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PREFACE

Each chapter of this dissertation addresses some of the challenges that commonly

characterize strategic interaction through digitally mediated markets. Examples

of such markets include online auctions, financial markets, matching systems,

recommender systems, music recording production, online archives of academic

journals, etc. In a strategic interaction, the outcome of one’s decision depends on

someone else’s actions, and therefore one has to anticipate others’ behavior to make

better choices. The task may be challenging, especially if the set of choices is large

or if one knows little about others to be able to anticipate their likely choices. The

development of information technology has exacerbated these challenges in many

markets, at the same time offering tools to support decision making in complex

settings. The online auction site eBay,2 which relies on information technology

for its routine operations, presents an example of the shift toward higher strategic

complexity and uncertainty about other market participants. In particular, eBay

concurrent independent auctions may offer related items, but the bidding rules do

not allow bidders to express such relationships. Consider, for example, computer

components. Bidders usually have a good idea of how much a particular configuration

is worth to them, but for a variety of technical and computational reasons, the

option of bidding on multiple components is oftentimes not available. Therefore,

bidders need to anticipate the final price of each component and think about all

likely contingencies. To make a good prediction about final prices, it helps to

know how much others are willing to pay. However, because online marketplaces

bring together many participants from geographically dispersed locations, an average

bidder may find the task daunting. Such uncertainty and the need to keep track of

multiple auctions and perform calculations is what makes eBay concurrent markets

particularly complex. On the other hand, information technology can be used

to automate some computationally intensive tasks that are important for making

informed decisions. Automated stock trading tools (e.g., SmartQuant,3 Interactive

2http://www.ebay.com
3http://www.smartquant.com/products.php
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Brokers,4 and RightEdge,5 among others) are examples of software that has been

designed to assist traders in decision making. Such software includes tools for

graphical representation and performing quantitative analysis of financial data,

computing trends, and developing and running new trading strategies.

Each of my chapters is motivated by some of the challenges that technology has

introduced for market participants, as well as by new opportunities it offers. In

Chapter 1, my co-authors and I apply novel heuristic methods to search for bidding

strategies for Simultaneous Ascending Auctions, in which exhaustive consideration

of the full strategy space is intractable. In Chapter 2, I apply the methodology of

Chapter 1 to a different problem: that of competing firms that bundle information

goods. This chapter is motivated by the drastic changes that digitization of

information goods has introduced into the cost structure and by new opportunities

to sell information items individually as well as in bundles (such as CD recordings

or scholarly journals). Finally, Chapter 3 is motivated by the development of

online mechanisms and, in particular, by the question as to whether Bayesian Nash

equilibrium is a reasonable solution concept for such mechanisms. The key issue

here is that extremely limited information conditions, which often characterize online

settings, do not meet the assumptions of Bayesian games. I conduct a human-subject

experiment to understand under what conditions Bayesian Nash equilibrium can arise

as a result of learning.

4http://www.interactivebrokers.com/ibg/main.php
5http://www.rightedgesystems.com/
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ABSTRACT

Technological developments have been reshaping existing markets and giving rise

to new ones. In my dissertation, I address several questions that emerged as a

result of these changes. In the first two chapters, I study strategies in two different

markets: a simultaneous ascending auction (SAA) and an information-good market.

The challenge in both cases is analytical intractability of the problem of finding

equilibrium strategies. I therefore apply heuristic methods and computer simulation

to incrementally search for improvements relative to known leading strategies. For

SAAs with complementary goods, in which bidders often face an exposure risk, the

result of this search procedure is a price-predicting strategy with self-confirming

predictions. If the goods are substitutes, the results suggest that a simple demand-

reduction strategy yields the highest expected surplus. In chapter two, I apply similar

methods to study bundling strategies in an information-good market. I restrict my

attention to three bundling schemes: pure unbundling, pure bundling, and mixed

bundling, where the latter is a choice between the two pure schemes. I find that

when consumers’ tastes are highly diverse, the relative profitability of the schemes is

defined by the consumer preference distribution, even when the marginal costs are

zero. This holds for a duopoly as well as a monopoly. Under duopoly, restricting firms

to pure schemes may result in higher equilibrium profits relative to mixed bundling. I

also provide comparison of the market efficiency, profits and consumer welfare under

a monopoly and a duopoly. In chapter three, I take the perspective of a market

designer and conduct a human-subject experiment to study learning of Bayesian Nash

equilibrium. The study is motivated by the increasing need to test game-theoretic

predictions in the relatively new online environment. I focus on three treatment

variables: available information, existence of a potential, and supermodularity of

the game. The findings are largely consistent with the theory of supermodular and

potential games. In addition, the evidence suggests that there is a strong interaction

effect between supermodularity and information, which I attribute to differences in

the nature of irrationality that prevails under the different information conditions.

xxiii



CHAPTER 1

Bidding Strategies for Simultaneous Ascending

Auctions

1.1 Introduction

A simultaneous ascending auction (SAA) (Cramton, 2005) allocates a set of

m related goods among n agents via separate, concurrent English auctions for

each good. This is characteristic of a variety of related but not identical real-

world auction mechanisms, such as concurrent independent auctions on eBay, power

markets, spectrum auctions in many countries, and other explicitly designed trading

environments (Milgrom, 2003). Some of the key strategic issues presented by SAAs

apply whenever there are concurrent markets for interrelated goods, even if those

markets are not formal auctions.

Simultaneity is significant only if demands (or supplies) for the various goods are

interrelated. We address here some of the challenges bidders with such demands face

when formulating their strategies for participation in SAAs. Interrelated demands

generally exhibit complementarity or substitutability (or both), each of which induces

characteristic bidding problems.

To study bidding strategies in the face of the strategic challenges presented

by complementarity or substitutability, we intentionally abstract from any single

application. There are features specific to spectrum auctions, for example, that

we do not address, just as there are unaddressed features specific to simultaneous

eBay auctions and other particular SAA environments. In hope of producing results

generalizable to a range of applications, we analyze a generic SAA exhibiting a few

important characteristics that are common across most specific settings.

Complementarity manifests when an agent’s value for a good is greater if it also

obtains one or more other goods (Lehmann, Lehmann, & Nisan, 2006). For example,

an airline passenger may wish to obtain two connecting segments to complete a

trip. Goods exhibit complementarity from the perspective of an agent when her
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valuation for those goods is superadditive. Let X, Y , and Z be sets of goods such

that Y ∪ Z = X and Y ∩ Z = ∅. Given a quasi-linear valuation function, v : 2|X| →
R, that assigns value to possible subsets of X, superadditive preference for Y and

Z means that v(X) > v(Y ) + v(Z). In other words, the combined bundle X is

worth more than the sum of its parts. As a special case, if goods in a set are each

worthless without the others, they are perfect complements. We say that a valuation

exhibits complementarities if there are some subsets of goods for which preference is

superadditive.

When the inequality is reversed, the valuation is subadditive, which occurs for

example when goods are substitutes. Flights on the same route by different airlines

would typically be considered substitutes, as would flights to two candidate vacation

destinations. Technically, goods are substitutes when raising the price of one does not

decrease demand for others – that is, for any optimal bundle before the price increase

there is an optimal bundle post-increase that includes at least as much demand

for all goods that did not increase in price. Substitutability is a strictly stronger

condition than subadditivity (Lehmann et al., 2006). An important extreme case

of substitutability is perfect substitutes or single-unit demand (Gul & Stacchetti,

1999), where for all Y ⊆ X, v(Y ) = maxi∈Y v({i}). If, in addition, goods are (for

this agent) homogeneous then they are 1:1 perfect substitutes.

Concurrent auctions with interdependent goods are strategically challenging

because agents bid separately in auctions for each item, but willingness-to-pay

depends nontrivially on which combination of items the agent ultimately wins. When

bids represent non-repudiable offers, submitting bids to separate auctions entails an

exposure problem. With complementarities, if an agent bids on a set of items based

on her willingness-to-pay for the set, she may pay more than her valuation for the

subset she actually wins. With substitutes, an agent bidding based on willingness-

to-pay for individual goods risks paying more for a set than it is worth. The SAA

mechanism makes it easy for agents to avoid exposure in the case of substitutes.

Since a price increase for one good cannot decrease demand for others, the agents

can manage their bids to ensure they are never winning more goods than they want at

the current prices. With any violation of substitutability, however, a bidder cannot

in general obtain a desired package without incurring some exposure risk.

The exposure problem motivates mechanisms that take complementarities di-

rectly into account, such as combinatorial auctions (Cramton, Shoham, & Steinberg,

2005; de Vries & Vohra, 2003), in which the auction mechanism determines optimal

packages based on agent bids over bundles. Although such mechanisms may provide

an effective solution in many cases, there are often significant barriers to their

application (MacKie-Mason & Wellman, 2005). Indeed, SAA-based auctions are
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often deliberately adopted, despite awareness of strategic complications (Milgrom,

2003; McAfee & McMillan, 1996).

A second strategic problem for bidders is accounting for own price effects : the

impact of their own bids on resulting prices. For example, a bidder winning q units

may find that bidding her incremental value for the q+1st unit results in an increase

in price paid for the first q units. The strategy of shading bids to take account of

this inframarginal surplus loss is known as demand reduction (Ausubel & Cramton,

2002; Weber, 1997).

Given exposure and own price effects, it is clear that bidding willingness-to-pay

is generally not optimal. Worse for designers, researchers, and bidders, auction

theory to date (Krishna, 2002) has little to say about how one should bid in

simultaneous markets with substitutes or complements. There exists no useful

analytical characterization of equilibria for SAA games. Moreover, the best-response

strategies to even simple specified bidding policies can be surprisingly complex

(Reeves et al., 2005). Simulation studies shed light on some strategic issues (Csirik,

Littman, Singh, & Stone, 2001), as have accounts of strategies employed in specific

auctions (Cramton, 1995; Weber, 1997), but the game is too complex to admit

definitive strategic recommendations. We cannot emphasize this point enough:

there is a striking gap in the literature, and the main motivation for the novel

empirical methods we employ is that analytically deriving equilibrium strategies

appears intractable for nontrivial SAA games.

We employ a different approach to analyze bidding strategies, which we elsewhere

describe as a computational reasoning (MacKie-Mason & Wellman, 2005) or

empirical game-theoretic methodology (Wellman, 2006) for analyzing mechanisms

and strategies. We begin with an explicit formulation of the resource allocation

problem, generate a set of candidate parametrized strategies, then simulate the game

for various profiles of strategy parameters. Through simulation, we in effect convert

an extensive-form game of incomplete information with high-dimensional strategy

space into a normal-form game over the restricted set of strategies defined by the

instances of strategy parameters explored. We then use standard tools to solve the

restricted-strategy (yet often still quite large) normal-form games, and analyze the

results. For the families of candidate strategies we study, we are able to characterize

those which participate in equilibria of the transformed game, and the quality of the

resulting outcomes.

One advantage of this fundamentally empirical method is that if others believe

they have superior strategies, it is straightforward to apply the method incrementally

to evaluate the new candidates with respect the best-performing strategies known

to date. This is important because the SAA environment is so complex, and in any
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SAA the specific rules may call for variations on the basic strategy family we study.

For example, some auctions impose activity rules, which introduces an eligibility

management problem into the design of bidding strategies. Budget constraints may

also affect the design of bidding strategies. We do not claim that our present analysis

covers the entire space of bidding-strategy design for SAAs. We do claim that we

provide some of the first systematic evidence for a successful family of strategies in

a generic SAA. We also claim that strategic lessons from this generic environment

will be a useful starting point for those designing strategies for the rules of particular

SAA environments they face.

We next proceed with a formal specification of the problem and of the generic

SAA mechanism we study.

1.2 The Simultaneous Ascending Auctions (SAA) Domain

The formal specification of the SAA game includes a number of agents, n, a

number of goods, m, a type distribution that yields valuation functions vj for the

agents j ∈ {1, . . . , n},1 and a specification of the SAA mechanism rules. In general

the SAA mechanism comprises m separate auctions, one for each good, that operate

over multiple rounds of bidding. In the generic SAA version we study, bidding is

synchronized so that in each round each agent submits a bid in every auction in

which it chooses to bid. At any given time, the bid price on good i is βi, defined to

be the highest bid bi received thus far, or zero if there have been no bids. The bid

price along with the current winner in every auction is announced at the beginning

of each new round. To be admissible, a new bid must meet the ask price, i.e., the bid

price plus a bid increment (which we take to be one w.l.o.g., allowing for scaling of

the agent values): bnew
i ≥ βi + 1. If an auction receives multiple admissible bids in a

given round, it admits the highest, breaking ties randomly. An auction is quiescent

when a round passes with no new admissible bids, i.e., the new bid prices βnew = β

which become the final prices p. When every auction is simultaneously quiescent

they all close, allocating their respective goods per the last admitted bids.

An agent’s current information state, B, comprises the current bid prices, β,

along with a bit vector indicating which goods the agent is currently winning. Let

B denote the set of possible current information states. A local bidding strategy is a

mapping B → b, where the bid vector b specifies a bid for each of the m auctions.

More generally, an agent’s bidding strategy maps the history of information states

to bids. For the present work, we limit consideration to local bidding strategies.

1We may include in the type distribution Nature’s type which determines the random tie-breaking
when agents place identical bids.
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This is a substantive limitation, ruling out, for example, methods that infer other

agents’ types from dynamic price patterns, or strategies that punish others’ behavior.

Nevertheless, the strategic issues we consider primary can be addressed at the level

of local bidding strategies, and thus we take the simplification achieved through

ignoring history to be worthwhile.2

Submitting an inadmissible bid (e.g., bi = 0) is equivalent to not bidding. An

agent’s payoff – also referred to as its surplus – is defined by the auction outcomes,

namely, the set of goods it wins, X, and the final prices, p:

σ(X, p) ≡ v(X)−
∑
i∈X

pi. (1.1)

In the next section we describe a broad characterization that encompasses many

SAA bidding strategies in the prior literature, as well as a new category of strategies

we propose subsequently. Then we describe two bidding methods from the prior

literature that are special cases of the general class. One of these extant methods is

itself a strategy family, with bidding behavior that varies dramatically depending on

the choice of a continuous parameter, so these prior strategies we analyze represent

substantial variation. In Section 1.4 we propose a new bidding approach, which

falls into the same broad characterization, but represents yet another substantial

variation on the range of strategies we evaluate. This new, price prediction-based

strategy family itself encompasses a wide range of methods for generating and using

price predictions, which we explore in subsequent sections.

Heuristic strategies are sometimes motivated by bounded rationality (Gigerenzer

& Selten, 2001), in which case the primary concern is behavioral realism. Our

appeal to heuristics is in the spirit of Rosenthal’s approach to defining games over

“rule-of-thumb” strategies (Rosenthal, 1993b, 1993a). Given the intractability of

exhaustive consideration of the full strategy space, we rely on heuristics to represent

key strategic ideas in our domain. Behavioral models may be one source of heuristic

elements, though explicit optimization procedures or other sophisticated reasoning

may be incorporated in our heuristics as well when they are motivated by potential

performance gains.

1.3 Perceived-Price Bidding Strategies

If an agent knew the final prices of all m goods and if those prices did not depend

on its own bidding strategy, then its optimal strategy would be clear: bid on a subset

2Assuming that agents submit bids for a subset of goods at the minimum increment, the number
of states in the strategy space is |B|2m. Conditioning on a history of length t would expand this
space by a factor of 2mt.
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of goods that maximizes its surplus at known prices. When prices are uncertain or

bid-dependent, this is not optimal, but may nevertheless serve as a useful starting

point. In this section, we define a class of bidding strategies that generalizes this

approach by selecting a subset of goods that maximizes surplus at perceived prices.

Definition 1.1 (Perceived-Price Bidder). A perceived-price bidder is parametrized

by a perceived-price function ρ : B → Zm
∗ which maps the agent’s information state,

B, to a (nonnegative, integer) perceived-price vector, ρ(B). It computes the subset

of goods

X∗ = arg max
X

σ(X, ρ(B))

breaking ties in favor of smaller subsets and lower-numbered goods.3 Then, given X∗,

the agent bids bi = βi +1 (the ask price) for the i ∈ X∗ that it is not already winning.

A perceived-price bidding strategy is defined by how the agent constructs the

perceived price from its information state. We now define two versions of the function

ρ, corresponding to perceived-price bidding strategies well-studied in prior literature.

In Section 1.4 we define the newer price-prediction perceived-price strategies we

analyze in this article. Our discussion focuses on the particularly challenging case of

superadditive preference – complementary goods. We return to address the case of

substitutable goods in Section 1.7.

1.3.1 Straightforward Bidding

One example of a perceived-price bidder is the widely studied straightforward

bidding (SB) strategy.4 An SB agent sets ρ(B) to myopically perceived prices : the

bid price for goods it was winning in the previous round and the ask price for the

others:

ρi(B) =

βi if winning good i

βi + 1 otherwise,
(1.2)

where β is the current bid prices.

Straightforward bidding is a reasonable strategy in some environments. When all

agents have single-unit demand, and value every good equally (i.e., the goods are all

3More precisely: when multiple subsets tie for the highest surplus, the agent chooses the
smallest. If the smallest subset is not unique it picks the subset whose bit-vector representation is
lexicographically greatest. (The bit-vector representation ω of X ⊆ {1, . . . ,m} has ωi = 1 if i ∈ X
and 0 otherwise. For example, the bit-vector representation of {1, 3} ⊆ {1, 2, 3} is 〈1, 0, 1〉.) This tie-
breaking scheme is somewhat arbitrary, and we expect alternative choices would be inconsequential.
We describe our version here in detail to facilitate replication of our experimental results.

4We adopt the terminology introduced by Milgrom (2000). The same concept is also referred to as
“myopic best response”, “myopically optimal”, and “myoptimal” (Kephart, Hanson, & Sairamesh,
1998).
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1:1 perfect substitutes), the situation is equivalent to a problem in which all buyers

have an inelastic demand for a single unit of a homogeneous commodity. For this

problem, Peters and Severinov (2006) show that straightforward bidding is a perfect

Bayes-Nash equilibrium.

If agents have additive utility, i.e., v(Y ) =
∑

i∈Y v({i}), then they can treat the

auctions as independent and in this case too, SB is in equilibrium. To see this,

consider the case that all other agents are playing SB with additive preference. Then

your bid in one auction does not affect your surplus in another. This implies the

auctions can be treated independently and SB is a best response.

The degenerate SAA with m = 1, i.e., a single ascending auction, is strategically

equivalent to a second-price sealed-bid auction (Vickrey, 1961). In other words, SB

is a weakly dominant strategy in a single ascending auction, similarly to “truth-

telling” in a second-price sealed-bid auction.5 For m > 1, however, the joint strategy

space allows threats such as “if you raise the price on my good I will raise it on

yours.” These will then support demand-reduction equilibria, even in the additive

case. Thus, although SB is a good strategy and is in equilibrium for some special-case

environments without complementarities, it is not (even weakly) dominant.

Up to a discretization error, the allocation in an SAA with single-unit demand is

efficient when agents follow straightforward bidding. It can also be shown (Bertsekas,

1992; Wellman, Walsh, Wurman, & MacKie-Mason, 2001) that the final prices will

differ from the minimum unique equilibrium prices by at most min(m, n) times

the bid increment. The value of the allocation, defined to be the sum of the

bidder surpluses, will differ from the optimal by at most the bid increment times

min(m, n)(1 + min(m, n)).

Unfortunately, none of these properties hold for general preferences. The final

SAA prices can differ from the minimum equilibrium price vector, and the allocation

value can differ from the optimal, by arbitrarily large amounts (Wellman et al., 2001).

And most importantly, SB need not be a Nash equilibrium.

Example 1.3.1. There are two agents, with values for two goods as shown in

Table 1.1. One admissible straightforward bidding path6 leads to a state in which

agent 2 is winning both goods at prices (15,14). Then, in the next round, agent 1

would bid 15 for good 2. The auction would end at this point, with agent 1 receiving

5Technically, this equivalence applies to a strategically restricted version of the ascending auction
which does not allow arbitrary bids above the ask price (and raises the ask price continuously rather
than discretely). Otherwise, there exist strategies (albeit pathological) to which SB is not a best
response. For example, suppose my policy is to not bid more than $100 unless the bidding starts
lower, in which case I will keep bidding indefinitely. The best response to such a strategy requires
jump bidding.

6The realized progression of the SAA protocol depends on tie-breaking.
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v({1}) v({2}) v({1, 2})
Agent 1 20 20 20
Agent 2 0 0 30

Table 1.1: A simple problem illustrating the pitfalls of SB (Example 1.3.1).

good 2 and agent 2 receiving good 1, both at a price of 15.

In this example, SB leads to a result with total allocation value 20, whereas

the optimal allocation would produce a value of 30. We can construct slightly

more complex examples by adding goods and agents, enabling us to magnify the

suboptimality to an arbitrary degree.

We see that straightforward bidding fails to guarantee high quality allocations.

It is also easy to show that straightforward bidding is not an equilibrium strategy

in general. Consider again Example 1.3.1. If agents follow the SB strategy, the

mechanism reaches quiescence at prices {15, 15}. However, it is not rational for

agent 2 to stop at this point. If, for example, agent 2 continued bidding, prices

would reach {21, 20} with agent 2 winning both goods, and the auction would end

(assuming agent 1 plays SB). Agent 2 would be better off, with a surplus of −11

rather than −15.

It is clear that SB is not a reasonable candidate for a general strategy in SAA. We

show next how a simple parametric generalization to SB can address a key strategic

shortfall.

1.3.2 Sunk-Aware Bidding

Another example of perceived-price bidding is the sunk-aware family of bidding

strategies. We showed in Example 1.3.1 that in some problems agents following a

straightforward bidding strategy may stop bidding prematurely. To motivate the

alternative sunk-aware approach, we consider why SB is failing in this situation. In

a given round, agents following SB bid on the set of goods that maximizes their

surplus at myopically perceived prices (current bid or ask prices). If none of the

nonempty subsets of goods appear to yield positive net surplus, the agent chooses

the empty set, i.e., it does not bid at all, because the alternative is to earn negative

surplus. However, this behavior ignores outstanding commitments: the agent may

already be winning one or more goods. If the agent drops out of the bidding, and

others do not bid away the goods the agent already is winning, then its alternative

surplus could be much worse than if it continued to bid despite preferring the empty

bundle at current prices. In the case of an agent dropping out of the bidding on some
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goods in a bundle of perfect complements, its surplus is negative the sum of the bid

prices for the goods in the bundle it gets stuck with. This failure of straightforward

bidding is due to ignoring the true opportunity cost of not bidding.

We refer to this property of straightforward bidding as “sunk-unawareness”

(Reeves et al., 2005). SB agents bid as if the incremental cost for goods they are

currently winning is the full price, βi. However, if the probability that someone

else will outbid the agent for this good is α, then the agent is already committed

to an expected payment of (1 − α)βi. This represents a sunk cost that should not

affect rational continuation bidding. We can think of the difference, αβi, as a rough

measure of the incremental cost the agent incurs by deciding to stay with this good.

To address this limitation of straightforward bidding, we parametrize an alterna-

tive family of perceived-price bidding strategies (Definition 1.1) that permits agents

to account to a greater or lesser extent for the true incremental cost of goods they are

currently winning. We call this strategy “sunk aware”. A sunk-aware agent bids as

if the incremental cost for goods it is currently winning is somewhere on the interval

of zero and the current bid price.

Our sunk-aware strategies generalize SB’s method for choosing the perceived-

price vector (1.2) through the parameter k ∈ [0, 1]:

ρi(B) =

kβi if winning good i

βi + 1 otherwise.

Using this perceived-price vector to define sunk-aware bidders, Definition 1.1 above

gives us a complete specification of the agent’s bidding strategy. If k = 1 the strategy

is identical to straightforward bidding. At k = 0 the agent is fully sunk aware, bidding

as if it would retain the goods it is currently winning with certainty. Intermediate

values are akin to bidding as if the agent puts an intermediate probability on the

likelihood of retaining the goods it is currently winning. We treat as a special case

agents with single-unit demand: their sunk-aware strategy is to bid straightforwardly

(k = 1) since for such agents SB is a no-regret strategy.

The sunk-awareness parameter provides a heuristic for a complex tradeoff: the

agent’s bidding behavior changes after it finds itself exposed to the underlying

problem (owning goods for which the agent has lower value if not part of a larger

package). In our previous study we experimentally determined good settings of the

sunk-awareness parameter in various environments (Reeves et al., 2005).
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1.4 Prediction-Based Perceived-Price Bidding

Straightforward and sunk-aware bidding represent alternative SAA bidding

strategies, distinguished by the way in which bidders formulate “perceived prices”

that determine the items on which they bid. In this section we propose yet another

class of bidding strategies: price prediction bidding. In this heuristic approach,

bidders form predictions of final prices in order to select the items on which they will

bid in a given round.

Whenever an agent has non-substitutes preference and chooses to bid on a bundle

of size greater than one, it may face exposure. Exposure in SAA is a direct tradeoff:

bidding on a needed good increases the prospects for completing a bundle, but also

increases the expected loss in case the full set of required goods cannot be acquired.

A decision-theoretic approach would account for these expected costs and benefits,

bidding when the benefits prevail, and cutting losses in the alternative.

Re-consider agent 2’s plight in Example 1.3.1: following SB it is caught by the

exposure problem, stuck with a useless good and a surplus of −15. (Other tie-

breaking choices result in different outcomes but all of them leave agent 2 exposed

and with negative surplus.) If the agent instead plays a fully sunk-aware strategy

the result could be an outcome in which it purchases both goods at prices {21, 20}
for a net surplus of 30 − 41 = −11. This is better than using SB, but the agent

would fare better still by not bidding at all.

The effectiveness of a particular strategy will in general be highly dependent

on the characteristics of other agents in the environment. This observation

motivates the use of price prediction. We would prefer strategies that employ type-

distribution beliefs to guide bidding behavior, rather than relying only on current

price information as in the sunk-aware strategies (including SB). Forming price

predictions for the goods in SAA is a natural use for type-distribution beliefs. In

Example 1.3.1, suppose agent 2 could predict with certainty before the auctions

start that the prices would total at least 30. Then it could conclude that bidding is

futile, not participate, and avoid the exposure problem altogether. Of course, agents

will not in general make perfect predictions. However, we find that even modestly

informed predictions can significantly improve performance.

We now propose to improve on SB and sunk-aware bidding by using explicit

price predictions for perceived prices. Let F ≡ F (B) denote a joint cumulative

distribution function over final prices, representing the agent’s belief given its current

information state B. We assume that prices are bounded above by a known constant,

V . Thus, F associates probabilities with price vectors in {1, . . . , V }m.

We next consider two ways to use prediction information to generate perceived
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prices. We first define a point prediction π, which anticipates possible exposure risks.

Then we define a distribution prediction F that explicitly models uncertainty about

the exposure prospects. The distribution prediction generates perceived incremental

prices, ∆, which account for the likelihood that the agent’s current winning bids

are sunk costs. As with sunk-awareness, price-prediction strategies for agents with

single-unit demand ignore the predictions and play SB.

Before we define our price-prediction strategies we want to make two points.

First, we are not (initially) concerned with how the agent formulates her beliefs

(price predictions), nor the optimality of the prediction method. Rather, we propose

strategies that use some beliefs. In our experiments we investigate several different

predictors.7 Second, since these are strategies for bidding in iterative auctions, we

face the question of how to update the initial price predictions based on information

revealed during the bidding process. We do not insist here on identifying the optimal

updating procedure; again, we define strategies that incorporate some belief updating

procedure. Whereas we experiment with different initial price predictors, in this

paper we employ only one specific, simple, updating procedure.

1.4.1 Point Price Prediction

Suppose the agent has (at least) point beliefs about the final prices that will be

realized for each good. Let π(B) be a vector of predicted final prices. Before the

auctions begin the price prediction is π(∅), where ∅ is the null information state

available pre-auctions.

The auctions in SAA reveal the bid prices each round. Since the auctions are

ascending, once the current bid price for good i reaches βi, there is zero probability

that the final price pi will be less than βi. We define a simple updating rule using this

fact: the current price prediction for good i is the maximum of the initial prediction

and the myopically perceived price:

πi(B) ≡

max(πi(∅), βi) if winning good i

max(πi(∅), βi + 1) otherwise.
(1.3)

Armed with these predictions, the agent plays the perceived-price bidding

strategy (Definition 1.1) with ρ(B) ≡ π(B). We denote a specific point price-

prediction strategy in this family by PP (πx), where x labels particular initial

prediction vectors, π(∅). Note that straightforward bidding is the special case

of price prediction with the predictions all equal to zero: SB = PP (0). If the

7We believe that finding the optimal predictor to use in a particular strategy is likely to be as
computationally infeasible as the problem of finding an optimal strategy.
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agent underestimates the final prices, it will behave identically to SB after the prices

exceed the prediction. If the agent overestimates the final prices, it may stop bidding

prematurely.

1.4.2 Distribution Price Prediction

We generalize the class of price-prediction strategies by taking into account the

entire distribution F , rather than just a nominal point estimate (e.g., the expectation

of F ). We assume the agent generates F (∅), an initial, pre-auction probabilistic

belief about the final prices.

As with the point predictor, we restrict the updating in our distribution predictor

to conditioning the distribution on the fact that prices are bounded below by β. Let

Pr(p | B) be the probability, according to F , that the final price vector will be p,

conditioned on the information revealed by the auction, B. Then, with Pr(p | ∅) as

the pre-auction initial prediction, we define:

Pr(p | B) ≡


Pr(p | ∅)∑

q≥β

Pr(q | ∅)
if p ≥ β

0 otherwise.

(1.4)

(By x ≥ y we mean xi ≥ yi for all i.) For (1.4) to be well defined for all possible β

we define the price upper bounds such that Pr(V, . . . , V | ∅) > 0.

We now use the distribution information to implement a further enhancement

to take sunk costs into account in a more decision-theoretic way than the sunk-

aware agent. If an agent is currently not winning a good and bids on it, then the

expected incremental cost of winning the good is the expected final price, with the

expectation calculated with respect to the distribution F . If the agent is currently

winning a good, however, then the expected incremental cost of winning that good

depends on the likelihood that the current bid price will be increased by another

agent, so that the first agent has to bid again to obtain the good. If, to the contrary,

it keeps the good at the current bid, the full price is sunk (already committed) and

thus should not affect incremental bidding. Based on this logic we define ∆i(B), the

expected incremental price for good i.

First, for simplicity, we use only the information contained in the vector of

marginal distributions, (F1, . . . , Fm), as if the final prices were independent across

goods. Define the expected final price conditional on the most recent vector of bid

prices, β:

EF (pi | β) =
V∑

qi=0

Pr(qi | βi)qi =
V∑

qi=βi

Pr(qi | βi)qi.

12



The expected incremental price depends on whether the agent is currently winning

good i. If not, then the lowest final price at which it could win is βi + 1, and the

expected incremental price is simply the expected price conditional on pi ≥ βi + 1,

∆L
i (B) ≡ EF (pi | pi ≥ βi + 1) =

V∑
qi=βi+1

Pr(qi | pi ≥ βi + 1)qi. (1.5)

If the agent is winning good i, then the incremental price is zero if no one outbids

the agent. With probability 1− Pr(βi | βi) the final price is higher than the current

price, and the agent is outbid with a new bid price βi + 1. Then, to obtain the good

to complete a bundle, the agent will need to bid at least βi + 2, and the expected

incremental price is

∆W
i (B) = (1− Pr(βi | βi))

V∑
qi=βi+2

Pr(qi | βi + 2)qi.

The vector of expected incremental prices is then defined by

∆i(B) =

∆W
i (B) if winning good i

∆L
i (B) otherwise.

The agent then plays the perceived-price bidding strategy (Definition 1.1) with

ρ(B) ≡ ∆(B). We denote the strategy of bidding based on a particular distribution

prediction by PP (F x), where x labels various pre-auction distribution predictions,

F (∅).

To recapitulate, in this and the previous section we have formally specified three

categories of bidding strategies, encompassed within a single broad but flexible class

we call “perceived price” bidding. The first two, straightforward and sunk-aware

bidding, have been explored in prior literature; the third, price-prediction bidding,

is new. Both sunk-aware and price-prediction are families that admit a wide range

of specific strategies, and thus represent a variety of actual bidding behaviors.8 For

the generic SAA we study, when bidders have non-substitute preferences but face

exposure (but not other problems such as budget constraints), we think this broad

set of strategy candidates captures most of the existing wisdom about SAA strategy

design.

In Section 1.6 we intensively analyze and compare the performance of this

broad set of bidding strategies in a series of SAA environments with non-substitute

preferences. After that (Section 1.7) we specify yet another family of strategies,

based on prior literature, and perform a strategic analysis over this enlarged set for

environments with substitute goods.

8In the next section we define a variety of different price prediction methods, each leading to
different bidding behavior.
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1.5 Some Methods for Predicting Prices in SAA

In Section 1.4 we define bidding strategies based on point price and distribution-

based predictions. These are classes of strategies parametrized by the choice of initial

prediction: a vector of predicted final prices in the case of the point predictor, or

a distribution of final prices for the distribution predictor. We now present several

ways to obtain an initial prediction. Each different prediction method generates a

different bidding strategy, with potentially different bidding behavior. Furthermore,

these methods all take as input the problem’s type distribution, and so (unlike a

particular sunk-awareness setting, for example) are potentially appropriate to apply

across different environments.

1.5.1 Predictions from Simulated Data

One natural method for generating an initial prediction is to fix a particular

strategy profile, and simulate the play of this profile for a large number of games by

sampling agent valuations from the underlying type distribution. From this set of

simulated games, we can observe the resulting prices, and use these as a basis for

prediction. For a point price prediction, we simply compute the average final prices

over the simulation experience, and for a distribution-based prediction we compute

final price histograms. This yields a large family of prediction-based strategies, each

member distinguished by its form of predictor (point vs. distribution), and by the

strategy profile employed in simulation to generate the price data.

As a noteworthy special case of the above, our baseline prediction is the

distribution of final prices resulting when all agents follow the SB strategy. We

denote the baseline point predictor PP (πSB) and the baseline distribution predictor

PP (F SB).

As noted above, these prediction strategies, and others presented below, take

the type distribution as input to the simulation process. Thus, in order to use

this method in practice, agents (who know only their own valuation function) need

to employ probabilistic beliefs over the valuation functions for other agents. The

advantage of this approach is that the methods themselves can be applied to a

range of environments by modifying this type-distribution input, without any further

parameter tuning required.

1.5.2 Walrasian Equilibrium for Point and Distribution Prediction

An alternative, competitive-analysis approach is to use as predictions the prices

that would obtain if the market were to reach a Walrasian price equilibrium with

respect to the m goods and agent valuation functions over those goods. In another
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complex bidding setting, we have found that predictions based on competitive equi-

librium can be surprisingly effective, achieving accuracy comparable to sophisticated

machine learning approaches (Wellman, Reeves, Lochner, & Vorobeychik, 2004).

We emphasize that our appeal to competitive equilibrium in this context is purely

heuristic; we are not assuming as analysts that the equilibrium is realized, but

rather employing the well-defined equilibrium concept as a means to generate price

predictions for use in bidding.

One immediate complication that underscores the distinction is that Walrasian

prices need not actually exist in our setting. Consider once again the m = n = 2

configuration of Example 1.3.1 (Table 1.1). Versions of this example, in which one

agent views the goods as complements and the other as substitutes, are commonly

employed to illustrate the absence of a competitive equilibrium (Cramton, 2005;

McAfee & McMillan, 1996). There exist no prices for goods 1 and 2 such that

both agents optimize their demands at the specified prices and the markets clear.

General conditions for existence of price equilibria given discrete goods are provided

by Bikhchandani and Mamer (1997).

To deal with this problem, we specify the Walrasian prediction strategy oper-

ationally, just as we do the simulation-based predictors presented in Section 1.5.1.

That is, we define the “equilibrium” prices to be those produced after a specified

number of iterations of some designated price-adjustment protocol, applied to the

environment corresponding to the given SAA game. Although this construction does

not guarantee the prices employed are actually in equilibrium (indeed, such guarantee

is not possible), it does ensure that the prediction strategy is well-defined.

Another complication is that the standard definition of Walrasian equilibria

presumes deterministic demand functions, whereas in our setting we are faced

with probability distributions over agent valuations. We can generalize the price-

equilibrium calculation in two ways to allow for probabilistic knowledge of the

aggregate demand function. The first is to find the expected price equilibrium (EPE):

the expectation (over the type distribution) of the Walrasian price-equilibrium vector.

The most straightforward way to estimate this is Monte Carlo simulation, sampling

from the type distribution. A particular sampled type determines the demand

function x, which we can then employ in a tâtonnement protocol. Let pt denote

the price vector at iteration t, and αt an adjustment parameter that decays with

t. The standard tâtonnement procedure (Arrow & Hahn, 1971) applied to the SAA

setting (one unit of each good available) iteratively revises the price vector according

to the following difference equation:

pt+1 = pt + αt[x(pt)− 1]. (1.6)
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Repeated sampling of types and application of (1.6) yields a crude Monte Carlo

estimate of the expected price equilibrium.

An alternative (which may sometimes be preferred for computational reasons) to

estimating a price equilibrium in the face of probabilistic demand is the expected-

demand price equilibrium (EDPE): the Walrasian price equilibrium with respect to

expected aggregate demand. In other words, we calculate or estimate the expected

demand function and then apply tâtonnement once to find an equilibrium as if

realized demand were in fact equal to expected demand. We calculate expected

demand analytically when possible (Cheng, Leung, Lochner, O’Malley, Reeves, &

Wellman, 2005); otherwise, we can estimate it by Monte Carlo simulation, again

sampling from the type distribution.

Either of these generalized Walrasian price-equilibrium methods can be applied

to generate point predictions. We denote the expected price-equilibrium point pre-

dictor by PP (πEPE) and the expected-demand price-equilibrium point predictor by

PP (πEDPE). The method of expected price equilibrium can also be straightforwardly

generalized – by tracking the empirical distribution of price equilibria instead of just

average prices – to the case of distribution predictor, yielding PP (FEPE).9

1.5.3 Self-Confirming Price Predictions

Our final class of prediction methods combines the spirit of simulation-based

and equilibrium-based approaches. The basic idea is to estimate prices under

the assumption that agents will follow prediction strategies with accurate price

predictions. We refer to these as self-confirming predictions. We begin with the

simpler case of point predictions.

Definition 1.2 (Self-Confirming Point Price Prediction). Let Γ be an instance of

an SAA game. The prediction π is a self-confirming prediction for Γ iff π is equal

to the expectation (over the type distribution) of the final prices when all agents play

PP (π).

In other words, if all agents use a point price-prediction strategy, then the self-

confirming predictions are those that on average are correct at the end of the

auction.10 We denote the self-confirming prediction vector by πSC and the self-

9Unlike the EPE method, which produces a price vector for each sample from the type
distribution, the EDPE-method price data is always a single price vector, because tâtonnement
is applied only once at the last step. Therefore, we did not construct distribution price-prediction
strategies based on the latter.

10As described above, our price-prediction strategies perform simple updating based on price-
quote information as the auction proceeds. Our self-confirmation notion, however, applies only to
initial predictions and final prices – we do not insist that the intermediate updated predictions are
also confirmed.
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confirming point prediction strategy by PP (πSC).

