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ABSTRACT

Few-Cycle and Sub-Cycle Metrology for the Characterization of High Harmonics

by
Erik P. Power

Co-Chairs: Karl M. Krushelnick and Louis F. DiMauro

The rapid advances in the generation of ultra-short optical pulses in recent decades

have often outstripped the ability of metrologists to accurately measure the pulses’

temporal profiles. With each reduction in pulse duration, existing measurement

techniques must be re-evaluated and often times partially or completely replaced

with newer schemes providing the required temporal sensitivity. Frequency or time-

domain metrology performed after a short pulse interaction with a physical system

can provide volumes of information about the governing physics of the system. Two

new techniques for the temporal characterization of ultra-broadband few-cycle and

sub-cycle radiation are presented, along with experimental results and analysis.

A dispersion-free autocorrelator designed to characterize attosecond pulses gen-

erated through relativistic laser-plasma interactions is demonstrated. As opposed

to all other dispersion-free autocorrelation designs, this device is capable of mea-

suring a linear autocorrelation as well as a nonlinear autocorrelation, and hence is

suitable for complete characterization of ultrafast pulses in-situ. Experimental re-

sults demonstrate that this autocorrelator produces pulse reconstructions that are

xiii



in good agreement with measurements performed using an alternative time-resolved

technique.

In the strong-field regime, a cross-correlation frequency-resolved optical gating

scheme is presented. The XFROG is designed for characterizing harmonics gener-

ated by a scaled system: a λ0 = 3.6µm laser driving a cesium source. Unlike more

widely-used time-domain measurements, this scheme is sensitive to the relative ar-

rival time between harmonic orders. A novel technique employing the XFROG itself

to completely characterize the unknown dispersive properties of the cesium heat pipe

output window is demonstrated, allowing the removal of the window dispersion from

the data and the reconstruction of the harmonics inside the heat pipe. Error analysis

demonstrates that the XFROG is sensitive to the relative delay between harmonic or-

ders to within ±180as. The observed negative dispersion on the harmonics’ spectral

phase and the observed harmonic yield versus frequency are shown to be qualitatively

consistent with 1-D time-dependent Schrödinger equation calculations.

Additional measurements are presented demonstrating self-compressed, spectrally

broadened pulses emerging from filamentary propagation at both λ0 = 800nm and

λ0 = 2µm with high energy transmission. The 2µm self-compressed pulses are shown

to maintain carrier-envelope phase stability through the filamentary propagation

process with pulse durations < 3 optical cycles.
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CHAPTER I

Introduction

Since the 1958 proposal [1] and 1960 demonstration [2] of the laser, investigations

of physical phenomena on ever-decreasing time scales have yielded dramatic results.

Two years after the first CW laser was reported, it was quickly surpassed in peak

power by the development of the Q-switched laser [3], producing pulses with τ ∼

120ns (120×10−9s) with a peak power of 300kW per beam. Two years later, in 1964,

mode-locking was first proposed [4] and then demonstrated [5], with mode-locked

pulse duration of τ ∼ 2.5ns. Since then, significant improvements have been made

in mode-locking. The current state of the art is a passively mode-locked Kerr-lens

Ti:sapphire oscillator which produces a pulse duration τ = 4.8fs (4.8× 10−15s) [6].

While mode-locking opens the door for time-resolved studies on the few-femtosecond

time scale, the peak power of these pulses is quite low (typically several hundreds of

kilowatts). Direct amplification of mode-locked oscillator pulses is useful only up to

tens of microjoules, after which the pulse intensity induces a nonlinear response in

the amplifier crystal and can ultimately damage the crystal. A seminal moment for

science occurred with the advent of chirped pulse amplification (CPA) [7], leading to

the wide availability of lasers with pulse durations in the tens of femtoseconds and

energies of several millijoules. CPA has also led to the development of lasers with

1
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peak powers in excess of one petawatt (1015W) [8] and access to focused intensities

up to ∼ 2× 1022W/cm2 [9].

Recent experiments in the strong field regime, where the laser electric field is of

the same order as the Coulomb field of the atom [10, 11, 12] (I ∼ 1014W/cm2 for

hydrogen) have yielded pulse trains [13] and isolated pulses [14] with duration on the

order of hundreds of attoseconds (1as = 10−18s). Synthesized by the coherent addi-

tion of multiple high harmonic orders generated by the laser-atom interaction [15],

these pulses provide a tool capable of probing dynamics on the time scale of a single

Bohr orbit of a bound electron in hydrogen (∼ 150as). Indeed, recent measurements

have demonstrated isolated 80as pulses [16].

In the regime of relativistic intensities, defined as intensities where the quiver

energy of an electron in the laser field exceeds its rest mass energy, attosecond pulse

production is also predicted to occur [17, 18, 19] via laser interaction with an over-

dense plasma. The threshold for relativistic behavior is usually defined through the

normalized vector potential a0,

(1.1) a0 =
eE

meωc

where e is the electron charge, E is the electric field strength, me is electron mass,

and ω is the laser frequency. The relativistic threshold is defined as a0 = 1, when

quiver oscillation of the electron becomes relativistic: posc = mec. For 800nm laser

light, a0 = 1 corresponds to an intensity I ' 2.16× 1018W/cm2. The particle-in-cell

simulations that predict the existence of relativistically-produced attosecond pulses

also forecasts that these pulses will be extremely efficient, carrying perhaps 10%

of the input pulse energy, as opposed to the 10−6 efficiency for attosecond pulses

generated via strong field interactions at more modest intensities.

For pulses with > 100ps duration, it is possible to measure the pulse duration di-
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rectly using a fast photodiode and an oscilloscope. Below the 100ps limit, however,

direct electronic measurement becomes difficult, and below ∼ 50ps measurements are

limited by the bandwidth of the photodiode. Fortunately, great advances have been

made in the field of ultrafast metrology. Time-domain interferometry techniques such

as autocorrelation and cross-correlation [20, 21, 22] are often used due to the simplic-

ity of experimental setup and versatility when a quick pulse measurement is required

or when measuring pulses in a spectral range where more sophisticated techniques

are either not possible or too expensive. However, autocorrelations can be ambigu-

ous [23], and thus pulse retrievals from the de-convolution of autocorrelation data

must be treated as good estimates only. For most femtosecond applications it is al-

most always possible to construct a measurement device based on frequency-resolved

optical gating (FROG) [24] or spectral phase interferometry for direct electric field

reconstruction (SPIDER) [25]. These techniques require more work to set up, but

produce more accurate pulse reconstructions. Both schemes have proven to be quite

versatile in measuring extremely short pulses: FROG measurements of 4.5fs pulses

have been demonstrated [26], as have SPIDER measurements of 5.8fs pulses [27].

The greater part of this thesis treats the development, demonstration, and analy-

sis of two novel schemes for the temporal characterization of few-cycle and sub-cycle

ultra-broadband radiation in regimes where traditional measurement techniques ei-

ther do not exist or are too cumbersome for the target application. A smaller section

is dedicated to experiments demonstrating self-compression of short pulses to even

shorter duration via filamentary propagation.
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1.1 Metrology for Relativistically Generated Attosecond Pulses

The potential for high energy sub-fs pulses with spectra spanning the UV-VIS-NIR

range [18] presents significant challenges for ultrafast metrology. The measurement

apparatus designed to temporally characterize this transient broadband radiation

should ideally be capable of dispersion-free in-situ measurement of the pulses, since

propagating the pulses through a window and out of the vacuum adds an unaccept-

able amount of dispersion. Among the three most commonly used pulse measure-

ment schemes (nonlinear autocorrelation, SPIDER, and FROG), autocorrelation-

based measurements require the least experimental setup and provide a reasonable

reconstruction of the measured pulses.

With the exception of cross-correlation FROG, all three of the major pulse mea-

surement schemes require the use of a beam splitter to interfere the unknown pulse

with either a replica of itself or a spectral shearing field in the presence of a non-

linearity. The requirement that a pulse be split into two nominally equal replicas

presents the first of two serious problems in implementing a pulse measurement de-

vice for multi-octave spanning pulses. Most commercial beam splitters are either

layered dielectric stacks or thin metallic partial reflectors deposited on a glass sub-

strate. Propagation through the substrate was deemed untenable for the application

in this thesis; thus, designs built around the most common beam splitter types were

discarded. Beam splitter coatings deposited on ultra-thin (∼ 2µm) pellicles are also

available, however the pellicle materials generally do not transmit in the UV region,

and their wavefront surface quality is poor.

As an alternative to transmissive beam splitters, spatially dividing the beam into

two equal halves (assuming azimuthal symmetry) via reflection from a split mirror is
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an attractive alternative. Autocorrelators based on a split mirror [28] with motoriza-

tion of one mirror to produce a relative delay between the two pulse halves have been

used to measure 14fs pulses at λ0 = 800nm in an interferometric arrangement [29]

and 10fs pulses at λ0 = 600nm in a non-collinear geometry [30]. In the attosecond

domain, 780as pulses in the XUV spectral region have also been measured using a

variation on the split-mirror autocorrelator [31]. It should be noted that an alter-

nate scheme involving the use of a transmission grating as a beam splitter was also

proposed [32], however the design and fabrication of the grating is non-trivial and it

may not be feasible to obtain a grating with a satisfactory diffraction efficiency over

the desired spectral range [33].

Another barrier to the design of an appropriate pulse measurement system is in

finding a material with an appropriate nonlinear response. In the IR and visible

regions there are two options for obtaining the desired nonlinearity: use a χ(2) crys-

tal or material with a strong χ(3) response, or use a large-bandgap photodiode or

photoconductive switch. χ(2) and χ(3) materials are less attractive due to phase-

matching considerations. In order to phase match very broadband spectra, very thin

∼ O(10µm) samples must be used. Over interaction lengths this short the conver-

sion efficiency into the signal beam is extremely low, and signal-to-noise becomes a

significant problem. Two-photon induced photocurrent in a large-bandgap GaAsP

photodiode has been successfully used to measure 6fs pulses at λ0 = 800nm with a

nearly-uniform two-photon response demonstrated over 720nm− 950nm [34], and at

shorter wavelengths a two-photon response from a photoconductive switch built on

fused silica has also been demonstrated, measuring 110fs pulses at λ0 = 267nm [35].

Recent advances in semiconductor devices have also yielded a new class of solar-

blind photodiodes [36] based on III-V compound semiconductors which exhibit an
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even larger bandgap than GaAsP diodes, however the use of these devices in a multi-

photon response regime has yet to be demonstrated.

1.2 Post-CPA Spectral Broadening and Compression

Filamentary propagation, where light is spatially confined to a self-generated chan-

nel by competing focusing and de-focusing effects [37], has received significant at-

tention in recent years as a potential alternative source for high energy few-cycle

pulses [38, 39, 40, 41]. In contrast to hollow-core fiber schemes [42], where con-

finement at high intensity is provided by grazing incidence total internal reflection

within a hollow capillary, filamentation-based pulse compressors are insensitive to

beam pointing fluctuations and are more easily scaled to millijoule-level energies [43].

The process of filamentary propagation for pulse compression is a balance between

the self-action effects of the third-order susceptibility χ(3) of a bulk medium, ioniza-

tion, plasma de-focusing, and diffraction. The critical power for self-focusing is given

by [44]

(1.2) Pcr = α
λ2

4πn0n2

where n0 is the refractive index of the medium and n2 is the medium’s nonlinear

refractive index, which is related to χ(3) via n2 = 3χ
(3)
1111/4n

2
0ε0c. The parameter α

can take a range of values, depending on the beam profile; for a Gaussian beam,

α ≈ 1.8962, a Townes profile has α ≈ 1.86225, and a 4th-order super-Gaussian has

α ≈ 2.0267. At high intensities, the refractive index of a medium can be modeled as

n = n0 + n2I. It is quite easy to see that the intensity-dependent refractive index

effectively produces a gradient index lens, causing self-focusing of the beam. This

same intensity-dependent refractive index also causes self-phase modulation (SPM),

whereby the instantaneous frequency of the pulse ω(t) is modified, giving rise to new
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frequency content:

(1.3) ω(t) = ω0 − 2πL

λ0

dn(I)

dt

where L is the propagation distance and λ0 is the wavelength in free space. In the case

of filamentary propagation, the self-focusing of a pulse is arrested when sufficient free

electron density has been created via ionization such that the electron plasma contri-

bution to the refractive index approximately counters the contribution from n2. The

pulse then propagates over many Rayleigh lengths in a confined channel, undergoing

significant spectral and temporal modification due to SPM (plasma contributions to

the nonlinear polarization must also be included). Filamentary propagation termi-

nates when the pulse power has been reduced below the threshold where self-focusing

can balance the plasma de-focusing and diffraction. This power loss is a combina-

tion of energy loss due to ionization, energy loss due to diffraction, and temporal

re-shaping of the pulse. After exiting the filament, a pulse with reduced energy and

significantly broader spectrum is observed; the exact amounts of energy loss and

spectral broadening / temporal shaping depend on the physical parameters of both

the input pulse and the bulk medium chosen. Under the proper conditions the input

pulse spectrum can be broadened and compressed to create a pulse duration of less

than 3 optical cycles [45, 46, 47, 48]. Under certain circumstances it is even possible

to obtain self-compressed pulses, where the need for a complex external compressor

is alleviated by the flattening of the spectral phase as the pulse exits filamentary

propagation.

1.3 Strong Field High Harmonics in the Scaled System

The study of the strong field processes leading to high harmonic generation have

been the subject of intense research since first being reported over two decades
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ago [49, 50]. Theoretical modeling using solutions to the time-dependent Schrödinger

equation (TDSE) [15] under the single electron approximation [51] predict that the

maximum energy for an emitted harmonic photon is given by

(1.4) Umax = Ip + 3.17Up

where Ip is the ionization potential of the atomic system and the ponderomotive

potential Up is the cycle average of the quiver energy of a free electron in the presence

of the driving laser field given by

(1.5) Up =
e2E2

4meω2
0

= 9.33× 10−14Iλ2 [eV]

and e is electron charge, E is the electric field of the driving laser, me is the electron

mass, ω0 is the carrier frequency of the laser, λ is the corresponding laser wavelength

in µm and I is the peak laser intensity given in W/cm2.

The rescattering, or 3-step model [11, 12, 52] provides a quasi-classical view of

the strong field process leading to harmonic generation using a three step process.

First, the Coulomb barrier of the atom is suppressed by the presence of a strong,

slowly varying, linearly polarized laser field. The field modification to the potential

creates a barrier with finite width, which allows a ground state valence electron to

tunnel through the barrier into the continuum. Once free, the electron propagates

classically in the driving laser field. Depending on the initial kinetic energy of the

electron and the phase of the driving laser field, a free electron may return to its

parent ion, where it can either: (i) miss the ion entirely and continue to propagate,

(ii) re-scatter off of the ion either elastically or inelastically, or (iii) re-combine with

the core, dropping into the ground state and giving up an Ip + Ukinetic photon. For

very high laser intensities the initial Coulomb barrier is suppressed below the ground

state energy of the valence electron and over-the-barrier ionization [53] dominates.
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At intensities where over-the-barrier ionization becomes important, the magnetic

v×B component of the Lorentz force becomes non-negligible and the electron tra-

jectory becomes three-dimensional. Consequently, the electron is swept away from

its parent ion and misses the core on its return, thus failing to re-combine and emit

harmonic radiation. For very low intensities, the barrier suppression provided by

the driving laser is insufficient for tunneling to occur, and the dominant mechanism

for harmonic generation is given by perturbation theory expansion of the atomic

system’s susceptibility χ.

The different ionization regimes can be conveniently described by the Keldysh

adiabaticity parameter γ [10],

(1.6) γ =
ωlaser

ωtunneling

=

√
Ip

2Up

=
tunneling time

laser period

where ωlaser is the laser frequency and ωtunneling is the frequency of tunnel ioniza-

tion. For γ < 1 the dominant ionization mechanism is tunneling, and for γ > 1 the

dominant process is multi-photon. For γ ∼ 1 the v × B component of the Lorentz

force is still negligible, as are relativistic effects, and the larger Up leads to genera-

tion of higher harmonic orders. Under the Keldysh picture different atomic systems

excited to equal values of γ should exhibit the same physical behavior. Thus, driv-

ing Ar (Ip = 15.76eV) at I = 1.32 × 1014W/cm2 with a λ0 = 800nm laser and Cs

(Ip = 3.89eV) at 1.61×1012W/cm2 with a λ0 = 3.6µm laser both produce γ = 1. The

3.6µm system is a scaled version of the 800nm system and should therefore exhibit

a similar single-atom response.

It should also be noted that Eq. 1.5 provides strong motivation for moving to

longer wavelength driving lasers [54]. Since Up scales as λ2, the expected cutoff

energy of the highest order harmonics should correspondingly increase; this wave-

length scaling has been observed [55], although it should be noted that electron
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wave packet spreading during the longer cycle time of long-wavelength interactions

severely reduces the electron-core collision probability, and harmonic production effi-

ciency drops. Also, taking advantage of long-wavelength scaling for Up may increase

the electron velocity enough that the magnetic component of the Lorentz force again

becomes important, causing the electron to miss the core on its return [56, 57].

To date, experimental attempts to verify the wavelength scaling in the Keldysh

picture have been primarily limited to measuring just the generated harmonics spec-

tra. Earlier work [58] made some attempts to characterize the temporal profile of

scaled system harmonics, however in this work the experimental setup used was in-

capable of measuring the relative phase between harmonic orders. A meaningful

measurement of the relative phase between harmonic orders would provide signifi-

cant insight into the physics of the laser-atom interactions in the scaled system. The

relative phase of harmonics in the XUV generated by 800nm light has been measured

with a variety of techniques [13, 59, 60, 61].

The strong field approximation (SFA) [62, 63, 64, 65] predicts that below the

Ip + 3.2Up cutoff, two competing electron trajectories exist which lead to harmonic

generation; these are coined the short and long trajectories in reference to the amount

of time taken by the electron to propagate in the continuum between ionizing and

returning to the core. The path taken by an electron is determined by which side

of the electric field half-cycle ionizes the electron. Short trajectory electrons all

return near the 2nd zero crossing of the electric field following ionization, while long

trajectory electrons return at some later time when the field is non-zero. Short

and long trajectories are characterized by opposite signs for the dispersion of the

harmonics. Harmonics generated by the short path electrons have positive dispersion,

while long path trajectories produce harmonics with negative dispersion. In a system
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where both trajectories play an active role in harmonic generation, the observed

harmonic spectra are distorted by the interference between these two competing

paths. It has been demonstrated that the short path can be exclusively selected by

placing the gas target slightly after the laser focus, or by using a small aperture to

spatially filter the output beam [66, 67, 68].

Two different mechanisms exist to contribute to the observed chirp on the spectral

phase of the harmonic radiation. The first is due to the intensity envelope of the

laser: due to the non-constant intensity from one cycle to the next, the time between

ionization and return/recombination changes as a function of the fixed kinetic energy

required to emit a given harmonic order q. The second, called the attochirp, occurs

even for CW excitation, and exists due to the differing electron trajectories (differ-

ent ionization/return times) required for the electron to obtain the kinetic energies

needed to emit differing harmonics [69]. For attosecond pulse generation, the pres-

ence of the attochirp limits the number of harmonic orders that can be used in pulse

synthesis to some optimal number [70]. Since the chirp rate scales as 1/Iλ, the use

of longer wavelength lasers should also allow for the synthesis of shorter attosecond

pulses through the inclusion of more harmonic orders.

Time-resolved studies of scaled system dynamics will provide important insight

into the accuracy and applicability of the wavelength scalings predicted in the Keldysh

picture. Additionally, study of the scaled system harmonics affords the opportunity

to explore harmonics that lie on on the bound-bound transitions below Ip, since

these harmonics lie in the UV-VIS-NIR region and are easily accessible with com-

monly available spectrometers. For scaled system harmonics below Ip, the most

fundamental question to be answered before attempting to compare with previous

time-domain measurements is to determine the physics behind the generation of the
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harmonics. Perturbative harmonics have been observed up to the 15th order [71],

thus it is important to first verify that the harmonic generation mechanism is the

same strong field process underlying above-threshold harmonic generation.

1.4 Thesis Organization

This dissertation is organized as follows. Chapter II describes a dispersion-free

measurement system designed to temporally characterize sub-fs pulses generated

through relativistic laser-plasma interactions. The mechanical design and optical

layout are detailed, including a new technique which greatly improves the fringe

contrast for nonlinear autocorrelations and also provides the system with the ability

to collect a 1st-order autocorrelation. Operating procedures for the device are then

presented. The next section discusses the autocorrelation functions produced by

this interferometer and introduces an approximation that significantly reduces the

computational time needed for pulse reconstruction. The adaptive genetic algorithm

selected as the functional minimization routine for the pulse retrieval algorithm is

then described, and the chapter concludes with a presentation of experimental results

and discussion. The work presented in this chapter was published in Ref. [72].

Chapter III presents experimental results demonstrating self-compressed pulses

emerging from filamentary propagation. Results at λ0 = 800nm are presented first,

followed by results at λ0 = 2µm. The presented 800nm results were published in

Ref. [73], and the 2µm results were published in Ref. [74].

Chapter IV is dedicated to time-resolved measurement of high harmonics from a

λ0 = 3.6µm laser. The chapter begins by analyzing the expected pulse energy and

spectral content to determine the type of FROG geometry to employ. The design

parameters for the nonlinear medium are then discussed, along with the analysis
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used to select the proper crystals. The next section describes the layout for the

FROG and discusses the various techniques employed to isolate the FROG signal

from the background and improve signal-to-noise. The dispersion management tech-

niques used for this measurement are then presented, including a novel method for

completely characterizing the dispersive effects of an unknown window and remov-

ing its contribution from the data. Alignment and operating procedures are then

described. A discussion of the algorithm used to reconstruct the harmonic pulses

from the measured FROG traces follows, including the introduction of a new type of

constraint employed in the standard retrieval algorithm which dramatically improves

the self-consistency and convergence levels of reconstructed pulses across the entire

FROG data set. Experimental results are presented, demonstrating the successful

operation of the FROG, followed by error analysis. Analysis of the pulses recovered

from the FROG data follows. 1-D TDSE simulation results are presented, and the

experimental results are shown to compare favorably with these calculations. Anal-

ysis of the combined experimental and theoretical results is presented. The work

presented in this chapter is under preparation for publication as of the writing of

this thesis.

Chapter V provides a summary of experimental results and reiterates the key

concepts behind the new time-resolved measurement schemes and the pulse self-

compression measurements presented in this thesis. Future experiments making use

of these techniques are proposed.



CHAPTER II

All-Reflective Split Mirror Autocorrelator for In-situ
Measurement of Ultra-broadband Pulses

The potential high-efficiency relativistic source of attosecond pulses described in

Chapter I mandates that new techniques be developed for in-situ time-resolved mea-

surements. Addressing the future need for a dispersion-free pulse measurement device

constructed from a minimal number of components, an all-reflective split-mirror au-

tocorrelator using photodiode detection was designed and tested [72]. This chapter

details the operational theory, optical layout / mechanical design, alignment proce-

dures, and experimental results. An in-depth discussion of the pulse reconstruction

algorithm is provided, along with a technique for reducing the required computation

time for pulse reconstruction to an acceptable value, without the use of advanced

computing facilities. The device was tested using λ0 ∼ 800nm pulses with band-

width supporting ∼ 10fs pulses, allowing for the use of a GaAsP photodiode as a

second-order detector.

