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ABSTRACT

This dissertation summarizes my recent work regarding systems of strongly in-

teracting fermionic atoms in optical lattices. This work addresses the combination

of two experimental techniques that have been the subject of much recent research

in ultracold atom physics. One is the use of optical lattices, which provide a means

to realize diverse interaction configurations within a clean, controllable system. The

other is the use of magnetically tunable Feshbach resonances to control the strength

of the interatomic interaction. Together, these techniques offer the possibility of an

experimental realization of many important model Hamiltonians of condensed matter

physics, and may also lead to the discovery of new physics.

Recent study of this system has shown that strong interactions near Feshbach

resonance will lead to the population of multiple lattice bands, and that collisions

between atoms on neighboring sites cannot be neglected. These effects lead to a

complicated Hamiltonian, but one which can be simplified to an effective single-band

model equivalent to the generalized Hubbard model (GHM), which is an extension of

the Hubbard model that includes correlated hopping terms. My main results concern

the study of this model.

The strong correlations between the particles make it difficult to definitively de-

termine the many body physics of the GHM. As a first approach to understanding

the GHM in optical lattices, I focus mainly on cases where the problem is greatly

simplified by allowing interactions among only small groups of lattice sites. This

xi



restriction can be implemented in experiments using an optical superlattice poten-

tial. Our results include a proposed scheme (based on double-well superlattices) to

empirically verify that the GHM describes this system and to directly measure the

various parameters of this model. Other results include exact solutions on four-site

square plaquettes, which demonstrate that d-wave excitations can occur in the low-

energy states. By using a superlattice to give an array of weakly coupled plaquettes,

one can thus produce a d-wave superfluid state. This is of relevance to the study of

high-Tc superconductors, although I note certain key differences between the sort of

d-wave superfluid described here and that of the superconductors.
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CHAPTER I

Introduction

Nature is replete with examples of lattices. These structures are characterized by a

discrete translational symmetry, such that if the position of the lattice is translated by

a fixed amount, then (defects and boundaries aside) the original lattice is recovered.

Lattice Hamiltonians have long been used in describing many important systems in

condensed matter physics.[4–6] More recently, the use of optical lattices has played an

important role in experiments with ultracold atoms.[7–10] An optical lattice potential

is formed by a standing wave produced by counter-propagating laser beams. These

lattices have been utilized in the trapping, cooling, and manipulation of ultracold

atoms. As we will see, the physics of such systems can be described by lattice

Hamiltonians which are much the same as those used in condensed matter physics.

Thus, optical lattices provide a clean, highly controllable testbed for many important

condensed matter Hamiltonians, as well as offering the possibility of new physics.

In addition to optical lattices, the use of Feshbach resonance provides another

experimental technique which has been the subject of significant recent research

in ultracold atomic physics.[11–15] A Feshbach resonance is a resonance between a

scattering state and a (quasi)bound state. Such resonances can be exploited to allow

the strength of inter-atomic interactions to be tuned over a wide range through

1
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control of the external magnetic field. The use of optical lattices and Feshbach

resonances are thus somewhat complementary, with optical lattices making it possible

to engineer diverse Hamiltonians, with tunneling between lattice sites controlled by

the lattice depth, and with on-site interactions controlled by the external magnetic

field via Feshbach resonance. Naturally, there has been significant investigation into

the combination of these two techniques.[16–23]

In this dissertation, we focus on the case of ultracold fermionic atoms in an optical

lattice. It is arguable that the fermionic case provides richer physics than that of

bosons, as bosonic physics can also be achieved with fermions in the limit where the

atoms bind tightly to form diatomic molecules. Additionally, the fermionic atoms

we study here can serve as an analog to fermionic charge carriers (e.g., electrons)

in comparisons between optical lattices and condensed matter systems. As we will

see, the physics of ultracold fermions in optical lattices and near Feshbach resonance

is somewhat more complicated than the simplified picture given in the previous

paragraph. It has been shown that, even for atoms which occupy a single lattice

band far from resonance, as resonance is approached multiple lattice bands become

occupied due to the strong collisional interactions between atoms on the same site.[16]

Furthermore, our group has shown that for a wide Feshbach resonance (as is typical

for experiments with potassium-40 and lithium-6), the direct collisional interaction

between atoms and molecules on neighboring sites can be significantly larger than the

kinetic tunneling between sites, and thus cannot be ignored in consideration of the

multi-site physics.[3] This leads to a complicated Hamiltonian which includes on-site

and nearest-neighbor interactions between atoms and Feshbach molecules over many

lattice bands. However, under typical experimental conditions this Hamiltonian can

be greatly simplified to yield an effective single-band Hamiltonian which is equivalent



3

to the generalized Hubbard model.[3, 24] In that form, the Hamiltonian is:

H =
∑

i

(∆/2)ni(ni−1)+
∑

〈i,j〉,σ
[−t+ g1 (niσ̄ + njσ̄) + g2niσ̄njσ̄] a

†
iσajσ +H.c.+ (1.1)

Here a†iσ creates an atom with hyperfine state σ =↑, ↓ in the Wannier state[25]

centered at site i, where niσ = a†iσaiσ, and ni = ni↑ + ni↓ ∆ represents the on-site

interaction energy, and t is the tunneling matrix element for a single atom moving

between two sites i and j, with g1 and g2 altering the effective t in cases where

sites i and j are occupied by additional atoms. This Hamiltonian has been studied

previously in various contexts in condensed matter physics. [26–39] (In particular,

several authors have suggested that the generalized Hubbard model is relevant to

the high-Tc cuprates.[33–36])

The generalized Hubbard model is an extension of the Hubbard model, originally

proposed by Hubbard in 1963.[4] The key difference from the standard Hubbard

model is the addition of the g1 and g2 terms above. These terms described correlated

tunneling effects – that is, the tunneling rate for one spin species is dependent on

whether an atom of the opposite spin species is present. There exist no exact solutions

for the generalized Hubbard model except for a few highly specialized cases [37–39].

(Generally, these require the special condition g1 = t, which prevents the single-site

molecules from being able to split into two atoms on two neighboring sites. This

condition is not expected to be satisfied for the system we consider in this thesis.)

The full phase diagram of the generalized Hubbard model is not known. Even for the

standard Hubbard model there remain disputes about its phase diagram[40], and the

addition of correlated tunneling clearly adds further complications. Furthermore, as

we shall see it is difficult to even make a theoretical prediction of the values of the

correlated hopping parameters g1 and g2 for optical lattices.
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The bulk of this dissertation examines the generalized Hubbard model in optical

lattices, and in superlattices which limit the interactions to groups of a few sites so

as to make the physics more tractable. In the remainder of this chapter, we will

first review the origins of the standard Hubbard model, along the way reviewing

the important formalism of Bloch and Wannier states. We give particular attention

to the various assumptions and approximations made by Hubbard in deriving this

model, so as to contrast them to the derivation of the generalized Hubbard model

presented in the next chapter. We then discuss the theory of Feshbach resonance as

it pertains to ultracold fermionic atoms. The experimental implementation of optical

lattices and superlattices is also reviewed. At the end of the chapter, we outline the

remainder of this dissertation.

1.1 From Bloch States to the Hubbard Model

The Hubbard model was originally proposed by John Hubbard in 1963 in order to

describe properties of the transition and rare earth metals which are not accurately

described by band theory.[4] In particular, many transition metal oxides which the

theory predicts to be conductors were in fact found to be insulators.[41] This was

explained by Nevill Mott and Rudolph Peierls as arising due to the Coulomb inter-

actions between electrons, which were neglected in deriving the band theory.[42, 43]

This lead to a theory in which a conductor can become insulating as the bandwidth is

decreased.[44–46] Such metal-insulator transitions cannot be understood in the con-

text of band theory. The Hubbard model is the simplest model Hamiltonian which

includes the competition between kinetic energy and Coulomb repulsion necessary to

understand the metal-insulator transitions. In spite of the simple form of the model,

it gives rise to a wide range of interesting physics.
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Before discussing the Hubbard model further, we first present a few key results

from band theory, in particular the Bloch state and Wannier state formalism. We do

this in part to provide some historical context for the Hubbard model, but mostly

because the formalism outlined here will be of use in subsequent sections.

1.1.1 Bloch States and Wannier States

The band theory of electrons in solids is based on a set of seemingly rather drastic

approximations, but which nevertheless proved sufficient for making a great deal of

progress in the early history of solid state physics.[47] In particular, it treats the

electrons as a gas of non-interacting particles each subject to the same effective

potential Ueff(r). Ideally the effective potential would approximate the effect of

the Coulomb forces both between the electrons and the atomic nuclei, and among

the electrons themselves. However, due to the neglect of electron correlation the

electron-electron interaction can at best be included at a mean-field level. A key

assumption is that this Hamiltonian is periodic, with this periodicity arising from

the arrangement of nuclei on fixed lattice sites. (At this level of approximation, we

neglect the effects of the nuclear motion.)

Suppose the positions of the nuclei are given by the points R of a Bravais lattice.

The D-dimensional Bravais lattice is given by all vectors R = n1a1 + . . .+nDaD for

any integers n1, . . . , nD and some particular set of primitive vectors a1, a2, . . . ,

aD. The effective potential then has the property that it is unchanged by translation

by any of the lattice vectors R: Ueff (r) = Ueff(r + R).

In 1928 it was shown by Felix Bloch that for such a periodic potential the solutions

to the one-particle time-independent Schrödinger equation can be expressed as the

product of a plane wave and a periodic function: ψnk(r) = eik·runk(r) where unk(r+

R) = unk(r) for every lattice vector R.[6] This result is known as Bloch’s theorem.
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The wavefunctions ψnk(r) we call Bloch states. We see that under translation by

a lattice vector R the Bloch states change only by a phase factor: ψnk(r + R) =

eik·Rψnk(r). This is an equivalent statement of Bloch’s theorem. It follows that the

Bloch state ψnk is unchanged by shifting k by a vector K in the reciprocal lattice

(defined by the condition eiK·R = 1). Therefore without loss of generality k may be

restricted to the first Brillouin zone (that is, the Wigner-Seitz primitive cell of the

reciprocal lattice), since any other vector k may be translated into the first Brillouin

zone by the addition of a reciprocal lattice vector.

Because ψnk(r) = eik·runk(r) is an eigenstate of the Hamiltonian, we have for any

fixed k a corresponding eigenvalue problem to determine the periodic functions unk.

Moreover, the periodic nature of unk means we can treat the problem as restricted

to a single primitive cell of the lattice, which results in discretely spaced eigenvalues

(enumerated by the band index n). The full eigenenergy then depends discretely on

n but continuously on k, giving rise to the energy bands with energies given by some

ǫn(k). Note that k is allowed to vary continuously if the lattice is infinite in extent.

Of course this cannot be true of any physical lattice structures, but is an acceptable

approximation when the lattice size is much larger than the spacing between sites.

Thus for a system of many non-interacting electrons in a periodic potential, the

eigenstates can be written as Slater determinants (that is, antisymmetrized products)

of the Bloch wavefunctions. This is most conveniently represented in the language of

creation and annihilation operators, where we define a†nkσ (ankσ)as the operator that

creates (annihilates) an electron in the Bloch state |ψnkσ〉 with the single-particle

wavefunction ψnk(r) and a spin state specified by the index σ. In other words,

a†nkσ |0〉 = |ψnkσ〉, where |0〉 is the vacuum state. The operators satisfy the standard

fermion anticommutation relations:
{

ankσ, a
†
n′k′σ′

}

= δn,n′δk,k′δσ,σ′ ,
{

ankσ, an′k′σ′

}

=
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{

a†nkσ, a
†
n′k′σ′

}

= 0. From this it follows that a product of the Bloch state creation

operators automatically creates an antisymmetrized state.

Of course, if we include the Coulomb interactions between electrons then we can no

longer expect the many-body eigenstates to be antisymmetrized products of Bloch

states, as we no longer have a separate eigenvalue equation for the state of each

particle. Even including inter-electron interactions at a mean field level leads to

eigenstates that are Slater determinants of some more complicated states (generally

determined iteratively, as in the Hartree-Fock method). In systems of correlated elec-

trons, the many-body state can not even be expressed by a single Slater determinant,

but rather is a sum of multiple such determinants. Nevertheless, antisymmetrized

products of the Bloch states of non-interacting electrons provide a useful basis for

describing more general many-body states of electrons in a periodic potential.

The Bloch states are entirely non-localized in terms of the position coordinate r.

At times it is useful to instead consider a set many-electron basis states which are

Slater determinants of some spatially localized single-electron functions. (Here by

“localized” we mean that the norm of the single-electron wave function is bounded

by an envelope which peaks at some particular position and decays as we move

further from this position.) This is particularly beneficial if we wish to consider local

interactions, as is the case for the Hubbard model. An appropriate set of localized

orthogonal single-electron basis functions is provided by the Wannier functions.[25]

The Wannier functions are defined as φn(r) = 1√
N

∑

k ψnk(r). Because the Bloch

wavefunction φn(r) is changes only by a phase factor under displacement by any

lattice vector R, we can write: φn(r − R) = 1√
N

∑

k e−ik·Rψnk(r). We can see that

this is just the Fourier transform of ψnk(r) with respect to the variable k. (In

this case we keep k discrete and take the discrete Fourier transform.) Thus the
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Bloch wave function has a Fourier expansion in terms of Wannier functions ψnk(r) =

1√
N

∑

i e
ik·Riφn(r−Ri), where the sum is performed over the full set of lattice vectors

Ri as indexed by i. We can also define operators that create or annihilate an electron

in a Wannier state – that is, whose single-particle wave function is given by φn(r−Ri)

for some i. The creation (annihilation) operator to create (annihilate) an atom in

the Wannier state φn(r − Ri) and with spin σ is given by a†inσ = 1√
N

∑

k
eik·Ria†nkσ

(

ainσ = 1√
N

∑

k e−ik·Riankσ

)

. As for the Bloch operators, the Wannier operators

satisfy the usual fermionic anticommutation relations:
{

ainσ, a
†
jn′σ′

}

= δi,jδn,n′δσ,σ′ ,
{

ankσ, ajn′σ′

}

=
{

a†inσ, a
†
jn′σ′

}

= 0.

Expressing the Wannier functions in terms of the periodic Bloch functions unk, we

have φn(r−R) = 1√
N

∑

k eik·(r−R)unk(r). Thus we see that φn(r−R) oscillates in k-

space at an angular frequency r−R, and for r far from the lattice site R the Wannier

function is suppressed by these high frequency oscillations. In this way, the Wannier

functions have the desired behavior that they are peaked near the corresponding

lattice site and decay as we move further away, with the rate of decay determined by

the depth of the periodic potential wells. For this reason, in the subsequent discussion

we may refer to the Wannier operators as “creating or annihilating a particle at site

i”, when what we really mean is creating a particle in the Wannier state centered

at the i-th lattice site. This does not imply that the norm of the wavefunction is

precisely zero at any other lattice sites.

For a sufficiently deep potential, we can make the tight binding approximation,

in which the Wannier states become simply the single-atom electron orbitals. While

Hubbard himself made such an approximation in estimating the parameters of the

Hubbard model and determining which terms to neglect, it is important to remember

that it is possible to speak of Wannier functions for any periodic potential, even in
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the case where tight binding fails. In that case, of course, the Wannier functions will

not resemble atomic orbital states.

Before proceeding further it is worth reiterating that in the optical lattice systems

with which this thesis is concerned, it is neutral atoms that are the mobile particles,

not electrons. Moreover, the lattice is generated not by Coulomb interactions with

some fixed atomic nuclei, but rather by the electric dipole interaction between the

atoms and an optical standing wave. In this section we use the picture of electrons

in a crystalline solid because this is the historical context in which the Hubbard

model developed. In subsequent sections it should be understood that the creation

and annihilation operators refer to the creation and annihilation of atoms, not elec-

trons. We also note that the tight binding approximation is not appropriate for our

subsequent calculations. In particular, as the lattice potential is not the sum of the

contributions from separate sources at each lattice site, it does not make sense to

speak of the states in the potential generated by a single such source. We can how-

ever consider the states of a single well by approximating that well as a harmonic

potential, and in this sense one can have a sort of tight binding limit. However, such

a harmonic approximation becomes increasingly inaccurate when considering atoms

in higher bands, as we must when considering interatomic interactions near a broad

Feshbach resonance. For our purposes it is best to determine the exact Wannier

functions numerically, as can be done by variational methods.[48]

1.1.2 The Hubbard Model

As we have discussed, in band theory the many-body wavefunction of electrons

in a periodic potential is given by an antisymmetrized product of the Bloch states.

Due to the Pauli exclusion principle, we may have at most two electrons in each

Bloch state (one spin up, one spin down). Thus in the ground state the electrons
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fill the Bloch states starting from the lowest energy levels up to the Fermi level. If

the Fermi level lies in the middle of a band, band theory predicts that the material

will be a conductor, whereas if the Fermi level lies between bands the material is

expected to be an insulator. However, as noted above these predictions were found

not always to be in good agreement with experimental results. In particular, many

transition metal oxides with the d-electron bands only partially filled were found to

nevertheless be poor conductors or even insulators.[41]

Nevill Mott argued that if the interactions between electrons were sufficiently

large relative to the width of the band, then a single band could actually be split

into two separate bands.[43–46] In particular, if the band is more than half-filled

(that is, if the average number of particles per site is greater than unity) then there

will necessarily be sites which are doubly occupied. In that case, the close proximity

of the electrons leads to a strong Coulomb repulsion which raises the overall energy

of the state. In this way, we see that there is a gap between the states where the

band is less than half filled and those with greater than half filling. If the fermi level

lies within this gap, we have an insulating state precisely at half-filling: the Mott

insulator state. Moreover this theory suggests that a transition from conductor to

insulator occurs as the band-width is decreased relative to the Coulomb repulsion

between electrons.

The Hubbard model is the simplest model that can describe such a transition,

as it contains only the two essential terms: one representing the Coulomb repulsion

between electrons, and the other representing the energy of electronic motion between

lattice sites.[4] The Hubbard model is written as:

HHub = −t
∑

<i,j>,σ

a†iσajσ +H.c.+ U
∑

i

niσniσ̄ (1.2)
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Here a†iσ (aiσ) creates (annihilates) an electron with spin σ in a Wannier state centered

at lattice site i, and niσ = a†iσaiσ. The sum over < i, j > represents a sum over

all pairs of nearest-neighbor sites i and j. U represents the interaction energy of

two atoms on the same site, and t is the tunneling matrix element describing the

tunneling of atoms between two neighboring sites. The interaction term is sometimes

written as U/2
∑

i ni(ni − 1) where ni = ni↑ + ni↓, so as to generalize to the case of

bosonic particles where more than one particle of each spin is allowed on a site. The

Hubbard model, despite its minimalistic form, does indeed show the desired behavior

of a transition from a conducting state to a Mott insulating state as the ratio U/t

becomes sufficiently large.[49]

1.1.3 Key Approximations in Deriving the Hubbard Model

Hubbard made several simplifying approximations in deriving the model Hamil-

tonian that bears his name, such as taking all the electrons to be in a single band.

Hubbard derived the model starting from the usual k-space Hamiltonian of non-

interacting electrons in the band theory, H =
∑

kσ ǫka
†
kσakσ, and then added a

Coulomb interaction proportionate to the two-particle matrix elements of 1/r (with

r the distance between the particles) as well as adding a corresponding exchange

term. The role of the exchange term is to enforce the anti-symmetry of the fermionic

electrons, and avoid double counting the interactions between electrons due to their

role in determining ǫk in Hartree-Fock calculations. Hubbard expanded the Bloch

states in this Hamiltonian in terms of Wannier functions, as described above. In

order to simplify the calculation, he took the Wannier functions to be s-wave atomic

orbital states, even though in the transition metals Hubbard was studying the con-

duction band corresponds to d-wave orbitals. It is also this assumption that allows

us to consider only two internal states per electron (spin up and spin down).
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The expansion in Wannier functions results in a Hamiltonian which includes

Coulomb interactions for particles on any two initial and two final sites. Hubbard

estimated these matrix elements so as to determine which could be neglected.[4] The

interaction between electrons all on the same site was 20 eV. For electrons on neigh-

boring sites, the diagonal matrix element (diagonal in the basis of tensor products

of Wannier functions) was estimated to be 3 eV. Among the off-diagonal matrix

elements and diagonal matrix elements between atoms at next-nearest-neighbor or

greater separations, Hubbard found no contribution greater than 1/2 eV. Hubbard

took the relative magnitudes of each of these interaction matrix elements as a justifi-

cation for neglecting all but the largest contribution, that of the on-site interaction.

There has also been significant interest in extended Hubbard models which include

the next largest contribution, that of the diagonal matrix elements for next-nearest

neighbors.[50]

We put particular emphasis on the approximations made by Hubbard in deriving

the Hubbard model, so as to call attention to the fact that these approximations

generally do not apply to the case we consider in the bulk of this thesis, that of

strongly interacting fermions in an optical lattice. As we discuss in more detail in

the next chapter, the strong interatomic interaction ensures that multiple bands are

populated whenever two atoms come to the same site, even if all atoms were initially

in the lowest band. Thus, it is not sufficient to consider atoms only in a single lattice

band. States in higher-bands are increasingly poorly approximated by taking the

Wannier functions to be the eigenstates of a single potential well. For this reason it

is more appropriate to calculate the Wannier functions numerically using variational

methods, rather than to make some form of tight-binding approximation. Moreover,

near a broad Feshbach resonance such as is typical in experiments with 40K or 6Li, the
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interaction contributes off-diagonal matrix elements between nearest neighbors that

are non-negligible in comparison to the single-particle tunneling matrix elements.