The key feature of self-confirming predictions is that agents make decisions based

on predictions that turn out to be correct with respect to the type distribution

and the assumption that all agents play this particular prediction strategy.11 Since

agents are employing these predictions strategically, we might reasonably expect the

strategy to perform well in an environment where its predictions are confirmed.

We next define the concept of a self-confirming distribution of final prices in SAA.

Definition 1.3 (Self-Confirming Price Distribution). Let Γ be an instance of an

SAA game. The prediction F is a self-confirming price distribution for Γ iff F is the

distribution of prices resulting when all agents play bidding strategy PP (F ).

The actual joint distribution will in general have dependencies across prices for

different goods. We are also interested in the situation in which if the agents play

a strategy based just on marginal distributions, that resulting distribution has the

same marginals, despite dependencies.

Definition 1.4 (Self-Confirming Marginal Distribution). Let Γ be an instance of an

SAA game. The prediction F = (F1, . . . , Fm) is a vector of self-confirming marginal

price distributions for Γ iff for all i, Fi is the marginal distribution of prices for good

i resulting when all agents play bidding strategy PP (F ) in Γ.

Existence of Self-Confirming Predictions

We demonstrate in Section 1.5.3 that we can often find approximately self-

confirming point and distribution predictions. However, we first observe that they

do not always exist, for the same reason that Walrasian prices may not exist.

Proposition 1.5. There exist SAA games for which no self-confirming point price

prediction exists, nor do any self-confirming or marginally self-confirming price

distributions.

Proof. Define an SAA game corresponding to the configuration of Table 1.1.

Recall the argument in Section 1.5.2 that there are no Walrasian prices for this

example. Given a deterministic SAA mechanism (one without asynchrony or

random tie-breaking), for fixed value functions the outcome from playing any profile

of deterministic trading strategies is a constant. Thus, the only possible self-

confirming distributions (which were defined for agents playing the deterministic

PP (F ) strategies) must assign probability one to the actual resulting prices. But

11An equilibrium with this feature is sometimes called a “fulfilled expectations equilibrium”
(Novshek & Sonnenschein, 1982).
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given such a prediction, our trading strategy will pursue the agent’s best bundle at

those prices, and must actually get it since the prices are correct if the distribution

is indeed self-confirming. But then the markets would all clear, contrary to the fact

that the predicted prices cannot constitute an equilibrium, since such prices do not

exist in this instance. �

Despite this negative finding, we conjecture that price distributions that are

self-confirming to a reasonable degree of approximation exist for a large class of

nondegenerate preference distributions, and can be computed given a specification

of the preference distribution. For instance, in Example 1.5.1 below we demonstrate

that if the preference distribution is such that any particular preference profile is a

different variation of Example 1.3.1 rather than a fixed configuration, approximate

self-confirming point price predictions may exist even though Walrasian prices do not

exist in any game instance. We also show in Section 1.5.3 that approximate marginal

self-confirming price distributions may also exist in games with such preferences. We

now present a procedure for deriving self-confirming distributions, and some evidence

for its effectiveness.

Deriving Self-Confirming Price Predictions

To find approximate self-confirming point predictions, we follow a simple iterative

procedure. First, we initialize the predicting agents with some prediction vector (e.g.,

all zero) and simulate many game instances with the all-predict profile. When average

prices obtained by these agents are determined, we replace the initial prediction

vector with the average prices and repeat. When this process reaches a fixed point,

we have the self-confirming prediction, πSC.

Example 1.5.1. There are n ≥ 2 agents and m ≥ 2 goods. Agent 1 has single-unit

demand, and the value of each good is v1 > 0. The rest of the agents each need all

the goods in order to obtain any value. For i 6= 1, agent i’s value for the m-good set

is vi, such that

v1 < vi < mv1. (1.7)

Let v1, . . . , vi, . . . be chosen probabilistically from a given type distribution satisfying

condition (1.7).

The values in Table 1.1 are an example of preferences satisfying condition (1.7).

As for that example, no Walrasian equilibrium prices exist for any combination of v1

and vi consistent with the condition. However, because self-confirming predictions

are expectations over the type distribution, non-existence of equilibrium prices for

specific preferences does not imply non-existence of self-confirming prices with respect
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to the ex ante distribution. In Figure 1.1 we show the convergence to a self-confirming

price-prediction vector for Example 1.5.1, for a particular distribution and various

numbers of agents and goods. In three out of four such SAA games we analyzed, the

prices converged within 10 iterations. In the game with two agents and five goods

(Panel (c)), there is some persistent oscillation, but the prices stay within 0.5% of

the upper bound on a single good value V .

In cases of price oscillation, we found that by resetting the vector of predicted

prices to equal the averages around which the prices are fluctuating, the process

often immediately converges to a more precise fixed point. We used this method to

construct πSC for the SAA game presented in Section 1.6.2.

A similar approach can be applied to derive distribution predictions. Starting

from an arbitrary prediction F 0, we run many SAA game instances (sampling from

the given preference distributions) with all agents playing strategy PP (F 0).12 We

record the resulting prices from each instance, and designate the sample distribution

observed by F 1.13 We repeat the process using the new distribution F t for iteration

t + 1 for some further series of iterations. If it ever reaches an approximate fixed

point, with F t ≈ F t+1 for some t, then we have statistically identified an approximate

self-confirming price distribution for this environment.

We employ the Kolmogorov-Smirnov (KS) statistic as one reasonable measure of

similarity of probability distributions, defined as the maximal distance between any

two corresponding points in the CDFs:

KS (F, F ′) = max
x
|F (x)− F ′(x)|.

For self-confirming marginal distributions, we take the maximum of the KS distances

measured separately for each good: KSmarg = maxi KS (Fi, F
′
i ).

Specifying our procedure requires (i) a number of samples per iteration, (ii) a

threshold on KS or KSmarg on which to halt the iterations and return a result,

(iii) a maximum number of iterations in case the threshold is not met, and (iv) a

smoothing parameter designating a number of iterations to average over when the

procedure reaches the maximum iterations without meeting the threshold. The

bound on the number of iterations ensures the procedure terminates and returns

a price distribution, which may or may not be self-confirming. When this occurs,

the smoothing parameter avoids returning a distribution that is known to cause

oscillation. We do not, of course, expect the bidding strategy to perform as well

12In most of our experiments, the initial prediction is uniformly distributed prices between 0 and
the upper bound, V , on the value of a single good, but our results do not appear sensitive to this.

13In order to ensure that conditioning on information state during bidding is always well defined,
we modify the observed distribution to add uniform infinitesimal probability for all price vectors
greater than those observed in samples.
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Figure 1.1: Convergence of iterative estimation of self-confirming price-prediction
vectors in environments in which no Walrasian equilibrium prices exist.
The scenarios are instances of Example 1.5.1, with v1 ∼ U [3, V − 1],
V = 50, and each vi ∼ U [v1+1, min(m(v1−1), V )]. The initial prediction
is that all prices would be zero, with prices at subsequent iterations
determined by a million simulated games at the previous predicted price.
The graph plots the distance between the price vectors in consecutive
iterations. We define vector distance as the maximum over pointwise
distances, measured as a percentage of the upper bound, V , on the value
of a single good.
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when we cannot find a convergent self-confirming distribution and the underlying

oscillations are large.

For our empirical analyses, we specify an SAA game based on a scheduling

problem in which there are m units (called time slots) of a single schedulable resource,

indexed 1, . . . ,m. Each of n agents has a single job that can be accomplished using

the resource. Agent j’s job requires λj time slots to complete, and by accomplishing

this job it obtains some value depending on the time it completes. Specifically,

if j acquires λj time slots by deadline t, it accrues value vj(t). Deadline values are

nonincreasing: t < t′ implies vj(t) ≥ vj(t
′).

To illustrate, we consider such a scheduling problem with five agents competing

for five time slots. We draw job lengths randomly from U [1, 5]. We choose deadline

values randomly from U [1, 50] then prune to impose monotonicity (Reeves et al.,

2005). The initial prediction is the baseline distribution prediction F SB. The

initial prediction is the baseline distribution prediction F SB. We set the algorithm

parameters at one million games per iteration, and a 0.01-KSmarg convergence

criterion. The predicted and empirical distributions quickly converge, with a KSmarg

distance of 0.007 after only six iterations.

To see if our method produces useful results with some regularity, we applied it to

26 additional instances of the scheduling problem, varying the numbers of agents and

goods, and the preference distributions. The initial prediction in all 26 additional

instances is that all prices are uniformly distributed. We again drew deadline values

from U [1, 50] and pruned them for monotonicity. We used two probability models

for job lengths in the first 21 instances. In the uniform model, they are drawn

from U [1, m]. In the exponential model job length λ has probability 2−λ, for λ =

1, . . . ,m− 1, and probability 2−(m−1) when λ = m.

We constructed 10 instances of the uniform model, comprising various combina-

tion of 3 ≤ n ≤ 9 and 3 ≤ m ≤ 7. In each case, our procedure found self-confirming

marginal price distributions (KSmarg threshold 0.01) within 11 iterations. Similarly,

for 11 instances of the exponential model, with the number of agents and goods

varying over the same range, we found SC distributions within 7 iterations. We plot

the distribution of KSmarg values from these 21 instances in Figure 1.2.

The 22nd instance was designed to be more challenging: we used the n = m = 2

example with fixed preferences described in Table 1.1. Since there exists no SC

distribution, our algorithm did not find one, and as expected, after a small number

of iterations it began to oscillate among a few states indefinitely. After reaching the

limit of 100 iterations, our algorithm returned as its smoothed prediction distribution

the average over the last 10.

Finally, we also tested the procedure on the four cases of Example 1.5.1, employed
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Figure 1.2: Convergence of iterative estimation of self-confirming marginal price
distributions. The initial prediction is that all prices are uniformly
distributed. The prices at each iteration are determined by a million
simulated games. The graph plots the maximum, mean, and median
KSmarg from 21 instances of the scheduling problem with uniform and
exponential preference models.

above (see Figure 1.1) to evaluate search for self-confirming point predictions. Recall

that in these environments, no Walrasian equilibrium prices exist in any instance of

the preference distribution. For the cases with the number of goods m = 5 (both

n = 2 and n = 5), price distributions immediately converged to a self-confirming

distribution with the price of the first good equal to one with probability one and

the rest of the prices equal to zero. To see that this is self-confirming, note that the

agents who need all m goods will calculate their incremental cost by conditioning on

the price being positive (see Equation (1.5)). The posterior probability is uniform

over all prices (since the condition is greater than any observed prices), which deters

all such agents from bidding at all. This is the correct decision from their perspective,

as they could not profitably obtain all the goods in the presence of an agent who

needs only one and obtains a greater per-good value. For the cases with m = 2, in

contrast, the uniform belief is not always sufficient to keep these agents from bidding

initially, and so the prediction of p1 = 1 and p2 = 0 is not self-confirming. For these

examples, we found that the KSmarg value during iterative search oscillates in a range

of up to 30% of V .

Though we do not expect self-confirming predictors to always provide excellent

predictions (they are, after all, heuristics), these examples indicate that even in a

variety of challenging environments (in which Walrasian price equilibria do not exist)

they often provide reasonable predictions. Of course, the real test of their value as

a method for use in bidding comes from their performance against other bidding
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strategies. We now turn to the computational evaluation of over 50 strategies in

various SAA games.

1.6 Empirical Game Analysis: Complementary Preferences

We now analyze the performance of self-confirming price distribution predictors

in a variety of SAA games, against a variety of other strategies. We use Monte Carlo

simulation to estimate the payoff function for an empirical game, which maps profiles

of agent strategies to expected payoffs for each agent. This approach converts a game

in extensive form to normal form in the expected payoffs. We then analyze equilibria

in these normal forms. Our methods extend the approach developed in our prior work

(MacKie-Mason et al., 2004; Reeves et al., 2005; Wellman, 2006), and build on ideas

from other recent studies in a similar empirical vein (Armantier, Florens, & Richard,

2000; Kephart et al., 1998; Walsh, Das, Tesauro, & Kephart, 2002). We emphasize

here that all of the analysis below applies directly to the estimated empirical game.

These correspond to statistical claims about the actual restricted-strategy game, and

lead to arguments generalizing the observations to related games.

1.6.1 Environments and Strategy Space

We studied SAAs applied to market-based scheduling problems, as described

in Section 1.5.3. Particular environments are defined by specifying the number m

of goods, the number n of agents, and a preference model comprising probability

distributions over job lengths and deadline values. The bulk of our computational

effort went into an extensive analysis of one particular environment: the m = n = 5

uniform model presented above. As described in Section 1.6.2, the empirical game

for this setting provides much evidence supporting the unique strategic stability of

PP (F SC). We complement this most detailed trial with smaller empirical games for

a range of other scheduling-based SAA environments. Altogether, we have studied

selected environments with uniform, exponential, and fixed distributions for job

lengths; a modified uniform distribution for deadline values; and agents in 3 ≤ n ≤ 8;

goods in 3 ≤ m ≤ 7.

To varying degrees, we have analyzed the interacting performance of 53 different

strategies. These were drawn from four strategy families described above: SB, 20

sunk-aware agents with varying sunk-awareness parameters k, 13 point predictors,

and 19 distribution predictors based on various prediction methods. The price

prediction methods include variations of Walrasian equilibrium prediction (nine

point and one distribution predictor), historical-data predictions (two point and one

distribution), self-confirming predictions (one point and one distribution), and other
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Figure 1.3: Normal-form payoffs for a 5-player game with 2 strategies. The arrows
indicate best responses. All-PP is the unique Nash equilibrium.

methods.14

The choice of strategies was based on prior experience. We believe that the

set includes the best strategy candidates from the prior literature, though we make

no claim to have covered all reasonable variations. Naturally, our emphasis is on

evaluating the performance of PP (F SC) in combination with the other strategies.

Given n agents and S possible strategies, the corresponding symmetric normal-

form game comprises
(

n+S−1
n

)
distinct strategy profiles. The game size thus grows

exponentially in n and S; for the n = 5, S = 53 game we estimate below, there are

over four million different strategy profiles to evaluate. We first illustrate the process

for a simpler game, with five agents, each choosing between SB or the baseline point

price-prediction strategy PP (πSB) (abbreviated PP). There are six possible profiles

which can be described as profiles with j agents playing PP (and the rest SB) for

j = 0, . . . , 5. We simulate a large number of games for each profile and average the

payoffs for a player of each type (PP, SB). We present the resulting empirical game

in Figure 1.3. For this simple game, we can solve the normal form for a unique

pure-strategy Nash equilibrium by inspection, illustrated by the arrows. If all five

players choose SB, any one can get a higher expected payoff by deviating to PP. If

only one plays PP, a second can beneficially deviate to PP. Likewise for each profile

except all playing PP, from which none can gain by deviating to SB, establishing a

unique Nash equilibrium.

14Space considerations preclude a full description of the 53 strategies here. An appendix with
specification of all parameters, including complete description of all the prediction methods used
for point and distribution predictors, is available at http://hdl.handle.net/2027.42/57741.
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1.6.2 5× 5 Uniform Environment

By far the largest empirical SAA game we have constructed is for the SAA

scheduling environment discussed in Section 1.5.3, with five agents, five goods, and

uniform distributions over job lengths and deadline values. We estimate payoffs

empirically for each profile by running millions of simulations of the auction protocol,

so estimating the entire payoff function for over 4.2 million strategy profiles is

infeasible. However, we can estimate the payoff matrix for subsets of all profiles,

and as we describe below, with well-chosen subsets we can reach useful conclusions

about equilibria in the 53-strategy game.

Our results are based on estimated payoffs for 4457 strategy profiles, calculated

from an average of 7 million samples per profile (with some profiles simulated for

as few as 200 thousand games, and some for as many as 200 million, depending

on sampling variances). Despite the sparseness of the estimated payoff function

(covering only 0.1% of possible profiles), we have been able to obtain several results.

First, as discussed above, we conjectured that the self-confirming distribution-

prediction strategy, PP (F SC), would perform well. We have directly verified this:

the profile where all five agents play a pure PP (F SC) strategy is a Nash equilibrium

of the empirical game. That is, we verified that no unilateral deviation to any of the

other 52 pure strategies is profitable. Note that in order to verify a pure-strategy

symmetric equilibrium (all agents playing a strategy s) for n players and S strategies,

one needs only S profiles: one for each strategy playing against n − 1 copies of s.

Similarly, to refute the possibility of a particular profile being in Nash equilibrium,

we need to find only one profitable deviation profile (i.e., obtained by changing the

strategy of one player to earn a higher payoff given the others’ strategies).

The fact that PP (F SC) is pure symmetric Nash for this game does not of course

rule out the existence of other Nash equilibria. Indeed, without evaluating any

particular profile, we cannot eliminate the possibility that it represents a (non-

symmetric) pure-strategy equilibrium itself. However, the profiles we did estimate

provide significant additional evidence, including the elimination of broad classes of

potential symmetric mixed equilibria.

Let us define a strategy clique as a set of strategies for which we have estimated

payoffs for all combinations.15 Each clique defines a subgame, for which we have

complete payoff information. Within our 4457 profiles we have eight maximal cliques

that include strategy PP (F SC). For each of these subgames, PP (F SC) is the only

strategy that survives iterated elimination of (strictly) dominated strategies. It

follows that PP (F SC) is the unique (pure- or mixed-strategy) Nash equilibrium in

15Thus we have a 2-strategy clique if we have estimated all six profiles that five agents can form
from these two strategies.

25



each of these clique games. We can further conclude that in the full 53-strategy game

there are no equilibria with support contained within any of the cliques, other than

the special case of the pure-strategy PP (F SC) equilibrium.

Analysis of the available two-strategy cliques (not generally maximal) provides

further evidence about potential alternative equilibria. Of the
(
52
2

)
= 1326 pairs of

strategies not including PP (F SC), we have all profile combinations for 49. Based on

profiles estimated, we have determined that for any symmetric profile defined by a

mixture of one of these pairs, an agent can improve its payoff by a minimum of 0.32

through deviating to some other pure strategy. For reference, the average payoff for

the all-PP (F SC) profile is 4.51, so this represents a nontrivial difference.

That is, none of the two-strategy mixtures for which we have data comes very

close to equilibrium, further strengthening our confidence in PP (F SC).

Finally, for each of the 4457 evaluated profiles, we can derive a bound on the

ε rendering the profile itself an ε-Nash pure-strategy equilibrium. The three most

strategically stable profiles by this measure are:

1. all PP (F SC): ε = 0 (confirmed Nash equilibrium of the empirical game);

2. one PP (F SB), four PP (F SC): ε > 0.13;

3. two PP (F SB), three PP (F SC): ε > 0.19.

All the remaining profiles have ε > 0.25 based on confirmed deviations.

Our conclusion from these observations is that PP (F SC) is a highly stable

strategy within this strategic environment, and likely uniquely so. Of course, only

limited inference can be drawn from even an extensive analysis of only one particular

distribution of preferences, so we now consider other environments.

1.6.3 Self-Confirming Prediction in Other Environments

To test whether the strong performance of PP (F SC) generalizes across other

SAA games, we undertook smaller versions of this analysis on variations of the

model above. We explored 17 additional instances of the market-based scheduling

problem: eight with the uniform (U), eight with the exponential (E) preference

models (3–8 agents, 3–7 goods), and one with fixed preferences, corresponding to

the counterexample model of Table 1.1. For each we derived self-confirming price

distributions (failing in the last case, of course), as reported in Section 1.5.3. We

also derived price vectors and distributions for the other prediction-based strategies.

We ran between two and ten million games per profile in all of these environments.

For the non-symmetric game with fixed preferences, we evaluated all 53 profiles

with at least one agent playing PP (F SC).
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For eleven of the symmetric games (eight U and three E models), we started by

evaluating 27 profiles: one with all PP (F SC), and for each of 26 other strategies

s, one profile with n − 1 PP (F SC) and one s. In eight of these games, PP (F SC)

and PP (F SB) were among top three unilateral deviations from PP (F SC) in the

all-PP (F SC) profile. For each of the eleven games, we identified five (additional)

top-ranking deviations from PP (F SC) and evaluated complete 7-cliques involving

these five strategies, PP (F SC) and PP (F SB) in the respective environments (at

least 340,000 samples per profile).

For the five additional E models, we evaluated all profiles over seven selected

strategies.16

Our results for U and E models are summarized in Table 1.2. For each case,

we report the ε that, for the estimated payoff matrix, renders all-PP (F SC) an ε-

Nash equilibrium. The next two columns report sensitivity information about this

figure, given its basis in payoffs estimated from samples. First, since our payoff

matrix is estimated (and thus each payoff has a sampling variance), we calculate the

expected value ε̄ of ε with respect to the empirical distributions of the estimated

payoffs (assuming that the errors in our payoff estimates are independent, and using

the sample variances as population variances). Thus, for example, the environment

E(3, 5) has a pure Nash equilibrium of all-PP (F SC) for the estimated payoff matrix,

but taking into account sampling variation, on average that profile has an ε of 0.005.

Under the same independence assumption, “Pr(ε = 0)” represents the probability

that all-PP (F SC) is actually an equilibrium. Finally, for each empirical game with

n ≤ 6 we also obtained a symmetric mixed-strategy Nash equilibrium using replicator

dynamics.17 The rightmost column reports the probability of playing PP (F SC) in

the resulting mixture, to evaluate its significance when it does not constitute a pure-

strategy equilibrium.

In 14 out of these 16 environments, PP (F SC) was verified to be an ε-Nash

equilibrium for ε < 0.1. Twelve have ε < 0.05, and in six of these (one U and

five E) it was an exact equilibrium. The two worst environments were U(5, 3) and

U(7, 8). In the last case, expected payoff for all-PP (F SC) was 2.67, so ε represents

16For these models we did not incur the additional computational cost of evaluating all 27 profiles
to select best deviations from PP (FSC), which is a somewhat arbitrary procedure for selecting
strategies for a clique in any case. Rather, we selected the seven candidate strategies based on
regularities in the results from the other eleven games described above.

17 By replicator dynamics we mean an iterative (evolutionary) algorithm for finding symmetric
mixed-strategy equilibria in symmetric games. Our implementation is based on the replicator
dynamics formalism introduced by Taylor and Jonker (1978) and Schuster and Sigmund (1983)
and is described in detail in our earlier work (Reeves et al., 2005). Though the method is not
guaranteed to generate all Nash equilibria, we have found it particularly useful for finding sample
Nash equilibria.
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Env(m, n) ε-gain ε̄-gain Pr(ε = 0): Probability
from adjusted for Probability of of play in

one-player sampling exact Nash rep. dyn.
deviation error equilibrium solution

E(3, 3) 0 0 1.00 1.00
E(3, 5) 0 .005 .600 .996
E(3, 8) .031 .032 0 —
E(5, 3) 0 0 1.00 .999
E(5, 5) 0 .001 .900 .998
E(5, 8) .029 .031 0 —
E(7, 3) 0 .007 .667 .992
E(7, 6) .003 .007 .567 .549
U(3, 3) .097 .099 0 .725
U(3, 5) 0 0 1.00 1.00
U(3, 8) .017 .016 0 —
U(5, 3) .103 .103 0 .809
U(5, 8) .047 .048 0 —
U(7, 3) .058 .060 0 .942
U(7, 6) .018 .018 0 .929
U(7, 8) .133 .132 0 —

Table 1.2: Evaluations of all-PP (F SC) profile for U and E models.
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about 5% of the value. For no other case did it reach 2%. Moreover, the results are

quite insensitive to statistical variation. The ε̄ values never exceed ε by much, and in

every environment for which we produced an equilibrium with replicator dynamics,

PP (F SC) appears in this symmetric mixed-strategy profile with substantial if not

overwhelming probability.

Overall, we regard this as favorable evidence for the PP (F SC) strategy across the

range of market-based scheduling environments. Not surprisingly, the environment

with fixed preferences is an entirely different story. Recall that in this case the

iterative procedure failed to find a self-confirming price distribution. The distribution

it settled on was quite inaccurate, and the trading strategy based on this performed

poorly – generally obtaining negative payoffs regardless of other strategies. Since

one of the available strategies simply does not trade, PP (F SC) is clearly not a best-

response player in this environment.

1.7 Strategies for Environments with Substitutes

In the previous sections we focused on the exposure problem when there are

complementarities in preferences. We found that strategies based on price prediction

can be quite effective in mitigating the problem. In this section we extend our analysis

of bidding strategies to the case of substitutable goods. The strategic challenge in

this environment is bidding when there are significant own price effects: bidding

below willingness-to-pay for the marginal unit may lower the price sufficiently on

inframarginal units to be a profitable strategy (Ausubel & Cramton, 2002). We

now expand the space of bidding strategies we evaluate to include simple demand-

reduction strategies as well as a sophisticated approach to predicting own price

effects inspired by the success of self-confirming price prediction for environments

with complementarities. In the environment with substitutes we study, we find that

the simple demand-reduction strategies clearly outperform this price predictor.

To analyze bidding strategies in an SAA game with substitutes, we assume that

each auction sells one unit of a homogeneous indivisible good, and the bidders’

marginal value for units of this good is weakly decreasing. We implemented such

preferences by randomly drawing marginal values vk for the kth good from U [0, vk−1],

with v0 = V a uniform upper bound on the marginal value of one unit.

In homogeneous-good environments bidders derive the same value from any

bundle of q goods regardless of their labels. The definitions of strategies in this

section rely on this assumption, though it would not be difficult to generalize their

approaches to apply to environments with a more general type of substitutability.

The assumption of homogeneous goods is convenient for computational implementa-
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tion and analysis, however, we believe that it is not essential to our main results.

1.7.1 Demand-Reduction Strategy

Consider an SAA game with m auctions, each selling one unit of an identical

(homogeneous) good. If all agents follow SB, the outcome is that the bidders for

the m most highly valued units win them, at a uniform price equal to the value

of the most highly valued losing unit (possibly plus the bid increment). This is

virtually equivalent to truth-telling in an m + 1st sealed-bid uniform-price auction.

Like the truth-telling/sealed-bid case, the all-play-SB outcome is efficient (modulo

the bid increment), but it is not an equilibrium. In fact, efficient equilibria in the

m + 1st sealed-bid uniform-price auction do not exist (Ausubel & Cramton, 2002).

To motivate a possibly better strategy, consider the intuition for the non-existence

of an efficient equilibrium: if a bidder has a positive probability of influencing price

in a situation in which the bidder wins a positive quantity, then the bidder has an

incentive to shade her bid in a sealed-bid uniform-price auction. Bid-shading leads

to inefficient outcomes. This intuition and the failure of SB motivates considering

strategies that suppress demand.18

We introduce a relatively simple demand-reduction strategy, DR. Let us modify

SB by introducing a parameter κ ∈ [0, V ] defining the degree of the agent’s demand

reduction. An agent playing strategy DR(κ) bids the ask price on the lth cheapest

good as long as it is not winning that good, and its marginal surplus is at least

κ(l − 1). In other words, the agent considers the goods in order of price, adding

the lth good to its bundle until the marginal value vl drops below the ask price plus

κ(l − 1). The DR strategy family is a simple way of capturing the intuitions of the

demand-reduction literature: bidders should shade their bids, and the amount of

shading increases with the number of winning goods (Ausubel & Cramton, 2002).

Formally, define DR(κ)’s perceived price of the good with the lth lowest

myopically perceived price (defined in Section 1.3):

ρl(B) ≡

βl + κ(l − 1) if winning the good

βl + 1 + κ(l − 1) otherwise,
(1.8)

where β is the vector of current bid prices. Agent DR(κ) plays the perceived-price

bidding strategy using this ρ(B). Note that ρ(B) as defined by (1.8) assumes that

18Note that the sunk-awareness modification of SB we introduced in Section 1.3.2 to address the
exposure problem leads to overbidding, as opposed to bid-shading, in this environment. Using the
terminology of Definition 1.1, the perceived-price vector of a sunk-aware strategy is equal to or
below the myopic perceived-price vector used by SB, which results in more aggressive bidding. The
perceived price of the demand-reduction strategy we introduce in this section is always at least as
high as the myopic perceived-price vector.
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the goods are indistinguishable. We use the subscript l instead of i to emphasize

that each good is labeled by its myopic price rank order rather than by the auction

selling it.

1.7.2 Predicting Own Price Effects

The ability of a single agent to affect final prices is strategically central when

goods are substitutes. Therefore, the focus of price prediction in the substitutes case

is to model this relationship. Specifically, for the homogeneous-good environment,

price predictions take the form of a mapping from purchase sizes (i.e., the agent’s

chosen demand) to final prices. The main role of this prediction is to guide the agent

as to when it is beneficial to refrain from bidding on potentially valuable goods.

The assumption that final prices depend on the number of goods the agent is

trying to win implies that the agent’s prediction of the final price of good i can

no longer be represented by a scalar. Let πiq(B) be the predicted final price of

good i given that the agent tries to win q goods and its information state at the

current round is B. We can think of the agent’s predicted own-effect prices as an

m×m matrix, in which the rows are auction labels and the columns are the intended

purchase sizes. We define an updating rule for πiq, i, q ∈ {1, . . . ,m}, similar to the

point price-prediction rule described in Section 1.4.1. The current price prediction

for good i when the agent plans to bid on q goods is the maximum of the initial

prediction and the myopically perceived price:

πiq(B) ≡

max(πiq(∅), βi) if winning good i

max(πiq(∅), βi + 1) otherwise.
(1.9)

There is no apparent reason why an agent should believe that the final price

of a homogeneous good on one auction will be higher than the price on another

auction. Therefore, we construct the initial price prediction to be equal across

auctions: πiq(∅) = πjq(∅) for all i and j for all purchase sizes q. In other words,

the elements in a column are identical in the agent’s initial prediction matrix. We

label the initial prediction matrix of predicted own-effect prices by πx, in which the

subscript x labels particular initial predictions.

In the homogeneous-good environment, agents are indifferent between item

subsets of equal sizes. Thus, in our strategy, the agent uses price prediction to

determine the number q∗ of units to buy, but not to identify specific auctions in

which to participate in the current round. Formally,

q∗ = arg max
q

max
|Y |=q

σ(Y,π.q(B)),
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where σ(Y,p) is the agent’s surplus for goods Y defined by (1.1), and |Y | refers to

the number of goods in set Y .

Given q∗, the choice of goods X∗ on which to actually bid is based on the current

myopically perceived prices, ρ(B) as defined by (1.2). Using myopically perceived

prices ensures that the agent never regrets the composition of its bid set (conditional

on size) even if its predicted own-effect prices are wrong.

X∗ = arg max
|X|=q∗

σ(X, ρ(B))

The agent breaks ties as in Definition 1.1. Given X∗, the agent bids bi = βi + 1 (the

ask price) for the i ∈ X∗ that it is not already winning. We call this strategy family

the own-effect price predictor (OEPP ) and denote a specific strategy in this family

by OEPP (πx).

Similar to the point price predictor defined for complementary goods, the OEPP

family includes SB as a special case when the predicted own-effect prices are a matrix

of zeros: SB = OEPP (0). As mentioned in Section 1.7.1, if all players follow

SB, the allocation is efficient. Perceived prices based on an own-effect price matrix

with positive elements are weakly higher than the myopic perceived prices SB uses.

Therefore, an OEPP agent using positive predictions tends to bid on fewer items

than is efficient given the others’ bids, and never bids on more goods than SB would.

1.7.3 Self-Confirming Own-Effect Prices

We define the concept of self-confirming own-effect price prediction similarly to

self-confirming point price prediction for complementary environments.

Definition 1.6 (Self-Confirming Own-Effect Prices). Let Γ be an instance of an

SAA game with homogeneous goods. Matrix π is a self-confirming own-effect price

matrix for Γ, if for all i, q ∈ {1, . . . ,m}, πiq(∅) is equal to the expectation (with

respect to the type distribution) of the final price when one agent tries to win q goods

and all the other agents follow OEPP (π).

In other words, self-confirming own-effect prices satisfy the condition that if one

of the agents bids to win q goods and the other agents “exploit” their own-effect

price predictions, that prediction on average is correct for all q. We denote the

self-confirming own-effect price matrix by πSC and the self-confirming own-effect

price-prediction strategy by OEPP (πSC).

To find approximate self-confirming own-effect prices, we follow an iterative

procedure similar to that described in Section 1.5.3. First, we initialize the own-

effect predictors with some own-effect price matrix (e.g., all zero) and, sampling
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Figure 1.4: Convergence to a self-confirming own-effect price matrix, starting with
an initial prediction that all prices would be zero regardless of the size
of the agent’s purchase. The prices at each iteration are determined by
10 thousand simulated games. The graph plots the distance between
the own-effect prices in consecutive iterations. We define distance
between matrices as the maximum over pointwise distances, measured
as a percentage of the upper bound on the marginal value, V , of a single
unit of the good. The bound V equals 127 in all of our SAA games with
substitutes.

from the homogeneous-good type distribution, run many SAA game instances with

a profile in which one agent (the explorer) ignores its preferences and tries to win a

single good, while the others follow OEPP . When average prices obtained by these

agents are determined, we replace the first column in the own-effect price matrix with

a column vector with all elements equal to the average price, reset the explorer to win

two goods and repeat. After the second batch of simulations, we replace all elements

in the second column of the own-effect matrix with the average price and increase

the explorer’s target number of goods by one. We repeat the process, recycling

back to a single unit after the exploration target reaches m. When this process

reaches a fixed point, we have the matrix of self-confirming own-effect prices, πSC .

We have not investigated whether a fixed point necessarily exists in homogeneous-

good environments, but the price predictions converged in this environment within

30 iterations in all of our experiments (see Figure 1.4).

1.7.4 Empirical Game Analysis

We perform analyses similar to, but less extensive than, those reported in

Section 1.6. We analyzed the m = n = 5 environment with uniform preferences

introduced at the beginning of Section 1.7. We set the upper bound V to 127. In

Figure 1.5 we display the agents’ average valuations as a function of the number
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Figure 1.5: Preference distribution in the homogeneous-good environment.

of goods. As before, our goal is to evaluate the performance of a self-confirming

price-prediction strategy, OEPP (πSC) in this instance. Since the literature predicts

that agents suppress demand in equilibrium, we include many instances of our

demand-reduction strategy family. We analyzed 51 strategies: SB, 47 DR(κ) with

1 ≤ κ ≤ 120, one sunk-aware strategy with parameter k = 0.5, a self-confirming own-

effect price predictor OEPP (πSC), and the baseline distribution predictor PP (F SB)

(defined in Section 1.5).

We estimated payoffs for 16542 strategy profiles (out of 3.48 million possible),

based on an average of 986 thousand samples per profile. Some profiles are simulated

for as few as 40 thousand samples; near-Nash-equilibrium profiles were simulated for

up to 205 million game instances per profile. Despite the high-quality information

OEPP (πSC) employs about own effect on final prices, the strategy’s use of this

information did not provide any advantage over the simpler information-free demand-

reduction agents. In the majority of profile settings where it was tested, OEPP (πSC)

can be refuted with a DR(κ) strategy. Indeed, for 96% of the 16542 profiles analyzed,

we found the best deviation in our data set to be an instance of DR(κ) with 10 ≤
κ ≤ 22. For 108 profiles our data set includes estimated payoffs for all deviations

from all strategies. The best deviations for these profiles are always an instance of

DR(κ) with 16 ≤ κ ≤ 19.

We provide more evidence in Figure 1.6 by displaying the number of times

a strategy was a best deviation (dark bars) relative to the number of estimated

profiles in which that strategy appeared (light bars). The latter is proportional to

the approximate number of opportunities for that strategy to be a best deviation

from some other profile. The dark bars reflect the preponderance of situations in

which agents prefer moving toward a DR(κ) strategy with κ near 15. The light

bars document our decision, as this evidence was emerging, to focus our finite
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Figure 1.6: Distribution of best deviations. The light bars reflect the number
of estimated profiles in which the corresponding strategy appeared.
The dark bars reflect how many times the strategy in fact was a
best deviation. We index demand-reduction strategies DR(κ) by their
corresponding κ-values. OEPP refers to OEPP (πSC), PP to PP (F SB),
and SA refers to the sunk-aware strategy with k = 0.5.
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computational resources on estimating regions of the payoff matrix most important

for (near-)equilibrium play.

We found only 14 profiles for which the highest gain can be obtained by deviating

to OEPP (πSC). This is 0.085% of all estimated profiles and 6.36% of all profiles

containing at least one OEPP (πSC) player. We found 40 profiles for which SB is

the best deviation. The sunk-aware and PP (F SB) strategies are never the most

attractive deviations in our data.

We found many pure-strategy asymmetric ε-Nash equilibria in this environment.

Those with the lowest ε are profiles of DR(κ) with 14 ≤ κ ≤ 17. To give a sense of

the magnitude of demand (bid) suppression, these κs correspond to 33–40% of the

average final unit price if all players follow SB. In Table 1.3 we present all ε-Nash

equilibria for which ε ≤ 0.01519 and two of our benchmark profiles: all-SB and all-

OEPP (πSC) (for which the ε is rather large). The probability that the profile is

an exact Nash equilibrium was estimated empirically as described in Section 1.6.3.

The profiles are listed in the order of increasing ε. We have estimated payoffs of all

unilateral deviations from the strategies in the near-Nash-equilibrium profiles to all

of the other 50 pure strategies. These ε-equilibria all consist of DR(κ) with κs in a

narrow range; the best deviations are to nearby κs (column 2). If all agents follow

OEPP (πSC), a single agent can improve her payoff by at least 2.86 (5.5% of the

average payoff) by deviating to DR(24).

As expected, equilibrium outcomes are inefficient in this environment. However,

the efficiency loss is small: all-16, the symmetric profile with the smallest ε, achieves

98.55% efficiency. We present efficiency results for a few symmetric near-Nash-

equilibrium profiles and our benchmark profiles in Table 1.4.

Our results suggest that OEPP (πSC) is a weak competitor against DR(κ). The

weakness of OEPP (πSC) may lie in its failure to adjust its bidding to its opponents’

behavior: having good information does not guarantee strategic advantage. We

observe that OEPP (πSC) bids like an aggressive demand-reduction agent. As a

consequence, it earns high profits when playing against other predictors: essentially,

in a profile of all-OEPP , players are tacitly colluding to reduce demand and thus

prices. Payoffs would be higher if all agents could commit to this behavior. However,

when collusion is unenforceable, the usual motive to deviate unilaterally is strong.