2.1 Autocorrelator Design, Layout, and Operation

The layout for the split mirror autocorrelator is shown in Fig. 2.1. The input

pulse, assumed to be linearly polarized and have azimuthal symmetry, is spatially

divided into two equal beams using a reflection from a split mirror. One half of the

14
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Figure 2.1: Optical layout for the split mirror autocorrelator.

split mirror is actuated by a piezo, affecting a relative delay τ between the two pulse

halves. The pulse halves are then focused using an off-axis parabaloidal mirror, and

a spatial filter and detector are placed in the focal plane.

Figure 2.2: Mount for the split mirror.

Fig. 2.2 shows the physical realization of the mount for the split mirror. The

mirrors were manufactured using a 4” x 2” x 1/2” Zerodur substrate, chosen for its

low thermal expansion coefficient. The substrate was polished to a surface figure of

< λ/20 at 632nm over a 90% clear aperture with 40-20 scratch-dig. After polishing,

the mirror blank was cut in two 2” x 2” squares with a chip edge specified at less
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than 50µm. The mirrors were then coated with a UV-enhanced aluminum coating,

overcoated by an extremely thin 10nm MgF protective layer to prevent oxidation.

Since the vendor could not guarantee that every mirror would have no chips to within

50µm of the cut edge, 10 mirrors were ordered, and only the mirrors with the best

visible edge quality were selected for experimental use.

The mirror mount was custom fabricated from 303ss stainless steel, the same

grade of stainless steel used in the housings for the piezo actuators. The two mirror

holders were machined with three grooves on the back surface in a right-triangular

arrangement to accept three ball-tip actuators. 0.5mm thick sapphire plates were

glued into these grooves to provide a low-friction contact point for the actuator tips.

Both mirror holders are held in place by two springs which each exert an 80N force

when extended to the designed operating length. This stronger than usual retention

force was selected to minimize the possibility of the mirror holders slipping later-

ally when an actuator is adjusted. The stationary mirror is actuated by three high

resolution micrometers with 0.5µm resolution and a 3-point non-influencing locking

mechanism to prevent unintended motion when locking after alignment. The motor-

ized mirror is actuated by three pre-loaded piezo-electric actuators. Each actuator is

equipped with an ohmic strain gauge sensor for closed-loop feedback, providing 6Å

resolution over a 30µm displacement. For an incidence angle of 20◦, this translates

to an uncertainty of ±1.9as in the position of each piezo, or ±1.1as RMS uncertainty

in the position of the mirror. The use of three piezo actuators allows for ultra-fine

tip/tilt control over the motorized mirror, producing a much higher degree of par-

allelism between the two mirrors than is possible with the manual actuators alone.

The focusing mirror is an uncoated Zerodur off-axis parabaloid with a 13◦ off-axis

angle and a focal length of 1.016m. The mirror has a surface figure < λ/20 at 632nm
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and a scratch-dig no worse than 60-40. Original plans were to coat this mirror with

UV-enhanced aluminum, however it was determined experimentally that there was

almost always a need to reduce the pulse energy by orders of magnitude to avoid

detector saturation. It became convenient to use the mirror not only for focusing

but also as a beam dump, only focusing the Fresnel-reflected portion of the beam.

A piece of 50µm-thick aluminum foil is used when installing the mirrors into their

respective holders. The foil is used to separate the two mirrors and prevent their

edges from colliding during coarse alignment. Once the mirrors are secured in their

mounts, this foil is removed. The split mirror mount is placed on a linear translation

stage with a direction of motion parallel to the surface of the mirrors. The translation

stage is moved until the input beam reflects entirely off of the piezo-actuated mirror.

A microscope objective is placed to image the focal plane of the parabaloidal mirror

onto a CCD. The parabaloid is then aligned using standard alignment techniques.

Once aligned, the focal spot looks similar to that shown in Fig. 2.3(a).

Once the parabaloid is aligned, the linear stage is moved so that the beam is

cut into two equal halves. Equality between the two pulse halves is defined to be

when the total integrated energy, measured by integrating the counts in the CCD

image, is equal for both pulse halves. The three piezo actuators are then manually

commanded to move to 15µm, or half of their total available displacement. Coarse

alignment between the two mirrors is an iterative process to achieve parallelism

between the mirrors with zero temporal delay. First, the beam from the manually-

actuated mirror is blocked, and the centroid of the CCD image of the pulse half from

the piezo-actuated mirror, shown in Fig. 2.3(b), is noted. Next, the beam from the

manually-actuated mirror is unblocked and the beam from the piezo-actuated mirror

is blocked. The micrometers on the manually-actuated mirror are then adjusted so
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Figure 2.3: Beam profile in the focal plane: (a) focal spot using a single mirror, (b) focal spot
for the beam from the piezo-actuated mirror, (c) focal spot for the beam from the
manually-actuated mirror, (d) spatial interference pattern with τ ∼ T/2 delay, (e)
spatial interference pattern with τ = 0 delay. All images are on the same intensity scale
and were acquired using λ0 = 800nm, τ u 30fs pulses.
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that the centroid of the beam from the manually-actuated mirror falls in exactly the

same location as the previously measured centroid, as shown in Fig. 2.3(c). Next, the

beam from the piezo-actuated mirror is unblocked, and a check is made for spatial

fringes. If the spatial profile observed on the CCD does not change when both beams

are allowed through, the temporal separation between the beams must be large, and

more adjustment is needed. The manual micrometer responsible for z-axis motion of

the manually-actuated mirror is adjusted, and the steps for obtaining spatial overlap

are repeated, followed by another check for temporal overlap. Once the delay between

the two pulse halves is small, spatial fringes become evident in the CCD image. Near

τ = 0 delay, the spatial profile observed on the CCD exhibits one dark fringe with

high contrast, which appears to ”walk” horizontally across the profile as the delay

is adjusted. As shown in Fig. 2.3(d), at a delay of τ = ±T/2, where T is the laser

period, the spatial profile is a two-lobed structure with equal energy in both lobes

and a dark fringe in the middle. At τ = 0 the beam profile looks identical to the

profile observed when aligning the parabaloid (i.e. using a single mirror instead of a

split mirror), shown in Fig. 2.3(e). Mis-alignment of the manually-actuated mirror so

that the beams are not collinear up and down results in a tilting of the fringe pattern

so that the fringes are no longer vertical. Mis-alignment of the manually-actuated

mirror so that the beams are crossing or diverging side-to-side results in multiple

vertical fringes, rather than a single fringe.

For longer pulses (> 20fs) it can be difficult to find τ = 0 exactly, since the

spatial distribution at τ = ±3T/2 or even τ = ±5T/2 looks much the same as the

distribution at τ = ±T/2. Thus, it is almost impossible to identify the two-lobed

profiles that occur at one-half wave delay in either direction of τ = 0. However, this

problem is not too substantial; even if the determination of τ = 0 happens to be off
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by 2 waves for λ0 = 800nm pulses, this corresponds to a 751nm displacement (at 20◦

incidence angle) of the piezo-actuated mirror, or only 2.5% of the total displacement

range. In practice this means that the autocorrelation traces will not have τ = 0

at exactly the 50% displacement point for the piezos, but the traces will still fit

comfortably within the total accessible temporal rage.

It is clear from examination of Fig. 2.3 that placing a detector with a linear

response in the focal plane will result in a DC value read from the diode for all

delays τ , since all the energy in the original pulse is always present in focus; only

the spatial distribution has changed. Furthermore, while a detector with a 2-photon

response will certainly produce an interferometric signal as τ is varied, the fringe

contrast will be degraded (∼4.6:1 vs 8:1 for a whole-beam interferometer) [29], since

the difference in peak intensity between the τ = 0 and τ = ±T/2 spatial distributions

is small. However, it should be noted that the simple addition of a small pinhole

at focus solves both of these problems. At delays τ = ±nT/2, n an integer, the

pinhole will be centered on the dark fringe and the energy transmission is minimized

as shown in Fig. 2.4(a), while for delays τ = ±nT the energy transmission through

the pinhole will be maximized, as shown in Fig. 2.4(b). Consequently, it becomes

possible to use a linear detector to collect an interferogram (and thus measure the

pulses’ spectral power) and the fringe contrast for 2nd-order detection is improved to

nearly 8:1, the theoretical maximum for an interferometric autocorrelation using a

whole beam (Michelson, Mach-Zender, etc.) interferometer.

After the determination of τ = 0 the manual micrometers are locked and the

piezos are commanded to the τ = T/2 position. Fine adjustments are then made

to the tip and tilt piezos to make the observed spatial interference pattern resemble

theory as closely as possible. A pinhole is then placed in an x-y translation mount
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Figure 2.4: Beam profile in the focal plane with 15µm pinhole location superimposed: (a) τ ∼ T/2,
(b) τ = 0.

and placed in the focal plane (the microscope objective and CCD are left in place).

The pinhole is scanned in the x-dimension until the energy collected onto the CCD is

maximized, then in the y-dimension to maximize the energy again. After completing

this the pinhole is properly positioned in y, but is off-center in x. The pinhole is then

scanned in the x-dimension until the energy on the CCD is minimized and increases

with motion in either direction in x. The pinhole is now properly positioned, and the

objective and CCD are removed. A linear or 2nd-order detector is placed immediately

behind the pinhole (as close to the pinhole as is possible) and data collection follows.

2.2 Autocorrelation Functions

Define the light to be measured to be linearly polarized with a Gaussian spatial

profile. For a monochromatic Gaussian beam with frequency ω, the fields at focus

from each half of the split mirror are described as [29] :

H̃1,2(x, y, ω) =
i

ω

cf

w2
0(ω)

exp

(
−x2 + y2

w2
0(ω)

)

×
{

1± i
2√
π

x

w0(ω)
1F1

[
1

2
,
3

2
,

(
x

w0(ω)

)2]}(2.1)
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where f is the mirror focal length, 1F1 is the confluent hypergeometric function,

w0(ω) is the beam waist in the focal plane in the absence of the split mirror, and

the separation between the split mirrors is assumed to be negligible. It is clear that

the intensity distribution for both beams is identical; the only difference between the

two beams is their phase, as is simulated in Fig. 2.5.

Figure 2.5: Intensity and phase for the two beams described by Eq. 2.1: (a) |H̃1(x, y, ω)|2, (b)
φ1(x, y, ω), (c) |H̃2(x, y, ω)|2, (d) φ2(x, y, ω).

At focus, the interference between H̃1(x, y, ω) and H̃2(x, y, ω) is thus clearly seen

to be caused by the crossing of two identical beams with oppositely tilted wavefronts.

Fig. 2.6 shows the intensity distribution resulting from the interference of H̃1(x, y, ω)

with H̃2(x, y, ω).
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Figure 2.6: Intensity when interfering H̃1(x, y, ω) with H̃2(x, y, ω) for (a) τ = 0 delay, and (b)
τ = T/2.

For a polychromatic pulse Eq. 2.1 can be viewed as describing a spatially de-

pendent frequency-domain transfer function, and the fields at focus are expressed

as

(2.2) Ẽ ′
1,2(x, y, ω) = Ẽ(ω)H̃1,2(x, y, ω)

or in the time domain as

Ẽ ′
1,2(x, y, t)e−iω0t =

1√
2π

∞∫

−∞

Ẽ(ω)H̃1,2(x, y, ω)e−iωtdω(2.3)

where Ẽ(ω) is the original pulse. Delaying Ẽ ′
2(x, y, t) by τ , the total field at focus is

then expressed as

Ẽ ′
1(x, y, t)e−iω0t + Ẽ ′

2(x, y, t− τ)e−iω0(t−τ)

=
1√
2π

∞∫

−∞

Ẽ(ω)H̃1(x, y, ω)e−iωtdω

+
1√
2π

∞∫

−∞

Ẽ(ω)H̃2(x, y, ω)e−iω(t−τ)dω

(2.4)
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2.2.1 First-order Autocorrelation Function

A linear detector immediately behind a pinhole of radius r will collect an inter-

ferogram S1(τ) as

S1(τ) =

r∫

−r

dx

√
r2−x2∫

−√r2−x2

dy

∞∫

−∞

∣∣∣∣Ẽ ′
1(x, y, t)e−iω0t + Ẽ ′

2(x, y, t− τ)e−iω0(t−τ)

∣∣∣∣
2

dt

=

r∫

−r

dx

√
r2−x2∫

−√r2−x2

dy

∞∫

−∞

∣∣∣∣Ẽ ′
1(x, y, t)

∣∣∣∣
2

dt

+

r∫

−r

dx

√
r2−x2∫

−√r2−x2

dy

∞∫

−∞

∣∣∣∣Ẽ ′
2(x, y, t− τ)

∣∣∣∣
2

dt

+ 2Re

[ r∫

−r

dx

√
r2−x2∫

−√r2−x2

dy

∞∫

−∞

Ẽ ′
1(x, y, t)Ẽ ′∗

2 (x, y, t− τ)e−iω0τdt

]

(2.5)

Adopting the normalization

(2.6)

r∫

−r

dx

√
r2−x2∫

−√r2−x2

dy

∞∫

−∞

∣∣∣∣Ẽ ′
1,2(x, y, t)

∣∣∣∣
2

dt =
1

2

Eq. 2.5 becomes

(2.7) S1(τ) = 1 + Re

[ r∫

−r

dx

√
r2−x2∫

−√r2−x2

dy

∞∫

−∞

Ẽ ′
1(x, y, t)Ẽ ′∗

2 (x, y, t− τ)e−iω0τdt

]

Applying the cross-correlation theorem [75], the Fourier transform of Eq. 2.7 yields

(2.8) F
[
S1(τ)− 1

]
= Re

[ r∫

−r

dx

√
r2−x2∫

−√r2−x2

dyẼ ′
1(x, y, ω)Ẽ ′∗

2 (x, y, ω)

]

Substituting Eq. 2.2 and noting H̃1(x, y, ω) = H̃∗
2 (x, y, ω),

F
[
S1(τ)− 1

]
= Re

[ r∫

−r

dx

√
r2−x2∫

−√r2−x2

dyẼ(ω)H̃1(x, y, ω)Ẽ∗(ω)H̃∗
2 (x, y, ω)

]

=
∣∣Ẽ(ω)

∣∣2Re

[ r∫

−r

dx

√
r2−x2∫

−√r2−x2

dyH̃2
1 (x, y, ω)

](2.9)
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Re-arranging, we see that the spectral power
∣∣Ẽ(ω)

∣∣2 can be exactly obtained from

the interferogram S1(τ) using

(2.10)
∣∣Ẽ(ω)

∣∣2 =
F
[
S1(τ)− 1

]

Re

[
r∫
−r

dx

√
r2−x2∫

−√r2−x2

dyH̃2
1 (x, y, ω)

]

With the exception of the denominator, this expression is identical to that obtained

with a whole beam interferometer [21].

2.2.2 Second-order Autocorrelation Function

A detector with a purely quadratic response inserted behind a pinhole of radius

r will collect a second-order autocorrelation S2(τ) according to

(2.11) S2(τ) = 1 + 2A0(τ) + 2Re
[
A1(τ)e−iω0τ

]
+ Re

[
A2(τ)e−i2ω0τ

]

where

A0(τ) =

r∫

−r

dx

√
r2−x2∫

−√r2−x2

dy

∞∫

−∞

I ′1(x, y, t)I ′2(x, y, t− τ)dt

A1(τ) =

r∫

−r

dx

√
r2−x2∫

−√r2−x2

dy

∞∫

−∞

[
I ′1(x, y, t) + I ′2(x, y, t− τ)

]

× Ẽ ′
1(x, y, t)Ẽ ′∗

2 (x, y, t− τ)dt

A2(τ) =

r∫

−r

dx

√
r2−x2∫

−√r2−x2

dy

∞∫

−∞

Ẽ ′2
1 (x, y, t)Ẽ ′∗2

2 (x, y, t− τ)dt

(2.12)

and we define

(2.13) I ′1,2(x, y, t) =
∣∣Ẽ ′

1,2(x, y, t)
∣∣2

and adopt the normalization

(2.14)

r∫

−r

dx

√
r2−x2∫

−√r2−x2

dy

∞∫

−∞

I ′21,2(x, y, t)dt = 1
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As with the first-order autocorrelation, the expression for the second-order auto-

correlation in Eq. 2.11 and Eq. 2.12 is identical to that obtained with a whole beam

interferometer [22], with the exception of the additional integration over x and y for

each of the three terms A0, A1, and A2. Unfortunately, Eq. 2.11 and Eq. 2.12 cannot

be used to retrieve the spectral phase without supercomputing capabilities; iterative

phase-retrieval techniques require the evaluation of the second-order autocorrelation

function hundreds of times to refine the spectral phase. The exact expression for

the second-order autocorrelation requires the discretization of the area within the

pinhole to N points per unit radius in both the x and y dimensions. For each eval-

uation of the second-order autocorrelation function, the S2(x, y, τ) response must

first be computed at each sample point, and the results must then be integrated

spatially to yield the desired result. Such an operation requires O(N2) computations

of S2(x, y, τ) responses to yield a single evaluation of S2(τ). Thus an approximation

is needed to reduce the problem to a size manageable on average-quality laboratory

computers.

The approximation is as follows: if r ¿ w0, we assume that the response at some

point (x, y), y 6= 0 within the pinhole area is simply an amplitude-weighted copy

of the response at (x, 0). Under this assumption, the integral over y can be wholly

attributed to the transfer functions H̃1,2(x, y, ω) and only need be computed one

time, resulting in a set of dimensionally-reduced transfer functions

H̃ ′
1,2(x, ω) = 4

√
α(x, ω)

√
T (ω)

i

ω

cf

w2
0(ω)

exp

( −x2

w2
0(ω)

)

×
{

1± i
2√
π

x

w0(ω)
1F1

[
1

2
,
3

2
,

(
x

w0(ω)

)2]}(2.15)

where

(2.16) α(x, ω) =
1

2

√
πw0(ω)erf

(
2
√

r2 − x2

w0(ω)

)



27

and T (ω) is the spatially integrated power transmission through the pinhole at each

frequency ω, used as a normalization term.

Replacing H̃1,2(x, y, ω) in Eq. 2.3 with H̃1,2(x, ω) from Eq. 2.15 and re-deriving

the second-order autocorrelation function, we again find that

(2.17) S2(τ) = 1 + 2A0(τ) + 2Re
[
A1(τ)e−iω0τ

]
+ Re

[
A2(τ)e−i2ω0τ

]

with new definitions for A0, A1, and A2:

A0(τ) =

r∫

−r

dx

∞∫

−∞

I ′1(x, t)I ′2(x, t− τ)dt

A1(τ) =

r∫

−r

dx

∞∫

−∞

[
I ′1(x, t) + I ′2(x, t− τ)

]
Ẽ ′

1(x, t)Ẽ
′∗
2 (x, t− τ)dt

A2(τ) =

r∫

−r

dx

∞∫

−∞

Ẽ ′2
1 (x, t)Ẽ ′∗2

2 (x, t− τ)dt

(2.18)

and we define

(2.19) I ′1,2(x, t) =
∣∣Ẽ ′

1,2(x, t)
∣∣2

and adopt the normalization

(2.20)

r∫

−r

dx

∞∫

−∞

I ′21,2(x, t)dt = 1

The size of the problem is further reduced by taking advantage of the symmetry

S2(−x, y, τ) = S2(x, y,−τ) for all points (x, y) within the pinhole area, x 6= 0.

Application of this symmetry allows us to reduce the limits of integration in the

x-dimension from [−r, r] to (0, r] by adding two new terms to each expression in

Eq. 2.18. The first new term is an x = 0 term, which must be explicitly added

since the observed symmetry is not applied at x = 0. The second new term in each

expression is almost identical to the original term, integrating over (0, r] in x and
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(−∞,∞) in t and changing t− τ terms to t + τ . Terms involving t + τ need not be

explicitly computed; it is sufficient to compute only the t− τ terms and time-reverse

these results to obtain the required t + τ terms. The final dimensionally-reduced

expressions for A0, A1, and A2 are then:

A0(τ) =

∞∫

−∞

I ′1(0, t)I
′
2(0, t− τ)dt

+

r∫

0+

dx

∞∫

−∞

I ′1(x, t)I ′2(x, t− τ)dt

+

r∫

0+

dx

∞∫

−∞

I ′1(x, t)I ′2(x, t + τ)dt

A1(τ) =

∞∫

−∞

[
I ′1(0, t) + I ′2(0, t− τ)

]× Ẽ ′
1(0, t)Ẽ

′∗
2 (0, t− τ)dt

+

r∫

0+

dx

∞∫

−∞

[
I ′1(x, t) + I ′2(x, t− τ)

]× Ẽ ′
1(x, t)Ẽ

′∗
2 (x, t− τ)dt

+

r∫

0+

dx

∞∫

−∞

[
I ′1(x, t) + I ′2(x, t + τ)

]× Ẽ ′
1(x, t)Ẽ

′∗
2 (x, t + τ)dt

A2(τ) =

∞∫

−∞

Ẽ ′2
1 (0, t)Ẽ ′∗2

2 (0, t− τ)dt

+

r∫

0+

dx

∞∫

−∞

Ẽ ′2
1 (x, t)Ẽ ′∗2

2 (x, t− τ)dt

+

r∫

0+

dx

∞∫

−∞

Ẽ ′2
1 (x, t)Ẽ ′∗2

2 (x, t + τ)dt

(2.21)

For detectors with a third-order response, a similar derivation will yield a dimensionally-

reduced expression for S3(τ). However, since experimental tests of the split-mirror

autocorrelator using a third-order device were not performed, the exact formulation

for S3(τ) has been omitted. In theory, for multi-octave spectra it may be the case
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Figure 2.7: Reduction in computation cost for S2(τ): (a) Number of points to evaluate S2(τ) using
Eq. 2.12, and (b) number of points to evaluate S2(τ) using Eq. 2.21.

that a chosen detector exhibits a response that is mixed second and third-order.

Assuming these responses are linearly independent, it should be possible to perform

a pulse reconstruction from autocorrelations taken under such circumstances, given

that the relative strengths of the second and third-order responses are known.

As with any approximation, it is important to determine a set of boundary values

within which the approximation holds. To test the validity of the approximation,

a Gaussian test pulse was created with a carrier wavelength of 745nm and enough

bandwidth to support 3.7fs pulses in the transform limit. A mild chirp was added

to stretch the pulse to 5.27fs. Fig. 2.8 shows the frequency and time-domain repre-

sentations of the generated test pulse.