(These are off-diagonal in reference to the basis of Wannier-state tensor products –

that is, they involve an atom moving from one site to another.) This is in contrast to

the case considered by Hubbard, where nearest-neighbor interactions and especially

off-diagonal nearest-neighbor interactions were comparatively small.

1.2 Feshbach Resonance

Feshbach resonances were first studied in the context of nuclear physics. They

describe how during neutron scattering processes it is possible to form a quasibound

nucleus at an energy level close to that of the free neutrons.[51, 52] Similarly, in

ultracold atomic gasses scattering processes can involve a resonance between the

incoming states and a quasibound diatomic molecule state.[14] As we shall see, the

hyperfine state of the atoms in the molecular bound state (known as the “closed”

channel) will be different than for the initial incoming atoms (the “open” channel).

With an applied magnetic field this results in different Zeeman shifts for the two

channels, making it possible to adjust the energy difference between the two. There

will be some magnetic field for which the closed channel bound state energy level

matches the free atom threshold in the open channel, which is the condition for

Feshbach resonance. At this point, the s-wave scattering length describing these

collisions diverges. Furthermore, the magnetic field can be adjusted to either side of

the resonance so as to tune the scattering length over a wide range of values.

1.2.1 Low Energy Scattering

At this point, it is useful to review the basics of low-energy scattering theory[53].

For a two-particle scattering process with energy Ek = ~k/2mr the Schrödinger
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equation takes the form:

(

− ~
2

2mr
∇2 + V (r)

)

ψk(r) = Ekψk(r) (1.3)

where r is the relative coordinate and the reduced mass mr = m/2 for particles of

equal mass.

We can write the solution for large r as a plane wave plus an outgoing spherical

wave. For spherically symmetric potential V (r) = V (r), this takes the form:

ψk ∼ eik·r + fk(θ)
eikr

r
(1.4)

ψ can also be expanded in terms of partial waves (ul,k(r)/r)Y
m
l (θ, φ), where

Y m
l (θ, φ) are spherical harmonics and ul,k(r) solves the equation:

[

− d2

dr2
+
l(l + 1)

r2
+

2m

~2
V (r) − k2

]

ul,k(r) = 0 (1.5)

Thus the effective potential includes a centrifugal barrier:

Vc =
~

2l(l + 1)

2mr2
(1.6)

At low temperatures the interaction energy of the particles is two small to overcome

this barrier, and thus V (r) can only produce scattering for the s-wave (l = 0) case.

(For Lithium, the centrifugal barrier is 7mK × kB [54]).

Thus, instead of the usual sum over partial waves, f(k) is given by the l = 0 case

alone:

fk =
1

k
eiδ0(k) sin(δ0(k)) (1.7)

where δ0(k) is the s-wave scattering phase shift. The cross section is:

σ =

∫

|fk|2 dΩ =
4π

k2
sin2(δ0(k)) (1.8)

and the s-wave scattering length is given by: as = − limk→0 tan(δ0(k))/k
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For the case of identical fermions, s-wave scattering is prevented by the Pauli

exclusion principle. But as shown above, for sufficiently low energies there can be

only s-wave scattering, due to the centrifugal barrier. Thus, in a sufficiently cold

vapor of identical fermions, the particles do not interact. In order to produce a

system of ultracold interacting fermions it is therefore necessary to have at least two

species of particle. This can be achieved by using fermionic atoms in two different

hyperfine states. (Interactions are also necessary to maintain thermal equilibrium as

the atoms are cooled to low temperature, but in that case we have the alternative of

placing all the fermions in a single state but allowing them to interact with a vapor

of bosonic particles. This is known as “sympathetic cooling”.)

1.2.2 Hyperfine states of 6Li and 40K

For an alkali atom in the ground state the electron angular momentum (quantum

number J) corresponds to the spin of the valence electron. (Filled electron shells

cannot contribute, and the groundstate has zero orbital angular momentum.) Thus,

the total angular momentum is the sum of the electron spin and the nuclear spin.

For a given nuclear spin quantum number I, the hyperfine energies for each of the

quantum numbers F (total spin) and mF can be determined (as a function of the

magnetic field B) from the Breit-Rabi formula[55]:

Ehf(B,F = I ± 1

2
, mF ) = − ∆E0

2(2 + I)
+mF gIµBB ± ∆E0

2

√

1 +
4mF

2I + 1
x+ x2 (1.9)

where x = (gI−gJ)µBB/∆E0 and ∆E0 is the separation between the hyperfine levels

at B = 0.

6Li has nuclear spin 1, giving rise to six groundstate hyperfine levels, whereas 40K

has nuclear spin 4, giving rise to eighteen groundstate hyperfine levels (see Fig. 1.1).

mF is a good quantum number over any magnetic field strength, whereas mJ and
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Figure 1.1: Groundstate hyperfine structure for the isotopes most commonly used in experiments
with ultracold fermions. Left figure: Hyperfine Structure of 6Li (ahf = 152.1MHz) (from [1]).
Right figure: Hyperfine Structure of 40K (from [2])

mI are only good quantum numbers in the limit of strong fields, where the electron

spin essentially decouples from the nuclear spin.

1.2.3 s-wave Scattering Length near Feshbach Resonance

Two atom scattering processes will depend on the initial hyperfine states of the

atoms. As noted above, at low temperatures fermions can only be scattered if they

are in two different hyperfine states. The hyperfine interaction may couple these

states to other hyperfine states, but if those states have higher total energy in the

limit of large separation between the atoms, then as the atoms move apart they

must ultimately end up back in the channel in which they started. In this sense

we may speak of the “open channel” (with the lower potential at large separation

distances) and the “closed channel” with the higher potential at large separations.

Even though the closed channel is excluded as a final state, there may be bound

states in the “closed channel” which are allowed as an intermediate state. Thus, the

bound states contribute a correction to the final state that is second order in the

hyperfine interaction (or whatever part of the Hamiltonian takes one hyperfine state

to another). This contribution is greatest when the energy of the bound state is equal
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to the incident scattering energy – this is the condition for a Feshbach resonance.

The importance of Feshbach resonance in atomic physics stems from the fact that,

when the magnetic moment of the atoms in the closed channel differs from that in

the open channel, the energy levels in the two channels experience different Zeeman

shifts in response to an applied magnetic field. Thus, the energy of the closed channel

bound state can be tuned relative to the open channel, going from one side of the

Feshbach resonance to the other simply by changing the strength of the applied

magnetic field.

The scattering length can be readily shown to depend on the energy difference

between the detuning of closed channel bound state from Feshbach resonance, and

thus on the applied magnetic field.[56] The bound state radial wave function φ(R)

solves the equation:

(

− ~
2

2µ

d2

dR
+ U(B,R)

)

φ(R) = ǫ(B)φ(R) (1.10)

where µ is the reduced mass and U(B,R) is the closed channel effective potential. If

B0 is the magnetic field where the energy of the closed channel bound state crosses

the open channel threshold energy (ǫ(B0) = 0), then for B close to B0 we can write:

ǫ(B) = µco (B − B0) (1.11)

where µco is the difference in magnetic moments between the open and closed chan-

nels.

For B far from resonance, the closed channel does not contribute to the scattering.

In that case, the radial wave function ψ(R) in the open channel is:

(

− ~
2

2µ

d2

dR
+ Ubg(R)

)

ψ(R) = ǫ0ψ(R) (1.12)

where Ubg is the open channel effective potential and ǫ0 is collision kinetic energy.
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As R → ∞, we have:

ψ(R) →
√

2µ

π~2k
sin (kR + ξbg) (1.13)

where k =
√

2µǫ0/~2.

If we take B close to resonance so that the closed channel bound state contributes

to scattering, we find that the open channel wavefunction ψ(R, ǫ, B) has the same

asymptotic form but with a change in the phaseshift ξ:

ψ(R, ǫ0, B) →
√

2µ

π~2k
sin (kR + ξ(ǫ0, B)) (1.14)

where ξ(ǫ0, B) = ξbg + ∆ξ(ǫ0, B).

For small ǫ(B) (i.e., the closed channel bound state close to the open channel

threshold), we have:

tan (∆ξ(ǫ0, B)) =
Γ(ǫ0)

2 (ǫ0 − ǫ(B) − δǫ(B))
(1.15)

where δǫ(B) is a shift of the bare resonance crossing point, and Γ(ǫ0) is the excited

state decay width, which can be determined from Fermi’s golden rule: Γ(ǫ0) =

2π |〈φ|V |ψ〉|2

The scattering length is given by:

as = − lim
k→0

tan(ξ(ǫ0, B))

k
≈ − lim

k→0

tan(ξbg)

k
− lim

k→0

tan(∆ξ(ǫ0, B))

k
(1.16)

for kas ≫ 1. Thus,

as = abg −
Γ(ǫ0)

2k (ǫ0 − ǫ(B) − δǫ(B))
= abg −

Γ(ǫ0)

2kµco (B −B0 − δB0)

= abg

(

1 − W

B − B0 − δB0

)

(1.17)

where the resonance width W is given by:

W =
Γ(ǫ0)

2kabgµco
=
π |〈φ|V |ψ〉|2
kabgµco

(1.18)
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(W can be positive or negative depending on the sign of ∆µabg)

Redefining B0 as the true resonance crossing B0 + δB0, this is the usual formula

for the scattering length near a Feshbach resonance:

as = abg

(

1 − W

B − B0

)

(1.19)

Thus we can see that near a Feshbach resonance the scattering length can be

tuned over a wide range of positive and negative values as the applied magnetic field

is varied, and that it diverges at the resonance point. It is worth noting, however,

that the scattering cross section remains finite:

σ =
4πa2

s

1 + k2a2
s

(1.20)

Although for simplicity the case of a single closed channel bound state coupling

to the open channel was treated above, in practice one may have multiple bound

states in different closed channels coupling to a single open channel. Nevertheless,

one finds that the above expression for the scattering length holds, albeit with a

somewhat more complicated derivation of W and B0 than given above. In practice,

the location and width of the resonance are determined by experiment.

The most frequently utilized Feshbach resonance in experiments on 6Li occurs

for the |1/2, 1/2〉, |1/2,−1/2〉 (open) channel and is located at B0 = 834G, with

an extremely large width W = 300G. 40K experiments have utilized a Feshbach

resonance in the |9/2,−9/2〉, |9/2,−7/2〉 channel located at B0 = 202G and with a

width of W = 8G.[57]

1.2.4 The Two Channel Model of Feshbach Resonance

We can write an effective Hamiltonian that describes ultracold fermions near a

Feshbach resonance. Proposed Hamiltonians for this purpose fall into two general
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classes: two channel models and single channel models. Two channel models include

both the closed channel molecules and open channel atoms explicitly, whereas in

single channel models the closed channel state is adiabatically eliminated, leaving a

Hamiltonian in terms of open channel atoms with an effective interaction determined

by the scattering length as.[58, 59] For the single-channel model to be valid, it is

necessary that the closed channel population is small. Here we use the more generally

valid two-channel model, such as was first proposed by Holland et al.[60–62]

H − µN =
∑

k,σ

(ǫk − µ) a†kσakσ +
∑

k

(ǫk/2 − 2µ+ ν) b†kbk

+
α√
V

∑

k,q

(

b†qa−k+q/2,↓ak+q/2,↑ +H.c.
)

(1.21)

+
Ubg

V

∑

k,k′,q

a†
k+q/2,↑a

†
−k+q/2,↓a−k+q/2,↓ak+q/2,↑

where a†kσ creates an open-channel atom in hyperfine state σ and b†k creates an closed-

channel molecule. The total number of particles is N =
∑

k,σ a
†
kσakσ + 2

∑

k,σ b
†
kbkσ,

µ is the chemical potential, and V is the quantization volume. Here α and Ubg and ν

represent unrenormalized values of the atom-molecule coupling rate, the background

atom scattering rate, and the detuning of the closed-channel molecules from the

open-channel free atom threshold energy.

However, some renormalization of these parameters is clearly required. This is

because in writing the Hamiltonian the tightly bound closed-channel molecules have

been taken to be point particles, and the interatomic couplings treated as zero-

range δ functions. This is invalid at small distances (or, equivalently, at large k)

which leads to the so-called ultraviolet divergence resulting in our unrenormalized

parameters taking on infinite values. Fortunately we can transform these parameters

to renormalized ones, in which the divergent part has been separated out. These
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renormalized or “physical” parameters are given by the standard renormalization

relations Ubg = ΓU
(p)
bg , α = Γα(p), and ν = ν(p) + Γ(α(p))2

∑

k (2ǫk)−1 where Γ−1 =

1−U (p)
∑

k (2ǫk)
−1. The physical parameters can be expressed in terms of empirically

measurable values such as the scattering length. In particular, U
(p)
bg = 4π~

2abg/m

and ν(p) = µco(B−B0). The atom-scattering rate Us is related to the atom-molecule

coupling and the detuning by Us = −(α(p))2/ν(p) = −(α(p))2/µco(B − B0). We also

have Us = 4π~
2as/m ≈ −4π~

2abgW/m(B − B0) where the last approximation is

from equation (1.19) close to resonance. Thus, we find (α(p))2 = 4π~
2abgµcoW/m.

In subsequent sections we generally drop the superscript (p) when it is clear we’re

referring to the physical parameters.

1.3 Optical Lattices and Superlattices

Optical lattices have been described as “artificial crystals of atoms bound by

light.” That is, instead of a naturally occurring crystal where atoms are arranged

periodically due to interatomic forces, in an optical lattice the periodic arrangement

of atoms results from their interactions with an optical standing wave. The standing

wave is created by combining two laser beams of equal wavelength propagating in

opposite directions. In practice this is usually achieved by reflecting a single laser

beam back on itself with a fixed mirror. A one-dimensional lattice consisting of

only a single retroreflected beam produces confinement in sufficiently low-energy

atoms along the direction of the beam, while leaving them unconfined in the other

directions. One can add additional lasers orthogonal to the first, so as to produce

confinement in two or three dimensions. (Changing the angle between the beams

can produce different lattice geometries, such as the triangular lattice, but in this

work we will focus on the case of a square lattice.)
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1.3.1 Dissipative Forces and Gradient Forces

Optical lattices in general exert two types of forces on atoms: dissipative forces

and gradient forces.[63, 64] Dissipative forces can be understood as arising from the

scattering of the incident field into unoccupied modes of the vacuum field. Because

such scattering is irreversible, these forces are non-conservative. Gradient forces, in

contrast, are conservative forces which can be understood as arising from scattering

from one traveling component of the incident field into the counterpropagating com-

ponent. An alternative but equivalent explanation is that the standing wave field

produces a spatially modulated Stark shift in the atoms’ energy, and the force arises

as the gradient of this energy shift.

Much of the early work on what has come to be known as optical lattices focused

on the use of the dissipative force to achieve cooling. In particular, the optical

molasses introduced by Chu et al. in 1985 was essentially an optical lattice, with

identical counterpropagating laser beams along three orthogonal axes.[65] However

at the time the emphasis was on reducing the speed of the atomic motion, and thus

the temperature. Ordering in real space was only observed after the discovery of

sub-Doppler cooling by W. D. Phillips group a few years later.[66]

The optical molasses uses the Doppler cooling method proposed by Hänsch and

Schawlow in 1975.[67] If the beams are tuned slightly below the resonant frequency

for an atomic transition, then those beams that oppose the atomic velocity are blue-

shifted towards resonance while the beams that align with the atom’s velocity are

red-shifted further from resonance. This means that light is scattered at a greater

rate from those beams that oppose the atom’s velocity. Because there is no preferred

outgoing direction of the scattered light, the average force is in the direction of the

incident light. This produces a net force in opposition to the atomic motion, and
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thus, cooling.

Calculations using the two-level approximation to the atom show that there is

a limit on the cooling in optical lattices attainable via the dissipative force (the

Doppler limit), and typical lattice depths are not such that the atoms can be local-

ized to particular wells without additional cooling. In fact, sub-Doppler cooling was

found to be achievable in optical lattices.[66] In contrast to Doppler cooling, this

sub-Doppler cooling, due to the ”Sisyphus effect”, can only be understood by con-

sideration of more than two levels of the atom.[68, 69] In brief: For certain choices

of the beam polarizations (notably the lin⊥lin polarization in which the two beams

are given orthogonal linear polarizations), atoms in two different internal states will

feel different standing wave potentials, such that the maxima of one potential are at

the minima of the other. Cooling is then achieved as the atoms continually climb

to the top of a potential well (losing kinetic energy on the way) only to be optically

pumped into the other state and thus the bottom of the well.

In contrast, if the fields are far-detuned from any atomic transition, it is the

gradient force that dominates. In particular, if we consider the interaction between

an optical field oscillating with angular frequency ω and two atomic levels with

frequency separation ω0, so that the detuning is δ = ω0 − ω, then for large δ the

dissipative force is proportionate to |Ω0|2 /δ2 and the gradient force is proportionate

to |Ω0|2 /δ, where Ω0 is the Rabi frequency.[64] Thus for sufficiently large |δ| the

dissipative force can be neglected, while the gradient force can still be nonnegligible

for large enough values of |Ω0|. Ordinarily the light force experienced by an atom with

velocity v depends on the Doppler shifted frequency of the light, so that instead of a

detuning δ we have δ±k·v (where the standing wave is formed by counterpropagating

plane waves with wavevectors k, −k). However, for |δ| ≫ |k · v the gradient force is
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essentially the same for atoms of any velocity, namely:

F(r) = −~k |Ω0|2
4δ

sin (2k · r) (1.22)

This satisfies F = −∇ (∆E) for the spatially varying energy shift

∆E = −~k |Ω0|2
4δ

cos2 (k · r) (1.23)

Thus we see that all the atoms experience the same periodic potential, and in par-

ticular we note that the amplitude of this potential can be readily controlled by

changing the amplitude of the beams (which is proportionate to the Rabi frequency

Ω0, while the spacing between minima is just controlled by the beams’ wavelength.

The far off-resonant trap is of particular importance in trapping ultracold atoms

which have been cooled well below the Doppler limit. While the dispersive force can

be used for trapping, as in the magneto-optical trap (MOT), the scattering of photons

into the vacuum field modes produces a recoil in the atom (in a random determined

direction) and leads to heating. As this recoil energy is well below the Doppler

limit, it only becomes relevant for sub-Doppler cooling. In order to avoid this recoil

heating, the sub-Doppler cooled atoms must be trapped by some conservative force.

While magnetic trapping is possible for certain states (the low-field seeking states),

those states whose energy is reduced in high magnetic fields cannot be magnetically

trapped, as this would require the magnetic field to have a local maximum, which

is forbidden by Maxwell’s equations. In fact, the hyperfine states of 40K and 6Li

associated with the commonly utilized Feshbach resonances are high-field seeking

(see figure 1.1), and thus for experiments with ultracold atoms in these states a far-

off resonant optical trap is required in the final stage. Typical experiments utilize

Doppler cooling in a MOT in an earlier stage, followed by forced evaporative cooling

in a far off-resonant trap or magnetic trap (with the states transferred to magnetically
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trappable states as necessary) to achieve a degenerate fermi gas. Because of the

aforementioned suppression of scattering for fermions at low temperatures, either

two interacting fermion spin-species or else some sympathetic cooling by interactions

with bosons is required so as to maintain thermal equilibrium during the evaporative

step.

1.3.2 Optical Superlattices

While even the simple optical lattice described above offers substantial control over

the many-body physics through the continuously-tunable lattice depth and lattice

spacing, further control can be achieved by superimposing additional lattice beams.

This is exactly the definition of an optical superlattice: a superposition of multiple

optical standing waves. In the most basic case, we simply combine two standing

waves one of which has twice the wavelength of the other. Thus we have

V (x) = −VL sin2
(πx

a

)

− VS sin2

(

2πx

a
− φ

)

(1.24)

where VL and VS are the depths of the individual lattices with lattice spacings a and

a/2, respectively, and φ is the phase difference between these two lattices. This leads

to a lattice with alternating higher and lower barriers. Specifically, if the two lattice

beams are in phase, we just have an array of double wells (see figure 1.2(a)), where

the double well central barriers can be tuned separately from the barriers between

double wells. If instead the two standing waves are out of phase, the double wells

become asymetrical, with the minimum of one well higher than the other (see figure

1.2(b)). This energy bias between the neighboring wells is controlled by the phase

shift between the two simple lattices, which is itself a tunable parameter.

In particular, the optical superlattice was used in recent experiments to study

superexchange interactions[70] and second order tunneling[71]. In these experiments
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Figure 1.2: The super-lattice potential −VL sin2
(

πx
a

)

− VS sin2
(

2πx
a − φ

)

vs. x, for 0 ≤ x ≤ a. In
these figures we take VS = 3VL, but the formulas shown are general. (a) The φ = 0 case: For

4VS > VL there are two minima located at x0 = a
2π cos−1

(

− VL

4VS

)

and x1 = a − x0. The height of

the central barrier is VS

(

1 − VL

4VS

)2

. (b) The φ > 0 case: The phase difference shifts the positions

of the minima and introduces a bias between the two wells. For VS > VL the positions of the wells
are approximated by the expressions shown in the figure, so that the bias between the minima is
VL sin(φ). In this figure we take φ = π

4 .
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the standing waves were produced by a 765 nm Titanium-Sapphire laser and a 1530

nm fibre laser. The difference in wavelength can be measured by recording the beat

note between the two (after frequency-doubling part of the long-wavelength beam),

and a feedback circuit allows the fibre laser’s frequency to be adjusted, so as to

tune the frequency difference over a 1 GHz range. If both the long-wavelength and

short-wavelength beam are retroreflected by the same mirror, this fixes the phase

of each at that point. By placing that mirror well beyond the atomic cloud (25

cm beyond in the Mainz experiment), one ensures that the two beams will have

gained a phase difference over the course of traversing that difference, and that

phase difference depends on the tunable frequency difference between the two. In

contrast, because the atomic cloud itself extends over a much shorter region in space,

the phase difference between the beams is roughly constant over the atoms.