19For reference, the payoffs range from 30 to 69 in our empirical payoff matrix. Thus, the near-
equilibrium profiles in Table 1.3 are quite close to equilibria: the ε of 0.015 constitutes at most
0.05% of the payoff.
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ε-Nash- Best ε-gain from ε̄-gain Probability the
equilibrium deviation one-player adjusted for profile is exact
profile deviation sampling error Nash equilibrium
15 15 16 16 16 15 → 16 0 0.001 0.58
all-16 16 → 15 0.001 0.004 0.25
15 16 16 16 16 16 → 15 0.001 0.006 0.14
15 15 15 16 16 15 → 16 0.004 0.005 0.11
14 16 16 16 16 16 → 15 0.004 0.008 0.02
15 15 15 15 16 15 → 16 0.005 0.009 0
15 16 16 16 17 15 → 16 0.006 0.007 0.11
14 14 15 15 16 14 → 15 0.006 0.008 0.02
14 14 14 16 16 14 → 15 0.007 0.008 0.09
14 15 15 16 16 14 → 16 0.008 0.009 0.02
15 15 17 17 17 17 → 16 0.008 0.012 0
14 14 15 15 15 14 → 15 0.009 0.008 0.07
15 15 15 17 17 17 → 15 0.009 0.010 0.02
14 14 14 15 15 14 → 15 0.010 0.010 0.05
14 15 15 15 16 16 → 15 0.011 0.010 0.02
16 16 16 16 17 17 → 15 0.011 0.010 0.02
all-15 15 → 16 0.012 0.012 0.04
15 15 16 17 17 17 → 16 0.012 0.012 0.01
15 16 16 17 17 17 → 16 0.012 0.013 0
14 14 16 16 16 14 → 15 0.012 0.013 0
15 17 17 17 17 15 → 16 0.012 0.014 0
14 14 14 15 16 16 → 15 0.013 0.015 0
14 15 16 16 16 14 → 15 0.013 0.014 0.01
15 15 16 16 17 17 → 16 0.013 0.013 0
14 14 15 16 16 14 → 15 0.014 0.014 0
all-17 17 → 16 0.014 0.015 0
15 16 17 17 17 15 → 16 0.015 0.015 0
16 17 17 17 17 17 → 16 0.015 0.015 0
all-SB SB → 14 1.450 1.469 0
all-OEPP OEPP → 24 2.857 2.905 0

Table 1.3: ε-Nash equilibria for the substitutes environment. The profiles are listed
in order of increasing ε.
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ε-Nash- Best ε-gain from Average Efficiency
equilibrium deviation one-player payoff (%)
profile deviation
all-SB SB → 14 1.450 34.266 100
all-14 14 → 15 0.020 44.665 98.82
all-15 15 → 16 0.012 45.230 98.69
all-16 16 → 15 0.001 45.773 98.55
all-17 17 → 16 0.014 46.307 98.40
all-18 18 → 17 0.035 46.810 98.26
all-OEPP OEPP → 24 2.857 52.063 93.75

Table 1.4: Efficiency of some symmetric ε-Nash equilibria in the substitutes
environment. The profiles are listed in order of decreasing efficiency.

1.8 Discussion

Our investigation of bidding strategies for simultaneous auctions leads to

qualitatively different conclusions for environments characterized by complementary

and substitutable preferences. For the case of complements, we find strong support

for a bidding strategy based on probabilistic price prediction, with self-confirming

predictions derived through an equilibration process. Like other decision-theoretic

approaches to bidding (Greenwald & Boyan, 2004), this strategy tackles the exposure

problem head-on, by explicitly weighing the risks and benefits of placing bids on

alternative bundles, or no bundle at all. The fact that the predictions are self-

confirming suggests that this cost-benefit analysis will be accurate when other agents

are following the same strategy.

Given the analytic and computational intractability of the SAA game, we

evaluated our self-confirming probabilistic price-prediction strategy, PP (F SC), using

an empirical game-theoretic methodology. We explored a restricted strategy space

including PP (F SC) along with a range of candidate strategies identified in prior work.

Despite the infeasibility of exhaustively exploring the profile spaces, our analyses

support several game-theoretic conclusions. The results provide favorable evidence

for our new strategy – very strong evidence in one environment we investigated

intensely, and somewhat less categorical evidence for a range of variant environments.

For the case of substitutes, the driving strategic issue is demand reduction rather

than exposure risk, and thus it is necessary to predict own price effects as well

as exogenous price levels. We defined a bidding strategy, OEPP , based on such

predictions, and a concept of self-confirming prices analogous to the approach that

proved so successful in complementary environments. In this domain, however, the

strategy OEPP (πSC) based on explicit self-confirming predictions did not fare well,
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proving in our empirical experiments significantly inferior to an approach based on

simple across-the-board demand reduction.

There are several possible explanations for the relative lack of success of explicit

price prediction in substitutes environments. One is that the particular OEPP

method we investigated measures own price effects under unrealistic assumptions.

Specifically, the strategy predicts the effect of selecting a demand level (number of

goods to go for), and sticking with that choice thereafter. In actuality, the agent

can and does reconsider its choice at each round conditional on the current auction

information. This myopic assumption about the agent’s own behavior would tend to

overestimate the effect of its immediate decision about demand at the current prices,

and thus cause it to reduce demand more aggressively than warranted.

The simple demand-reduction strategy, DR(κ), can pursue an appropriate degree

of demand reduction in a particular environment by tuning the free parameter κ. This

approach was successful in our experimental environment, but would presumably

need to be retuned for a different configuration of goods and preferences. It remains

for future work to identify a general approach for deriving robust demand-reduction

strategies directly from specification of preference distributions.

Returning to environments with complementarities, our results establish the self-

confirming price-prediction strategy as the leading contender for dealing broadly with

the exposure problem. If agents make optimal decisions with respect to prices that

turn out to be right, there may not be room for performing a lot better. On the other

hand, there are certainly areas where improvement should be possible, for example:

• incorporating price dependencies (but with reasonable computational effort);

• more graceful handling of instances when self-confirming price distributions do

not exist;

• more sophisticated prediction updates given price quotes, including possible

incorporation of history; and,

• timing of bids: trading off the risk of premature quiescence with the cost of

pushing prices up.

Dealing with combinations of complementarity and substitutability, by combining

considerations of exposure and demand reduction, is perhaps the most obvious

direction for extending the scope of bidding-strategy ideas developed here.

Finally, an indirect contribution of this work is to demonstrate an empirical

methodology for game-theoretic analysis when strategy determination is analytically

intractable (MacKie-Mason & Wellman, 2005; Wellman, 2006). We find that even

when strategy spaces are enormous, much can be learned by empirically converting
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an extensive-form game into a normal form in expected payoffs for strategy choices,

combined with thoughtful selection of payoff-matrix regions to estimate, and carefully

targeted analyses of results.
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CHAPTER 2

Bundling Information Goods: A Study of

Competing Firms Facing Heterogeneous

Consumers

2.1 Introduction

Information goods such as books, news stories, scholarly articles, music record-

ings, movies, computer games, and software are characterized by high fixed (first-

copy) costs, but low costs for the production of additional copies. This cost

structure is greatly exaggerated for digital information goods. King and Tenopir

(2005) observe that the maturation and integration of communication technologies

and the economics of the journal system, particularly pricing of traditional journal

subscriptions and access to digital full-text databases through site licensing and

packages have the potential either of destroying the scholarly journal system or

substantially enhancing its considerable usefulness and value. They argue that “the

new technologies should, if deployed with care, enhance the journal system (. . . ), but

contemporary pricing policies have been a greater threat to the journal system.”

One of the challenges for information-good producers is that linear marginal-

cost pricing for electronic information goods cannot result in efficient production or

distribution because near-zero prices would not recover the initial fixed costs (Varian,

1995). On the other hand, a price above the marginal cost creates a deadweight loss

and therefore is inefficient. However, the flexibility of digital technology permits

a wide range of responses to the cost problem. For example, by selling individual

items as well as bundles such as journals, CDs, and software packages, firms can

potentially attract more consumers than with either pricing scheme.1 Offering both

schemes is much more feasible for digital goods available online than for information

goods produced and distributed on physical media.

1This is assuming consumers’ tastes are heterogeneous enough.
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In this chapter I study how product configuration flexibility introduced by digital

technology may affect competing producers of information goods and consumers.

An important contribution of this work, for the analysis of both monopoly and

competitive bundling, is that I study consumers with heterogeneous preferences.

Several authors have provided valuable insights about bundling under a sim-

plifying assumption that consumers are characterized by a single variable and are

ex ante homogeneous (e.g., Schmalensee, 1984; Zahray & Sirbu, 1990; Bakos &

Brynjolfsson, 1999). However, the assumption of such preferences is quite restrictive:

for example, it implies that a monopolist will maximize social welfare but will extract

all available consumers’ surplus (Bakos & Brynjolfsson, 1999). In this chapter, I

study environments with high consumer diversity. Following Chuang and Sirbu

(1998), I assume two-dimensional consumer preferences, which capture not only

the consumers’ reservation price for a set of goods, but also correlations between

individual valuations within the set. The latter is particularly important in the

context of mixed bundling.

For tractability, I restrict my attention to three types of product configurations,

or bundling strategies: selling items individually (at the same per-item price),

pure bundling (the whole collection of items is sold together), and mixed bundling

(consumers are offered a choice between the two previous options). With N

goods, there are 2N−1 different bundles that could be offered, each at a potentially

unique price, and consumer preferences would need to be specified on this (2N−1)-

dimensional space. The profit-maximization problem for setting prices is NP-hard

and generally considered to be computationally intractable for modern computers

when N is only moderately large.2 In this study, the collection size of a single

firm varies from 50 to 150. Complex pricing schemes would also create intractable

consumer information-processing problems and impractical transactions costs.

There are several reasons why a firm may choose to bundle its goods. Previous

authors provide at least five reasons for selling two or more products in a single

package:

1. Cost savings in production and transactions associated with package selling in

presence of economies of scale (e.g., Coase, 1960; Bakos & Brynjolfsson, 2000;

Demsetz, 1968; Chuang & Sirbu, 1998);

2. Strategic bundling such as tying for leveraging market power (e.g., Carbajo, Meza,

& Seidmann, 1990; Whinston, 1990);

2My empirical analysis also shows that a monopoly does not benefit from splitting its collections
into two and applying independent bundling schemes to them. This holds for all of the preference
distributions I have analyzed. This part of the analysis is not reported here, but is available upon
request.
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3. Complementarity (superadditivity) in consumption of bundling components (e.g.,

Adams & Yellen, 1976; Bakos & Brynjolfsson, 1999; Economides & Viard, 2004);

4. Second-degree price discrimination when marginal valuations are additive or

subadditive (e.g., Adams & Yellen, 1976; McAfee, McMillan, & Whinston, 1989;

Varian, 2000, 1989; Bakos & Brynjolfsson, 1999; Chuang & Sirbu, 1998); and

5. Reducing buyer diversity (via aggregation) (e.g., Schmalensee, 1984; Varian, 1989;

Salinger, 1995; Bakos & Brynjolfsson, 1999, 2000).

The first point concerns savings on the supply side, whereas the last three

represent bundling as a tool for extracting consumer surplus. The literature under

the second category studies how a firm with monopoly power in one market can

use its leverage provided by this power to forclose sales in, and thereby monopolize,

a second market. Producers of information goods may choose to bundle for any

of these reasons. In the paper-based production of scholarly articles, for example,

packaging articles into journals and journals into subscriptions saves non-negligible

reproduction and distribution costs. Software is often pre-installed on personal

computers, which leverages the market power of the software producer. Software

packages typically contain complementary programs. Producers of business news

sub-bundle general and time-sensitive information – such as stock quotations or

financial news – and delay the latter for those who are not willing to pay a premium.

This is an example of price discrimination: the scheme induces casual readers and

readers who use the information for business purposes to self-select into appropriate

consumption groups. The aggregation effect often manifests itself in bundles of music

recordings (CDs), articles (journals or magazines), TV shows (TV channels), etc.

The consumers’ willingness to pay for such bundles varies less than their willingness

to pay for individual components. In this chapter, however, I am concerned only

with two of all possible reasons for bundling: price discrimination and reducing

buyer diversity. Also, I study the use of bundling schemes when firms compete in

the selling of information goods. Thus, I address the interaction between market

structure and bundled pricing strategies.3

In particular, I consider two firms, each producing differentiated collections of

information goods. I assume that they have zero reproduction and distribution costs

and face a population of consumers with heterogeneous tastes. I model heterogeneous

tastes as a valuation function that depends on two parameters. One parameter is

the consumer value of her most favored item on the market, and the other is the

3I restrict my attention to competition in the market for a single differentiated information good.
Analysis of bundling on multiple linked markets for strategic purposes, which falls under the second
category, is outside of the scope of this chapter.
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percentage of the items on the market that she values positively. My preference

model is a generalization of Chuang and Sirbu’s monopoly model (Chuang & Sirbu,

1998) to two firms producing differentiated collections of items.4 The firms can

choose among three bundling schemes: they can offer individual items, each at the

same price (pure unbundling), sell their collection as a single bundle (pure bundling),

or offer both options at the same time (mixed bundling).

Within this framework, I address several questions. First, can simple mixed

bundling effectively sort consumers under competition? How do the equilibrium

profits compare to those when the firms are restricted to pure bundling or pure

unbundling? How do the pure forms compare to each other? Under monopoly, mixed

bundling must perform at least as well as either pure unbundling or pure bundling

since it contains both pure strategies as sub-cases: maximizing over a larger set of

options may not result in a lower profit. When two firms compete, however, the

equilibrium payoffs in a game in which both firms have unrestricted strategy sets

can be lower than the equilibrium payoffs in a game in which at least one firm’s

strategy set is restricted to a smaller set of options. In a price-competition game like

the one studied here, a restricted set of pricing schemes may alleviate pricing wars

and therefore result in higher profits for the firms.

In cases in which mixed bundling is more profitable in equilibrium than the pure

schemes, it is important to know by how much. Pure bundling and pure unbundling

are appealing due to their simplicity, which may be an important advantage in

practical implementation. My second goal is therefore to quantify the gains from

choosing the more complex pricing scheme of mixed bundling.

My third question is how much does competition curb the ability of bundling

firms (in pure or mixed forms) to extract value from consumers? Although digital

information goods have negligible marginal costs of reproduction and distribution,

there may be significant first-copy costs. If competition significantly reduces

operating profits, investment in new information products may be low.

Finally, what is the effect of information-good bundling under competition on

social welfare, taking into account both consumers’ surplus and profits? How do

mixed-bundling equilibrium profits, social welfare, and consumer surplus compare to

those when the firms are restricted to one of the pure schemes?

Due to the complexity induced by heterogeneous, multi-dimensional consumer

preferences over multiple goods sold in various configurations, I have not been able

to solve analytically for equilibrium of the pricing game. As in Chapter 1, I make

4My production model, however, is a special case of the Chuang-Sirbu model: Chuang and
Sirbu assume a positive marginal cost and different levels of economies of scale, while I consider
the extreme case of zero marginal cost and, consequently, no economies of scale.
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use of the empirical game-theoretic methodology to analyze competitive bundling in

a number of specific environments.

I find that depending on the consumer preference distribution, any of the three

schemes can result in the highest equilibrium profits when two firms compete.

While under monopoly mixed bundling is always weakly better due to its ability

to sort consumers into different consumption groups, under duopoly it also leads

to more aggressive price competition. However, mixed bundling is generally the

most profitable scheme, and in the cases when a pure form yields higher profits

in equilibrium, the difference from the mixed-bundling equilibrium profits is small.

Under monopoly, a pure pricing scheme gives 80–100% of the mixed-bundling profits;

under duopoly, at least 75–105%, depending on the preference distribution and the

scheme employed by the other firm.

I also find that under competition, the profits of firms that bundle – in pure or

mixed form – are lower by up to 21% relative to a monopoly employing the same

(combination of) pricing schemes as the duopoly. The market efficiency is up to 16%

higher, and the distribution of social welfare shifts toward consumers by up to 22%.

These estimates are based on three different distributions of consumer preferences,

each analyzed for a monopoly, a symmetric duopoly and a non-symmetric duopoly.

2.2 Related Work

In their seminal paper on bundling, Adams and Yellen (1976) consider a

monopolist producing two goods. They analyze three pricing strategies: component

selling (each good priced and sold individually), bundling (both goods sold together),

and mixed bundling (consumers offered a choice between buying a bundle or

individual components). They show by example that bundling can result in higher

revenue than component selling and argue that the profitability of a bundle of

different commodities can “stem from its ability to sort customers into groups with

different reservation price characteristics, and hence to extract consumer surplus.”

However, bundling might result in inefficient consumption of components for which

the marginal cost of producing that component exceeds its value to a consumer. In

general, the profitability of bundling strategies depends on the prevailing level of

marginal costs and on the distribution of customer valuations.

McAfee et al. (1989) extend the analysis to general demand functions, and provide

conditions under which mixed bundling strictly dominates either of the two pure

strategies. Salinger (1995) shows that if valuations for the two goods are not perfectly

correlated, the demand for the bundle will be more price-elastic than the sum of the

individual demands for each component. As a result, bundling is a way to smooth out
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idiosyncratic preferences enabling a monopolist to extract more consumers’ surplus

than is possible through pure components pricing.

Some more recent papers have extended the analysis to more than two goods.

Hanson and Martin (1990) tackle the full 2N bundle pricing problem with N=21.

MacKie-Mason and Riveros (1998), and Hitt and Chen (2005) introduce a new

alternative: generalized subscriptions. Consumers prepay for G tokens, then select

G items from the entire collection after the items are created. In effect, individual-

specific sub-bundles are created. Riveros (1999) comparatively evaluates generalized

subscriptions against the three most studied strategies.

Brooks, Fay, Das, MacKie-Mason, Kephart, and Durfee (1999), Kephart, Das,

Brooks, Durfee, Gazzale, and MacKie-Mason (2001), and Brooks, Gazzale, Das,

Kephart, MacKie-Mason, and Durfee (2002) employ machine-learning techniques to

explore the space of pricing policies. They are concerned with the trade-off between

exploitation and exploration of pricing policies in static and dynamic environments.

They show that simple pricing policies with few parameters to learn are more robust

in both environment types. Kephart, Das, and MacKie-Mason (2000) acknowledge

that information is an experience good. They allow consumers to learn their

valuations and the seller to learn pricing parameters simultaneously. They find

that dynamic market interactions when there is substantial uncertainty can lead

to pathological outcomes if agents are designed with reasonable but not sufficiently

adaptive strategies.

Bakos and Brynjolfsson (1998) illustrate that bundling with N goods is strictly

preferred to component pricing when marginal cost is zero, consumer item preferences

are homogeneous and identically distributed, and N is sufficiently large.

Chuang and Sirbu (1998) introduce two-dimensional heterogeneity of tastes and

allow for the possibility of mixed bundling. I adopt these features of their model to

study bundling under competition. As Chuang and Sirbu point out, by employing

a single variable to model consumer heterogeneity, one can only capture consumers’

aggregate valuations for a bundle. This is adequate in the pure-bundling context. In

the mixed-bundling context, however, it is important to account for the correlation

of values across different items as well. For example, mixed bundling may be more

profitable relative to pure bundling when one consumer values positively only two

of a hundred items in a collection (low correlation) and the other has the same

total collection value more or less evenly distributed across fifty of the items (high

correlation).

There are two important differences between the assumptions in my work and

those in Chuang and Sirbu’s study: Chuang and Sirbu assume a positive marginal

cost and a single producer. At the center of their study is the question of how
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the economies of scale and marginal cost affect the relative profitability of pure

unbundling, pure bundling, and mixed bundling, with the goal to demonstrate

that scholarly journal publishers have incentives to unbundle their journals – i.e.,

to provide individual articles as well as journals – given how technology has been

changing the costs. With a positive marginal cost, it is not surprising that they

find that for a monopolist, mixed bundling is more profitable than either of the pure

strategies. They also allow readers to value some articles at less than marginal

production cost. Thus it is possible for component selling to strictly dominate

bundling, since bundling results in the costly distribution of products that have

below-cost value to some consumers. In this chapter, I set the marginal cost to zero

to study the effects of price discrimination and buyer-diversity reduction of different

bundling strategies under competition.

A number of authors have studied bundling in competitive settings. Fishburn,

Odlyzko, and Siders (2000) consider a duopoly in which each firm produces an

identical set of N information goods (perfect substitutes). By assumption, one firm

bundles while the other offers component pricing. In nearly all of their numerical

simulations, a price war ensues with both firms’ prices falling towards zero (marginal

cost).

Matutes and Regibeau (1992) and Farrell, Monroe, and Saloner (1998) consider

duopolists that produce complements rather than substitutes. These authors study

bundling of two complementary goods that may be purchased from separate firms.

Nalebuff (2000) finds that a firm that sells a bundle of complementary products will

have a substantial competitive advantage over rivals who sell the component products

individually. Some authors examine bundling as a tying strategy when one firm is

a monopolist over one product but faces potential competition for a second product

(see, e.g., Carbajo et al., 1990; Whinston, 1990; Aron & Wildman, 1999). Nalebuff

(1999) explores how bundling can be used as an entry deterrent.

Bakos and Brynjolfsson (1999) consider a duopoly in an N -good market and

(stochastically) identical consumers. Goods are pair-wise substitutes: the demand

for one good is independent of the demand for all but one of the remaining goods.

This drastically restricts the possible strategic interactions. In this chapter, all item

valuations are (weakly) subadditive, and thus all items depress one another’s value.

There is an extensive body of literature on product differentiation under linear

pricing. Goods are assumed to have a fixed and a positive marginal cost of

production, and the firms choose their market niche as well as the price of their

differentiated good. The linear-city model due to Hotelling (1929), the circular-city

model due to Salop (1979), and a symmetric model of monopolistic competition

due to Dixit and Stiglitz (1977) and Spence (1976) are examples of classic models of
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horizontal differentiation. In none of these studies, however, is the model of consumer

tastes rich enough to study the questions I pose in this chapter. Hotelling (1929)

and Salop (1979) characterize consumers by a single type variable, and consumer

valuations of goods are assumed to be independently and identically distributed.

As discussed above, one-dimensional heterogeneity of tastes is not adequate in the

context of mixed bundling. In the Dixit-Stiglitz-Spence model, there exists a single,

representative consumer with a constant-elasticity utility function that depends on

the consumption levels of items produced by different sectors (firms). That is, there

is no heterogeneity in tastes whatsoever. The rationale for product differentiation

stems from the consumer’s broad spectrum of interest rather than heterogeneity in

the consumer population.

For this chapter, I build directly on the work of Fay and MacKie-Mason

(1999) and Fay (2001), Chapter 2. Fay and MacKie-Mason show that under

homogeneous consumer preferences, bundling achieves the first-best solution to

a firm’s profit-maximization problem and unbundling yields less profit than the

first-best solution. Under heterogeneous preferences, they find that introducing

competition from a second firm results in much lower prices than under monopoly,

yet only a moderate profit reduction. However, the latter result may be attributed

to the specific properties of the value function used in the analysis of environments

with heterogeneous consumers. The value function used to model heterogeneity of

consumer tastes had an undesirable property: the value of consuming only firm 2’s

bundle is positively correlated with the number of items in firm 1’s bundle, even if

the consumer does not have access to that bundle. The valuation function I use in

this study does not have this property.5 In addition, Fay and MacKie-Mason did

not consider mixed bundling and were unable to find any mixed-strategy Bertrand

equilibria of the pricing game in which both firms use pure bundling. I overcome these

difficulties by using more sophisticated game-solving techniques (see Section 2.4).

2.3 Bundle-Pricing Game

2.3.1 Firms

Two firms each control a collection of items, sized N1 > 0 and N2 > 0, respectively

(N1 and N2 are fixed and exogenous). An example of such a collection would be a

set of different book titles, a collection of different news stories or scholarly articles,

a collection of music recordings or movies or software programs. A book title, a news

5The observation about the undesirable property of the valuation function studied by Fay and
MacKie-Mason (1999) is due to Scott A. Fay. Fay also proposed the valuation function presented
in this chapter.
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story, or a song would be an example of a single item. There may be substantial sunk

costs to create the goods,6 but the marginal cost of reproducing and distributing

is zero. Although in practice marginal cost is rarely strictly zero, the simplifying

zero-marginal-cost assumption allows one to explore what happens as marginal costs

become vanishingly small, as is typically the case for digital information goods.

I restrict each firms’ bundling choices to three bundling strategies : selling items

individually at the same per-item price, to which I refer as pure unbundling (U),

pure bundling (B) of the whole collection for a single bundle price, and mixed

bundling (M) that combines the two options.7 I exclude sub-bundling strategies

for reasons of computational tractability. Even for this simplified problem, solving

for a mixed-strategy equilibrium sometimes took days, depending on the consumer

preference distribution. I analyze this market as a duopoly game in which the two

firms simultaneously choose their bundling and pricing strategies. Thus, the pricing

strategy of firm i, i ∈ {1, 2}, is a per-item price pi ≥ 0 under pure unbundling, a

bundle price Pi ≥ 0 under pure bundling, and a pair of prices (pi, Pi) under mixed

bundling.8

2.3.2 Consumers

In this section, I introduce a model of consumer preferences over information

goods and define the consumer’s choice problem. For the purpose of this study,

different book titles are instances of the same information good (books), different

software programs are instances of the information good “software”, etc. Typically,

consumers buy only one copy of a book, software, song, or a news story. I therefore

make the following assumption.

Assumption 2.1. Consumers have demand for at most one unit of a particular

item.

Consumers vary in the quantity of the information good in which they are

interested. For example, some consumers may spend all day viewing videos on

6We can think of first-copy costs as sunk, which allows to treat such costs as exogenous variables
in the model. In other words, my model does not encompass the decision to produce the goods.

7It is important to distinguish between a mixed-bundling strategy and a mixed strategy, where
the latter is a term commonly used in game-theoretic literature. Here the mixed-bundling strategy
(M) is defined as a pair of prices: a bundle price and a per-item price. This strategy can be pure
in the sense that a firm can “play” this pair with probability one. For example, a firm can offer
a choice between buying the whole collection at $10 or any subset of items at $1 per item. A
mixed strategy is a probability distribution over a subset of pure strategies. For example, in half
of its stores, the firm can offer the whole collection for $7 and each individual item for $2 instead
of the previous combination. Then the firm’s strategy can be viewed as a mixed strategy of two
mixed-bundling strategies, (10,1) and (7,2), each chosen with probability 1

2 at each store.
8Note that mixed bundling subsumes both pure schemes: setting pi to infinity is equivalent to

pure bundling, and setting Pi to infinity is equivalent to pure unbundling.
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youtube.com, and some view only a couple. On the book market, consumers vary

by the number of books they read per year. Consumers also differ in the intensity of

their preferences. The preference intensity is high if the consumer has particularly

high values over some items available on the market. For example, fans of the

interactive web-based video series lonelygirl15 9 are an example of consumers with

high-intensity preferences over videos. Academic achievement of biology professors

depends on their knowledge of the latest biology research, and therefore they have

high-intensity preferences over scholarly articles.

Following Chuang and Sirbu (1998), let us assume that the consumers’ valuations

of individual items in a collection are correlated. The correlation in a collection is

defined by two parameters: intensity and breadth. The difference from the Chuang-

Sirbu model here is that the consumer can choose from two collections rather than a

single one. Let wi > 0, i ∈ {1, 2}, be the value of the consumer’s most favored item in

collection i. This variable describes the intensity, or depth, of the consumer’s tastes

for collection i. Let ki > 1
Ni

represent the preference breadth of a given consumer

for collection i. Roughly, ki can be thought of as the fraction of the items that

the consumer is willing to consume from collection i. In fact, this is an accurate

interpretation of the parameter if ki ≤ 1. If ki is greater than one, the concept of

such a fraction is not well defined. The meaning of k in that case will become clear

later. I impose another simplifying assumption on w and k.

Assumption 2.2. For each consumer, her preference breadth and intensity are the

same across different collections when collections are considered independently, i.e.,

w1 = w2 and k1 = k2.

I will therefore suppress the collection subscript and denote breadth simply by

k and intensity by w. Equal breadth implies, for example, that a rock fan likes

the same number of songs in two different music collections of the same size. In a

collection of twice that size, she will like twice as many items. Equal intensity implies

that the consumer is equally happy with her top choices from either collection. It is

straightforward to extend the analysis to cases in which w1 6= w2 and k1 6= k2, but

this is outside the scope of this work.

Consumers may place zero value on any number of items. Suppose each consumer

has ranked all items by their individual valuations. I label the individual valuation

of an item x by v(x). Consider n1 < N1 highest-ranking items from collection 1 and

n2 < N2 highest-ranking items from collection 2.

Assumption 2.3. A consumer’s preferences are represented by a quasilinear utility

function U(n0, n1, n2) = u(n0) + V (n1, n2), where n0 is the numéraire and V (n1, n2)

9http://www.youtube.com/user/lonelygirl15
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is a subutility function that depends on n1 and n2, where n1 and n2 are as defined

above.

I approximate quantities n1 and n2 with continuous variables. Consider first the

following subutility function V ′:

V ′(n1, n2) = max
m1,m2

w
(
m1(1−

m1

2kN1

) + m2(1−
m2

2kN2

)
)
,

s.t. m1 ≥ 0, m2 ≥ 0,

m1 ≤ n1, m2 ≤ n2.

(2.1)

I will refer to the function that is maximized as f ′:

f ′(x1, x2) = w
(
x1(1−

x1

2kN1

) + x2(1−
x2

2kN2

)
)
. (2.2)

The maximization part in Equation (2.1) is to ensure that the property of free

disposal is satisfied. If the consumption pair (n1,n2) is such that the constraints are

binding – which is true for (n1,n2) where f ′ is increasing – function V ′ is simply f ′.

Otherwise, V ′ is set to the value achieved at the satiation point, i.e., at the point

where f ′ is maximized.

I now show that V ′ is a straightforward generalization of the Chuang-Sirbu model

to two collections. To obtain the item valuation function, we take the derivative of

f ′ with respect to xi, i ∈ {1, 2}:

∂f ′(xi, xj)

∂xi

= w(1− xi

kNi

). (2.3)

This is a downward-sloping straight line. Remember that the free-disposal

property implies that item valuations cannot be negative. Thus, the valuation W (ni)

of the consumer’s nith highest-ranking item from collection i becomes

W (ni) = max{0, w(1− ni

kNi

)}, (2.4)

where 0 ≤ ni < Ni.

This is exactly the Chuang-Sirbu valuation function for a single collection.

Figure 2.1 displays W (ni) for Ni = 100, w = 100, and two different values of k:

k = 0.5 and k = 2. It also clarifies the interpretation of k when it is greater than

one: k defines the slope of the valuation function ( −w
kNi

).

Another assumption concerns the consumer’s behavior when she is indifferent

between consuming or not consuming an item. Define marginal surplus of an item

as marginal value minus marginal cost of obtaining the item.

Assumption 2.4. Consumers do not consume items with zero marginal surplus.
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Figure 2.1: Valuation function W (ni) for Ni = 100, w = 100, and two different values
of k: k = 0.5 and k = 2. On the horizontal axis, the items are in the
decreasing order of preference. The slopes of the lines are −w

kNi
= −2 and

−0.5, respectively. The 0.5-k consumer would consume kNi = 50 out
of 100 items. The cutoff number 50 is the intersection of the line with
the horizontal axis. The rest of the items have zero value. The 2-k line
intersects the horizontal axis at ni = 200 > Ni. This consumer consumes
all 100 items and has a strictly positive value of the least preferred item.

We can see from Equation (2.4) that the consumer’s valuations of items from

one collection are not related in any way to her valuations from the other collection.

Therefore, with such preferences, we are still looking at the Chuang-Sirbu world, in

which the interaction between each firm and consumers can be considered separately:

they do not have to compete for consumers. In order to make the market more

competitive, I introduce a parameter γ > 0 and modify the subutility function as

follows:

V (n1, n2) = max
m1,m2

w
(
m1(1−

m1

2kN1

) + m2(1−
m2

2kN2

)
)
− γ(m1 + m2)

2,

s.t. m1 ≥ 0, m2 ≥ 0,

m1 ≤ n1, m2 ≤ n2.

(2.5)

I use V as the consumer’s subutility function to study competition. I will refer

to the function being maximized as f :

f(x1, x2) = w
(
x1(1−

x1

2kN1

) + x2(1−
x2

2kN2

)
)
− γ(x1 + x2)

2. (2.6)

Note that the consumer value of some N items does not depend on which firm

or how many firms the items belong to. This property is desirable when seeking
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to compare different market models. Suppose firm 1 owns a fraction α of the N

items, and firm 2 owns the rest of them. Consider a consumer’s n highest-ranking

items. To simplify exposition, suppose that she values them all positively. Given

Assumption 2.2, these n items will correspond to αn and (1 − α)n highest-ranking

items in the two collections, respectively. The consumers’ subutility then equals

f(αn, (1− α)n) =

w
(
αn(1− αn

2kαN
) + (1− α)n(1− (1− α)n

2k(1− α)N
)
)
− γ(αn + (1− α)n)2 =

w
(
n(1− n

2kN
)
)
− γn2,

(2.7)

which is the consumer’s subutility of n highest-ranking items from a single collection

of size N. The more general case when some of the n items have zero value to the

consumer can be proved similarly: those items have no effect on the utility.

With γ > 0, the consumer’s valuations of positively valued items from

different collections become strongly subadditive, as opposed to additive. Goods are

subadditive if the combined set is worth less than the sum of its parts. This links

the firms’ markets in the following way: the price a consumer is willing to pay for

an item depends on the number of items consumed from the other collection, which

in turn depends on the other firms prices. In other words, firm i’s prices affect the

demand for firm j’s goods.

To see that the parameter γ introduces subadditivity, it is easier to work with f .

Note that the cross-derivative of f is negative for positive γ:

∂2f(x1, x2)

∂x1∂x2

= −2γ. (2.8)

This implies that for positively valued items, the marginal valuation of the nith

preferred item from collection i decreases as the number of items nj consumed from

collection j increases, i, j ∈ {1, 2}. Decreasing marginal valuation is equivalent to

subadditivity (Lehmann et al., 2006).

It is important to mention that γ also introduces subadditivity between items

from the same collection. To see that, let us calculate the marginal valuation function

of the consumer’s nith highest-ranking item from collection i for a given number of

items nj from collection j (i, j ∈ {1, 2}):

MV (ni) = max{0, w(1− ni

kNi

)− 2γ(ni + nj)}, (2.9)

where 0 ≤ ni < Ni, and nj is fixed at some number between 0 and Nj.
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Figure 2.2: Valuation function W (ni) and marginal-valuation function MV (ni) for
Ni = 100, w = 100, γ = 0.5, and two different values of nj: nj = 0 and
nj = 50. On the horizontal axis, the items are in the decreasing order of
preference. The slope of the W line is −w

kNi
= −2. The slopes of the MV

lines are −w
kNi

− 2γ = −3. MV for nj = 50 is shifted down by 2γnj = 50
units.

Figure 2.2 displays W (ni) and MV (ni) for Ni = 100, w = 100, k = 0.5, and

γ = 0.5 at two different values of nj: nj = 0 and nj = 50. Note how subadditivity

between items from the same collection reduces the slope of the marginal-valuation

line (by 2γ) and how subadditivity between items from different collections shifts the

marginal-valuation line for collection i down by 2γnj.

By assumption, the term −w
kNi

is the slope of the item valuation function W , which

describes the valuation of each item given no other items have been consumed. If

γ = 0, the marginal-valuation function equals W . If γ > 0, the slope becomes steeper.

That is, the marginal value of consuming an item is now below its valuation, and

it is decreasing.10 Therefore, the valuations of items from the same collections are

subadditive if γ > 0. One consequence of this γ-effect is that the firms face a less

elastic demand relative to the Chuang-Sirbu model, given the same k and w.

Let us now consider the consumer’s choice problem when she faces two competing

firms. Given the firms’ pricing schemes and particular prices, consumers choose n1

and n2 to maximize their surplus (i.e., value minus the cost of acquiring the items).

Remember that the pricing strategy of firm i ∈ {1, 2}, is a per-item price pi ≥ 0 under

pure unbundling, a bundle price Pi ≥ 0 under pure bundling, and a pair of prices

10Implicitly in this argument, I rely on Assumption 2.5, which I introduce at the end of this
section. Given that the valuation function V and MV are defined for preference-ordered items, the
conclusion does not directly follow if the items in the domains of MV and W have different orders.
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(pi, Pi) under mixed bundling. In the most general case when the firms each offer a

mixed bundle, each consumer has the following options: she can buy two bundles;

buy only one bundle from one firm and zero or more individual items from the other;

buy no bundles at all and zero or more individual articles from both firms. Let di,

i ∈ {1, 2}, equal 1 if the consumer buys firm i’s bundle, and equal 0 otherwise. Then

the consumer’s surplus (CS) of consuming n1 and n2 highest-ranking items from

collections 1 and 2, respectively, is given by

CS(n1, n2) = V (n1, n2)− (1− d1)p1n1 − d1P1 − (1− d2)p2n2 − d2P2. (2.10)

To find the consumer’s optimal choice, we need to maximize CS subject

to a number of constraints. Before stating the maximization problem, let me

note that V is maximized whenever f(n1, n2) is maximized, by definition of V

(see Equations (2.5)–(2.6)). Other V -maximizing choices contain items with zero

marginal values in addition to the f -maximizing set. According to Assumption 2.4,

consumers do not consume items with zero marginal surplus. Therefore, they will

never consume items with zero marginal value. Then the number of consumed

items n1 and n2 will always be below or at the satiation point, and the consumer

optimization problem can be written as follows:

max
n1,n2

(
f(n1, n2)− (1− d1)p1n1 − d1P1 − (1− d2)p2n2 − d2P2

)
,

s.t. n1 ≥ 0, n2 ≥ 0,

n1 < N1, n2 < N2.

(2.11)

We need an additional assumption to make the consumer’s choice well defined.

Recall that the domain of the subutility function V is a rank-ordered set of items,

with the items ranked according to their individual valuations v(x). Suppose for

a moment that we are back to one collection on the market. Given that the per-

item price is the same for all items, consumers never have to consider item subsets

other than those defined by the number of top-ranking items, when buying items

individually. For example, if v(x) > v(y) > v(z) for a particular consumer, then this

consumer never has to consider the set {x, z} to make the optimal choice, because

it would never be optimal to exclude item y when choosing to consume z. Similarly,

if a consumer buys a full collection as a bundle, the marginal cost of consuming

each item is zero, and therefore the above argument applies. When there are two

collections on the market, an additional assumption is required to ensure that a

consumer will never want to consume a set of n items from collection i that is not

the first n top-ranked items from i.
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To see that, consider the following example. Suppose there are two collections

(collection 1 and 2), each consisting of one economics article (Ei), one computer

science article (CSi), and one political science article (PSi). Suppose also that the

consumer is generally more interested in economics than in computer science and

more in computer science than in political science. Let us extend the definition of

v(X) to be the consumer’s valuation of any article subset X. For concreteness,

suppose v(E1) = 30, v(E2) = 25, v(CS1) = 20, v(CS2) = 15, v(PS1) = 10,

v(PS2) = 5. Moreover, the consumer prefers to read broadly, but does not have

time to read more than one article in each category. More specifically, articles

from the same fields have zero marginal values (subadditive preferences), while

articles from different fields are additive: v({E1, E2}) = 30, v({CS1, CS2}) = 20,

v({PS1, PS2}) = 10; let i, j, h can be 1 or 2, then v({Ei, CSj}) = v(Ei) + v(CSj),

and similarly for all other pairs of articles from different fields; and finally,

v({Ei, CSj, PSh}) = v(Ei) + v(CSj) + v(PSh). Suppose now that the consumer is

considering buying CS1. Then the marginal value of CS2 is zero, and the consumer

may want to consider the subset {E2, PS2} from collection 2. However, the subutility

function V is not defined for this subset. It is only defined for the following subsets

from collection 2: {E2}, {E2, CS2}, and {E2, CS2, PS2}. I therefore impose the

following assumption on the marginal valuations.

Let v(A) be the consumer’s value of any set of items A. Let mv(x|A) be the

consumer’s marginal value of item x in the set {x ∪ A}.