Using Eq. 2.11 and Eq. 2.12, S2(τ) was computed through brute force for a variety

of initial beam diameters and pinhole sizes, keeping a fixed focal length of f =

1.016m. A step size of 10nm was used in both the x and y dimensions to ensure

adequate sampling of the second-order response at the highest frequencies contained

in the pulse spectrum. Then, using the approximated values for A0, A1, and A2

from Eq. 2.21, S2,trial(τ) was computed while varying one additional parameter: the

sampling density per unit radius.
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Figure 2.8: Test pulse used to check approximation validity. (a) spectrum (blue, solid) and phase
(red, dashed): ω0 = 2.5288rad/fs (745nm), ∆ω = 0.8981rad/fs (264.5nm). (b) intensity
(blue, solid): τ = 5.27fs, and transform-limited intensity (black, dashed): τ = 3.70fs.

S2,trial(τ) was compared to S2(τ) using the RMS error defined as

(2.22) ∆ =

√√√√ 1

N

N∑
i=1

(
S2(τi)− S2,trial(τi)

)2

Fig. 2.9 shows the simulation results for a selected subset of trials. For whole-beam

interferometers, an RMS error between the measured second-order autocorrelation

and the autocorrelation computed from the measured spectrum and trial phase of

∆ ≤ 0.003 is generally accepted to indicate convergence [22] to the correct phase.

With this in mind, an upper limit for ∆ introduced by the approximated autocorrela-

tion functions was set at ∆ ≤ 0.001. The simulations reveal that the error introduced

by the use of the reduced formulation of the transfer functions is relatively invariant

to the density of sample points per unit radius. Of much greater importance is the

ratio r/w0(ωh), which was found to be a strong predictor of the approximation’s

ability to meet the criteria ∆ ≤ 0.001. For all cases tested, choosing r/w0(ωh) < 0.1

resulted in ∆ ≤ 0.001 whenever the sampling density per unit radius was 5 points or

greater. The highest frequency in the pulse ωh is defined to be the largest frequency

with a spectral power of at least 1% of the peak power. For these simulations, this
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frequency corresponds to a wavelength of 483.3nm.
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Figure 2.9: RMS Error between S2(τ) computed from Eq. 2.12 and S2,trial(τ) computed from
Eq. 2.21 as a function of the ratio of pinhole diameter over the beam waist diam-
eter w0(ωh) at the highest frequency in the pulse and number of samples chosen
per unit radius within the pinhole: (a) w0(ωh) = 200µm, (b) w0(ωh) = 150µm, (c)
w0(ωh) = 100µm, and (d) w0(ωh) = 50µm.

Thus, for a weak-focusing geometry it is easy to choose a pinhole of appropriate

size to satisfy r/w0(ωh) < 0.1, given some good initial guesses about the spectral

content and beam diameter of the pulses to be measured. The observed invariance

to sampling density has a favorable result, in that during the phase retrieval process

it is only necessary to compute S2(x, τ) responses at 5 points along the x-axis per

calculation of S2(τ). While the number of calculations required to test each trial

phase is ∼ 5 times greater than for a whole-beam interferometer, these simulations
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show that with a bit of care the approximated transfer functions can be used without

the introduction of significant error. Furthermore, a factor of 5 increase in the number

of computations is still well within reason for most laboratory computers.

As is the case with a whole-beam interferometer, a second-order split mirror auto-

correlation suffers from the problem of time reversal symmetry. Thus, it is impossible

to distinguish between the pulses Ẽ(t)eiω0t and Ẽ∗(−t)e−iω0t, since both
∣∣Ẽ(ω)

∣∣eiφ(ω)

and
∣∣Ẽ(ω)

∣∣e−iφ(ω) yield exactly the same result for S2(τ). To determine the direction

in which time flows it is necessary to provide additional information by either un-

balancing the autocorrelator with a well-characterized piece of dispersive material in

one of the two halves of the split beam (difficult, but possible), thus cross-correlating

two different pulses and breaking the symmetry, or by collecting a third-order auto-

correlation, which does not suffer from time-reversal symmetry.

2.3 Spectral Phase Retrieval via an Adaptive Genetic Algorithm

Phase retrieval using measured spectral power (obtained either from a spectrom-

eter or the Fourier transform of the first-order interferometric autocorrelation) and

a second or third-order interferometric autocorrelation is always accomplished using

an iterative scheme. The most commonly used method, known as PICASO [22], is

quite straightforward. Using the measured spectral power
∣∣Ẽ(ω)

∣∣2, a trial spectral

phase φtrial(ω) is applied to create a trial field Ẽtrial(ω) =
∣∣Ẽ(ω)

∣∣eiφtrial(ω). The trial

field is then inserted into the appropriate expression for the measured autocorrelation

(from this point, assume a second-order nonlinearity) to create a trial autocorrelation

S2,trial(τ). The trial autocorrelation is then compared to the measured autocorrela-
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tion S2,meas(τ) using the RMS error as the figure of merit:

(2.23) ∆ =

√√√√ 1

N

N∑
i=1

(
S2,meas(τi)− S2,trial(τi)

)2

A functional minimization scheme is applied to refine φtrial(ω) and reduce ∆. A

variety of functional minimization techniques have been applied to the phase retrieval

problem, including the Powell’s dog-leg method [76], the Simplex method [22, 77], and

genetic algorithms [78]. Fig. 2.10 illustrates the steps required under the PICASO

phase retrieval scheme.
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Figure 2.10: Outline of the PICASO algorithm.

For pulse reconstruction from the data collected with the split-mirror autocorrela-

tor, the chosen functional minimization scheme was a modified version of an adaptive

genetic algorithm [79].

The basic operation of the adaptive genetic algorithm is as follows: a set (or

population, in genetic algorithm nomenclature) of trial spectral phases (each trial

phase is known as an individual) is generated as Φ(ω) = {φk(ω) : k an integer :

1 ≤ k ≤ N : N selected by the user}. Typically, N = 100 is chosen for the sake of

genetic diversity. For each φk in Φ(ω), a trial field is created using the measured

spectral power
∣∣Ẽ(ω)

∣∣2, creating a set of trial fields Ẽ(ω) = {Ẽk(ω) : Ẽk(ω) =
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∣∣Ẽ(ω)
∣∣eiφk(ω)}. The autocorrelation function is then computed for each trial field,

creating a set S2,trial(τ) as Ẽ(ω) 7−→ S2,trial(τ). The autocorrelation corresponding

to each trial is then compared to the measured autocorrelation, creating the set ∆

as {S2,trial(τ), S2,meas(τ)} 7−→ ∆. ∆ is sorted in descending order, and a linear

probability density function for selection as a parent Psel,k is generated:

(2.24) Psel,k = 1 +
〈∆〉 −∆k

〈∆〉 −min(∆)

All values Psel,k < 0 are set equal to zero, thus ensuring that individuals whose

values of ∆ were a factor of two or larger than 〈∆〉 are excluded from consideration

as candidates to parent new individuals.

A new population of N trial phases is generated from the existing generation

using genetic operators which modify the information contained in the genes of each

parent to create N − 10 new individuals, or children. The 10 best individuals in the

current generation are preserved and copied to the next generation to ensure that a

copy of the best genetic material is maintained across generations. To create a new

individual from the existing population, a genetic operator is selected, which dictates

the number of parents needed to create the new individual. To select a parent, a

random number l is generated in the range 0 < l ≤ ∑
k Psel,k, and the kth individual

is selected using the cumulative distribution function Csel generated from Psel by

finding the lowest integer k such that

(2.25) Csel,k =
k∑

j=1

Psel,j ≥ l

The genes for each individual depend on the choice for parametrization of the

spectral phase. This algorithm provides two options for parametrization of the

phase: a polynomial representation, where φk(ω) =
∑M

l=2 φl,k(ω − ω0)
l, M ≥ 2

a user-selected integer; the genes for individual k are the polynomial coefficients
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φl,k. As an alternate parametrization, the phase for an individual k can be repre-

sented directly in phase space using a set of phase values φk,phase genes = {φk,n(ωn) :

n an integer : min(ω) ≤ ωn=1 : ωn=M ≤ max(ω) : 1 ≤ n ≤ M : M an integer ≤

N : N is the length of the phase vector φk(ω)}. Each individual φk(ω) is then con-

structed from its genes φk,phase genes using cubic spline interpolation [80]. For each

run of the algorithm, a single gene type is selected and used for all individuals; mixed

parametrization schemes are not supported within a single population or across gen-

erations.

The creation of new genetic material with which to compose new individuals is

accomplished through the use of seven genetic operators: 2-point crossover, muta-

tion, averaging, smoothing, sign flip, creep, and random operators. The operations

performed by these operators are detailed in Table 2.1. For many of the operators

used by the algorithm and for the parent and operator selection processes, random

numbers are required to complete the genetic modification. The random number

generator used by this algorithm is a Mersenne Twister pseudorandom number gen-

erator [81], seeded at run time with the current computer time given in UTC.

Beyond the basic application of the genetic operators to create a new population

from the best existing genetic material, the algorithm is adaptive in the sense that

it maintains a record of the operators which have most successfully reduced min(∆)

over the past three generations and gives these operators a more favorable proba-

bility of selection for use in creating the next generation. This record-keeping and

probability assignment is accomplished through a system of credits; a higher credit

value associated with an operator results in a higher probability of selection. Each

time an individual is created, a record is also created which indicates the operator

used to create that individual. Once a population has been evaluated and ∆ com-
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Operator # Parents Used# Children Generated Operation Performed

2-point Crossover 2 2 Selects two points at random {mlow, mhigh :
mlow < mhigh} ⊂ M, where M = {1, ..., N :
N is the total # of genes per individual}.
Two parents φj(ω) and φk(ω), j 6= k, are
selected, and all genes indexed by the range
[mlow, mhigh] are swapped from φj(ω) to
φk(ω) and vice versa.

Mutation 1 1 Selects a random set of points
mmut ⊂ M, where M = {1, ..., N :
N is the total # of genes per individual}. A
single parent φk(ω) is selected, and the genes
indexed by mmut are multiplied by a random
factor in the range [1−mutval, 1 + mutval],
where mutval is a user-selected value in the
range [0,1). Each modified gene is multiplied
by a different random factor.

Averaging 2 1 Selects two parents φj(ω) and φk(ω), j 6= k,
and averages their genes together.

Smoothing 1 1 Spline parametrization only: Selects a single
parent φk(ω) and applies a moving window
average to smooth out fast fluctuations. The
window has user-selected width m, where 2 ≤
m ≤ N/2, and N is the total # of genes per
individual.

Sign Flip 1 1 Polynomial parametrization only:
Selects a random set of points
msf ⊂ M, where M = {1, ..., N :
N is the total # of genes per individual}. A
single parent φk(ω) is selected, and the genes
indexed by msf are multiplied by -1.

Creep 1 1 Selects a random set of points
mcr ⊂ M, where M = {1, ..., N :
N is the total # of genes per individual}. A
single parent φk(ω) is selected and a small
random number in the range [−crp, crp] is
added to the genes indexed by mcr, where
crp is user-selected. Each modified gene has
a different random number added.

Random 1 1 Selects a random set of points
mrnd ⊂ M, where M = {1, ..., N :
N is the total # of genes per individual}. A
single parent φk(ω) is selected and the genes
indexed by mrnd are replaced with randomly
generated values in the range (−π, π] for
spline parametrization or, for polynomial
parametrization, [−10n, 10n], where n is the
order of the polynomial coefficient for the
gene being replaced. Each gene replaced is
replaced by a different random value.

Table 2.1: Genetic operators used in the adaptive genetic algorithm

puted, credit is added to the operators in proportion to the operators’ success in

creating low-∆ individuals. Additionally, the operators that created the parents and
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grandparents of the current population are also credited, at a scaled amount. Credit

given for the current generation is full credit, while credit for the parent generation

is reduced by half, and credit for the grandparent generation is reduced by four.

For example, when considering the kth individual in the population, generated by

operator l with parent created by operator m and grandparent created by operator

n, the credit assignment to each operators’ credit OC is:

OCl = OCl +

∣∣ min(∆prev)−∆k

∣∣2
min(∆prev)

(
min(∆prev)−∆k

)

OCm = OCm +

∣∣ min(∆prev)−∆k

∣∣2
2 min(∆prev)

(
min(∆prev)−∆k

)

OCn = OCn +

∣∣ min(∆prev)−∆k

∣∣2
4 min(∆prev)

(
min(∆prev)−∆k

)

(2.26)

where ∆prev is the entire set ∆ from the previous generation, as opposed to ∆k,

which comes from the current generation.

As can be seen from Eq. 2.26, values of ∆k ¿ min(∆prev) result in a maximal

value being credited to an operator. For ∆k . min(∆prev), a minimal value is added

to the operator’s credit. For ∆k & min(∆prev), a small value is subtracted from an

operator, while for ∆k À min(∆prev), a large value is subtracted from an operator’s

credit. For the special case of the 2-point crossover operator, two children are created

instead of one (the other six operators only generate one child each). As a result,

credit given to the 2-point crossover operator is reduced by a factor of two in all cases

in Eq. 2.26 to avoid unduely favoring or punishing this operator. During the first

three iterations of the algorithm the crediting mechanism is not fully operational,

since there have not been enough previous iterations with which to attribute parent

or grandparent credits.

Once all operators have been assigned their credits for the current generation,
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OC is sorted in ascending order. OC is then scaled as

(2.27) OC =
OC−min(OC)

max(OC)−min(OC)

and taken to describe the probability density function for operator selection. To

select an operator, a random number l is generated such that 0 < l ≤ ∑6
n=1 OCn

(1 ≤ n ≤ 6 since only six operators are available for any given choice of phase

parametrization) and the pth operator is selected using the cumulative distribution

function OCDF generated from OC by finding the lowest integer p such that

(2.28) OCDFp =

p∑
n=1

OCn ≥ l

Figure 2.11 illustrates the steps performed by the adaptive genetic algorithm.

The advent of low-cost multi-core processors for personal computing opens up

new doors for scientific computing on office workstations or laboratory PCs. Taking

advantage of multiple processors or multiple processor cores, however, requires a

conscious and concerted effort on the part of the programmer. Many tasks, such as

data collection and simple figure creation, do not require multi-threaded support.

Other jobs, specifically data analysis or simulations involving large data sets, can
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Figure 2.11: Flow diagram for the adaptive genetic algorithm.
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greatly benefit from a multi-threaded implementation of the application. Multi-

threading can be accomplished in many ways; the three most common are multi-

threading at the function or operator level, as is done in the Intel Math Kernel

Library’s BLAS, LAPACK, and FFTW implementations [82], multithreading at the

loop level, as is possible with technologies such as OpenMP [83], or multithreading

at a higher, more abstract level (e.g. the class level) for a more course division of

tasks assigned to each thread.

Given the basic nature of the genetic algorithm, a set Φ(ω) of N trial phase

parametrizations, the most intuitive choice for the distribution of labor across mul-

tiple threads is to break Φ(ω) into M equally-sized subsets, {Φ(1)(ω), ...,Φ(M)(ω)}.

M worker threads are created and each is assigned a subset, with each thread m

responsible for completely processing its assigned subset Φ(m)(ω) 7→ ∆(m). To ac-

complish this, each worker maintains its own local copy of the measured spectral

power
∣∣Ẽ(ω)

∣∣2 and autocorrelation S2,meas(τ) to avoid memory access conflicts dur-

ing processing. Under this scheme, the best choice for choosing a number of workers

is to choose M = # processors. Since this is not commercial code, it is a require-

ment for this implementation that the total number of trial phases N be an integer

multiple of M . In addition to the M worker threads, two additional threads are

running: a GUI thread to handle display of the algorithm’s progress and accept

user input during processing, and a management thread to maintain control over

the worker threads. The code is written in C++ and uses the Microsoft Foundation

Class (MFC) threading library to initiate and control the various threads.

Fig. 2.12 shows the threading model for the adaptive genetic algorithm. At pro-

gram start, the user performs all necessary tasks to initialize the algorithm properly:

loading of data, selecting a vector size and frequency range, choosing a parametriza-



40

GUI Thread:
User input &

algorithm 
progress display

Management Thread:
Worker control, results 

evaluation, operator credit 
assignment, and genetic 

reproduction

Worker Thread 1:

Worker Thread M:

…

Initialization, 
start, stop, and 
GA parameter 
update 
commands

Algorithm results
updated each 
generation

M worker threads

Initialization and 
start commands 
sent to workers

Processing completed 
messages and results 
received from workers

)()(        )( MMΦ ∆ω

)1()1(        )( ∆ωΦ
Figure 2.12: Threading model for the adaptive genetic algorithm. The GUI thread handles all

user interface functions, while the management thread handles all data processing
operations, delegating the process-intensive Φ(ω) 7→ ∆ computations to the worker
threads.

tion type for the phase genes, choosing a sampling density within the pinhole radius

r, and selecting M . Once the user initiates processing, the management thread allo-

cates all necessary resources to comply with the user’s choice of settings and spawns

the worker threads. The workers then process their respective subsets Φ(m)(ω) and

return their results for ∆(m) to the management thread, after which the workers

idle until they receive another start command. Once all workers have finished their

tasks, the management thread combines the results and performs all necessary sort-

ing, credit assignment, and genetic reproduction tasks to create the next generation

of trial phases. The worker threads are then issued another start command, and the

process repeats until convergence is reached (min(∆) ≤ 0.003) or the user terminates

the processing. Since the number of genes per trial phase is typically small (about

25 for the spline parametrization and 3-5 for the polynomial parametrization) and

the total number of trial phases is also modest (usually 100), it is not necessary to

multi-thread the sorting, operator/parent selection, or genetic operator functions.

The vast bulk of the processing load is in the evaluation Φ(ω) 7→ ∆. As an exam-

ple, suppose a sampling density of 5 points per unit radius is selected. Then, each

evaluation of S2(τ) for a single trial phase function requires 80 FFTs and 109 vector
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operations. For a population with 100 trial phases it is clear that the evaluation of

the fitness of the population must be dominant over simple sorting (performed on a

set of 100 numbers) and genetic reproduction functions (performed 90 times on sets

of ∼ 25 numbers). Multi-threading Φ(ω) 7→ ∆ has dramatic results: a single thread

processing a 100-individual population with 512-point frequency vector length and

a 25-point spline phase parametrization performs at a rate of 1.336 generations/sec

on an AMD 2.4GHz dual-core processor. Using the same parameters and splitting

the population into two equal 50-individual sub-populations, the processing rate in-

creases to 2.611 generations/sec, a 95.4% improvement in speed.

2.4 Experimental Results

To experimentally test the split-mirror autocorrelator, 3.8mJ pulses at λ0 =

801.1nm with pulse duration τ ∼ 40fs at a repetition rate of 1kHz were spec-

trally broadened using filamentary propagation [73] in a gas tube filled with argon at

∼ 480Torr. The output from the filament had a spectrum supporting 9.58fs pulses

with a pulse energy of 1.9mJ at a carrier wavelength of λ0 = 782.3nm. After colli-

mation the beam energy was reduced by using two face reflections from fused silica

wedges; the beam was then sent into the split mirror autocorrelator at an incidence

angle of 20◦.

In order to compute the appropriate transfer functions H̃1,2(x, ω) needed by the

pulse reconstruction algorithm for evaluation of Eq. 2.21, additional information

besides the pinhole radius and mirror focal length are required. Specifically, the

original beam diameter must be known. Rather than measure this directly, a more

accurate measurement can be made during the alignment process by measuring the

separation between peaks of the two spatial lobes at a delay τ = T/2 and at a
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Figure 2.13: Spatial intensity distribution at τ = T/2 and λ = 775nm used for calibration compu-
tation of H̃1,2(x, ω). The separation between the peaks of the two lobes was measured
to be 190µm.

specific wavelength. The separation between the lobes at a given wavelength is a

direct function of the focal length of the parabaloid and the initial beam size. To

make this preliminary measurement, an interference filter with a transmission peak

at 775nm and FWHM transmission window width specified as 1nm was placed in the

beam prior to the split mirror. The measured peak separation, shown in Fig. 2.13,

was 190µm, corresponding to an initial beam diameter of ∼ 5mm. For the purposes

of computing the spectral power
∣∣Ẽ(ω)

∣∣2 from a first-order autocorrelation using

Eq. 2.10, the full expression for H̃1,2(x, y, ω) given by Eq. 2.1 was also computed.

A 15µm diameter pinhole was placed in the focal plane of the parabaloidal mirror

and a 1mm2 silicon photodiode was placed behind the pinhole to collect first-order

autocorrelation, shown in Fig. 2.14. The measured interferogram was Fourier trans-

formed to obtain the power spectrum and then corrected according to Eq. 2.10 using

a grid size of 10nm in both the x and y dimensions. The uncorrected and corrected

power spectra are shown in Fig. 2.15. Examination of the uncorrected and corrected

spectra reveal that errors in pulse reconstruction will occur if the effects of the transfer
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Figure 2.14: Interferogram collected using a 15µm diameter pinhole at focus and a Si photodiode
for detection.

functions H̃1,2(x, y, ω) are not taken into account: the corrected carrier wavelength is

red-shifted by 8.6nm from the value calculated from the Fourier-transformed interfer-

ogram, alone, and the relative strength of the blue tail in the spectrum is significantly

reduced.
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Figure 2.15: Uncorrected (red, dashed) and H̃1(x, y, ω)-corrected (blue, solid) power spectra derived
from the measured interferogram. Before correction: ω0 = 2.4345rad/fs (773.7nm),
∆ω = 0.3555rad/fs (113.0nm). After correction: ω0 = 2.4078rad/fs (782.3nm), ∆ω =
0.3525rad/fs (114.5nm).

Following the measurement of the interferogram, the Si photodiode was removed

and replaced with a 1mm2 GaAsP photodiode, which exhibits a second-order re-
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sponse over the spectral range contained within the pulse spectrum [34]. The col-

lected second-order interferometric autocorrelation, shown in Fig. 2.16, has a fringe

contrast of 7.96:1. After the calculation of H̃1,2(x, ω) and the calculation and correc-
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Figure 2.16: Experimental (blue, solid) and retrieved (red, dotted) second-order autocorrelations.
The observed fringe contrast was 7.96:1, and the RMS error between the experimental
and retrieved autocorrelations was ∆ = 0.0036.

tion of
∣∣Ẽ(ω)

∣∣2, the measured second-order autocorrelation and pulse spectrum were

input into the adaptive genetic algorithm described in Sec. 2.3. The algorithm used

a frequency vector length of 512 points with a cubic spline parametrization of the

spectral phase containing 31 genes. Fig. 2.17 shows the algorithm’s performance.
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Figure 2.17: Performance of the adaptive genetic algorithm. Plotted is min(∆) (log scale) for each
generation.
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After nearly 2500 generations, the algorithm reached min(∆) = 0.0036, quite

close to the value ∆ ≤ 0.003 desired for phase retrievals from whole-beam interfero-

metric autocorrelations. Fig. 2.18 shows the measured spectral power along with the
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Figure 2.18: Measured spectral power (blue solid), autocorrelation-retrieved spectral phase (red,
dashed), and SPIDER-retrieved spectral phase (green, dotted). ω0 = 2.4078rad/fs
(782.3nm), ∆ω = 0.3525rad/fs (114.5nm).

spectral phase retrieved by the genetic algorithm. Also plotted in Fig. 2.18 is the

spectral phase retrieved from an independent SPIDER [25] measurement made on

pulses generated under substantively identical experimental conditions (not on the

same day, however, due to an unfortunate spectrometer malfunction in the SPIDER).