1.4 Chapter Summary and Thesis Outline

In this chapter we have introduced the physical system to be studied in this thesis,

that of two-component ultracold fermionic atoms in an optical lattice, with strong,

tunable interatomic interactions due to a Feshbach resonance controlled by an exter-

nal magnetic field. We note that this system can be described by a generalization of

the famous Hubbard model. This general Hubbard model contains all the terms of

the usual Hubbard model plus additional terms representing correlated tunneling –

that is, an enhanced tunneling among atoms of one hyperfine spin-state if additional

atoms of the opposite spin are present on either site. The derivation of this Hamil-

tonian we reserve for the subsequent chapter. Here we instead have focused on the

origins of Hubbard’s original model, with particular emphasis on the approximations

used in its derivation. (We took a brief detour to discuss the Bloch and Wannier state
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formalism, which will be of use throughout this thesis.) We noted in particular that

the optical lattice system under consideration breaks many of Hubbard’s key assump-

tions. That it is nevertheless well-described by a single-band Hubbard like model

may at this point be quite surprising. The remainder of this introductory chapter

outlined certain key experimental techniques, namely the use of Feshbach resonance,

and the implementation of optical lattices and in particular the superlattices which

further break the discrete translational symmetry of the original lattice.

The remainder of this dissertation will cover the following general topics:

• We review the origins of the generalized Hubbard model (GHM) as an effective

Hamiltonian for strongly interacting fermions in an optical lattice. Specifically,

we present both a direct derivation of this Hamiltonian[3] and a separate argu-

ment that this is in fact the most general possible Hamiltonian for the system

that respects certain key symmetries such as the SU(2) spin symmetry, and

given certain conditions on the lattice depth.[24]

• We derive the two body-states allowed by the GHM. We discuss two motivations

of this search, one being to simplify comparisons between the GHM parameters

and the full two-body wavefunction as given by the Schrödinger equation for a

periodic potential. This presents a possible means for examining the relationship

between the GHM parameters and the experimentally controllable parameters

such as lattice depth and applied magnetic field. The other motivation is to

extrapolate the many-body physics from that of the two-body solutions, in

analogy to the standard BCS theory.

• We propose a means of experimentally measuring the GHM parameters and

empirically confirming that the model has the form of the generalized Hubbard

model. This proposal uses an optical superlattice to subdivide the lattice into
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pairs of neighboring sites, such that interactions are highly suppressed except

within these pairs. In similar technique has been used in recent experiments

on optical lattice bosons.[70, 71] Because the physics of the GHM is exactly

solvable in the two-site system, this allows us to unambiguously compare the

experimental signatures to the predictions of the theory.

• We consider the case of a lattice subdivided into four-site square plaquettes,

such that atomic tunneling and interactions between different plaquettes are

highly suppressed. Such a configuration can be achieved with an optical super-

lattice. We exactly determine the eigenstates and eigenenergies of this system

for various filling numbers, taking particular note of changes in the symmetry

of the plaquette states as we adjust the dressed molecule detuning (a param-

eter controlled by the magnetic field). The four-site plaquette is of particular

interest because it is the smallest grouping of lattice sites that can exhibit d-

wave rotational symmetry, and is thus a potential building block for many-body

states with d-wave excitations.

• We examine the generalized Hubbard model on a lattice of weakly coupled four-

site plaquettes. This is realizable in experiments by a superlattice configuration

similar to that of the uncoupled-plaquette case, but with the potential barrier

between plaquettes somewhat reduced. The weakness of the interplaquette cou-

pling relative to the intraplaquette interactions allows the system to be studied

by means of degenerate perturbation theory. This yields an effective Hamil-

tonian for which the vacuum state and excitations correspond to the states

of the generalized Hubbard model on non-interacting plaquettes. We compare

these results to similar results for the ordinary Hubbard model in the highly-

plaquettized limit, noting the importance of symmetry in fixing the form of the
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effective Hamiltonian. Lastly, we consider a mean field treatment of this effec-

tive Hamiltonian, and make comparisons to the d-wave superconducting state

with nodal quasiparticles which occurs in high-Tc superconductors.



CHAPTER II

Generalized Hubbard Model for Fermions in an Optical

Lattice near Feshbach Resonance

In the previous chapter we briefly reviewed the Hubbard model, as well as the

use of optical lattices and Feshbach resonance in experiments with ultracold atoms.

Before moving on to discuss new results concerning the general Hubbard model

as it applies to strongly-interacting fermions in optical lattices, it is useful to first

review the theoretical argument for believing the model describes this system, as

given in References [3, 24]. That is the focus of this chapter. We will present a direct

derivation of this Hamiltonian, and will show by a different approach that the general

Hubbard model is in fact the most general Hamiltonian allowed for this system by

considerations of the Hilbert space and spin symmetry.

2.1 Field Operator Hamiltonian

We consider fermionic atoms prepared in two hyperfine states (labeled with

spin index σ =↑, ↓). These might for instance be the |F = 1/2, mF = 1/2〉

and |F = 1/2, mF = −1/2〉 states of 6Li, or the |F = 9/2, mF = −9/2〉 and

|F = 9/2, mF = −7/2〉 states of 40K. In each case, there is a wide Feshbach reso-

nance (near B = 834G for 6Li and B = 202G for 40K) near which atoms in these two

states couple to a tightly bound diatomic Feshbach molecule. We take the atoms to

31
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have been loaded into a far-detuned optical lattice generated by counterpropagating

laser beams in each orthogonal direction, each with equal amplitude and with wave

number k0 = 2π/λ.

We can split the full Hamiltonian of this system into two parts, H = H0 + HI ,

where H0 is due to the kinetic energy of the particles and their interactions with the

lattice potential, and HI is due to the interactions between the particles. Expressed

in terms of field operators Ψ
(a)
σ (r) for atoms and Ψ(m)(r) for bare molecules (so

named to differentiate them from the dressed molecules we introduce subsequently),

the Hamiltonian is given by:

H0 =
∑

σ

∫

Ψ(a)†
σ (r) (Ta + Va)Ψ(a)

σ (r)d3r +

∫

Ψ(m)†(r) (Tm + Vm + νb)Ψ(m)(r)d3r

(2.1)

H1 = α

∫

Ψ(m)†(r)Ψ
(a)
↑ (r)Ψ

(a)
↓ (r)d3r +H.c. + Ubg

∫

Ψ
(a)†
↓ (r)Ψ

(a)†
↑ (r)Ψ

(a)
↑ (r)Ψ

(a)
↓ (r)d3r

(2.2)

The kinetic energy is Ta = 2Tm = −~
2∇2/2m (where m is the mass of the atoms),

the lattice potential energy is Va = Vm/2 = V0

(

sin2 k0x+ sin2 k0y + sin2 k0z
)

, and

νb is the detuning of the bare molecules relative to the free atom threshold in the

open channel. The values of the atom-molecule coupling rate α and the background

scattering rate of the atoms Ubg can be determined from empirical measurements of

the s-wave scattering length:

as = abg

(

1 − W

B − B0

)

(2.3)

Measuring as for different magnetic field strengths B is sufficient to determine the

background scattering length abg, the resonance width W and the magnetic field B0

at which the resonance occurs. (Indeed, all these parameters have been measured
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for the Feshbach resonances of 6Li and 40K referred to above.[72, 73]) As shown in

the previous chapter, we can express α and Ubg in terms of these measured values as

α =
√

4π~2µcoW |abg| /m and Ubg = 4π~
2abg/m.

2.2 Wannier Function Expansion of H0 and HI

At this point we wish to transform from a Hamiltonian in terms of spatial coor-

dinates to one in terms of lattice sites. This is accomplished by expanding the field

operators in terms of Wannier functions:

Ψ(a)
σ (r) =

∑

ip

aipσw
(a)
p (r − ri) (2.4)

Ψ(m) (r) =
∑

ip

bipw
(m)
p (r − ri) (2.5)

where w
(a)
p (r − ri) and w

(m)
p (r− ri) are the Wannier functions for atoms and

molecules, respectively, centered at site ri and for lattice bands p = (px, py, pz).

(We take the Wannier functions to be products of the single-dimensional Wannier

functions, w
(a)
p (r − ri) = w

(a)
px (x− xi)w

(a)
py (y − yi)w

(a)
pz (z − zi).) aipσ and bip are

the annihilation operators for the corresponding modes. With this expansion, H0

becomes

H0 =
∑

ip

(

ǫ(m)
p + νb

)

b†ipbip+
∑

ipσ

ǫ(a)
p a†ipσaipσ+

∑

ip

∑

j∈N(i)

(

t(m)
p b†ipbjp +

∑

σ

t(a)
p a†ipσajpσ

)

(2.6)

Here N(i) represents nearest neighbors of i, and we have assumed that the lattice is

sufficiently deep that we can neglect next-nearest-neighbor terms. We can estimate

the single-site terms with a harmonic approximation to the potential well. This

yields: ǫ
(a)
p = ǫ

(m)
p ≈ [2 (px + py + pz) + 3]

√
V0Er where Er = ~

2k2
0/2m is the atom

recoil energy. Meanwhile the tunneling rates t
(a)
p and t

(m)
p can be determined by

computing the band structure using variational methods.[48]
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Figure 2.1: Normalized atom tunneling rate tn ≡ t
(a)
0

/Er and normalized overlaps of

atomic and molecular Wannier functions: u0 ≡
√

λ/2
∫

(

w
(m)
0 (x)

)∗ (
w

(a)
0 (x)

)2

dx (on-site),

u1 ≡
√

λ/2
∫

(

w
(m)
0 (x)

)∗
w

(a)
0 (x)w

(a)
0 (x + λ/2)dx (neighboring site) all calculated in the low-

est band and plotted vs. the lattice depth (in units of recoil energy) V0/ER. The
marked datapoints indicate the exact numerical results, while the dotted lines are fits to

the formulas tn ≈ (3.5/
√

π) (V0/Er)
3/4

exp
(

−2
√

V0/Er

)

, u0 ≈ 0.77 (V0/Er)
1/4

, and u1 ≈

0.52 (V0/Er)
3/4

exp
(

−2
√

V0/Er

)

The nearest-neighbor atom-molecule coupling rate in the low-

est band is given by c
(am)
1;000

= α (λ/2)
(−3/2)

u2
0u1, and we observe that for the broad Feshbach

resonance (and thus large α) in typical experiments c
(am)
1;000

exceeds t
(a)
0

[Source: Reference [3]]

We likewise expand HI in terms of Wannier functions, keeping both on-site and

nearest neighbor terms, while taking longer-range terms to be negligible. This dif-

fers from earlier work, in which nearest neighbor terms were also neglected.[17–

20]. In fact, for typical wide Feshbach resonance the atom-molecule coupling rate α

is great enough that it can contribute nearest neighbor interactions which exceed

the tunneling rate t
(m)
a . As shown in figure 2.1, the ratio between the nearest-

neighbor atom-molecule coupling rate and the atom tunneling rate in the lowest

band is well-approximated by c1;00,0/t
(a)
0 ≈ 0.44

(

αλ−3/2/Er

)
√

V0/Er. We estimate

c1;00,0/t
(a)
0 ≈ 10

√

V0/Er for 6Li and c1;00,0/t
(a)
0 ≈ 1.4

√

V0/Er for 40K, where in

this estimation we take the following parameters for 6Li (40K): W = 180G (8G),

abg = −2000aB (170aB), λ = 1µm (0.8µm) and µco ≈ 2µB (where aB is the Bohr

radius and µB is the Bohr magneton). Thus, the atom-molecule couplings between

neighboring sites cannot be neglected in consideration of the multi-site physics. With
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the Wannier function expansion, the interaction Hamiltonian is thus:

HI =
∑

ipss′

(

c
(am)
0;pss′b

†
ipais↑ais′↓ + H.c.

)

+
∑

ipqss′

c
(aa)
0;pqss′a

†
ip↓a

†
iq↑ais↑ais′↓

+
∑

ipss′

∑

j∈N(i)

[

c
(am)
1;pss′b

†
ip (ais↑ajs′↓ − ais↓ajs′↑) + H.c.

]

(2.7)

+
∑

ipss′

∑

j∈N(i)

[

c
(am)
2;pss′b

†
ipajs↑ajs′↓ + H.c.

]

where c
(am)
0;pss′ ≡ α

∫

w
(m)∗
p (r)w

(a)
s (r)w

(a)
s′ (r)d3r, c

(aa)
0;pqss′ ≡

Ubg

∫

w
(a)∗
p (r)w

(a)∗
q (r)w

(a)
s (r)w

(a)
s′ (r)d3r, c

(am)
1;pss′ ≡ α

∫

w
(m)∗
p (r)w

(a)
s (r)w

(a)
s′ (r + δr)d3r,

c
(am)
2;pss′ ≡ α

∫

w
(m)∗
p (r + δr)w

(a)
s (r)w

(a)
s′ (r)d3r. Here δr gives the difference in the posi-

tions of two neighboring sites.

2.3 Effective Single-Band Hamiltonian

The Hamiltonian derived thus far seems very complicated. It includes on-site

and nearest-neighbor couplings between atoms and bare molecules in many lattice

bands. Fortunately, this Hamiltonian can be greatly simplified by taking advantage of

a large separation between the various energy scales of the system. In particular, for

typical experiments the band gap Ebg ∼ 2
√
V0ER and the on-site interaction energy

Eon ∼ cam
0;pss′ are much larger than the atom tunneling rate Et ∼ t

(a)
p and off-site

interaction energy Eoff ∼ cam
1;pss′. (For instance, for 40K with a typical lattice depth

of V0 = 10ER, these are estimated as Eon = 23ER, Ebg = 6.3ER, Eoff = 0.09ER, and

Et = 0.02ER.[3])

Taking (Eon, Ebg) ≫ (Eoff , Et), we can solve the single-site problem while initially

neglecting the intersite interactions. Considering the single-site terms from both H0
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and HI , we see that the single-site Hamiltonian is

Hi =
∑

p





(

ǫ(m)
p + νb

)

b†ipbip +
∑

σ

ǫ(a)
p a†ipσaipσ +

∑

j∈N(i)

(

t(m)
p b†ipbjp +

∑

σ

t(a)
p a†ipσajpσ

)





+
∑

pss′

(

c
(am)
0;pss′b

†
ipais↑ais′↓ + H.c.

)

+
∑

pqss′

c
(aa)
0;pqss′a

†
ip↓a

†
iq↑ais↑ais′↓ (2.8)

For a single atom in lattice band p, the energy is just ǫ
(a)
p . For two atoms of

opposite spin on a single site, the atom-molecule coupling results in a state which is

a superposition of a pair of open-channel atoms and a closed-channel bare molecule.

We refer to these two-atom eigenstates of the single-site Hamiltonian as “dressed

molecules”. The dressed molecule states (numbered by an index µ) can be written

as Ψiµ = d†iµ |0〉, where |0〉 is the vacuum state and d†iµ is the dressed molecule cre-

ation operator defined by d†iµ =
∑

p χµpb
†
ip +

∑

pq γµpqa
†
ip↓a

†
iq↑. The coefficients χµp

and γµpq are determined by solving the Schrödinger equation Hi |Ψiµ〉 = Eµ |Ψiµ〉

(where Eµ is the corresponding eigenenergy) and from the normalization condition

∑

p χ
∗
µpχµ′p +

∑

pq γ
∗
µpqχµ′pq = δµµ′ . This sort of problem has been solved in Ref. [16],

taking a harmonic approximation to the potential and applying an appropriate renor-

malization procedure. (The need for renormalization can be seen as a consequence

of treating dressed molecules as point-particles, which results in an ultraviolet diver-

gence.) Note that the eigenenergy Eµ implicitly depends on the applied magnetic

field B, due to the contribution from νb.

Because the separation between eigenenergies Eµ is on the order of the band gap,

if any particular energy Eµ0
is tuned (via the magnetic field) close to the two-atom

free energy of a particular band p0, it will be far from the two-atom free energy for

all other bands. That is, if
∣

∣

∣
Eµ0

− 2ǫ
(a)
p0

∣

∣

∣
≪ Ebg, then the multi-site terms of the

Hamiltonian (which are much smaller than the band gap) can couple atoms in band

p0 only to the dressed molecule state dµ0
, and vice versa. This means that if the
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system is prepared with all atoms initially in the band p0, then only four different

single-site states are possible: |0〉, |σ〉 ≡ a†ip0σ |0〉 for σ =↑, ↓, and |d〉 ≡ d†iµ0
|0〉. For

example, the atoms might be prepared in the lowest band and coupled to the lowest

energy dressed molecule eigenstate. Here we have assumed that the average filling

number n̄ is less than 2, so that there are only one or two atoms per site (sites with

more than two particles being separated by an energy difference on the order of the

band gap).

We can thus project the full Hamiltonian onto the Hilbert space spanned by tensor

products of these four single site states. That is, we apply the projector P =
⊗

i Pi

where Pi = |0〉i 〈0| + |↑〉i 〈↑| + |↓〉i 〈↓| + |d〉i 〈d|. The full Hamiltonian Heff ≡ PHP

takes the form

Heff =
∑

i

∆(B)d†idi +
∑

i,j∈N(i)

[

tdPd
†
idjP +

∑

σ

(

taPa
†
iσajσP + tdad

†
idja

†
jσaiσ

)

]

+
∑

i,j∈N(i)

[

gd†i (ai↑aj↓ − ai↓aj↑) + H. c.
]

(2.9)

where ∆(B) ≡ Eµ0
(B) − 2ǫ

(a)
p0 , g ≡ γ∗µ0p0p0

t
(a)
p0 /2 +

∑

q χ
∗
µ0q
c
(am)
1;q,p0,p0

, ta ≡ t
(a)
p0 ,

tda ≡ −
∑

q |γµ0qp0
|2 t(a)

q − 2Re
(

∑

q,s χ
∗
µ0q
c
(am)
1;qp0s

γµ0sp0

)

and td ≡
∑

q |χµ0q|2 t
(m)
q +

2Re
(

∑

q,s,s′ χ
∗
µ0q
c
(am)
2;qss′γµ0s′s

)

. To simplify the notation we have omitted the indices

p0 and µ0 on the operators aiσ and di in Heff , as Heff is effectively a single-band

model. (It is important to remember, however, that the dressed molecule state is

actually a multiband superposition.) We include the explicit dependence of ∆ on

the magnetic field B (which controls the energy of the dressed molecule state.)

2.4 Generalized Hubbard Model

The Hamiltonian Heff can be seen as describing a resonance between local dressed

molecule states d†i |0〉 and two-site atomic valence bonds
(

a†i↑a
†
j↓ − a†i↓a

†
j↑

)

|0〉. In
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this section we show that it can be mapped to a more familiar form, that of the

generalized Hubbard model which has been studied in various contexts in condensed

matter physics. [26–39] In order to facilitate this mapping, we first re-express the

projection P in a more convenient way. In the Hamiltonian Heff , the states outside

the subspace spanned by {|0〉 , |↑〉 , |↓〉 , |d〉} have already been projected out, so the

only effect of the explicit projection operators P appearing in Heff is to prevent

double occupancy of any site. (Because the dressed molecule is the exact solution

for the case of two atoms on one site, the idea of a site containing both a dressed

molecule and a single atom state would be nonsensical.) The condition of no double

occupancy can be equivalently expressed using the slave boson formalism.[74, 75]

We introduce slave boson creation operator b†i representing the “creation” of an

empty site, |0〉 ≡ b†i |0〉. With each empty site treated as occupied by a slave boson,

the condition of no double occupancy is simply b†ibi + a†i↑ai↑ + a†i↓ai↓ + d†idi = I. We

therefore no longer require the projector P , and can instead rewrite the Hamiltonian

so that a slave boson is created (annihilated) whenever any lattice site becomes

unoccupied (occupied) by atoms or molecules. The Hamiltonian Heff expressed in

slave boson form is:

Hsb =
∑

i

∆(B)d†idi +
∑

i,j∈N(i)

[

tdd
†
ibib

†
jdj +

∑

σ

(

taa
†
iσbib

†
jajσ + tdad

†
idja

†
jσaiσ

)

]

+
∑

i,j∈N(i)

[

gd†ib
†
j (ai↑aj↓ − ai↓aj↑) + H. c.

]

(2.10)

Because the single-site Hilbert space has only four basis states {|0〉 , |↑〉 , |↓〉 , |d〉},

we can map this to the single-site Hilbert space of the Hubbard model, given by
{

|0〉 , |↑〉 , |↓〉 , |↓↑〉 ≡ a†i↓a
†
i↑ |0〉

}

. Specifically, we map a site occupied by a dressed

molecule to one occupied by two atoms, by taking d†i |0〉 → a†i↓a
†
i↑ |0〉. Of course, as

we have noted above, the physical composition of the dressed molecule is not simply
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two atoms in a single band occupying the same site. It is a complex superposition

of two open-channel atoms and a closed-channel molecule distributed over many

bands. Nevertheless, we can mathematically map the dressed molecule to a double-

occupation by single-band atoms. This means that whenever a doubly-occupied site

occurs in this new description, the correct physical interpretation will be that the

site is occupied by a dressed molecule.