Assumption 2.5. Suppose v(x) > v(y), where x and y are two single items. Then

for any set A, mv(x|A) > mv(y|A).

This assumption is sufficient to ensure that no matter what items a consumer

chooses to consume from one collection, the order of items from the other collection

ranked by marginal valuations would be the same as the order by v. This in turn

ensures that the consumer’s choice problem is always well defined, even though V is

undefined for some subsets of items.

2.4 Empirical Game Analysis

Recall that the purpose of this work is to analyze competition of bundling

firms when consumers have heterogeneous tastes. Heterogeneity of the consumer

population is defined by the distribution of two parameters, w and k introduced

in Section 2.3.2. I have not been able to solve analytically for Nash equilibrium

strategies in this game for the case of general distributions of w and k. As an

alternative approach, I employ the empirical game-theoretic methodology discussed
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in Chapter 1. In particular, for each environment described in the following section,

I use computer simulation to estimate the demand for a variety of the firms’ strategy

profiles. I explain the simulation procedure in Section 2.4.1. Given the demand,

I calculate the firms’ expected profits for each strategy profile. Then I solve for

(mixed) Nash equilibria of the restricted competition game.11

To study relative performance in equilibrium of mixed bundling, pure bundling

and pure unbundling, in addition to the unconstrained mixed-bundling game, I

analyze all possible subgames in which at least one firm is restricted to either B or

U. I label them as X1X2, where X1, X2 ∈ {B, U, M} denote the bundling-strategy

space to which firm 1 and firm 2, respectively, are restricted. There are eight such

subgames: BB, BU, UB, BM, MU, UU, UM, MU; and the ninth possible game is

the unrestricted MM.

2.4.1 Environments and Strategy Space

Particular environments are defined by specifying the market model (number

of firms and collection sizes), and a preference model comprising the value of the

substitution parameter γ and the probability distributions over parameters w and k

in the population of consumers. I have analyzed a total of nine environments: for

each of the three preference models described in Table 2.1, I analyzed three market

models (Table 2.2).

The full strategy profile space is infinite (R4
+). To make the problem manageable, I

limit sampling range to the following price intervals: Pi ∈ (0, 1920] and pi ∈ (0, 120].

The upper bounds on the price intervals were chosen based on a few rounds of

preliminary simulations with Pi ≤ 2400 and pi ≤ 120, for which all pricing strategies

that survived iterated elimination of strongly dominated strategies (IESDS) were

such that Pi ≤ 1800 and pi ≤ 115. Similarly, zero price did not survive IESDS in

any of the preliminary simulations, and therefore was not included in the intervals.

For each of the nine environments, I evaluated the nine subgames (BB, BU, UB,

BM, MU, UU, UM, MU, and MM) sampling prices within the same range and at

the same constant intervals:

pi ∈ {4, 8, 12, . . . , 120},
Pi ∈ {40, 80, 120, . . . , 1920}.

(2.12)

11To find Nash equilibria I used Gambit, a library of game theory software and tools for the
construction and analysis of finite extensive and normal form games (McKelvey, McLennan, &
Turocy, 2007). In particular, I used the gambit-lcp algorithm for solving two-player nonzero-sum
games (documentation available at http://gambit.sourceforge.net/doc/gambit-0.2007.01.
30/gambit/). This algorithm does not necessarily find all equilibria.
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Thus, each firm’s strategy space consists of 48 strategies in the BB game, 30

strategies in the UU game, and 1440 (48×30) strategies in the MM game. The

interval sizes (40 for Pi and 4 for pi) were primarily dictated by computational

considerations. For example, it took about 2 days to do payoff estimation for each

of the MM subgames for the preference model P3 (see Table 2.1 below), and about

5 more days for Gambit to find 189 equilibria for one of them. I have also analyzed

the following larger “refined” strategy spaces:

pi ∈ {4, 8, 12, . . . , 120},
Pi ∈ {20, 40, 60, . . . , 1920};

(2.13)

pi ∈ {2, 4, 6, . . . , 120},
Pi ∈ {40, 80, 120, . . . , 1920};

(2.14)

pi ∈ {2, 4, 6, . . . , 120},
Pi ∈ {20, 40, 60, . . . , 1920};

(2.15)

pi ∈ {3, 6, 9, . . . , 120},
Pi ∈ {30, 60, 90, . . . , 1920}.

(2.16)

For these strategy spaces, I was not able to solve all of the nine subgames. In

particular, the MM game in the P3-SD environment (see Tables 2.1–2.2 below) was

too large for Gambit to solve in less than a week. Also, it took prohibitively long to

solve the MM subgame (for which all equilibria I could find are strictly mixed-strategy

equilibria with relatively large supports) in any of the environments for (2.15). Since

the MM subgame is central to the analysis of mixed bundling, I report results only for

the strategy space (2.12), for which I was able to solve all the subgames of interest.

These results are not significantly different from those obtained for the finer strategy

sets: in all the equilibria I could find for (2.13)–(2.16), the equilibrium price ranges

significantly overlap12 and the equilibrium payoff of any player lies within –4% to

+1% of the corresponding equilibrium payoff for the strategy space (2.12).

Table 2.1 summarizes the preference models I have analyzed. Model P3, in which

both w and k have non-degenerate independent distributions, is the closest to the

Chuang-Sirbu model.13 In models P1 and P2, one of the parameters is constant.

These models allow me to analyze the effect of competition for each type of the

corresponding one-dimensional heterogeneity type.

12In all cases of multiple equilibria, the equilibrium price ranges always significantly overlap
within the multiple-equilibrium set.

13They assume γ = 0, w is uniformly distributed between 0 and 1, and k is distributed
exponentially with λ = 13.8758.
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PID w k
P1 100 Exp(6.568)
P2 U[0,200] 0.152
P3 U[0,200] Exp(6.568)

Table 2.1: List of preference models. In all models γ = 0.5. The choice of preference
distributions and the specific distribution parameters is motivated by
empirical studies by King and Griffiths (1995) (see Appendix B).

MID N1 N2 Number of firms Description
SD 100 100 2 Symmetric duopoly
ND 50 150 2 Non-symmetric duopoly
M 200 n/a 1 Monopoly

Table 2.2: List of market models.

For each preference model, I analyze three market structures given in Table 2.2. I

label preference models and market models by their ID (PID and MID, respectively)

and each environment as a pair PID-MID. Note that the total number of items on the

market is 200 for all market models. To study the effect of competition, I compare

the properties of the equilibrium outcomes of two duopoly models (one symmetric

and one non-symmetric) to those of the optimal monopoly strategy.

The choice of preference distributions and the specific distribution parameters

is motivated by empirical studies of distribution of scholarly articles performed by

King and Griffiths (1995). Their results suggest that the parameter k follows an

exponential distribution in the population of readers that the authors sampled (see

Appendix B). Using the empirical data, I fit k to an exponential distribution with

the parameters specified in preference model P1. See details in Appendix C. For the

alternative heterogeneity model P2, I fix the breadth at the mean of the exponential

distributions of model P1 (k = 0.152). I chose the range of w to be such that the

mean intensity is equal to the fixed intensity value in model P1 (E(w) = 100).

To estimate the firms’ expected profits, I used the following procedure. For

the preference model P2, in which w∼U[0,200], I computed the demand of all

consumers with integer w ∈ {1, . . . , 200}. Below I refer to these types as wg, where

g ∈ {1, . . . , 200}. For the model P1, in which k∼Exp(6.568), I computed the demand

for 284 consumers with k-types given by kq+1 = kq + 0.001δq−1 for q = {1, . . . , 284},
where k0 = 0 and δ = 1.03. The 284th type is k284 = 147.4186. For the model

P3, I computed the demand of 56800 (200×284) consumers with all combinations

of wg and kq used in models P1 and P2. Given the demand, I computed the profit,
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πi(wg, kq), that each firm i would earn from each estimated consumer type (wg, kq).

The estimated expected profit of firm i, i ∈ {1, 2} is given by

Eπi =
∑

g={1,...,200}
q={1,...,284}

P(wg−1 < W < wg)P(kq−1 < K < kq)πi(wg, kq), (2.17)

where w0 = 0, k0 = 0, and W and K are random variables following the distributions

from Table 2.1.

Such procedure appears to produce rather accurate profit estimates. For the

UU subgame under P3-preferences and three market models – SD, ND, and M

– I estimated the equilibrium (optimal) prices and profits analytically.14 For

the M-model, I also found the optimal price and payoff for the case when the

monopoly is restricted to pure bundling. For the five equilibrium (optimal) payoff

estimates obtained in these four games,15 the numerically estimated profits are

all systematically lower, by at most 1.5%, than the theoretical estimates. The

equilibrium (optimal) prices are within 6% of the theoretical estimates (lower by

up to 4% and higher by up to 6%).

2.4.2 Empirical Results

In Table 2.3, I report for the duopoly market models the number of strategies

that survived the iterated elimination of strongly dominated strategies (IESDS) in

each of the nine subgames. Games with many survivors tend to have multiple strictly

mixed-strategy equilibria. The largest number of multiple equilibria in a game is 189

and the second largest is 3. All multiple equilibria have very similar payoffs (see

Table 2.4). Therefore, in the case of multiple equilibria, I report only one of them,

giving priority to symmetric Pareto superior equilibria.

The largest support of a single mixed-strategy equilibrium includes 26 strategies

for each firm, but most mixed-strategy equilibria do not have more than 5–10

strategies in the support. See Tables 2.5–2.7 for the supports of representative

equilibria in each subgame. In the tables, a row and a column define a subgame.

In each cell, the top number(s) is the equilibrium price (price pair) of the row

firm, and the bottom number(s) is the equilibrium price (price pair) of the column

firm. I denote a mixed-bundling price pair as p-P. For example, in the UM

14I did not impose the constraints that the quantity consumed by each consumer type from a
collection is less than the collection size. Therefore, the analytically computed profits may be
overestimated.

15In the non-symmetric duopoly, the two firms have different equilibrium (optimal) payoffs and
prices.
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Symmetric Duopoly Non-Symmetric Duopoly

P1-SD P1-ND
Firm 2(1) Firm 2 (the bigger)

Firm 1(2) U B M Firm 1 U B M
U 1 1 U 1 1 1 1 2 2
B 1 1 1 1 B 1 1 1 1 2 4
M 1 1 5 4 26 26 M 1 1 6 5 8 11

P2-SD P2-ND
Firm 2(1) Firm 2 (the bigger)

Firm 1(2) U B M Firm 1 U B M
U 1 1 U 1 1 1 1 2 2
B 1 1 6 6 B 1 1 2 6 2 9
M 1 1 35 6 47 47 M 1 1 13 6 14 21

P3-SD P3-ND
Firm 2(1) Firm 2 (the bigger)

Firm 1(2) U B M Firm 1 U B M
U 1 1 U 1 1 1 1 1 1
B 1 1 7 7 B 1 1 2 6 1 1
M 1 1 38 7 116 116 M 1 1 7 5 26 37

Table 2.3: Number of survivors of iterated elimination of strongly dominated
strategies (IESDS). A row and a column define a subgame. In each cell,
the first number is the number of survivors for the row firm, and the
second number is for the column firm. For example, in the MM subgame
(row M and column M) in environment P1-ND, 8 strategies remained
in the smaller (row) firm’s strategy set, and 11 remained in the bigger
(column) firm’s strategy set. Each firm’s original strategy space consists
of 48 strategies in the BB game, 30 strategies in the UU game, and 1440
(48×30) strategies in the MM game.

Environment Subgame # of Multiple Eq. Profit Diff. (%)
P1-SD MM 3 0.02
P2-SD BB 3 1.68
P3-SD BB 3 0.57
P3-SD MM 189 0.32

Table 2.4: Subgames in which Gambit found multiple equilibria. In the last column
I report the (absolute) difference in the payoff of the unreported equilibria
as a percentage of the reported equilibrium payoff.
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subgame (row U and column M) for the symmetric duopoly under the P1-preference

distribution (Table 2.5, P1-SD), firm 1’s equilibrium (per-item) price is 40, and

firm 2’s equilibrium (mixed-bundling) price pair is 60-720, which means that it

offers a choice between buying individual items for 60 each and buying the whole

collection for 720. For large supports, I report ranges of prices. For example, “10

in [60,80]×[440,480]” means that there are 10 price pairs in the support of this

equilibrium mixed-bundling strategy, and the first component – the per-item price –

varies from 60 to 80, and the second component – the bundle price – varies from 440

to 480.

The fact that many equilibria involving bundling are strictly mixed raises the

question of their practical implementation and interpretation. In the context

of information-good production, the support of mixed-strategy equilibria can be

interpreted as a near-equilibrium price region. Note that in Table 2.6, which describes

the non-symmetric duopoly, the sizes of the supports are all less than three, and the

prices are rather close. Since firms are never perfectly symmetric, this suggests that

in practice such price regions may be small. One example when a randomized choice

from these regions may arise naturally is during a readjustment to some external

shock, when both firms need to react immediately and simultaneously.

I first analyze the relative performance of different duopoly equilibrium pricing

schemes, or the optimal prices in case of a monopoly. Table 2.8 presents equilibrium

profits for the duopoly subgames in each of the environments. Table 2.9 presents

total industry profits for duopolies as well as the monopoly. We can see that the

relative payoffs of mixed bundling compared to pure unbundling and pure bundling

depend on the type of consumer heterogeneity. The differences in profits are more

clearly seen from Table 2.10. For the monopoly, we have the following result (see the

last column in Table 2.10).

(i) Mixed bundling yields higher profits relative to pure bundling when breadth

varies exponentially across consumers (preference models P1 and P3): pure

bundling yields 80–83% of the mixed-bundling profits according to the empirical

results.

(ii) Pure bundling is dominated by pure unbundling when breadth varies across

consumers (models P1 and P3): the empirical analysis shows that pure bundling

yields 80% the mixed-bundling profit vs. 90% produced by pure unbundling in

P1; 83% vs. 99.2% in P3.

(iii) Pure bundling is as profitable as mixed bundling when the breadth is the same

for all consumers, while the intensity of their preferences vary (model P2).

62



Symmetric Duopoly

P1-SD
Firm 2(1)

Firm 1(2) U B M
U 44 40 40

44 480 60-720
B 480 360 400 440

40 360 56-520 64-400
M 60-720 56-520 64-400 10 in [60,80]×[440,480]

40 400 440 10 in [60,80]×[440,480]

P2-SD
Firm 2(1)

Firm 1(2) U B M
U 52 52 52

52 640 100-640
B 640 5 in [400×560] 5 in [400,560]

52 5 in [400×560] 5 in [72,96]×[400,560]
M 100-640 5 in [72,96]×[400,560] 5 in [72,96]×[400,560]

52 5 in [400,560] 5 in [72,96]×[400,560]

P3-SD
Firm 2(1)

Firm 1(2) U B M
U 52 48 48

52 640 60-960
B 640 5 in [320,520] 5 in [440,600]

48 5 in [320,520] 5 in [56,76]×[440,920]
M 60-960 5 in [56,76]×[440,920] 26 in [56,88]×[440,920]

48 5 in [440,600] 26 in [56,88]×[440,920]

Table 2.5: Strategies in the support of representative equilibria: Symmetric duopoly.
A row and a column define a subgame. In each cell, the top number(s)
is the equilibrium price (price pair) of the row firm, and the bottom
number(s) is the equilibrium price (price pair) of the column firm. I denote
a mixed-bundling price pair as p-P. For example, in the UM subgame
(row U and column M) under the P1-preference distribution (P1-SD),
firm 1’s equilibrium (per-item) price is 40, and firm 2’s equilibrium (mixed-
bundling) price pair is 60-720, which means that it offers a choice between
buying individual items for 60 each and buying the whole collection for
720. For large supports, I report ranges of prices. For example, “10 in
[60,80]×[440,480]” means that there are 10 price pairs in the support of
this equilibrium mixed-bundling strategy, and the first component – the
per-item price – varies from 60 to 80, and the second component – the
bundle price – varies from 440 to 480.
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Non-Symmetric Duopoly

P1-ND
Firm 2 (the bigger)

Firm 1 U B M
U 44 36 36 40

48 680 60-920 60-960
B 240 160 240 280

44 600 60-840 60-880
M 56-360 56-240 64-200 76-200 60-240 64-240 68-280

44 600 640 720 60-840 60-880 68-760

P2-ND
Firm 2 (the bigger)

Firm 1 U B M
U 52 48 48 52

56 920 84-960 88-920
B 280 240 280 240 280

56 800 960 92-880 96-960
M 80-280 80-240 88-280 64-240 80-240 88-280

56 800 960 92-800 92-880 96-960

P3-ND
Firm 2 (the bigger)

Firm 1 U B M
U 48 44 44

56 920 64-1560
B 320 200 240 320

56 720 840 60-1520
M 60-440 76-240 80-240 64-360 68-320 72-360

52 720 760 60-1440 68-1040 72-1040

Table 2.6: Strategies in the support of representative equilibria: Non-symmetric
duopoly. A row and a column define a subgame. In each cell, the top
number(s) is the equilibrium price (price pair) of the row firm, and the
bottom number(s) is the equilibrium price (price pair) of the column firm.
I denote a mixed-bundling price pair as p-P. For example, in the UM
subgame (row U and column M) under the P1-preference distribution (P1-
ND), firm 1’s equilibrium strategy is a probability distribution over two
(per-item) prices: 36 and 40; firm 2’s equilibrium strategy is a probability
distribution over two mixed-bundling price pairs: 60-920 and 60-960.
The first price pair means that the firm offers a choice between buying
individual items for 60 each and buying the whole collection for 920.
Similarly for the second price pair.
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Monopoly

P1-M P2-M P3-M
U 48 60 60
B 1040 1280 1320
M 60-1360 108-1280 68-1920

Table 2.7: Optimal strategies: Monopoly. The rows are the pricing schemes, and
the columns are the preference models. For example, in row U, column
P1-M, the monopoly is assumed to be restricted to pure unbundling and
the consumers’ preference distribution is described by the model P1. I
denote a mixed-bundling price pair as p-P. For example, 60-1360 in row
M, column P1-M, means that the monopoly offers a choice between buying
individual items for 60 each and buying the whole collection for 1360.

(iv) Pure unbundling is almost as profitable as mixed bundling when both breadth

and intensity vary (model P3): it yields 99.2% of the mixed-bundling profits

according to the empirical results.

(v) When one of the preference parameters is constant across consumers (models P1

and P2), mixed bundling yields higher profits relative to pure unbundling: the

latter yields 85–90% of the mixed-bundling profits according to the empirical

analysis.

We already know from Chuang and Sirbu (1998) that pure unbundling can

dominate pure bundling even in the presence of (weak) economies of scale and that

mixed bundling strictly dominates the two when the marginal cost is positive. The

authors conclude that “the choice of optimal bundling strategy lies in the balance

between cost-savings from bundling and loss of surplus due to exclusion violation,”16

where exclusion violation is the inefficiency that arises from consumption at

submarginal-cost levels. The result above shows that another important factor is

the distribution of consumer types. Moreover, as the transaction and distribution

costs of digital information goods become negligibly small, the consumer side of the

problem caries increasingly more weight.

The result underscores the intuition Chuang and Sirbu offered to motivate their

two-dimensional preference model for studying mixed bundling: If the correlation

between items (modeled as breadth here) within a collection is the same across

consumers, as in model P2, then consumer reservation prices adequately capture

the diversity in consumer tastes, and the monopolist can capture as much surplus

through pure bundling as through mixed bundling. This is consistent with earlier

16Chuang and Sirbu (1998), p. 13.
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studies that show that pure bundling allows a monopolist to extract all consumer

surplus by reducing buyer diversity, when consumers have i.i.d. valuations over items

(e.g., Bakos & Brynjolfsson, 1998). When correlation varies widely, however, as is

often the case for scholarly journals, music CDs, TV channels, pure bundling is

strictly dominated not only by mixed bundling, but can also be dominated by pure

unbundling (models P1 and P3 here).

Under competition, we are interested in the equilibrium performance of different

schedules. In Table 2.10, I present each firm’s expected equilibrium profit as a

percentage of their profit in the subgame in which they employ mixed bundling,

while the other firm’s scheme is fixed. We can see that the pattern is similar to

that in the monopoly case. Particular numbers differ, but the relative profit sizes

are largely the same. The only exception is the non-symmetric duopoly under P1-

preferences: for the smaller firm, the relative profitability of U and B in equilibrium

is reversed when the other (bigger) firm uses bundling in the pure or mixed form.

This suggests that under competition, each pricing scheme works largely in the same

way to extract consumer surplus as under monopoly.

In some environments, however, mixed bundling leads to more aggressive price

competition, which overrides its benefits as a price-discrimination mechanism. In

such environments, pure schemes yield higher equilibrium profits than the mixed-

bundling scheme, although not by much. For example, in the case of a symmetric

duopoly under P2-preferences, the equilibrium in the BB subgame is better for both

firms than the equilibrium in the UUand MM games (see Table 2.8, environment P2-

SD). Moreover, once in that equilibrium, neither firm would benefit from unilaterally

changing its price schedule: the resulting equilibrium prices would produce lower

profits for the deviating firm. In fact, the mixed bundling scheme is weakly

“dominated” by pure bundling, in the sense that it always leads to weakly lower

profits after prices reach an equilibrium given the schedules, although the potential

loss is below 1%. Note that this holds only in the environment in which mixed

bundling does not offer an advantage as a price-discriminating tool even under

monopoly, i.e., when the preference breadth is constant in the population.

If breadth varies as well as depth, the equilibrium in the UU subgame for the

symmetric duopoly (environment P3-SD) is more profitable for both firms than

that in MM. In this case, however, the firms would want to unilaterally expand

their scheme to mixed bundling. Interestingly, the other firm would not follow the

move, because that would decrease both firms’ profits by around 5% after the price

equilibrium is re-established (see Table 2.10: in the UM game, firm 1 earns 104.9%

of its profit in the MM game). This pattern is observed in the environment in which

pure unbundling is almost as profitable as mixed bundling under monopoly, while
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Symmetric Duopoly Non-Sym. Duopoly Mon.

P1-SD P1-ND P1-M
Firm 2(1) Big Firm

Firm 1(2) U B M Small U B M
U 488 419 485 U 493 416 506 U 495
B 419 408 458 B 443 411 502 B 437
M 485 458 493 M 481 435 520 M 548

P2-SD P2-ND P2-M
Firm 2(1) Big Firm

Firm 1(2) U B M Small U B M
U 500 543 543 U 503 561 564 U 505
B 543 528 526 B 519 569 571 B 592
M 543 526 525 M 519 569 570 M 592

P3-SD P3-ND P3-M
Firm 2(1) Big Firm

Firm 1(2) U B M Small U B M
U 435 383 427 U 436 370 434 U 440
B 383 320 375 B 405 349 413 B 367
M 427 375 390 M 426 360 426 M 444

Table 2.9: Total expected (equilibrium/optimal) profit. For the duopoly models, a
row and a column define a subgame. For example, the number in a row
U and a column M is the total expected equilibrium profit when the row
firm is restricted to unbundling its items and the column firm can offer a
mixed bundle (subgame UM).
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pure bundling yields only 83% of the mixed-bundling profit. That is, when the

population distribution is such that bundling fails to reduce buyer diversity while

individual-article sales capture almost all surplus a monopoly could capture. Again,

increased price competition from utilizing a mixed-bundling scheme hurts profits in

an environment in which mixed bundling extracts little more surplus relative to one

of the pure forms. Under P1-preferences, when mixed bundling has clear benefits for

a single firm, the price competition that corresponds to γ = 0.5 is not strong enough

to override those benefits.

The assumption of the two-dimensional heterogeneity of consumer tastes is key

to these results: if the consumers are ex ante homogeneous, pure bundling achieves

the first-best solution under monopoly (Bakos & Brynjolfsson, 1998) as well as under

duopoly (Fay & MacKie-Mason, 1999, Proposition 1), while pure unbundling yields

less profit than the first-best solution (Fay & MacKie-Mason, 1999, Proposition 2).

Comparing the duopoly total expected profits to those of a monopoly (see

Table 2.11), we see that competition reduces the industry-wide profits by up to

21% depending on the preference model and the combination of pricing schemes the

firms employ. Table 2.8 shows that the firms’ shares of those profits are roughly

proportional to their collection sizes. If we compare by pricing schemes, the effect of

competition on profits of bundling firms is far greater than on firms relying on sales

of individual items. In the worst case, the latter earn 1% below monopolistic profits.

If firms employ pure or mixed bundling, competition can reduce profits by up to 13%

if the firms use the same pricing scheme (column “Diagonal” in Table 2.11) and by

up to 21% if the firms use different schemes (column “Overall” in Table 2.11). This

is not surprising given that when firms bundle, a single purchase carries more weight.

Finally, in Table 2.12 I report market efficiency for all duopoly subgames as

well as for the monopoly. Depending on the preference model and pricing scheme,

competition increases efficiency by up to 16% (see the last column in Table 2.12).

The distribution of welfare is also affected in a predictable way: under each pricing

scheme, competing firms can capture a smaller share of the social welfare compared

to a monopoly. As Table 2.13 shows, unbundling firms lose up to 5% of their welfare

share, firms employing only pure bundling or only mixed bundling (BB and MM

subgames) lose up to 15%, and the largest difference overall is 22%.

These findings contrast with the case of ex ante homogeneous consumers: since

pure bundling achieves the first-best solution under both monopoly and duopoly,

both market structures are efficient. The firms’ profits also fall, however, but for the

case of ex ante homogeneous consumers, this is a direct consequence of the change
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Symmetric Duopoly Non-Sym. Duopoly Largest Diff.

P1-SD P1-ND Diagonal Overall
Firm 2(1) Big Firm

F. 1(2) U B M Small U B M
U -1 -15 -11 U 0 -16 -8 -1
B -15 -7 -16 B -11 -6 -8 -7
M -11 -16 -10 M -12 -21 -5 -10 -21

P2-SD P2-ND
Firm 2(1) Big Firm

F. 1(2) U B M Small U B M
U -1 -8 -8 U 0 -5 -5 -1
B -8 -11 -11 B -12 -4 -4 -11
M -8 -11 -11 M -12 -4 -4 -11 -12

P3-SD P3-ND
Firm 2(1) Big Firm

F. 1(2) U B M Small U B M
U -1 -13 -4 U -1 -16 -2 -1
B -13 -13 -15 B -8 -5 -7 -13
M -4 -15 -12 M -4 -19 -4 -12 -19

Table 2.11: Difference between expected monopoly profits and total expected
equilibrium profits in percent of monopoly profits. A row and a column
define a duopoly subgame. For example, the profit of the subgame UB
is at the intersection of row U and column B. The difference for each
subgame X1X2 is calculated based on the assumption that the monopoly
would chose the pricing scheme Xi, i ∈ {1, 2} with the highest profit.
That is, the total expected equilibrium profit in a UB subgame, for
example, is compared to the maximum of the monopoly’s U- and B-
profits; the total equilibrium profit in a UM subgame is compared to
the monopoly’s profit under the M-scheme. In the last two columns I
report the largest differences across both duopolies for (a) the diagonal
subgames UU, BB, and MM(note that these are all the SD-diagonals),
and (b) over all possible subgames (note that these are all ND-values).
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Symmetric Duop. Non-Sym. Duop. Mon. Largest Diff.

P1-SD P1-ND P1-M Diag. Overall
Firm 2(1) Big Firm

F. 1(2) U Small U B M Mon.
U 81 78 80 U 78 79 81 U 77 4
B 78 85 83 B 78 83 81 B 72 13
M 80 86 86 M 80 82 84 M 80 6 14

P2-SD P2-ND P2-M
Firm 2(1) Big Firm

F. 1(2) U B M Small U B M Mon.
U 78 77 77 U 76 78 77 U 72 6
B 77 87 87 B 77 80 80 B 75 11
M 77 87 87 M 77 80 80 M 75 12 15

P3-SD P3-ND P3-M
Firm 2(1) Big Firm

F. 1(2) U B M Small U B M Mon.
U 78 76 79 U 77 75 77 U 73 6
B 76 86 80 B 75 79 76 B 70 16
M 79 80 84 M 78 80 79 M 75 9 16

Table 2.12: Efficiency (in percent of maximum social welfare). For the duopoly
models, a row and a column define a subgame. For example, in the UU
subgame (row U and column U) in environment P1-SD, the efficiency
is 81%. In the same subgame in P1-ND, it is 78%. In the last two
columns, I report (a) the difference between the highest efficiency in
duopoly subgames UU, BB, and MM and the monopoly efficiency for
the schemes U, B, and M, respectively; and (b) the largest difference
over all pricing schemes. For example, the difference for the U-scheme
under preferences P1 is max(81, 78)− 77 = 4%.

in the distribution of the welfare due to competition.17

2.5 Conclusion

In this chapter, I have explored the interaction between competition and the

bundling of electronically delivered information goods. One of the main contributions

17Fay and MacKie-Mason (1999) show that under duopoly, consumers retain V1 +V2−VB , where
V1 and V2 are the consumer values for the first and second collections, respectively, and VB is the
value for both collections. Since Fay and MacKie-Mason assume that consumers’ valuations of the
collections are strictly subadditive, this quantity is positive (as opposed to zero under monopoly).
The relative size of the consumer share, however, depends on the shape of the consumer valuation
function.
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Symmetric Duopoly Non-Symmetric Duop. Mon. Largest Diff.

P1-SD P1-ND P1-M Diag. Overall
Firm 2(1) Big Firm

F. 1(2) U B M Small U B M Mon.
U 61 54 61 U 64 53 63 U 65 -4
B 54 48 55 B 57 50 63 B 61 -13
M 61 55 58 M 61 53 63 M 69 -11 -21

P2-SD P2-ND P2-M
Firm 2(1) Big Firm

F. 1(2) U B M Small U B M Mon.
U 53 59 59 U 55 60 61 U 58 -5
B 59 51 50 B 56 59 59 B 66 -15
M 59 50 50 M 56 59 59 M 66 -15 -15

P3-SD P3-ND P3-M
Firm 2(1) Big Firm

F. 1(2) U B M Small U B M Mon.
U 53 48 52 U 54 47 54 U 58 -5
B 48 36 45 B 52 42 52 B 50 -14
M 52 45 45 M 52 43 52 M 57 -12 -22

Table 2.13: Firms’ share of actual social welfare (in percent). For the duopoly
models, a row and a column define a subgame. For example, in the
UU subgame (row U and column U) in environment P1-SD, the total
expected equilibrium profits account for 61% of the actual welfare. In
the same subgame in P1-ND, it is 64%. In the last two columns I report
(a) the difference between the lowest duopoly welfare share in subgames
UU, BB, and MM and the monopoly welfare share for the schemes U,
B, and M, respectively; and (b) the largest difference over all pricing
schemes. For example, the difference for the U-scheme under preferences
P1 is min(61, 64)− 65 = −4%.
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of this work is to focus attention on bundling (monopoly and competitive) with

heterogeneous consumers. In particular, consumers vary in the value of their most

favored item in a collection as well as in the percentage of items they value positively

in that collection. This approach allows me to capture not only the variation in the

consumer reservation price for the collection, but also in the amount of correlation

among item valuations within the collection, which is an important preference

characteristic in the context of (mixed) bundling information goods.

I use an empirical-game methodology developed elsewhere in collaboration with

other co-authors to solve the duopoly game. I find that when there are no marginal

costs of production for existing information goods, the relative profitability of

mixed bundling, pure bundling, and pure unbundling is defined by the preference

distribution of the consumers. Generally, the relative performance of these schemes

in a duopoly equilibrium – when firms compete in price after setting on the scheme

– is the same as under monopoly:

• Mixed bundling strictly dominates the pure schemes in highly heterogeneous

environments, working as a price-discrimination tool that provides incentives for

different categories of consumers to self-select into buying individual items or

bundles;

• Pure bundling can extract almost as much consumer surplus as mixed bundling

through its aggregation effect (effect of reducing buyer diversity) when the number

of items consumers value positively (preference breadth) in a collection is constant

across the population and only the “intensity” of their preferences varies – that is,

when the main source of heterogeneity lies in the reservation price for a collection;

• When the preference breadth varies, pure bundling loses its aggregation power,

and pure unbundling can be more profitable, and even as profitable as mixed

bundling.

When firms compete, the general mechanisms by which each pricing scheme works

to extract consumer surplus remain the same, but price competition can reduce the

price-discriminating power of mixed bundling to the extent that pure schemes can

result in higher equilibrium profits than mixed bundling. This can happen under

a symmetric duopoly when the distribution of consumer preferences is such that a

monopolist is almost indifferent between mixed bundling and the pure scheme in

question.

Comparing the effect of competition on social welfare and its distribution, I find

that it has a negligible impact on the industry profits as well as consumer surplus if

items are sold individually. If firms employ bundling schemes – in the pure or mixed
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form – the effect is noticeable. The market efficiency under duopoly is greater than

under monopoly. According to my empirical analysis, it is greater by up to 16%

depending on consumer preference distribution and the particular type of bundling

scheme. The distribution of social welfare predictably shifts toward consumers under

competition, by up to 22%. The largest drop in profits is 21% relative to a monopoly

employing the same (combination of) pricing schemes as the duopoly.
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CHAPTER 3

Learning Bayesian Nash Equilibrium: An

Experimental Study

3.1 Introduction

Games of incomplete information are important in game theory, as many strategic

interactions can be characterized by such games, including auctions, bargaining,

contracting and competitive markets. Since Harsanyi (1968), Bayesian Nash

equilibrium (BNE) has been proposed as the main solution concept for normal-form

games of incomplete information. However, it relies on several strong assumptions.

First, BNE requires strong assumptions on the rationality of the players. Unlike

games of complete information, in which rational play only requires a best response

given the payoff structure, in games of incomplete information, rational play requires

a player to think about what she would do if she were another type. This raises

the question as to whether BNE is a reasonable solution concept if the rationality

assumption is relaxed. Of particular interest to practical applications is the question

whether BNE can arise as a result of a learning process by which the players adjust

their choices in time based on the history of observations such as their payoffs and/or

others’ actions and payoffs. Such process does not necessarily require the players to

be able to compute the equilibrium or even have enough information about the

game to compute it. The term bounded rationality is often used to describe the

assumption on such agents’ behavior. Theoretical research establishes that the

answer is positive for agents with some forms of bounded rationality at least in

the class of potential games (e.g., Monderer and Shapley (1996b), Monderer and

Shapley (1996a), Facchini, van Magen, Borm, and Tijs (1997)) and games with

strategic complementarities (e.g., Vives (2000), Milgrom and Roberts (1990), Blume

(1993)). In these theoretical models, the agents are assumed to follow an adaptive

rule such as the best-response dynamic or an even less restricted type of adjustment.

The empirical question is under what conditions, if any, BNE can arise as a result
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of human learning, and in particular, whether the theoretical results carry over to

practical applications.

Second, BNE assumes common knowledge of the distribution of Nature’s move,

i.e., the distribution of player types. This assumption is not satisfied in many

real-world strategic interactions, including online markets. In online auctions,

for example, information technology enables geographically dispersed bidders to

participate in the same auction, thus making it easier for a relatively large group

of bidders to obtain an object. In such an auction, the common prior assumption

(on bidder types) is almost always violated. In the computer-science community,

there has been a debate about the relevance of BNE for the design and analysis

of mechanisms for the Internet precisely because of the common-prior assumption.

Theoretical research establishes that quite restrictive assumptions are necessary to

justify the concept of BNE without a common prior as a steady state of a learning

process (Dekel, Fudenberg, and Levine (2004), Bergemann and Valimaki (2006)).

Empirically, if it can be demonstrated that, at least in some classes of games, BNE

can arise as a result of learning without a common prior, it will provide a foundation

to investigate the empirical relevance of the solution concept.

To investigate the learnability of BNE, I design a laboratory experiment that

separates learning into two levels. First, when the distribution of types is known

to the players, how accurately does BNE predict the outcomes to which subjects

converge as a result of learning other players’ actions, if they converge at all? Second,

how similar is the answer when the distribution of the types in unknown? Under

both information conditions, I design a class of two-player Bayesian games from the

family of duopoly games by varying two structural properties that have been shown

to affect learning of players with bounded rationality: strategic complementarity

and the existence of a potential. Theoretically, games with strategic complements

and potential games both have robust convergence properties with respect to a

broad class of learning processes. In this experimental study, I find that both

properties affect the convergence dynamics. Under low information, convergence

is more robust in supermodular and potential games, confirming theoretical findings.

The Bayesian-information condition, however, proved to be a more complicated

case. Consistently with earlier experimental studies of complete-information games

in which the equilibrium is not Pareto optimal, we don’t observe such a drastic

improvement in the convergence level. In addition, I find evidence of the subjects’

aversion to losses.
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3.2 Literature Review

Of the large literature on learning in games,1 I will focus on learning in games

of incomplete information. In this section, I first review the theoretical literature. I

then review the relevant experimental literature.

3.2.1 Theoretical Literature on Learning under Incomplete Information

I first present a Bayesian-game framework and notation. I then review theoretical

results on the structural properties of games which lead to convergence to BNE. In

what follows, I will only review results on learning a unique BNE in pure strategies,

which is most relevant for the experimental design.

I organize my overview of related theory around the following questions: What

factors make an equilibrium of a (Bayesian) game easy or hard to learn? How

important for learning are the informational assumptions that underlie the BNE

concept?

In games with a unique equilibrium, the idea of structural properties facilitating

learning can be formalized by some notion of the “dynamic stability” of the

equilibrium with respect to a class of learning processes. In games with multiple

equilibria, learnability has more than one dimension. One important question

concerns equilibrium selection and stability properties of the selected equilibrium.

Another way to look at learnability is to study the dynamic stability of the

equilibrium set in general. In Sections 3.2.2–3.2.5, I provide an overview of structural

properties that theoretically facilitate learning in games. The object of most

theoretical studies I overview is normal-form (or strategic-form) games with Nash

equilibrium as the solution concept, but the definitions and, in some cases, analysis

can be extended to Bayesian games as well. It is worth noting that the structural

properties discussed in Sections 3.2.2–3.2.5 are each sufficient to ensure that there

exists an equilibrium in pure strategies. In Section 3.2.6, I review some limitations

of the assumption that players have correct common priors in models predicting

learning outcomes.

Let N 6= Ø be the set of players. I will assume that N is finite, although some

of the theorems presented here hold for infinite N as well. Each player n ∈ N has

a strategy set Xn with typical element xn. This element is also referred to as player

n’s pure strategy. The competitors’ (pure) strategies are denoted by x−n and a full

strategy profile is denoted by x = (xn, x−n) ∈ X, where X = ×nXn. Elements of X

1See Fudenberg and Levine (1998) for a survey of the theoretical learning literature. For a survey
of the experimental learning literature, see Camerer (2003), and more recently, Erev and Haruvy
(2008).
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are called pure-strategy profiles or simply strategy profiles. Player n’s payoff function

is πn(xn, x−n). The object Γ = {N, (Xn, πn, n ∈ N)} is a game in normal form.

In general, players’ choices do not have to be deterministic. Randomization

of choices gives rise to what is called a mixed strategy. Given player n’s finite

pure strategy set Xn, a mixed strategy for player n, δn : Xn → [0, 1], assigns to

each pure strategy xn ∈ Xn a probability δn(xn) ≥ 0 that it will be played, where∑
xn∈Xn

δn(xn) = 1. If Xn is infinite, a mixed strategy δn : Xn → [0, 1] is a probability

distribution over Xn, which integrates to one:
∫

xn∈Xn
δn(xn) = 1. I will denote the

set of mixed strategies of player n by ∆n and the set of mixed-strategy profiles,

×n∆n, by ∆.

