group showed 2 times higher 

density than the blank group. For all the time points, no increased blood vessel density 

was observed in injV1 group compared to the blank group, which indicated that no 

apparent angiogenesis was stimulated by injected VEGF without controlled release. V0.3, 

injV1, and blank groups tended to have the same blood vessel density over the 6 weeks 

duration, while the other 4 treatment groups showed an increase in blood vessel density at 

2 weeks and then an decrease in the later time points (Figure 5.6). However, all the 

groups kept significantly higher blood vessel densities than the blank group except for the 

B0.1 group. The blood vessel density in the B0.1 group dropped to a low level by 6 

weeks, and no significant difference in blood vessel density was again observed 

compared to the blank group. The decrease in blood vessel density with time was 

consistent with previously published and unpublished results. To maintain the blood 

vessels that have been induced by the growth factors, delivery of more stabilizing 

angiogenic growth factors in a temporally manner may be needed to facilitate maturation 

of newly-born blood vessels [90]. 

It is critical in angiogenesis to promote vessel maturation, as the stability of an 

induced vasculature is dependent on the mural cells association to prevent regression. 

Before maturation, vessels have been shown to be dependent on the continued presence 

of VEGF to prevent vessel regression and endothelial cell apoptosis [91, 289, 290]. To 

determine the degree of maturation of blood vessels, both vessel size (Figure 5.7) and 

thickness of blood vessel wall (Figure 5.8) were analyzed with SMA-α positive vessels. 
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The average size of blood vessels was similar among all the groups at 2 weeks, and then 

typically increased until 6 weeks in most of the treatment groups. V3, V1 and V+B 

groups grew twice larger vessels at 6 relative to 2 weeks. The difference between 

individual growth factor and combination delivery was more apparent after 6 weeks. The 

blood vessels in V+B groups had much larger blood vessels than those in V1 and B0.1 

group at 6 weeks. The vessel size in V+B and V3 groups were comparable. There was no 

difference in blood vessel size between V0.3, InjV1 and blank groups. Very similar 

results were recorded for blood vessel thickness. All groups tended to have increased 

blood vessel thickness from 2 to 6 weeks except for the blank group. The thickness in 

both V+B and V3 groups doubled over the time frame of 6 weeks and the V+B group had 

the highest blood vessel thickness among all the groups tested. Both vessel size and 

thickness results suggested that new capillaries induced by controlled released VEGF or 

bFGF had the capability of remodeling and becoming more mature when given sufficient 

dose of each growth factor. However, 1 µg VEGF or 0.1 µg bFGF was insufficient to 

induce adequate mature blood vessels for therapeutic effect. Combination delivery of 

VEGF and bFGF at the same dose, however, led to both a higher density of vessels and 

the formation of thicker and larger vessels. Both combination and single growth factor 

delivery with PLGA implants achieved higher blood vessel density and thus higher rate 

of limb function recovery compared to some other delivery systems with the same or 

higher doses of growth factors [119, 285].  

The success of combination delivery in this study provides additional evidence of 

the need for multiple factor delivery to induce efficient angiogenesis. As lower dose of 

single growth factor can be used instead of a large dose to restore perfusion and rescue 
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ischemic hind limbs with a combination delivery system, it is possible that side effects 

caused by high doses of single growth factor can be avoided in the future. PLGA-based 

combination delivery system provides an easy approach for the spatio-temporal delivery 

of multiple growth factors. Different synergistic growth factors can be fabricated into 

PLGA implants individually and distinct controlled release profiles can be achieved 

according to their biological activities in angiogenesis by adjusting different parameters 

such as monomer ratio, polymer molecular weight, and drug loading. Moreover, the 

stability of each growth factor can be well maintained within its own component and 

would be expected not to interact with the other polymer segments. The combination 

delivery system also guarantees the same location of drug release of multiple factors and 

confirms their functions at the same ischemic area. The injectable size of implants also 

makes it possible to release multiple drugs over one month after one single administration.   

5.6 Conclusions 

Combination delivery of VEGF and bFGF induced much more extensive 

angiogenesis than the single delivery of each growth factor at the same dose. Higher 

blood vessel density and more mature blood vessels were formed with the combination 

delivery and leading to full perfusion recovery and high limb survival rate in this group. 