Under such a mapping (see Appendix A), the Hamiltonian becomes:

H =
∑

〈i,j〉,σ
[ta + g1 (niσ̄ + njσ̄) + g2niσ̄njσ̄] a

†
iσajσ + H.c. +

∑

i

∆ni↑ni↓ − µ (ni↑ + ni↓)

(2.11)

where g1 = g − ta, g2 = tda − 2g + ta, niσ = a†iσaiσ, and σ̄ =↑, ↓ for σ =↓, ↑ We

have dropped the slave boson operators bi, which previously were needed to prevent

double occupancy of the lattice sites. In the transformed language double occupancy

is allowed, as it represents the existence of a dressed molecule. The previous condition

that a site cannot be occupied by both a dressed molecule and a single atom is now

a restriction against triple occupancy, and this restriction is automatically satisfied

by the Pauli exclusion principle and the fact that the atoms are restricted to two

possible spin states. (The slave bosons did continue to play an important role,

for instance in requiring that the ta term in Heff cannot contribute to the atom

tunneling out of a doubly occupied site, since as noted the double-occupied site is

really occupied by a single dressed molecule. This has been accounted for by mapping

b†iaiσ → aiσ (1 − niσ̄), as shown in Appendix A.)

We have also dropped the td term corresponding to dressed molecule tunneling.

In the transformed language, this would correspond to two atoms hopping in unison

from a site to one of its neighbors. We are justified in neglecting this term because td

depends on the parameters t
(m)
q and c

(am)
2;qss′ , which are substantially smaller at typical
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lattice depths than the corresponding parameters t
(a)
q and c

(am)
1;qss′ that contribute the

other nearest neighbor terms in the Hamiltonian. The relative smallness of the td

term can be understood from the fact that it involves twice as much mass tunnel-

ing through the potential barrier between sites, and this tunneling is exponentially

suppressed with increasing mass. Put another way, the Wannier functions for the

molecules are more sharply peaked than for atoms, due to the difference in the parti-

cles’ mass, and this results in a reduction of the overlap between Wannier functions

on neighboring sites. Specifically, for t
(a)
0 and c

(am)
1;000 (where here we consider the low-

est band vect0) both vary with the same exponential factor exp
(

−2
√

V0/ER

)

.[3]

Because the molecules feel twice the potential V0 and have half the recoil energy

ER, this produces an additional factor exp
(

−2
√

V0/ER

)

in the molecule tunneling

relative to the atom tunneling. For a typical lattice depth V0 = 10ER, this reduces

the molecular tunneling by a factor of ∼ 0.002.

We see that the Hamiltonian (2.11) is that of the generalized Hubbard model, with

correlated tunneling given by the g1 and g2 terms. (In the special case g1 = g2 = 0,

this is just the Hamiltonian of the standard Hubbard model). This Hamiltonian has

been studied previously in condensed matter physics [26–39], where it is natural to

consider extensions of the Hubbard model to cases where some of the terms Hubbard

found negligible are actually large enough to be of importance. This can for instance

be due to a modification of the atomic orbitals due to the on-site interactions between

the electrons. Here the origins of this generalized Hubbard model are quite different,

since (as we emphasized in the previous chapter) nearly all the crucial assumptions

made by Hubbard in deriving his model, such as the restriction to a single band, do

not apply. Nevertheless, we see precisely the generalized Hubbard model Hamiltonian

arising as a mathematically equivalent model to one in which many lattice bands are
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populated by strong on-site interactions. The fact that the same Hamiltonian can

describe two such different systems is at first quite surprising. As we will see in

the next section the generalized Hubbard model is in fact the most general model

that satisfies certain restrictions on the system symmetry and its Hilbert space. The

broad applicability of the generalized Hubbard model to diverse physical systems can

be viewed as a consequence of this fact.

2.5 Generalized Hubbard Model as a Consequence of Symmetry

Above, we showed how the Hamiltonian for fermions in an optical lattice near Fes-

hbach resonance can be determined by starting from the two-channel model expressed

in terms of field operators, expanding these field operators in terms of Wannier func-

tions, and computing the various overlap integrals of these functions. The resulting

Hamiltonian, given by the sum of equations (2.6) and (2.7), is quite complicated,

but as we saw it was greatly simplified by projecting the state of each single site

onto the Hilbert space spanned by the states {|0〉 , |↑〉 , |↓〉 , |d〉}. This projection was

justified by observing that the dressed molecule states (that is, the eigenstates for

two particles on a single site) are separated by energies on the order of the bandgap,

while the couplings between atoms on different sites are all much less than the band

gap. This makes it possible to restrict the possible states to include only atoms in

that band and one particular dressed molecule state that couples to that band.

Here we take what can be considered the opposite approach. Rather than first

determining the multi-site Hamiltonian and then simplifying it based on a restriction

of the single-site Hilbert space, we instead start with the assumption that the space

of allowed single-site states is {|0〉 , |↑〉 , |↓〉 , |d〉}, and then ask the question: What

is the most general Hamiltonian (respecting certain essential symmetries) that can
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act on these states? In particular, we assume a global SU(2) symmetry for the

spin components. Furthermore, the number of particles must be conserved for each

spin component. This is equivalent to imposing conservation on the total number

of particles along with conservation of the z-component of spin. Finally, the atomic

interactions are taken to be sufficiently short range that couplings between more

than two sites, or between non-neighboring sites, can be neglected.

Even this rather minimal set of assumptions is enough to significantly limit the

terms that can occur in the Hamiltonian. Conservation of particle number excludes

terms that only create or only destroy a single particle in state |↑〉 or |↓〉, and con-

servation of the z-component of spin prohibits changing a single |↑〉 into a |↓〉 or vice

versa. If the dressed molecule state were not allowed, the only allowed terms of the

Hamiltonian would thus be ones that describe |↑〉 atoms or |↓〉 tunneling between

different sites. Terms in which an |↑〉 is changed to a |↓〉 and |↓〉 is simultaneously

changed to an |↑〉 are also allowed, but this case is equivalent to an |↑〉 and a |↓〉 each

tunneling to the site formerly occupied by the other. Terms in which two particles

can interact without changing positions are also allowed, but these can equivalently

be viewed as one particle virtually tunneling to the site of the other and back again.

Because of the short-range of the atomic interactions, a barrier that suppresses such

virtual tunnelings likewise suppresses these intersite interactions.

With the inclusion of dressed molecules, the total number of |↑〉 and |↓〉 atoms can

be changed, but only if the numbers of each change by the same amount, and for each

pair of |↑〉 and |↑〉 states destroyed (created) a dressed molecule is created (destroyed).

Because the dressed molecule is not simply an atom in state |↑〉 and an atom in state

|↓〉, these processes, unlike those described above, are not simply rearrangements of

the atoms in state |↑〉 and state |↓〉. Nevertheless, the dressed molecule is composed



43

of two atoms in the hyperfine states denoted by ↑ and ↓ (albeit in a superposition

over many bands), so it is possible to categorize the dressed molecule creating and

destroying terms in the Hamiltonian by the number of atoms that these terms transfer

from one site to another.

With this in mind, we take the Hamiltonian to have the form H =
∑

iHi +

∑

〈i,j〉

(

H
(1)
ij +H

(2)
ij

)

, where 〈i, j〉 represents pairs of neighboring sites, and where

Hi is the single-site Hamiltonian, H
(1)
ij represents two-site terms that involve the

tunneling of one atom between the sites, and H
(2)
ij represent the two site terms that

involve two real or virtual tunnelings. (That is, H
(2)
ij includes both the case where

two atoms tunnel between sites i and j, and the case where a single atom virtually

tunnels from one site to another and back again, leaving the configuration of atoms

unchanged.) Terms in which a molecule is created or destroyed by moving one atom

are grouped into H
(1)
ij , as are terms that exchange an atom with a molecule (since

these two states can be swapped by transferring a single atom). Terms in which a

molecule moves from site to site are grouped into H
(2)
ij . Because of the short range

of the interactions, the terms involving more tunnelings decay at a significantly

greater rate with increase in the lattice depth. Terms involving more than two

tunnelings thus become negligibly small, as did the terms involving more than two

sites. Likewise, tunneling between non-adjacent sites is highly suppressed.

We can write the terms and Hi, H
(1)
ij , and H

(2)
ij in the slave-boson formalism

introduced in the previous section, where the constraint of no double occupancy is

enforced by the condition b†ibi+a
†
i↑ai↑+a

†
i↓ai↓+d

†
idi = I. Since there can be no double

occupancy, the single-site Hamiltonian Hi just gives the energy for a state |↑〉 , |↓〉 ,

or |d〉 on site i, relative to the energy of an unoccupied (i.e., slave-boson occupied)

site. Furthermore, because of the SU(2) symmetry of the spin components, the states
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|↑〉 and |↓〉 must be degenerate in energy. This means the most general form of the

single site Hamiltonian is Hi = −µ
∑

σ a
†
iσaiσ +(∆ − 2µ) d†idi, where the single atom

energy is incorporated into the chemical potential µ and ∆ gives the energy of the

dressed molecule relative to two single atoms.

The terms of H
(1)
ij and H

(2)
ij are likewise fixed by the symmetry requirements. As

described above, H
(1)
ij includes only the tunneling of a single atom between adjacent

sites, the exchange of an atom and a molecule on adjacent sites, and conversion of a

molecule into a pair of atoms of opposite spin on adjacent sites. Moreover, because

of the SU(2) symmetry, the Hamiltonian is invariant under exchange of ↑ and ↓.

Thus, the form of H
(1)
ij must be:

H
(1)
ij =

∑

σ

(

taa
†
iσbib

†
jajσ + tdad

†
iaiσa

†
jσdj

)

+ g
(

d†ib
†
j + b†id

†
j

)

(ai↑aj↓ − ai↓aj↑) + H. c.

(2.12)

In particular, the relative signs of the terms with coefficient g are determined by

the fact that the Hamiltonian is symmetric under exchange of ↑ and ↓, and also

symmetric under exchange of the two sites i and j. Note that bi and di satisfy

bosonic commutation relations, while ai↑ and ai↓ satisfy fermionic anti-commutation

relations. It is also important to note that the dressed molecule operators change

sign under exchange of the spins ↑ and ↓, due to the fact that the dressed molecule

is composed of anti-commuting fermions of each spin.

As described above, H
(2)
ij included terms involving two atoms tunneling between

two sites. This includes the dressed molecule tunneling term, where two atoms tunnel

in unison from one site to another. It also includes the case where one atom virtually

tunnels from one site to the other and back again. This results in terms which are

diagonal in the position basis. The third possibility is that one atom tunnels from

one site to another, and a different atom tunnels back. This produces a Heisenberg
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term, as dictated by the SU(2) symmetry. Thus, H
(2)
ij is given by:

H
(2)
ij =

(

tdd
†
ibib

†
jdj + H. c.

)

+ xdndindj + xaninj + xssi · sj + xbnbinbj (2.13)

where ndi ≡ d†idi, ni ≡ a†i↑ai↑ + a†i↓ai↓, nbi ≡ b†ibi and

(si)α ≡ 1

2

(

a†i↑ a†i↓

)

σα







ai↑

ai↓






(2.14)

where α = x, y, z and the σα are the Pauli matrices.

Here we have included the H
(2)
ij terms of the Hamiltonian for the sake of complete-

ness, but in fact for a sufficiently deep lattice these terms can be neglected. This is

the case since for short-ranged interactions the terms involving two atoms tunneling

between sites decay much faster than the single-tunneling terms with increase of

the lattice potential barrier. Dropping the double-tunneling terms, the Hamiltonian

becomes H =
∑

iHi +
∑

〈i,j〉H
(1)
ij . Thus,

H =
∑

i

[

(∆ − 2µ) d†idi − µ
∑

σ

a†iσaiσ

]

(2.15)

+
∑

〈i,j〉

[

∑

σ

(

taa
†
iσbib

†
jajσ + tdad

†
iaiσa

†
jσdj

)

+ g
(

d†ib
†
j + b†id

†
j

)

(ai↑aj↓ − ai↓aj↑) + H. c.

]

This matches equation (2.9) with td = 0 and with the addition of a chemical po-

tential µ (which we took to zero above, but which must be included for consideration

of a varying number of particles). As we have seen above and in Appendix A, this

Hamiltonian takes the form of the generalized Hubbard model if we mathematically

map the dressed molecule state to a doubly-occupied state: d†i |0〉 → a†i↓a
†
i↑ |0〉.

2.6 Chapter Summary

In this chapter we have presented the Hamiltonian for fermions in an optical lattice

near a broad Feshbach resonance, and shown that it can be mathematically mapped
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to the generalized Hubbard model (which has been studied previously in the context

of condensed matter physics). We have presented two separate derivations of this

Hamiltonian, one from field theory of the two-channel model of Feshbach resonance,

and the other based on a set of more basic assumptions about the system, such

as the SU(2) symmetry of the spin components and the short range of the atomic

interactions. This latter derivation helps to clarify why the generalized Hubbard

model has such general applicability, while the former derivation provides us with

explicit expressions for the coefficients of each term in the Hamiltonian.

Despite the fact that we have obtained explicit expressions for the coefficients

of each term in the Hamiltonian, calculation of these values remains difficult. The

explicit expressions contain sums over many bands for both the atoms and bare

molecules, which not only pose numerical difficulties but also complicate the renor-

malization procedure necessary to obtain the dressed molecule solutions. In the next

chapter, we explore the two-body solution of the generalized Hubbard model, moti-

vated in part by the desire to find a simpler way to determine the parameters of the

model from the experimentally controllable parameters. In the subsequent chapter,

we propose an experimental scheme to measure the parameters of the generalized

Hubbard model in this system. These chapters also reflect our strategy of attempt-

ing to first examine the generalized Hubbard model in more restricted cases before

attempting to consider the substantially more complicated many-body case.



CHAPTER III

Two-Body Bound States of the Generalized Hubbard Model

In this chapter we solve the two-body problem for the generalized Hubbard model.

As seen in BCS theory, an understanding of the two-body problem can be essential in

understanding the many-body physics. Additionally, studying the two-body physics

offers a possible route to determining the dependence of the lattice parameters on

the experimentally controllable parameters such as lattice depth and magnetic field

strength.

3.1 Introduction

In previous chapters we showed how fermions in an optical lattice in the unitary

regime are described by a generalized Hubbard model, governed by the parameters

ta, ∆, µ, g1, and g2. As we have seen, it is difficult to calculate the dependence of

the Hamiltonian parameters (in particular the correlated hopping terms g1 and g2)

on the controllable parameters such as magnetic field B and lattice depth V .

We can simplify this problem by restricting our attention to the two-body prob-

lem – that is, the case of a lattice containing only two atoms. By determining the

two-body bound states from the lattice Hamiltonian, we can express the binding

energy and wave function as functions of the lattice parameters. Likewise, by di-

rectly solving the Schrödinger equation (in continuous spatial coordinates) for two

47
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interacting particles in a periodic potential, one can determine the dependence of

the binding energy and wave function on the magnetic field and lattice depth. In

this way, the controllable parameters can be related to the parameters of the general

Hubbard model. (Note however that the parameter g2 cannot be determined in this

way, as it represents a three-body effect not relevant to the two-body problem.)

Here we solve the two-body problem for the general Hubbard model. (As this

result is the focus of this chapter, we opt to go over the derivation in some detail

rather than confining the details to an appendix.) The related problem of solving the

Schrödinger equation for two interacting particles in a periodic potential has been

explored by other members of our research group.

3.2 The Two-Body Hamiltonian

For the case of two atoms, the general Hubbard Hamiltonian takes a somewhat

simpler form:

H =
∑

i

∆ni↑ni↓ +
∑

〈i,j〉,σ
[−ta + g1 (niσ̄ + njσ̄)] a†iσajσ (3.1)

In particular, the three-body term governed by g2 disappears. The chemical potential

µ is likewise irrelevant since the number of particles is fixed at two.

It is convenient for the subsequent calculation to first transfer this Hamiltonian

from position space to k-space. That is, instead of annihilation (creation) operators

ai (a†i) representing spatially localized states given by Wannier functions, we transfer

to ak (a†k) representing Bloch states with wave-vector k. The benefit of this is

that the Hamiltonian conserves the total crystal momentum k (due to the discrete

translational symmetry of the lattice), and thus its eigenstates can be assumed to be

states of definite k.
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The transfer to k-space is accomplished by applying the transformation

ai =
1√
N

∑

k

e−ik·riak (3.2)

to every annihilation operator (and applying the conjugate transformation to each

creation operator), where the sum is taken over all k in the first Brillouin zone. Here

ri is the position of site i and N is the total number of lattice sites (which is also

the number of sites in the first Brillouin zone in k-space). This produces a sum over

wave vector for each operator in the Hamiltonian. The resulting expression can be

simplified by replacing the summed exponentials with the Kronecker delta, defined

by:

δk,k′ =
1

N

∑

i

ei(k−k′)·ri (3.3)

This replacement removes all explicit sums over lattice sites from our Hamiltonian.

Also, since δk,k′ = 0 for k 6= k′ this allows us to further reduce the total number

of summations, eliminating many of the sums over wave-vector. Thus the k-space

Hamiltonian simplifies to:

H = −ta
∑

k,σ

ǫka
†
kσakσ +

1

N

∑

k,k′,q

Uq,k,k′(∆, g1)a
†
k+q/2,↑a

†
−k+q/2,↓a−k′+q/2,↓ak′+q/2,↑

(3.4)

where a is the lattice spacing, ǫk = 2 cos(kxa) + 2 cos(kya) for k = (kx, ky), and

Uq,k,k′(∆, g1) = ∆ + g1 [4 cos(qxa/2) (cos(kxa) + cos(k′xa))

+4 cos(qya/2)
(

cos(kya) + cos(k′ya)
)]

3.3 Two-Particle Eigenkets and Schrödinger’s equation

We can define the eigenket for two particles with total momentum q as

|ψ〉 =
1√
N

∑

k

cka
†
k+q/2,↑a

†
−k+q/2,↓ |0〉 (3.5)
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where {ck} are complex coefficients satisfying the normalization condition
∑

k |ck|
2 =

N . Applying the Schrödinger equation H |ψ〉 = E |ψ〉, we have:

1√
N

∑

k

−tack
(

ǫk+q/2 + ǫ−k+q/2

)

a†
k+q/2,↑a

†
−k+q/2,↓ |0〉

+
1

N
√
N

∑

k,k′

ck′Uq,k,k′(∆, g1)a
†
k+q/2,↑a

†
−k+q/2,↓ |0〉 (3.6)

=
1√
N

∑

k

Ecka
†
k+q/2,↑a

†
−k+q/2,↓ |0〉

To simplify this equation, we define

Aq/2,k = 4 cos(qxa/2) cos(kxa) + 4 cos(qya/2) cos(kya) (3.7)

and note that ǫk+q/2+ǫ−k+q/2 = Aq/2,k and Uk,k′,q(∆, g1) = ∆+g1

(

Aq/2,k + Aq/2,k′

)

.

From the Schrödinger equation we now have a relation for ck:

(

E + taAq/2,k

)

ck =
(

∆ + g1Aq/2,k

) 1

N

∑

k′

ck′ + g1
1

N

∑

k′

Aq/2,k′ck′ (3.8)

3.4 Solving for the Eigenenergies E and Eigenstate components ck

Equation (3.8) provides a set of equations (one for each k in the first Brillouin

zone), which together with the normalization condition 1
N

∑

k |ck|
2 = 1 are enough to

completely determine the unknowns ck and E. Here we have written these equations

for a general two-body state for one atom of each spin-state and with total crystal

momentum q. Note that ck and E also implicitly depend on q.

To solve the set of equations (3.8), we define variables X and Y (also implicitly

q-dependent) by X ≡ 1
N

∑

k′ ck′ and Y ≡ 1
N

∑

k′ Aq/2,k′ck′ . This yields an explicit

expression for each ck:

ck =
∆ + g1Aq/2,k

E + taAq/2,k

X +
g1

E + taAq/2,k

Y (3.9)
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The full state is thus determined by only the three unknowns X, Y , and E. To

determine the values of these variables, we sum the equations (3.9) to yield:

X =
1

N

∑

k

∆ + g1Aq/2,k

E + taAq/2,k

X +
1

N

∑

k

g1

E + taAq/2,k

Y (3.10)

Y =
1

N

∑

k

Aq/2,k

(

∆ + g1Aq/2,k

)

E + taAq/2,k

X +
1

N

∑

k

g1Aq/2,k

E + taAq/2,k

Y (3.11)

Together with the normalization condition these equations are enough to fully de-

termine X, Y , and E. To simplify equations (3.10) and (3.11) it is convenient to

define

In ≡ 1

N

∑

k

(

Aq/2,k

)n

E + taAq/2,k

(3.12)

where in the limit of large N

In → a2

4π2

∫ π

−π

∫ π

−π

(

Aq/2,k

)n

E + taAq/2,k

dkxdky (3.13)

Thus we have

X = (∆I0 + g1I1)X + g1I0Y (3.14)

Y = (∆I1 + g1I2)X + g1I1Y (3.15)

where we must keep in mind that I0, I1, and I2 are functions of E, in addition to

being dependent on the choice of total crystal momentum q.

We first consider the special case of g1 = 0. This corresponds to the standard

Hubbard model, with the possible addition of terms like the g2 term that don’t

contribute to the two-body physics. In this limit, the value of Y is irrelevant, since

we see from equation (3.9) that the corresponding term vanishes in the expression

for ck. Equation (3.14) can be solved to eliminate X, which yields ∆ = 1/I0. This

equation can be solved numerically for E (since I0 is a function of E), which then

allows us to compute each ck from (3.9). We see that X is just an overall factor
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on the wavefunction, whose phase is irrelevant and whose magnitude is fixed by

normalization.