It is sometimes important that the strategy spaces are ordered. This is the

case, for example, in supermodular and submodular games, which I overview in

Sections 3.2.3–3.2.4. Let each strategy set Xn be endowed with a partial order ≥,

and the strategy profiles be endowed with the product order, that is, x ≥ x′ means

xn ≥ x′n for all n ∈ N . The object Γo = {N, (Xn, πn, n ∈ N),≥} is a game in ordered

normal form.

In Bayesian games, the players have privately observed characteristics, or types,

which affect their and other players’ payoffs. Formally, let a random variable θn ∈ Θn

chosen by nature and observed only by player n be n’s type. The joint probability

distribution of the θn’s is given by F (θ1, . . . , θ|N |), which is assumed to be common

knowledge among the players. I will denote by µ̂ the common beliefs of the players,

which is a probability measure on Θ = ×nΘn. The measure µ̂n will represent the

marginal on Θn. The payoff to player n is given by πn : X × Θ → R. A Bayesian

game is the object Γb = {N, (Xn, πn, n ∈ N), Θ, F (·)}. A pure strategy for player n

is a map xn : Θn → Xn, which assigns an action to every possible type of the player.

A mixed strategy is a map δn : Θn → ∆n.

3.2.2 Stability with Respect to the Cournot Tatonnement

One of the oldest notions of stability in games is stability with respect to the

Cournot tatonnement (Cournot best-reply dynamic). Assume that the players follow

some sort of adaptation process. “Myopic” players may react to the strategies played

by the other players by deviating to best-reply strategies. Considering the underlying

time axis to be a continuum, such deviations may be assumed to take place one at a

time. The resulting dynamic system is the continuous Cournot tatonnement. Below

I define it more formally. The definition applies to both normal-form and Bayesian

games.

Definition 3.1. Suppose that xn ∈ R. Let gn(x−n) be player n’s best-reply function.
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The continuous Cournot tatonnement is a first order system of differential equations

ẋn(t) = gn(x−n(t))− xn(t), n ∈ N, (3.1)

where t is time and ẋn(t) is the derivative of xn(t) with respect to time.

A solution of the system is any function x(t) = (xn(t)) that satisfies Equa-

tion (3.1). Any constant-function solution xn(t) = x∗n, n ∈ N , of Equation (3.1)

is an equilibrium.

Definition 3.2. An equilibrium x∗ = (x∗n), n ∈ N , is called asymptotically stable if

every solution x(t) which starts near x∗ converges to x∗ as t →∞.

Definition 3.3. An equilibrium x∗ = (x∗n), n ∈ N , is called globally asymptotically

stable if for any initial condition x(0) = x0 (with the possible exception of some lower-

dimensional set of x0’s), the solution of the initial value problem ẋn = gn(x−n(t))−
xn(t), x(0) = x0 tends to x∗ as t →∞.

In other words, an equilibrium is globally asymptotically stable if just about every

solution x(t) tends to x∗ as t →∞.

Equilibrium stability for linear systems in |N | dimensions can be determined

based on the eigenvalues of the coefficient matrix of the system. Stability of an

equilibrium of a non-linear system of autonomous differential equations can be

determined based on the eigenvalues of the Jacobian matrix of the system. See,

for example, Simon and Blume (1994).

Vives (1990) provides an important stability result for a special case of strictly

increasing continuously differentiable best replies. This is stated by the following

theorem.2

Theorem 3.4. Suppose that strategy spaces are compact intervals and that best

replies are strictly increasing continuously differentiable functions gn(·), n ∈ N (that

is, we have ∂gn

∂xm
> 0, m 6= n). Then the continuous Cournot tatonnement converges

to an equilibrium point of the game for almost all starting points x0. When the

number of players |N | = 2 and best replies are either strictly increasing or strictly

decreasing convergence everywhere, as opposed to almost everywhere, is obtained.

Note that the convergence is to an equilibrium point. When the best replies

are continuous monotone functions, this can be a stable internal equilibrium or a

corner solution. Intuitively, the assumption of strictly increasing (as well as strictly

decreasing for |N | = 2) functions ensures that the Cournot tatonnement will never

oscillate in a cycle and will converge to either an internal fixed point or a boundary

2The result is directly implied by Hirsch (1985), Theorem 5.1 and Corollary 2.8.
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of the strategy space. The assumption that the strategy spaces are compact intervals

guarantees that any fixed point (internal or boundary) belongs to the strategy space.

The definition of the Cournot best-reply dynamic then implies that its end point is

an equilibrium.

In the following sections, I overview theoretical results on equilibrium existence

and stability in n-player games with strategic complementarities and two-player

games with strategic substitutes. These results can be thought of as extensions

of this simple result to a broader class of players’ payoff functions, actions spaces,

and learning dynamics. The underlying structural property that prevents a learning

dynamic from cycling in loops is that of strategic complementarity of the players’

actions, which in the above theorem is formalized as strictly increasing best-reply

functions. In two-player games, strategic substitutability is also sufficient for the

result.

3.2.3 Games with Strategic Complements

Strategic complementarity of players’ actions can be formalized as increasing

best replies, increasing differences of the payoff functions, or supermodular payoff

functions. In general, supermodularity is a stronger property than increasing

differences, and they both imply increasing best replies (Vives, 1990).

I adopt Milgrom and Roberts’ definition of supermodular games (Milgrom &

Roberts, 1990). Supermodular games are games in which each player’s strategy set is

partially ordered, the marginal returns to increasing one’s strategy rise with increases

in the competitors’ strategies and, if a player’s strategies are multidimensional, the

marginal returns to any one component of the player’s strategy rise with increases

in any other component.

Definition 3.5. Suppose that a typical strategy for player n is (xni; i = 1, . . . , kn) ∈
Rkn and that ≥ is the usual componentwise ordering. Then Γo is a supermodular

game if, for each n ∈ N :

(A1) Xn is an interval in Rkn, that is,

Xn = [xn, xn] = {x|xn ≤ x ≤ xn};

(A2) πn is twice continuously differentiable on Xn;

(A3) ∂2πn

∂xni∂xnj
≥ 0 for all n and all 1 ≤ i < j < kn;

(A4) ∂2πn

∂xni∂xmj
≥ 0 for all n 6= m, 1 ≤ i < kn and 1 ≤ j < km.
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In other words, in a supermodular game the players’ preferences can be

represented as supermodular functions defined on the strategy space.3

Supermodularity of the payoff functions creates a favorable environment for

learning. The results of Milgrom and Roberts (1990), for example, imply that in

supermodular games with a unique equilibrium, a broad class of learning processes

converge to the equilibrium. More generally, Milgrom and Roberts (1990) show

that the smallest and largest elements of the sets of pure-strategy equilibria,

correlated equilibria, and rationalizable strategies are the same in supermodular

games (Theorem 5, Milgrom and Roberts (1990)). Also, for a class of models of

dynamic adaptive choice behavior that encompasses best-reply dynamics, fictitious

play, and Bayesian learning, the players’ choices lie eventually within the same

bounds (Theorem 8, Milgrom and Roberts (1990)). To put it simply, these results

characterize supermodular environments as robust to the choice of the solution

concept and learning behavior, which in turn leads to solid theoretical predictions

about the game outcomes.4

However, as Milgrom and Roberts point out, the usefulness of their results

depends partly on the equilibrium set. The outcome prediction is the strongest

in games with a unique equilibrium. For games with multiple equilibria, the learned

outcome is not even guaranteed to be an equilibrium: it only has to lie “between”

some of them. Equilibrium choice also remains an issue. This point is illustrated in

Example 3.2.1, in which I consider a supermodular game with corner solutions. In

this game, Theorem 8, Milgrom and Roberts (1990), may not narrow down the set

of possible learning outcomes to anything smaller than the original strategy space,

while direct stability analysis of the Cournot tatonnement (see Section 3.2.2) predicts

that the learning-outcome set consists of the corner solutions.

Example 3.2.1. There are two players, the strategy spaces are closed intervals and

3 Formally, the definition of supermodularity for a twice continuously differentiable function is as
follows. Let I = [x, x] be an interval in Rn, n ≥ 2. Suppose that f : Rn → R is twice continuously
differentiable on some open set containing I. The function f is supermodular on I if for all x ∈ I

and all i 6= j, ∂2f
∂xi∂xj

≥ 0. There are no restrictions on ∂2f
∂x2

i
. More generally, the supermodularity

condition is f(min(x, x′)) + f(max(x, x′)) ≥ f(x) + f(x′), x, x′ ∈ Rn. Thus, supermodularity holds
trivially for n = 1.

4In general, the conclusion about possible outcomes of learning in games is rather negative.
Shapley (1964), for example, established that fictitious play (and the Cournot best-reply dynamic
as a special case) can lead to an infinite pattern of cycling behavior for two-player, finite strategy,
general sum games. Fudenberg and Kreps (1988) show that learning may yield a larger set of
strategies than is identified by Nash equilibrium. See Milgrom and Roberts (1990), p. 1268 for
a discussion. Dekel et al. (2004) establishes that the set of self-confirming equilibria, a solution
concept incorporating the players’ beliefs and observation histories, and the set of (Bayes-)Nash
equilibria coincide only for a narrow class of games. In contrast, structural properties of the payoff
functions such as supermodularity in games leads to more positive results.
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the payoffs are π1(x1, x2) = −x2
1 + 6x1x2 and π2(x1, x2) = −x2

2 + 4x1x2, respectively.

The game is supermodular by Definition 3.5, because the cross-derivatives of the

payoff functions are both positive (6 and 4, respectively). The best responses are

straight lines with slopes greater than 1 (3 and 2, respectively). Suppose the strategy

spaces include the origin, which is the intersection point of the best replies, so that

the internal equilibrium is feasible. It can be shown that the internal equilibrium is

unstable with respect to the Cournot best-reply dynamic, which means that a best-

reply learning process will eventually stop at a boundary of the strategy set (i.e., at

one of the corner solutions, depending on the players’ initial choices). Milgrom and

Roberts’ results, however, only tell us that the players’ choices will eventually lie in

the area between those corner solutions, a set that may be equal to the strategy space.

In many interesting games, however, the shapes of the best replies are more

complex, especially when there are more than two players: the strategy sets are

multidimensional, and the payoff functions are not concave. In such cases, the theory

of supermodular games becomes very useful. For example, supermodularity implies

increasing best replies (i.e., strategic complementarity) even if the players’ payoff

functions are not quasiconcave, as is often the case in economic applications (Vives,

1990). In addition, the strategy space does not have to be a product of compact

intervals in R. It can be any complete lattice, a family of sets that includes non-

compact and discrete sets:5

Definition 3.6. The game Γo is a supermodular game if, for each n ∈ N :

(A1’) Xn is a complete lattice;

(A2’) πn : X → R∪{−∞} is order upper semi-continuous in xn (for fixed x−n) and

order continuous in x−n (for fixed xn) and has a finite upper bound;

(A3’) πn is supermodular in xn (for fixed x−n);

(A4’) πn has increasing differences in xn and x−n.

The Definition 3.6 is the original definition given by Milgrom and Roberts (1990),

and the equivalence of the Definitions 3.5 and 3.6 for the class of smooth payoff

functions defined on a product of compact intervals follows directly from Topkis’s

Characterization Theorem (Topkis, 1979). Games satisfying Definition 3.5 are also

called smooth supermodular games. All the results presented in this section hold for

the general class of supermodular games defined as in Definition 3.6.

5For theory of lattices see Birkhoff (1940). Milgrom and Roberts (1990) also provide a brief
overview of lattice theory.
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When detecting or formulating supermodular games, it is important to under-

stand the role of the ordering imposed on the strategy space. Many economic models

that are not supermodular games in their original formulation can be reformulated

as supermodular ones. In Example 3.2.2 below, I demonstrate one way of doing it.

Example 3.2.2. There are two players, the strategy spaces are closed intervals and

the payoffs are π1(x1, x2) = −x2
1 − 6x1x2 and π2(x1, x2) = −x2

2 − 4x1x2, respectively.

The cross-derivatives of these functions are both negative, and therefore the game does

not satisfy the assumptions of Definition 3.5. Thus, the game is not supermodular.

However, there may exist an alternative interpretation of strategy spaces, under which

the game will become supermodular. For example, suppose that x1 and x2 denote how

fast the players do some action. Then the natural order ranks faster actions higher.

Redefine player 2’s strategy as x′2 = −x2, which is equivalent to ordering her strategies

by how slow the actions are. The new payoffs become π′1(x1, x
′
2) = −x2

1 + 6x1x
′
2 and

π′2(x1, x
′
2) = −(x′2)

2+4x1x
′
2, which are supermodular, as established in Example 3.2.1.

See Vives (1990) and Milgrom and Roberts (1990) for examples of well known

economic models that can be reformulated as supermodular games.

I now summarize Milgrom and Roberts’ key results in more detail. A learning

process is an arbitrary history of the players’ choices as they repeatedly play the

game. In loose terms, a pure strategy xn is justifiable if no combination of other

strategies the player n has played is better that xn, according to the payoff feedback

n observed in the play history. A process is one of adaptive dynamics if the players’

choices eventually lie in the interval defined by the set of such justifiable strategies.6

The definition of an adaptive dynamic imposes a very weak restriction on the players’

choices: they do not all have to be justifiable; being bounded by justifiable strategies

is all that is required.

The first key theorem states that in supermodular games, the smallest and

largest elements in the set of serially undominated strategies7 are always well defined

concepts, they always exist, and they are always pure-strategy equilibria (Theorem 5,

6A formal definition relies on a few game-theoretic concepts and a few bits of new notation.
A pure strategy xn for player n is said to be strongly dominated by another pure strategy x̂n if
it is the case that for all x−n, πn(xn, x−n) < πn(x̂n, x−n). Given a product set X̂ of strategy
profiles, define the set of n’s undominated responses to X̂ by Un(X̂) = {xn ∈ Xn|(∀x′n ∈ Xn)(∃x̂ ∈
X̂)πn(xn, x̂−n) ≥ πn(x′n, x̂−n)}. Let U(X̂) = (Un(X̂);n ∈ N) be the list of undominated responses
for each player, and let U(X̂) denote the interval [inf(U(X̂), sup(U(X̂)]. Let {x(t)}, x(t) ∈ X, t ∈ T,
denote a learning process. The time index t can be discrete or continuous. Given a process {x(t)}, let
P (T, t) denote the strategies played between times T and t: P (T, t) = {x(s)|T ≤ s ≤ t}. A process
{x(t)} is one of adaptive dynamics if (∀T )(∃T ′)(∀t ≥ T )x(t) ∈ U([inf(P (T, t)), sup(P (T, t))])
(Condition (A6), Milgrom and Roberts (1990).

7A strategy is serially undominated if it survives iterated elimination of dominated strategies.
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Milgrom and Roberts (1990)).8

One obvious corollary is that any supermodular game has a pure-strategy

equilibrium. Another corollary says that if the supermodular game Γo has a

unique pure-strategy equilibrium (i.e., if the smallest and largest equilibrium points

coincide), then Γo is dominance solvable. These characteristics also tend to facilitate

learning. They represent another piece of evidence suggesting that supermodular

games are “learning-friendly”.

Finally, Theorem 8, Milgrom and Roberts (1990), and its two corollaries, state

that for any adaptive dynamic for a supermodular game Γo, the players’ choices will

eventually lie between the smallest and the largest pure-strategy equilibria of Γo.

Vives (1990) showed that the analysis of supermodular games can be extended

to Bayesian games obtained from normal-form games by introducing multiple player

types. The result consists of two parts. First, if the set of strategies for any given type

is a compact subset of reals,9 then any player’s strategy space is a complete lattice

(i.e., it satisfies Assumption 1 of Definition 3.6), provided the type space satisfies

some regularity conditions.10 The second step is to show that supermodularity is

preserved under integration.

3.2.4 Two-Player Games with Strategic Substitutes

Games with strategic substitutability are characterized by decreasing best replies,

decreasing differences of the payoff functions, or submodular payoff functions. For

completeness, I provide a definition of a smooth submodular game below.

Definition 3.7. Suppose that a typical strategy for player n is (xni; i = 1, . . . , kn) ∈
Rkn and that ≥ is the usual componentwise ordering. Then Γo is a supermodular

game if, for each n ∈ N :

8Since the strategy space is assumed to be a partially ordered set, in general, not all (equilibrium
or non-equilibrium) strategy profiles can be compared, and therefore the largest and smallest
elements of a strategy subset are not always well defined concepts (i.e., they do not always exist).
For example, consider a two-player game, where each player’s strategy set is an interval with a
natural order of real numbers: Xn = [0, 1], n = 1, 2. The product order, frequently assumed as
the partial order of X, is defined as follows: x ≥ x′ if for all n xn ≥ x′n. Thus, (1, 1) ≥ (0, 0) and
(1, 0) ≥ (0, 0), but the relationship between (1,0) and (0,1) is not defined. Theorem 5 by Milgrom
and Roberts (1990) says that the concept of the smallest and the largest rationalizable strategy
is always well defined in supermodular games. Moreover, because all pure-strategy equilibria are
always correlated equilibria, which in turn are always rationalizable strategies, the fact that the
smallest and largest rationalizable strategies are pure-strategy equilibria implies that the three sets
have identical bounds.

9More generally, Vives (1990) assumes that strategy spaces are compact lattice subsets of
Euclidean spaces.

10The type sets are assumed to be non-empty complete separable metric spaces.
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(B1) Xn is an interval in Rkn, that is,

Xn = [xn, xn] = {x|xn ≤ x ≤ xn};

(B2) πn is twice continuously differentiable on Xn;

(B3) ∂2πn

∂xni∂xnj
≤ 0 for all n and all 1 ≤ i < j < kn;

(B4) ∂2πn

∂xni∂xmj
≤ 0 for all n 6= m, 1 ≤ i < kn and 1 ≤ j < km.

Games with strategic substitutes do not have the robust dynamic stability

properties as games with strategic complements except for the two-player case.

Specifically, two-player submodular games can be reformulated as supermodular

games by simply reversing the usual order of one player’s strategy space. All

theoretical results on supermodular games therefore apply to two-person submodular

games. In practice, however, whether the game can be treated as supermodular may

depend on players’ perception of the game. In some games, there are multiple natural

ways to order the strategy sets. For example, in a multiperiod arms race game the

strategic choices can be ordered by the stock of arms held in each period or by the

periodic level of investment in new armaments. As Milgrom and Roberts (1990)

show,11 the former game is supermodular, while the latter is not. It is reasonable to

expect that over time the players can learn to see the game in its former formulation

(or both) and therefore perceive it as supermodular. Vives (1990) showed that a

variety of Cournot duopoly games are supermodular if one of the two players’ strategy

sets is given in the reverse of its usual order, but not the natural order. Here, to apply

the theory of supermodular games, one has to rely on the firms to treat each others’

productions asymmetrically and order them in a different way, but the idea that firms

may evolve to perceive the game as supermodular or act as if it is supermodular is

plausible. In an abstract game such as Example 3.2.2, however, the players should

have some insight into game theory to do the trick in order to help their learning.

Therefore, it is plausible that they will not perceive such a context-free submodular

game as supermodular. I rely on this conjecture in the design of my experimental

study (Section 3.4).

3.2.5 Potential Games

A second class of games with robust dynamic stability properties is the class of

potential games.

11See pp. 1256, 1272–1274.
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Definition 3.8. A function P : X → R is a potential for Γ, if for every n ∈ N and

for every x−n ∈ X−n

πn(xn, x−n)− πn(x′n, x−n) = P (xn, x−n)− P (x′n, x−n),

for every x, x′ ∈ Xn. Γ is called a potential game if it admits a potential.

It follows directly from the definition that the equilibrium set of a potential game

coincides with that of a game in which all players’ payoff functions are replaced with

the potential function.12 Thus, if players jointly maximize the potential function P ,

they end up in an equilibrium. The following is an example of a potential game and

its potential function.

Example 3.2.3. Consider the game in Example 3.2.1. The first player’s payoff

function is given by π1(x1, x2) = −x2
1 + 6x1x2. Redefine the second player’s payoff

function as follows: π2(x1, x2) = −2x2
2 + 6x1x2. This game is potential, and the

potential function is given by P = −x2
1 − 2x2

2 + 6x1x2.
13 It is maximized at the

origin.

Unfortunately, I cannot offer any straightforward economic interpretation of the

potential function, nor could Monderer and Shapley, who introduced potential games

(Monderer & Shapley, 1996b).

Anderson, Goeree, and Holt (2001) generalize the definition of a potential to a

broader class of games and define it, in loose terms, as a function of all players’

decisions, which increases with unilateral changes that increase a player’s payoffs,

so that any Nash equilibrium is a stationary point of the potential function. Their

intuition behind potential is that “if each player is moving in the direction of higher

payoffs, each of the individual movements will raise the value of the potential, which

ends up being maximized in equilibrium.”

The class of learning processes for which positive results in potential games have

been obtained is in fact broader than the best-reply dynamic. Monderer and Shapley

(1996a) showed that every fictitious play process converges to equilibrium in finite

potential games. Loosely speaking, fictitious play can be thought of as the best-

reply dynamic in which the players play their best reply to the complete history

of observed strategy profiles by other players, rather than to the last observation.

Monderer and Shapley (1996b) showed that in any bounded potential game (with

possibly infinite strategy sets), if players follow a “weaker” version of the best-reply

12The result in fact holds for a larger class of all finite ordinal potential games (see Lemma 2.1,
Monderer and Shapley (1996b))

13Potential functions are unique up to a constant (Monderer & Shapley, 1996b).
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dynamic, they will eventually come arbitrarily close to equilibrium. By a “weaker”

version I mean that the players are assumed to “better-reply” rather than best-reply.

To summarize the results formally, I will need to introduce new notation. A path

in X is a sequence x = (x(t))∞t=1 of elements of X. A belief path associated with time

t and a path x(t) is a sequence fx(t) = 1
t

∑t
i=1 x(t) in ∆.

Definition 3.9. A path x = (x(t))∞t=1 is a fictitious play process if for every n ∈ N

xn(t + 1) = BRn(fx
−n(t)),

where BRn is n’s best reply.

Corollary 2.2, Monderer and Shapley (1996b), states that every finite potential

game possesses a pure-strategy equilibrium.14 Theorem 2.4, Monderer and Shapley

(1996b), states that in every finite potential game, every fictitious play process

converges in beliefs to an equilibrium.15

Although the proof of Theorem 2.4, Monderer and Shapley (1996b), is quite

involved, the intuition behind these results can be illustrated for a simpler “better-

reply” learning dynamic in a game with a finite strategy space X.16

Consider a sequence γ = (x0, x1, . . .), xi ∈ X such that for every k ≥ 1 there exists

a unique player, say player n, such that xk = (xk−1
−n , xn) for some xn 6= xk−1

n ∈ Xn. A

sequence γ = (x0, x1, . . .), xi ∈ X is an improvement path with respect to Γ if for all

k ≥ 1 πn(xk) > πn(xk−1), where n is the unique deviator at step k. It follows from

the definition of the potential game that P (xk) > P (xk−1) for all k ≥ 1. Thus, for

every improvement path γ = (x0, x1, . . .), xi ∈ X we have P (x0) < P (x1) < . . .. That

is, the potential function is strictly increasing along any improvement path γ. As the

strategy space X is a finite set, the sequence γ must be finite.17 This demonstrates

why the existence of potential implies that learning processes are unlikely to cycle

in loops. If the players move in the direction of improving their expected payoff,

making predictions based on the observed history of play, they will eventually come

to a point where the potential is maximized, which by definition means that no

player can further unilaterally improve her payoff. In other words, they will come to

a pure-strategy equilibrium. An obvious corollary is that a pure-strategy equilibrium

must exist.

14The result in fact holds for all finite ordinal potential games, which is a larger class of games
than finite potential games (see Monderer and Shapley (1996b)).

15The result in fact holds for all finite weighted potential games, which is a larger class of games
than finite potential games (see Monderer and Shapley (1996b)).

16Monderer and Shapley (1996b) use similar logic to extend the analysis to bounded potential
games with possibly infinite strategy sets.

17This result is a slightly modified proof of Lemma 2.3, Monderer and Shapley (1996b), which
states that it holds for a broader class of all finite ordinal potential games.
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A similar result holds for any bounded potential game. The game Γ is a bounded

game if the payoff functions πn, n ∈ N , are bounded. This includes games with

infinite strategy sets, not necessarily continuous. Monderer and Shapley extend the

concept of an improvement path to that of an ε-improvement path, which requires

that the unique deviator improves her payoff by at least an ε at each step, where ε

is an arbitrarily small positive number. This concept is well defined for games with

finite as well as infinite strategy sets. In any bounded potential game, if players follow

a path with such properties, their choices will eventually lie arbitrarily close to an

equilibrium (Lemmas 4.1 and 4.2, Monderer and Shapley (1996b)). Lemma 4.3,

Monderer and Shapley (1996b), states that any continuous potential game with

compact strategy sets possesses a pure-strategy equilibrium.

The following two theorems help detect potential games when the payoff functions

are differentiable and the strategy sets are intervals of real numbers.

Theorem 3.10. (Lemma 4.4, Monderer and Shapley (1996b)). Let Γ be a game in

which the strategy sets are intervals of real numbers. Suppose the payoff functions

πn : Xn → R, n ∈ N , are continuously differentiable, and let P : X → R. The P is

a potential for Γ if and only if P is continuously differentiable and

∂πn

∂xn

=
∂P

∂xn

for every n ∈ N.

Theorem 3.11. (Theorem 4.5, Monderer and Shapley (1996b)).18 Let Γ be a game

in which the strategy sets are intervals of real numbers. Suppose the payoff functions

πn : Xn → R, n ∈ N , are twice continuously differentiable. Then Γ is a potential

game if and only if

∂2πn

∂xn∂xm

=
∂2πm

∂xn∂xm

for every n, m ∈ N. (3.2)

Like the class of games with strategic complementarities, the class of potential

games possess robust dynamic stability properties. Monderer and Shapley (1996a)

showed that every fictitious play process converges to equilibrium in finite potential

games. Myopic learning process based on one-sided better reply dynamics converges

to the equilibrium set. Furthermore, Blume (1993) shows that a log-linear (noisy)

learning process converges to the arg max set of the potential.

While Monderer and Shapley (1996b) analyze potential games of complete

information, Facchini et al. (1997) extend Rosenthal’s congestion model (Rosenthal,

1973) to an incomplete information setting and show that the related Bayesian games

are potential games. Relevant to the experiment, Facchini et al. (1997) show that

Bayesian potential game with inconsistent priors need not have a pure strategy BNE.

18The original theorem also provides a method of constructing the potential function based on
the players’ payoff functions.
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3.2.6 Equilibrium Stability and the Common-Prior Assumption

Bayesian games can be thought of as games with a move by Nature, which draws

a type for each player before the actual game. As we know from Section 3.2.1, the

type distributions (which do not have to be the same for all players) are common

knowledge, while the types are privately revealed to the players. Dekel et al. (2004)

raise the question about the limitations of the common-knowledge assumption and

address issues arising when players are learning about the distribution of Nature’s

move (i.e., the type distributions) as well as learning about opponents’ strategies.

Dekel et al. (2004) do not formally model the dynamics of learning, but they

appeal to the idea that a steady state of a learning process based on the players’

beliefs about opponents’ play should be a self-confirming equilibrium (SCE). In a

sense, this is an equilibrium concept that incorporates some notion of stability with

respect to learning processes that adapt based on the observed history of play. It

turns out that the players’ prior beliefs about the type distribution are critical for

the learning outcome. Below I reproduce the notation, the definition of the self-

confirming equilibrium, and the intuition behind the concept as provided by the

authors.19

The key components of self-confirming equilibrium are: each player n’s beliefs

about Nature’s move, each player’s strategy, and each player’s conjecture about the

strategies used by the other players. Player n’s beliefs, µ̂n, are interpreted here

as a point in the space ∆(θ) of distributions over Nature’s move, and the player’s

conjectures about opponents’ play are assumed to be a δ̂−n ∈ ×−n∆−n, that is,

a (mixed-) strategy profile of n’s opponents. The notation µ̂n(·|θn) refers to the

conditional distribution corresponding to µ̂n and θn, while δn(xn|θn) denotes the

probability that δn(θn) assigns to xn. Suppose also that p(θn) is the true distribution

of the Nature’s move and that after each play of the game, players receive private

signals yn = yn(x, θ), representing information about Nature’s move and the other

players’ moves. In other words, these are the players’ private observations of others’

play.

Definition 3.12. A strategy profile δ is a self-confirming equilibrium (SCE) with

conjectures δ̂−n and beliefs µ̂n if for each player n,

(i) for all θn with p(θn) 6= 0, µ̂n(θn) = p(θn),

and for any pair θn, x̂ such that µ̂n(θn) · δn(x̂|θn) > 0 both the following

conditions are satisfied

(ii) x̂ ∈ arg maxxn

∑
x−n,θ−n

πn(xn, x−n, θn, θ−n)µ̂n(θ−n|θn)δ̂−n(x−n|θ−n),

19Dekel et al. (2004), pp. 286–287.
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and for any yn in the range of yn

(iii) ∑
{x−n,θ−n:yn(x̂n,x−n,θn,θ−n)=yn}

µ̂n(θ−n|θn)δ̂−n(x−n|θ−n) =

∑
{x−n,θ−n:yn(x̂n,x−n,θn,θ−n)=yn}

p(θ−n|θn)δ−n(x−n|θ−n).

Condition (i) is a consequence of the assumptions that players observe their

own types, and the types are independently identically distributed over time.

Condition (ii) says that any action played by a type of player n that has positive

probability is a best reply to her conjecture about the other players’ play and beliefs

about Nature’s move. Condition (iii) says that the distribution of signals (conditional

on type) that the player expects to see equals the actual distribution.

The key result is in Proposition 2 (below), which gives rather restrictive conditions

sufficient for the sets of SCE and Bayesian Nash equilibria to coincide, and a number

of examples showing that the sets do not coincide when the assumptions of the

proposition are violated. Together these results illuminate some limitations of the

common-prior assumption about the type distributions in Bayesian games and offer

an explanation of some experimental evidence that learning outcomes may differ from

theoretical predictions. In the experiment, I do not attempt to test these theoretical

results and design the treatments to satisfy the assumptions of Proposition 2. I

reproduce Proposition 2 below.

Proposition 3.13. (Proposition 2, Dekel et al. (2004).) If either

1. payoffs are generic (i.e., πn(x, θ) 6= πn(x′, θ′) if x 6= x′ or θ 6= θ′) and observed,

or

2. there are private values πn(x, θ) 6= πn(x′, θn) and observed actions,

then the set of strategy profiles in self-confirming equilibria coincides with the set of

Nash equilibrium profiles of the game with the correct (hence common) prior.20

3.3 Experimental Literature

While there has emerged a large experimental learning literature in the past

decade, most of this literature is focused on learning Nash equilibrium under complete

information. I refer the reader to Camerer (2003) and Erev and Haruvy (2008) for

20BNE in a Bayesian game is, using the terminology of Dekel et al. (2004), a Nash equilibrium
of a simultaneous-move game preceded with Nature’s move, in which the player’s have the correct
common prior over the distribution of Nature’s move.
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comprehensive surveys. In what follows, I summarize the experimental literature

on learning in Bayesian games, games of strategic complementarity, and potential

games.

In games of strategic complementarity, the experimental results differ in two

classes of environments. First, when Nash equilibrium is Pareto optimal, learning

leads to robust convergence to Nash equilibrium (Chen and Tang (1998) and Chen

and Plott (1996)). Furthermore, this robust convergence result extends to near-

supermodular games (e.g., Chen and Gazzale (2004)). When Nash equilibrium is

not Pareto optimal, however, empirical results contradict theoretical predictions. At

the heart of this contradiction is the assumption of rational behavior. Based on a

series of human-subject experiments, Fehr and Tyran argue that under strategic

complementarity, a small amount of individual irrationality may lead to large

deviation from aggregate predictions of rational models (Fehr and Tyran (2005),

Fehr and Tyran (2004b), Fehr and Tyran (2004a), and Fehr and Tyran (2001)).

Under strategic substitutes, on the other hand, a minority of rational agents may

suffice to generate outcomes consistent with the predictions of rational models. Fehr

and Tyran’s examples of individual irrationality include money illusion (nominal vs.

real incomes) and base rate fallacy (the Monty Hall problem). Intuitively, the authors

point out, the cost of a “mistake” is low under strategic complements, while the cost

for others of not responding to irrational behavior is high. Therefore, in games with

strategic complements, rational predictions are not achieved or achieved more slowly.

Similarly to this study, in the money illusion experiment, the equilibrium is not

Pareto optimal. This characteristic apparently gives rise to irrational21 behavior

by some subjects, who favor Pareto-superior albeit non-equilibrium choices. Such

behavior can be explained by either personal incentives to collude or by tensions

between individual and social preferences.22

Potters and Suetens (2006) study collusion in supermodular and non-supermodular

environments in which the equilibrium is not Pareto optimal. The payoff functions

induced in Potters and Suetens (2006) are very similar to those induced in this

experiment. The authors report results qualitatively similar to those by Fehr

and Tyran: the level of convergence to the equilibrium in the supermodular

environment was much lower than the theory of supermodular games suggests.

Rather than learning the equilibrium, the subjects converge to collusive outcomes.

While potential games with multiple equilibria, especially order statistics games,

have been studied extensively in the experimental literature (Camerer (2003),

21By irrational I mean behavior that does not constitute best reply in the context of one-shot
simultaneous-move games.

22Under social preferences, players tend to prefer socially beneficial outcomes.

92



Chapter 7), a few papers investigate learning in congestion games under different

information conditions. Chen (2003) reports an experimental study of the serial

and the average cost pricing mechanisms under different information conditions.

Although the proportion of Nash-equilibrium play under both mechanisms is

statistically indistinguishable under complete information, the serial mechanism

performs robustly better than the average cost pricing mechanism under limited

information, both in terms of the proportion of equilibrium play and system

efficiency. When the environment is more complex, with four types of players,

Chen, Razzolini, and Turocy (2007) show that the serial mechanism performs

significantly better than the average-cost-pricing mechanism in all treatments in

terms of efficiency, predictability measured as frequency of equilibrium play, and the

speed of convergence to equilibrium.

3.4 Experimental Design

I design the experiment to explore conditions that affect people’s learning of BNE

in games of incomplete information. I vary game environments by supermodularity

of the players’ payoff functions, existence of potential, and by the amount of type-

distribution information available to the players. In all treatments, the game has

a unique BNE. I therefore do not address the question of equilibrium selection in

Bayesian games in this study. In addition, in each treatment the equilibrium is

globally asymptotically stable with respect to the Cournot best-reply dynamic (see

Section 3.2.2). Also, the games all satisfy condition 2 of Proposition 2 by Dekel

et al. (2004) (see Section 3.2.6), which, given the uniqueness of the BNE, implies

that the equilibrium is also a self-confirming equilibrium in each treatment. Finally,

the equilibrium in this experimental study is not Pareto optimal. As I discuss in

Section 3.3, incentives to deviate in games where the equilibrium is not Pareto

optimal may significantly affect the learning outcome. I was not able to ensure that

the equilibrium is “equally Pareto non-optimal” across treatments, but I statistically

control for the incentives to deviate in the analysis. The specific environments and

the experimental procedures are discussed in the sections below.

3.4.1 Strategic Environments

I chose a generalized version of the Cournot duopoly as the economic environ-

ment for the experiment. The Cournot competition game can be supermodular,

submodular, or neither; potential or not depending on the coefficients of the players’

payoff functions. There are two players, the row (r) and the column (c), each of

two types. The row player can be either red (r) or blue (b) with equal probability.
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The column player can be either green (g) or purple (p) with equal probability. The

players simultaneously choose a number from 0 to 21. Let xn be player n’s choice

and xm be player m’s choice, where n, m ∈ {r, c}, n 6= m. The payoff function of

player n of type θn, where θr ∈ {r, b} and θc ∈ {g, p}, and given m’s choice, is

πθn
n = aθn

n + bθn
n xn − dnx

2
n + fnxmxn, (3.3)

where aθn
n ≥ 0, bθn

n > 0, dn > 0, and fn is any real number.

The player’s expected payoff function over player m’s choices is therefore given

by

Eπθn
n = aθn

n + bθn
n xn − dnx

2
n + fnE(xm)xn. (3.4)

The game is an example of a well known linear Cournot duopoly with uncertain

constant marginal costs.23 The difference in the strategic behavior of different types

is defined by the parameter bθn
n . The constant aθn

n does not affect the player’s best-

reply function, and I define it to be type specific only to ensure that subjects earn

similar payoffs in expectation.

The cross-derivative of the expected payoff function is simply the parameter fn:

∂2Eπθn
n

∂xn∂xm

= fn. (3.5)

By Definitions 3.5, 3.7, and Theorem 3.11, the parameters fn determine whether

the game is supermodular, submodular, or neither; whether the game has a potential

or not.24 In Table 3.1, I lay out all the cases.

23See, for example, Fudenberg and Tirole (1991), pp. 215–216, or Vives (2000), pp. 225–226. In
the latter, the expected payoff function is given by E(πi|ci) = (a− ci)xi − x2

n − Exm(cj)xi, where
the parameter cn is firm n’s private information (type) representing the constant marginal cost of
production, and a is the intercept of the linear demand curve. In Equation (3.3), the parameter
defining the player’s type, bθn

n , is the difference of the two parameters.
24Technically, Definitions 3.5 and 3.7 apply to normal-form rather than Bayesian games. However,

it can be shown that each of the four normal-form games obtained by fixing the type profile is
supermodular and that the type sets are non-empty complete separable metric spaces. Then the
Bayesian game is supermodular according to Vives (1990). Similarly, Theorem 3.11 assumes that
the game is a normal form. However, if fn = fm = f , it is possible to construct a function satisfying
the original Definition 3.8 for expected payoffs. Let

P =
∑

n∈N,θn∈Θn

(aθn
n + bθn

n xn − dnx2
n) + fxmxn.

Let us fix the strategy and the type of player m and consider player n of type θn.

P (xn, ·)− P (x′n, ·) =
∑

n∈N,θn∈Θn

(bθn
n (xn − x′n)− dn(x2

n − (x′n)2) + f(·)(xn − x′n) = πθn
n (xn, ·)− πθn

n (x′n, ·).

Since the equality holds for every type of player m, it holds for the expected utility of player n
over m’s types:
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Not Potential Potential
Submodular fn < fm < 0 fn = fm < 0
Supermodular 0 < fn < fm 0 < fn = fm

Neither (“Mixed”) fn < 0 < fm

Table 3.1: Strategic environments as defined by the parameters fn.

The best-reply function of player n of type θn is given by

BRθn
n =

bθn
n

2dn

+
fn

2dn

xm, (3.6)

where θr ∈ {r, b}, θc ∈ {g, p}, and xm is player m’s expected choice over player m’s

types.