The effects of combination delivery were comparable to those with a 3-fold higher VEGF 

dose. There was no apparent angiogenesis stimulated by 1 µg i.m. injected VEGF, which 

indicated that controlled release of VEGF is required for therapeutic angiogenesis in this 

animal model. The injectable implant and combination delivery system provides a 

superior delivery system and resulted in more significant angiogenic activity compared to 

other delivery methods previously reported in the same animal model. More dose 
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response experiments with both angiogenic growth factors need to be performed to 

further define the extent of synergy between the two growth factors.  
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Figure 5.2. Photograph of a fully recovered hindlimb after 6 weeks post-surgery 
from V+B group (A) and extent of limb survival at the time of euthanization for 
each group (B). Hindlimbs were categorized into normal, necrosed nail, necrosed

B 

 
toe, necrosed foot and necrosed limb at the time of euthanization. The first three 
categories made up surviving limbs and the latter two categories were classified 
as severely damaged limbs.  Some animals died before their due date and were 
not included in this figure. n = 12 for V1 and V0.3 group; n = 10 for the other 
groups. 
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Figure 5.3. Perfusion recovery in ischemic hindlimbs. Reperfusion was 
calculated by the intensity ratio of ischemic limb to intact limb in each animal. 
The values were expressed as mean ± SE. Calculation for each time points 
include all the existing animals at the time of measurement. *: p<0.05, **: 
p<0.01 compared to blank. 
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Figure 5.4. Histological section of tissues surrounding implants stained for 
CD31 (A, left) and smooth muscle actin-α (A, right). Representative images 
are shown of histological sections from all the groups stained for smooth 
muscle actin-α , retrieved at 2 weeks post-surgery (B). Scale bar represents 100 
µm in all images. 
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Figure 5.5. Representative images of histologic sections from combination delivery 
group retrieved at 2, 4, and 6 weeks stained for CD31 (first row) and smooth muscle 
actin-α (second row). Scale bar represents 100µm in all the images. 
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Figure 5.6. Blood vessel densities in the tissues surrounding the implants 
retrieved at different time points. Blood vessel numbers were counted using the 
CD31 stained images and then normalized to unit area. Values represent mean ± 
SE (n = 4). *: p<0.05; **: p<0.01; ***: p<0.001 compared to blank. 
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Figure 5.7 Average size of blood vessels in the tissues surrounding the 
implants retrieved at different time points. Blood vessel sizes were 
measured using the SMA-α stained images with ImageJ software. Values 
represent mean ± SE (n = 4). *: p<0.05; **: p<0.01 as compared to 
corresponding size at 2 weeks. 
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Figure 5.8 Thickness of blood vessels in the tissues surrounding the implants 
retrieved at different time points. Blood vessel thickness was measured using the 
SMA-α stained images with ImageJ software. Values represent mean ± SE (n = 4). 
*: p<0.05; **: p<0.01, *** p<0.001 as compared to blank. 
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Abstract 

Site-specific controlled-release of biologically active angiogenic growth factors 

such as recombinant human basic fibroblast growth factor (rhbFGF) is a promising 

approach to improve collateral circulation in patients suffering from ischemic heart 

disease or peripheral vascular disease. Previously, we demonstrated stabilization of 

rhbFGF encapsulated in injectable poly(DL-lactic-co-glycolic acid) (PLGA) 

millicylindrical implants upon co-incorporation of Mg(OH)2 to raise the microclimate pH 

in the polymer.  The purpose of this study was to compare stabilized (S; + Mg(OH)2 + 

other stabilizers), partially stabilized (PS; − Mg(OH)2 + other stabilizers), unstabilized 

(US;  no stabilizers), and blank (B) PLGA-encapsulated rhFGF formulations to promote 

angiogenesis in SCID mice. Following 4 weeks subcutaneous implantation at a 0.1 μg 

dose in healthy animals, the S group exhibited significantly higher blood vessel density 

(62 ± 17 vessels/mm2) compared with PS, US, and B groups (11 ± 2*, 17 ± 7*, and 3 ± 

1** respectively) (* p<0.05; ** p<0.01). Furthermore, the S group developed a thicker 

granulation layer at the tissue/implant interface relative to the other groups (39 ± 7 vs 25 