For the case where g1 6= 0, we proceed by dividing equations (3.14) and (3.15) by

X. We introduce the variable Z ≡ Y/X. Solving for Z, we have:

Z =
1 − ∆I0 − g1I1

g1I0
=

∆I1 + g1I2
1 − g1I1

(3.16)

A little algebra yields a quadratic equation for g1:

(

I0I2 − I2
1

)

g2
1 + 2g1I1 + ∆I0 − 1 = 0 (3.17)

Expanding the integrands in I1 and I2 in partial fractions, we see that I1 =

(1 −EI0) /ta and I2 = −EI1/ta. With these replacements, equation (3.17) simplifies

to − (I1/ta) g
2
1 + 2I1g1 + ∆I0 = 1. Expressing this equation in a form similar to the

g1 = 0 case, we have:

∆ −
(

taI1
I0

)

g1

ta

(

g1

ta
− 2

)

=
1

I0
(3.18)

We can see that this exactly reproduces the result for g1 = 0, namely ∆ = 1/I0. For

non-zero g1, we have ∆eff = 1/I0, where ∆eff − ∆ is given by the second term in

equation (3.18). The effect of the correlated tunneling given by g1 is to introduce an

effective attraction. This can be understood by the fact that the tunneling rate is

greater when one atom tunnels into or out of the site occupied by the other atom,

and thus it is energetically favorable to have the atoms closer together.

For a given g1, ∆ and ta, we can numerically solve equation (3.18) to determine

the eigenenergy E, since I0 and I1 are functions of E. In particular, we take q = 0

and evaluate I0 and I1 in the limit of large N , as given by equation (3.13). (The case

where q = 0 is of particular interest because in the many-body case it is energetically

favorable to form pairs with q = 0, as this allows the greatest number of pairings.)
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Figure 3.1: Two body boundstate eigenenergy E vs. the on-site interaction energy ∆ for various
g1. (Here we take q = 0, where q gives the total crystal momentum of the pair). The binding
energy of the pair is −8ta−E. We note that pair binding is allowed for ∆ below some critical value
∆c (the E = −8ta axis intercept), and this ∆c increases with increasing |g1 − ta|. (Note however
that the numerical calculation becomes unreliable in the E → −8ta limit due to the divergence of
the integral I0. The values of ∆c should instead be taken from the analytical formula in the next
section.)

Figure 3.1 shows the eigenenergy E as a function of ∆ for various values of g1.

Note that the results are identical for g1 = ta + c and g1 = ta − c (where c is any

constant). This can be understood by the fact that the only two-body terms of the

Hamiltonian (in the dressed-molecule formulation) that depend on g1 are the g terms,

such as gd†iai↑aj↓. Here g = g1− ta. Thus reversing the sign of g1− ta is equivalent to

reversing the sign of di (as the g terms are the only terms in the Hamiltonian with

an odd number of dressed molecule operators), while leaving the solution otherwise

unchanged.

The binding energy of the two-body bound state is −8ta − E, where −8ta is the

ground state energy of the two atoms in non-interacting case. The main features

we note for figure 3.1 are that for a given ∆ the energy decreases with increasing

|g1 − ta|, and that a bound state is thus possible at increasing values of ∆, even far
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onto the positive-∆ side. This is consistent with the idea that increasing |g1 − ta|

results in an effective attraction that can cancel out the on-site repulsion ∆ > 0. Note

however that we should not attempt to use this numerical calculation to determine

the critical value of ∆ below which pair-binding is allowed for a given g1. This is

because the integrals I0. I1 diverge in the limit where E → −8ta, or equivalently

the limit where ∆ goes to the critical value. Instead, we determine the critical ∆

analytically in the next section.

Figure 3.2 shows the relationship between g1 and E for various ∆. Again we see

that the result is symmetric around g1 = 1. We note in particular that for ∆ < −8t,

there is a bound state solution for any g1, with the maximum energy E = ∆ occurring

when g1 = 1. This can be understood by the fact that for g1 = 1 the Hamiltonian

conserves the number of dressed molecules (since all terms that would violate dressed

molecule number conservation have a coefficient g = g1 − ta = 0). Thus for g1 = 1

the bound state has both atoms bound onto the same site in a dressed molecule with

energy ∆. On the other hand, for ∆ > −8t we see that a bound state solution only

exists if |g1 − ta| is greater than some critical value.

Having numerically determined E, it is straightforward to determine the compo-

nents ck of the eigenstate |ψ〉. Z can be determined from equation (3.16), where I0,

I1, and I2 are as given by equation (3.13). Then from equation (3.9), we have:

ck
X

=
∆ + g1Aq/2,k + g1Z

E + taAq/2,k

(3.19)

This determines ck up to a constant X. The magnitude of X is fixed by the normal-

ization condition
∑

k ck = N , and its phase may be neglected as it contributes only

an irrelevant overall phase to |ψ〉.
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Figure 3.2: Correlated tunneling g1 vs. eigenenergy E of the two-body boundstates for various ∆.
(a) For ∆ < −8ta a two-body bound state exists for any g1. Here the energy must satisfy E ≤ ∆
(b) ∆ > −8ta, a two-body bound state only exists for sufficiently large |g1 − 1|. The maximum
eigenenergy of the two-body bound state is E = −8t, corresponding to the limit where the binding
energy −8t−E goes to zero. In this limit the integrals diverge, so the numerical calculation becomes
unreliable. Instead we give an analytical result in the next section.
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3.5 Critical ∆ for Pair Binding

In the preceding section we have shown that a bound pair can occur for ∆ less than

some critical value ∆c, where the value of ∆c is dependent on g1. Moreover, we have

shown that we can numerically calculate the binding energy and fully determine the

wavefunction for any g1 and any ∆ less than the critical value. However, in the limit

where ∆ → ∆c, the integrals I0, I1, and I2, diverge, and the numerical calculation

can no longer be relied on. In this section, we show that in the ∆ → ∆c limit we can

instead determine the critical ∆ and fully determine the eigenstate analytically.

From equation (3.18) and the relation taI1 = (1 − EI0), we have:

∆ −
(

1

I0
−E

)

g1

ta

(

g1

ta
− 2

)

=
1

I0
(3.20)

In the limit where ∆ goes to ∆c (from below) the eigenenergy becomes just the

energy of two unbound atoms E = −8ta and we can readily see that I0 → −∞.

Thus we can neglect 1/I0 in equation (3.20), which yields:

∆c

ta
= 8

g1

ta

(

g1

ta
− 2

)

(3.21)

As we could see from the numerical results in figures 3.1 and 3.2, ∆c has a minimum

of −8ta for g1 = 1, and increases with increasing |g1 − ta|.

We also find that in the ∆ → ∆c limit we have ck = 0 for all k 6= 0. Thus

the eigenket is given by |ψ〉 = a†0,↑a
†
0,↓ |ψ〉. Transforming back to position space,

this is just |ψ〉 =
∑

i,j a
†
0,↑a

†
0,↓ |0〉, which is precisely the state of two non-interacting

particles, as we expected.

3.6 Chapter Summary

In this chapter we have studied the two-body problem for the generalized Hubbard

model. We found that pair-binding occurs when the on-site interaction ∆ is less
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than some critical value ∆c, and that this critical value depends on the parameter

g1. We note in particular that for |g1 − ta| > 1 pair-binding is possible even for some

∆ > 0, in contrast to the standard Hubbard model. This can be understood as a

consequence of the g1 terms contributing an effective attraction that can exceed the

repulsion given by the positive ∆.

We have numerically solved for the binding energy and wavefunction of the two-

body bound state for varying ∆ and g1, and have given the analytic solution in the

limit where the binding energy goes to zero (at which point the numerical solution

ceases to converge). As described above, part of the motivation for this is to provide

a means for relating the parameters of the generalized Hubbard model (g1, ∆, etc.),

to the experimentally controlled parameters (magnetic field B, lattice depth, etc.). If

we can solve the Schrödinger equation for two interacting atoms in a periodic poten-

tial near a Feshbach resonance, we can match this solution to the two-body solution

of the generalized Hubbard model by comparison of the binding energy. Solving the

Schrödinger equation for such a system is itself a non-trivial task. This has been

investigated by other members of our group. In the next chapter we present a differ-

ent approach to determining the parameters of the generalized Hubbard model from

the directly controllable parameters, namely an experimental scheme for measuring

these values.

After completion of the work presented in this chapter, we discovered that the

two-body problem had been previously studied by M. Airoldi and A. Parola for the

generalized Hubbard model arising in a condensed matter context.[26] We note that

our results are consistent with those of this previous work. In particular, the key

equations (3.18) and (3.21) are exactly equivalent to equations (5) and (6) in Airoldi

and Parola’s paper.



CHAPTER IV

Proposed Experimental Measurement of the Generalized

Hubbard Model using a Double-Well Superlattice

In the preceding chapters we have presented a theoretical argument that fermionic

atoms in an optical lattice near a wide Feshbach resonance can be described by the

generalized Hubbard model (GHM), and we have discussed some approaches to calcu-

lating the values of the parameters of this model. Complementary to this approach,

we would like to have an experiment to test that this system is described by the GHM,

and to empirically determine the parameters of the model. In this chapter we de-

scribe such an experimental scheme. Our proposal uses an optical superlattice, such

as has been used in recent experiments for demonstration of the spin super-exchange

interaction [70, 71, 76]. Those works demonstrate all the necessary controllability of

the superlattice required for this measurement scheme.

(This chapter presents our work from Ref. [77])

4.1 Testing The Generalized Hubbard Model

As in the previous chapters, we consider two component fermions (denoted by

spin σ =↑, ↓) in an optical lattice near a wide Feshbach resonance. As we saw above

and in [24], the Hamiltonian of this system can be mapped to a Generalized Hubbard

Model (GHM) Hamiltonian with correlated tunneling. To reiterate the key points of
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this derivation: We found that in general many lattice bands get populated due to the

strong atomic interaction, but we note (see [3, 24]) that the low energy states at each

site are still restricted to only four possibilities: either a vacuum denoted by |0〉, or a

single atom with spin-σ denoted by a†σ |0〉, or a dressed molecule in the ground state

|d〉 which consists of superpositions of two-atom states distributed over many bands.

All the other states (such as the three-atom states or the dressed molecule excited

states) are well separated in energy, and therefore not relevant for low-temperature

physics. Based on this low-energy Hilbert space structure and general symmetry

arguments, we saw [24] that the effective Hamiltonian takes the form of the GHM:

H =
∑

i

[(U/2)ni (ni − 1) − µini] (4.1)

+
∑

〈i,j〉,σ
[ta + g1 (niσ + njσ) + g2niσnjσ] a†iσajσ +H.c.

where ni ≡
∑

σ a
†
iσaiσ, niσ ≡ a†iσaiσ (σ =↓, ↑ for σ =↑, ↓), U characterizes the effective

on-site interaction (defined as the energy shift of |d〉 with respect to the two-atom

state on different sites), µi is the chemical potential (we keep its dependence on

the site i for convenience of the following discussion, where a global trap induces a

site dependent energy shift), ta is the conventional single-atom tunneling rate, and

g1 and g2 denote the additional tunneling in the presence of spin-σ atoms (those

two terms come from the multi-band populations in the |d〉 state and the direct

neighboring atomic interaction in the lattice [3]). In this derivation, we have math-

ematically mapped |d〉 to the double occupation state a†i↑a
†
i↓ |0〉 [24] (though their

physical compositions are different).

Although we believe that strongly interacting fermions in an optical lattice are

described by the generalized Hubbard Model, it is important to test this model by

comparing its predictions with experimental observations. However, such a com-
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parison is usually difficult because of the lack of exact solutions to the GHM and

complications in real experimental configurations (such as the inhomogeneity due

to the global trap). On the other hand, if instead of considering the full lattice we

consider the GHM on a pair of sites, an exact solution is possible. Thus the problem

becomes much more tractable if we replace the homogenous optical lattice (that is,

with all lattice barriers equal) with an inhomogeneous optical superlattice in which

large barriers suppress interactions except within particular pairs of sites.

In the experimental configuration with an inhomogeneous optical superlattice,

through manipulation of the lattice barrier and the external magnetic field, we show

that one can reconstruct the two-site dynamics from the measured time-of-flight im-

ages. The measured dynamics can then be compared with the exact prediction from

the general Hubbard model, offering an unambiguous testbed for this complicated

system. The proposed measurement also allows a complete empirical determination

of all the parameters in the effective GHM.

4.2 The Superlattice and Measurement Scheme

To see whether the effective GHM gives a good description of the low-temperature

physics for this system it is important to test the predictions of the GHM experi-

mentally, and as unambiguously as possible. To have an unambiguous test, it is

better to design a configuration such that the GHM allows exact solutions. The

optical superlattice provides such an opportunity. To have an optical superlat-

tice one adds a 3-dimensional lattice V2 = V20

∑

α=x,y,z sin2(πα/2a) to a lattice

V1 = V10 sin2(πz/a − ϕ) in one spatial direction (say z), where the periodicity 2a

of V2 is twice that of V1[70, 71, 76]. If V10 is sufficiently large relative to V20, the

superposition of these two potentials produces a series of double wells along the z
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Figure 4.1: The time sequences for the magnetic field (B) and the lattice potentials (V10 and V20)
to achieve state preparation, controlled dynamics, and detection. (Note that the optical barriers
are high during sweeping of the B field.)

direction. The dynamics in each double well are independent of the others provided

the barrier between wells (controlled by V20) is sufficiently large. Taking the relative

phase ϕ to be nonzero introduces an energy bias δ12 between the minima of each

double well.

It is easy to calculate the dynamics in each double well from the GHM. However,

it is unclear how to directly measure the dynamics without individual addressing

of each well inside the lattice. The conventional time-of-flight (ToF) images involve

averages over all the potential wells. These signals are further complicated by the

presence of a global harmonic trap Vg =
∑

α=x,y,z mω
2
αα

2/2 inevitable in an optical

lattice, which makes each double well slightly different. In the following, we show

a scheme that can map out the detailed dynamics in each double well from the

measured ToF images even with the presence of these complications.

The scheme here combines the control of both the optical potentials and the

magnetic field (see Fig. 4.1 for illustration). First, we need to load each double well

with a filling pattern that sets the initial condition of the dynamics. This is achieved
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at the BCS limit of the resonance. In this limit, the atoms are free fermions, and

we can control the filling pattern by choosing the total number N = N↑ + N↓ and

the polarization P = (N↑ −N↓)/N . Then, we turn off all the inter-well dynamics by

raising the barrier (controlled by V10 and V20) and sweep the magnetic field to the

unitarity region. The sweeping speed v is fast compared with the inter-well coupling

rate but small compared with the lattice gap of V1 so that the levels in each single

well adiabatically evolve. Near unitarity, we turn on the inter-well dynamics for a

duration t by adjusting V10 to lower the central barrier of each double well. These

dynamics give information on the underlying strongly interacting Hamiltonian. To

determine the final state after the dynamics, the central barrier is raised again, and

the magnetic field is swept to the BEC limit with a speed similar to v. Depending

on the particle number in each well, we have atoms or molecules or their mixture

with negligible interaction at the BEC limit. The ToF images for those atoms or

molecules are then detected to determine the final state after the dynamics during

time t.

4.3 Measuring the Free-Atom Tunneling Rate ta

To test the prediction of particle-correlated tunneling, we need to compare the

free-atom hopping rate ta with ta2 = ta + g1 and ta3 = ta + 2g1 + g2, where ta2

and ta3 correspond respectively to the hopping rates of a spin-↑ atom from the site

i to j when there is a spin-↓ atom on one site or on both sites. Let us first look at

how to measure the free-atom hopping rate ta in the Hamiltonian (4.1). For that

purpose, we need one atom per double well. By choosing the polarization P = 1

and V10 = 0 (so we have at this stage single wells rather than double wells), the

equilibrium distribution of the free fermions at the BCS limit automatically gives
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this configuration. The total atom number N within the global harmonic trap Vg

needs to be below

Nmax = (4π/3)
(

Ebg/2mω
2a2
)3/2

, (4.2)

where Ebg = 2
√

V20π2~2/8ma2 is the band gap for the lattice V2 and we have assumed

ωx = ωy = ωz ≡ ω. Then, one can adiabatically raise the potential V10 with a bias

δ12 so that the atom sits on the left side well in each double well. After raising V10,

δ12 is reduced to zero. The system is then moved to the resonance region, and after

turn-on of the dynamics for a duration t, the difference between the fraction of atoms

in the left-side and the right-side wells over the whole harmonic trap is given by

NL −NR

N
= 1 − 2

N

∑

i

(

ta
~Ω1i

)2

sin2(Ω1it), (4.3)

where Ω1i =
√

∆2
i + 4t2a/2~, ∆i ≈ mω2azi. The summation of i in Eq. (4.3) is over

all the occupied double wells in the global harmonic trap (with zi the z-coordinate

of the center of the double well), and each double well has a slightly different bias ∆i

due to the trap potential Vg. After the dynamics, in order to measure the populations

NL and NR, the atom of the right-side well can be dumped into an excited vibrational

state (corresponding to the second band) of the left-side well by rapidly raising the

potential minimum of the right well relative to the left (through control of the phase

ϕ) [70, 71, 76]. The populations in different bands are then mapped out in the BEC

limit through measurement of the momentum distribution of free atoms with ToF

imaging. From the measured populations NL and NR, one can easily determine the

tunneling rate ta. Fig. 4.2 (a) shows the typical time evolution of NL −NR from the

dynamics, for which the oscillation period is determined by ta and the damping is due

to the inhomogeneity from the global trap. (Note that in this case, the dynamics

should be the same as for the bosonic case, and the latter has been measured in
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Figure 4.2: Population difference between the left and right wells (NL − NR)/N for the case of
one atom per double well. (a): Population difference vs. time (in the unit of h/ta). (b): Fourier
transform of the population difference (frequency in the unit of ta/h), calculated for a time duration
of 20h/ta to give a frequency resolution of ta/20h. The peak occurs at a frequency ν = 2ta/h.
Inset: With the time duration increased to give a frequency resolution of ta/2000h, we see that
there are actually many peaks, corresponding to the different frequencies Ω1i. Ω1i depends on the
z-coordinate and thus each peak corresponds to a different slice of double wells parallel to the z-axis.
The slices containing the most occupied double wells are closest to z = 0. That is why those peaks
(which have the smallest Ω1i) dominate. Because ta can be determined from the dominant peak, it
is not necessary to resolve the other smaller peaks. In calculation of the inhomogeneity effect, we
assume a spherical distribution with a diameter of 30 occupied double wells, and take the following
typical values for the parameters: ta = h × 170 Hz, m = 6.64 × 10−26 kg (for 40K), ω = 2π × 80
Hz, and 2a = 765 nm.

recent experiments [71].) In the frequency domain, the signal peaks at 2ta, and the

inhomogeneity causes many smaller peaks at frequencies above that of the dominant

peak (see Fig. 4.2 (b)).

4.4 Measuring the Particle-Correlated Tunneling Rate ta2

To measure the particle-correlated tunneling rate ta2, we need two atoms per

double well, one spin-↑ and one spin-↓. This can be achieved with the equilibrium
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distribution of free fermions at the BCS limit by choosing P ≈ 0, V10 = 0, and the

total atom number N < 2Nmax (with Nmax defined in Eq. 4.2). The double well

is still turned on with a bias so that both of the atoms are prepared in the left-

side well. For the dynamics near resonance with the Hamiltonian (4.1), the state at

any time involves a superposition of three components: a double occupation of the

left or the right well, and a singlet state of two atoms over the two wells. We can

determine ta2 as well as the on-site interaction energy U from the difference between

the overall fractions of double occupation of the left wells and of the right wells,

(N2L −N2R)/(N2L +N2R). (Here N2L and N2R are the total number of double wells

in which the left and right wells, respectively, are doubly occupied.) These fractions

can be directly measured at the BEC limit, where the double occupation of a site

is mapped to a molecule state, and the molecules in the left and the right wells are

distinguished through the band mapping and the measurement of the momentum

distribution (similar to the discussion above for the atomic case). The single-atom

occupation of a well is mapped to an atomic state at the BEC limit. Because of the

large detuning between the atomic and the molecular state, the atomic population

do not contribute to the time-of-flight imagining signal of the molecular fraction.

The typical time evolution of (N2L −N2R)/(N2L +N2R) is shown in Fig. 4.3 (a).

In the frequency domain (see Fig. 4.3 (b)), one can see two distinct primary peaks in

the Fourier transform, centered at
(

√

U2 + 16t2a2 ± U
)

/2. The smaller peaks from

the inhomogeneity of the global harmonic trap do not obscure these two dominant

peaks. The frequencies at which these two peaks occur can be understood by the fact

that while the oscillation frequency varies from well to well due to the z-dependent

bias, there are a greater number of occupied double wells near z = 0 than for any

other z-coordinate. Thus, the dominant peaks correspond to the zero bias case,
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Figure 4.3: The difference between the fractions of doubly occupied left and right wells (N2L −
N2R)/(N2L + N2R) for the case of two atoms per double well. (a): Population difference vs. time
(in the unit of h/ta2). (b): Fourier transform of the population difference (the frequency resolution

is 1/20 in the unit of ta2/h. The peaks occur at a frequencies ν1 =
(

√

U2 + 16t2a2 − U
)

/2h and

ν2 =
(

√

U2 + 16t2a2 + U
)

/2h (in the figure we take U = 3ta2 as an example). Increasing the

frequency resolution would reveal a series of smaller peaks on the high frequency side of the large
peaks (as in Fig. 4.2), but it is not necessary to resolve these smaller peaks to determine ta2 and
U .

where we have

N
(0)
2L −N

(0)
2R

N
(0)
2L +N

(0)
2R

=
Ω+

Ω
cos (Ω−t) +

Ω−
Ω

cos (Ω+t) , (4.4)

with Ω± = (~Ω2i ± U) /2~ and Ω2i =
√

U2 + 16t2a2/~.