The (unique) internal BNE choice of player n of type θn is given by

x∗θn
n =

1

2dn

(
bθn
n +

fn(fmbn + 2dnbm)

4dndm − fnfm

)
, (3.7)

where θr ∈ {r, b}, θc ∈ {g, p}, and bn is the expected bθn
n over θn. For a two-type

model with equally likely types, the expected type simplifies to

br =
br
r + bb

r

2
,

bc =
bg
c + bp

c

2
.

(3.8)

3.4.2 Experimental Treatments

In Table 3.2, I summarize the main features of the experimental treatments.

Two supermodular-potential treatments were dropped from the design during data

collection. Based on the results obtained for the other six treatments, it became clear

that the supermodular-potential treatments are unlikely to provide new information.

Low Information Bayesian Information
Not Potential Potential Not Potential Potential

Submodular SubNPl SubPl SubNPb SubPb

Supermodular SuperNPl — SuperNPb —

Table 3.2: Features of experimental treatments

P (xn, ·)− P (x′n, ·) = Eπθn
n (xn, ·)− Eπθn

n (x′n, ·).
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For each strategic environment in Table 3.2, I present in Table 3.3 the choice

of specific payoff functions for the experiment. To minimize the possibility of a

confounding factor, I use the same payoff functions across environments whenever

possible. To define the environments, four different payoff functions for the row

player and six for the column player were required. I label the corresponding payoff

functions by πθn
nk

, where n ∈ {r, c}, k is the preference model subscript, k ∈ {1, 2, 3},
and θn is player n’s type.

Environment Color Type Payoff Functions Slope Equilibrium

SubNP red πr
r1

118xr − 2.5x2
r − 3xrxc − 50 -0.6 17

blue πb
r1

88xr − 2.5x2
r − 3xrxc + 90 -0.6 11

green πg
c1

214xc − 5x2
c − 6xrxc − 250 -0.6 13

purple πp
c1

174xc − 5x2
c − 6xrxc − 50 -0.6 9

SubP red πr
r2

236xr − 5x2
r − 6xrxc − 750 -0.6 17

blue πb
r2

176xr − 5x2
r − 6xrxc − 130 -0.6 11

green πg
c1

214xc − 5x2
c − 6xrxc − 250 -0.6 13

purple πp
c1

174xc − 5x2
c − 6xrxc − 50 -0.6 9

SuperNP red πr
r3

104xr − 5x2
r + 6xrxc − 700 0.6 17

blue πb
r3

44xr − 5x2
r + 6xrxc − 200 0.6 11

green πg
c2

23xc − 2.5x2
c + 3xrxc + 200 0.6 13

purple πp
c2

3xc − 2.5x2
c + 3xrxc + 200 0.6 9

Table 3.3: Payoff functions. Notation: xr and xc are choices made by the row and
column players, respectively; πθn

nk
is the payoff function of player n of type

θn, where n = {r, c}, θr = {r, b}, θc = {g, p}, and k is the preference
model subscript, k = {1, 2, 3}. The BNE solutions for each type are given
in the last column. The numbers in the column labeled “Slope” are the
slopes or the best-reply functions.

The payoff functions in Table 3.3, together with the strategy spaces equal to the

intervals [0, 21] and the players’ type distributions, define specific Bayesian games.

In Appendix D, I present graphs of the best-reply functions for each game. I present

a graphical representation of the players’ preferences and strategic properties of the

environments in Appendix E. The games have the following properties:

1. There is a unique internal BNE in each game.

2. The internal BNE solutions are the same across all games.

3. The internal BNE solutions are all integers.

4. The absolute value of the slope of the best-reply function is the same across

environments and types. This condition is important for comparability of the
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speed of convergence to the equilibrium in different environments. In general,

the number of iterations it takes, for example, fictitious-play learners to get from

an off-equilibrium play to an equilibrium depends on the steepness of the best-

reply function.

5. There are no obvious “focal-point” equilibrium choices: The row and column

players have different payoff functions; their equilibrium choices are also different

from each other.

6. The internal equilibrium is a globally asymptotically stable steady state of the

continuous Cournot tatonnement.25

7. There are no corner solutions.26

8. To mitigate fairness concerns, I chose the endowment coefficient, aθn
n , in such a

way that on average all players would have similar earnings at the end of the

experiment. The equilibrium earning ranges from 475 to 585 across players, with

the average equal to 526.27

9. The strategy space intervals are such that all Nash equilibria of the normal-form

games obtained by fixing a type profile are interior points (see Table 3.4). I

discuss the rationale behind this property in Appendix D.

There are two information conditions for each set of strategic environments:

Bayesian information and low information. Under the Bayesian-information con-

dition, the players have a common correct prior about the distribution of their

types, and that prior is common knowledge. In other words, the condition satisfies

the theoretical type-information assumption of Bayesian games. Under the low-

information condition, minimum possible information about the number of player

25It can be shown that the eigenvalues of the coefficient matrix of the simultaneous equations
defining the continuous tatonnement Equation (3.1) for the Cournot environments are equal to

−1 ±
√

f1
2d1

f2
2d2

. The expression under the square root is the product of the slopes of the two
best-reply functions. If their absolute values are less than one, the real part of both eigenvalues
is negative, which implies global asymptotic stability of the steady state of the dynamic system.
As Table 3.3 shows, the best replies have slopes equal to either -0.6 or 0.6. Therefore, the internal
equilibrium in all the treatments is globally asymptotically stable with respect to the Cournot
tatonnement.

26This follows from the global stability of the internal equilibrium with respect to the Cournot
best-reply dynamic: at any point on the boundary of the strategy space, at least one of the players
has an incentive to deviate toward the internal equilibrium.

27To predict the average earning, I computed the mean of the equilibrium payoff and the random-
choice expected payoff. The latter was obtained by simulating the game play for 5000 periods with
players programmed to use the random-choice strategy. I used the mean of the equilibrium and
random-choice payoffs as my predicted average subject earnings. Actual type-average earnings
varied around my prediction.
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Treatment {r, g} {r, p} {b, g} {b, p}
SuperNP 20.56, 16.94 16.81, 10.69 11.19, 11.31 7.44, 5.06
SubNP 16.81, 11.31 20.56, 5.06 7.44, 16.94 11.19, 10.69
SubP 16.81, 11.31 20.56, 5.06 7.44, 16.94 11.19, 10.69
MixNP 17.09, 11.15 15.32, 8.21 12.68, 13.79 10.91, 10.85
SuperP 20.56, 16.94 16.81, 10.69 11.19, 11.31 7.44, 5.06

Table 3.4: Nash equilibria of the normal-form games obtained by fixing a type profile.

types, type distribution, and others’ payoffs is revealed to the players. This

condition is designed to approximate extremely limited information available to

players interacting with each other through online systems. Under both conditions,

the players observe the history of play, which includes their own actions, the actions

of the other player, and their own payoffs. The choice to reveal both players’ actions

was made in order to satisfy condition 2 of Proposition 2 by Dekel et al. (2004) (see

Section 3.2.6).

Before collecting data, I tested the experimental treatments using software agents

programed to follow an established learning model capturing the principles of human

learning behavior. I report the results in Appendix F. The simulated dynamics

vary little across environments, consistent with theoretical predictions based on

Cournot-tatonnement stability, yet the human behavior in the experiment below

varies significantly.

3.4.3 Experimental Procedures

I programmed and implemented the experiment with z-Tree (Fischbacher,

2007).28 I conducted three independent sessions for each treatment (a total of

18 sessions). The treatments are summarized in Table 3.2. Each session had

eight subjects. A total of 144 subjects participated in the experiment.29 All

subjects were University of Michigan undergraduate and graduate students. I

conducted all sessions at the School of Information Experimental Laboratory at the

University of Michigan in February–April, 2008. The subjects were paid according

to their performance in the experiment. Complete instructions are provided in

Appendices G–I. Experimental data are available upon request.

28The official cite of z-Tree is located at http://www.iew.unizh.ch/ztree/index.php.
29One subject participated in two different sessions: first in a low-information session and a

month later in a Bayesian-information session of the SuperNP environment. The subject was a
row player in the former and a column player in the latter, i.e., the subject was never assigned the
same payoff functions. The results do not change significantly when the subject is dropped from
the analysis of the second session.
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For each treatment, I conducted experimental sessions consisting of 100 rounds of

the corresponding Bayesian game (the payoff functions are presented in Table 3.3).

The instructions were read aloud to the subjects at the beginning of the experiment.

Then the program randomly assigned a type (red, blue, green, or purple) to each

subject according to the type distribution. The types remained the same for the

first 50 rounds. At the beginning of round 51, red types became blue types and

vice versa; green types became purple types, and vice versa. Thus, rows remained

rows for the entire experiment, but each row player played as both row types, for 50

rounds each. Similarly for column players. This helped alleviate fairness concerns

that some types would have higher payoffs than others. The subjects were randomly

rematched in each round (rows were matched with columns). The type or identity

of the match was never revealed.

For a baseline comparison, I conducted a total of nine sessions with SubNP, SubP,

and SuperNP environments under the Bayesian-information condition. Before the

first round, the players were informed about the structure of the game, the matching

protocol, the type distribution and the payoffs of all types. The information about

the type distribution was given in the instruction. The information about the payoffs

was given in the form of payoff tables (see an example in Appendix H). In addition,

the subjects could compute their payoff and the payoff of either type of the other

player using a computerized tool called “What-If-Scenario Analyzer”. The subjects

learned how to use the tables and the analyzer in a computerized tutorial. At the

beginning of round 51, the subjects were notified of their type change and reminded

that the new type would remain for the rest of the experiment. I designed the

Bayesian-information treatments to compare convergence to BNE in the tree one-

shot games (SubNP, SubP, and SuperNP) when the assumption about the players’

information exactly matches the theoretical assumption.

In addition to the instruction, the subjects in Bayesian-information sessions had

a 15-minute computerized tutorial, in which they were trained on how to read the

payoff tables and use the What-If-Scenario Analyzer. They also had a chance to

practice using the Analyzer and compare its calculations to the entries of the payoff

tables. The subjects’ understanding of the instructions and the tutorial material

was tested with a computerized quiz. The subjects were rewarded for correctly

answering the questions. Most subjects answered all questions correctly. The lowest

number of questions answered correctly was 12 out of 16. I explained or clarified

the correct answers to all subjects who made a mistake or had questions during the

quiz. There was no practice round in any of the sessions. The average time spent on

the instructions, tutorial and quiz was 33 minutes, and the entire session took 102

minutes on average.
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To measure convergence in settings in which the Bayesian-information assumption

is relaxed (such as in online applications), I designed a low-information condition.

Online applications are often distributed: participants are geographically dispersed,

and their information is limited by what is provided through the application interface.

Such information can be extremely limited, sometimes to the extent that the players

may not even know their own type, if type depends on some exogenous parameters

not revealed by the application;30 the relationship between others’ actions and own

payoffs may also be obscured. The low-information condition in my experiment

is designed to represent this extreme case. The only information the players had

was their own action, the action of the other player, and the players’ own payoffs.

Neither the What-If-Scenario Analyzer nor the payoff tables were available, and no

information about the subjects’ own or others’ types was revealed. Also, the subjects

were not notified about their type change before round 51, but they were informed

in the instruction that the environment may change and that they would not be

notified when that happens. Since the instructions for the low-information case were

straightforward, I did not test the subjects’ understanding with a quiz. There was

no practice round either. The average instruction time was 7 minutes, and the entire

session took 52 minutes on average.

In all treatments, the strategy space was discretized as multiples of 0.01. In each

round, the subjects made their choices simultaneously and independently of other

players. Throughout the experiment, each subject’s computer screen displayed the

history of the subject’s own choices, own earnings, and the choices of the subject’s

matches.

The exchange rate for all treatments was one dollar for 1,700 points.31 The

average earning per hour was $23, including a $5 show-up fee.

3.5 Hypotheses

Based on the theory, results from prior experimental work, and the design, I

next identify my hypotheses. To do so, I first define and discuss two measures of

convergence: the convergence level and the rate of improvement (ROI). In theory,

convergence implies that all players play the stage-game equilibrium and no deviation

is observed. This is not realistic, however, in an experimental setting. I therefore

30See, for example, an experimental study by Chen et al. (2007), in which the authors evaluate
the performance of two different mechanisms for congestion allocation in distributed networks.
The players’ types are defined by the topology of the network and their location in that network.
However, such information may not be available or costly to obtain in online networks.

31The exception is the first SubNP session, where the exchange rate was one dollar for 3,300 and
the coefficients aθn

n were all about two time higher than those in the following sessions.
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define the level of convergence more generally as distance from equilibrium payoff

(PDistn,t).

Definition 3.14. Let πn(t) be player n’s actual payoff in round t and π∗n be n’s

equilibrium payoff. Then the distance from equilibrium payoff in round t is given by

PDistn,t ≡ |πn(t)− π∗n|. (3.9)

A lower PDistn,t means a better degree of convergence. Alternative measures

commonly used in experimental literature include distance between actual and

equilibrium choices and proportion of ε-equilibrium play. The latter can be defined

in terms of payoffs or choice units. Distance from equilibrium choice is a more

direct measure of the convergence level than distance from equilibrium payoff. In

some cases, however, it is more meaningful to consider an action to be close to the

equilibrium if it yields near-equilibrium payoff, in particular when players’ strategy

spaces are not ordered. When the payoff function is single-peaked, as in this

experiment, the two types of distances are roughly equivalent measures. The findings

of this study do not appear to be sensitive to the choice of the distance measure, but

the payoff-based measure gives a better regression-analysis fit.

Proportion of ε-equilibrium play punishes all non-ε-equilibrium choices equally,

which is considered undesirable by some authors. Another issue is that the choice

of ε may not be obvious, which is the case in this experiment. Analysis of the data

using (1) proportion of payoff-based ε-equilibrium play with ε equal to 10% of average

equilibrium payoff and (2) proportion of choice-based ε-equilibrium play with to 3

(choice units) supports the results presented here, but some regression coefficients

and the tests have lower statistical significance and the standard errors tend to be

higher. The analysis of the alternative measures is available upon request, but I do

not report it here.

Ideally, the ROI should measure how quickly all players converge to equilibrium

strategies. However, since convergence is never perfect in this experiment, I instead

measure how quickly the players approach the equilibrium. In particular, I measure

ROI as change in PDist per unit of time. I estimate this change using regression

analysis in which I include a time variable (ln(Round)) and its interactions with

treatment indicator variables (Supermod, Potential, and Info). The coefficients on

these variables are interpreted as a change in PDist when the round counter changes

by 1%.

I now formally state my null hypotheses. Recall that treatments with better

convergence would have smaller average PDist. Since the Bayesian-information

101



condition fully matches the theoretical informational assumption of Bayesian games,

while the low-information condition is an extreme case violating this assumption, I

hypothesize that convergence to BNE is better under the former:

Hypothesis 1 (Effect of Information on Convergence Level). In each environment,

the distance from equilibrium payoff is smaller under the Bayesian-information

condition than under the low-information condition, i.e.,

(i) PDistb(SubNP) < PDistl(SubNP),

(ii) PDistb(SubP) < PDistl(SubP),

(iii) PDistb(SuperNP) < PDistl(SuperNP),

where the subscripts b and l label the Bayesian-information and the low-information

conditions, respectively.

Hypothesis 2 (Effect of Information on Convergence ROI). In each environment,

convergence is faster under the Bayesian-information condition than under the low-

information condition, i.e., the coefficient on ln(Round) is more negative in Bayesian

information treatments.

My hypotheses about the effect of potential relies on the theoretical studies

predicting robust convergence in potential games:

Hypothesis 3 (Effect of Potential on Convergence Level). Under each information

condition, the distance from equilibrium payoff is smaller in potential games than in

the non-potential counterparts, i.e.,

(i) PDistl(SubP) < PDistl(SubNP),

(ii) PDistb(SubP) < PDistb(SubNP),

where the subscripts l and b label the low-information and the Bayesian-information

conditions, respectively.

Hypothesis 4 (Effect of Potential on Convergence ROI). Under each information

condition, convergence is faster in potential games than the non-potential counter-

parts, i.e., the coefficient on ln(Round) is more negative in SubP than in SubNP.

Based on the literature reviewed in Section 3.2, supermodularity is an important

convergence factor. However, experimental evidence is mixed about the direction of

the effect. I therefore formulate the following hypotheses about supermodularity:
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Hypothesis 5 (Effects of Supermodularity on Convergence Level). Under each

information condition, the distance from equilibrium payoff in supermodular games

is different from the distance in the submodular counterparts, i.e.,

(i) PDistl(SuperNP) 6= PDistl(SubNP),

(ii) PDistb(SuperNP) 6= PDistb(SubNP),

where the subscripts l and b label the low-information and the Bayesian-information

conditions, respectively.

Hypothesis 6 (Effect of Supermodularity on Convergence ROI). Under each in-

formation condition, convergence is different in supermodular and non-supermodular

counterparts, i.e., the coefficient on ln(Round) is different in supermodular and non-

supermodular treatments.

3.6 Results

In Figures 3.1–3.3, I present the time series of type-specific choice data in each

treatment. Each figure consists of eight graphs, comparing participant behavior in

the low-information and Bayesian-information conditions for each environment. In

each graph, I present the average choices in each round (the dots), the error bars

which are one standard deviation from the average, and the BNE prediction (the grey

line). The figures indicate that both the information conditions and the strategic

environment affect the learning dynamics.

As prior experimental work shows, incentives to collude may have a significant

effect on convergence dynamics in games where the equilibrium is not Pareto optimal.

This means that in this experiment, the distance from the equilibrium payoff may

be (negatively) correlated with the distance from Pareto improvements over the

equilibrium. To control for the effect in the analysis below, I define the following

variables.

Definition 3.15. Let xn be player n’s choice and xm be player m’s choice, where

n, m ∈ {r, c}. Let θ1 and θ2 be m’s two types. Let πn(·) and πθT
m (·), T ∈ {1, 2}, be the

players’ respective payoffs and π∗n and π∗θT
m be their equilibrium payoffs. The joint

weighted payoff maximum for player n is given by

JWPMn ≡ max
xn,xm

(
πn(xn, xm) +

πθ1
m (xn, xm) + πθ2

m (xn, xm)

2

)
,

s.t. πn(xn, xm) ≥ π∗n,

πθ1
m (xn, xm) ≥ π∗θ1

m ,

πθ2
m (xn, xm) ≥ π∗θ2

m .
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Low Information Bayesian Information

(a) Red row (r)

(b) Blue row (b)

(c) Green column (g)

(d) Purple column (g)

Figure 3.1: Convergence dynamics: Submodular & non-potential environment. The
straight horizontal line is the equilibrium choice of the corresponding
type. The straight vertical line at round 50 indicates the time of the
type change. Thus, each type is represented by two subject pools: one
in the first 50 rounds and the other in the last 50 rounds.

104



Low Information Bayesian Information

(a) Red row (r)

(b) Blue row (b)

(c) Green column (g)

(d) Purple column (g)

Figure 3.2: Convergence dynamics: Submodular & potential environment. The
straight horizontal line is the equilibrium choice of the corresponding
type. The straight vertical line at round 50 indicates the time of the
type change. Thus, each type is represented by two subject pools: one
in the first 50 rounds and the other in the last 50 rounds.
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Low Information Bayesian Information

(a) Red row (r)

(b) Blue row (b)

(c) Green column (g)

(d) Purple column (g)

Figure 3.3: Convergence dynamics: Supermodular & non-potential environment.
The straight horizontal line is the equilibrium choice of the corresponding
type. The straight vertical line at round 50 indicates the time of the type
change. Thus, each type is represented by two subject pools: one in the
first 50 rounds and the other in the last 50 rounds.
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In Table 3.5, I report the values of JWPM, as well as JWPM choices for all types

in all environments.

Definition 3.16. Player n’s incentives to collude in round t is the distance between

n’s actual payoff at round t-1, πn(t-1), and n’s JWPM:

I2Cn,t ≡ |JWPMn − πn(t− 1)|.

Another important variable measures average risk to the players of incurring big

losses in an environment.

Definition 3.17. Let πθn
min be the minimum possible payoff of player n ∈ {r, c}, of

type θn, where θr ∈ {r, b}, θc ∈ {g, p}, in an environment E ∈ {SubNP, SubP, SuperNP}.
The average loss bound in E is given by

LossBound =
1

4
(πr

min + πb
min + πg

min + πp
min).

I did not fully anticipate the effect of negative payoffs on subjects’ behavior when

designing the experiment, and therefore the measure is somewhat ad hoc. However,

as I argue below based on statistical analysis of the data, it captures a characteristic

of the environment whose effect overrides that of a potential. I report the value of

LossBound for each environment in Table 3.5.

I first compare the convergence level achieved in the last ten rounds of each

50-round block in each treatment. Table 3.6 presents the average distance from

BNE payoff in points and as percentage of the average payoff range over all types

in all environments (2259 points). Using permutation tests of PDist between pairs

of treatments, I test my original hypotheses.32 As can be seen from Table 3.7 (top

panel), only two of the seven relationships from the original hypotheses are confirmed

(at the 5% level of statistical significance).

32Permutation tests are typically used for small samples to determine whether the observed
difference between the sample means is large enough to reject the null hypothesis that the two
groups have identical probability distribution. The data points in each sample are assumed to be
independent. In my experiment, the average PDist in a session satisfies this assumption. Therefore,
for the purpose of this test, I have a sample of size three for each treatment. If we pool the samples
of two treatments of interest together and then make multiple random draws of three data points,
we can obtain a distribution of the means of samples of size three. The idea of the test is that
under the null hypothesis that the two groups have identical probability distribution, the actual
means we observe (i.e., the overall averages in the corresponding treatment columns in Table 3.6)
should be close to the mean of the distribution statistic. The test can be one or two-sided. For
more details on the test, see, for example, Johnston and DiNardo (1996), Section 11.2.
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Table 3.5: Values of JWPM, JWPM choices and LossBound. The payoffs are
rounded to the nearest integer. The choices are rounded to two decimal
places.

Environment Color Type
Red Green Blue Purple

JWPM
SubNP 704 393 772 615
SubP 866 516 760 390
SuperNP 1925 1165 904 484

JWPM Choices
SubNP 11.53 7.37 9.41 8.34
SubP 12.4 7.75 9.3 5.84
SuperNP 21 21 21 21

LossBound
SubNP -598
SubP -972
SuperNP -866

Result 1 (Effect of Information on Convergence Level).

(i) In both submodular environments (SubNP and SubP), the distance from

equilibrium payoff is smaller under the Bayesian-information condition than

under the low-information condition, i.e.,

PDistb(SubNP) < PDistl(SubNP),

PDistb(SubP) < PDistl(SubP),

where the subscripts b and l label the Bayesian-information and the low-

information conditions, respectively.

(ii) In the potential environment (SubP), the distance from equilibrium is smaller

under the Bayesian-information condition than under the low-information

condition (see the previous item).

(iii) In the supermodular environment (SuperNP), the difference in PDist under

the Bayesian-information and low-information conditions is not statistically

significant.

Support: Table 3.6 presents the average distance from equilibrium payoff for each

session. In Table 3.7, I also report the permutation tests for PDist. The tests confirm

Parts (i) and (ii)( of Hypothesis 1 at p = 0.05; they reject Part (iii) of the hypothesis

(p = 0.9 and p = 0.15 for two one-sided tests).
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Table 3.6: Average distance from equilibrium payoff. The payoffs and percentages
are rounded to the nearest integer.

Average Distance from Equilibrium Payoff (Points)

All Rounds Low Information Bayesian Information
Session SubNP SubP SuperNP SubNP SubP SuperNP

1 279 554 241 167 246 336
2 337 422 234 152 283 175
3 332 406 297 199 226 308

Overall 316 461 257 173 252 273

Last 10 Rounds Low Information Bayesian Information
Session SubNP SubP SuperNP SubNP SubP SuperNP

1 256 579 193 217 195 309
2 317 346 175 166 268 187
3 354 279 236 189 245 289

Overall 309 401 201 191 236 262

Average Distance from Equilibrium Payoff (Percent of Average Payoff Range)

All Rounds Low Information Bayesian Information
Session SubNP SubP SuperNP SubNP SubP SuperNP

1 12 25 11 7 11 15
2 15 19 10 7 13 8
3 15 18 13 9 10 14

Overall 14 20 11 8 11 12

Last 10 Rounds Low Information Bayesian Information
Session SubNP SubP SuperNP SubNP SubP SuperNP

1 11 26 9 10 9 14
2 14 15 8 7 12 8
3 16 12 10 8 11 13

Overall 14 18 9 8 10 12
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Table 3.7: Monte Carlo permutation tests: Average distance from equilibrium payoff
in the last 10 rounds of 50-round blocks. The results are based on
1,000,000 samples.

Effect Original Hypotheses p-value
Information PDistb(SubNP) < PDistl(SubNP) 0.05∗∗

by PDistb(SubP) < PDistl(SubP) 0.05∗∗

treatment PDistb(SuperNP) < PDistl(SuperNP) 0.9
Supermodularity: LIC PDistl(SuperNP) 6= PDistl(SubNP) 1.0
Supermodularity: BIC PDistb(SuperNP) 6= PDistb(SubNP) 0.15
Potential: LIC PDistl(SubP) < PDistl(SubNP) 0.8
Potential: BIC PDistb(SubP) < PDistb(SubNP) 0.95
Note: Significant at: ∗ 10-percent level; ∗∗ 5-percent level; ∗∗∗ 1-percent level.

Result 1 provides the first empirical evidence on the role the Bayesian-information

assumption plays in learning BNE. It shows that the information condition affects

learning in the intuitive direction predicted in the original hypothesis, with the excep-

tion of the supermodular environment, in which we observe no significant difference.

Result 2 offers more insight into the interaction effect between supermodularity and

the information condition.

I further investigate the effect of the treatment variables – information, super-

modularity, and potential – on the convergence level and ROI – using regression

analysis (Table 3.8). Unlike in permutation tests, one can control for confounding

variables in a regression model. In my regression analysis, I control for I2C and

LossBound, which I defined above. The regression analysis also provides insight into

the interactions between dependent variables and informs a new set of convergence-

level hypotheses.

I now briefly explain the regression models presented in Table 3.8. I use

the subject ID as the panel variable. The Wooldridge test for autocorrelation

in panel-data models33 rejects the null hypothesis that there is no first-order

autocorrelation at the 0.001% level (p-value = 0.0000 and the F1,143 statistic equals

107.719). I therefore estimate a GLM model with the first-order34 autoregression

correlation structure within group using the GEE method (Yee Liang & Zeger, 1986)

implemented in Stata 10.35 Without the autoregression correlation assumption,

the model is asymptotically equivalent to the weighted-GLS estimator (GLS with

random effects) and to the full maximum-likelihood random-effects estimator. In

33Wooldridge (2002), pp. 282–283.
34Using the second-order autoregression correlation structure does not significantly affect the

coefficients and standard errors, although the latter tend to be larger with AR(2).
35http://www.stata.com/stata10/. The regression command is xtgee with the option corr(ar1).
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balanced data, the model produces the same results as the maximum-likelihood

random-effects estimator.36 To estimate the standard errors, I use a version of

the Huber/White/sandwich estimator that allows for correlation within subjects

and produces valid standard errors even if the correlations within group are not

as hypothesized by the specified correlation structure.37 I use ln(Round) as the time

variable. Usually, the variation in choices decreases with time, which suggests a

logarithmic transformation of the round variable. This appears to be the case in this

experiment.

Specification (1) reflects the original hypotheses. It includes all of the treatment

variables and their interactions, as well as the I2C control variable. Specifications (2)–

(3) offer an alternative set of regressions, which help explain a puzzling relationship

that specification (1) reveals. In specification (1), the estimated coefficient on the

potential indicator variable is positive. That is, we observe the opposite of the

effect stated in Hypothesis 3, which is based on theoretical results suggesting that

potential games have robust convergence properties. It is even more puzzling that the

coefficient on ln(Round)×Potential is nonetheless negative, implying that subjects

approach equilibrium faster in potential games than in non-potential, as originally

hypothesized. In an attempt to find an explanation, I re-examined the design for

possible confounding variables. The most plausible confound appeared to be the

difference in the minimum possible payoffs, which are negative for all types in all

treatments.38 There is an extensive literature on loss aversion originated with a

seminal paper by Tversky and Kahneman (1979), in which the authors argue that

people tend to strongly prefer avoiding losses to acquiring gains. Two observations

indicated that such a tendency may have had an effect on PDist. First, the SubP

and SubNP environments are almost identical, with identical best-response functions

and indifference-curve maps. The only difference is the row player’s payoff functions,

whose non-constant coefficients in SubP are twice those in SubNP. As a result, the

36StataCorp (2007), p. 126.
37The Stata option for the xtgee command is vce(robust). Other maintained assumptions are (1)

that the model correctly specifies the mean, and (2) that errors between groups are independent
(StataCorp (2007), p. 121). The latter assumption is not satisfied in my experimental data. Ideally,
errors should be grouped at the session rather than individual level. However, such an option is
not available for the xtgee command in Stata 10. Therefore, the reported standard errors may be
underestimated. However, due to the high significance of the regression coefficients (Table 3.8), I
believe that the results reported here are valid.

38I introduced the possibility of earning negative payoffs in order to make the task look more
challenging for the subjects and encourage higher effort on their part. However, I was not able
to ensure that the range of possible payoffs on [0,21] was the same across different types and at
the same time keep other important characteristics constant across the environments. I tried to
minimize the risk of a confound by adjusting aθn

n in the payoff functions in such a way that all
types could incur significant losses and the types with bigger possible losses had somewhat higher
expected payoffs. However, as my analysis shows, this measure proved to be insufficient.
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payoff variation is higher for the row player in SubP, and the minimum possible payoff

is more negative. Second, from Figure 3.2 we can see that the choice dynamics in

SubP has a very distinct pattern, especially pronounced under Bayesian information:

the subjects do not experiment as much as in other environments. Such behavior

may be indicative of more cautiousness on the subjects’ part, which in turn could be

due to exposure to larger losses.

To test the conjecture, I defined the LossBound variable. Unfortunately,

this variable is perfectly collinear with a linear combination of the Potential and

Supermodular indicator variables and the constant. Thus they cannot each be

estimated simultaneously. In specification (2), I estimate a model with LossBound,

and with Potential dropped. The coefficient on LossBound is significant at the 1%

level, while the constant term becomes small (-5.184) and statistically insignificant

(the standard error is 73). I therefore suppress the constant to be able to estimate the

coefficient on Potential, as well as the rest of the original treatment variables, while

controlling for LossBound. The resulting model is specification (3). Note that (a)

the coefficient on LossBound is the same as in specification (2): a one-point increase

in the average loss bound results in a 0.6 decrease in the distance from equilibrium

payoff; it is significant at the 1% level, as in specification (2); and (b) the sizes of

the coefficients on both Potential and Supermodular are quite different from those in

specification (1), which suggests that LossBound is in fact a confounding variable.39

I summarize the above in the following observation.

Observation 1 (Effect of Average LossBound on Convergence Level). Distance from

equilibrium payoff decreases as the average loss bound increases.

Support: Specifications (2)–(3) show that a one-point increase in the average

loss bound results in a 0.6 decrease in the distance from equilibrium payoff. The

coefficients on LossBound are statistically significant at 1%.40

In light of the above, it is clear that the simple permutation tests in Table 3.7

may not accurately reflect the effects of potential and supermodularity on the

average distance from equilibrium payoff. I therefore rely on specification (3) in

the rest of the analysis. Two of the coefficients in specification (3) (Potential

and ln(Round)×Supermodular) are statistically insignificant. However, I keep the

variables in the model because they are variables of interest. If these variables

are removed, the rest of the coefficients are not significantly affected, and all the

results presented below remain valid. In Table 3.9, I present regression coefficients by

39The rest of the treatment coefficients remain unchanged.
40The interaction effect between LossBound and Info could not be identified due to collinearity

problem.
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treatment and report their statistical significance based on Wald tests (Table 3.10).

Tables 3.8 and 3.9 serve as the main support of the following results and observations.

Two notes before I present the next result. First, since in my design there is no

treatment that is both a potential and supermodular game, we can ignore coefficients

on Potential and its interactions when analyzing supermodular treatments and vice

versa.

Second, ROI may be negative in this experiment, i.e., convergence does not always

improve with time. More specifically, we have the following result.

Result 2 (Effect of Information on Initial Choices and ROI).

(i) [Initial Choices] The initial distance from equilibrium payoff is smaller under

Bayesian information than under low information.

(ii) [ROI] In each environment, the Bayesian-information condition reduces con-

vergence ROI relative the low-information treatments. More specifically:

(a) [ROI, LIC] Under the low-information condition, the distance from equilib-

rium payoff reduces with time in each environment.

(b) [ROI, BIC] Under the Bayesian-information condition, there are two cases:

i. In the potential environment (SubP), the distance from equilibrium

payoff also reduces with time, but at a slower rate than under low

information.

ii. In the non-potential environments (SuperNP and SubNP), the distance

from equilibrium payoff does not change or even increases with time.

Support: First consider initial choices, whose distance from equilibrium payoff

is measured by the intercepts. Specification (3) in Table 3.8 shows that Bayesian

information reduces the initial PDist by 237.2 points in SubNP, by 299.67 (−237.2−
62.47) points in SubP, and by 64.2 (−237.2 + 173) points in SuperNP. These

differences constitute, respectively, 10.5%, 13.3%, and 2.8% of the average payoff

range, which is equal to 2259 points. I next examine the coefficients on ln(Round),

which measure convergence ROI, under different information conditions. Under low

information, the distance from equilibrium payoff decreases by 0.27 (−27.32
100%

) points

with every one-percent increase in the round counter. Under Bayesian information,

consider first the potential environment (SubP). The coefficient on ln(Round) shifts

up by 7.36 (38.28− 30.92), but it remains negative: −27.32 + 7.36 = −19.96. Thus,

under Bayesian information in SubP, the distance from equilibrium payoff decreases

by 0.2 (−19.96
100%

) points with every one-percent increase in the round counter. In
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Dependent variable: Distance from equilibrium payoff (PDist)
(1) (2) (3)

ln(Round) -27.32∗∗∗ -27.32∗∗∗ -27.32∗∗∗

(5.753) (5.753) (5.753)
Info -237.2∗∗∗ -237.2∗∗∗ -237.2∗∗∗

(27.59) (27.59) (27.59)
ln(Round)×Info 38.28∗∗∗ 38.28∗∗∗ 38.28∗∗∗

(5.963) (5.963) (5.963)
I2C 0.114∗∗∗ 0.114∗∗∗ 0.114∗∗∗

(0.0118) (0.0118) (0.0118)
Supermodular -70.17∗∗ -230.7∗∗∗ -228.4∗∗∗

(31.11) (30.32) (38.90)
Supermodular×Info 173.0∗∗∗ 173.0∗∗∗ 173.0∗∗∗

(38.66) (38.66) (38.66)
Potential 224.7∗∗∗ 3.244

(36.52) (45.68)
Potential×Info -62.47∗∗ -62.47∗∗ -62.47∗∗

(29.43) (29.43) (29.43)
ln(Round)×Potential -30.92∗∗∗ -30.92∗∗∗ -30.92∗∗∗

(7.869) (7.869) (7.869)
ln(Round)×Supermodular -8.455 -8.455 -8.455

(5.929) (5.929) (5.929)
LossBound -0.600∗∗∗ -0.592∗∗∗

(0.0976) (0.0424)
Constant 353.8∗∗∗ -5.184

(25.35) (73.00)
Notes: Semi-robust standard errors are in parentheses.
Significant at: ∗ 10% level; ∗∗ 5% level; ∗∗∗ 1% level.

Table 3.8: GLM model with an autoregression correlation structure within group.
The panel variable is the subject ID. The standard errors are reported
as semi-robust, because the estimator requires that the model correctly
specifies the mean. The errors are adjusted for clustering at the individual
level. The ln(Round) variable is the logarithm of the round count. The
count was reset before round 51, when subjects were assigned a new
type. The Info indicator variable equals one for the Bayesian-information
condition and zero otherwise. The Supermodular indicator variable equals
one in SuperNP and zero in both submodular environments (SubNP and
SubP). The Potential indicator variable equals one in SubP and zero in
both non-potential environments (SuperNP and SubNP). Excluded is the
submodular non-potential indicator variable, which equals one in SubNP
and zero in SuperNP and SubP.
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Coefficients by treatment relative to baseline (SubNP)
Info=0 Info=1

P=0 P=1 P=0 P=1

Intercept S=0 baseline 3.244 -237.2 -296.426
S=1 -228.4 — -292.6 —

ln(Round) S=0 baseline -30.92 38.28 7.36
S=1 -8.455 — 29.825 —

Actual coefficients by treatment
Info=0 Info=1

P=0 P=1 P=0 P=1

Intercept S=0 0 3.244 -237.2∗∗∗ -296.426∗∗∗

S=1 -228.4∗∗∗ — -292.6∗∗∗ —

ln(Round) S=0 -27.32∗∗∗ -58.24∗∗∗ 10.96∗∗ -19.96∗∗∗

S=1 -35.775∗∗∗ — 2.505 —

Significant at: ∗ 10% level; ∗∗ 5% level; ∗∗∗ 1% level.

Table 3.9: Coefficients by treatment for specification (3) in Table 3.8: relative to the
baseline treatment SubNP (top) and actual (bottom). Info=0 and Info=1
refer to the low- and Bayesian-information conditions, respectively. P=0
and P=1 refer to the non-potential and potential treatments, respectively.
S=0 and S=1 refer to the submodular and supermodular treatments,
respectively. Some of the actual treatment coefficients are directly
estimated according to specification (3) and therefore are simply copied
from Table 3.8. Others are obtained by adding two or more of the
estimated coefficients. In such cases, statistical significance is determined
based on Wald tests (see Table 3.10).
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the non-potential environments (SubNP and SuperNP), however, the coefficient on

ln(Round) is higher by 38.28 under Bayesian information and equals−27.32+38.28 =

10.96. In other words, the distance from equilibrium payoff increases by 0.11 ( 10.96
100%

)

points under Bayesian information if the game is not potential.

Part (ii) of Result 2 rejects Hypothesis 2. Two observations may explain this.

First, the sizes of the intercept shifts (-64.2 and especially -237.2 and -299.67)

suggest that under Bayesian information, almost all of the convergence that could

have happened, happened in the initial rounds. In other words, there was not as

much room left for the subjects to further converge relative to the low-information

condition, under which they had to start with random choices. Since in a linear model

the convergence ROI can only be captured as a slope of a straight line, the effect

can manifest itself as a smaller slope (in absolute terms) in Bayesian-information

treatments. This can explain point i of Part (iib) of the result, but not point ii.

As for the latter, my conjecture is that this is due to Pareto inferiority of the

equilibrium (the second observation). Here information about the payoff structure

has two effects. One is that in initial rounds, it helps subjects to identify near-

equilibrium areas, which is supported by Part (i) of Result 2. However, it also helps

to identify Pareto superior outcomes that benefit both players, which may cause them

to move away from equilibrium with time rather than even closer to it. Whether

that happens or not may depend on the size of the incentives to collude and also

on how “risky” the collusive areas are, as well as on the structural characteristics

of the payoff functions (i.e., supermodularity and existence of potential). In this

experiment – if we maintain my conjecture – the second effect is only observed in

SubNP and SuperNP, but not in SubP, which suggests a particular role of potential.

