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ABSTRACT

In this report, we present a new quantitative approach to the problem of reconfi-
guring a degradable multi-module system. The approach is concerned with both assign-
ing some modules for computation and arranging others for reliability.

Conventionally, a fault-tolerant system performs reconfiguration only upon a sub-
system failure. Since there exists an inherent tradeoff between the computation capacity
and fault-tolerance of a multi-module computing system, the conventional approach is a
passive action and does not yield a configuration which provides an optimal compromise
for the tradeoff. Using the expected total reward as the optimal criterion, we show the
need and existence of an active reconfiguration strategy in which the system reconfigures
itself on the basis of not only the progression of the mission but also the occurrence of a
Jailure.

Following the problem formulation, we investigate some important properties of an
optimal reconfiguration strategy which specify (i) the times at which the system should
undergo reconfiguration, and (ii) the configurations that the system should change to.
Then, the optimal reconfiguration problem is converted to integer nonlinear knapsack
and fractional programming problems. The algorithms for solving these problems and a
demonstrative example are given. Additional extensions of the optimal reconfiguration
problem are also discussed.

This work was supported in part by NASA under both Grant NAG 1-296 and Grant NAG
1-492. Any opinions, findings, and conclusions or recommendations expressed in this report are
those of the authors and do not necessarily reflect the views of NASA. All correspondence should
be addressed to Prof. Kang G. Shin at the above address.
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1. INTRODUCTION

Reconfiguration of a system is the process of changing an already-existing system
organization or interconnections among its subsystems. In general, the system needs to
perform reconfiguration for two reasons. The first reason is the dynamic variations of
incoming tasks. The system reconfigures itself to match the special demands made by
the incoming tasks and then executes the tasks more efficiently than with the previous
configuration. In this case, reconfiguration depends on the tasks to be executed. Recon-
figuration of a system could have many different ways such as the change of partition
[1], word size [2], etc. The second reason is to make the system tolerate faults that may
occur dynamically and randomly during the mission lifetime. Reconfiguration allows the
system to remain operational, perhaps in a degraded mode, even in the case of subsys-
tem failures. Typical examples of reconfiguration for fault tolerance include the han-
dling of an extra-stage in permutation networks [3], the reconfiguration algorithm to

maintain the system in a safe state [4], and the like.

For the purpose of fault-tolerance, several authors have proposed the procedures
and principles of reconfiguration of computer systems [5,8,7]. These procedures are all
intended to make the system operational in the face of subsystem failures. Saheban and
Friedman have investigated the degradation of computation capability and diagnosabil-
ity in terms of the number of switches to connect modules [8,9]. They have also proposed
a methodology for the design of reconfigurable multi-module systems. Fortes and
Raghavendra have examined the design of reconfigurable array processors with VLSI

chips and analyzed the improved reliability, performability, computation capability, and

the additional hardware cost [10].
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We classify the conventional system reconfigurations discussed above as a passive
action, since it is performed only when a fault is detected. Moreover, they assume that
there is only one configuration that the system will be changed to following each reconfi-
guration. For instance, the system degrades from an m module-parallel system to an
m-1 module-parallel system when a module failure occurs. Thus, there is no choice con-
cerning when the reconfiguration should be performed and what configurations the sys-

tem should construct.

In this report, we are concerned with developing a quantitative method for design
and analysis of the reconfiguration of a multi-module system. Particularly, we will derive
an optimal reconfiguration strategy under which the system is able to be optimally
reconfigured to have high performance and survive tﬁe occurrences of subsystem failure

during the entire mission lifetime.

The term ‘‘module” is used here to mean processor, memory, or bus. We assume
that the environment and workload of the system are in the steady state throughout the
mission lifetime. The system is capable of assigning a module to be a redundant unit, a
functioning unit, or a spare unit. Functioning modules are executing computation tasks.
Redundant modules are associated with functioning modules for verifying the correctness
of computation results or masking erroneous results. Spare modules do not execute any
useful task before they replace failed modules. Although there is no difference between
functioning and associated redundant modules in the execution of tasks, they do have

different purposes in a logical sense.