Divergence between the SPIDER and autocorrelation retrievals for the spectral phase

in the red and blue regions of the spectrum is to be expected; the SPIDER used a

50µm thick β-BBO crystal cut for type-II phase matching at 800nm. Computation

of the phase-matching bandwidth for the o-wave in a 50µm β-BBO crystal using

SNLO [84] shows that the crystal is too thick to support the entire pulse spectrum:

the calculated phase-matching bandwidth for this crystal is 108.3nm, while the mea-

sured bandwidth was 114.5nm (2nd moment bandwidth). In order to properly mea-

sure these pulses using a SPIDER, a crystal no thicker than 25µm should be used

to ensure efficient sum-frequency generation over the entire spectral range. Despite
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this failing, the SPIDER measurement agrees relatively well with the autocorrelation

result, and indicates that by pure chance the genetic algorithm happened upon the

correct sign for the spectral phase.
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Figure 2.19: Intensity reconstruction using the autocorrelation-retrieved spectral phase (blue,
solid), SPIDER-retrieved spectral phase (red, dotted), and the transform limited case
(black, dashed). τretrieved = 20.56fs, τSPIDER = 16.45fs, τtrans. lim. = 9.58fs.

The reconstructed time-domain intensity profile is shown in Fig. 2.19, along with

the SPIDER-retrieved profile and the transform-limited intensity profile. The pulse

reconstruction based on the split mirror autocorrelator shows the pulse has a duration

τ = 20.56fs (FWHM) with a transform limit of 9.58fs. A 5th-order polynomial

projection of the spectral phase over the range [ω0 −∆ω/2, ω0 + ∆ω/2], where ∆ω

is the 2nd moment bandwidth, yields the following values: φ2 = −15fs2, φ3 = 90fs3,

φ4 = 93fs4, and φ5 = −954fs5.



CHAPTER III

Spectral Broadening and Self-Compression at 800nm and
2µm via Filamentary Propagation

This chapter details observations of self-compressed pulses at 800nm [73] and

2µm [74]. The 800nm experiments did not, strictly speaking, produce self-compressed

pulses. Instead, the pulses exiting the filament were negatively chirped, allowing for

the use of a simple slab of glass and a wedge pair to create the necessary positive

chirp to compress the pulses. Due to the extreme ease with which these pulses were

ultimately compressed, a small license is taken and the pulses are deemed to be

self-compressed.

3.1 Self-compression at 800nm

The experimental setup for creating self-compressed pulses at 800nm is shown in

Fig. 3.1. A Ti:sapphire laser with λ0 = 808nm producing 1.5mJ pulses with τ =

41.8fs and a transform limited duration τ = 28.7fs at 1kHz, as shown in Fig. 3.2, was

sent through a 2:1 telescope. A variable hard aperture was used after the telescope

to further reduce the beam size, tuning the focal spot size and confocal parameter

and attenuating the pulse energy. The appropriate aperture size for a given gas

and pressure to observe self-compression was found through trial and error. The

beam was then focused with an f = 1m spherical mirror into a 1.5m-long gas tube

47
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Ti:Sapphire ampifier:
U = 1.5 mJ

τ ~ 40 fs
1/e2 diameter: 10 mm

Variable aperture
(adjusts power and focusing)

f = 1m

SPIDER
wedges

1.6 m gas cell
(0.3 mm windows)

Bulk material
Variable aperture

(blocks filament reservoir)

f = 1m

Telescope, M=0.5

Filament: 10-70 cm

Figure 3.1: Setup.

with 300µm-thick fused silica windows, and re-collimated using an identical spherical

mirror at the output side. All reflective optics for this experiment were coated with

protected silver. After re-collimation, the outer portion of the beam was filtered

with an iris to remove the background white light from the filament reservoir. For

dispersion compensation, a 5mm-thick piece of fused silica was inserted into the beam

to add 180fs2 group delay dispersion (GDD), followed by a fused silica wedge pair

used to create a variable amount of additional GDD, ranging from 0.5mm added
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Figure 3.2: Input pulse, measured by inserting a pick-off mirror immediately before the focusing
mirror prior to the gas tube and diverting the beam to the SPIDER. (a) Spectral power
(blue, solid) and phase (red, dashed): λ0 = 808.26nm, ∆λ = 39.85nm. (b) Measured
intensity (red, solid) τ = 41.83fs and transform limit (black, dashed) τ = 28.71fs.
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material (18fs2) to 3mm (108fs2). After compensating the GDD, the pulse was sent

to a SPIDER [25] with a 50µm thick type-II BBO crystal cut for phase matching at

800nm.

In all cases where the spectral phase was observed to have near-zero or negative

chirp, multiple focusing cycles were observed within the gas tube. Fig. 3.3 shows

an example of this behavior. Simulations [85] reveal complex dynamics governing

5cm

 nonlinear foci(a) (b)

Figure 3.3: (a) Sequential filament structure in Ar at 870mbar as observed from plasma fluorescence.
(b) Spatial mode after re-collimation.

the formation of multiple nonlinear foci and the role played by these sequential fila-

ments in re-shaping the spectral and temporal properties of the pulse. The presence

of multiple nonlinear focusing cycles is attributed to the strong spatial dependence

to the spectral/temporal pulse distribution near the exit of the first filament; this

dependence is shown to be conducive to the formation of another focusing cycle.

While these simulations show that multiple nonlinear foci typically correspond to a

nearly self-compressed pulse after all filamentary propagation is completed, they fail

to demonstrate the net negative group delay dispersion (GDD) observed in experi-

ment; thus, further theoretical work is needed to make sense of the negative GDD

observed in the 800nm self-compressed pulses.

3.1.1 Experimental Results

Self-compression for 800nm pulses was observed in four separate gases: Ar, Kr,

Xe, and N2. A summary of SPIDER results for all test cases is shown in Table 3.1.

Nonlinear indices for all four gases were deduced from the hyperpolarizability value
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< γ > from [86], an identical calculation as was performed in [41], adding N2 to the

list of materials for which n2 was calculated. For argon, the most commonly used gas

in hollow-core fiber and filamentary propagation pulse compression schemes, several

varying pressures were tried: 470mbar, 870mbar, and 1000mbar. Due to the asym-

metric shape of the SPM-broadened spectra observed after filamentary propagation,

the standard FWHM computation for bandwidth loses much of its usefulness. As

a more reliable method for computing the spectral width, all bandwidths reported

were calculated using the 2nd moment about the mean,

(3.1) ∆λ = 2×

√√√√√
∞∫

−∞

|S(λ)|1/2 (λ− λ0)2

|S(λ)|1/2
dλ

where |S(λ)| is the measured spectral power and λ0 is the carrier wavelength as

computed by the first moment calculation

(3.2) λ0 =

∞∫

−∞

|S(λ)|1/2 λ

|S(λ)|1/2
dλ

700 800 900
0

0.2

0.4

0.6

0.8

1

Wavelength [nm]

P
ow

er
 [a

u]

−10

−5

0

5

10

P
ha

se
 [r

ad
]

−100 −50 0 50 100
0

0.2

0.4

0.6

0.8

1

Time [fs]

In
te

ns
ity

 [a
u]

(a) (b)

Figure 3.4: Ar, 470mbar, linear polarization: (a) Spectral power (blue, solid) and phase (red,
dashed), and (b) Measured intensity (red, solid) and transform limit (black, dashed).

Fig. 3.4 shows the SPIDER reconstruction of a pulse after filamentary propagation

of 850µJ, 41.8fs, linearly polarized pulses through Ar at 470mbar. 200fs2 of GDD was

added to the beam path after re-collimation to achieve the flattest possible spectral
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phase profile. SPM in Ar increased the spectral width by ∼ 25%, decreasing the

pulse duration from 41.8fs to 18.8fs while reducing the pulse energy from 850µJ to

650µJ. Using the simple estimation for peak power P = U/τ , the power increased

from 20.3GW before filamentary propagation to 34.6GW.
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Figure 3.5: Ar, 870mbar, linear polarization: (a) Spectral power (blue, solid), phase with no disper-
sion compensation (green, dash-dot), and phase with +200fs2 added (red, dashed), and
(b) Measured intensity with no dispersion compensation (green, dash-dot), intensity
with +200fs2 added (red, solid), and transform limit (black, dashed).

Increasing the Ar pressure to 870mbar with no other changes to the setup, the

bandwidth was observed to increase to 90nm while the pulse duration decreased to

13.5fs with the same energy throughput as the 470mbar case. The peak power for

these pulses is calculated to be 48.1GW. Fig. 3.5 shows the SPIDER reconstructed

pulse for these experimental conditions. Also shown is the SPIDER reconstruction

of the pulse in the absence of post-filament dispersion compensation. The negative

net GDD imparted by propagation through the filament is clearly visible.

After re-inserting the dispersion compensation, a λ/4 waveplate was placed in the

beam immediately prior to focusing into the gas tube. All other parameters were

held constant, and the observed filament again showed two nonlinear focusing cycles.

Fig. 3.6 shows the reconstructed pulse after filamentary propagation of a circularly

polarized pulse through an 870mbar Ar environment. For this case, the bandwidth



52

700 800 900
0

0.2

0.4

0.6

0.8

1

Wavelength [nm]

P
ow

er
 [a

u]

−50 −25 0 25 50
0

0.2

0.4

0.6

0.8

1

Time [fs]

In
te

ns
ity

 [a
u]

(a) (b)

−10

−5

0

5

10

P
ha

se
 [r

ad
]

Figure 3.6: Ar, 870mbar, circular polarization: (a) Spectral power (blue, solid) and phase (red,
dashed), and (b) Measured intensity (red, solid) and transform limit (black, dashed).

increased to 91.1nm and the pulse duration decreased to 12.2fs. The overall energy

throughput remained constant at ∼ 76.5%. The differences in spectral content and

phase between the linear and circularly polarized cases are attributed to the change in

physical response of the Ar to the two polarization states. For linear polarization, n2

should be four times greater than for circular polarization [87], however this model

has recently been proved incorrect [88], and the actual value for n2 for circular

polarization is much closer to that of linear polarization [89]. Furthermore, the

constant modulus of the electric field in the circularly polarized case leads to a higher

ionization rate, a greater electron plasma density, and therefore a larger plasma

defocusing effect.

Combined, the lower n2 and larger ionization rate for circularly polarized light

significantly alter the net SPM and self-compression effects from filamentary propa-

gation; it is somewhat surprising, then, that such similarity exists in the compressed

pulses between the linear and circularly polarized cases. One major difference does

exist, however: the divergence rate of the circularly polarized beam was observed to

be twice the divergence of the linearly polarized case. This is not unexpected, since

the lower n2 for circular polarization means that the laser must have higher intensity
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in order maintain a balance between self-focusing, diffraction, and plasma defocus-

ing to achieve filamentary propagation. Higher intensity necessitates a smaller beam

diameter within the filament, and therefore a larger divergence angle upon exiting

the filament.
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Figure 3.7: Ar, 1000mbar, linear polarization: (a) Spectral power (blue, solid) and phase (red,
dashed), and (b) Measured intensity (red, solid) and transform limit (black, dashed).

A final test was made in Ar at 1000mbar using linearly polarized light; SPIDER

results are shown in Fig. 3.7. Although the 91nm bandwidth was the largest observed

in Ar for the linearly polarized cases, the pulse compression was only minimally im-

proved. In large part, the small improvement in pulse compression is most likely due

to instrumentation limitations. The BBO crystal used in the SPIDER was 50µm

thick. Simulations with the widely used SNLO nonlinear optics package [84] indi-

cate that a type-II 50µm-thick BBO crystal cut for 800nm has a phase-matching

bandwidth of 108.3nm. However, this value corresponds to −π ≤ ∆kL ≤ π, and

therefore the bandwidth over which efficient sum-frequency generation is expected

is somewhat less than this value. Examination of Figs. 3.4 - 3.7 shows that, indeed,

the spectral phase profile retrieved by the SPIDER does not cover the entire range

spanned by the measured spectral power. The phase becomes ill-defined where sig-

nificant spectral power still exists–this is a direct consequence of the BBO crystal’s
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inability to phase-match the entire pulse spectrum. Visible evidence of this behavior

was evident when running the SPIDER: tilting the BBO crystal to alter the phase

matching angle shifted the pattern of spectral fringes from blue to red (depending

on which way the crystal was moved), showing that even before attempting phase

reconstruction the spectral range covered by the SPIDER signal was insufficient to

provide meaningful phase information over the entire spectrum. As such, the SPI-

DER measurements may be inaccurate and the observed self-compressed pulses may

be much closer to transform-limited than is indicated.
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Figure 3.8: Kr, 440mbar, linear polarization: (a) Spectral power (blue, solid) and phase (red,
dashed), and (b) Measured intensity (red, solid) and transform limit (black, dashed).

As a check that the observed self-compression behavior was not specific to Ar,

other gases were used in an attempt to see if similar behavior could be observed.

Fig. 3.8 shows the reconstruction of linearly polarized pulses after undergoing fila-

mentary propagation in a 440mbar Kr atmosphere. Since the nonlinear susceptibility

of Kr is larger than Ar (see Table 3.1), the critical power for self-focusing given by

Eq. 1.2 is reduced. Consequently, to maintain the proper balance between self-

focusing and plasma defocusing it was necessary to reduce the input pulse power.

This was accomplished by decreasing the diameter of the hard aperture, clipping

the beam prior to focusing into the gas tube. For the Kr trial, the hard aperture
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diameter that led to the best observed self-compression was 5.5mm, and the resulting

input pulse energy was 650µJ. The output pulse energy was 500µJ, for an overall

energy throughput of > 76%, quite similar to the Ar trials. 440mbar Kr produced

a spectral width of 85nm, and the measured pulse duration was the shortest of all

test cases: 11.9fs. For these experimental conditions, the peak power increased from

15.6GW to 42GW.

700 800 900
0

0.2

0.4

0.6

0.8

1

Wavelength [nm]

P
ow

er
 [a

u]

−50 −25 0 25 50
0

0.2

0.4

0.6

0.8

1

Time [fs]

In
te

ns
ity

 [a
u]

(a) (b)

−10

−5

0

5

10

P
ha

se
 [r

ad
]

Figure 3.9: Xe, 638mbar, linear polarization: (a) Spectral power (blue, solid) and phase (red,
dashed), and (b) Measured intensity (red, solid) and transform limit (black, dashed).

The final noble gas used was Xe, with the highest n2 of all gases used. To com-

pensate for the resulting decrease in critical power, the input beam was strongly

attenuated using a 3.5mm diameter hard aperture. The input pulse energy was then

300µJ, and the output energy was 200µJ. The strong SPM induced in the highly

susceptible Xe medium produced the broadest recorded spectrum, 152.7nm, which

supports a transform limited pulse duration of 4.1fs. The inability of the BBO crystal

in the SPIDER to phase match the entire spectrum, however, led to a reconstructed

pulse duration similar to the Ar and Xe cases: 12.8fs. In all three noble gases, the

fundamentals of the observed behavior were the same: two nonlinear focusing cycles

were observed, and the output pulses were negatively chirped.

Aside from noble gases, self-compression was also observed in N2. In this case,
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Figure 3.10: N2, 1285mbar, linear polarization: (a) Spectral power (blue, solid) and phase (red,
dashed), and (b) Measured intensity (red, solid) and transform limit (black, dashed).

however, the SPM-broadened spectrum shows significantly more structure than for

Ar, Kr, or Xe, as can be seen in Fig. 3.10. Unlike the filaments in noble gases,

the filament in N2 had 5 observable nonlinear focusing cycles, with a total filament

structure length of ∼ 70cm. Theoretical modeling for filamentary propagation in

air [90] reveals that a delayed Kerr response in molecular nitrogen significantly alters

the dynamical balance of the filament by transferring the induced nonlinear index

from the front part of the pulse to trailing parts, leading to a balance between self-

focusing and plasma defocusing at the rear of the pulse and creating stable filaments

over much longer distances. Also, although the input energy was high, 1.25mJ, the

throughput was much lower than in noble gases, and the extracted pulse energy was

Gas Ar Ar Ar Ar Ar Kr Xe N2

n2 (10−19cm2/W) 0.74 1.37 1.37 0.91 1.58 1.60 6.43 1.58

Pressure (mbar) 470 870 870 870 1000 440 638 1285

Polarization lin lin lin circ lin lin lin lin

Hard Aperture Dia. (mm) 7 7 7 7 7 5.5 3.5 10

Added GDD (fs2) 200 0 200 200 200 200 260 200

Measured τ (fs) 18.78 35.90 13.52 12.22 13.29 11.88 12.77 12.40

Transform Limit τ (fs) 17.57 9.61 9.61 8.11 9.00 8.53 4.14 9.19

λ0 (nm) 799.06 778.27 778.27 766.75 775.93 770.44 717.36 783.04

∆λ (nm) 49.58 89.97 89.97 92.94 91.06 84.99 152.71 86.35

Input Energy µJ 850 850 850 783 850 650 300 1250

Output Energy µJ 650 650 650 598 650 500 200 500

Pin/Pcrit 1.56 2.89 2.89 1.77 3.32 2.58 4.78 4.90

Table 3.1: Summary of results for self-compression at 800nm. Pcrit calculated using Eq. 1.2 with
α = 1.8962.
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only 500µJ.

For all gases and gas pressures used, it was found that the ratio of input power to

critical power for self-focusing Pin/Pcrit > 1.5 is a requirement for the observation of

stable filamentary propagation resulting in net negative GDD.

3.2 Self-compression at 2µm

The experimental setup for generating compressed pulses via filamentary propa-

gation at 2µm was quite similar to the 800nm setup shown in Fig. 3.1. No telescope

was used to down-collimate the input beam, however, and no added GDD was used

following re-collimation after filamentation. The spherical mirror focusing the beam

into the gas tube had a focal length f = 0.5m, and the gas tube was 1m long, filled

with a Xe atmosphere. Fig. 3.11 shows the observed plasma fluorescence using a

Xe pressure of 2.15bar. Similar to the observed 800nm self-compressed pulses, two

nonlinear focusing cycles were observed.
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Figure 3.11: Sequential filament structure in Xe at 2.15bar as observed from plasma fluorescence.
The total length of the observed fluorescence was ∼ 10cm.

The 2µm source for this experiment was a train of λ0 = 1.96µm, 500µJ, ∼ 65fs

pulses produced at a 1kHz repetition rate from a modified Ti:sapphire pumped

traveling-wave optical parametric amplifier (OPA). Fig. 3.12 shows the measured
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OPA spectrum. Clipping the spectrum was unavoidable; the grating in the spec-

trometer (147/mm groove density) was too dispersive to allow the entire spectrum

to fit on a single readout from the InGaAs array detector. Nonetheless, the vast

majority of the spectral power is represented in Fig. 3.12, therefore the computed

transform limited intensity profile will not change greatly if the missing spectral

components are included. The OPA is pumped with 4mJ, 65fs, λ0 = 810nm pulses.
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Figure 3.12: 2µm OPA output. (a) measured spectrum: λ0 = 1957.2nm, ∆λ = 101.3nm. (b)
transform limited intensity profile: τ = 65.2fs.

A small portion of the 800nm pump is used to generate a superflourescence spec-

trum in a BBO crystal, from which the 1.3µm signal beam is extracted. This first

BBO crystal also amplifies the 1.3µm prior to the power amplifier, a 2mm-long BBO

crystal used in a non-collinear geometry to provide difference-frequency generation

(DFG) between the bulk of the 800nm pump and the 1.3µm signal, amplifying the

2µm idler to ∼ 500µJ. Since the signal is coherently generated from the pump,

the DFG-generated idler maintains a constant carrier-envelope phase (CEP) off-

set [91, 92, 93, 94, 95, 96, 97], even though the 800nm pump is not CEP-stabilized.

Access to few-cycle, CEP-stabilized sources is highly desirable for the generation of

isolated attosecond pulses and pulse trains [98]; the production of CEP-stabilized

pulses without external measurement and feedback is a significant advantage for
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DFG OPA designs.

3.2.1 Experimental Results
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Figure 3.13: 1.6 bars Xe. (a) Filtered interferogram. (b) Filtered 2nd-order autocorrelation (blue,
dashed), and retrieved (red, solid). ∆ = 0.1132. (c) Spectral power and phase:
measured power (black, dash-dot), best fit power (blue, solid), and best fit phase
(red, dashed). (d) Intensity profiles: transform limit with measured power spectrum
(black, dash-dot), transform limit with best-fit power spectrum (blue, dashed), and
recovered (red, solid).

Unfortunately, a more sophisticated pulse measurement system such as a SPI-

DER [25] or FROG [24] was not available during this experiment. Instead, the

filament-compressed pulses were sent into a Michelson interferometer and interfer-

ometric autocorrelation (IAC) data was collected. The interferometer used a 2µm-

thick pellicle broadband-coated for 50/50 beam splitting at 2µm. The end mirror in

one of the two arms of the interferometer was actuated by a closed-loop piezo-electric

stack with 30µm total displacement, resulting in a total scan range of ±100fs. Four
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separate Xe pressures were tried: 1.6bar, 1.87bar, 2.15bar, and 2.44bar. The out-

put pulse energy at all four pressures was roughly constant at ∼ 270µJ. At each

pressure, a linear autocorrelation was collected using an InGaAs photodiode, and

after filtering for noise the power spectrum |E(ω)|2 was computed from the Fourier

transform of the unit-normalized 1st-order autocorrelation S1(τ) as

(3.3) |E(ω)|2 = F(S1(τ)− 1)
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Figure 3.14: 1.87 bars Xe. (a) Filtered interferogram. (b) Filtered 2nd-order autocorrelation (blue,
dashed), and retrieved (red, solid). ∆ = 0.1158. (c) Spectral power and phase:
measured power (black, dash-dot), best fit power (blue, solid), and best fit phase
(red, dashed). (d) Intensity profiles: transform limit with measured power spectrum
(black, dash-dot), transform limit with best-fit power spectrum (blue, dashed), and
recovered (red, solid).

Due to the extremely broadband light emerging from the filament, it was impos-

sible to collect a power spectrum using the existing 2µm spectrometer; the installed

grating was simply too dispersive. While the use of a linear interferogram to de-

rive the spectral power is more prone to noise, it was found to be much simpler
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than capturing multiple spectra on the spectrometer at different grating angles and

attempting to concatenate them into a single spectrum.
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Figure 3.15: 2.15 bars Xe. (a) Filtered interferogram. (b) Filtered 2nd-order autocorrelation (blue,
dashed), and retrieved (red, solid). ∆ = 0.0619. (c) Spectral power and phase:
measured power (black, dash-dot), best fit power (blue, solid), and best fit phase
(red, dashed). (d) Intensity profiles: transform limit with measured power spectrum
(black, dash-dot), transform limit with best-fit power spectrum (blue, dashed), and
recovered (red, solid).