Result 5 will shed more light on why the second effect is present in supermodular

games with Pareto inferior equilibrium.

To sum up, Result 2 suggests that under low information, the players – quite

naturally – start with random choices, gradually approaching the equilibrium

neighborhood. Under Bayesian information, subjects generally start playing the

outcomes in the neighborhood of the equilibrium. In potential games, they move

even closer to it with time. In non-potential games, however, if the equilibrium of

the game is Pareto inferior, and especially if both players can gain from deviating,

subjects may move away from it toward more profitable profiles.

Next, I present two results on potential games.

Result 3 (Effect of Potential on Convergence ROI).

(i) Under low information, where convergence to equilibrium improves with time

in each environment, convergence is faster in the potential environment (SubP)
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than in the non-potential counterparts (SubNP and SuperNP).

(ii) Under Bayesian information, the potential environment (SubP) is the only

environment where convergence improves with time.

Support: First note that the coefficient on the interaction effect ln(Round)×Super-

modular is statistically insignificant, which implies that ROI in SubNP and SuperNP

is the same (i.e., the difference is not statistically significant). Second, the coefficient

on the interaction between Potential and ln(Round) is negative and significant at the

1% level. More specifically, a one-percent increase in the round counter increases the

distance from equilibrium payoff by 0.31 ( 30.92
100%

) points faster in SubP than in SubNP

and SuperNP. This makes the coefficient on ln(Round) in the potential environment

more negative under low information (−27.32−30.92 = −58.24) and changes it from

positive (−27.32 + 38.28 = 10.96) to negative (−27.32 + 38.28 − 30.92 = −19.96)

under Bayesian information.

Result 3 confirms Hypothesis 4. In fact, the established result is stronger than

originally hypothesized: it is the only one of the two structural characteristics that

has a robust effect on the rate of improvement under both information conditions.

Result 4 (Effect of Potential on Convergence Level). Under each information

condition, the distance from equilibrium payoff is smaller in potential games than

in the non-potential counterparts, i.e.,

(i) PDistl(SubP) < PDistl(SubNP),

(ii) PDistb(SubP) < PDistb(SubNP),

where the subscripts l and b label the low-information and the Bayesian-information

conditions, respectively.

Support: In Result 3, I have shown that PDist reduces faster in SubP than in

SubNP. It only remains to show that the intercept of the regression line in SubP

does not exceed (is the same or more negative) that in SubNP to have sufficient

evidence supporting Result 4. This is in fact so: under low information, there is

no statistical difference between the baseline treatment SubNP and the potential

treatment SubP: the coefficient on Potential is statistically insignificant. Under

Bayesian information, the intercept is 62.47 points lower in SubP.

Result 4 supports Hypothesis 3. This and the above results are the first empirical

evidence of the role of potential in learning BNE.

Finally, I discuss supermodular games.
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Observation 2 (Effect of Supermodularity on Convergence ROI). The data provide

no evidence that supermodularity affects convergence ROI.

Support: The interaction effect between supermodularity and ln(Round) is

statistically insignificant (Table 3.8).

To relate this observation to the original hypotheses, it means that there is no

evidence supporting Hypothesis 6.

Result 5 (Effect of Supermodularity on Convergence Level).

1. Under each information condition, the distance from equilibrium payoff in super-

modular games is smaller in supermodular games than in the non-supermodular

counterparts, i.e.,

(i) PDistl(SuperNP) < PDistl(SubNP),

(ii) PDistb(SuperNP) < PDistb(SubNP),

where the subscripts l and b label the low-information and the Bayesian-

information conditions, respectively.

2. There is a strong interaction between supermodularity and the information

condition: the effect of information on the average distance from equilibrium

payoff is almost cancelled out in the supermodular environment.

Support: As we already know from Result 3, convergence ROI in SubNP and

SuperNP is the same (more precisely, the difference in the coefficients on ln(Round)

is not statistically significant in these two environments). It only remains to show

that the intercept of the regression line in SuperNP does not exceed (is the same

or more negative) that in SubNP to have sufficient evidence supporting Result 5.

This is in fact so: under low information, the intercept in SuperNP is 228.4 points

(10.1% of the average payoff range) lower than that SubNP. Since supermodularity

does not significantly affect the convergence ROI, this implies that distance from

equilibrium payoff is on average 228.4 points smaller in SuperNP than in SubNP –

under low information. Under Bayesian information, the intercept shifts down only

by 55.4 points (−228.4 + 173 = −55.4), which is 2.5% of the average payoff range.

Again, since the difference between the coefficients on ln(Round) in SuperNP and in

SubNP is not statistically significant, I conclude that under Bayesian information,

supermodularity decreases PDist on average by 55.4 points. The smaller effect

of supermodularity in the Bayesian-information treatments is due to the strong

interaction effect between supermodularity and information: the coefficient on

ln(Round)×Supermodular equals 173. Another way of stating the result is that the
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effect of information on the average PDist in SuperNP is only −237.2+173 = −62.2

compared to -237.2 in SubNP.

Part (1) of Result 5 supports Hypothesis 5 and is consistent with theoretical

predictions of the effect of supermodularity on convergence. Part (2) of Result 5 is

the first empirical evidence of the striking interaction between strategically important

information and the effect of supermodularity in Bayesian games. It suggests that

information plays a key role as to whether supermodularity ensures the predictions of

models based on the rationality assumptions – such as convergence to an equilibrium

theoretically demonstrated by Milgrom and Roberts (1990) and experimentally

confirmed by Chen and Tang (1998) and Chen and Plott (1996), among others –

or reinforces behavioral biases, such as those described by Fehr and Tyran (2005).

Under low information, when subjects do not have the payoff-structure information

in front of them, the best they can do is to use unsophisticated heuristics such as

those satisfying the definition of Milgrom and Roberts’ adaptive dynamic. Therefore,

consistently with Milgrom and Roberts (1990), supermodularity drastically improves

convergence to the equilibrium. Under Bayesian information, however, the subjects

know the payoff structure of all players and are more prone to “irrational” behavior,

for example attempts at implicit cooperation in a one-shot game, or behavioral biases,

such as loss aversion. In supermodular environments, such biases become reinforced,

as argued by Fehr and Tyran (2005), and therefore reduce the effect predicted by

the theory that does not model them explicitly.41

I now make two additional observations, which are not central research questions

in this work, but are nevertheless relevant to the discussion of supermodular and

potential games.

Observation 3. Under each information condition, incentives to collude increase

distance from equilibrium payoff.

Support: Specifications (1)–(3) in Table 3.8 show that the distance from equilibrium

payoff increases by 0.114 points per one-point increase in I2C. The coefficient on I2C

is statistically significant at 1%. Although not reported here, the coefficient on the

interaction between I2C and Info is statistically insignificant.

This observation is consistent with earlier findings of experimental studies of

complete-information games.

41Since I statistically control for I2C and LossBound, the difference in the supermodularity
coefficients under low and Bayesian information is unlikely to be fully due to the difference in
potential gains from collusion. The large gap between the coefficients on Supermodular persists
under different measures of incentives to collude: I have explored five alternative measures, and
observed the phenomenon in all of the alternative models.
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Observation 4. If a non-supermodular game can be reformulated as a supermodular

game, that does not ensure supermodular convergence properties in practice.

Support: As the results above show, the convergence dynamics in the supermodular

environment are significantly different from those in the submodular environments.

This is true despite, as I point out in Section 3.2.1, the fact that both can be

reformulated as supermodular games.

This observation is important for practical applications of the theory of supermod-

ular games and mechanism design. It suggests that the learnability of the induced

supermodular game is sensitive to the framing of players’ strategies.

3.7 Conclusion

In this chapter, I report experimental results on convergence to Bayesian Nash

equilibrium (BNE) in a variety of environments. The environments differ in the

payoff structure of the players: they can be (1) a supermodular (and not potential)

game, (2) a potential (and not supermodular) game, or (3) neither a potential nor

a supermodular game. Each of these environments is studied under two information

conditions. The first satisfies the theoretical assumption in Bayesian games. The

other simulates online settings by giving the subjects very limited information about

the game. Online markets are a challenging area for application of mechanism

design theory due to extremely limited information available to the agents. The

experimental results suggest that Bayesian information plays an important role for

convergence to BNE. Generally, under Bayesian information, subjects’ payoffs at

early stages are about 12% closer to the equilibrium payoff, where percent is taken

with respect to the average payoff range over all types and environments, and the

average convergence level is significantly higher than under low information. The

exception is the supermodular environment. In the supermodular environment,

information improves the average convergence level only by about 3% of the average

payoff range. This is consistent with findings of earlier experiments with complete-

information games with Pareto inferior Nash equilibrium and with findings by

Fehr and Tyran, who argue that supermodularity of the players’ payoff functions

reinforces mistakes and behavioral biases (I control for incentives to collude, and

therefore the observed effect cannot be fully attributed to collusion). Under low

information, however, my findings for supermodular games are more consistent with

theoretical predictions and findings in experiments with complete-information games

with Pareto optimal Nash equilibrium: the players’ payoffs are 10% closer to the

equilibrium payoff in the supermodular environment, where percent is taken with

respect to the average payoff range over all types and environments. I also find that
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under both information conditions, the rate of convergence improvement is higher

in potential games than in the non-potential counterparts. Finally, the subjects’

behavior proved to be very sensitive to the size of potential losses. This underlines

the importance for convergence to BNE of people’s tendency to treat losses differently

from gains.
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APPENDIX A

Bidding Strategies for Simultaneous Ascending

Auctions: Appendix

In this appendix, we provide details on how we constructed the perceived-

price function for each bidding strategy. Most of our bidding strategies are well-

defined for any type distribution. Two exceptions are the demand-reduction strategy

(Section A.2) and the own-effect price predictor (Section A.3) defined only for

homogeneous-good environments.

A.1 Prediction-Based Perceived-Price Strategies

In this section, we report how we constructed initial predictions for each

prediction-based strategy. Some of our initial predictions are based on Monte Carlo

sampling. To obtain a prediction for a particular distribution of agents’ preferences,

we simulate a large number of game instances with agents drawn from that preference

distribution and count the number of times each final price has occurred in each of

the auctions. We refer to the total number of simulated game instances as the

sample size. To obtain a distribution prediction of final prices, we divide all positive

counts by the sample size. The result is always an m-vector of marginal price

distributions. To obtain a point price prediction, which is simply an m-element vector

of numbers, we compute the means of the marginal distributions. One exception is

the PP (F (πEDPE)) point prediction, which is based on an expectation over the

estimated demand rather than over final prices. See Section 1.5.2 for details.

We assume that prices are bounded by some constant V . For technical reasons, we

require that initial distribution predictions are such that for each good, all integer

prices in {0, . . . , V } have a positive probability of occurring. To ensure that this

requirement is satisfied for initial distribution predictions obtained from empirical

samples, we add a one to the counts of all prices from 0 to V before dividing them by

the sample size. This increases the sample size by V +1. In our empirical analysis,
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Strategy Strategy parameter Example Section
& notation

Straightforward N/A SB 1.3.1
bidder, SB
Sunk-aware Sunk-awareness SA(k) 1.3.2
agent, SA(k) parameter, k k = {0, 0.05, 0.1, . . . 0.95}
Point price Predictions about PP (πZero) A.1
predictor, average final PP (π∞)
PP (πx) prices of the PP (πEPE)

goods, πx, where PP (πEDPE)
x labels method PP (πSB)
of generating prices PP (πSC)

Point price Predictions about PP (π∞) w/ P.O. A.1
predictor average final PP (πZero) w/ P.O.
with participation prices of the PP (πEPE) w/ P.O.
only, goods, πx, where PP (πEDPE) w/ P.O.
PP (πx) w/ P.O. x labels method PP (πSB) w/ P.O.

of generating prices PP (πSC) w/ P.O.
Price Predictions about PP (FZero) A.1
distribution marginal final-price PP (FU)
predictor, distributions, F , PP (F SB)
PP (F x) where F is labeled PP (FCE)
PP (G(µ(x), σ(y))) by method of PP (G(µ(CE), σ(CE)))

generating prices PP (G(µ(SB), σ(SB)))
PP (F (πx)) PP (F (πEPE))

PP (F (πEDPE))
PP (F (πSB))
PP (F (πSC))

Demand- Demand-reduction DR(κ) A.2
reduction parameter, κ κ = {1, 2, . . . 30, 32, 34,
agent, DR(κ) 36, 38, 40, 44, 48, 50, 52, 56,

60, 70, 80, 90, 100, 110, 120}
Own-effect Predictions about OEPP (πSB) A.3
price own effect on final
predictor, prices, πx, where
OEPP (πx) x labels method

of generating prices

Table A.1: Strategy Index. P.O. refers to participation-only prediction (see MacKie-
Mason et al. (2004)).
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Environment V Num. Profiles Min Max Average
Complementary E(3, 3) 50 104 0.4 10.4 2.919
Complementary E(3, 5) 50 462 0.6 0.65 0.643
Complementary E(3, 8) 50 3023 0.37 10.44 0.453
Complementary E(5, 3) 50 84 0.6 0.6 0.6
Complementary E(5, 5) 50 462 0.6 0.6 0.6
Complementary E(5, 8) 50 3023 0.5 9.61 0.601
Complementary E(7, 3) 50 84 0.6 0.6 0.6
Complementary E(7, 6) 50 924 0.6 0.6 0.6
Complementary U(3, 3) 50 104 0.6 7.6 2.071
Complementary U(3, 5) 50 462 0.4 6.4 0.72
Complementary U(3, 8) 50 3023 0.41 6.44 0.48
Complementary U(5, 3) 50 104 0.6 5.6 1.783
Complementary U(5, 5) 50 4457 0.2 200.46 7.01
Complementary U(5, 8) 50 3023 0.6 6.6 0.65
Complementary U(7, 3) 50 104 0.6 6.61 2.049
Complementary U(7, 6) 50 944 0.6 6.6 0.759
Complementary U(7, 8) 50 3023 0.6 4.6 0.629
Substitutable U(5, 5) 127 16995 0.04 34.485 0.986

Table A.2: Minimum, maximum, and average number of game instances (in
millions of samples) generated per strategy profile in complementary and
substitutable environments. The number of profiles is a total over all
restricted games analysed for the environment.

V is at most 0.3% of the size of the empirical sample, and therefore the effect on the

shape of the probability distribution is negligible.

Formally, let G be the number game instances in an empirical sample. If we

use this sample to generate an initial distribution price prediction, our marginal-

probability estimate that a good will have final price p ∈ {0, . . . , V } is given by

Pr(p) =
Gp + 1

G + (V + 1)
, (A.1)

where Gp is the number of times the final price equals p in the original sample.

In Table A.2 we summarize for each environment the number of profiles, the

minimum, maximum, and average number of game instances generated per strategy

profile.

In the following sections we describe a few initial price predictions. We denote a

specific point price-prediction strategy by PP (πx), where x labels a particular initial

point prediction. We denote the strategy based on a particular distribution predictor

by PP (F x), where x labels various initial predictions about final price distributions.
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If the initial prediction is based on Monte Carlo sampling, we write xu and xe to

distinguish between predictions obtained using draws from uniform and exponential

preference distributions.1

A.1.1 Zero Prediction

Zero point prediction is simply an m-element vector of zeros. We denote the

strategy by PP (πZero). The bidding behavior of PP (πZero) is identical to that of

SB (defined in Section 1.3.1).

To construct a zero distribution prediction, we create for each good an artificial

empirical sample in which the zero price occurs G = 1, 000, 000 times and the

(integer) prices in {1, . . . , V } never occur. We then compute the marginal PDFs

according to Equation (A.1). We denote the strategy by PP (FZero). Note that as

soon as the ask price of a good exceeds zero, the updated belief for the good becomes

uniform (see Chapter 1 for the update rule).

A.1.2 Infinite Point Prediction

By infinite prediction we mean a price prediction that is higher than the maximum

price any agent is ever willing to pay given the agents’ preference distribution. We

implement it as an m-element price vector with each price equal to 1,000. We denote

the strategy by PP (π∞). PP (π∞) serves as a useful performance benchmark for

point price predictors. The agent bids if and only if it has single-unit demand, in

which case its bidding is identical to that of SB.2

A.1.3 Uniform Distribution Prediction

For each good, we create an artificial empirical sample in which all prices in

{0, . . . , V } occur 20,000 times. We then compute the marginal PDFs according to

Equation (A.1). We denote the uniform-distribution predictor by PP (FU).

1In the results reported in Chapter 1, all agents have predictions derived for the preference
distribution of their environment. We therefore suppress the subscripts of predictions to simplify
the notation. Thus, if we consider a uniform environment, x refers to initial predictions based on
samples from uniformly distributed types. If we consider an exponential environment, x refers to
initial predictions based on samples from exponentially distributed types. One exception is the
53-strategy game that we constructed for the 5×5 uniform environment. In this restricted game,
some agents have predictions based on the exponential distribution. The 53 strategies are described
in Section A.4.1.

2Remember that any perceived-price predictor reverts to SB if the agent has single-unit demand
(see Chapter 1).
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(Complementary) SB-based distribution mean
Environment (=SB-based point prediction)

E(3, 3) 15.834 6.743 2.168
E(3, 5) 21.573 11.497 4.578
E(3, 8) 26.957 15.575 7.751
E(5, 3) 13.841 5.874 2.437 1.034 0.375
E(5, 5) 19.807 10.267 5.133 2.357 0.861
E(5, 7) 23.920 13.139 7.377 3.702 1.416
E(5, 8) 25.576 14.218 8.282 4.331 1.699
E(7, 3) 13.140 5.472 2.353 1.142 0.546 0.251 0.094
E(7, 6) 21.461 11.247 6.051 3.340 1.803 0.898 0.340
E(7, 8) 25.067 13.645 7.924 4.673 2.671 1.401 0.549
E(7, 9) 26.567 14.595 8.687 5.263 3.089 1.655 0.661
U(3, 3) 14.740 8.353 2.855
U(3, 5) 19.564 12.733 5.548
U(3, 8) 23.941 16.026 8.653
U(5, 3) 11.149 7.595 4.777 2.613 1.007
U(5, 5) 14.842 10.702 7.550 4.631 1.898
U(5, 7) 17.410 12.450 9.156 6.121 2.742
U(5, 8) 18.522 13.105 9.714 6.696 3.132
U(7, 3) 9.181 6.708 4.800 3.369 2.191 1.277 0.558
U(7, 6) 13.454 10.019 7.735 5.978 4.319 2.697 0.200
U(7, 8) 15.511 11.288 8.725 6.904 5.232 3.458 1.602
U(7, 9) 16.438 11.825 9.103 7.244 5.581 3.781 1.792

Ex1(2, 2) 15.000 14.501

Table A.3: SB-based price predictions in complementary environments. Ex1(2, 2)
refers to the fixed preferences described in Example 1.3.1.

A.1.4 SB-Based (Baseline) Prediction

We simulate one million (G = 1, 000, 000) game instances in which all players

follow the SB strategy (described in Section 1.3.1). The SB-based point prediction

is an m-element vector of the average final prices. The SB-based distribution

prediction an m-vector of marginal price distributions, each computed according

to Equation (A.1). We denote the SB-based point prediction by PP (πSBx), where

x labels the preference distribution of the SB-players: uniform (U) or exponential

(E). Similarly, we denote the SB-based distribution predictor by PP (F SBx). We

also refer to the SB-based prediction as baseline. In Table A.3, we report the means

of SB-based distribution predictions for a number of complementary environments.

The means also represent SB-based point predictions (by definition).
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A.1.5 Competitive Equilibrium Prediction

We repeatedly sample agents’ preferences from the preference distribution

(exponential or uniform) and apply Walrasian tatonnement to obtain a crude Monte

Carlo estimate of the expected price equilibrium. The process is described in

Section 1.5.2. To construct a competitive-equilibrium distribution prediction, we

apply Equation (A.1) to the sample of price-equilibrium estimates. We denote

the strategy by PP (FEPEx), where x labels the preference distribution. We also

construct two types of point predictions, PP (πEPEx) and PP (πEDPEx). They differ

in the order in which averaging and the tatonnement are applied. See Section 1.5.2

for details.

We have implemented this prediction method only for the U(5, 5) and E(5, 5)

complementary environments. We found the prices to which tatonnement converges

to be sensitive to the choice of initial prices and other parameters of the tatonnement

algorithm. In Section A.4.1 of this appendix, we provide all the competitive-

equilibrium predictions we have obtained. All these predictions are based on 25,000

draws from the corresponding preference distribution.

A.1.6 Self-Confirming Prediction

In this section, we present SC predictions that we derived for a number

of complementary environments. In substitutable environments, we analyzed a

modification of SC prediction that we believe has a higher potential in such

environments (see Section A.3).

In Tables A.5 and A.6 below, we report approximate SC point predictions and

the means of approximate SC distribution predictions. In environments in which the

iterative process did not reach a fixed point, the reported price vector is the mean

of the last-iteration final-price distribution. In all cases but a few exceptions, the

maximum number of iterations is 100 and the number of game instances per iteration

is 1 million (G = 1, 000, 000). The exceptions are given in Table A.4. Environments

Ex1(2, 2) and Ex2(m, n) refer to the specific preferences described in Examples 1.3.1

and 1.5.1 respectively.

A.1.7 Gaussian Distribution Prediction

Let µ be a vector of expected final prices and σ be a vector of standard errors.

We can approximate the final-price (marginal) distribution of good i ∈ {1, . . . ,m}
with a Gaussian-shaped distribution defined on {0, . . . , V } and centered around µi.

We draw G = 1, 000, 000 samples from N(µi, σi) for each i ∈ {1, . . . ,m}, round the
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Environment Prediction Iterations Games per iteration
U(5, 5)a Point 70 500,000
U(5, 5) Point 40 500,000
U(5, 5) Distribution 50 1 million
E(7, 9) Point 87 1 million
Ex1(2, 2) Point 100 10,000
Ex1(2, 2) Distribution 100 10,000

Table A.4: Deriving approximate self-confirming (SC) price predictions in comple-
mentary environments: Environments in which the maximum number
of iterations or the number of games per iteration deviates from the
standard setting (100 and 1 million respectively). Point predictions in
rows U(5, 5)a and U(5, 5) differ in the initial prediction (see Table A.5
for details). In environment E(7, 9), the maximum number of iterations
was originally set to 100, but the simulation was aborted by the system
after iteration 87.

prices and discard those outside the [0, V ] interval.3 Then we compute the final-

price probabilities according to Equation (A.1). We denote the Gaussian prediction

by G(x, y), where x and y label the expected-price and the standard-error vectors

respectively. For example, the Gaussian prediction of PP (G(µ(EPEu), σ(EPEu)))

is based on the means and standard errors of the FEPEu marginals; the prediction of

PP (G(πEDPEu , σ(EPEu))) is based on vector πEDPEu the standard errors of FEPEu .

A.1.8 Degenerate Distribution Predictions

Let π be an m-element price vector. If the prices are all integers, we create for

each good i ∈ {1, . . . ,m} an artificial empirical sample in which these prices each

occur G = 1, 000, 000 times and the rest of the integer prices in {0, . . . , V } never

occur. We then compute the marginal PDFs according to Equation A.1. If the price

of good i in a particular price vector π that we want to use is non-integer, we either

split a one-million sample between the closest integer prices so that the distribution

mean equals the original price πi or simply round the price before generating the

distribution. In the former two cases, we denote the degenerate-distribution predictor

by PP (F (π)). For example, the mean prediction of PP (F (πSBu)) equals exactly

πSBu . In the latter case, we mark the price vector with a prime. For example,

PP (F (πEPE′
u)) is based on the rounded πEPEu .

3One obvious shortcoming of this approach is that the mean of the resulting distribution is
different from µi, unless µi = V

2 .
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(Complementary) Final-price distribution mean in the last iteration
Environment (= approx. SC point prediction if a fixed point reached)

E(3, 3) 14.321 5.436 1.651
E(3, 5) 20.097 8.624 2.969
E(3, 8) 25.344 11.519 4.436
E(5, 3) 12.329 4.789 2.034 0.920 0.355
E(5, 5) 18.071 7.883 3.915 1.872 0.670
E(5, 7) 22.083 9.943 5.354 2.745 0.980
E(5, 8) 23.795 10.840 5.923 3.117 1.107
E(7, 3) 11.626 4.439 1.970 1.005 0.571 0.298 0.104
E(7, 6) 19.742 8.646 4.591 2.670 1.521 0.807 0.323
E(7, 8) 23.354 10.480 5.910 3.606 2.167 1.181 0.466
E(7, 9) 24.818 11.223 6.431 4.047 2.487 1.376 0.544
U(3, 3) 12.988 6.738 2.140
U(3, 5) 17.742 9.785 3.421
U(3, 8) 21.786 11.729 4.367
U(5, 3) 9.533 6.235 3.758 2.012 0.778
U(5, 5)a 12.930 8.576 5.334 2.988 1.177
U(5, 5) 13.038 8.668 5.424 3.035 1.183
U(5, 7) 14.995 9.560 5.922 3.344 1.324
U(5, 8) 15.477 9.437 5.635 3.133 1.220
U(7, 3) 7.765 5.535 3.851 2.641 1.694 0.989 0.444
U(7, 6) 11.795 8.272 5.800 4.025 2.662 1.567 0.697
U(7, 8) 12.352 7.917 5.052 3.297 2.108 1.232 0.550
U(7, 9) 11.876 6.932 3.928 2.339 1.430 0.847 0.384

Ex1(2, 2) 14.749 14.251
Ex2(2, 2) 13.919 13.241
Ex2(2, 5) 15.708 15.046
Ex2(5, 2) 6.699 6.452 6.080 5.792 5.596
Ex2(5, 5) 8.060 7.599 7.433 7.303 7.213

Table A.5: Deriving approximate self-confirming (SC) point price predictions in
complementary environments: Distribution means in the last iteration.
Price oscillation persisted only in Ex1(2, 2). In the rest of the
environments, the price vectors satisfy the definition of the approximate
SC point price prediction. We used the zero initial prediction PP (πZero)
(see Section A.1.1) to derive all the predictions in this table except that
in row U(5, 5). In row U(5, 5), the initial prediction is the average of the
last 50 (of 70) iterations used to generate the prediction in row U(5, 5)a.
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(Comple- KSmarg Last Final-price distribution mean in the last iter.
mentary) distance iter. (= mean of approximate SC distribution
Envir. in last iter. prediction if a fixed point is reached)
E(3, 3) -0.00147 100 12.21 3.80 1.20
E(3, 5) -0.00184 100 17.86 6.55 2.17
E(3, 8) 0.000899 100 23.40 9.34 3.40
E(5, 3) -0.00126 100 10.52 3.45 1.52 0.76 0.33
E(5, 5) 0.00179 100 16.14 6.08 2.95 1.47 0.58
E(5, 7) -0.00158 100 20.33 8.09 4.19 2.15 0.82
E(5, 8) -0.0011 100 22.12 8.96 4.75 2.48 0.95
E(7, 3) 0.0014 100 9.92 3.20 1.48 0.82 0.50 0.296 0.132
E(7, 6) 0.001252 100 17.92 6.84 3.59 2.09 1.24 0.717 0.307
E(7, 8) -0.00235 100 21.70 8.67 4.75 2.86 1.75 1.017 0.427
E(7, 9) 0.000955 100 23.30 9.48 5.28 3.22 1.99 1.154 0.476
U(3, 3) 0.001499 100 10.40 4.58 1.52
U(3, 5) 0.001845 100 15.24 7.29 2.52
U(3, 8) 0.005117 100 19.76 9.71 3.67
U(5, 3) 0.001061 100 7.32 4.42 2.69 1.54 0.69
U(5, 5) 0.007133 6 10.77 6.55 4.08 2.34 1.03
U(5, 7) -0.00242 100 13.21 7.95 5.07 2.96 1.29
U(5, 8) 0.003864 100 14.22 8.39 5.40 3.19 1.40
U(7, 3) -0.00234 100 5.96 4.02 2.83 2.00 1.37 0.871 0.433
U(7, 6) 0.002896 100 9.74 6.46 4.59 3.26 2.23 1.400 0.690
U(7, 8) -0.00213 100 11.54 7.44 5.28 3.78 2.60 1.643 0.811
U(7, 9) -0.00211 100 12.29 7.78 5.53 3.97 2.74 1.728 0.853

Ex1(2, 2) -0.5055 100 8.00 7.50
Ex2(2, 2) -0.20994 100 10.83 10.19
Ex2(2, 5) 0.172697 100 12.21 11.59
Ex2(5, 2) 0 2 1 0 0 0 0
Ex2(5, 5) 0 2 1 0 0 0 0

Table A.6: Deriving approximate self-confirming (SC) distribution price predictions
in complementary environments: Distribution means in the last iteration.
We used uniform initial predictions FU to derive all the distribution
predictions in this table except that in row U(5, 5), for which we used the
SB-based baseline prediction F SBu . The KSmarg convergence criterion in
U(5, 5) is 0.01, i.e., we programmed the simulation to stop if the KSmarg

distance between the current- and previous-iteration final-price CDFs
for all goods was below 0.01. The criterion was satisfied at iteration 6
in U(5, 5). For the rest of the environments in this table, the KSmarg

criterion is 0.00001. This threshold was never reached in any other
U - or E-environments, and the simulation stopped at the threshold
on the number of iterations, which equals 100 in all the environments.
However, KSmarg reached 0.01 within the first 11 iterations in all the U -
environments and within the first 7 iterations in all the E-environments.
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A.2 Demand-Reduction Strategy

The demand-reduction strategy family, DR(κ), was introduced for homogeneous-

good environments (see Section 1.7.1). In a homogeneous-good environment, each

auction sells one unit of a homogeneous indivisible good, and the bidders’ marginal

value for one more unit of the good is weakly decreasing. We implemented such

preferences by randomly drawing marginal values vk for the kth unit from U [0, vk−1],

where v0 is a uniform upper bound on the marginal value of a unit, which equals 127

in our empirical-game analysis.

DR(κ)’s perceived price of the unit with the lth lowest myopically perceived price

(see Section 1.3.1) is given by

ρl(B) ≡

βl + κ(l − 1) if winning the unit

βl + 1 + κ(l − 1) otherwise,
(A.2)

where β is the vector of current bid prices. Thus, the parameter κ ∈ 0, . . . , 127

defines the degree of the agent’s demand reduction. An agent with a larger κ bids

on fewer units. When κ = 0, the agent’s bidding behavior is equivalent to that of SB

(see Section 1.3.1). In the other extreme case when κ = 127, the agent never bids at

all. For more details on the strategy, see Section 1.7.1.

A.3 Own-Effect Price-Prediction Strategy

The own-effect price predictor, OEPP (πx), is designed for homogeneous-good

environments (see Section A.2; for analysis, see Section 1.7.2) and is a modification

of the price predictor (see Section A.1). Its prediction is an m×m matrix of predicted

own-effect prices. Each element of the matrix, which we denote πiq(B), is a predicted

final price of unit i given that the agent tries to win q units and its information state

at the current round is B. In our analysis, the initial price prediction is equal

across auctions: πiq(∅) = πjq(∅) for all i and j, for all purchase sizes q. In other

words, the initial-prediction matrix consists of m identical rows. We label it by πx,

where the subscript x labels initial predictions. Of particular interest is what we call

self-confirming own-effect prices, which we describe in the following section.

A.3.1 Self-Confirming Own-Effect Prices

Self-confirming own-effect prices satisfy the condition that if one of the agents

(the “explorer”) bids to win q units ignoring its preferences and the other agents

“exploit” their own-effect price predictions, that prediction on average is correct for

all q. See Section 1.7.3 for a formal definition and the derivation procedure. We
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1 2 3 4 5
19.0538 39.994 60.934 80.4613 101.15
19.7819 39.6585 60.9936 80.3963 101.755
19.3541 40.2281 60.9409 80.4295 102.034
19.2679 39.8432 60.8178 80.2026 101.359
18.5337 39.5263 60.5431 80.4075 101.501
19.5411 40.2917 61.0213 80.5834 101.373
18.9921 40.0143 61.2818 80.377 101.792
18.2261 39.8009 61.2354 80.4773 101.684
18.73 39.5478 61.2418 80.572 101.787
18.4487 39.7332 61.4828 80.5034 101.204
18.99294 39.8638 61.04925 80.44103 101.5639

Table A.7: Approximate self-confirming own-effect predictions and their average. We
used the average as πSC in our empirical-game analysis in Section 1.7.4.
The columns are the possible target purchase sizes (q ∈ {1, . . . ,m},
where m = 5 auctions). V =127 in our analysis of homogeneous-good
environments.

denote the self-confirming own-effect price matrix by πSC and the self-confirming

own-effect price-prediction strategy by OEPP (πSC).

We have implemented OEPP (πSC) for a homogeneous-good environment with

5 units and 5 agents (see Section 1.7). We set the initial predictions to a matrix

of zeros, and simulated 10,000 games for every purchase size of the explorer. The

explorer’s purchase size was changed 500 times, i.e., each purchase size was updated

100 times. We created 10 approximate self-confirming own-effect predictions, which

we report in Table A.7. Since any own-effect initial-prediction matrix consists of m

identical rows, we present one row per prediction. In our empirical-game analysis,

we used the average of these 10 predictions as πSC .

A.4 Restricted SAA Games

A.4.1 53-Strategy Game for 5×5 Uniform Complementary Environment

In Table A.8, we describe 53 strategies that we constructed for the 5×5 uniform

environment (U(5, 5)) analyzed in Chapter 1. In Table A.9, we report all initial point

predictions for the price-predicting strategies derived for this environment.

A.4.2 Strategies for Alternative Complementary Environments

For 11 alternative complementary environments (E(3, 3), E(3, 8), E(5, 8), U(3, 3),

U(3, 5), U(3, 8), U(5, 3), U(5, 8), U(7, 3), U(7, 6), U(7, 8)), we have evaluated
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Strategy Family Number of Strategies
Representatives
in Game

Straightforward 1 SB
Bidder
Sunk-aware 20 SA(k)
Agent k = 0, 0.05, 0.1, . . . 0.95
Point Price 13 PP (π∞),
Predictor PP (πSBu), PP (πSBu) w/ P.O.,

PP (πEPEu), PP (πEPE∗
u), PP (πEPE∗∗

u ),
PP (πEPEe), PP (πEPE∗

e ),
PP (πEDPEu), PP (πEDPE∗

u),
PP (πEDPEe), PP (πEDPE∗

e ),
PP (πSCu)

Price 19 PP (FZero),PP (FU)
Distribution PP (F SBu),PP (F SCu),
Predictor PP (FEPEu),

PP (G(µ(EPEu), σ(EPEu))),
PP (G(µ(SBu), σ(SBu))),
PP (G(πEDPEu , σ(EPEu))),
PP (G(πEDPEu , σ(SBu))),
PP (G(πSCu , σ(EPEu))),
PP (G(πSCu , σ(SBu))),
PP (F (πEPEu)), PP (F (πEPE′

u)),
PP (F (πEDPEu)), PP (F (πEDPE′

u)),
PP (F (πSBu)), PP (F (πSB′

u))
PP (F (πSCu)), PP (F (πSC′

u))

Table A.8: 53 strategies for the complementary 5×5 uniform-environment game
(complementary U(5, 5)). We report the strategies in column 3 and
the strategy family to which they belong in column 1. Column 2 is
the total number of strategies from each strategy family. P.O. refers to
participation-only prediction (see MacKie-Mason et al. (2004)). Different
point predictions obtained using the same (non-deterministic) algorithm
are marked by asterisks.
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Predictions/Good 1 2 3 4 5 Appendix Section
Initial Point Predictions

π∞ 1000 1000 1000 1000 1000 A.1.2
πSBu 14.8 10.7 7.6 4.6 1.9 A.1.4
πSCu 13.0 8.7 5.4 3.0 1.2 A.1.6
πEPEu 16.6 10.8 6.5 3.1 0.7 A.1.5
πEPE∗

u 16.5 10.7 6.4 3.1 0.8 A.1.5
πEPE∗∗

u 26.0 14.2 6.9 2.5 0.3 A.1.5
πEPEe 6.0 4.1 1.8 0.6 0.1 A.1.5
πEPE∗

e 30.5 11.9 6.0 2.7 0.4 A.1.5
πEDPEu 20.0 12.0 8.0 2.0 0.0 A.1.5
πEDPE∗

u 20.8 11.4 8.2 1.8 0.0 A.1.5
πEDPEe 25.0 10.0 5.1 0.9 0.0 A.1.5
πEDPE∗

e 24.5 10.5 5.5 1.5 0.0 A.1.5

Table A.9: Initial predictions (rounded to one decimal place) for the 5×5 uniform
complementary environment (complementary U(5, 5)). Column 1 is the
notation, and column 2 is the point-prediction vectors. The goods are
numbered from 1 through 5. The monotonicity of the prices is due to
the specifics of the scheduling-game preferences (see MacKie-Mason et al.
(2004) and Reeves et al. (2005)). For information about price-predicting
strategies, see Section A.1. The subsections most relevant to particular
predictions are given in column 3.
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Strategy Family Number of Strategies
Representatives
in Game

Straightforward 1 SB
Bidder
Sunk-aware 20 SA(k)
Agent k = {0, 0.05, 0.1, . . . 0.95}
Point Price 3 PP (π∞), PP (πSB), PP (πSC)
Predictors
Price Distribution 6 PP (FU), PP (F SB)
Predictors

Table A.10: 26 deviators for 11 alternative environments. We report the strategies
in column 3 and the strategy family to which they belong in column 1.
Column 2 is the total number of strategies from each strategy family.

27 profiles: one with all PP (F SC), and for each of 26 other strategies s, one

profile with (n − 1) PP (F SC) and one s, where s is a strategy from Table A.10.

Also, for 16 alternative complementary environments reported in Table A.2 (all

environments other than complementary U(5, 5), which include the 11 above-

mentioned environments and 5 additional E models), we evaluated complete 7-

cliques. In Table A.11, we describe the 7-clique restricted games for each of the

alternative environments. We suppress the preference-distribution labels in the

tables, because they all match the corresponding environment (e.g., PP (F SB) for

E(5, 3) refers to PP (F SBe), and PP (F SB) for U(5, 3) refers to PP (F SBu)).