± 2**, 21 ± 1***, and 12 ± 1μm*** respectively) (*** p<0.001). After six weeks 

implantation in mice with ischemic hindlimbs, the S group implants also markedly 

augmented both limb reperfusion (87 ± 14%) and limb survival (4/5), whereas ischemic 

limbs did not recover in PS, US and B groups. Stabilized rhbFGF incorporated in pH 

modified PLGA millicylinders effectively promotes site-directed in vivo angiogenesis 

and also enables preservation of ischemic hindlimb function.   
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1. Introduction 

 
 

Cardiovascular disease, which includes ischemic heart disease and peripheral vascular 

disease, is the leading cause of death in the United States and in the western world [1]. In 

spite of significant therapeutic advances in coronary artery bypass grafting and 

percutaneous transluminal coronary angioplasty, residual symptoms of ischemia 

associated with incomplete revascularization persist in many patients [2].  In addition, 

complications from peripheral vascular disease, a frequent complication of poorly 

regulated diabetes, represent a primary cause for loss of extremities.  A promising 

approach, therapeutic angiogenesis is to enhance tissue perfusion in these diseases by 

administration of proangiogenic protein cytokines, such as basic fibroblast growth factor 

(bFGF) [3-6]. The mode of growth factor administration is crucial for successful 

angiogenesis treatment as sustained exposure of tissues to such growth factors is needed 

for mature collateral vessel development [7-10]. It has been shown that large systemic 

doses of rhbFGF achieved only limited accumulation in the target tissue due to the short 

circulation half-life of rhbFGF in vivo [8-10]. Moreover, systemic administration caused 

toxic side effects including development of blood vessels in undesired areas, edema, 

bleeding, and tumor growth, while producing only limited clinical improvement [11-15]. 

Thus, sustained release of this growth factor at a targeted or specific treatment area has 

been the main focus of research over the last several years.  

RhbFGF is a very potent mitogen for capillary endothelial cells with EC50 of 0.3 – 1.0 

ng/ml [11,16], which makes it an excellent candidate for local controlled release.  

Furthermore, bFGF is one of only two complete angiogenic cytokines which is capable of 
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inducing all aspects necessary for angiogenesis i.e., endothelial cell migration, 

proliferation, and differentiation into microtubules [17]. Several efforts have been made 

to develop controlled release systems to deliver the growth factor directly to diseased 

tissue. Slow-release alginate microcapsules containing rhbFGF together with heparin-

sepharose beads were developed and showed some promise in early phase human clinical 

trials [6,18,19]. Sepharose beads, however, are not biodegradable, which could be a 

potential limitation of this delivery system. Biodegradable poly(DL-lactic-co-glycolic 

acid) (PLGA) is widely used to control release of proteins over extended periods (> 1 

month) [20,21]. PLGA has been utilized to develop microspheres containing vascular 

endothelial growth factor (VEGF) [22], millicylinders containing rhbFGF [23], and tissue 

engineering scaffolds containing VEGF and platelet-derived growth factor [24]. 

A significant challenge in the development of any controlled-release protein delivery 

system is preservation of protein integrity inside the delivery vehicle in vivo.  RhbFGF is 

chemically unstable and readily loses its mitogenic activity, particularly at an acidic pH 

[25].  Fortunately, several molecules have been identified to stabilize the structure and 

activity of rhbFGF, including heparin, ethylenediaminetetraacetic acid (EDTA), and 

sucrose [25,26]. An acidic microclimate pH commonly developed in PLGA delivery 

system during its degradation has been shown to be a major destabilizing stress for 

encapsulated rhbFGF [23,27,28]. This microclimate can be neutralized heterogeneously 

by the addition of poorly soluble basic additives such as Mg(OH)2 [27].  Co-

incorporation of proteins such as BSA at a loading above 10% together with Mg(OH)2 in 

PLGA millicylinders results in more homogeneous microclimate neutralization, probably 

due to the formation of a porous network within the polymer [23,28]. Using such an 
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approach, PLGA millicylinders capable of delivering bioactive rhbFGF in vitro for over a 

month were developed [23]. In this formulation, standard rhbFGF stabilizers (i.e., heparin, 

EDTA, sucrose) capable of preserving protein integrity were combined with 

BSA/Mg(OH)2 for PLGA microclimate control. Since rhbFGF is a very potent growth 

factor [11,16], BSA also served as a bulking excipient to dilute rhbFGF in the 

millicylinder. In addition, a partially stabilized formulation that contained only standard 

stabilizers and gum arabic as a bulking excipient, but no base for microclimate 

neutralization was previously developed [23]. Gum arabic was substituted for BSA in this 

control group since BSA forms insoluble aggregates in PLGA without microclimate pH 

control [23,28].  