A 2nd-order IAC was also collected at each pressure using a two-photon induced

photocurrent from a saturated InGaAs photodiode. The measured power spectrum

and 2nd-order IAC were then used to retrieve the spectral phase using a modified

whole-beam version of the adaptive genetic algorithm designed to process data from

the split mirror autocorrelator described in chapter II of this thesis. Since the OPA

output pulse energy contains unavoidable fluctuations (∼ 5% RMS), it is to be ex-

pected that these energy fluctuations will be reflected in the spectra of the SPM-

broadened pulses emerging from the filament. These fast timescale fluctuations in the
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power spectra are then a direct source of noise in the linear and nonlinear IAC traces.

Unfortunately, this noise cannot be removed via simple Fourier filtering techniques.

Understanding that the power spectrum retrieved may be significantly distorted due

to the shot-to-shot fluctuations in power spectra present over the time necessary

to collect the linear trace, the spectrum derived using Eq. 3.3 must be viewed as

something less than perfectly accurate. In order to obtain a better fit between the

measured and retrieved 2nd-order IAC traces, the spectral power was parameterized

in addition to the spectral phase. While the search space for the spectral phase was

unbounded, the genetic algorithm searched for the best spectral power using a more

reserved approach, limiting the possible values allowed for any spectral power gene to

+80% of the maximum value and −80% of the minimum value of the interferogram-

derived spectral power within a window ±50nm around the wavelength at which a

given gene represents the power.

Figs. 3.13 - 3.16 show the results for the four Xe pressures tried, in order from

1.6bar to 2.44bar. Table 3.2 summarizes the results for the four Xe trials. Due to

the high level of noise present when collecting the data, none of the acquired 2nd-

order IAC traces show the theoretical 8:1 fringe contrast ratio. Since the analytic

formula for the 2nd-order IAC S2(τ) [22] always produces an IAC with 8:1 contrast,

a scaling parameter was added to the retrieval algorithm to match the peak values

of the measured and retrieved traces. The RMS figure of merit ∆ for a retrieved 2nd-

order IAC should be less than 0.003 for the most accurate retrieval from low-noise

data. Clearly, none of the retrieved IACs approached this target, and therefore the

results should be viewed only as good estimates for the pulses emerging from the

filament. The estimated pulse durations are reasonable, however, given the observed

temporal width of the 2nd-order autocorrelation traces. It is interesting to note
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Figure 3.16: 2.44 bars Xe. (a) Filtered interferogram. (b) Filtered 2nd-order autocorrelation (blue,
dashed), and retrieved (red, solid). ∆ = 0.0780. (c) Spectral power and phase:
measured power (black, dash-dot), best fit power (blue, solid), and best fit phase
(red, dashed). (d) Intensity profiles: transform limit with measured power spectrum
(black, dash-dot), transform limit with best-fit power spectrum (blue, dashed), and
recovered (red, solid).

that the net negative GDD calculated for 2µm light through the 1.5mm-thick CaF2

output window on the gas tube almost exactly cancels the calculated positive GDD

incurred through the 2m air propagation to the detector in the Michelson. Thus,

the reconstructions presented represent reconstructions at the interior face of the

gas tube output window, and indicate that for the 2.15bar and 2.44bar cases the

pulses were self-compressed to nearly the transform limit at the exit of the filament.

Since the autocorrelator used was a balanced 2nd-order autocorrelator, the problem

of time-reversal symmetry exists in the retrieved results, and the sign of the retrieved

spectral phase is ambiguous. It is therefore impossible to determine if the multiple

nonlinear focusing cycles observed during filamentary propagation produced a net
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negative GDD, as was the case for the 800nm self-compressed pulses.

Pressure (bar) 1.6 1.87 2.15 2.44

∆ (IAC fitting F.O.M.) 0.1132 0.1158 0.0619 0.0780

Measured τ (fs) 33.14 41.19 17.91 13.65

Transform Limit τ (fs) (measured spectrum) 12.28 12.88 12.52 11.42

Transform Limit τ (fs) (best-fit spectrum) 14.32 18.23 12.18 11.79

λ0 (nm) (measured spectrum) 1800 1883 1928 1879

∆λ (nm) (measured spectrum) 457 480 528 541

λ0 (nm) (best-fit spectrum) 1880 1912 1936 1874

∆λ (nm) (best-fit spectrum) 438 357 533 520

Table 3.2: Summary of results for self-compression at 2µm.

After performing the pressure scan and acquiring autocorrelator data, the pressure

was fixed at 2.15bar and the self-compressed pulses were sent into an f -to-2f inter-

ferometer [99]. The white light spectrum emerging from the filament was sufficiently

broad that is was not necessary to use additional frequency generation techniques

to obtain the required octave-spanning spectrum. A 500µm-thick BBO crystal was

used to frequency double the central portion of the pulse spectrum, which then pro-

duced a spectral interferogram with the blue tail of the white light background at

λ ∼ 900nm.
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Figure 3.17: f -to-2f interferogram time series acquired for over 8,800 laser shots. Each scan rep-
resents the integration of 10 laser shots.

Fig. 3.17 shows a time series of the measured f -to-2f interferogram spanning a

range of nearly 9 seconds. From this data, the residual CEP drift was measured to
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be < 0.1rad (RMS). Fig. 3.18 shows the f -to-2f interferogram integrated over 120

seconds. The excellent fringe contrast is a clear indicator of long-term CEP stability.

Similar measurements were made using the 1.3µm signal beam instead of the 2µm

idler, and the CEP offset was observed to be random. This observation, combined

with the short and long-timescale f -to-2f measurements for the SPM-broadened 2µm

pulses leads to the conclusion that the CEP offset is preserved through filamentary

propagation, but the filament itself does not stabilize the CEP offset.
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Figure 3.18: Integration of the f -to-2f interferogram over 120s.



CHAPTER IV

Temporal Characterization of Scaled System Harmonics
using Cross-Correlation Frequency Resolved Optical Gating

This chapter describes a cross-correlation frequency-resolved optical gating (XFROG)

experiment designed to temporally characterize harmonic orders 5 - 15 from a 3.6µm

laser focused on a Cs target. In addition to characterizing each individual harmonic

order’s power and phase, previously reported using an XFROG geometry in the

XUV [100], this experiment is also sensitive to the relative delay between harmonic

orders, giving us some degree of access to the attochirp for the 3.6µm/Cs scaled

system. The intensity-dependent phase is inaccessible, since the FROG design uses

an intensity gating scheme and is thus only sensitive to the pulse-averaged spectral

phase of a given harmonic order. This XFROG measures the combined effects of the

attochirp and intensity-dependent phase, averaged over the total number of cycles

in the harmonic pulse. All harmonic orders considered lay in a spectral region where

solid-state nonlinearities exist and are efficient, greatly simplifying the complexity of

the setup required to make the desired measurement.

4.1 XFROG Design

Fig. 4.1 shows a generic FROG layout. The gate beam is delayed using a motorized

delay line and mixed with the probe beam in a chosen nonlinear medium. The result,

66
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a cross-correlation between the gate and probe, is spectrally resolved. Spectra are

collected over a range of delays τ to build the FROG spectrogram IFROG(ω, τ). For

the most common FROG geometries, the gate and probe are copies of the same

pulse; therefore the analytic expression for the spectrogram most often resembles a

frequency-resolved autocorrelation.

)(tEprobe

)( τ−tEgate

)(tEsig

mediumNonlinear Spectrometer

Figure 4.1: Generic FROG setup.

Using a solid-state nonlinearity in a FROG setup opens many avenues for the

experimental geometry and type of gate/pulse mixing used. The most fundamental

limitation faced by this experiment is the transmissivity of materials in both the

harmonics beam path (probe) and the FROG beam path (signal). The range of

wavelengths to be accommodated by the FROG apparatus spans from the near-IR

through the UV, as can be seen in Table 4.1 and Fig 4.2.

Harmonic Order 1 3 5 7 9 11 13 15 17 19

Wavelength (µm) 3.6 1.2 0.72 0.514 0.4 0.327 0.277 0.24 0.212 0.19

Frequency (rad/fs) 0.523 1.57 2.616 3.663 4.709 5.756 6.802 7.848 8.895 9.942

Energy (eV) 0.344 1.033 1.722 2.411 3.1 3.788 4.477 5.166 5.855 6.544

Table 4.1: Wavelengths, frequencies, and energies for the low-order harmonics generated with a
3.6µm driver.

Characterizing such a broad spectral range with traditional broadband FROG

geometries is untenable for many reasons. Self-diffraction FROG (SD-FROG) [101,

102] is a non-phase-matched process; hence, the material thickness must be very

thin . 200µm to minimize phase mis-match, and the resulting signal level is weak.

Polarization-gate FROG (PG-FROG) [103, 104, 105, 106, 107, 108], a popular and
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Figure 4.2: Power spectrum for harmonics from Cs with a 3.6µm driver: P ∼ 60 Torr, pulse energy
= 85µJ, τ ∼ 120fs.

versatile scheme, requires the use of a polarizer and waveplate prior to mixing the

pulse and gate beams, which adds an unacceptable amount of dispersion. Transient-

grating FROG (TG-FROG) [109, 110] is a three beam geometry and thus too complex

for consideration. SD-FROG, PG-FROG, TG-FROG, and third harmonic generation

FROG (THG-FROG) [111] are all χ(3) processes, and therefore require ∼ nJ pulse

energies to produce a useful signal beam. Unfortunately, the energies in the mid-IR

driven harmonics from the Cs heat pipe, shown in Table 4.2, are much too low to make

use of any χ(3)-based FROG. In contrast, second harmonic generation FROG (SHG-

Harmonic Order Energy per Pulse (pJ)
5 187
7 133
9 28.7
11 12.4

Table 4.2: Calibrated energy measurement for harmonic orders 5 - 11.

FROG) [24] uses a χ(2) nonlinearity, and is thus capable of efficiently producing a

FROG signal beam with pulse energies as weak as 1pJ. However, SHG-FROG, along

with all the aforementioned χ(3)-based FROG geometries, all require the use of at

least one beam splitter to create a pulse replica. The ultra-broadband nature of the
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harmonics emitted from the Cs source makes the selection of a single beam splitter

that can provide a 50/50 splitting ratio over the entire spectrum impossible. Different

beam splitters might be chosen for use with each harmonic order, however this would

require replacing an optic and re-aligning the spatial and temporal overlap each time

we wish to collect a FROG scan for a different order harmonic. Additionally, χ(2)-

based SHG-FROG is limited to fundamental wavelengths longer than 410nm, since

the best available χ(2) material for UV applications, beta-BaB2O4 (β-BBO) will not

phase match the SHG process for shorter wavelengths. Also, BBO does not transmit

wavelengths shorter than 190nm due to oxygen absorption. Thus, an SHG-FROG

setup would only be capable of producing results for harmonic orders 3, 5, and 7.

Given the limitations of the traditional FROG geometries, which measure an

unknown pulse by gating it with a copy of itself, a more exotic design is required.

Cross-correlation FROG (XFROG) [112, 113], where the unknown pulse is mixed

with a separate (ideally well-characterized) reference pulse, is therefore an attractive

alternative. An XFROG setup generally takes two forms, sum-frequency generation

XFROG (SFG XFROG) or difference-frequency generation XFROG (DFG XFROG),

both of which are χ(2)-based designs. In either form, the only requirement on the

FROG design is that the chosen nonlinear medium be capable of phase-matching

the desired SFG or DFG process. No limitation other than this is placed on the

pulse duration, frequency content, or center frequency of the two pulses. For an SFG

XFROG, the measured spectrogram is given by

(4.1) ISFG
XFROG(ω, τ) =

∣∣∣∣
∞∫

−∞

Eprobe(t)Egate(t− τ)e−iωtdt

∣∣∣∣
2

A DFG XFROG spectrogram takes the form

(4.2) IDFG
XFROG(ω, τ) =

∣∣∣∣
∞∫

−∞

Eprobe(t)E
∗
gate(t− τ)e−iωtdt

∣∣∣∣
2
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For the mid-IR harmonics FROG, adopting an XFROG geometry offers several

key advantages over other more widely used FROG variants. In the XFROG ge-

ometry it is not necessary to split the harmonics beam into two equal replicas; the

full energy from each harmonic order is available for use when mixing against the

gate beam. Also, using a long-wavelength gate allows us to phase match many more

harmonic orders than is possible with an SHG-FROG. With a long-wavelength gate

the resulting XFROG signal beam is very close in wavelength to the harmonic order

being mixed, thus enabling us to obtain FROG traces for harmonic orders that lie

quite close to the VUV cutoff. Finally, the XFROG signal strength scales with the

amplitude of the gate field, allowing us to measure extremely weak probe beams by

simply providing a very strong gate.

Since SFG processes are generally far stronger than DFG processes in the absence

of seeding the difference frequency, the selected XFROG variant for characterizing the

3.6µm harmonics is an SFG XFROG using BBO as the nonlinear medium. Since we

desire passive synchronization between the gate and probe beams in order to obtain

attosecond timescale measurement precision, the gate must be generated from the

same 3.6µm pulse that is used to generate the harmonics. BBO will not phase match

wavelengths longer than 3.5µm, thus it is not possible to use a small piece of the

original 3.6µm pulse as a gate. Instead, we frequency double a small portion of

the 3.6µm pulse using a 1mm-thick piece of AgGaSe2 (AGSE) cut for type-I SHG

at 3.6µm. The resulting 1.8µm pulse is then used as a gate pulse in the XFROG.

Simulations with the widely used nonlinear optics package SNLO [84] predict that

SFG phase matching between 1.8µm and the harmonics is possible for harmonics 3

through 17. However, the H2 + H17 process produces H19, which lies right at the

VUV cutoff. Since two thick α-BBO polarizers are used to isolate the FROG signal
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from the harmonics beam, and since the FROG signal beam undergoes significant

propagation in air, it is highly unlikely that the SFG signal from the H2 + H17 mixing

process will reach the spectrometer due to oxygen absorption. Also, although it is

quite easy to mix H2 + H3, a spectrometer capable of measuring the spectral power

of H3 (1.2µm) directly was not available at the time this experiment was run. Thus,

the third harmonic is excluded from examination in this experiment.

4.1.1 β-BBO crystal selection

For broadband SFG in β-BBO, type-II (e,o,e) phase matching (where the harmon-

ics beam is the o-ray) is preferred due to the larger acceptance bandwidth afforded

to the o-ray. Conveniently, the 1.8µm beam is naturally cross-polarized with the

harmonics, since the 1.8µm is generated using a type-I (o,o,e) SHG process in the

AGSE crystal, and the harmonics are co-polarized with the 3.6µm beam. However,

even with type-II phase matching SNLO calculations reveal that it is not possible

to select a reasonable thickness for the BBO crystal and phase match all harmonic

orders with the H2 gate. Consequently, it is not possible to collect a single FROG

trace where all harmonic orders are phase matched. Multiple BBO crystals must

be employed, with each crystal optimized for thickness and phase-matching angle to

phase match a narrower range of wavelengths.

In order to obtain useful information about the relative delay between harmonic

orders, it is necessary to obtain phase matching between the H2 gate and at least

two harmonic orders with a single crystal. This way, a single scan can obtain, for

example, the H2+H5 and H2+H7 SFG XFROG traces. The relative delay between

these two orders is then embedded directly into the scan, and we are not forced

to calculate the delay between orders using the reported delay line stage position.
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Instead, the FROG retrieval algorithm naturally produces the two harmonics pulses

delayed by the proper amount without any external calculation.

Detailed simulations were performed using SNLO and Matlab to find values for θ

and appropriate crystal thicknesses to allow H2 + H5/7, H2 + H7/9, etc. For these

simulations, θ was varied through a range of values separated by 0.1◦. At each value

for θ, the refractive index, group index, group velocity dispersion, and walkoff angle

was computed for H2, both harmonics orders under consideration, and both SFG

results expected. To design a crystal to mix a desired pair of harmonic orders i, j

with the H2 gate, the optimum angle θ was found by attempting to minimize the

function

(4.3) f(θ) =

∣∣∣∣
∣∣∆ki(θ)

∣∣−
∣∣∆kj(θ)

∣∣
∣∣∣∣

where ∆k(θ) is the wave vector mismatch for a given SFG interaction between H2

and harmonic order q, defined as

(4.4) ∆kq = 2π

(
nSFG

λSFG

− n1.8µm

1.8µm
− nq

λq

)

where the subscript SFG denotes the sum-frequency values for n and λ. Minimizing

f(θ) in Eq. 4.3 effectively maximizes the phase matching length L within the BBO

for both harmonic orders i, j under the constraint that the crystal should be no

thicker than the smaller of the two phase matching lengths Li, Lj. Since we desire

the highest possible SFG conversion efficiency for both harmonic orders, a crystal

thicker than the smaller of the two phase matching lengths could potentially couple

energy from the SFG signal beam back into the harmonics beam. After minimizing

f(θ), the crystal thickness z was chosen as

(4.5) z = min
(
Li, Lj

)
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where the phase matching length is computed as

(4.6) L ≤ π

∆k

After finding the maximal value for z for a particular pair of harmonics, z was

rounded down to the nearest easily manufacturable integer value. In all cases the

maximum crystal length was found to be z ≤ 52µm, thus walk-off effects can be

neglected, since the crystal thickness is much shorter than the length over which

walk-off becomes appreciable. The mixing term deff was also computed for both

SFG interactions considered using Miller’s Rule [114]. All calculated values were

input to SNLO’s 2D short-pulse mixing simulator along with reasonable estimates

for input pulse energies and durations. For the simulation inputs, the 1.8µm pulse

was assumed to have an energy of 1µJ , a pulse duration of 100fs, and a spot size of

∼ 40µm at the BBO crystal. The harmonic pulse energies were taken from Table 4.2

for harmonic orders 5 - 11, and scaled according to observed relative spectral powers

for harmonic orders 13 and 15. For harmonic order q, the pulse duration was assumed

to follow the scaling τq = τ3.6µm√
q

, where τ3.6µm = 120fs (FWHM) was assumed from

previous measurements [115]. Spot sizes for the harmonics were estimated assuming

a collimated beam with a fixed 25mm initial beam diameter and an f = 500mm

focusing optic.

A summary of the simulation results is shown in Table 4.3. In practice, it was

found that due to the large difference in energy between adjacent harmonic orders,

it was necessary to tune the phase-matching angle slightly (generally by 1◦ or less)

to favor the SFG process for the weaker of the two harmonic orders. This de-tuning

from the designed phase-matching angle was required to place an approximately

equal amount of energy in each harmonic order’s XFROG signal beam so that the

gain and integration time on the intensified CCD attached to the spectrometer could
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θ (deg) z (µm) Interaction deff (pm/V) Uharmonic (pJ) USFG (pJ) Efficiency (%)

27.5 50
H5 + H2 1.633 100 36.4 36.4
H7 + H2 1.692 71.1 41.5 58.4

30 50
H7 + H2 1.639 71.1 31.2 43.9
H9 + H2 1.706 15.35 9.27 60.4

33 30
H9 + H2 1.637 15.35 3.99 26
H11 + H2 1.719 6.63 2.29 34.5

36.3 20
H11 + H2 1.638 6.63 1.19 17.9
H13 + H2 1.736 0.221 0.048 21.7

40.2 10
H13 + H2 1.624 0.221 0.0137 6.2
H15 + H2 1.754 0.0663 0.0051 7.7

Table 4.3: SFG simulation summary for the five designed β-BBO crystals: phase matching angle θ,
crystal thickness z, designed interactions, mixing strength deff, input harmonic energy,
output SFG energy, and conversion efficiency. For all simulations, the 1.8µm gate pulse
had 1µJ pulse energy and τ = 100fs (FWHM) duration.

be optimized to maximize signal-to-noise. Use of a BBO crystal at its designed

phase-matching angle usually results in one of the two XFROG traces containing a

peak value decreased in magnitude by one order or more compared to the stronger

XFROG trace.

4.1.2 Layout

The layout for the mid-IR harmonics XFROG is shown in Fig. 4.3. A train of

3.6µm pulses with U ∼ 130µJ and τ ∼ 120fs at 1kHz repetition rate is produced by

difference frequency generation between λ0 = 815nm, τ ∼ 100fs, ∼ 3mJ pulses from a

CPA Ti:sapphire laser and λ0 = 1053nm, τ ∼ 16ps, U ∼ 700µJ pulses from a direct

amplification Nd:YLF laser in a 5mm thick KTiOAsO4 (KTA) crystal; this laser

is the femtosecond successor to the picosecond mid-IR source used for prior time-

domain Cs harmonics studies [58]. The mid-IR beam is collimated at a diameter of

∼ 25mm and sent via beam tube into the target room; after passage through the

target room entrance window the pulse energy is ∼ 100µJ.

The beam entering the target room is p-polarized (polarization parallel to the

table plane). Immediately following the entrance window, a periscope is used to

rotate the beam to s-polarization. A small portion of the beam (∼ 7%) is split
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Figure 4.3: Optical layout for the mid-IR harmonics XFROG.

from the beam using the first Fresnel reflection from a CaF2 window. This weak

pulse replica is then focused into an AGSE crystal to generate the required 1.8µm

gate pulse. If the polarization is not first rotated, the Fresnel reflection coefficient

for p-polarized 3.6µm light at 45◦ on a CaF2 window is only ∼ 0.5%; this would

result in a 1.8µm pulse with too little energy for use in the SFG mixing process.

Rotation to s-polarization also adds benefit in the remaining transport optics; since

s-polarized reflections are almost always more efficient than p-polarized reflections, a

higher energy throughput is maintained for the harmonics beam line up to the BBO
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crystal.

The 1.8µm beam is collimated and sent through a variable delay line consisting

of a hollow retro-reflector with a gold coating mounted on a closed-loop piezo with

500µm range and 1.5nm resolution. Following the delay line, the 1.8µm beam is sent

into a vacuum chamber through a CaF2 window and focused on the BBO crystal

using a mirror with focal length f = 500mm. A second 1.8µm pulse originating from

the reflection off of the back face of the CaF2 beam splitter is also present, however

this extra pulse is more than 70ps delayed from the pulse generated from the front

surface reflection and almost entirely misses apertures downstream from the beam

splitter; the combination of energy loss and beam profile distortion due to clipping

and temporal lag behind the desired 1.8µm pulse make it quite easy to distinguish

an XFROG signal that is generated using the 1.8µm pulse due to the front surface

reflection from an XFROG signal resulting from mixing with the 1.8µm from the

back surface reflection. Any SFG mixing with the back surface 1.8µm pulse is very

weak, if possible to find at all. If an SFG XFROG from the 1.8µm pulse originating

from the beam splitter’s back surface reflection is found, it is a trivial matter to

move the manual delay stage underneath the piezo delay line to correct the timing

and overlap the harmonics with the correct 1.8µm pulse. The delay between the

two 1.8µm pulses is almost two orders of magnitude larger than the total extent

of delays scanned when acquiring an XFROG trace; thus, the presence of a second

1.8µm pulse has no impact on the SFG process.

The majority of the 3.6µm light is transmitted through the beam splitter and

focused into a Cs heat pipe using an f = 250mm CaF2 lens. The heat pipe consists

of a stainless steel tube with water-chilled copper cooling blocks mounted 22mm on

either side of the pipe center. A 25mm-long heater coil surrounds the center of the
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pipe, as shown in Fig. 4.3. The interior wall of the pipe is lined with a stainless steel

mesh, which acts as a wick for Cs to flow from the cooled regions near the cooling

block back towards the heated center region. Window holders are mounted at either

end of the pipe using compression fittings, and both window holders are attached to

an Ar buffer gas delivery manifold via vacuum rated flexible plastic tubing.