4.5 Measuring the Hole Tunneling Rate ta3

One can also measure the parameter g2 in the Hamiltonian (4.1), which requires

three atoms per double wells (two spin-↑, one spin-↓). One can consider this case

as a single spin-↑ hole in each double well, with a hole hopping rate of ta3. (A key

difference between the generalized Hubbard model and the standard Hubbard model
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µ↑

µ↓

Figure 4.4: The superlattice configuration to achieve three atoms per double well. This is obtained
by turning on the lattice potentials V1 and V2 simultaneously with relative phase ϕ > 0, producing
double wells with a non-zero potential bias between the left and right wells. (The overall harmonic
potential is exaggerated for illustration purposes). In the figure, the solid line in each well cor-
responds to the lowest level, the long dotted lines correspond to the Fermi surfaces for ↑-atoms
and ↓-atoms (with Fermi energies µ↑ and µ↓), which differ due to the polarization P > 0, and the
dotted rectangles indicate those double wells that are occupied by two ↑-atoms and one ↓-atom.
The µ↑ and µ↓ are chosen such that ↓-atoms only occupy the left wells while ↑-atoms occupy both
wells. This is the initial configuration needed to measure the hole hopping rate ta3. There is also
the possibility of additional ↑-atoms further from the center of the trap, but the measured molecule
signal is only sensitive to double wells containing both ↑-atoms and ↓-atoms. With the conditions
given in the text, we insure that the only such double wells are those with two ↑-atoms and one
↓-atom.

is that in the GHM holes and atoms tunnel at different rates, violating particle-hole

symmetry.) This hopping rate can be measured by the same method as for measure-

ment of the free atom hopping rate ta1. To prepare three atoms per double wells,

one can consider the free fermion distribution at the BCS limit in an asymmetric

double-well lattice with a bias δ12 controlled by the phase shift ϕ. We would like to

have two atoms (one spin-↑ and one spin-↓) in the deep wells and one spin-↑ atom

in the shallow wells as shown in Fig. 4.4. This can be achieved by choosing the

polarization P and bias δ12 so that the atom numbers satisfy N↑ >
(

2
√

2 + 1
)

N0

and N↓ < N0, where N0 = (4π/3) (δ12/2mω
2a2)

3/2
. These relations were derived by

requiring that N↑ be great enough that every double well which contains a ↓-atom

must also contain at least two ↑-atoms (so that the molecule signal corresponds only

to double wells containing three atoms), and also requiring that no double well con-



68

tain more than one ↓-atom. (Note that it is not sufficient to require a polarization

P ≥ 1/3, since this could be achieved with an inner core of double wells containing

one ↑-atom and one ↓-atom, surrounded by a shell of double wells containing only

an ↑-atom.) N↑ must also be small enough that there are no more than two ↑ atoms

per double well in the center of the trap. This condition can be met along with the

above conditions provided the band gap of the lattice is sufficiently great.

4.6 Testing Our Assumptions for the Single-Site Hilbert Space

A key assumption in deriving the Hamiltonian (4.1) is that in the strongly inter-

acting region there is a significant energy gap (of the order of the band gap) which

separates the four low energy states on each site from the other higher energy states

[3, 24]. With the superlattice technique, one can directly test this assumption and

measure the energy gap. Given this energy gap, if we fill each site with two atoms,

there will be no dynamics as long as the atomic tunneling rate between the two sites

is small compared with the band gap energy. To fill each site with two atoms (one

spin-↑, one spin-↓), we can start with the free-fermion distribution in the BCS limit,

choosing the polarization P ≈ 0 and total atom number N < 4Nmax (with Nmax as

defined in Eq. 4.2). We then adiabatically turn on V1 and V2 simultaneously while

keeping a constant ratio V10/V20 > 1. With this filling pattern, we should see no

dynamics in the strongly interacting region, so the atomic distribution over the two

sites (which will be mapped to the molecular population distribution in the BEC

limit) will not change with the evolution time t. One can also tilt the double-well

lattice by tuning the bias δ12, and measure what is the critical δ12 to turn on the

two-site dynamics in the population distribution. The measured critical δ12 will give

an estimate of the energy gap to excite the system to the high energy states.
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4.7 Chapter Summary

In this chapter we have described a scheme to test in a controllable fashion the

predictions of an effective Hamiltonian for strongly interacting atoms in an optical

lattice. With the superlattice technique, one can directly test the key assumption in

derivation of the Hamiltonian, and can measure the physical parameters to confirm

the particle-correlated tunneling. This scheme provides a quantitative testbed to

compare theory with experiments in the strongly interacting region. Comparison of

the few-site physics in an optical superlattice provides a general method to test model

Hamiltonians for the atomic gas system. Slight modifications of the scheme here

can also be used to test the theoretical model Hamiltonians in other configurations,

including the multi-component Fermi gases.

In this chapter we focused on the case of interactions only between groups of two

sites, as this provides the simplest case in which all the parameters of the model can

be measured. Of course, we are interested not only in measuring the parameters of the

generalized Hubbard model but also in examining its predictions for the many-body

physics. In subsequent chapters, we consider what happens when larger numbers of

lattice sites are allowed to interact.



CHAPTER V

Low Energy Eigenstates of the Generalized Hubbard

Hamiltonian in a Plaquette Superlattice

In previous sections we have described how for fermions in an optical lattice

near a Feshbach resonance, the effective interaction is easily larger than the band

gap. It is in general quite difficult to understand the many-body physics of such

a strongly interacting system. An examination of the physics of a few particles

or a few sites serves as a valuable starting point. Having solved the two-particle

and two-site cases above, we here move on to the next simplest case, that of a

single four-site square plaquette. This case can be realized in experiments using

an optical superlattice which suppresses interactions between plaquettes. (This is

similar to the superlattice described in the previous chapter and demonstrated in

recent experimental work [70, 71, 76], except here such a superlattice is applied

along two orthogonal directions.)

This case is of particular interest because it is the smallest system that can exhibit

d-wave rotational symmetry, such as has been found for the order parameter of the

cuprate high-temperature superconductors.[78–81] Studying d-wave superfluidity in

optical lattices may be instructive in understanding the high Tc superconductors, par-

ticularly as the effective Hamiltonian for strongly interacting optical lattice fermions

resembles the model Hamiltonians used in studying strongly interacting electrons in

70
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condensed matter systems.

We show that for the generalized Hubbard model the single plaquette states are in

general described by superpositions of atomic resonating valence bonds and dressed

molecules. As one scans the magnetic field, level crossings are found between states

with different symmetry properties, which may correspond to quantum phase tran-

sitions in the many-body case.

(This chapter presents our work as published in Ref. [82])

5.1 The Effective Hamiltonian

In this effective Hamiltonian, whenever two atoms come to the same lattice site,

they form a dressed molecule state (a single-site Cooper pair), which corresponds to

an exact eigenstate constructed from the single-site physics. The effective Hamilto-

nian then describes the interaction between these dressed molecules and the atoms

over different lattice sites. The explicit form of the Hamiltonian is as follows [3]

Heff =
∑

i

∆(B)d†idi +
∑

i;j∈N(i)

tdPd
†
idjP

+
∑

i;j∈N(i)

∑

σ

(

taPa
†
iσajσP + tdad

†
idja

†
jσaiσ

)

+
∑

i;j∈N(i)

(

gd†i (ai↑aj↓ − ai↓aj↑) + h.c.
)

(5.1)

where a† and d† represent creation operators for fermionic atoms and bosonic dressed

molecules, respectively; σ =↑, ↓ labels two internal spin states; and i labels the lat-

tice sites (with j ∈ N(i) labeling the sites adjacent to i). P represents a projection

of the state at every lattice site i onto the four-dimensional subspace with basis
{

|0〉i , a
†
i↑ |0〉i , a

†
i↓ |0〉i , d

†
i |0〉i

}

. The parameters g, td, ta, and tda depend on the phys-

ical properties of the atomic system as well as the multi-band properties of the

optical lattice (see the explicit expressions in [3]). The parameter ∆ corresponds to
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an eigenenergy of the two-body physics from a single site, and can be tuned over a

wide range of values by varying the applied magnetic field B [16]. Although in this

chapter we use the form of the Hamiltonian given by equation (5.1), we should keep

in mind that this is mathematically equivalent to the generalized Hubbard model.[24]

5.2 Why Study This Hamiltonian on Four-Site Plaquettes?

In this paper, we make use of the above effective Hamiltonian Heff to study the

physics of this strongly correlated system with interactions among a few lattice sites.

In particular, we focus on investigation of the states of a single plaquette, which is a

basic unit of the two-dimensional square lattice. This study has two purposes. First,

understanding the states of atoms at a single plaquette is a necessary step towards

the challenging goal of understanding the physics of this strongly interacting gas in

a quasi-two-dimensional optical lattice. It is shown in Ref. [3] that the effective

Hamiltonian Heff reduces to the well-known t-J model [83] and the XXZ model [84]

in certain limits of the parameter values, so the physics associated with Heff should

be rich and parameter-dependent. In this work, we would like to understand the in-

fluence of the parameters on a few body physics, and that understanding will provide

an intuition for taking appropriate approximations towards the many-body physics.

In particular, from the few-body physics, we construct states which will provide the

lowest order eigenstates of perturbation theory for the case of weak coupling between

the plaquettes. Even in the case of the homogeneous lattice (where the interplaquette

coupling is not weak), the states on small clusters of cites might be used as the basic

entries for an effective many-body theory through the contractor renormalization

procedure (a real-space renormalizaton group method for high dimensions) [85, 86].

We will see that even for a single plaquette, the behavior of the states has been pretty
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rich. The eigenstates involve resonating valence bonds and superposition of dressed

molecules, and are highly entangled over different lattice sites. With variation of the

parameters in the Hamiltonian Heff , there are several level crossings for the lowest

eigenstate with change of the state symmetry properties, which may correspond to

a quantum phase transition for larger systems.

Second, the study of the physics of a single plaquette is also of practical relevance.

For atoms in an optical superlattice, the physics can be dominated by the interactions

within single plaquettes. A simple optical superlattice can be formed by adding two

standing wave laser beams with commensurate wave vectors [87, 88]. The potential,

say, along the x direction, has the form V (x) = − [V1sin
2 (k1x) + V2sin

2 (k2x)]. If

we choose the wave vector k2 = 2k1 = 2π/L and require 0 < V1 < 4V2, then we

have potential barriers of two different heights (see FIG. 5.1). The minima occur at

x = nL± x0 (for integer n), where

x0 =
L

2π
cos−1

(−V1

4V2

)

(5.2)

The lower and higher potential barriers Vlow and Vhigh are given respectively by

Vlow =

(

1 − V1

4V2

)2

V2

Vhigh =

(

1 +
V1

4V2

)2

V2. (5.3)

The barrier Vhigh can be significantly larger than Vlow if we choose V1 close to 4V2,

and such a high barrier turns off the interactions except for the ones between the

sites separated by Vlow. If we apply this optical superlattice potential along both the

x and y directions and a deep lattice potential along the z direction, we then have

interactions dominantly within the single plaquettes in the x-y plane. With strongly

interacting atoms in this optical superlattice potential, one can test the predictions



74

Figure 5.1: Superlattice potential vs. x for V (x) = −
(

V1sin
2
(

πx
L

)

+ V2sin
2
(

2πx
L

))

from the effective Hamiltonian Heff , and detect the exotic entangled states emerging

from the ground state configurations of Heff .

We should also point out that the effective HamiltonianHeff includes the Hubbard

model as a particular case. The Hubbard model is given by the Hamiltonian [86, 89]

HHub = −t
∑

<i,j>,σ

(

a†iσajσ +H.c.
)

+ U
∑

i

ni↑ni↓, (5.4)

where niσ = a†iσaiσ. Specifically, Heff can be written in the form of HHub if we

substitute d†i with a†i↑a
†
i↓ and make a particular choice of the parameters in Heff

with ta = −t, tda = t, g = t, td = 0, and ∆ = U . So, one can see that Heff

extends the well-known Hubbard model HHub in a nontrivial way. Note that for

strongly interacting atoms near a broad Feshbach resonance, the parameters g and

tda are significantly different from the atomic tunneling rate t due to the multi-band

populations and the direct neighboring collisions. From the expressions of these

parameters in Ref. [3], we estimate that typically |td| << |ta| << |tda| ∼ |g|. This

is because ta corresponds to atomic tunneling in the single lowest band, whereas tda

and g correspond to interactions involving the dressed molecule states (which are

superpositions of states in multiple upper bands). For the numerical calculations in
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this work, we typically take td ∼ 0,−ta ∼ 0.1|g|–0.3|g|, and tda ∼ |g|–2|g|. (Note from

the form of Heff that the sign of g is essentially irrelevant, as it can be incorporated

into the definition of d†.) The parameter ∆ is sensitive to the external magnetic

field, and can be scanned from the value much smaller than − |g| to the value much

larger than |g|.

The atomic states within each plaquette critically depend on the atom number

and the spin configuration in that plaquette. In the following, we will consider all

the different nontrivial cases with different numbers of spin ↑ and ↓ atoms occupying

the four-site plaquette.

5.3 Four atoms per plaquette: two ↑, two ↓

Over most of the typical range of the parameter values, the plaquette occupied by

two ↑ and two ↓ atoms has two distinct types of ground states, with a level crossing

occurring at some critical value of ∆. These two types of states can be distinguished

by how they transform under a 90◦ rotation in the plane of the plaquette. Under

such a rotation, the ground state wavefunction for ∆ less than (greater than) the

critical value is multiplied by a factor of +1 (−1). Thus, we say that the phase on

the negative side of the transition has s-wave symmetry, and that on the positive

side has d-wave symmetry.

The ground states of each of these two types change smoothly with changes in

the parameter ∆. Thus, we can identify particular energy eigenstates as the “s-wave

state” and the “d-wave state” over the full range of ∆, even as the exact form of

the eigenstate changes. (Note that these are not the only eigenstates with s-wave

and d-wave symmetry – here we use these terms to refer solely to those states which

are the ground states when the system is in the corresponding parameter regions.)



76

The energies of the s-wave and d-wave states can be easily calculated through exact

diagonalization, and they are plotted in FIG. 5.2(a), which illustrates the crossover

between them. (For this figure, we scan ∆ and set the other parameters of Heff to

their typical values with tda = 1.5|g| and ta = −0.2|g|.) The energy gap between the

ground state and 1st excited state is shown in FIG. 5.2(b)).

To understand the properties of the ground state, it is important to have its ex-

plicit expression. Although one can calculate this explicit expression through numeri-

cal exact diagonalization, the state is in general a superposition of many basis-vectors

(36 vectors in this case), with all the superposition coefficients varying with ∆. It

is troublesome to understand the state’s properties from this lengthy expression. To

overcome this problem, we describe the s-wave and d-wave states more compactly,

in a way that illustrates their rotational symmetry, by means of a pictorial represen-

tation which we define here. The four sites of a plaquette we label as:
1 2

3 4 . We place

various pictures on these sites corresponding to creation operators applied at those

sites. The whole picture represents the product of these operators, applied to the

vacuum state |0〉. For instance, r

r

placed on two sites (either horizontally, vertically,

or diagonally) represents a normalized singlet between those two sites. So, if the

sites are labeled i and j, this represents 1√
2

(

a†i↑a
†
j↓ − a†i↓a

†
j↑

)

. (Note that the order

of i and j does not matter, as the anti-commutation of a†i and a†j makes the singlet

symmetric under exchange of i and j.) fm represents a dressed molecule. (I.e., if lo-

cated at site i , this picture corresponds to d†i .) a represents an unoccupied site. The

creation operators that make up a singlet are always grouped together; other than

that, the order of the operators is irrelevant, as the singlets and dressed molecules

commute. As an example, the picture
fm

r

r

a represents 1√
2

(

a†1↑a
†
3↓ − a†1↓a

†
3↑

)

d†2 |0〉.

The full Hilbert space for two ↑ and two ↓ atoms on a plaquette is 36-dimensional.
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Figure 5.2: Energy vs. ∆ for a plaquette occupied by two ↑ and two ↓ atoms. Other parameters
are tda = 1.5|g|, ta = −0.2|g|, td = 0 (a): Eigenenergies of the s-wave (◦) and d-wave (x) states.
(b): Energy difference (gap) between ground state and first excited state. The gap vanishes at the
level crossing point. Because the eigenenergies vary smoothly with ∆, the curve is smooth except
at the level crossing points for the ground state (where the gap is zero) and for the first excited
state (indicated by arrows)
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However, the s-wave state (over the full range of ∆) can be conveniently expressed

as a vector in a 4-dimensional subspace of the full space, with basis vectors:

|1〉s = 1
2
√

3
[ fm fm

a a
+

fm

fma

a
+

fm fm

a a
+

fm

fm a

a
+ 2 ( fm

fma

a
+

fm

fm a

a ) ]

1

|2〉s = 1
2
√

2
( fm

r

r

a
+

fm

r r

a
+

fm r

ra
+

fm

r r

a
+

fmr

r a
+

fm

r r

a
+

fm

r

r

a
+

fm

r r

a )

1

|3〉s = 1
2
( fm

r

r

��a
+

fmr

r@@a +
fmr

r

��
a

+
fm

r

r@@
a )

|4〉s =
r r

r r
+

r

r

r

r

The d-wave state (as ∆ varies) can be written as a vector in a 3-dimensional

subspace with basis vectors:

|1〉d = 1
2
( fm fm

a a
− fm

fma

a
+

fm fm

a a − fm

fm a

a )

|2〉d = 1
2
√

2
( fm

r

r

a
− fm

r r

a
+

fmr

r a −
fm

r r

a
+

fm r

ra − fm

r r

a
+

fm

r

r

a
−

fm

r r

a
)

|3〉d = 1√
3
(

r

r

r

r − r r

r r
)

Note that |4〉s and |3〉d are written here as sums of non-orthogonal terms; however,

this form makes their rotational symmetry readily apparent. The states |4〉s and |3〉d

are the resonating valence bond (RVB) states for atoms on a single plaquette [83, 86],

with s and d wave symmetries, respectively. For a larger lattice, the RVB states are

in general superpositions of many different spin-singlet distribution patterns [90].

Thus the s-wave and d-wave ground states, respectively, are:

|ψ〉s = s1 |1〉s + s2 |2〉s + s3 |3〉s + s4 |4〉s , (5.5)

|ψ〉d = d1 |1〉d + d2 |2〉d + d3 |3〉d , (5.6)

They are superpositions of many different distribution patterns of the dressed

molecules and the atomic valence bonds (spin singlets). The values of the super-

position coefficients are shown in FIG. 5.3 as a function of the ratio ∆/|g|. Note that

in the limiting case ∆/|g| >> 1, the effective Hamiltonian Heff reduces to the t-J

model [3]. Indeed, one can see from FIG. 5.3 that the state |ψ〉d in that limit tends
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to the ground state |3〉d of the t-J model on a plaquette [83].

Projected onto these subspaces, Heff (with td ≃ 0) expressed in terms of the bases

shown above becomes:

Hs =









2∆ −2
√

3g 0 0

−2
√

3g ∆
√

2 (ta + tda) −2g

0
√

2 (ta + tda) ∆ 0
0 −2g 0 0









(5.7)

for the s-wave state, and:

Hd =















2∆ −2g 0

−2g ∆ −2
√

3g

0 −2
√

3g 0















(5.8)

for the d-wave state. The lowest energy eigenstates of these two Hamiltonians are

the s-wave and d-wave states (respectively) of the full Hamiltonian Heff . (See solid

lines on FIG. 5.3.)

For a small portion of the range of the parameter values tda/|g| and ta/|g| there is

an additional type of ground state, which occurs for ∆ between the s-wave and d-wave

states above. For this type, the ground state also has s-wave rotational symmetry.

However, the states ↑ and ↓ are in a triplet configuration, rather than the singlet

occurring in the other two types of states |ψ〉s and |ψ〉d. The region of the parameter

space for which this triplet phase occurs is shown in FIG. 5.4. The eigenenergies of

the s-wave singlet, s-wave triplet, and d-wave singlet states are shown in FIG. 5.5(a)

for tda = 2|g|, ta = −0.3|g| (which is within the range where the triplet ground state

occurs.) The gap between the ground state and first excited state for tda = 2|g|,

ta = −0.3|g| is shown in FIG. 5.5(b).

The s-wave triplet state can be written as a linear combination of three states:

|1〉trip = 1
2
√

2
( t d

fm a
+

d

tfm

a
+

d t

fma
+

t

d

fm

a

3 df

f

f

+
t d

fma
+

d

t

fm

a
+

d t

fm a
+

t

d fm

a
)

|2〉trip = 1

2
( t

d@@@@
fm

a
+

d

t

����fm

a
+

d

t@@@@fm

a
+

t

d

����
fm

a
)
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Figure 5.3: The ground-state configuration vs. the detuning ∆ for a plaquette occupied by two ↑
and two ↓ atoms. (tda = 1.5|g|, ta = −0.2|g|, td = 0) (a) Components of the s-wave state (s1: ◦,
s2: x, s3: ▽, s4 : +). (b) Components of the d-wave state (d1: ◦, d2: x, d3: +). The marked data points

were computed from the full Hamiltonian Heff , whereas the solid lines were computed from the projected

Hamiltonians Hs and Hd, respectively.