The purpose of this study was to investigate the ability of stabilized PLGA 

encapsulated rhbFGF to induce site-specific local angiogenesis and augment tissue 

perfusion in vivo following polymer implantation in severe combined immunodeficient 

(SCID) mice. The angiogenic inducing capacity of the stabilized PLGA formulation (S; 

rhbFGF/ heparin/ EDTA/ sucrose/ BSA/ Mg(OH)2) was compared with partially 

stabilized (PS; rhbFGF/ heparin/ EDTA/ sucrose/ gum arabic), unstabilized (US; rhbFGF 

without any additives), and blank (B; heparin/ EDTA/ sucrose/ BSA/ Mg(OH)2 without 

rhbFGF) formulations in vivo. A second series of experiments, which compared the 

capacities of the four PLGA to preserve limb perfusion and retain limb function, was 

conducted in a SCID mouse ischemic hindlimb model.   
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2. Materials and Methods 

2.1. Materials 

Poly (DL-lactic-co-glycolic acid) 50/50 (i.v. 0.63dl/g in hexafluoroisopropanol @ 

25oC) was purchased from Birmingham Polymers Inc. (Birmingham, AL). Recombinant 

human basic fibroblast growth factor (rhbFGF) for in vivo studies was purchased from 

PeproTech, Inc (Rocky Hill, NJ). Standard rhbFGF concentrations for ELISA were a 

generous gift from Chiron (Emeryville, CA).  Bovine serum albumin (BSA), gum arabic, 

Mg(OH)2,  heparin, rabbit polyclonal antibody, anti-rabbit IgG-horse radish peroxidase, and 

o-phenylenediamine (OPD) tablet sets were purchased from Sigma-Aldrich (St. Louis, MO). 

7~9 weeks old male severe combined immunodeficient (SCID) mice were supplied by 

Taconic Farms (Germantown, NY). All other chemicals were of analytical or purer grade 

and purchased from commercial suppliers. 

 

2.2. Preparation of rhbFGF millicylinders 

RhbFGF in 10 mM phosphate buffer (pH 7.4) with 0.5 mM EDTA was combined 

with several excipients (e.g., heparin, EDTA, sucrose, BSA or gum arabic) at specific 

ratios described below, and as similarly described previously [23]. The solutions were 

then lyophilized for 2 days and sieved (< 90 μm). The resulting protein powder was 

suspended in 50% w/w PLGA acetone solution. In some instances Mg(OH)2 powder was 

also added to the polymer solution. The resulting suspension was loaded in a 3ml syringe 

and extruded into silicone rubber tubing with 0.8 mm diameter via an 18 Gauge needle. 

The tubing was first dried at room temperature overnight and then in a vacuum oven at 

45 °C for 2 days. After removal from the tubing, millicylinders were cut into short pieces 
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for in vivo administration (see below). As described in Table 1, four different 

formulations were prepared, including the S, PS, US, and B. 

 

2.3. Characterization of rhbFGF loading 

To extract rhbFGF from polymer matrix, PLGA millicylinders were dissolved with 

acetone, the polymer solution was removed following centrifugation, and the resulting 

rhbFGF pellet was reconstituted in a stabilizing medium (phosphate buffered saline (PBS) 

pH 7.4 containing 10 μg/ml of heparin, 1% BSA, 0.05% Tween 80 and 1 mM EDTA) 

[23]. The medium, which was also used as release medium to demonstrate controlled 

release of bioactive bFGF from millicylinders [23], has been shown to preserve full 

immunoreactivity of rhbFGF at 50 ng/ml and 37oC over 2 weeks [29]. From the resulting 

solution, rhbFGF loading was determined by ELISA [22] to be 0.2 ± 0.1 µg/10mg 

polymer for all formulations.   