The Ar delivery manifold consists of a low-pressure regulator capable of regulating

down to ∼ 10Torr, a leak valve connected to a roughing pump, and appropriate

gauges and bypass connections. The manifold delivers a constant Ar pressure to the

heat pipe; the Ar acts as a buffer between the Cs and the windows, for the most

part preventing the Cs from escaping the confines of the cooling blocks. Under ideal

operation, the heater power is adjusted until it applies exactly the right amount

of thermal load to maintain a Cs vapor pressure which is equal to the pressure of

the Ar buffer gas. A twisted wire thermocouple attached to the exterior of the

heater provides useful information about when this condition has been achieved. If

the applied power is too high or too low, the heat pipe does not reach equilibrium

operation and the temperature read from the thermocouple is unstable.

At the heat pipe entrance window, the 3.6µm pulse energy is ∼ 80µJ. The 3.6µm

beam is focused to an intensity I = 2.65 × 1012W/cm2 at a point very close to the

exit window side of the Cs column. At this intensity, Up = 3.20, and γ = 0.78.

The 3.6µm beam and the generated harmonics exit the heat pipe through a LiF

output window directly into the vacuum chamber. To allow for adjustment of the

focal position within the Cs column, the heat pipe exit window holder is coupled

to the vacuum chamber using a flexible bellows, and the entire heat pipe assembly

rests on a translation stage. An f = 327mm off-axis parabaloidal mirror collimates

the generated harmonics, which are then focused on the BBO using an f = 250mm
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spherical mirror. All optics in the harmonics beam line after the heat pipe are coated

with UV-enhanced aluminum to ensure the best possible energy throughput of the

higher harmonic orders.

The harmonics beam and the 1.8µm beam intersect at the BBO crystal at an

angle of ∼ 3◦. After the mixing crystal, the harmonics beam and SFG XFROG

signal beam are collimated using an f = 152.4mm off-axis parabaloid and exit the

vacuum chamber through an MgF2 window. After filtering the SFG signal from

the harmonics signal, the XFROG beam is focused on the slit of an f/4 imaging

monochrometer with an intensified CCD head and UV-blazed gratings using another

f = 152.4mm off-axis parabaloid.

Since we use a type-II (e,o,e) process to generate the XFROG signal, it would seem

natural that the primary means for isolating the XFROG signal from the residual

harmonics beam would be through the use of polarizers. Two polarizers are employed

in this setup: the first is an α-BBO Rochon polarizer, used to deviate unwanted

harmonics of all orders away from the beam path leading to the spectrometer. At

higher frequencies, where the XFROG signal is much weaker, a second polarizer

is added for improved extinction of the background harmonics. This is an α-BBO

Glan-Laser polarizer, cut for wavelengths λ < 300nm. For wavelengths > 330nm,

this polarizer does not work and the introduction of its four interfaces into the beam

only serves to increase scattering and reduce signal-to-noise. Even using these two

polarizers, however, it was found that additional filtering must be employed to remove

unwanted harmonics background from the XFROG signal.

The non-collinear geometry employed in the mixing of the 1.8µm and harmonics

beams provides a solution to the signal-to-noise problem. Conservation of momentum

during the SFG process dictates that
−→
k SFG =

−→
k 1.8µm +

−→
k q when mixing harmonic
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order q with the 1.8µm beam. As a consequence, the SFG XFROG signal exits the

BBO crystal at a slightly different angle than the harmonics beam. After collimation,

both the SFG and harmonics beams travel along the same angle, since they both

originated from the same source, however the angular separation between the two

beams is translated into a small spatial separation of the beams. For a 3◦ mixing an-

gle, only the XFROG signal from the H5 + H2 process is entirely spatially separable

from the harmonics background after re-collimation. As the harmonic order q mixed

with the 1.8µm beam increases, the angle between the SFG XFROG signal and the

harmonics beams decreases, and the area of spatial overlap between the beams in-

creases accordingly. It was found, however, that the use of a knife edge as a spatial

filter following the MgF2 exit window to block the majority of the harmonics beam

while still allowing some fraction of the XFROG signal beam to pass was a suffi-

cient additional filtering technique to allow for collection of nearly background-free

XFROG traces.

Employing the spatial filter in conjunction with a Rochon polarizer reduces the

background harmonics level to < 0.3% vs. the peak of the XFROG signal for H5/7/9

+ H2 processes. For the H11/13 + H2 processes, the spatial filter must be less aggres-

sive, since the spatial overlap between the XFROG signal and the harmonics back-

ground is so extensive that any attempt to completely remove the harmonics beam

via the spatial filter also removes enough of the XFROG signal to make it nearly

undetectable. However, the addition of the Glan-Laser polarizer when performing

SFG processes H11/13 + H2 effectively removes the remainder of the unwanted har-

monics background, and the observed background signal level for these traces was

< 0.1%. Increasing the angle between the 1.8µm beam and the harmonics beam

is another possible method for obtaining better spatial separation between the har-
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monics and XFROG beams, however the mixing conversion efficiency was observed

to drop dramatically for angles > 4◦, making the higher order FROG traces much

more difficult to detect. The inability of the Rochon polarizer to better isolate the

XFROG signal from the harmonics beam is attributed primarily to scattering: The

BBO crystals are so thin that they require a 1mm-thick UV fused silica substrate

for support. This added glued interface, combined with the glued interface between

the two crystals in the Rochon polarizer and the poor surface quality of the colli-

mating off-axis parabaloid (diamond-turned) results in a level of scattering of the

background harmonics sufficient to defeat the Rochon polarizer when it is employed

as the only filter in the system.

In addition to the optics necessary for the XFROG setup, flip-up mirrors were

installed to allow the harmonics beam and the 1.8µm beam to be sent to sepa-

rate spectrometers. The spectrometer for the 1.8µm beam consists of an imaging

monochrometer with a 147 lines/mm groove density grating and an InGaAs lin-

ear array for detection. The spectrometer used for capturing harmonics spectra is

similar to that used for collecting XFROG scans. The spectrometer used for the

XFROG scans is highly UV-biased: all gratings on the turret are blazed for 130nm,

and the MCP intensifier is unresponsive to IR illumination, making it impossible

to examine the 5th harmonic directly using this spectrometer. Shown in Fig. 4.3 is

another imaging monochrometer with ICCD detector; this spectrometer, however,

has gratings and MCP designed such that the 5th harmonic can be observed.

4.1.3 Dispersion Management

In the absence of a windowless heat pipe, some technique is required to account

for the dispersion due to the heat pipe exit window if any meaningful reconstruction
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of the relative phase of the harmonics is to be achieved. During the first experimental

runs, the heat pipe exit window was a 1/4”-thick UV fused silica window. It was

quickly determined, however, that the relative difference in group delay between

harmonic orders due to the dispersion of the exit window far exceeded any tolerable

value: the observed delay between the H5 + H2 and H7 + H2 XFROG traces was

nearly 1ps. Taking small (∼ 1fs) steps to make sure all temporal features are captured

on each trace, it took well in excess of one hour to complete a single scan using the

thick SiO2 window. Moving to higher orders only exacerbates the problem, since the

dispersion characteristics of fused silica become less desirable at shorter wavelengths.

Lithium fluoride (LiF) was chosen as the best of the available materials to replace the

original output window since it has the lowest index of all UV-transparent glasses.

Unfortunately, knowledge of the window thickness and material is not precise

enough to allow for accurate removal of the incurred dispersion. Simulations us-

ing index data for the purest grade of the Lithosil product line from Schott Glass,

a synthetic fused silica that is one of the most accurately characterized materials

commercially available, revealed that a 1/4”-thick Lithosil output window would

mandate error bars ranging from 87as to 6.4fs in the group delay calculated from

each harmonic order, as shown in Fig. 4.4. These error bars would be due solely

to the uncertainty in the tabulated refractive index data for the material, presum-

ing that the window thickness is known exactly. For a more poorly characterized

material such as LiF, it is clear that reliance on published models for the index

of the material is insufficient for accurate removal of the LiF dispersion, especially

when the existing models [116, 117, 118, 119] do not cover the entire spectral range

spanned by the XFROG. Building a separate refractometer or equivalent device to

measure the index of the output window over the spectral range required is also not
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Figure 4.4: Group delay error bars for Lithosil grade H5, 1/4” thickness.

an option, since the measurement uncertainty would again be far larger than any

reasonable limit for pulse reconstruction. Instead, the XFROG itself was used as the

LiF characterization device.

The scheme for characterizing the LiF contribution to the observed delay between

harmonic orders is as follows: two LiF output windows are used during the collection

of the XFROG data, one window has a thickness of 2mm, while the other is 3mm

thick. A full set of overlapping XFROG traces is collected using first the 2mm

LiF window: H5/7 + H2, H7/9 + H2, etc. The output window is then replaced

with the 3mm window, and all scans are collected a second time. Finally, the 2mm

window is stacked with the 3mm window to effectively produce a single 5mm LiF

output window, and all XFROG scans are collected a third time. In the absence

of a vacuum chamber, let the observed delay between adjacent harmonic orders i, j

through window x, be expressed as τ (x)
∣∣j
i
= τgen

∣∣j
i
+τCs

∣∣j
i
+τAr

∣∣j
i
+τLiF x

∣∣j
i
+τAir

∣∣j
i
, where

τgen

∣∣j
i

is the attochirp + intensity-dependent chirp between orders i, j, τCs

∣∣j
i

is due

to propagation through the remainder of the Cs column, τAr

∣∣j
i

is due to propagation

through the Ar buffer gas, τLiF x

∣∣j
i
is due to propagation through window x, and τAir

∣∣j
i
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is due to propagation in the air column between the heat pipe and the SFG mixing

crystal. The three previously described XFROG data sets are then

τ (2mm)
∣∣j
i
= τgen

∣∣j
i
+ τCs

∣∣j
i
+ τAr

∣∣j
i
+ τLiF 2mm

∣∣j
i
+ τAir

∣∣j
i

τ (3mm)
∣∣j
i
= τgen

∣∣j
i
+ τCs

∣∣j
i
+ τAr

∣∣j
i
+ τLiF 3mm

∣∣j
i
+ τAir

∣∣j
i

τ (5mm)
∣∣j
i
= τgen

∣∣j
i
+ τCs

∣∣j
i
+ τAr

∣∣j
i
+ τLiF 5mm

∣∣j
i
+ τAir

∣∣j
i

(4.7)

Re-arranging,

(4.8) τgen

∣∣j
i
+ τCs

∣∣j
i
+ τAr

∣∣j
i
+ τAir

∣∣j
i
= τ (2mm)

∣∣j
i
+ τ (3mm)

∣∣j
i
− τ (5mm)

∣∣j
i

Thus, through the collection of three complete XFROG data sets using two out-

put windows, the relative delay due to the output window material is completely

removed, even though the precise thickness and refractive indices of the windows is

not known. It is easy to show that this simple subtraction technique can also be

used to completely remove the LiF contribution to the spectral phase for an indi-

vidual harmonic order q retrieved by the FROG retrieval algorithm. This may be

inadvisable, however, since the spectral phase where the retrieved power is low is less

reliable, and therefore the difference between three phase functions would be highly

questionable in regions with low spectral power. Instead, a technique using the ob-

served delays τ (x)
∣∣j
i

is adopted as follows: the delay due to the 2mm LiF window can

be calculated using Eq. 4.7 as

(4.9) τLiF 2mm

∣∣j
i
= τ (5mm)

∣∣j
i
− τ (3mm)

∣∣j
i

The total group delay response for the 2mm window is then obtained through con-
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catenation of Eq. 4.9, where the delay at harmonic order 5 is arbitrarily set to 0:

τLiF 2mm

∣∣
5

= 0

τLiF 2mm

∣∣
7

= τLiF 2mm

∣∣7
5

τLiF 2mm

∣∣
9

= τLiF 2mm

∣∣9
7
+ τLiF 2mm

∣∣
7

τLiF 2mm

∣∣
11

= τLiF 2mm

∣∣11

9
+ τLiF 2mm

∣∣
9

τLiF 2mm

∣∣
13

= τLiF 2mm

∣∣13

11
+ τLiF 2mm

∣∣
11

τLiF 2mm

∣∣
15

= τLiF 2mm

∣∣15

13
+ τLiF 2mm

∣∣
13

(4.10)

The function τLiF 2mm(ω) is directly related to the group index of the 2mm LiF

window ng(ω) via

(4.11) τLiF 2mm(ω) =
zng(ω)

c

where z is the window thickness. Noting that

(4.12) ng(ω) = n(ω) + ω
dn(ω)

dω

and the spectral phase φ(ω) is given by

(4.13) φ(ω) = n(ω)
zω

c

the derivative dφ(ω)/dω is given by

(4.14)
dφ(ω)

dω
=

z

c

(
n(ω) + ω

dn(ω)

dω

)
=

zng(ω)

c

Thus, Eq. 4.10 represents an evaluation of dφ(ω)/dω at a discrete set of frequencies,

plus a constant. Let F (ω) represent this evaluation:

(4.15) F (ω) =
dφ(ω)

dω
− dφ(ω)

dω

∣∣∣∣
ω5

Integrating one time,

(4.16) G(ω) =

∞∫

−∞

F (ω)dω = φ(ω)− ω
dφ(ω)

dω

∣∣∣∣
ω5

+ C
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Adopting a polynomial expansion for the spectral phase about a carrier frequency

ω0,

(4.17) φ(ω − ω0) =
∞∑
i=0

φi × (ω − ω0)
i

we neglect the i = 0 and i = 1 terms, since these represent the carrier-envelope

phase and temporal delay, respectively. Thus, the last two terms of Eq. 4.16 can be

neglected, and we can obtain the appropriate spectral phase for the 2mm LiF window

at a given harmonic order q by simply interpolating Eq. 4.10 to a more densely

spaced vector in ω-space, integrating one time, performing a polynomial projection

to sufficiently high order about the carrier frequency ω0,q, and throwing out the DC

and linear terms. An identical application of this technique can be applied to obtain

the spectral phase contribution from the 3mm LiF window, if desired.

Through the use of two windows and three complete XFROG data sets it is there-

fore possible to completely characterize and remove the effects of both the refractive

index n(ω) and the group index ng(ω) without any prior knowledge of the windows’

dispersion characteristics or thicknesses. As a byproduct of this technique, the dis-

persion properties of both output windows are quite well characterized; an accurate

measurement of the thicknesses of both windows should allow for the construction

of an index model for both windows. This modeling along with appropriate error

analysis is left for future work, since it is outside the scope of the current effort to

characterize the windows beyond the ability to remove their dispersion effects from

the data.

Examination of Eq. 4.8 reveals another potential dispersion-related problem, how-

ever. Initial iterations of this experiment did not include a vacuum chamber because

it was not fully recognized in advance how serious a problem it would be to propa-

gate the harmonics in air. After generation, the harmonics exited the heat pipe into
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air and propagated for ∼ 3m before mixing with the 1.8µm beam. Analysis of the

data from these early experimental runs revealed that dispersion in air presented a

significant hurdle to any meaningful analysis of the data.
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Figure 4.5: Dispersion in air; retrieved delay vs. harmonic order for 2mm LiF (blue, dashed), 3mm
LiF (red, dotted), 5mm LiF (green, dash-dot), and after removing the LiF contribution
using Eq. 4.8 (black, solid).

Fig. 4.5 shows the results from attempting to apply Eq. 4.8 to an XFROG data set

spanning harmonics 5-11 with ∼ 3m air propagation between the heat pipe output

window and the BBO SFG crystal. A quick examination of the data shows that the

dispersion due to air is of the same order as that created by the output windows,

themselves. Attempts were made to subtract the residual air dispersion using a

Nelder-Mead Simplex constrained optimization routine [120] to find the values for

air temperature, pressure, relative humidity, and CO2 concentration that minimized

the range of the dispersion curve, however the uncertainty in the dispersion models

for air [121, 122, 123, 124] and the sensitivity of the result to mm-scale changes in

the best-fit air column length and 1/10th-degree changes in best-fit temperature cast

serious doubts on the obtained results.

One simple solution to the problem presented by the air is to box the entire

experiment and back-fill with a slight over-pressure of helium. Index models for
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He [125, 126, 127, 128, 129] indicate that replacing the 3m air column with a slightly

over-pressurized He environment, 800Torr at 30◦C, will reduce the delay between

the 11th harmonic relative to the 5th harmonic from ∼ 408fs to ∼ 19fs. While

this is certainly a significant improvement, the effort required to retrofit a He de-

livery/containment environment around the existing experimental setup that could

be safely operated without risk of asphyxiation is similar to and possibly more diffi-

cult than simply placing the entire harmonics arm of the XFROG between the heat

pipe exit window and the SFG crystal in a vacuum environment. Eschewing the He

back-fill option, the experiment was instead re-designed to operate under vacuum,

as previously described in Sec. 4.1.2. The path length between the heat pipe out-

put window and the SFG crystal was reduced from 3m to 1.5m, and the number of

mirrors between the output window and SFG crystal was reduced from 8 to 5. The

Edlén air model [121] and Muijlwijk update to the model [122] were used to estimate

the vacuum level required for dispersion-free operation; these simulation results are

shown in Fig. 4.6. The group delay vs. pressure simulations show that at a pressure
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Figure 4.6: Group delay due to air for H7-15 relative to H5 vs. pressure for 1.5m propagation: H7
(black, solid), H9 (blue, dashed), H11 (green, dotted), H13 (yellow, dash-dot), and H15
(red, solid). The horizontal dashed line represents 4as delay.

of 100mTorr, the 15th harmonic will be delayed relative to the 5th harmonic by less
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than 4as. Anticipating that the attochirp will be on a time scale of the same order of

magnitude as 1/4-cycle of the 3.6µm driving pulse (∼ 3fs), a 4as contribution from

residual gas content in the vacuum chamber was deemed acceptable. Furthermore,

a pressure of 100mTorr or less is easily attainable with a roughing pump only; a

turbo-molecular pump is not required to achieve or maintain the required vacuum

level, which allows operation without the annoyance of vibrations due to a running

turbo pump. Long segments of flexible PVC vacuum hose were installed between the

roughing pump and the vacuum chamber to minimize any transmission of mechanical

vibration from the pump to the optics. Removing air from the system has dramatic

results: Fig. 4.7 shows the H9/11 + H2 XFROG trace taken in the presence of 3m of

air propagation, while Fig. 4.8 shows the same XFROG trace taken under vacuum

(Pvac ∼ 85mTorr).
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Figure 4.7: H9 + H2 and H11 + H2 XFROG with 2mm LiF window: 3m air propagation, Cs
pressure = 60Torr.

Temporal/spectral differences between the individual XFROG traces embedded in

each scan are attributed primarily to different operating conditions: the scan taken

with the air column present used a Cs vapor column at a pressure of 60Torr, while

the scan taken under vacuum used a 20Torr Cs source and a lower peak intensity at
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Figure 4.8: H9 + H2 and H11 + H2 XFROG with 2mm LiF window: propagation in vacuum, Cs
pressure = 20Torr.

focus. In the absence of air, Eq. 4.7 must be modified to exclude τAir

∣∣j
i

terms:

τ (2mm)
∣∣j
i
= τgen

∣∣j
i
+ τCs

∣∣j
i
+ τAr

∣∣j
i
+ τLiF 2mm

∣∣j
i

τ (3mm)
∣∣j
i
= τgen

∣∣j
i
+ τCs

∣∣j
i
+ τAr

∣∣j
i
+ τLiF 3mm

∣∣j
i

τ (5mm)
∣∣j
i
= τgen

∣∣j
i
+ τCs

∣∣j
i
+ τAr

∣∣j
i
+ τLiF 5mm

∣∣j
i

(4.18)

and Eq. 4.8 becomes

(4.19) τgen

∣∣j
i
+ τCs

∣∣j
i
+ τAr

∣∣j
i
= τ (2mm)

∣∣j
i
+ τ (3mm)

∣∣j
i
− τ (5mm)

∣∣j
i

The only remaining un-compensated dispersion, then, is the dispersion due to the

∼ 75mm Ar column and the propagation of the harmonics through Cs. Unfortu-

nately, it is not possible to remove these contributions through any means similar

to that used to compensate the LiF contribution; other measurements and modeling

are needed to attempt to account for these two terms.

4.1.4 Alignment Procedure

Alignment of the XFROG begins by aligning the 3.6µm beam entering the tar-

get room through a pair of well-separated irises placed immediately following the

polarization-rotating periscope. A thermal imaging camera is used to accomplish all
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mid-IR alignment prior to the vacuum chamber. Irises are placed after each mirror

in the system, allowing for fine tuning of each mirror to get the 3.6µm beam on the

correct beam path for both the 1.8µm and harmonics beam lines.

Spatial alignment in the vacuum chamber is done at atmospheric pressure. Once

the 3.6µm beam is verified to travel properly along the harmonics beam line, the Cs

heat pipe is introduced. The energy in the generated harmonics is sufficiently high

that all post-heat pipe optics can be aligned to the in-chamber irises by eye using

the two visible harmonic orders (7 and 9). A 10µm-diameter pinhole is installed

in the BBO crystal mount and an 1mm2 InGaAs photodiode with linear response

from 1.2µm − 1.8µm is placed immediately behind the pinhole. The 1.8µm beam

is blocked and the crystal mount is then translated in both the x and y-dimensions

until the 3rd harmonic passes through the pinhole and a signal from the photodiode

is visible on an oscilloscope. Further translation in x, y, and z-dimensions of the

crystal mount are made to optimize the pinhole position to the center of the beam

and center of the Rayleigh range.

Once the pinhole is positioned properly, the harmonics beam is blocked and the

1.8µm beam is un-blocked. Using a small piece of thermochromatic paper to locate

the 1.8µm beam near focus, the tip/tilt axes on the f = 500mm focusing mirror are

adjusted until it appears the 1.8µm beam is hitting the pinhole. A blind search of

the tip/tilt axes follows until the 1.8µm beam registers on the InGaAs photodiode.

To maximize the 1.8µm signal on the photodiode, the z position of the collimating

lens immediately following the AGSE crystal is scanned in conjunction with tip/tilt

adjustments on the f = 500mm mirror. Adjusting the position of the collimating

lens corrects the wavefront of the 1.8µm beam so that any error in the placement of

the f = 500mm mirror with respect to the pinhole z position is canceled out, and
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the 1.8µm beam focuses in the same plane as the harmonics.