81

Figure 5.4: In the typical range of tda/|g| and ta/|g|, the s-wave triplet ground state of the plaquette
with 2 ↑ and 2 ↓ atoms occurs for parameter values within the shaded region.

|3〉trip = 1

2
√

2
( t d

r r
+

d

t

r

r
+

d t

r r
+

t

d

r

r )

Here t d represents the triplet 1√
2

(

a†i↑a
†
j↓ + a†i↓a

†
j↑

)

, where i is the site of the

black-filled circle, and j is the site of the white-filled circle. Note that unlike the

singlet, the triplet is not symmetric under exchange of i and j: 1√
2

(

a†i↑a
†
j↓ + a†i↓a

†
j↑

)

=

− 1√
2

(

a†j↑a
†
i↓ + a†j↓a

†
i↑

)

Projected onto the basis
{

|1〉trip , |2〉trip , |3〉trip

}

, Heff (with td ≃ 0) becomes:

Htrip =





∆
√

2 (tda − ta) −2
√

2g√
2 (tda − ta) ∆ 0

−2
√

2g 0 0



 (5.9)

and the ground state of this Hamiltonian is the s-wave triplet state. It should also

be noted that the s-wave triplet state is the first excited state of Heff in the limit of

large positive ∆.
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Figure 5.5: Energy vs. ∆ for a plaquette occupied by two ↑ and two ↓ atoms. Other parameters
are tda = 2|g|, ta = −0.3|g|, td = 0 (a): Eigenenergies of the s-wave singlet (◦), d-wave singlet (x),
and s-wave triplet (+) states. (b): Energy difference between ground state and first excited state.
Crossovers in the first excited state are indicated by arrows.
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5.4 Four atoms per plaquette: three ↑, one ↓

The plaquette occupied by three ↑ and one ↓ atoms has only one type of ground

state over the full range of ∆. The ground state has s-wave symmetry (i.e. it is

unchanged under 90◦ rotations in the plane of the lattice). The ground state energy

is plotted in FIG. 5.6(a), and the energy difference between the ground state and the

first excited state is shown in FIG. 5.6(b). For this figure the other parameters were

tda = 1.5|g| and ta = −0.2|g|.

The ground state can be represented compactly in the pictorial representation

introduced above. Here we add an additional symbol to represent a single atom in

the ↑ state. Because the order of the fermionic creation operators matters, we use ↑

to represent the left creation operator and ⇑ to represent the right creation operator.

For instance,

fm

↑ ⇑
a

= d†1a
†
3↑a

†
4↑ |0〉, whereas

fm

⇑ ↑
a

= d†1a
†
4↑a

†
3↑ |0〉.

The ground state is: |ψ〉S = C1 |1〉S + C2 |2〉S + C3 |3〉S , where

|1〉S = 1

2
√

2
( fm

⇑
↑

a
+

fm

⇑ ↑
a

+
fm↑

⇑ a
+

fm

↑ ⇑
a

3 "

+
fm ⇑
↑a

+
fm

⇑ ↑
a

+
fm

↑
⇑

a
+

fm

↑ ⇑
a

)

|2〉S = 1

2
( fm

⇑
↑
a

+
fm⇑
↑a

+
fm↑
⇑a

+
fm

↑
⇑
a )

|3〉S = 1

2
√

2
(

r

r

⇑
↑ +

r r

⇑ ↑ +
r

r

↑
⇑ +

r r
↑ ⇑ )

The values of the coefficients C1, C2, C3 are shown in FIG. 5.7.

Projected onto the three-dimensional subspace of the full Hilbert space with basis

vectors |1〉S , |2〉S , |3〉S , Heff (for td ≃ 0) is:

HS =





∆
√

2 (ta − tda) −2
√

2g√
2 (ta − tda) ∆ 0

−2
√

2g 0 0



 (5.10)

Thus, the ground state of this Hamiltonian is the ground state of Heff . (See solid

lines in FIG. 5.7.)

It should also be noted that the s-wave ground state for 3 ↑, 1 ↓ atoms per

plaquette is degenerate with the triplet state for 2 ↑ and 2 ↓ atoms described in
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Figure 5.6: Energy vs. ∆ for a plaquette occupied by three ↑ and one ↓ atoms. Other parameters
are tda = 1.5|g|, ta = −0.2|g|, td = 0 (a): Ground state energy. (b): Energy difference between
ground state and first excited state.
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Figure 5.7: Components of the ground state (C1: ◦, C2: x, C3: +) vs. ∆ for a plaquette occupied
by three ↑ and one ↓ atoms. (tda = 1.5|g|, ta = −0.2|g|, td = 0) The marked datapoints were
computed from the full Hamiltonian Heff , whereas the solid lines were computed from the projected
Hamiltonian HS .

the previous section. In fact, the 2 ↑, 2 ↓ triplet state is identical to the ground

state for 3 ↑ and 1 ↓ atoms and for 1 ↑ and 3 ↓ atoms, except that the triplet

1√
2

(

a†i↑a
†
j↓ + a†i↓a

†
j↑

)

is replaced with a†i↑a
†
j↑ in the 3 ↑, 1 ↓ case, and with a†i↓a

†
j↓ in

the 1 ↑, 3 ↓ case.

5.5 Two atoms per plaquette: one ↑, one ↓

When occupied by only a single atom of each spin state, the plaquette has a single

type of ground state for all values of ∆ (for values of the other parameters within

the typical range). This state is symmetric under 90◦ rotations – i.e., it has s-wave

symmetry. The ground state energy of this system is plotted in figure 5.8(a). Figure

5.8(b) shows the excitation gap between the ground state and first excited state.

Both these figures assume typical values of tda and ta (tda = 1.5|g|, ta = −0.2|g|).
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Figure 5.8: Energy vs. ∆ for a plaquette occupied by one ↑ and one ↓ atom. (tda = 1.5|g|,
ta = −0.2|g|, td = 0.) (a): Ground state energy (b): Energy difference between ground state and
first excited state. The curve is smooth except at a crossover in the first excited state (indicated
by an arrow).
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Figure 5.9: Components of the ground state (c1: ◦, c2: x, c3: ▽) vs. ∆ for a plaquette occupied by

one ↑ and one ↓ atom. (tda = 1.5|g|, ta = −0.2|g|, td = 0) The marked datapoints were computed from the

full Hamiltonian Heff , whereas the solid lines were computed from the projected Hamiltonian H.

The ground state can be expressed as a vector in a 3-dimensional subspace of the

full Hilbert space. The basis vectors of this subspace (in the pictorial representation

introduced above) are:

|1〉 = 1

2
( fm

a a

a
+

fm

a

a

a
+

fma

a a
+

fm

a

a

a )

|2〉 = 1

2
( r r

a a
+

r

r

a

a
+

r r

a a
+

r

r

a

a )

|3〉 = 1√
2
( r

r@@a
a

+
r

r

��
a

a
)

Thus, the ground state is given by: |ψ〉 = c1 |1〉 + c2 |2〉 + c3 |3〉, where the values

of the coefficients c1, c2, c3 are shown in FIG. 5.9

Projected onto this subspace, Heff (for td ≃ 0) expressed in the above basis
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becomes:

H =















∆ −2
√

2g 0

−2
√

2g 0 2
√

2ta

0 2
√

2ta 0















(5.11)

Thus, the ground state of this Hamiltonian is the ground state of Heff . (See solid

lines on FIG. 5.9.)

5.6 Three atoms per plaquette:two ↑, one ↓

The plaquette with two ↑ atoms and one ↓ atom has three distinct types of ground

states for different values of the parameter ∆ (with the other parameters in the typical

range). However, over a wide range of ∆ around ∆ = 0 the system is in the same

type of ground state. The ground state of this type is two-fold degenerate. (Hence,

we will refer to this as the “degenerate state”.) The ground state energy and the

gap between the ground state and first excited state are shown in FIG. 5.10. (For

the full range of ∆ values shown in the figure, the system is in the degenerate state.)

The degenerate ground states (which we call |ψ〉+ and |ψ〉−) can be defined in such

a way that they are eigenstates of a 90◦ rotation in the plane of the plaquette, in

which case |ψ〉± gains a factor of ±i under such a rotation.

The state |ψ〉+ can be expressed as a vector in a particular six-dimensional sub-

space of the full Hilbert space. We define the basis vectors of this subspace in

the pictorial representation introduced above. However, because the order of the

fermionic creation operators matters, we use three symbols ↑, ⇑, ∧ (↓, ⇓, ∨) to rep-

resent the first, second, and third creation operator for atoms in the ↑ (↓) state. E.g.,

↑⇓
∧ a

= a†4↑a
†
3↓a

†
1↑ |0〉. Represented in this way, the six basis vectors are:

|1〉
+

= 1

2
[( fm ↑

a a
−

fm↑
a a )−i( fm

↑a

a −
fm

↑
a

a )]

|2〉
+

= 1

2
[( fm↑

a a
−

fm ↑
a a )−i(

fm

↑
a

a − fm

↑ a

a )]
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Figure 5.10: Energy vs. ∆ for a plaquette occupied by two ↑ and one ↓ atoms. (tda = 1.5|g|,
ta = −0.2|g|, td = 0) (a): Ground state energy (b): Energy difference between ground state and
first excited state. Crossovers in the first excited state (at which points the curve is not smooth)
are indicated by arrows.
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|3〉
+

= 1

2
[( fm

↑a

a −
fm

↑
a

a )−i( fm

↑ a

a −
fm

↑
a

a )]

|4〉
+

= 1

2
[(↑ ⇓

∧a
− ↑⇓

∧ a )−i( ↑
⇓∧

a −↑
⇓ ∧

a
)]

|5〉
+

= 1

2
[(↓ ⇑

∧a
− ↓⇑

∧ a )−i( ↓
⇑∧

a −↓
⇑ ∧

a
)]

|6〉
+

= 1

2
[(↑

⇑ ∨
a
− ↑

⇑∨
a )−i(↑ ⇑

∨a
− ↑⇑

∨ a )]

and the state |ψ〉+ is given by:

|ψ〉+ = A |1〉+ + A∗ |2〉+ +B |3〉+ + C |4〉+

+D |5〉+ +D∗ |6〉+ (5.12)

for some complex coefficients A, B, C, and D. Note that under a 90◦ clockwise

rotation |n〉+ → i |n〉+ for each n, and thus |ψ〉+ → i |ψ〉+. The state |ψ〉− can be

expressed as a vector in a six-dimensional subspace of the full Hilbert space with

basis vectors

|n〉− = |n〉∗+ (5.13)

for n = 1, ..., 6. |ψ〉− is given by:

|ψ〉− = A∗ |1〉− + A |2〉− +B∗ |3〉− + C∗ |4〉−

+D∗ |5〉− +D |6〉− = |ψ〉∗+ (5.14)

The complex coefficients A, B, C, and D can be written as:

A = |A| eiφA, D = |D| eiφD

B = |B| eiπ/4, C = |C| eiπ/4 (5.15)

where |A|, |B|, |C|, |D|, φA, and φD depend on the parameters of Heff . The coeffi-

cients are determined up to an arbitrary overall phase, which here was chosen to fix

the phases of B and C as shown. (B and C were found to have the same phase.)
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Figure 5.11: Ground state parameters vs. ∆ for a plaquette occupied by two ↑ and one ↓ atoms.
(tda = 1.5|g|, ta = −0.2|g|, td = 0) (a): Amplitudes (|A|: ◦, |B|: x, |C|: ▽, |D|: +). (b): Phases (φA:

◦, φD: x). The overall phase was chosen to give B = |B| eiπ/4 and C = |C| eiπ/4. The marked datapoints

on (a) and (b) were computed from the full Hamiltonian Heff , whereas the solid lines were computed from

the projected Hamiltonian H+.
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For typical values of ta = −0.2|g|, tda = 1.5|g|, td = 0, the values of these parameters

(vs. ∆) are shown in FIG. 5.11.

Projected onto the subspace with basis
{

|1〉+ , |2〉+ , |3〉+ , |4〉+ , |5〉+ , |6〉+
}

, Heff

(expressed in that basis) is (for td ≃ 0):

H+ =





































∆ tda ta −ig ig 0

tda ∆ −ita g 0 ig

ta ita ∆ −2g g −ig

ig g −2g 0 −ita ta

−ig 0 g ita 0 −ta

0 −ig ig ta −ta 0





































(5.16)

The ground state of H+ is thus |ψ〉+. (See solid lines in FIG. 5.11.) Projected onto

the subspace with basis
{

|1〉− , |2〉− , |3〉− , |4〉− , |5〉− , |6〉−
}

, Heff is given by:

H− = H∗
+ = HT

+ (5.17)

(Note that in this equation H+ is still expressed in the basis in which it was defined

above.) Thus the ground state of H− is |ψ〉∗+ = |ψ〉−.

For ∆ far to the negative side (∆ < −92.9 |g| for tda = 1.5|g|, ta = −0.2|g|, td = 0),

the system of two ↑ atoms and one ↓ atom on a plaquette has a non-degenerate d-wave

ground state. This state can be expressed as a vector in a 3-dimensional subspace of

the full Hilbert space of this system, with basis vectors:

|1〉left = 1

2
√

2
( fm ↑

a a
− fm

↑a

a
+

fm↑
a a −

fm

↑
a

a

3 a

− fm↑
a a

+
fm

↑
a

a −
fm ↑
a a

+
fm

↑ a

a )

|2〉left = 1

2
(− fm

↑a

a
+

fm

↑ a

a −
fm

↑
a

a
+

fm

↑
a

a )

|3〉left = 1

2
( ↑r

r@@a − ↑r

r

��
a

+ ↑
r

r@@
a − ↑

r

r

��a
)

= 1

2
( ↑

r

r

a
− ↑

r r

a
+ ↑ r

ra − ↑
r r

a
− ↑r

r a
+ ↑

r r

a
− ↑

r

r

a
+ ↑

r r

a )
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Note that there is some ambiguity in which spins to group into a singlet and which

to write as ↑, as evidenced by the two forms given for |3〉left (the first of which has

the advantage of all its terms being orthogonal, but the second of which makes more

obvious how the Hamiltonian connects it to components |1〉left and |2〉left).

Heff (for td ≃ 0) projected onto this subspace expressed in the basis
{

|1〉left , |2〉left , |3〉left

}

is:

Hleft =















∆ − tda −
√

2ta −g

−
√

2ta ∆ −
√

2g

−g −
√

2g ta















(5.18)

Thus, the ground state of this Hamiltonian is the ground state ofHeff in the left-most

region (∆ < −92.9 |g|).

For ∆ far to the positive side (∆ > 97.9 |g| for tda = 1.5|g|, ta = −0.2|g|, td = 0),

the system has a non-degenerate s-wave ground state. Furthermore, in this state the

ground state wavefunction and energy are constant for changing ∆. In the pictorial

representation this ground state is given by:

|ψ〉right = 1

2
√

6
( t d

↑a
+

d

t

↑
a

+
d t
↑ a

+
t

d ↑
a +

t d

↑ a
+

d

t↑
a

+
d t
↑a

+
t

d

↑
a

+
t

d

����↑
a

+
t

d@@@@↑
a

+
d

t

����
↑

a
+

d

t@@@@
↑

a
)

The energy of this state is Hright = 2ta.

It should be noted that the case of 1 ↑, 2 ↓ atoms on a plaquette is equivalent to

the 2 ↑, 1 ↓ case under exchange of ↑ and ↓ spins. The Hamiltonian Heff is invariant

under such a spin exchange, except for a change in the sign of g. This is equivalent

to replacing d† with −d†. Thus, the eigenenergies of these two cases are identical,

and the eigenstates are identical except for a change in the sign of the components

which include a dressed molecule.
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5.7 Summary and discussion

In the above, we have investigated the ground state properties of the system with

different numbers of spin ↑ and ↓ atoms occupying the four-site plaquette in an

optical superlattice. All the other cases can be reduced to one of the configurations

considered above, or to a trivial case, through the particle-hole exchange. (Cases

where all particles are in the same spin state are non-interacting, and thus trivial.)

For instance, for five atoms with three spin-↓ and two spin-↑, one has two spin-↑

and one spin-↓ holes in that plaquette. So, the states are equivalent to those in the

case with two spin-↑ and one spin-↓ atoms, but with exchange of the parameters tda

and ta in the effective Hamiltonian Heff . The sign of g also changes, but as noted

above this is equivalent to replacing d† with −d†. Thus this change has no effect on

the eigenenergies, and the eigenstates only experience a change in the sign of those

components where the plaquette is occupied by an odd number of dressed molecules.

In addition, if particle-hole exchange changes the number of atoms by N , then the

eigenenergies are shifted by N
2
∆.

From this investigation, we have seen that even on a single plaquette, the Hamil-

tonian Heff exhibits a number of different types of ground state configurations,

possessing various forms of rotational symmetry (s-wave, d-wave, etc.). There are

level crossings between these different types of ground states as the detuning ∆ is

varied. The change of the ground state symmetry from s-wave to d-wave as one scans

the parameter ∆ from negative to positive regions may be a general feature and not

limited to a single plaquette. For a large lattice, this symmetry change might corre-

spond to a quantum phase transition from the s-wave to the d-wave superfluidities

(for a review, see Ref. [50]). The states found in this work on a single plaque-
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tte also can be used to construct the zeroth-order eigenstates for a lattice of many

weakly coupled plaquettes, where the interaction between plaquettes can be treated

perturbatively (as discussed in the next chapter). These states also provide some

basic entries for constructing the effective many-body Hamiltonian for atoms in a

quasi-two-dimensional optical lattice through the contractor renormalization method

[85, 86]. When the average filling number of the lattice is close to a half with hole

doping, one expects that the basic degrees of freedom from each plaquette are the

ground state configurations specified in Sec. II, the fermionic hole excitations given

by the states in Sec. V, the bosonic hole-pair excitations specified in Sec. IV, and the

bosonic spin excitations given by the states in Sec. III and II. The effective many-

body Hamiltonian will then describe the interaction between these basic degrees of

freedom. So, it is our hope that the investigation of the single-plaquette physics

here will make it possible to better understand the physics of strongly interacting

fermions on larger lattices.



CHAPTER VI

d-wave Superfluidity in the Generalized Hubbard Model

with Weakly Coupled Plaquettes

In the previous chapters we have shown how strongly-interacting fermions in an

optical lattice, under typical experimental conditions, can be described by a general-

ized Hubbard model (GHM) which includes correlated tunneling. Because the strong

interactions make the many-body physics difficult to determine, we have first focused

on simpler cases, such as with the particles allowed to interact only within clusters

of a few neighboring lattice sites. However, the most interesting questions about this

model require us to consider interactions among all the lattices sites. In particular,

there has been substantial interest in the question of whether the Hubbard model

captures the essentially physics of the high-Tc superconducting cuprates.[90–94] The

generalized Hubbard model has also been studied in the context of high-Tc supercon-

ductivity [33–36], and of course it includes the ordinary Hubbard model as a special

case.

Since the discovery that the excitation gap of the high-Tc superconductors pos-

sesses d-wave rotational symmetry[78–81], there has been much interest in whether

the Hubbard model supports a d-wave superfluid state.[93, 95–98] Dynamic mean

field theory applied to finite clusters provides numerical evidence of a d-wave ground-

state for the Hubbard model with a small hole doping.[93] However, density matrix

96
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renormalization group calculations for coupled chains in the same parameter regime

indicate a striped groundstate.[94] (The striped state is characterized by spatially

modulated expectation values of the hole density h(x) =
∑

y (1 − 〈n(x, y)〉) and

staggered spin density s(x) =
∑

y(−1)x+y 〈n↑(x, y) − n↓(x, y)〉.) This apparent dis-

crepancy has been taken as evidence that the low energy eigenstates of the Hubbard

model include nearly-degenerate d-wave superfluid states and striped states, with

the subtle biases of these different numerical methods pushing the result one way or

another.[40]

While one could attempt to similarly apply these sophisticated numerical methods

to the generalized Hubbard model, we expect that the determination of the ground-

state would be likewise sensitive to the choice of which algorithm we use. In principle,

it is possible that the presence of the correlated tunneling terms in the GHM might

break the near-degeneracy between stripes and d-wave superfluidity, but this is diffi-

cult to assess especially without yet knowing how large the correlated hopping terms

are in typical experiments. Here we choose instead to focus on a substantially sim-

pler problem, that of an inhomogeneous GHM, where the tunneling rate between

plaquettes is much less than the tunneling rate within a plaquette. In the following,

we will refer to this case as the plaquettized generalized Hubbard model (PGHM).

6.1 Why Study the Plaquettized GHM?

There are several reasons for considering such a model. First, when the inter-

plaquette tunneling rates are much smaller than the intraplaquette tunneling, it is

possible to study the system by the usual methods of degenerate perturbation the-

ory, with the terms of the Hamiltonian that couple different plaquettes serving as

the perturbation. Second, the zeroth order eigenstates are just tensor products of
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the single-plaquette states, which we determined in the previous chapter. As we saw,

there is a region of the parameter space in which the groundstate of the half-filled

(2 ↑, 2 ↓) plaquettes has d-wave rotational symmetry, but that of the quarter-filled

(1 ↑, 1 ↓) plaquettes has s-wave symmetry. This means that the hole-pair creation

operator that takes the half-filled state to the quarter-filled state must have d-wave

symmetry, so that under rotation the hole-pair creation operator produces a factor

of −1 to cancel that produced by the half-filled plaquette state.[99]

The significance of this is that we can re-express the PGHM in terms of plaquette

excitations, such that a single “site” in this new formulation is one plaquette in the

original formulation, and likewise the new “particles” are the excitations between

the plaquette states. (To avoid confusion between these two formulations, we will

use the subscript P to denote “particles” that are in fact plaquette excitations.) Of

course there are many such plaquette states. By keeping only the low-energy states,

we produce a Hamiltonian which describes the low-energy effective field theory of

the PGHM. As we will see, this Hamiltonian somewhat resembles the original GHM,

but with the key difference that it includes bosonic particles with d-wave symmetry

(namely the aforementioned hole-pair excitations). Demonstrating d-wave superflu-

idity in this model is thus as simple as demonstrating that these bosons condense,

since such a condensate inherits the d-wave symmetry of the bosons themselves.

(In contrast, note that none of the particles in the original GHM possessed d-wave

symmetry individually. In fact, the four-site plaquette is the minimal configuration

which can support a d-wave state of such particles.)