 

2.4. Examination of angiogenic activity of PLGA millicylinders in vivo 

The treatment of experimental animals was in accordance with University of 

Michigan animal care guidelines, and all NIH guidelines for the care and use of 

laboratory animals (NIH Publication #85-23 Rev 1985) were observed. Millicylinders of 

different formulations were cut into segments (roughly 0.8 ~1 cm) containing 0.1 μg of 

rhbFGF according to their loading. Millicylinders were subcutaneously implanted into 

the dorsal region of 7~9 week old male severe combined immunodeficient (SCID) mice 

(10 animals total). In brief, animals were anesthetized by intraperitoneal injection of 

ketamine (87 mg/ml) and xylazine (2.6 mg/ml) at 1 μl per g of body weight. Four small 1 
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to 2 cm incisions were made in four corners of the dorsal region for insertion of four 

millicylinders with different formulations (S, PS, US and B) and closed with sutures. Five 

mice were euthanized per time point following 14 and 28 days of implantation. Tissue 

sections surrounding each implant were retrieved, fixed in 4% formaldehyde solution at 

4°C overnight, dehydrated through graded ethanol, embedded in paraffin, and cut into 5 

μm sections. The tissue sections were then stained with both hematoxylin and eosin (H & 

E) and smooth muscle α actin. Photographs were taken by a Nikon Eclipse E800 

microscope and analyzed using Scion Image software (NIH, Bethesda, MD). The 

granulation layer was defined as a new tissue layer formed between the implant and the 

adjacent muscle layer. Five locations were randomly selected in each sample to calculate 

granulation layer thickness. Blood vessels were counted at 400x magnification and 

normalized to mm2 area [30]. 

 

2.5.    Mouse hindlimb ischemia model and implantation 

Severe ischemia in the hindlimbs of SCID mice was developed similar to that 

previously described [31].  Briefly, under anesthesia the entire lower extremity and 

abdomen of each mouse was shaved to remove hair and then cleaned with an alcohol pad. 

An incision was made through the dermis, along the thigh all the way to the inguinal 

ligament and extending superiorly towards the abdomen of the mouse to expose the 

femoral artery and vein, and external artery and vein. These vessels were ligated with 5-0 

Ethilon, and then cut.  One single rhbFGF millicylinder from the four groups was placed 

over the sites of ligation, covering the area. The incision was closed with several sutures 

and the animals were evaluated over a 6 week period.  At 2, 4, and 6 weeks following 
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vascular ligation and polymer placement, 4~5 mice were euthanized for histopathologic 

assessment. Mice from each PLGA formulation group were first randomly labeled with 

numbers and each time the mice were euthanized according to the numbers. 

2.6.     Blood flow and functional recovery 

Hindlimb blood flow recovery was measured using a Laser Doppler Perfusion 

Imaging (LDPI) system (Perimed, North Royalton, OH). At 1 day, and 1, 2, 4, and 6 

weeks post surgery, the blood flow recovery was evaluated as follows: the mice were 

anesthetized and the hair on the hindlimbs was removed by shaving and the use of a 

chemical hair remover ― Nair (Church & Dwight Co., Inc., Princeton, NJ). Mice were 

laid on their back for LDPI scanning to measure blood flow intensity of the hindlimbs. 

The recovery of blood flow was calculated by the flow ratio of ischemic (right) / non-

ischemic (left) limb.  Functional recovery of toes, feet, and entire hindlimbs was assessed 

by determination of stimuli responsiveness and motor function of the ischemic limbs at 2, 

4, and 6 weeks post surgery. 

 

2.7.      Statistical analysis 

Statistical analysis was carried out using Instat software (Graphpad, San Diego, CA). 

The unpaired student t-test was performed for two-tailed P-value determination, and the 

level of significance was established at the 95% confidence interval (α < 0.05). 
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3. Results and Discussion 

Previously, we have demonstrated that acid-induced aggregation and hydrolysis 

of BSA could be minimized by co-incorporation of a poorly soluble base, Mg(OH)2, to 

neutralize the acidity from the highly acidic, and rapidly degrading PLGA 50/50 

milliyclinders [23].  In that study both slow- and fast-releasing formulations of rhbFGF 

were developed based on Mg(OH)2/BSA neutralization of PLGA and found to preserve 

high levels of immunoreactive and bioactive growth factor over one month release and 

excellent mass balances were obtained [23].  By contrast if Mg(OH)2/BSA in the fast-

releasing formulation was replaced with the protein substitute, gum arabic, no significant 

immunoreactive rhbFGF was released or recovered after an initial burst ~32% of protein 

[29]. These release studies confirmed the pH-modification strategy in vitro for this 

growth factor and other important clinically relevant proteins, e.g., bone morphogenetic 

protein-2 [23], tissue plasminogen activator [32], and tetanus toxoid [33].  In the first in 

vivo studies with bFGF/PLGA from our group [34], we demonstrated that the fast-

releasing formulation [23] increased blood circulation in mice and enabled successful 

transplantation of human AIDS-related Kaposi’s sarcoma cells, providing a new animal 

model for this disease.  