It is well known that the goals of reconfiguring a multi-module system are to
enhance both computation capacity and system reliability. In most cases, it is easy to

see a trade-off between these two goals. For example, if there were no module failures



Lee and Shin: Optimal Reconfiguration September 27, 1984

and therefore, no module redundancy were necessary, then the computation capacity
would increase as the number of functioning modules increases. On the other hand, if
module failures are allowed, then providing greater module redundancy enhances the sys-
tem reliability at the expense of the computation capacity. When the number of avail-
able modules is finite, it becomes necessary to make a suitable compromise between the
system reliability and the computation capacity. It is the optimal reconfiguration that is

desired for the most suitable compromise in some sense.

>From the standpoints of reliability and performance, it is natural to consider
more than one possible way for reconfiguring multi-module systems. An extreme exam-
ple is whether the system should be configured to an m-module redundant system or to
an m-parallel server system. Obviously, the former offers higher reliability, while the
latter providing higher performance. Some criterion is needed to judge the goodness of
different configurations. Based on the criterion, it is possible that the best configuration
at a particular moment no longer becomes the best one at another moment. In such a
case, reconfiguration is needed even if there is no occurrence of failure; we term this
active reconfiguration. Thus, we need to have an optimal reconfiguration strategy which
specifies the optimal configurations for the whole mission lifetime. Since it is invoked for
both the cases of failure occurrence as well as no occurrence of failure, the active reconfi-

guration subsumes the conventional passive reconfiguration.

This report is organized as follows. In Section 2, we introduce several convenient
concepts, notations, and terminologies for reconfiguration of multi-module systems.
Then, we develop a criterion that will be used for judging the goodness of configurations.
The need of active reconfiguration is also justified in this section. Section 3 examines

the properties of an optimal reconfiguration strategy during the mission lifetime. Also,



Lee and Shin: Optimal Reconfiguration September 27, 1984

presented is an algorithm for determining an optimal reconfiguration strategy. Actual
determination of the optimal configurations is the subject of Section 4, where we develop
solution algorithms for two integer nonlinear optimization problems. The report con-

cludes with Section 5.

2. RECONFIGURATION STRATEGY

Consider a multi-module system which begins its mission with m, identical
modules. Let the mission lifetime be t, during which no system repair is allowed, i.e. a
non-repairable system. We consider here only the failures which are caused by hardware
faults and will -- along with the progression of the mission -- trigger system reconfigura-
tion. Transient and intermittent faults from which the system can be recovered through

retry [11,12] are not considered, since they do not cause reconfiguration.

As we shall see, the optimal configurations are generated off-line in table form and,
therefore, the (on-line) overhead of reconfiguration is simply task switching times. These
do not generate any significant impacts on the determination of an optimal reconfigura-
tion strategy, since in practice the system has to undergo only a few active reconfigura-
tions during the mission lifetime. Consequently, the overhead of reconfiguration is

assumed to be negligible in the following discussion.

2.1. Notation and Definitions

Classical reliability analyses treat the system failure probability as a function of the
components’ failure probabilities using combinatorial mathematics. These approaches
neglect the effects of failure recovery overhead on executing tasks. These effects are sig-

nificant, particularly when real-time applications are considered. For example, a delay in
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task execution due to failure recovery overhead can lead to increased system operational
costs or even a system crash. Due to these reasons, a reliability analysis including the
impact of failure handling on executing tasks is more general and powerful than the clas-
sical methods [13]. In addition, system performance should depend upon the tasks com-
pleted by the system within its mission lifetime. Thus, it is natural and essential to con-

sider the execution of tasks when reconfiguration strategies have to be determined.

Consider a set of tasks that are to be executed during the mission lifetime ¢,
Group the tasks into k classes such that the tasks in the same class will have the same
influence on the mission. More specifically, the system will gain the same reward for
each task within a class when it is compléted successfully, and will suffer the same
penalty if its execution is unsuccessful. Although the pattern of the incoming tasks
could change in reality, we assume for simplicity that the combined workload in each
task class is stationary throughout the entire mission, i.e. the task arrival rate and the

required computations in each task class are constant.’