One additional reason for our interest in the plaquettized GHM is that this config-

uration can be readily achieved using an optical superlattice. As we saw in previous

chapters, the superlattice allows us to create a pattern of alternating high and low
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Figure 6.1: Configuration of weakly interacting plaquettes in an optical superlattice. The vertices
represent lattice sites, the solid lines represent low potential barriers, and the dotted lines represent
high potential barriers.

barriers, with the ability to adjust either barrier height. By applying such a superlat-

tice in two dimensions, with a deep lattice in the third dimension, we can restrict the

atoms to move within a two-dimensional plane, with the difference in barrier heights

meaning that intra-plaquette couplings are much stronger than couplings between

plaquettes. (See figure 6.1) The use of a superlattice in this way is the basis of a

recent proposal to create a d-wave superfluid.[100] That work treats the Hamiltonian

as a plaquettized version of the standard (non-generalized) Hubbard model, which is

valid far from resonance. The plaquettized Hubbard model has also been examined

in several recent papers by Kivelson et al.[101–104]

Our work below in particular follows the approach of reference [101], except that

here we consider the generalized Hubbard model, while that reference examines the

usual ungeneralized version. (Note however that most of this work preceded the

erratum [102], which was prompted in part by our private correspondence regarding

these results.)
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It is true that a d-wave superfluid state can be obtained from the plaquettized

Hubbard model. As we will see, this is also true for the PGHM (which includes

correlated tunneling terms), However in both the generalized and ungeneralized case

this state has a significant difference from the sort of d-wave superfluid state that

occurs in high-Tc superconductors, namely that the plaquettized Hubbard model

does not support nodal quasiparticles.[102] We will elaborate on this point below,

after first discussing the application of perturbation theory to the PGHM.

6.2 Perturbation Theory and the Plaquettized GHM

For fermions near a Feshbach resonance loaded in an optical superlattice such

that couplings between plaquettes are suppressed, we have a Hamiltonian similar to

the generalized Hubbard model (GHM):

H = −
∑

〈i,j〉,σ

[

ta,〈i,j〉 − g1,〈i,j〉 (niσ̄ + njσ̄) − g2,〈i,j〉niσ̄njσ̄

]

a†iσajσ + H.c.

+
∑

i

∆ni↑ni↓ − µ (ni↑ + ni↑) (6.1)

The only difference between this plaquettized GHM (PGHM) and the GHM is that

the coefficients ta, g1, and g2 all now depend on the particular choice of neighboring

sites 〈i, j〉. In particular, for the PGHM we have ta,〈i,j〉 = ta, g1,〈i,j〉 = g1 and

g2,〈i,j〉 = g2 if i and j are within the same plaquette, whereas ta,〈i,j〉 = t′a, g1,〈i,j〉 = g′1

and g2,〈i,j〉 = g′2 if i and j are on neighboring plaquettes. We take the primed

coefficients to be much smaller than their unprimed equivalents.

6.2.1 Zeroth Order States

We can separate the Hamiltonian into two parts, H = H0 +H ′, where H0 includes

both the single-site terms and the two-site terms with unprimed coefficients, while

H ′ includes the two-site terms with primed coefficients. To zeroth order in H ′ all
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the plaquettes are independent from one another. Thus the eigenstates of the full

lattice are just tensor products of the single-plaquette eigenstates of H0. The zeroth-

order states of the full lattice must be highly degenerate (except in cases where all

plaquettes are in the same state), because swapping the states of any two plaquettes

leaves the energy unchanged.

Since we are interested in the low energy physics, we can restrict the Hilbert

space to tensor products of the lowest energy states for each number of particles per

plaquette. We call the plaquette ground state energy En, where n is the number of

particles on the plaquette. If we consider a hole doping x with 0 < x < 1/2 (that is,

an average of between two and four atoms per plaquette) we can further restrict the

Hilbert space to tensor products of plaquettes which are occupied by between two

and four atoms (or equivalently, states with zero to two holes relative to the half-filled

case). States with three or more holes are suppressed so long as E1 +E4 > E2 +E3.

This means that for a state with three holes (i.e., with energy E1), it is energetically

favorable to divide those holes among two different plaquettes.

Thus, for consideration of the low-energy physics, the states of the full lattice (to

zeroth order in H ′) can be restricted to tensor products of plaquettes in six possible

states. These are the ground state for four particles on a plaquette, the ground state

for two particles on a plaquette, and the four-fold degenerate ground state for three

particles on a plaquette. As we found in the previous chapter, the lowest energy

state for four particles has two ↑ atoms and two ↓ atoms, and for a wide range

of positive ∆ it has d-wave rotational symmetry. We will label this state as the

“plaquette vacuum” |0〉P . The ground state for two particles we found has one ↑

and one ↓ atom, and s-wave rotational symmetry. We label this state d†P |0〉P , where

d†P is the hole-pair excitation which as noted above must have d-wave symmetry to
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map the d-wave plaquette vacuum to the s-wave hole-pair state. The groundstates

for three particles per plaquette have either two ↑ atoms and one ↓ atom, or else

two ↓ and one ↑. For each case, there are two degenerate states, which get a factor

of +i or −i under a π/2 rotation. We denote these for states as a†Pσ± |0〉P , where

σ =↑ (σ =↓) corresponds to the 2 ↑, 1 ↓ (2 ↓, 1 ↑) case, and ± corresponds to the

rotational symmetry.

It is not necessarily the case that the low energy states of the lattice will have

plaquettes in all these states. We must consider the pair-binding energy:

∆P = 2E3 −E2 − E4 (6.2)

where as above En is the lowest energy state for a plaquette with n particles. For

∆P ≫ 0 it is energetically favorable for a pair of holes to occupy the same plaquette,

so the plaquette states with three particles are suppressed. Likewise, for ∆P ≪ 0

it is energetically favorable to split holes between different plaquettes, suppressing

the states with multiple holes. Only for small ∆P do each of these plaquette states

coexist in the low-energy states of the full lattice. ∆P can be seen as the effective

attraction between hole states.[101]

6.2.2 First-Order Hamiltonian

Because the large potential barriers between plaquettes make all the terms of H ′

small, the effective low-energy Hamiltonian can be expanded in powers of H ′ by

means of degenerate perturbation theory.[101] In particular, we have:

Heff = PH0P + PH ′P + PH ′ (1 − P )
1

E0 −H0
(1 − P )H ′P + . . . (6.3)

where P is the projector onto the Hilbert space whose basis is all tensor products

⊗

i |φi〉P where i is the index of a particular plaquette, and |φi〉P is one of the six

low-energy plaquette states on that plaquette.
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Here we consider only terms up to first order in H ′. In this case, determining the

effective Hamiltonian simply requires us to calculate the matrix elements of H ′ in

the basis of zeroth order states. These can be calculated numerically for any choice

of parameters of the original Hamiltonian. We observe that many of these matrix

elements are equal to one another, and many are in fact zero. This is a consequence

of the symmetry of the Hamiltonian. As a result, the effective Hamiltonian (in

the language of plaquette excitations) can be expressed in terms of relatively few

parameters:

Heff
P =

∑

i

[

(∆P − 2µ) d†PidPi − µ
∑

σ,s

a†PiσsaPiσs

]

+
∑

〈i,j〉,σ,s

P
[

taPφija
†
PiσsaPjσs̄ + tdaPφijd

†
PidPja

†
PjσsaPiσs̄ + H. c.

]

P

+
∑

〈i,j〉,σ,s

P
[

gPφijd
†
Pi (aPi↑saPj↓s̄ − aPi↓saPj↑s̄) + H. c.

]

P (6.4)

Here s = +,−, s̄ = −,+, P is a projector that prevents double-occupancy, and

φij = +1 for i, j horizontal nearest neighbors, but φij = −1 for i, j vertical nearest

neighbors. Note that any term that moves the excitation a†Piσs to a neighboring site

changes it to a†Piσs̄. Yet other than this fact and the factors of φij , this Hamilto-

nian bears a strong resemblance to the effective single-band Hamiltonian derived in

chapter 2, which proved to be equivalent to the Generalized Hubbard model.

Some numerical results for the parameters of this Hamiltonian are given in Figure

6.2 for various values of g1. Note that for g1 = g2 = 0 we recover the results for the

ungeneralized Hubbard model (see Figure 5 in reference [101]), as expected.

6.3 The Rotational Symmetry Factor φij

On the results as originally reported for the case of the (non-generalized) Hubbard

model[101], the factor φij was omitted except on the terms we label gP . This was
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Figure 6.2: Numerical results for the parameters of the Effective Hamiltonian, equation (6.4), for
various values of g1 as given in the legend (in units of ta). The legend of figure (a) applies to all
four figures. Here for simplicity we take g′1/t′a = g1/ta, and g2 = g′2 = 0.
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soon corrected[102], in part due to our own correspondence with the authors. As we

shall see, the presence of this factor φij on the other terms of the Hamiltonian has

important consequences.

While one can detect the factor φij through careful calculation of the matrix

elements of H ′, it is fairly easy for sign errors to be introduced into such a calculation,

and so we prefer a more definitive argument that this factor does indeed belong on

each of the multi-site terms of the Hamiltonian. Such an argument is provided

by considering the symmetry of the various operators. Specifically, we expect on

general physical grounds that the effective Hamiltonian (6.4) is invariant under a

π/2. However, the various creation and annihilation operators are not rotationally

invariant, and thus additional orientation-dependent factors must be introduced to

insure the rotational invariance of the full Hamiltonian. This can be understood as

the origin of the factor φij.

If R represents a π/2 rotation, we have Rd†PR
† = −d†P and Ra†Pσ±R

† = ±ia†Pσ±.

Likewise from the Hermitian conjugates of these equations we have RdPR
† = −dP

and RaPσ±R
† = ∓ia†Pσ±. Note the reversal of sign due to the factor of i. We note

that in the multi-site terms, aPσ+ always appears with aPσ−. If both terms are

undaggered, such as in the gP term, then under rotation there is no net sign change.

(The gP term however gains a factor of φij from the unpaired d†P .) However, terms

like a†Pσ+aPσ− do have a sign change under rotation, as both terms produce a factor

of +i. Thus, the rotational symmetry of the full Hamiltonian dictates that each of

these terms has a factor of φij.

The significance of this, as noted in [102], is that while the Hamiltonian can

support a superfluid with d-wave excitations, there can be no nodal quasiparticles.

Elaborating briefly: In a BCS-like theory of interacting fermions, one can form quasi-
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Figure 6.3: Fermi surfaces in k-space, in units of inverse lattice spacing. (a): Some example Fermi
surfaces for less than half filling. (b): The same Fermi surfaces shifted due to additional factors of
−1, as described in the text. On both figures, the dotted lines represent the points along which the
gap is zero. Note that for any of the unshifted Fermi surfaces in (a), there are four nodal points
where the lines of gap zeros intersect the Fermi surface. For the shifted Fermi surfaces in (b), the
gap is never zero on the Fermi surface, and thus no nodal points occur.

particles with an energy E(k) =
√

(ǫk − µ)2 + ∆g(k)2, where ǫk gives the kinetic en-

ergy of the particles in the absence of interaction, µ is the chemical potential, and ∆g

is a gap arising from the interaction between particles.[105] Ordinarily, ǫk possesses

an s-wave symmetry, and for some surface in k-space (the Fermi surface) ǫk −µ = 0.

In particular, below half filling the Fermi surface will enclose k = 0. If ∆g(k) has

d-wave symmetry then it will be zero along the lines kx = ky and kx = −ky, which

necessarily intersect the s-wave Fermi surface. (See Figure 6.3 (a)) Thus, there are

four nodal points where E(k) = 0, because the gap goes to zero at those points on

the Fermi surface. This is what we would see if only the gP term contained the factor

φij, since this would correspond to a d-wave interaction between particles with an

s-wave Fermi surface.

However, in the case that actually occurs we do not have nodal quasiparticles.

This is most readily seen by mapping the Hamiltonian (equation 6.4) into a more

customary form for the consideration of BCS theory. First, if we restrict ourselves to
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the case of low hole doping (as in reference [101]), the excitations from half-filling are

sufficiently sparse that we can neglect the tdaP terms. Furthermore, the taP terms

essentially represent the hopping of single fermions from one site to another, other

than the fact that they change ”flavor” (from + to −). Because the creation operator

a†Piσ± is defined for each site i, we can just swap the definitions of a†Piσ+ and a†Piσ−

on every other site (in a checkerboard pattern). In other words, the definition of

a†Piσ+ on any particular site matches the definition of a†Piσ− on those sites that are

adjacent to it. Thus the effective Hamiltonian becomes:

Heff
P =

∑

i

[

(∆P − 2µ) d†PidPi − µ
∑

σ,s

a†PiσsaPiσs

]

+
∑

〈i,j〉,σ,s

P
[

taPφija
†
PiσsaPjσs + H. c.

]

P

+
∑

〈i,j〉,σ,s

P
[

gPφijd
†
Pi (aPi↑saPj↓s − aPi↓saPj↑s) + H. c.

]

P (6.5)

The kinetic energy ǫk for the non-interacting particles is given by the taP term,

and thus the Fermi surface ǫk − µ = 0 is the same as in the traditional case except

for the effect of the factor φij on the taP term. We can see the effect of this factor

by noting that it is eliminated if we make a further redefinition to a†Piσ±, namely

changing its sign for every other site along a particular direction. That is, we map

a†Piσ± to −a†Piσ± on every other column of the lattice. This has the effect of shifting

the Fermi surface by π/a in k-space (where a is the lattice spacing). To see this,

consider how this transformation acts on the k-space expansion of a†Piσ±:

a†Piσ± =
1√
N

∑

k

eik·Ria†Pkσ± → 1√
N

∑

k

ei[(kx+π/a)xi+kyyi]a†Pkσ± (6.6)

where k = (kx, ky) and Ri = (xi, yi).

While the gP terms of the effective Hamiltonian give rise to a gap ∆g(k) with

d-wave symmetry, the lines where ∆g(k) = 0 will not intersect the shifted Fermi
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surface (See Figure 6.3 (b)). Thus, E(k) is everywhere non-zero and there are no

nodal quasiparticles.

6.4 Chapter Summary

In this chapter, we considered the case where an optical superlattice allows only

weak interactions between plaquettes. We derived an effective low-energy Hamilto-

nian from degenerate perturbation theory. Because the plaquettes themselves have

d-wave excitations, the resulting Hamiltonian can support d-wave superfluidity (as

shown in detail for the non-generalized Hubbard model case in [100, 101]). However,

we find it cannot support the nodal quasiparticles typical of high-Tc superconductiv-

ity, due to certain symmetry factors that must occur due to the symmetries of the

plaquette excitations themselves.



CHAPTER VII

Dissertation Summary and Suggestions for Further Study

In this dissertation, we have studied the intersection of two important experimen-

tal techniques of ultracold atomic physics, namely the optical lattice and the use

of Feshbach resonance. With optical lattices, many diverse interaction configura-

tions have been achieved; those studied here represent only some of the most basic.

Nevertheless, even the simple square lattice is enough to achieve Hamiltonians such

as the Hubbard model, which support rich physics and are of great importance to

the study of condensed matter. The addition of Feshbach resonance allows the inter-

atomic interactions to be tuned over a wide range of values. Thus the combination of

these techniques presents a highly controllable, clean testbed for studying condensed

matter phenomena, as well as the possibility of new physics.

We have focused on the case of fermions in an optical lattice near Feshbach reso-

nance, and have summarized in detail the argument (from [3, 24]) that such a system

is described by a Hamiltonian of the form of the generalized Hubbard model (GHM).

In particular, we have emphasized that the GHM arises in a very different way in this

system than in condensed matter, and that the GHM occurs in two such different

contexts can be understood as a consequence of symmetry. (Specifically, we describe

how the GHM is the most general Hamiltonian allowed for a system with certain

109
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symmetries and a few other key features).

The bulk of this dissertation has focused on two questions, the first of which is

how to determine the parameters of the GHM. In this effort we studied the two-body

problem, before moving on to give a proposed experiment which could be used to

measure the model’s parameters using a double well superlattice.[77]. Having in-

troduced the superlattice, we used it in consideration of the second main question

addressed by this dissertation: How to create a d-wave superfluid state in an op-

tical lattice. This is of relevance to the study of High-Tc superconductivity, where

the excitation gap has been found to have d-wave symmetry. In particular, we first

studied the possible states of a deep plaquette superlattice (that is, one which sup-

pressed all inter-plaquette interactions) over a wide range of parameters.[82] From

here we discussed the case of a more shallow plaquette superlattice, such that weak

interplaquette interactions were allowed. Having calculated the Hamiltonian of such

a system from perturbation theory, and also from symmetry considerations, we note

that while a d-wave superfluid is achievable (see for instance, the proposal in Ref.

[100]), there is as yet no simple procedure for producing the sort of nodal quasipar-

ticles characteristic of high-Tc.

Several directions present themselves for further study. First, we can hope to see

an experimental confirmation that this system is indeed described by the Generalized

Hubbard Model, and an empirical determination of its parameters, as proposed in

Chapter 4. Once the values of the GHM parameters for this system are known, the

system might be studied by the same advanced numerical techniques employed in

condensed matter physics, such as DMRG or dynamic cluster methods. Concurrent

with this, we can hope to see more efforts to directly detect various exotic phases

in experiments on these systems. Finally, we can hope to see a means of creating
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a d-wave superfluid state with nodal quasiparticles, analogous to the high-Tc super-

conducting state.

In any case, we can expect strong interactions between ultracold atomic physics

and condensed matter for many years to come, to the benefit of both fields.
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APPENDIX A

Mapping the Effective Hamiltonian to the Generalized

Hubbard Model

In Chapter 2, we showed that the effective Hamiltonian for fermions in an optical

lattice near a Feshbach resonance is:

H =
∑

i

∆(B)d†idi +
∑

〈i,j〉

∑

σ

(

taa
†
iσbib

†
jajσ + tdad

†
idja

†
jσaiσ + H. c.

)

+
∑

〈i,j〉

[

g
(

d†ib
†
j + b†id

†
j

)

(ai↑aj↓ − ai↓aj↑) + H. c.
]

(A.1)

where we have taken the td term to be negligible. Here d†i creates a dressed molecule

state, a†iσ creates an atom of spin σ, and b†i creates a slave boson. The slave bosons

are used to enforce the constraint of no double occupancy, by requiring b†ibi +a
†
i↑ai↑+

a†i↓ai↓ + d†idi = I.

The dressed molecule is not equivalent to a pair of atoms in the lowest band, but

rather is a complex superposition over many bands. Nevertheless, we can mathe-

matically map the dressed molecule to the doubly occupied state: d†i |0〉 → a†i↓a
†
i↑ |0〉

Note that after applying the mapping the creation of a molecule no longer commutes

with the creation of an atom on the same site. For this reason, where our Hamil-

tonian contains products of operators acting on the same site as each other, these

must be placed in normal order (that is, with all creation operators to the left of the

annihilation operators) before applying the mapping d†i → a†i↓a
†
i↑.
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Applying this mapping to the appropriately ordered operators gives:

d†idi → a†i↓a
†
i↑ai↑ai↓ = n̂i↑n̂i↓

d†iaiσa
†
jσdj → a†i↓a

†
i↑aiσa

†
jσaj↑aj↓ = a†iσ̄n̂iσn̂jσajσ̄

(

d†ib
†
j + b†id

†
j

)

(ai↑aj↓ − ai↓aj↑) → a†i↓a
†
i↑ai↑b

†
jaj↓ + b†iai↑a

†
j↓a

†
j↑aj↓

− a†i↓a
†
i↑ai↓b

†
jaj↑ − b†iai↓a

†
j↓a

†
j↑aj↑

= a†i↓n̂i↑b
†
jaj↓ + a†j↑n̂j↓b

†
iai↑ + a†i↑n̂i↓b

†
jaj↑ + a†j↓n̂j↑b

†
iai↓

=
∑

σ

(

a†iσn̂iσ̄b
†
jajσ + a†jσn̂jσ̄b

†
iaiσ

)

At this point, we no longer need to require b†ibi + a†i↑ai↑ + a†i↓ai↓ + d†idi = I, as

double occupancy is no longer forbidden. The only remaining role of the slave bosons

is to enforce that terms such as a†iσbi cannot create an atom of spin σ if the site is

already occupied by an atom of spin σ̄, and similarly the Hermitian conjugate of

this term cannot annihilate an atom from a doubly occupied site. We can continue

to enforce this restriction while eliminating slave bosons, by applying the mapping

a†iσbi → a†iσ (1 − n̂iσ̄). Under this mapping, we have:

a†iσbib
†
jajσ → a†iσ (1 − n̂iσ̄) (1 − n̂jσ̄) ajσ

∑

σ

(

a†iσn̂iσ̄b
†
jajσ + a†jσn̂jσ̄b

†
iaiσ

)

→
∑

σ

(

a†iσn̂iσ̄ (1 − n̂jσ̄) ajσ + a†jσn̂jσ̄ (1 − n̂iσ̄) aiσ

)

Having applied all of these transformations, the Hamiltonian given in equation

(A.1) becomes:

H =
∑

〈i,j〉,σ
[ta (1 − niσ̄) (1 − njσ̄) + gniσ̄ (1 − njσ̄) + gnjσ̄ (1 − niσ̄) + tdaniσ̄njσ̄] a†iσajσ

+ H.c. +
∑

i

∆ni↑ni↓ − µ (ni↑ + ni↓)

=
∑

〈i,j〉,σ
[ta + g1 (niσ̄ + njσ̄) + g2niσ̄njσ̄] a†iσajσ + H.c. +

∑

i

∆ni↑ni↓ − µ (ni↑ + ni↓)

(A.2)
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where g1 = g − ta, and g2 = tda − 2g + ta. This is the generalized Hubbard model.
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