Once the spatial overlap of both beams is achieved, the pinhole is removed and

the 1.8µm beam is blocked. The harmonics beam is used to align all post-SFG optics

along the path to the spectrometer. Back reflections from the polarizers are used to

verify that the collimated beam hits them at normal incidence, and the polarizers are

then adjusted to minimize the observed harmonics spectrum on the spectrometer,

thus maximizing the transmission for the FROG signal. The knife-edge spatial filter

is then slid into place until the residual background harmonics level is observed to

drop by ∼ 1 order of magnitude. The BBO crystal cut for optimized phase matching

of the H5+H2 and H7+H2 SFG processes is installed in the crystal mount and the

goniometric angle control on the mount is adjusted so that the back reflection from

the SFG crystal travels exactly back along the original beam path. The piezo is

commanded to move half of its total available displacement. Both beams are then

allowed through, and the manual stage beneath the piezo is adjusted until either

the H5+H2 or H7+H2 XFROG signal is visible on the spectrometer. To achieve

temporal overlap for the first time after constructing the XFROG, the crystal mount

is removed and a Newport D-30 high-speed photodiode with 30ps rise time and

a linear response from 950-1650nm is installed at focus. The 3rd harmonic easily

fits within the spectral range of this diode, and a signal from the 1.8µm beam is

also visible, even though the diode is not specified to respond at 1.8µm. The fast

photodiode is connected to an analog oscilloscope and the manual delay control is

adjusted until no delay between the harmonics and 1.8µm beams is evident. Using the

fast photodiode only gets the temporal overlap to within ±100ps. Upon completion

of this step, it is necessary to use the XFROG signal itself as previously described

as the final verification that temporal overlap has been achieved.
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Once spatial and temporal overlap are obtained, the vacuum chamber is closed and

evacuated. Since the removal of air necessarily changes the timing overlap between

the 1.8µm and harmonics beams, a small adjustment of the manual delay stage

between air and vacuum settings is required. For example, the H7 + H2 XFROG

signal required a ∼ 220µm shorter beam path for the 1.8µm beam with the chamber

evacuated in order to maintain temporal overlap. Since the chamber floor is not

isolated, the spatial overlap between the beams is also disturbed when pumping

as the chamber is deformed. The final air-side mirror in the 1.8µm beam line is

mounted on a mirror mount with micrometers instead of the usual thumb screws to

control mirror tip/tilt. For first-time evacuation after constructing the XFROG, the

pumping process is completed in many small steps: pump until the XFROG signal

diminishes in intensity by a factor of 3 or 4, then stop pumping and re-optimize the

spatial overlap with the last air-side 1.8µm mirror mount while also adjusting the

temporal overlap to achieve the strongest possible XFROG signal. This process is

repeated many times until the pressure in the chamber is near 1Torr. At this point,

further pumping to lower pressures has little impact and the chamber is evacuated as

quickly as possible: the chamber is fully deformed, therefore the spatial overlap will

not change with further pressure decrease, and the changes to the timing overlap are

smaller than can be adjusted using the manual delay stage. The recorded difference

in the micrometer settings for the last 1.8µm mirror and the manual delay stage are

used on subsequent transitions from air to vacuum alignment. Once the difference

in these micrometer settings is known, it is possible to evacuate the chamber at full

speed without bothering to maintain spatial or temporal overlap between the beams.

The deformation of the chamber is repeatable enough that the XFROG signal can

be recovered after pulling vacuum by simply applying the measured adjustments to
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the micrometers after completion of the evacuation process.

When it is necessary to change BBO crystals or alter the output window configu-

ration on the heat pipe, the spatial and temporal overlap are not re-adjusted to their

air settings when the vacuum is broken. Instead, with the chamber still under vac-

uum the piezo is positioned for maximum signal strength for one of its two designed

SFG interactions. Both beams are then blocked and the vacuum is broken. After

completing the crystal swap or window swap, the vacuum is restored and the beams

are allowed through. If necessary, small adjustments are made to compensate any

spatial or temporal overlap drift that may have occurred when cycling the vacuum

system.

Prior to acquiring XFROG data, an attempt is made to optimize the signal

strengths for both XFROG signals to be acquired by adjusting the phase-matching

angle θ of the BBO crystal, altering the position of the knife-edge filter, rotating and

tilting the polarizers, adjusting the spatial overlap of the two beams, and adjusting

the beam pointing into the spectrometer. All these elements are adjusted until both

XFROG signals have a peak intensities that are as close to equal as possible and both

signals have the maximum obtainable signal-to-noise ratio. Unfortunately, there is

no specific procedure for this optimization; the number of free variables to optimize

is simply too large. The only technique that works well is to continue adjusting

various knobs until the desired results are achieved.

4.1.5 Pulse Retrieval via Double-Constraint PCGPA

After collecting the data from the XFROG experiment, some care must be taken

to ensure the accuracy of the pulses retrieved from the FROG traces. As with most

FROG geometries, the pulse retrieval algorithm of choice for the mid-IR harmonics
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XFROG is the principal components generalized projection algorithm (PCGPA) [130,

131]. PCGPA offers advantages in both speed of convergence and simplicity of im-

plementation versus the ”vanilla” FROG algorithm [132, 133], which still requires

the use of a user-selected functional minimization routine. The PCGPA algorithm

is not, strictly speaking, a functional minimization routine, in that it does not ex-

plicitly seek to minimize some figure of merit comparing the experimental data to

the retrieved result. Instead, the PCGPA algorithm takes advantage of the one-to-

one mapping between the outer product of two complex-valued vectors representing

the time-domain electric field for each pulse and the FROG spectrogram. On each

iteration the algorithm simply applies the constraint that the magnitude of the trial

spectrogram and measured spectrogram must be equal. In its simplest form, the

PCGPA algorithm is ”blind,” in that it does not require any information other than

the FROG spectrogram to retrieve both pulses used to create the spectrogram, even

if both pulses are unknown. The operation of the blind PCGPA algorithm is as

follows: Create two complex-valued trial fields EProbe(t) and EGate(t) with discrete

time step ∆t.

EProbe =
[
E1, E2, E3, ..., EN

]

EGate =
[
G1, G2, G3, ..., GN ]

(4.20)

Create the outer product O of EProbe(t) and EGate(t),

(4.21) O =




E1G1 E1G2 E1G3 · · · E1GN

E2G1 E2G2 E2G3 · · · E2GN

E3G1 E3G2 E3G3 · · · E3GN

...
...

... · · · ...

ENG1 ENG2 ENG3 · · · ENGN
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Perform a circular shift to the left on each row j by j − 1 elements,

Oshifted =




E1G1 E1G2 E1G3 · · · E1GN−2 E1GN−1 E1GN

E2G2 E2G3 E2G4 · · · E2GN−1 E2GN E2G1

E3G3 E3G4 E3G5 · · · E3GN E3G1 E3G2

...
...

... · · · ...
...

...

ENGN ENG1 ENG2 · · · ENGN−3 ENGN−2 ENGN−1




(4.22)

τ = 0 τ = −∆t τ = −2∆t · · · τ = 3∆t τ = 2∆t τ = ∆t

Reverse the order of elements of Oshifted column-wise, and the result is the time-

domain version of the spectrogram ẼFROG(t, τ),

ẼFROG(t, τ) =




· · · E1G3 E1G2 E1G1 E1GN E1GN−1 E1GN−2 · · ·

· · · E2G4 E2G3 E2G2 E2G1 E2GN E2GN−1 · · ·

· · · E3G5 E3G4 E3G3 E3G2 E3G1 E3GN · · ·

· · · ...
...

...
...

...
... · · ·

· · · ENG2 ENG1 ENGN ENGN−1 ENGN−2 ENGN−3 · · ·




(4.23)

· · · τ = −2∆t τ = −∆t τ = 0 τ = ∆t τ = 2∆t τ = 3∆t · · ·

where time is read going down the columns and delay τ is read across. A simple

Fourier transform column-wise yields the FROG spectrogram ẼFROG(ω, τ). The mag-

nitude of the spectrogram is then replaced with the measured spectrogram Imeas(ω, τ),

(4.24) ẼFROG(ω, τ) = ẼFROG(ω, τ)

√
Imeas(ω, τ)∣∣∣ẼFROG(ω, τ)

∣∣∣

In the blind PCGPA implementation, replacing
∣∣∣ẼFROG(ω, τ)

∣∣∣ with
√

Imeas(ω, τ)

is the only constraint used. Following application of the data constraint, the in-

verse Fourier transform is computed column-wise, and the column-swapping and
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row-shifting described in Eqs. 4.22 and 4.23 are reversed, yielding a new outer prod-

uct matrix O. The simplest method to extract the next guess for EProbe(t) and

EGate(t) is to perform a singular value decomposition on O and then choose the

most strongly weighted vector pair from the resulting orthogonal basis set as the

next guess. However, this is computationally intensive. As an alternative, the Power

method [134] is used. The Power method requires more iterations to reach the same

convergence level as an SVD-based PCGPA implementation, however due to the

compute-intensive nature of performing an SVD, the Power method turns out to be

significantly faster. To use the Power method to form the k + 1th guess for the gate

and probe fields from the matrix O computed on the kth iteration requires simple

matrix multiplication:

Ek+1
Probe = OOT Ek

Probe

Ek+1
Gate = OT OEk

Gate

(4.25)

After forming Ek+1
Probe and Ek+1

Gate, the outer product is computed and the steps previ-

ously described are repeated.

Unfortunately, a blind PCGPA implementation almost never converges to the

correct solution. While the FROG trace is over-complete, the search space is NxN ,

and the blind algorithm often gets stuck in local minima and cannot recover without

iterating for an inordinately long period of time. Additional information must be

supplied during each iteration to help guide the algorithm along a faster trajectory

towards the correct solution. In the case of SHG FROG, this constraint takes the

form of recognizing that the probe and gate fields are equal and accordingly modify-

ing the computation of the outer product to reflect this equality. For other geometries

where a known mathematical relationship exists between the probe and gate, an ap-

propriate modification can usually be made to incorporate this relationship into the
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algorithm as an added constraint. In the case of the XFROG geometry such a rela-

tionship does not exist, and other constraints must be sought. The best option for

providing an additional constraint for the XFROG PCGPA routine is to indepen-

dently measure one of the two unknown pulses. Then, each iteration of the algorithm

only updates a guess for the one unknown field, while the externally measured field

is held constant. However, this requires taking the time and expense to implement

an entirely separate pulse measurement device, and is not generally necessary. An

alternative constraint is to measure one or both of the unknown pulses’ spectra.

After forming the next guess for the probe and gate, if a spectrum is available for

either pulse it is used to replace the spectrum of the trial pulse while keeping the

trial spectral phase intact. This spectral constraint is the first additional constraint

used in the processing of the 3.6µm harmonics XFROG data: the spectral power of

the 1.8µm beam is measured and used as a constraint in the PCGPA algorithm.

Due to the somewhat unconventional nature of the 3.6µm harmonics XFROG,

where a long pulse is used to gate a shorter pulse [135, 136], it turns out that

the addition of the 1.8µm spectral power constraint is not sufficient to ensure the

consistency of the PCGPA results across multiple FROG traces. Small changes in the

spectral phase of the 1.8µm gate result in varying solutions for the harmonics probe;

a single harmonic’s spectral width was observed to vary by as much as 10% and

the spectral phase was observed to vary on the order of 1-2 radians when comparing

results from an XFROG trace measuring orders i, j with a trace measuring orders j, k.

Choosing one of the two 1.8µm gate pulses and applying it to the probe pulse from

the other XFROG trace does not drastically reduce the likelihood that the second

trace will reach the defined convergence criterion. Also, the recovered harmonics

probe after making this replacement is quite consistent with the probe retrieved from
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the first FROG trace. These observations led to the development of a new type of

constraint which guarantees self-consistency of the entire data set. All XFROG traces

in the data set are processed in parallel, and after each iteration the 1.8µm spectral

constraint is applied. The new constraint takes the form of averaging the next guess

for the 1.8µm spectral phase from all XFROG traces, forming a single new guess

for the gate which is then used to form the outer product with the independently

formed probe fields in each trace. The end result is that there are no inconsistencies

in the recovered 1.8µm gate, since all traces use a shared gate pulse. The only major

drawback in the application of this constraint is that processing many large XFROG

traces in parallel can take significant amounts of computation time.

4.2 Experimental Results

Using the XFROG apparatus described in Sec. 4.1, data was acquired for har-

monics 5-13 using a 2mm, 3mm, and 2mm+3mm LiF output window on the heat

pipe. The 3.6µm focus was measured to be approximately at the location of the

output side of the heat pipe cooling block. The Ar backing pressure was 20Torr, and

the laser power immediately before the heat pipe input window was measured to be

77mW. For each pair of harmonics i, j measured with a given output window x, 5

scans were acquired with 2 second integrations at each position of the delay stage.

Each scan spanned a delay range sufficient to observe only background light on the

spectrometer at both ends of the scan. This background light was then averaged in

the τ -dimension on a per-scan basis and subtracted from its parent scan. A given

set of 5 scans were then averaged to create a single scan, which was then filtered

using a weak low-pass Fourier filter. Finally, the filtered scan was interpolated from

wavelength to frequency space, with appropriate scaling of the spectral power, to
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Figure 4.9: XFROG Data with 2mm LiF output window: H5/7 + H2 (a) experimental and (b)
retrieved, H7/9 + H2 (c) experimental and (d) retrieved, H9/11 + H2 (e) experimental
and (f) retrieved, H11/13 + H2 (g) experimental and (h) retrieved.
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Figure 4.10: XFROG Data with 3mm LiF output window: H5/7 + H2 (a) experimental and (b)
retrieved, H7/9 + H2 (c) experimental and (d) retrieved, H9/11 + H2 (e) experimental
and (f) retrieved, H11/13 + H2 (g) experimental and (h) retrieved.
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Figure 4.11: XFROG Data with 5mm LiF output window: H5/7 + H2 (a) experimental and (b)
retrieved, H7/9 + H2 (c) experimental and (d) retrieved, H9/11 + H2 (e) experimental
and (f) retrieved, H11/13 + H2 (g) experimental and (h) retrieved.
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create the scan used in PCGPA retrieval.

After preparing all FROG traces in the data set, the double-constraint PCGPA

algorithm described in Sec. 4.1.5 was used to retrieve the harmonics and 1.8µm gate

pulse. Fig. 4.9 shows the measured and retrieved XFROG traces using the 2mm

LiF output window, Fig. 4.10 shows the measured and retrieved traces using the

3mm LiF window, and Fig. 4.11 shows the measured and retrieved traces using the

combined 2mm+3mm LiF window. Each trace has a grid size of 1024x1024, and

parallel processing of all 12 traces was run for 5000 iterations, requiring 1.5 days to

complete.

In order to quantify the accuracy of the retrieved FROG traces, the FROG error

G is defined as [104, 137]

(4.26) G =

[
1

N2

N∑
i=1

N∑
j=1

(
Imeas(ωi, τj)− µIret(ωi, τj)

)2
] 1

2

where Imeas(ω, τ) and Iret(ω, τ) are the measured and retrieved FROG traces, re-

spectively, and µ is a scalar value that minimizes G. The FROG error is a slight

modification to the standard RMS error; the scalar factor µ is included to account

for the presence of noise in the experimental data. Since both traces are normalized

to a peak value of 1 before computing the FROG error, any noise present in the

experimental trace may alter the peak value of the experimental trace when com-

pared with its peak value if no noise were present. Consequently, the measured and

retrieved FROG traces may require some other scaling in order to best compare the

two traces. µ is computed using a linear search routine after PCGPA processing is

completed, and typically takes values within 1-2% of unity. For a 128 x 128 grid size,

a FROG error 0.005 or less is widely accepted as indicative of an accurate retrieval

of a low-noise trace. The FROG error scales as N−1/2, thus for the 1024 x 1024 grid

size used in this experiment, the target FROG error is 0.001768. Table 4.4 lists the
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LiF window thickness H5/7 + H2 H7/9 + H2 H9/11 + H2 H11/13 + H2

2mm 1.310E-3 8.53E-4 7.83E-4 1.146E-3

3mm 2.009E-3 1.653E-3 7.41E-4 1.207E-3

5mm 2.727E-3 1.784E-3 1.328E-3 8.65E-4

Table 4.4: FROG Error G for each FROG trace

FROG errors for each of the 12 retrieved XFROG traces.

Of the 12 traces processed, only three failed to meet the target FROG error, and

of these three the H7/9 trace with 5mm output window has an error that is only

minimally higher than the target threshold and is close enough to declare a converged

result. The two FROG traces with larger FROG errors are still within a factor of two

of the target, however in a conservative approach these traces must be excluded from

further analysis. Conveniently, both problem traces are H5/7 + H2 traces, which

means that only the computed pulse parameters for the 5th harmonic are suspect,

and the computed delays between harmonics 7-13 remain valid. Examination of

Fig. 4.10(a) and Fig. 4.11(a) clearly show that the experimental XFROG traces

for the 5th harmonic are corrupted by noise on the 10fs time scale. The most likely

source for this noise is variation in the Cs conditions at the column boundary; the 5th

harmonic experiences anomalous dispersion in Cs due to the pressure-broadened D2

line [138]. Additionally, Cs dimers exhibit strong absorption resonances quite close

to the 5th harmonic wavelength [139]; even a small concentration of dimers in the

vapor column can cause non-negligible changes to the observed group index, spectral

content, and temporal pulse envelope. Consequently, the observed 5th harmonic

group delay is highly sensitive to small fluctuations in either Cs column length or

density. Since the environment near the Cs column boundary is highly turbulent, it

comes as little surprise that difficulties are encountered when attempting to collect

an XFROG scan for the 5th harmonic over a time scale of 10s of minutes.
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4.2.1 Error Analysis

For any reconstructed pulse parameters, it is important to find a reasonable

method for computing error bars on the results. As with all other FROG schemes,

placing error bars on the recovered pulses is non-intuitive. Attempts can always be

made to think through every possible source of error, calculate the expected error

from these sources, and then perform a root-sum-square calculation to arrive at a

final value. This method is highly subjective, however, and always leaves open the

possibility of excluding a significant source of error by simple oversight. Fortunately,

we can take advantage of the over-complete nature of the FROG spectrogram to more

conclusively place bounds on the retrieved pulses. Since the FROG trace contains

more information than is necessary to completely describe both the gate and probe,

it is possible to take a random sub-sample of the FROG trace, run the PCGPA algo-

rithm on it, and compare the pulses extracted from the results to the pulses retrieved

after running PCGPA on the full FROG trace. Repeat the random sub-sampling

hundreds of times and treat the resulting data set statistically, and error bars can be

computed and placed on the retrieved pulses without any subjective decision-making

or estimation.

This method, called the bootstrap technique [140, 141], is performed as follows: for

an NxN FROG trace, create a vector r of length N2 and fill it with random values in

the range [1, N2]. Create a new FROG trace Ibootstrap(ω, τ) filled with zeros. Using

linear indexing into the array, populate Ibootstrap from the measured FROG trace

Imeas(ω, τ) as Ibootstrap[r] = Imeas[r]. Since each value in r may be identical to one or

more other values in r, the resulting sub-sampled FROG trace contains ∼ 67% of the

non-zero data points. The PCGPA algorithm is then run on Ibootstrap(ω, τ), and the

resulting gate and probe fields are saved. 100 or more sub-sampled FROG traces are
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created, and after PCGPA processing statistics on all desired pulse characteristics

can be computed using the resulting set of solutions for the probe and gate fields.

Fig. 4.12 shows an example of an XFROG trace before and after sub-sampling.
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Figure 4.12: Bootstrap example: (a) H9/11 + H2 XFROG taken from Fig. 4.9(e) and (b) sub-
sampled trace ready for PCGPA processing.

Since we are uninterested, for the most part, in the spectral or temporal properties

of the 1.8µm gate, a modification was added to the bootstrap technique. Rather

than process the sub-sampled traces using the constraint introduced to ensure self-

consistency of the data across XFROG traces, the gate was held constant using the

gate retrieved from the PCGPA processing of the full data set. Holding the gate

constant across PCGPA iterations allows for the de-coupling of the XFROG traces;

it no longer remains necessary to process the traces in parallel. Accordingly, each

XFROG trace was sub-sampled 500 times, and the 6000 resulting traces along with

the constant gate were submitted to the University of Michigan Center for Advanced

Computing grid for processing. In order to compute error bars for the 1.8µm pulse,

the reverse was done: the retrieved probes from all 12 XFROG traces were held

constant, and parallel processing with gate averaging was performed on 500 sets

of sub-sampled XFROG traces, where each set contained randomly sub-sampled
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versions of the original 12 XFROG traces. Fig. 4.13 shows the retrieved 1.8µm gate.

The total time taken to complete the processing necessary for bootstrap procedure

Figure 4.13: Retrieved Second Harmonic. (a) Spectral Power and Phase: ω0 = 1.0558 ±
.0001rad/fs, ∆ω = 0.0248 ± 0.0001rad/fs. (b) Time-domain Intensity Profile: recov-
ered (blue, solid), transform limit (black, dashed). τ = 125.84 ± 0.92fs. Transform
limit τ = 92.22fs. Error bars are represented by the shaded regions.

calculations of pulse statistics was 2 weeks, however if run on a single computer the

total processing time would be in excess of 2 years.

4.2.2 Results Analysis

After completing all computations required by the bootstrap method, the relative

delay between two adjacent harmonic orders i, j measured through output window

x is computed as follows: Fourier transform the retrieved time-domain probe field,

extract and unwrap the spectral phase φ(ω), and compute the delay between pulse

i and pulse j as

(4.27) τ (x)
∣∣j
i
=

dφ(ω)

dω

∣∣∣∣
ωj

− dφ(ω)

dω

∣∣∣∣
ωi

The resulting relative delays τ (x)
∣∣j
i

are then concatenated according to Eq. 4.10 to

create dφ(ω)/dω across the entire measured harmonics spectrum. Fig. 4.14 shows

the results of this calculation of dφ(ω)/dω for all three output window configurations,
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Figure 4.14: dφ(ω)/dω for the 2mm LiF window (blue, dashed), 3mm window (red, dotted), and
5mm window (green, dash-dot). The extracted dφ(ω)/dω with LiF contributions re-
moved according to Eq. 4.19 is also shown (black, solid). Error bars are present, but
difficult to see on this time scale.

along with the window-free delay computed using Eq. 4.19. A quick comparison with

Fig. 4.5 shows the dramatic improvement achieved by the addition of the vacuum

system to the experiment. To compute the error bars for the value of dφ(ω)/dω at

a particular harmonic order q, a root-sum-squares method was used:

(4.28) ∆τq =
√

∆τ2mm LiF,q + ∆τ3mm LiF,q + ∆τ5mm LiF,q

The recovered dφ(ω)/dω is shown on a more appropriate time scale in Fig. 4.15.

Note the negative dispersion, indicative of long trajectory dominance in the picture

given by the SFA. The presence of a relative delay between harmonic orders is a

strong indicator that the mechanism responsible for the generation of the observed

harmonics is non-perturbative. Perturbation theory predicts that all harmonics are

emitted in phase, and all attempts to attribute the observed slope to the dispersion

of Cs failed using a simple Sellmeier model for Cs at 20Torr and a range of Cs column

lengths about a best-guess estimate for the distance between the Cs-Ar boundary

and the phase matching region where harmonics are generated.