The current studies were designed to permit a more quantitative assessment of the 

angiogenic capacity of the pH-modified rhbFGF/PLGA implants. The stabilized 

formulation (S, see Table 1) was essentially identical to the slow-releasing formulation 

previously evaluated in vitro [23].  A partially stabilized formulation (PS, Table 1) 

without pH-modification (gum arabic was substituted for BSA, since BSA aggregates 
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extensively without Mg(OH)2 [23]) and unstabilized formulation (US), which contained 

no stabilizers were evaluated in healthy SCID mice or in mice with ischemic hindlimbs. 

To examine angiogenic induction in healthy animals, all formulations (S, PS, US, 

and B) were implanted subcutaneously in the flanks of SCID mice. 14 and 28 days 

following PLGA implantation, mice were sacrificed and the millicylinders and 

surrounding soft tissues were harvested for histopathological analyses.  α-SMA, which 

stains contractile cells surrounding blood vessels such as pericytes and smooth muscle 

cells, was used to accentuate tissue vascularity and assist in identification of newly 

formed incipient vessels.  Two weeks after polymer implantation, abundant networks of 

smaller caliber vessels (black arrows), suggestive of ongoing neovascularization, were 

apparent in PS and S groups (Figure 1). Notably, smaller caliber vascular networks, 

indicative of neovascularization, formed in close proximity to the PLGA implants in 

these two groups. In addition, both the S and PS animals demonstrated development of a 

more extensive vascular network which extended beyond the granulation tissue layer that 

formed at the tissue-polymer interface. In contrast, vascular networks of the US and B 

animals consisted primarily of pre-existing vasculature as evidenced by the large lumen 

(white arrows) with reduced formation of capillaries adjacent to the polymer implants. 

The tissues surrounding the implants (α-SMA stain, left) and the granulation 

tissue layers formed between the polymer and the muscle layer (H&E stain, right) 28 

days after implantation are shown in Figure 2. By 28 days, a lush capillary networks were 

apparent in the majority of the tissues immediately subjacent to the S group PLGA 

implants. In addition, capillary networks transversed the core of the PLGA implants in 

many of the S samples, implying that the PLGA millicylinders served as a scaffold for 
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ingrowth of richly vascularized connective tissue. While capillary networks were 

apparent in the PS group samples, there were fewer vessels relative to the S group 

samples. Collectively, these data clearly demonstrate the ability of microclimate 

stabilized PLGA rhbFGF implants to induce neovascularization in a “field dependent” 

fashion, which extends beyond tissues immediately subjacent to the implants. 

In order to quantify the angiogenic effect of different formulations, the number of 

blood vessels per unit area and thickness of newly formed granulation tissue were 

evaluated by using  Nikon Eclipse E800 microscope and NIH image software (Figures 3 

and 4). The S formulation exhibited a dramatic increase in blood vessel density (number 

of vessels per square millimeter) and granulation layer thickness, and the effect was 

sustained for at least 28 days following the implantation relative to all controls. The 

blood vessel density after 14 days implantation in the S group was 106 ± 28 (vessels/mm2, 

n = 5 ± SEM), which is higher compared to PS, US, and B groups (40 ± 9, 14 ± 3 (p < 

0.05), and 14 ± 3 (p < 0.05), respectively). The PS formulation also showed a statistically 

significant increase in blood vessel density relative to US and B at 2 weeks of 

implantation (p < 0.05).  Whereas the difference between blood vessel density for S (62 ± 

17) and PS (11 ± 2) groups became more apparent after 28 day implantation (p < 0.05), 

the difference between PS, US and B groups disappeared at later incubation times. Blood 

vessel density was lower at 28 days compared with 14 days in all treatment groups except 

the US treatment, which was very low for both time points. This decrease may have been 

caused by fast release of bFGF at the early stage. The newly stimulated blood vessels 

would be expected to undergo remodeling and decrease in number as a result of natural 

adaptation once bFGF release decreased at later time points. These data also reflect the 
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complexity of angiogenesis and suggest a need to concurrently deliver additional growth 

factors with rhbFGF to stabilize newly formed blood vessels [35]. The granulation layer 

thickness, a measure of angiogenic activity of implant or its ability to induce formation of 

new highly vascularized tissue in vivo, was determined for all formulations. The 

granulation layer thickness of the S group was 39 ± 7 μm, and demonstrated a 

statistically significant increase as compared to that of the PS group (25 ± 2 μm,  p < 