Because of the failures of individual modules during the mission, when the remain-
ing mission lifetime(RML) is t€[0,t,] the system may have to operate with only
m(t)€{0,...,m o} modules. Let m,(t) be the number of modules assigned to the class §
tasks. With these m; () modules, n;(t) computing clusters are to be constructed. Each
computing cluster is a computation unit and could have some redundant modules for
reliability reasons. Let r;(¢) be the total number of redundant modules used for the task
class . These redundant modules are used in constructing computing clusters as sim-
plexes (without redundancy), dyads (with one redundant module each), triads (with two

redundant modules each), etc. For notational simplicity, we will leave out the time

As we shall discuss in Section 5, this assumption can be easily relaxed.
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dependency of m;, n;, and r; in the rest of this report as long as it does not cause any

£
ambiguity. Obviously, n; + r;, =m; and ¥ m; < m?®

=1

Since all computing clusters

assigned to the same task class are homogeneous insofar as their capabilities of computa-

tion and fault-tolerance are concerned, the r; redundant modules should be equally dis-

r.
tributed over n; computing clusters. Thus, for the task class ¢ there are r; — n; | —

n;

r; ri
computing clusters with the module redundancy I_-’—‘-'-_l+2, and n,-(l+|_—;'—— J)-r; com-
i '

r-
puting clusters with the module redundancy |—— ]J+1, where |z] is the maximum
n;

integer that is less than or equal to z.

Let 2,, be the set of all feasible configurations of m modules and be given as

k
Qm E{(("1»’1),("2:"2),--,("15 )| E(ni4+r)<m, n;r, €%, r,=0if n; =0 =1,2,...k

=1

where I is the set of non-negative integers. Also, denote the set of all configurations of
Mo

the system by 1= |J 01,,.
m=0

Let v,,: R* — Q,, be a configuration function where R ™ is the set of non-negative

real numbers. A reconfiguration strategy RS, ,, is defined as
R = 1a(0) | i€, e(0,...m})

Hence, given the initial reconfiguration strategy RS; ,, the system uses the configura-

tion vy, (Y)ERS; m, when RML=t and there are m healthy modules available.

8 The "less than" or "equal to” relationship is used to include the case when the system has standby
spare modules.

}
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2.2. Reconfiguration Model

During the mission lifetime, system degradation is unavoidable due to module
failures. A simple model for system degradation is presented in Figure 1 whefe state S,
represents the availability of m healthy modules. The transition from S, to
Sm1, m>1, implies failure of one module and the subsequent recovery of system opera-
tion. However, failure of one module could be fatal to the system, for example, coverage
failure [14,15] or dynamic failure [13], which results in loss of the whole mission. In such
a case, the system will transfer directly to the total system failure state S,. When the

system state is S, and RML=t, the system has the configuration 4, (¢).

It is assumed that the times to failure for all modules are independently and identi-
cally distributed random variables. Distribution of the times to failure is assumed to be

exponential with rate X.

Define a stochastic process M(t) which is equal to (i) the number of available
modules when the system is operational and RML=t, or (ii) O if the system crashed
when RML>t. This stochastic process is governed by the failure and recovery processes
which in turn depend on the system configurations during the mission lifetime.

Within a reconfiguration strategy RS; ,, system configurations are another sto-
chastic process, called the reconfiguration process and denoted by RF, ,, (t), t€[0,t,].
RF;mmo(t) includes a configuration vpq(t)ERS, m, to be used at RML=t. The transi-
tions between configurations within RF, , (t) depend on failure and recovery processes
as well as on the reconfiguration strategy RS, omo A sample path of RF, . is called a

configuration trajectory which represents a configuration history of the system. When
RML=t and the number of available modules is m, the system reconfigures itself from

Y () t0 Yy 1(2) if a recoverable failure occurs, or to 7, (¢-6¢) if there is no failure during

7



Lee and Shin: Optimal Reconfiguration September 27, 1984

6t. Note that if v, (8)="m (i)=7,,, (t-6¢) for all tAE[t—M,t] and if there is no failure dur-

ing this 6¢, then the system does not have to change its configuration for the period §¢.

For the system which is capable of graceful degradation and reconfiguration,
Meyer's performabslity [16,17,18] is a useful measure of the system capability. Performa-
bility is a composite measure of performance and reliability which automatically takes
into account the performance degradation due to component failures. To incorporate
the concept of performability, two functions associated with the configuration w€fl are
introduced here. The first is a non-negative and bounded function p(w) called the
reward rate, which represents the average reward per unit time corresponding to the
computation performed by the system with the configuration w. This function is analo-
gous to the reward structure defined by Furchtgott [18), and the reward function defined
by Donatiello and Iyer [19]. Clearly, p(w)=0 when w€Q, i.e. zero reward rate in case of
no module available or a system crash. Thus, the total reward accumulated during the
mission lifetime ¢ is given as

to
mov'"o = .!). l’('7M(t)(t))dt (1)

Note that the definition of W, , is the same as Meyer's performability {16,17,18].