Examination of Table 4.4 shows that on the whole, the data set acquired with
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Figure 4.15: Extracted group delay using Eq. 4.19. This represents dφ(ω)/dω after harmonic gen-
eration and propagation through the remainder of the Cs column and Ar buffer.

the 2mm LiF output window reached the best convergence in terms of FROG error

values. Thus, the recovered harmonics probes from the 2mm LiF data set are the

most desirable for use in reconstruction of the total spectrum, phase, and time-

domain intensity. The spectral phase contribution of the 2mm LiF window to the

total spectral phase of a given harmonic q is calculated by applying Eq. 4.16 to

the measured dφ(ω)/dω and performing a polynomial projection about the carrier

frequency ωq, discarding the linear and DC terms. Fig. 4.16 shows the retrieved

spectral power and phase from the 2mm LiF window data set for each harmonic

order; also shown is the LiF contribution to the spectral phase, the calculated actual

spectral phases in the absence of the LiF window, and the time-domain intensity

profiles. Table 4.5 lists relevant parameters for the individual harmonic orders.

Harmonic Order 5 7 9 11 13

ω0 [rad/fs] 2.6036± 0.0013 3.6334± 0.0056 4.703± 0.0036 5.7208± 0.0032 6.744± 0.0034

∆ω [rad/fs] 0.0638± 0.0006 0.0908± 0.0007 0.0829± 0.0007 0.0702± 0.0006 0.0806± 0.0006

∆ω/ω0 0.0245± 0.0002 0.025± 0.0002 0.0176± 0.0001 0.0123± 0.0001 0.012± 0.0001

τ [fs] 51.46± 0.44 41.75± 0.67 40.33± 0.37 48.13± 0.37 45.97± 0.36

τtrans. lim. [fs] 50.46± 0.42 32.09± 0.29 37.17± 0.3 45.01± 0.36 38.43± 0.3

TBP 0.5228± 0.0184 0.6035± 0.0288 0.532± 0.0182 0.5378± 0.0179 0.5899± 0.0186

TBPtrans. lim. 0.5127± 0.0178 0.4639± 0.0156 0.4903± 0.0157 0.503± 0.0171 0.4931± 0.0157

Table 4.5: Reconstructed harmonics statistics. TBP = Time-bandwidth product.
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Figure 4.16: Reconstructed Harmonics. Left column–spectral power (blue, solid), phase (green,
dash-dot), recovered 2mm LiF phase contribution (yellow, dotted), and phase with
LiF contribution removed (red, dashed). Right column–time-domain intensity profile
(blue, solid) and transform-limited profile (black, dashed). Error bars are represented
by the shaded regions. (a) & (b): 5th harmonic. (c) & (d): 7th harmonic. (e) & (f):
9th harmonic. (g) & (h): 11th harmonic. (i) & (j): 13th harmonic.
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Figure 4.17: Pulse duration vs. harmonic order with LiF spectral phase contribution removed (blue,
solid), and transform limited (black, dashed).

Shown in Fig. 4.17 is the pulse duration vs. harmonic order. Clearly, the pulse

duration does not follow the perturbative scaling law τq = τ3.6µm/
√

q, although this

in itself is not a conclusive argument against a perturbative source being responsible

for the harmonic production. Since the macroscopic dispersion properties of the

Cs are un-accounted for in this experiment, there may be some difference in the

pulse duration at the location of harmonic generation and the measured duration.

Regardless, the transform limited pulse duration also fails to scale as τq = τ3.6µm/
√

q,

which makes it nearly inconceivable that such a scaling applies at the tail end of the

phase matching region unless the Cs column is significantly re-shaping the spectrum

of all harmonic orders. Such a re-shaping would most likely be caused by absorption;

prior published measurements of the Cs I and Cs-Cs dimer absorption resonances

indicate that only the 5th harmonic should be subject to strong enough absorption

to significantly modify its spectral power.

Fig. 4.18 and Fig. 4.19 show that bandwidth and time-bandwidth product for

the recovered harmonics, respectively. The transform-limited values for the time-

bandwidth product are quite close to the 0.44 value expected for a Gaussian pulse.
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Figure 4.18: Fractional bandwidth vs. harmonic order.

5 7 9 11 13
0.45

0.5

0.55

0.6

Harmonic Order

T
im

e−
B

an
dw

id
th

 P
ro

du
ct

Figure 4.19: Time-bandwidth product vs. harmonic order (blue, solid), and transform-limited time-
bandwidth product (black, dashed).

Fig. 4.20 shows the spectral power and phase for all recovered harmonic orders.

The relative heights of the harmonics’ spectral power were scaled using an inde-

pendently measured harmonics spectrum and using manufacturer-supplied data to

correct for all of the aluminum mirror reflections, spectrometer grating diffraction

efficiency, MCP intensifier response, and LiF transmittance. The relative spectral

phase between harmonic orders at their carrier frequencies is dictated by the integral

of the measured dφ(ω)/dω, and a linear slope equal to dφ(ω)/dω
∣∣
ωq

is assigned to
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Figure 4.20: Total spectral power and phase for harmonic orders 5-13.

the spectral phase of each harmonic order q. The time-domain reconstruction using

all recovered harmonics is shown in Fig. 4.21.
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Figure 4.21: Time-domain intensity profile after synthesizing all recovered harmonics (blue, solid)
and transform limit(red, dashed). The FWHM duration of the most intense burst is
τ = 4.39fs, with a transform limited value of τ = 1.52fs.

Since the recovered 5th harmonic is suspect due to the failure to converge of two

of the three XFROG traces involving the 5th harmonic, Fig. 4.21 may not be the

most accurate representation. If, due to the high noise level and subsequent poor

convergence of the 5th harmonic XFROG traces, the extracted delay between the

5th harmonic and the 7th harmonic is off by even 1fs, the reconstructed intensity
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profile changes dramatically. Consequently, it becomes necessary to exclude the 5th

harmonic from the time-domain reconstruction. A more meaningful time-domain

reconstruction involving only harmonics 7-13 is shown in Fig. 4.22. While the in-

tensity profile of the pulse train synthesized from harmonics 7-13 shows significant

structure due to the negatively chirped spectral phase, in theory it should be possible

to further compress the spikes in the pulse train by adding an appropriate amount of

positively dispersive material such as a higher pressure column of Ar or by extending

the length of the existing Ar column serving as the Cs buffer gas.
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Figure 4.22: Time-domain intensity profile after synthesizing harmonics 7-13 (blue, solid) and trans-
form limit(red, dashed). The FWHM duration of the most intense burst is τ = 2.03fs,
with a transform limited value of τ = 1.68fs.

4.2.3 Auxiliary Results

While the presence of a non-zero dφ(ω)/dω and the non-perturbative scaling of

harmonic pulse duration with harmonic order are strong indicators that the harmon-

ics are generated via strong-field interactions, this evidence alone is insufficient to

prove such an assertion. Additional evidence exists, however, that further strength-

ens the argument that the harmonics are non-perturbative, and therefore are created

through the strong-field HHG process.
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Fig. 4.23 shows a measurement of the relative harmonic yield vs. driving intensity.

In the perturbative limit, the measured harmonic energy at harmonic order q should

scale as Uq ∝ Iq. This measurement was performed by adjusting the laser pulse

energy using a λ/2 waveplate and polarizer immediately before the focusing lens

and at a Cs pressure of ∼ 60Torr. Plotted on a linear scale, the harmonic yield
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Figure 4.23: Intensity dependence of harmonic yield. H5 (black, star), H7 (blue, diamond), H9
(green, circle), H11 (yellow, square), H13 (red, X), and H15 (magenta, plus). Best-fit
power-law scalings for each harmonic order are shown in dashed lines. Fitting was
only performed for data points below the observed saturation of harmonic yield.

at each order was observed to saturate at intensities ranging from 1.2-1.6 TW/cm2.

Power-law fits were computed for each yield vs. intensity curve, using only the data

below the observed saturation. Table 4.6 shows the resulting fitted power parameter:

harmonics below Ip (5-11) scale as roughly I2, while the harmonic orders above Ip

scale roughly as I3.

Harmonic Order q xq

5 2.161
7 2.076
9 2.034
11 2.397
13 2.971
15 2.897

Table 4.6: xq from best-fit modeling of the harmonic yield vs. intensity using the power-law model
Uq = aqI

xq .
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A 1-D TDSE calculation [51] was also performed using a τ = 87.5fs (FWHM)

pulse at I = 9 × 1011W/cm2, and the resulting induced dipole moment is shown

in Fig. 4.24. The harmonics spectrum calculated from the induced dipole is shown
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Figure 4.24: Dipole moment from a 1-D TDSE calculation (blue, solid), and 3.6µm electric field
(red, dashed).

in Fig. 4.25 along with the experimentally measured power spectrum. Fitting the

harmonics power as a function of ω shows that the experimentally measured harmon-

ics decrease as ω−4.30 between harmonic orders 7 - 13, while the TDSE-calculated

harmonics decrease as ω−4.03 over the same range.

The scaling of harmonic yield vs. ω is quite similar to experimental results, al-

though some difficulty arises in attempting to obtain an exact match, since the rela-

tive harmonic spectral powers have been experimentally observed to depend strongly

on phase-matching conditions, and can change dramatically with small changes in I,

spot size, and focal plane location within the Cs column.

A time-frequency analysis [142] was performed on the TDSE results, and the ex-

tracted harmonic emission times were then used to compute dφ(ω)/dω. The results

of this analysis are shown in Fig. 4.26, and show negative dispersion akin to ex-

perimental observations (Fig. 4.15). The factor of ∼ 4 difference in the total delay
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Figure 4.25: Radiated harmonics spectrum from the 1-D TDSE calculation (black, dashed) and
measured power spectrum (blue, solid).
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Figure 4.26: dφ(ω)/dω extracted from a time-frequency analysis of the 1-D TDSE results.

between harmonic orders 7 and 13 may be in large part due to the macroscopic

propagation effects of Cs. Further experiments are necessary to determine the exact

length and density profile of the Cs column, and to discover the length and location

of the zone within the Cs column over which harmonic production is phase-matched.

The existence of an non-zero dφ(ω)/dω, the lack of perturbative scaling for the

harmonic energy yield vs. I or pulse duration vs. q, and the reasonable agreement

between experiment and 1-D single atom calculations all speak heavily in favor of

strong-field interactions being the physics underlying the generation of the observed
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harmonics. Presuming strong-field HHG, the measured negative dispersion on the

spectral phase indicates that the long trajectory was dominant in the production of

the observed harmonics. It should be noted that one major difference exists between

the presented TDSE calculation and experimental results. The TDSE calculation

used γ = 1.34, while the experimental value was γ = 0.78. This difference must play

a part in the slight mismatch between the calculated and observed dφ(ω)/dω, since

the higher experimental intensity modifies the intensity-dependent phase.



CHAPTER V

Conclusions and Future Work

The bulk of this dissertation concerns the development of two novel time-domain

measurement techniques targeted towards characterizing transient UV-VIS-NIR ra-

diation on the few-hundred attosecond to few femtosecond time scales using solid-

state nonlinearities. The extremely short nature of the pulses involved mandates

that the adopted measurement schemes be free from all sources of dispersion or ca-

pable of accurately characterizing any unavoidable dispersion for later removal from

the data. In a diversion from this exotic metrology, experimental observations of

the generation of high energy few-cycle pulses through self-phase modulation during

filamentary propagation in a self-compression regime are presented.

5.1 All-Reflective Split Mirror Autocorrelator for In-situ Measurement
of Ultra-broadband Pulses

Motivated by potential high energy, attosecond timescale bursts created through

relativistic laser-plasma interactions [18], an all-reflective split mirror autocorrelator

designed for in-situ measurement of both the pulse spectrum and 2nd-order autocor-

relation was built and tested [72]. The major improvement of this scheme versus

previous dispersion-free split mirror designs [29, 30, 31] is the realization that a

pinhole spatial filter placed in the detection plane can dramatically improve the non-

118
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linear IAC fringe contrast, enables the collection of linear autocorrelation (and hence

the pulse spectrum), and significantly eases the computational requirements on the

functional minimization routine used to reconstruct the pulse. For the target ap-

plication, the ability to use a single device to quickly measure both the spectrum

(linear IAC) and nonlinear IAC is paramount. The relativistic deflection that angu-

larly isolates attosecond pulses is strongly dependent on the carrier-envelope phase

(CEP) of the laser. Changes to the CEP result in changes in deflection angle and

will cause the pulses under test to clip or entirely miss the entrance apertures for the

employed measurement system. The current state of CEP stabilization technology

can reliably lock the CEP to a fixed value for tens of minutes, at best. By simply

motorizing the mount for the photodiode, a swap from linear to nonlinear detector

can be accomplished in seconds. A single autocorrelation can be acquired in ∼ 30

seconds. Thus, with good quality CEP control this autocorrelator allows for the

collection of several linear and nonlinear autocorrelation traces without the need for

any form of dispersion compensation.

Autocorrelation functions for this device were presented and shown to be con-

ceptually equivalent to the autocorrelation functions for a whole-beam interferome-

ter [21, 22], with the only difference being the inclusion of integrals over the spatial

dimensions of the pinhole. The computational power required to compute the 2nd-

order IAC on each iteration of a phase retrieval algorithm was reduced by more than

one order of magnitude by taking advantage of observed symmetries in the autocor-

relation function to create an approximate expression for the 2nd-order response. For

geometries where r/w0(ωh) < 0.1, where r is the pinhole radius and w0(ωh) is the

beam waist at the largest significant frequency in the pulse it was shown that the

use of the approximated autocorrelation function does not appreciably add to the
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reconstruction error, provided that the autocorrelation function is sampled at 5 or

more points within r. A multi-threaded adaptive genetic algorithm adapted from an

earlier adaptive GA designed for coherent control applications [79] was implemented

as the functional minimization routine for reconstructing the pulse from split-mirror

IAC data. This algorithm was shown to provide good computational performance as

measured by total time necessary to reach convergence.

Experimental results were presented and shown to provide reasonable agreement

with a SPIDER [25] measurement, with a figure of merit for the autocorrelation

retrieval of ∆ = 0.0036, very close to the target for a whole-beam IAC of ∆ ≤

0.003. It remains to be shown, however, that this device can be used in its designed

application. At the time this work was completed, lasers producing pulses with the

necessary parameters (U > 750µJ, τ = 5fs, contrast > 10−8) were not available to

directly test the particle-in-cell predictions of relativistically generated attosecond

pulses. It still remains, then, to develop the necessary laser source and target system

such that this autocorrelator can be put to its designed use. Further work is also

necessary to characterize the nonlinear response of existing large-bandgap detectors

to determine their suitability for use in measuring attosecond pulses with multi-

octave spectra.

5.2 Spectral Broadening and Self-Compression at 800nm and 2µm via
Filamentary Propagation

The search for methods by which high energy, few-cycle laser pulses can be

produced motivated the studies presented on self-compression of pulses with SPM-

broadened spectra emerging from regions of filamentary propagation at both λ0 =

800nm [73] and λ0 = 2µm [74]. For this work, self-compression is defined as a

flat or negative GDD profile on the measured spectral phase profile, allowing for
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re-compression (if necessary) using simple bulk glass. Filamentary propagation is a

balance between the χ(3)-induced self-focusing and self-phase modulation, ionization,

diffraction, and plasma de-focusing. Upon reaching a delicate balance between these

often competing processes, a pulse becomes trapped in its own self-generated chan-

nel and can propagate many Rayleigh lengths without appreciable change in beam

diameter, experiencing significant spectral and temporal re-shaping during the pro-

cess. The processes involved in filamentary propagation are still a very active area of

research, and more work is needed to fully explain the experimentally observed neg-

ative GDD at 800nm [85]. In all cases where self-compression was observed, plasma

fluorescence imaging of the filament showed two or more nonlinear focusing cycles.

For the 800nm studies, a short pulse SPIDER observed negative GDD for all

self-compressed pulses, usually of the order of −200fs2. Self-compression at 800nm

was observed in Ar, Kr, Xe, and even N2; in this last case 5 nonlinear foci were

observed, and the total filament length exceeded 70cm. Experimental results show

that for self-compression at 800nm the ratio if input power to the critical power for

self focusing must be Pin/Pcrit > 3. Self-compression in Ar was shown at a variety

of pressures, with an optimal pressure found at 870mbar. Circularly polarized light

was also tested in Ar and showed similar results to the linearly polarized case, with

the exception that the divergence of the beam exiting the filament increased by a

factor of ∼ 2 when using circularly polarized light. Among the gases tried, Xe has the

largest nonlinear index of refraction n2 and showed the most spectral broadening; the

spectrum emerging from the filament in Xe supports a pulse duration < 5fs. However,

the very low Xe critical power for self-focusing limits the ability to scale a Xe-

based compression system to very high pulse energies. Additionally, phase-matching

limitations of the SPIDER BBO crystal prevented an accurate reconstruction of the
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spectral phase over the entire pulse spectrum–the shortest measured pulse was∼ 12fs,

although many of the collected spectra carried bandwidths supporting shorter pulses.

The advantages to filamentary propagation for broadening the pulse spectrum over

other techniques are significant: with proper choice of bulk media type and pressure,

input mirror focal length, and input beam size, self-compressed pulses with sub-3-

cycle duration and millijoules of energy should be possible [41].

Self-compressed pulses were also observed at λ0 = 2µm for a variety of Xe pres-

sures: 1.6bar, 1.87bar, 2.15bar, and 2.44bar. The diagnostic scheme for temporally

characterizing these filament-compressed pulses was a Michelson interferometer with

linear and nonlinear photodiode detectors: the most classic example of a whole-beam

interferometric autocorrelator. For the 2.15bar and 2.44bar cases, reconstructions

from the autocorrelation measurements show pulses with duration τ = 17.9fs and

τ = 13.6fs, respectively. These < 3-cycle pulses were observed to carry ∼ 54% of the

input pulse energy in a nearly transform-limited pulse spectrum. Since the difference-

frequency optical parametric amplifier used to generate the 2µm light intrinsically

locks the carrier-envelope phase to a fixed offset [91], it becomes interesting to ex-

amine if the CEP stability of the laser is maintained through the filament. f -to-2f

interferometry between the blue tail of the pulse spectrum and the frequency-doubled

central portion of the spectrum show that the CEP drift is < 0.1rad RMS over nearly

9000 consecutive pulses.

The availability of high energy, few cycle, long wavelength radiation will be of great

benefit to future investigations into the long wavelength scaling behavior predicted

for strong field processes (e.g. harmonic generation) [54]. Using such a source,

attosecond pulse synthesis using photon energies À 100eV should be possible. In

order to further aid the development of a filament compression scheme for long-
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wavelength sources, a strongly advised first step is to implement a real-time FROG

or SPIDER capable of handling the extreme bandwidths involved, allowing for fine

tuning of the Xe pressure, beam focusing, etc. to optimize the filament output for

pulse duration, output energy, and spectral content.

5.3 Temporal Characterization of Scaled System Harmonics using Cross-
Correlation Frequency Resolved Optical Gating

The Keldysh scaling model predicts that for laser-atom interactions where the

adiabicity parameter γ is the same, the physics of the interaction should be quite

similar. This gives rise to the scaled system concept, where a long-wavelength laser

driving an atom with low Ip is the scaled version of a more conventional laser driving

an atom with higher Ip. In this work the scaled system considered uses a 3.6µm laser

driving processes in Cs at γ ∼ 1, which is the scaled version of an 800nm laser with

an Ar target at γ ∼ 1. Conveniently, harmonic orders 3 - 19 of a 3.6µm laser lie

below the VUV cutoff, giving rise to the possibility for using conventional solid-state

nonlinearities for temporally characterizing these harmonics. A cross-correlation

frequency resolved optical gating scheme designed to characterize harmonic orders 5

- 15 was designed and implemented. For Cs (Ip = 3.89eV) harmonic orders 5 - 11 all

lie below Ip, providing a unique opportunity for time-resolved studies of harmonics

on bound-bound transitions.

With great care taken to eliminate or ameliorate dispersion in the measurement

system, the deployed XFROG was shown to be capable of resolving the relative tem-

poral delay between harmonic orders to within ±180as by using a combination of LiF

windows on the output of the Cs heat pipe. XFROG results for harmonic orders 5 - 13

show negative dispersion, or a negative slope to the extracted dφ(ω)/dω, indicative

of long-trajectory selection under the model given by the strong field approxima-
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tion [62]. Furthermore, the negative chirp extracted for harmonic orders 11 and 13

is consistent with this finding; orders 5 - 9 show higher order phase contributions.

The measured pulse duration for each harmonic order was shown to entirely fail to

follow the perturbative scaling τq = τ3.6µm/
√

q, both for the reconstructed pulses and

their transform limits. Ancillary measurements reveal that the harmonic yield vs.

intensity also fail to follow the model given by perturbation theory, Uq ∝ Iq. Instead,

harmonic orders 5 - 9 scale as ∼ I2, while harmonic orders 11 and 13 scale as ∼ I3.

Combined, the presence of a non-zero dφ(ω)/dω and the failure of the harmonics to

follow perturbative scaling laws for energy or pulse duration speaks strongly in favor

of strong field processes being responsible for the generation of these harmonics. 1-D

TDSE calculations show similar behavior to that observed in experiment: the scaling

of harmonic power vs. ω is nearly identical, and both show negative dφ(ω)/dω on the

order of a few femtoseconds between harmonics 5 - 13. The difference in dφ(ω)/dω

between experiment and simulation may be due to macroscopic propagation effects;

further experiment is necessary to determine if this is indeed true.

Having developed and proven this particular measurement technique, there are

still many experiments to be conducted before conclusive statements can be made

about the behavior of the 3.6µm Cs scaled system as compared to its 800nm Ar

cousin. The first experiment to be conducted is to complete the window swapping

procedure and characterize both LiF windows at harmonic order 15, which was not

completed on previous experimental runs. Phase matching between harmonic order

15 and the 1.8µm gate has been demonstrated in air, but remains to be accomplished

using the current vacuum-based design. After completing the measurements neces-

sary for removal of the LiF contribution from the data, it is not necessary to apply

the window swapping technique on future experimental runs, therefore subsequent
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experiments should proceed with greater rapidity. The simplest and most important

experiment to be conducted is to fix all experimental parameters at the settings used

in the reported results and change only the Cs pressure. If the recovered dφ(ω)/dω

does not change, it can safely be assumed that propagation effects in Cs are unimpor-

tant and that the observed group delay is representative of the single-atom response.

If dφ(ω)/dω is observed to change, further experiments are necessary to attempt to

quantify the exact amount of delay incurred by propagating through Cs. Foremost

among these is to perform an absorption measurement to determine the exact length

and density profile of the Cs column. Photoelectron spectra from Cs at γ ∼ 1 would

also help to confirm the strong field physics diagnosis for the observed harmonic

generation.

Time-resolved studies of the scaled 3.6µm/Cs system are severely hampered by

the high reactivity of Cs. The Cs densities required to achieve harmonics energies

sufficient for measurement mandate the use of a spectroscopic heat pipe. Absent a

differential pumping system to operate the heat pipe without an output window, a

complicated and potentially dangerous setup, any measurement technique must be

capable of accounting for the dispersion of the window. This XFROG employs a

novel method of completely characterizing the dispersion of two unknown windows

without any additional experimental setup by simply varying the output window

configuration and acquiring repeated data sets. Using this scheme, the relative delay

between harmonic orders 5 - 13 was measured, for the first time providing a view of

the temporal properties of the harmonic generation process in the scaled system.
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