A.4.3 51-Strategy Game for 5× 5 Uniform Homogeneous Environment

To analyze the 5 × 5 homogeneous-good environment in Section 1.7.4, we

constructed a 51-strategy restricted game described in Table A.12.
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Strategy Family Number of Strategies
Representatives
in Game

Straightforward 1 SB
Bidder
Sunk-aware 1 SA(k)
Agent k = 0.5
Price 1 PP (F SBu)
Distribution
Predictor
Demand- 47 DR(κ)
Reduction κ = {1, 2, . . . 30, 32, 34,
Agent 36, 38, 40, 44, 48, 50, 52, 56,

60, 70, 80, 90, 100, 110, 120}
Own-Effect 1 OEPP (πSC)
Price Predictor

Table A.12: 51-strategy restricted game for the 5×5 homogeneous-good uniform
environment (also referred to as substitutable U(5, 5)). We report the
strategies in column 3 and the strategy family to which they belong in
column 1. Column 2 is the total number of strategies from each strategy
family.
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APPENDIX B

Empirical Distribution of Number of Articles

Read in a Journal (King and Griffiths, 1995)

Figure B.1 displays a histogram of the empirical distribution of the number

of scholarly articles read by a sample of readers (King & Griffiths, 1995) from a

collection of about 100 articles. The horizontal axis is the number of articles. The

vertical axis is the percentage of the readers who read the corresponding number

of articles. The shape of the histogram approximates the density of an exponential

distribution.
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Figure B.1: Distribution of Number of Articles Read in a Journal (King and Griffiths,
1995)
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k Number of articles read P (K < k)
0.05 5 .436
0.1 10 0.78
0.15 15 0.8621
0.2 20 0.9171
0.25 25 0.9508
0.3 30 0.9795
0.4 40 0.9828
0.5 50 0.991
≥ 0.5 ≥ 50 1

Table B.1: Data points for Equation (C.2) in Chapter 2. The last column describes
the empirical cumulative distribution of the number of scholarly articles
read by a sample of readers (King & Griffiths, 1995) from a collection of
about 100 articles. Source: Chuang and Sirbu (1998), p.155.
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APPENDIX C

Parameters of Exponential Preference

Distribution Estimated Based on King and

Griffith’s Empirical Data (1995)

In this appendix, I demonstrate how the parameters for the distribution of k were

estimated. The cumulative distribution function of the exponential distribution is

given by

F (k) = 1− e−λk, (C.1)

where λ is the distribution parameter.

Given γ and assuming w = 100 and N = 100, we can estimate the mean of the

distribution, θ = 1
λ
. Substituting θ = 1

λ
in (C.1), rearranging the terms and taking

logarithm of the both sides of the equation, we obtain

k = −θLog(1− F (k)). (C.2)

Let ki be the preference breadth such that a consumer with access to a collection

of a hundred articles would choose to read i of them. Assume also that intensity is

constant and equals one hundred (w = 100). Then King and Griffiths’ data provide

eight data points for Equation (C.2) (see Appendix B). The estimated values of k

depend on the assumed value of the substitution effect γ. In Table C.1 I report

a subset of the estimated values of the mean of the distribution θ, as well as the

parameter λ, for a range of values of γ.
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γ θ = 1
λ

λ
0. 0.0927717 10.7791
0.01 0.0934613 10.6996
0.02 0.0941623 10.62
0.03 0.0948751 10.5402
0.04 0.0956 10.4602
0.05 0.0963374 10.3802
0.1 0.100223 9.97771
0.2 0.109162 9.16066
0.3 0.120132 8.32414
0.4 0.134001 7.46265
0.5 0.152255 6.56794
0.55 0.163819 6.10428
0.6 0.177723 5.62675
0.65 0.194853 5.13208
0.7 0.216652 4.61569
0.75 0.245647 4.07088
0.8 0.286764 3.48719
0.85 0.351227 2.84716
0.9 0.472042 2.11845
0.91 0.510953 1.95713
0.92 0.558992 1.78894
0.93 0.620017 1.61286
0.94 0.700454 1.42765
0.95 0.811852 1.23175

Table C.1: Mean (θ = 1
λ
) and parameter λ of the exponential preference distribution

estimated using Equation (C.2) in Chapter 2. The parameter is estimated
for a range of γ (column 1) based on empirical data due to King and
Griffiths (1995). The collection size is N = 100 items. The intensity is
assumed to be fixed at w = 100. Data source: Chuang and Sirbu (1998),
p. 155.
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APPENDIX D

Learning Bayesian Nash Equilibrium: Best-Reply

Functions

The figures in this appendix display the players’ best-reply functions. Since

the players’ payoff functions are quadratic, the best replies are straight lines.

Note that the best-reply functions do not depend on the other player’s type: in

each environment, same-color lines look the same. Also, the two submodular

environments, SubNP and SubP, have the same best-reply graphs (Figure D.1).

This is because the column player’s preferences in the two environments are exactly

the same, and the non-constant coefficients of the row player’s payoff functions in

SubP equal those in SubNP multiplied by the same constant (2). See Table 3.3,

functions πc1 for the column players’ preferences and functions πr2 and πr1 for the

row players’ preferences.

Each panel displays the best-reply functions of two players—the row and the

column—given their color types. For example, the top left panel on each figure

displays the best replies of the red row and the green column players. The row

player’s best reply (solid lines) is a function of the column player’s choices (the

horizontal axis). The column player’s best reply (dashed lines) is a function of the row

player’s choices (the vertical axis). Consider, for example, panel (a) on Figure D.1

(submodular environments, {red row, green column}). The best reply of the red

row player (red solid line) to column’s choice equal to 10 is 17.5. To find the best

reply of the green column player (green dashed line) to 10, find 10 on the vertical

axis and read the value of the best reply on the horizontal axis: it is around 15.

Note that in the submodular environments, the slopes of the best-reply functions are

negative. This property, called strategic substitutability, is implied by the condition

of submodularity. On Figure D.2 displaying the supermodular (and non-potential)

environment, the best-reply slopes are positive. This property is called strategic

complementarity and is implied by supermodularity.
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Unconstrained best replies to some feasible choices can be outside the player’s

strategy space. Consider again panel (a) on Figure D.1. The boundaries of the

strategy space are outlined by the gray rectangle. If the green column player

chooses 0, the red row player’s unconstrained best reply is around 24, which is outside

the rectangle area. In the experiment, however, the subjects can observe payoffs only

for feasible choice profiles, which means that 21 would be the row player’s best reply

in this case. In fact, 21 is the row player’s best reply to a range of column player’s

choices from 0 to around 4, which means that the red row player’s best reply in

the submodular environments is a kinked rather than a straight line. I summarize

all cases of best-reply functions with a kink in Table D.1. In all cases, the binding

strategy-space limit is 21.

Environment Player type Kink location
SubNP & SubP red row column player’s choice is 4.33
SubNP & SubP green column row player’s choice is 0.67
SuperNP red row column player’s choice is 17.67

Table D.1: Best replies.

A game obtained by assigning each player of the original Bayesian game a

particular type is a complete-information simultaneous-move game. The (Nash)

equilibria of such games are in general different from the equilibrium of the original

Bayesian game, but they may convey some useful information about the Bayes-

Nash equilibrium. Therefore, I chose the strategy space and the players’ payoff

function parameters in such a way that these equilibria are feasible strategy profiles

(graphically represented as intersections of the best-reply functions on Figures D.1–

D.2). This is particularly important under Bayesian-information condition, where

subjects are given a set of payoff tables displaying the players’ payoffs for each

combination of the row and column types. Since I have no knowledge about how

subjects may use the strategic information they can read on such payoff tables, I

impose the condition of feasibility of the Nash equilibria of the games displayed on

each table in order to reduce the probability of an unknown behavioral confound.
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Figure D.1: Players’ best-reply functions: Submodular environments (SubNP and
SubP). The panels are labeled by the players’ type profile: {row’s type,
column’s type}.
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Figure D.2: Players’ best-reply functions: Supermodular & non-potential environ-
ment (SuperNP). The panels are labeled by the players’ type profile:
{row’s type, column’s type}.
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APPENDIX E

Learning Bayesian Nash Equilibrium: Payoff

Gradient Fields

In Apeendix D, I use best-reply functions to summarize the strategic properties

of the experimental environments. The plots I present in this appendix are another

visual representation of the players’ preferences. They are gradient fields of the

players’ payoff functions, which highlight each player’s incentive to deviate at any

given strategy profile.

Figures E.1–E.2 are superimposed gradient plots of the players’ payoff functions.

Figure E.1 displays submodular environments (potential and non-potential), and

figure E.2 displays the supermodular (and non-potential) environment. Each panel

displays the payoff functions of two players—the row and the column—given their

color types. For example, the top left panel on each figure shows the payoffs of the

red row and the green column players.

The figures can be thought of as a continuous-strategy normal-form representation

of a stage game: the row player’s strategies are on the vertical axis, increasing

from top (0) to bottom (21); the column player’s strategies are on the horizontal

axis, increasing from left (0) to right (21). The curved lines are indifference curves,

which gradually grow thicker as the corresponding payoff function grows. The curves

effectively convey the shape of the payoff functions. They are displayed on all

payoff tables available to the subjects under Bayesian-information condition (see

an example in Appendix H). The vertical arrows on the plots show the row player’s

payoff gradient along her strategy space. Similarly, the horizontal arrows show the

column player’s gradient. The longer the arrows, the steeper the function at the

point. Thus, the dots are near-equilibrium area of the normal-form game induced by

fixing the type profile (but generally not of the Bayesian game).
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{red row, green column} {red row, purple column}

{blue row, green column} {blue row, purple column}

Figure E.1: Gradient plots of the players’ payoff functions: Submodular environ-
ments (SubNP and SubP). The panels are labeled by the players’ type
profile: {row’s type, column’s type}.

149



{red row, green column} {red row, purple column}

{blue row, green column} {blue row, purple column}

Figure E.2: Gradient plots of the players’ payoff functions: Supermodular & non-
potential environment (SuperNP). The panels are labeled by the players’
type profile: {row’s type, column’s type}.
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APPENDIX F

Learning Bayesian Nash Equilibrium: Computer

Simulations

In this appendix, I report on computer simulations I performed to test the

experimental design. The main idea is to explore the game dynamics when the players

follow an established learning model capturing the principles of human learning

behavior. In particular, I was interested in the following questions:

1. Would software agents behave as predicted by theory in the experiment environ-

ments? If not, what features of the design can explain that?

2. How many rounds would it take software agents to converge to the equilibrium (if

they converge at all). This number served as an estimate of the required length

of the experiment.

3. What average payoffs would software agents earn under different learning models?

4. What would the average payoffs be if the players all chose actions at random? How

do they compare to the equilibrium payoffs? I used this and the average-payoff

estimates to compute a prediction of the final average earning of human subjects

and to adjust the constant coefficients of the payoff functions and determine the

exchange rate between points and US dollars. I report the estimated average

payoffs in Table F.1.

I programmed the software agents to implement the following learning models:

1. Replicator dynamic (RD).

2. Generalized fictitious play (GFP) with a discount factor γ ∈ (0, 1). In this

appendix I report the results for γ = 0.5 and γ = 0.9.

3. Fictitious play (FP), which is a special case of GFP with γ = 1.
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4. Cournot best-response dynamic (BR), which is a special case of GFP with γ = 0.

5. Population fictitious play (PFP).

6. Exponentialized relative payoff sums (RPS).

Learning Red Blue Green Purple Row Column
Model Row Row Column Column Average Average

SubNP
Replicator dynamic 1337 788 1175 719 1063 947
PFP 1342 776 1215 711 1059 963
FP (GFP(γ = 1)) 1338 779 1207 716 1058 961
GFP(γ = 0.9) 1339 786 1178 718 1062 948
GFP(γ = 0.5) 1337 784 1169 707 1061 938
BR (GFP(γ = 0)) 1318 780 1134 680 1049 907
RPS (γ = 0.5, λ = 0.004) 938 563 1378 751 750 1065
Random choice 996 628 1223 756 812 989

SubP
Replicator dynamic 1371 958 1170 722 1164 946
PFP 1385 931 1217 709 1158 963
FP (GFP(γ = 1)) 1373 938 1204 717 1156 960
GFP(γ = 0.9) 1394 937 1201 698 1166 949
GFP(γ = 0.5) 1375 941 1162 706 1158 934
BR (GFP(γ = 0)) 1350 926 1148 665 1138 906
RPS (γ = 0.5, λ = 0.004) 582 494 1330 725 538 1028
Random choice 681 632 1193 726 657 959

SuperNP
Replicator dynamic 1478 818 1238 810 1148 1024
PFP 1557 844 1272 818 1200 1045
FP (GFP(γ = 1)) 1427 763 1221 786 1095 1003
GFP(γ = 0.9) 1490 822 1244 810 1156 1027
GFP(γ = 0.5) 1478 801 1237 798 1139 1017
BR (GFP(γ = 0)) 1458 783 1226 782 1120 1004
RPS (γ = 0.5, λ = 0.004) 774 432 890 457 603 674
Random choice 604 396 820 388 500 604

Table F.1: Average payoffs over 500 simulated games. The payoffs are rounded to
the nearest integer.

F.1 Replicator dynamic

Ely and Sandholm (2005) proposed the following replicator dynamic to find

Bayes-Nash equilibria:
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ẋ = BR(x)− x, (F.1)

where x is the distribution of pure strategies in the population of players.

In this experimental study, there are two different populations of pure strategies,

because the row and the column players have different preferences. Thus, one

population of replicator-dynamic players represents the row player’s distribution of

pure strategies (a real number in [0, 21]), and the other population represents the

column players’ distribution of pure strategies.

For the Cournot duopoly game used in the experiment, the equation above,

generalized to two-population case, means that player i = {r, c} of type type θi,

where θr = {r, b} and θc = {g, p}, plays the best reply to the average play of all

players in the previous round. The dynamic becomes

BRθi
i (t + 1) =

bθi
i − fi

1
n

n∑
j=1

yj(t)

2di

, (F.2)

where yj(t) is player j’s play in period t, and n is the number of players (n = 8 in

this experiment).

F.2 Fictitious-Play Learning Models

In the generalized fictitious play, player i = {r, c}, best-replies to the discounted

sum of the history of the choices of other players she has been matched with:

BRθi
i (t + 1) =

bθi
i − fiyj(t + 1)

2di

, (F.3)

where

yj(t + 1) =

yj(t) +
t−1∑
u=1

γuyj(t− u)

1 +
t−1∑
u=1

γu

, (F.4)

where γ is the discount factor and j = {r, c} is player i’s match, who is randomly

chosen at the beginning of each round according to the type distribution.

The original fictitious play corresponds to γ = 1. The Cournot best-response

dynamic corresponds to γ = 0.

The above can be thought of as individual learning : the history of observations

to which a player best-replies is the player’s own memory. With social learning, on
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the other hand, the distribution of actions for the whole population is revealed after

each round, as in replicator dynamic discussed above, for example.

In the population fictitious play, which is also a social type of learning, the players

best-reply to the discounted sum of the average choice history of all other players

in the population, rather than to the choice history of the players who have been

matched with her so far:

BRθi
i (t + 1) =

bi − fi
1
n

n∑
j=1

yj(t + 1)

2di

, (F.5)

where n is the number of players and yj(t + 1) is as defined as above.

F.3 Exponentialized relative payoff sums

I use a nonlinear variant of the basic RPS model called the exponenialized RPS

model. This model is also called the quantal-response learning model (Mookherjee

& Sopher, 1997), which is a dynamic learning version of the quantal-response

equilibrium model of McKelvey and Palfrey (1998). Unlike the learning models

above, in RPS players are not assumed to choose best replies to the expected behavior

of others. This characteristic makes the model appealing for network games and other

Internet settings, where the number of players may be large and unknown and there

is high uncertainty about the players’ type distribution.

To implement RPS, I divide the strategy space, [0, 21], into n intervals.

Let j = 0, 1, 2, 3, . . . , n correspond to the strategies of choosing the number

0, 21
n

, 221
n

, 321
n

, . . . , 21. If player i plays strategy j in round t, denote the payoff she

earns in that round by πij(t). For all k 6= j, πij(t) = 0.

Define Mij(t) as the discounted payoff sum of player i to choose strategy j:

Mij(t) = qMij(t− 1) + πij(t), (F.6)

where q ∈ [0, 1] is the time/memory discount factor. Then the probability that

player i plays strategy j in round t + 1 is given by

pij(t + 1) =
eλMij(t)

n∑
k=0

eλMik(t)

∀i, j, (F.7)

where λ ≥ 0 helps to scale up (if λ ≥ 1) or scale down (0 ≤ λ < 1) the relative

weights of the discounted payoff sums. When λ = 0, the model degenerates into a

random choice model.
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Figure F.1: Simulation of replicator dynamic.

In my computer simulations, n = 100, λ = 0.004. I also imposed an upper bound

on Mij(t) equal to 1,000,000 to prevent the exponential terms from exploding. Since

I conducted simulations before running experimental sessions, I didn’t have data to

estimate λ. I chose the value 0.004 by trial and error, using results from another

study to guide the search (Chen & Tang, 1998). The value of 0.004 was one of

few values that produced dynamics different from a constant choice (typically equal

to the initial randomly chosen number) or what appeared to be random choice.

Unfortunately, as Figure F.7 shows, the RPS model did not produce an interesting

dynamic even with λ = 0.004 in the Cournot duopoly environment.

F.4 Simulation Results

Figures F.1–F.8 display simulated convergence dynamics for each learning model.

There are eight players, each of one of the four types: red row, blue row, green

column, and purple column. There are two players of each type, and the row players

are randomly rematched with the column players in each round. The players’ payoff

functions are as described in Table 3.3, and the strategy space is [0, 21] for each

player. The initial choice is a random number from the strategy space.1

Figures F.2–F.6 show that the learning models from the FP family with relatively

large γ converge to the Bayes-Nash equilibrium, and the convergence is fast. Since

the equilibrium is a globally asymptotically stable steady state of the best-reply

dynamic in all three environments, it is not surprising that the level of convergence

is equally high in all three. The exception is the Cournot best-reply dynamic, which

oscillates indefinitely, because the players do not “remember” enough history to learn

1As I discuss in Appendix D, the unrestricted best reply to some feasible choices may be outside
the interval [0, 21]. However, in my computer simulations of the models from the FP family, I did
not restrict the players to the strategy space except in the first round. As the figures show, the
players do not choose numbers higher than 21 in more than a few cases in early rounds.

155



0 10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

Round

C
ho

ic
e

 

 

red BNE
blue BNE
green BNE
purple BNE
red−pfp
red−pfp
blue−pfp
blue−pfp
green−pfp
green−pfp
purple−pfp
purple−pfp

0 10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

Round

C
ho

ic
e

 

 

red BNE
blue BNE
green BNE
purple BNE
red−pfp
red−pfp
blue−pfp
blue−pfp
green−pfp
green−pfp
purple−pfp
purple−pfp

0 10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

Round

C
ho

ic
e

 

 

red BNE
blue BNE
green BNE
purple BNE
red−pfp
red−pfp
blue−pfp
blue−pfp
green−pfp
green−pfp
purple−pfp
purple−pfp

(a) SubNP (b) SubP (c) SuperNP

Figure F.2: Simulation of population fictitious play.
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Figure F.3: Simulation of fictitious play (equivalent to generalized fictitious play with
γ = 1).
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Figure F.4: Simulation of generalized fictitious play with γ = 0.9.
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Figure F.5: Simulation of generalized fictitious play with γ = 0.5.
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Figure F.6: Simulation of the Cournot best-reply dynamic (equivalent to generalized
fictitious play with γ = 0).
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Figure F.7: Simulation of the exponential relative payoff sums dynamic (with γ = 0.5
and λ = 0.004).
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Figure F.8: Simulation of random play.

the type distribution of the other player, and therefore are unable to compute the

appropriate best reply.

The replicator dynamic heuristic has the advantage of providing information

about the type distribution in the very first round. As we see from the figures,

this results in the fastest convergence to the equilibrium.

The RPS dynamic did not converge to the equilibrium. The most plausible

explanation is that I failed to tune the model parameter λ appropriately, which

proved to be difficult to do by trial and error. Since the probability is defined by

the exponent, the players’ choices are very sensitive to small changes in λ. If λ is

small, the players put little weight on history and choose actions randomly from the

strategy space. If λ is large, the players put all weight in the initial choice, also

randomly chosen, and stick to it for the rest of the rounds. There is a very narrow

interval of λ, for which the dynamic combines exploration and exploitation of the

accumulated knowledge. Even then the players converge to something other than

the equilibrium.2

2Letting λ grow gradually from 0 to 1 could help solve the problem, but since learning models
is not the focus of this study, I did not implement the modification.
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APPENDIX G

Experiment Instruction: Bayesian Information

Introduction1

• You are about to participate in an experiment intended to provide insight into

certain features of decision-making processes. The experiment consists of 100

rounds. In each round you will interact with one of the other participants. You

will earn money based on the decisions you and your match make. If you follow

the instructions carefully and make good decisions, you may earn a considerable

amount of money. Your decisions and earnings are confidential.

• The procedure is computerized. It includes a 15-minute tutorial with review

questions, 100-round experiment, and a short questionnaire. After a start window

appears, please click the “Begin Tutorial” button and follow the instructions on

your screen. If you have a question, raise your hand and the experimenter will

assist you.

• During the experiment, we ask that you please do not talk to each other. Please

do not use any email client, web browser, or any other software program on the

computer.

• Throughout the experiment, we use a fictitious experimental currency, called

points. Your total earning will be the sum of the total number of points you

earn, converted to U.S. dollars and rounded up to the nearest dollar amount. The

conversion rate is

$1 = 1700 points.

In addition, you will be paid a $5 show-up fee.

1The original formatting of the instruction is modified to meet Rackham dissertation formatting
requirements.
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Types

• There are eight participants of four different types in this experiment.

• Row and Column types:

– At the beginning of the experiment, a computer program will randomly choose

half of the participants to be Row types, and the rest will be Column types.

– If you are a Row type, you will remain a Row type for the rest of the

experiment. Similarly, if you are a Column type, you will remain a Column

type for the rest of the experiment.

– A Row type will interact only with a Column type, and vice verse.

• Color types: After each participant is assigned a Row or Column type, the

computer will subdivide them into color types. Each type is divided into two

color types.

– Rows: The computer will randomly choose 50% of the Rows and assign them

the RED Row type, and the rest of the Rows will be the BLUE Row type.

– Columns: Similarly, the computer will randomly choose 50% of the Columns

and assign them the GREEN Column type, and the rest will be the PURPLE

Column type.

– Each participant’s color type will remain the same for the first 50 rounds of

the experiment.

– After the first 50 rounds, RED Rows will become BLUE Rows and vice verse.

Similarly, GREEN Columns will become PURPLE Columns and vice verse.

• Different types have different payoff tables. Please open your folder and find four

payoff tables. After the computer assigns you a type, you will learn which tables

are yours and how to read them in the computerized tutorial. At the end of the

tutorial your understanding will be tested with review questions. You will earn

100 points for each correct answer.

Matching

• At the beginning of each round, each Row participant will be randomly matched

with a Column participant. Therefore, your match may change in every round.

The type of your match will NOT be revealed to you.
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• If you are a Row, you will be equally likely to be matched with a GREEN or

PURPLE Column. Similarly, if you are a Column, you will be equally likely to

be matched with a RED or BLUE Row.

Choices and Payoffs

• In each round, you and your match will independently choose a number (a

multiple of 0.01) from 0 to 21. Your payoff depends on your own choice and

the choice made by your match. The payoff tables display payoffs for integer

choices from 0 to 21. However, you are not restricted to integer choices. Also,

the payoffs in the tables are rounded to the nearest integer for better readability.

You will learn how to read the tables in the computerized tutorial. The tutorial

includes two detailed examples and explains how to interpret the curved lines on

the payoff-table sheets.

• A Row type will choose rows, whereas a Column type will choose columns in the

payoff tables.

For example, if a Row type chooses 3 and the Column type with whom she is

matched chooses 6, their payoffs (in points) are written at the intersection of row

3 and column 6.

• There are two numbers written at the intersection of each row and column. The

top number in bold is always the Row type’s payoff and the bottom number

in italic is always the Column type’s payoff.

• You can compute payoffs for any choice pair, including non-integer choices that

are not given in the table, using a tool on your input screen called the “What-If

Scenario Analyzer”. See Figure G.1 for a screenshot of the input screen. The

analyzer is a simple calculator that allows you to type in any pair of numbers for

your choice and your match’s choice and view the resulting payoffs by clicking the

“Display Hypothetical Payoffs” button. Also, the “What-If Scenario Analyzer”

has a higher payoff precision than the payoff tables. You will practice using the

analyzer in the tutorial.

• In each round, there is a recommended time limit, which is not binding. The

header of your input screen will display the current round and the time remaining

for making a choice. If you exceed the recommended time limit, a warning urging

you to make a decision will start to flash.

• Your total points is the sum of your points earned in each round plus the points

earned for correctly answered review questions at the end of the tutorial.
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Figure G.1: Input screen.

• If you earn negative points in any given round, they will be deducted from your

total points.

Feedback and History

• At the end of each round, you will be shown the results of that round, which

include the following information: your choice, your match’s choice, and your

payoff.

• Throughout the experiment, you will be able to view the results of all previous

rounds in the history window (see the screenshot on Figure G.1). The “What-

If Scenario Analyzer” will also save and display the entire history of your

calculations.

Note that because your color type will change after the first 50 rounds, round 51

will start with a new choice history and an empty analyzer window.
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APPENDIX H

Learning Bayesian Nash Equilibrium: Payoff

Tables in Bayesian-Information Condition

Below are examples of payoff-table paper handouts that subjects received under

Bayesian-information condition. In each Bayesian-information treatment, subjects

each received identical sets of four payoff tables, one table for each possible type

profile. For the experiment instructions, see Appendix G.

163



NSM­NP1 PAYOFF TABLES: PAGE 1
Green Column's Choice

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
R

ed
 R

ow
's 

C
ho

ice

0
­50 ­50 ­50 ­50 ­50 ­50 ­50 ­50 ­50 ­50 ­50 ­50 ­50 ­50 ­50 ­50 ­50 ­50 ­50 ­50 ­50 ­50

­250 ­41 158 347 526 695 854 1003 1142 1271 1390 1499 1598 1687 1766 1835 1894 1943 1982 2011 2030 2039

1 66 63 60 57 54 51 48 45 42 39 36 33 30 27 24 21 18 15 12 9 6 3

­250 ­47 146 329 502 665 818 961 1094 1217 1330 1433 1526 1609 1682 1745 1798 1841 1874 1897 1910 1913

2 176 170 164 158 152 146 140 134 128 122 116 110 104 98 92 86 80 74 68 62 56 50

­250 ­53 134 311 478 635 782 919 1046 1163 1270 1367 1454 1531 1598 1655 1702 1739 1766 1783 1790 1787

3 282 273 264 255 246 237 228 219 210 201 192 183 174 165 156 147 138 129 120 111 102 93

­250 ­59 122 293 454 605 746 877 998 1109 1210 1301 1382 1453 1514 1565 1606 1637 1658 1669 1670 1661

4
382 370 358 346 334 322 310 298 286 274 262 250 238 226 214 202 190 178 166 154 142 130

­250 ­65 110 275 430 575 710 835 950 1055 1150 1235 1310 1375 1430 1475 1510 1535 1550 1555 1550 1535

5 478 463 448 433 418 403 388 373 358 343 328 313 298 283 268 253 238 223 208 193 178 163

­250 ­71 98 257 406 545 674 793 902 1001 1090 1169 1238 1297 1346 1385 1414 1433 1442 1441 1430 1409

6 568 550 532 514 496 478 460 442 424 406 388 370 352 334 316 298 280 262 244 226 208 190

­250 ­77 86 239 382 515 638 751 854 947 1030 1103 1166 1219 1262 1295 1318 1331 1334 1327 1310 1283

7
654 633 612 591 570 549 528 507 486 465 444 423 402 381 360 339 318 297 276 255 234 213

­250 ­83 74 221 358 485 602 709 806 893 970 1037 1094 1141 1178 1205 1222 1229 1226 1213 1190 1157

8 734 710 686 662 638 614 590 566 542 518 494 470 446 422 398 374 350 326 302 278 254 230

­250 ­89 62 203 334 455 566 667 758 839 910 971 1022 1063 1094 1115 1126 1127 1118 1099 1070 1031

9 810 783 756 729 702 675 648 621 594 567 540 513 486 459 432 405 378 351 324 297 270 243

­250 ­95 50 185 310 425 530 625 710 785 850 905 950 985 1010 1025 1030 1025 1010 985 950 905

10
880 850 820 790 760 730 700 670 640 610 580 550 520 490 460 430 400 370 340 310 280 250

­250 ­101 38 167 286 395 494 583 662 731 790 839 878 907 926 935 934 923 902 871 830 779

11 946 913 880 847 814 781 748 715 682 649 616 583 550 517 484 451 418 385 352 319 286 253

­250 ­107 26 149 262 365 458 541 614 677 730 773 806 829 842 845 838 821 794 757 710 653

12 1006 970 934 898 862 826 790 754 718 682 646 610 574 538 502 466 430 394 358 322 286 250

­250 ­113 14 131 238 335 422 499 566 623 670 707 734 751 758 755 742 719 686 643 590 527

13 1062 1023 984 945 906 867 828 789 750 711 672 633 594 555 516 477 438 399 360 321 282 243

­250 ­119 2 113 214 305 386 457 518 569 610 641 662 673 674 665 646 617 578 529 470 401

14 1112 1070 1028 1028 986 902 860 818 776 734 692 650 608 566 524 482 440 398 356 314 272 230

­250 ­125 ­10 95 190 275 350 415 470 515 550 575 590 595 590 575 550 515 470 415 350 275

15 1158 1113 1068 1023 978 933 888 843 798 753 708 663 618 573 528 483 438 393 348 303 258 213

­250 ­131 ­22 77 166 245 314 373 422 461 490 509 518 517 506 485 454 413 362 301 230 149

16 1198 1150 1102 1054 1006 958 910 862 814 766 718 670 622 574 526 478 430 382 334 286 238 190

­250 ­137 ­34 59 142 215 278 331 374 407 430 443 446 439 422 395 358 311 254 187 110 23

17
1234 1183 1132 1081 1030 979 928 877 826 775 724 673 622 571 520 469 418 367 316 265 214 163

­250 ­143 ­46 41 118 185 242 289 326 353 370 377 374 361 338 305 262 209 146 73 ­10 ­103

18 1264 1210 1156 1102 1048 994 940 886 832 778 724 670 616 562 508 454 400 346 292 238 184 130

­250 ­149 ­58 23 94 155 206 247 278 299 310 311 302 283 254 215 166 107 38 ­41 ­130 ­229

19 1290 1233 1176 1119 1062 1005 948 891 834 777 720 663 606 549 492 435 378 321 264 207 150 93

­250 ­155 ­70 5 70 125 170 205 230 245 250 245 230 205 170 125 70 5 ­70 ­155 ­250 ­355

20
1310 1250 1190 1130 1070 1010 950 890 830 770 710 650 590 530 470 410 350 290 230 170 110 50

­250 ­161 ­82 ­13 46 95 134 163 182 191 190 179 158 127 86 35 ­26 ­97 ­178 ­269 ­370 ­481

21 1326 1263 1200 1137 1074 1011 948 885 822 759 696 633 570 507 444 381 318 255 192 129 66 3

­250 ­167 ­94 ­31 22 65 98 121 134 137 130 113 86 49 2 ­55 ­122 ­199 ­286 ­383 ­490 ­607

Figure H.1: Submodular & non-potential environment (SubNP): {red row, green
column}.
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SM­NP PAYOFF TABLES: PAGE 4
Purple Column's Choice

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
Bl

ue
 R

ow
's 

C
ho

ice

0
­200 ­200 ­200 ­200 ­200 ­200 ­200 ­200 ­200 ­200 ­200 ­200 ­200 ­200 ­200 ­200 ­200 ­200 ­200 ­200 ­200 ­200

200 201 196 187 172 153 128 99 64 25 ­20 ­70 ­124 ­184 ­248 ­318 ­392 ­472 ­556 ­646 ­740 ­840

1 ­161 ­155 ­149 ­143 ­137 ­131 ­125 ­119 ­113 ­107 ­101 ­95 ­89 ­83 ­77 ­71 ­65 ­59 ­53 ­47 ­41 ­35

200 204 202 196 184 168 146 120 88 52 10 ­37 ­88 ­145 ­206 ­273 ­344 ­421 ­502 ­589 ­680 ­777

2 ­132 ­120 ­108 ­96 ­84 ­72 ­60 ­48 ­36 ­24 ­12 0 12 24 36 48 60 72 84 96 108 120

200 207 208 205 196 183 164 141 112 79 40 ­4 ­52 ­106 ­164 ­228 ­296 ­370 ­448 ­532 ­620 ­714

3 ­113 ­95 ­77 ­59 ­41 ­23 ­5 13 31 49 67 85 103 121 139 157 175 193 211 229 247 265

200 210 214 214 208 198 182 162 136 106 70 30 ­16 ­67 ­122 ­183 ­248 ­319 ­394 ­475 ­560 ­651

4
­104 ­80 ­56 ­32 ­8 16 40 64 88 112 136 160 184 208 232 256 280 304 328 352 376 400

200 213 220 223 220 213 200 183 160 133 100 63 20 ­28 ­80 ­138 ­200 ­268 ­340 ­418 ­500 ­588

5 ­105 ­75 ­45 ­15 15 45 75 105 135 165 195 225 255 285 315 345 375 405 435 465 495 525

200 216 226 232 232 228 218 204 184 160 130 96 56 12 ­38 ­93 ­152 ­217 ­286 ­361 ­440 ­525

6 ­116 ­80 ­44 ­8 28 64 100 136 172 208 244 280 316 352 388 424 460 496 532 568 604 640

200 219 232 241 244 243 236 225 208 187 160 129 92 51 4 ­48 ­104 ­166 ­232 ­304 ­380 ­462

7
­137 ­95 ­53 ­11 31 73 115 157 199 241 283 325 367 409 451 493 535 577 619 661 703 745

200 222 238 250 256 258 254 246 232 214 190 162 128 90 46 ­3 ­56 ­115 ­178 ­247 ­320 ­399

8 ­168 ­120 ­72 ­24 24 72 120 168 216 264 312 360 408 456 504 552 600 648 696 744 792 840

200 225 244 259 268 273 272 267 256 241 220 195 164 129 88 43 ­8 ­64 ­124 ­190 ­260 ­336

9 ­209 ­155 ­101 ­47 7 61 115 169 223 277 331 385 439 493 547 601 655 709 763 817 871 925

200 228 250 268 280 288 290 288 280 268 250 228 200 168 130 88 40 ­13 ­70 ­133 ­200 ­273

10
­260 ­200 ­140 ­80 ­20 40 100 160 220 280 340 400 460 520 580 640 700 760 820 880 940 1000

200 231 256 277 292 303 308 309 304 295 280 261 236 207 172 133 88 39 ­16 ­76 ­140 ­210

11 ­321 ­255 ­189 ­123 ­57 9 75 141 207 273 339 405 471 537 603 669 735 801 867 933 999 1065

200 234 262 286 304 318 326 330 328 322 310 294 272 246 214 178 136 90 38 ­19 ­80 ­147

12 ­392 ­320 ­248 ­176 ­104 ­32 40 112 184 256 328 400 472 544 616 688 760 832 904 976 1048 1120

200 237 268 295 316 333 344 351 352 349 340 327 308 285 256 223 184 141 92 39 ­20 ­84

13 ­473 ­395 ­317 ­239 ­161 ­83 ­5 73 151 229 307 385 463 541 619 697 775 853 931 1009 1087 1165

200 240 274 304 328 348 362 372 376 376 370 360 344 324 298 268 232 192 146 96 40 ­21

14 ­564 ­480 ­396 ­396 ­312 ­144 ­60 24 108 192 276 360 444 528 612 696 780 864 948 1032 1116 1200

200 243 280 313 340 363 380 393 400 403 400 393 380 363 340 313 280 243 200 153 100 43

15 ­665 ­575 ­485 ­395 ­305 ­215 ­125 ­35 55 145 235 325 415 505 595 685 775 865 955 1045 1135 1225

200 246 286 322 352 378 398 414 424 430 430 426 416 402 382 358 328 294 254 210 160 106

16 ­776 ­680 ­584 ­488 ­392 ­296 ­200 ­104 ­8 88 184 280 376 472 568 664 760 856 952 1048 1144 1240

200 249 292 331 364 393 416 435 448 457 460 459 452 441 424 403 376 345 308 267 220 169

17
­897 ­795 ­693 ­591 ­489 ­387 ­285 ­183 ­81 21 123 225 327 429 531 633 735 837 939 1041 1143 1245

200 252 298 340 376 408 434 456 472 484 490 492 488 480 466 448 424 396 362 324 280 232

18 ­1028 ­920 ­812 ­704 ­596 ­488 ­380 ­272 ­164 ­56 52 160 268 376 484 592 700 808 916 1024 1132 1240

200 255 304 349 388 423 452 477 496 511 520 525 524 519 508 493 472 447 416 381 340 295

19 ­1169 ­1055 ­941 ­827 ­713 ­599 ­485 ­371 ­257 ­143 ­29 85 199 313 427 541 655 769 883 997 1111 1225

200 258 310 358 400 438 470 498 520 538 550 558 560 558 550 538 520 498 470 438 400 358

20
­1320 ­1200 ­1080 ­960 ­840 ­720 ­600 ­480 ­360 ­240 ­120 0 120 240 360 480 600 720 840 960 1080 1200

200 261 316 367 412 453 488 519 544 565 580 591 596 597 592 583 568 549 524 495 460 421

21 ­1481 ­1355 ­1229 ­1103 ­977 ­851 ­725 ­599 ­473 ­347 ­221 ­95 31 157 283 409 535 661 787 913 1039 1165

200 264 322 376 424 468 506 540 568 592 610 624 632 636 634 628 616 600 578 552 520 484

Figure H.2: Supermodular & non-potential environment (SuperNP): {blue row,
purple column}.
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APPENDIX I

Experiment Instruction: Low Information

Introduction1

• You are about to participate in an experiment intended to provide insight into

certain features of decision-making processes. The experiment consists of 100

rounds. In each round you will interact with one of the other participants. You

will earn money based on the decisions you and your match make. If you follow

the instructions carefully and make good decisions, you may earn a considerable

amount of money. Your decisions and earnings are confidential.

• The procedure is computerized. It includes a 100-round experiment and a short

questionnaire. After a start window appears, please follow the instructions on

your screen. If you have a question, raise your hand and the experimenter will

assist you.

• During the experiment, we ask that you please do not talk to each other. Please

do not use any email client, web browser, or any other software program on the

computer.

• Throughout the experiment, we use a fictitious experimental currency, called

points. Your total earning will be the sum of the total number of points you

earn, converted to U.S. dollars and rounded up to the nearest dollar amount. The

conversion rate is

$1 = 1700 points.

In addition, you will be paid a $5 show-up fee.

1The original formatting of the instruction is modified to meet Rackham dissertation formatting
requirements.
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Procedure

• There are eight participants in this experiment. At the beginning of each round,

each participant will be randomly matched with another participant. Therefore,

your match may change in every round.

• In each round, you and your match will independently choose a number (a

multiple of 0.01) from 0 to 21. Note that you are not restricted to integer choices.

• Your payoff depends on your own choice and the choice made by your match.

Your payoff will be displayed on your screen at the end of each round after you

and your match have made your choices.

• Some participants may have the same payoff structure as you do, while others

may have different payoffs.

For example, suppose you and your match both choose 11.11. Even though your

choices are the same, your payoff may or may not be equal to the payoff of your

match. You will only be shown your own payoff. Your match’s payoff will NOT

be revealed to you at any point in the experiment.

• Your payoff structure may change during the experiment. You will not be

informed when that happens.

• In each round, there is a recommended time limit, which is not binding. The

header of your input screen will display the current round and the time remaining

for making a choice. If you exceed the recommended time limit, a warning urging

you to make a decision will start to flash.

• Your total points is the sum of your points earned in each round. If you earn

negative points in any given round, they will be deducted from your total points.

Feedback and History

• At the end of each round, you will be shown the results of that round, which

include the following information: your choice, your match’s choice, and your

payoff.

• Throughout the experiment, you will be able to view the results of all previous

rounds in the history window on your screen.
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