0.01), and that of US and B groups (21 ± 1 μm and 12 ± 1 μm respectively, p < 0.001) 

after 28 days implantation. Hence, these findings confirmed the premise that it is 

essential to include pH control factors (BSA and Mg(OH)2) together with standard 

protein stabilizers to maintain the effectiveness of the protein implant for an extended 

period of time. Neutralization of PLGA microclimate results in higher angiogenic 

efficacy of millicylinders and the advantage of Mg(OH)2/BSA addition becomes more 

apparent at later stages of rhbFGF release.  

 To further evaluate the therapeutic effects of rhbFGF implants, a severe ischemic 

hindlimb model was developed in SCID mice. The images after 1 day post-surgery 

detected by LDPI showed a severe blockage of blow flow, indicating successful ischemic 

induction. The relative perfusion (right limb/left limb) served as the index of blood flow 

recovery so that individual variability of the animals could be eliminated. A remarkable 

recovery of the blood flow in the ischemic hindlimbs was observed for the S group 6 

weeks following the implantation (Figure 5). In contrast, negligible blood flow and often 

complete limb loss was observed for partially stabilized, unstabilized and blank 

millicylinder controls groups (Figure 5). Quantitative analysis indicated that 87± 14% of 

blood flow was restored in the ischemic limb compared to the healthy limb 6 weeks after 
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treatment with S group implants (Figure 6). In contrast, almost no reperfusion was 

observed in remaining limbs from all other control groups. There was some apparent 

difference between PS and B groups at early stages post-surgery; however, this difference 

disappeared by 6 weeks. The mice treated with US group all experienced limb necrosis 

and complete limb loss.  Thus the blood flow images were unavailable in these animals at 

6 weeks. 

Within 24 hours following surgery limb perturbations, ranging from discoloration 

to decreased function, became apparent. Depending upon the treatment group, limb status 

either deteriorated or improved over the 6 week duration of the experiment.  Ligated 

limbs were evaluated and classified into four groups, which reflect ascending degrees of 

limb damage: normal/discoloration, necrotic toes, necrotic foot, and necrotic limb. While 

mice with necrotic toes still had relatively healthy limbs with full function of movement, 

the extension of ischemia induced tissue necrosis to the animals’ feet and hindlimbs 

markedly impaired limb function. Animal number declined with time because 5 animals/ 

group were euthanized at 2, 4, and 6 weeks for further analysis (data not shown).  At 2 

weeks, 14 of 15 mice in the S group retained healthy limbs or only experienced focal 

(foot) necrosis which was superior than the other three groups (7/14, 9/15, and 8/12 for 

PS, US and B groups, respectively).  Further evaluation time points at 6 weeks showed 

that 4/5 surviving limbs in the S group had retained normal function as assessed by 

visually qualitative absence of limb dragging or reduced movement. In contrast, limb 

function and tissue integrity decreased dramatically over time in the other three groups, 

and only a small portion (1/24) of the ligated limbs not treated with S PLGA implants 

survived (Table 2). 
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4. Conclusions 

Previously developed stabilized PLGA millicylindrical formulations of rhbFGF were 

demonstrated to induce angiogenesis in vivo.  The angiogenic effect was sustained for at 

least 4 weeks for the stabilized formulation in healthy SCID mice. In comparison with 

partially stabilized and unstabilized formulations, the stabilized formulation induced a 

higher density of newly formed blood vessels, and led to the development of a thicker 

granulation layer. In addition, the stabilized rhbFGF PLGA formulation significantly 

improved reperfusion of mouse ischemic hindlimbs, whereas control groups showed very 

negligible or no effect. The limb function was also recovered by the implantation of 

stabilized rhbFGF encapsulated in PLGA. The ability of injectable rhbFGF PLGA 

millicylinders to induce angiogenesis (essential for establishing collateral circulation) 

with a very small growth factor dose (~0.1 μg/implant) could potentially be 

therapeutically beneficial in the management of both ischemic heart disease and 

peripheral vascular disease. Stabilization of rhbFGF by controlling the microclimate in 

the PLGA implant with the addition of insoluble base and BSA has been demonstrated to 

be an effective approach in vivo. In addition, neutralization of microclimate by co-

incorporation of poorly soluble basic additives and albumin may be a useful approach in 

the development of PLGA formulations for other therapeutic proteins. 
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Figure Legends 

Figure 1. Representative photomicrographs of tissue section surrounding millicylinders 

containing 0.1 μg rhbFGF following 14 days implantation.  Left side – smooth muscle α 

actin stain, right side – H&E stain for stabilized (S), partially stabilized (PS), unstabilized 

(US) and blank (B) groups, respectively (100x magnification). Black arrows indicate 

smaller capillary vessels suggesting ongoing neovascularization, white arrows indicate 

pre-existing large blood vessels. 

 

Figure 2. Representative photomicrographs of tissue sections surrounding millicylinders 

containing 0.1 µg rhbFGF following 28 days implantation from stabilized (S), partially 

stabilized (PS), unstabilized (US) and blank (B) groups.  Left column – smooth muscle α 

actin stain (100x magnification), black arrows indicate the newly formed granulation 

tissue layer, white arrows indicate ingrowth of vascularized connective tissue in PLGA 

implant. Right column – H&E stain (100x magnification), black arrows indicate the 

granulation layer thickness.  

 

Figure 3. Blood vessel density (number of vessels per square millimeter) in the 

granulation layer surrounding millicylinder implants after 14 and 28 days of implantation 

(mean ± SEM) for S – stabilized, PS – partially stabilized, US – unstabilized, B – blank. 

*: compared to PS group, p<0.05; #: compared to US group, p<0.05; &, &&: compared 

to B group, p<0.05 and p<0.01 respectively. 
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Figure 4. The granulation layer thickness adjacent to PLGA millicylinders after 28 days 

of implantation (mean ± SEM) for S – stabilized, PS – partially stabilized, US – 

unstabilized, B – blank. **: compared to PS group, p<0.01; ###: compared to US group, 

p<0.001; &&&: compared to B group, p<0.001. 

 

Figure 5. Representative LDPI images of mouse hindlimbs at 6 weeks post-surgery; 

S – stabilized, PS – partially stabilized, US – unstabilized, B – blank. The right hindlimbs 

(left in the images) were subjected to the surgery to develop ischemia at the beginning. 

The left hindlimbs (right in the images) were kept intact and acted as controls. 

 

Figure 6.  Recovery of hindlimb blood flow over 6 weeks post surgery. The intensity 

ratios of the right (ligated) to left (healthy) limbs from LDPI images were calculated only 

mice with remaining limbs; the values were expressed as mean ± SEM. 

171 



 

 

 

Table 1. Compositions of different millicylinder formulations. 

Formulationa rhbFGFb Standard 
Stabilizersc 

Bulk 
Excipientd 

Microclimate 
Controle 

S + + + + 

PS + + + − 

US + − − − 

B − + + + 
aS: stabilized formulation; PS: partially stabilized formulation; US: unstabilized 
formulation, B: blank formulation; bLoading was ~0.002%; cStandard stabilizers 

included 0.01% heparin, 0.01% EDTA, and 2.3% sucrose; dBulk excipient was 
15.7% gum arabic for PS and 12.7% BSA for S and B; e3% Mg(OH)2 was added to 

control microclimate pH.   
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Table 2. Physical examination of mouse ischemic hindlimbs over 6 weeks 
 

Formulationa S PS US B  S PS US B  S PS USc B 

 2 weeks  4 weeks  6 weeks 

Normal/discolor 9 4 6 7  6 1 1 0  3 1 0 0 

necrotic toes 5 3 3 1  3 2 0 4  1 0 0 0 

necrotic foot  0 4 3 3  0 2 3 3  1 0 0 1 

necrotic limb 1 3 3 1  1 4 6 1  0 3 4 3 

Total b 15 14 15 12  10 9 10 8  5 4 4 4 
aS: stabilized formulation; PS: partially stabilized formulation; US: unstabilized 

formulation, B: blank formulation;  btotal is the total numbers of mice being observed at 
each group at each time point. B group had 12 mice and all the other groups had 15 mice; 

one mouse in PS group died from anesthesia before surgery; the mice that had been 
euthanized at 2 and 4 week time points were pre-determined at the beginning of the 

study.  cOne mouse in US group died after 5 weeks post-surgery for unknown reason. 
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