The second function, a(w), called the crash probability, represents the probability
that a module failure causes a system crash. This function indicates the system’s vulner-
ability to a module failure when the system configuration is w. a(w) may be either the
coverage failure [14,15], or the probability of dynamic failure [13] associated with the

configuration w.

The reward rate p(w) is an implicit function of the number of computing clusters

in each task class. We assume that redundancy in each computing cluster does not affect
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its performance.! On the other hand, o(w) will depend on the number of redundant
modules associated with each computing cluster. Since a configuration is specified by n
and r where n=[n,n,, ...,n;] and r=[r,ry, .. .,r;], the functions p(w) and a(w)

will be used interchangeably with p(n) and a(n,r), respectively in the rest of this report.

Several authors have derived the distribution and the moments of performability
for gracefully degradable systems under the restriction that system reconfiguration is
allowed only upon failure [16,17,18,19)]. Moreover, such a system has exactly one new
configuration to choose from upon detection of a module failure. This, however, is an
unnecessarily limiting factor (it might result in a configuration with less performance
and reliability than the actual system's capacity), since there afe usually several alterna-
tive configurations available for a system with multiple modules. For example, when
there are four modules available upon failure, we can construct one 4-module redundant
computing cluster, or one triad and one simplex, or two dyads, or four simplexes. Con-
ventional reconfiguration concepts becomes more inappropriate when we consider the
fact that the remaining mission lifetime has to play an important role in deciding a new
configuration. This fact can be seen easily with the following two simple cases. One is
the case when the reinaining mission lifetime is very short in which the probability of
having failures is very small. Thus, the computation capability is more important than
reliability for higher rewards. The other case is when the remaining mission lifetime is
long. In this case, the probability of having failures becomes large and any good confi-

guration should be able to tolerate module failures and minimize the possibility of a sys-

tem crash.

4As will be discussed in the Conclusion, this assumption can be relaxed.
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For these reasons, we must first examine the effects of the remaining mission life-
time on system reconfiguration, i.e. the progression of the mission, and then choose a
new configuration. Specifically, it is necessary to determine an optimal reconfiguration
strategy, which maximizes tlie expected reward E[W, om o] This optimization problem is
equivélent to controlling system reconfiguration such that the system follows a certain

configuration trajectory to provide a maximum expected reward even in the face of ran-

dom failures.

3. DERIVATION OF OPTIMAL RECONFIGURATION STRATEGY

Denote the optimal reconfiguration strategy by

oMo

RS/ E{'y,,:(t)|t€[0,t0], mE{O,...,mo}} under which the total expected reward

E[W,,m, is maximized. Since the optimal configuration Ym(t) is completely specified by

the values of n;’ and r;’, the problem is to determine n,{f) and r,;(¢)° for all t€[0, ¢,} and

m€{0,..,m,} that maximize E[W;_,, ].

3.1. Problem Formulation

Based on the assumption of an exponential distribution of failure occurrence, the
probability of having a failure during a small interval 4§t is approximately equal to X\ 6¢.
If v, (t+6t) is the configuration used at RML=t+4t, then the reward rate at that time,

W,ist m » can be expressed as:

SAlthough dependence of 1, and r; on ¢ is re-introduced here for clarity, it will be omitted again
throughout the report.

10
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P(1m (t+68))6t + W, 0o with probability 1-m\ 6t
Wistm =1 pm (t+68))6t with probability a(~,, (¢+6t)) m)\ 6t (2)
K (t468))6t + W, ., with probability (1-a(y,, (¢+6t))) mX 6t

Thus, a recursive expression for the expected reward is derived as follows.

E[ Wl+6t,m] = (l'm>‘ 6‘) E[ﬁ('fm (H'&))M + Wt,m]
+ a7y, (t+68)) mX 6t (o7, (t+6¢))6¢)

+ (1= oy (t+61))) mX 8t Elp(vp (t+60))88 + W, 1] (3)

Assume that at any moment there is at most one occurrence of failure implying
that the maximum jump in M(t) is one. Notice that when the system reconfigures itself
into a new configuration <, () from <, (¢+6t) or from ~,,,,(¢-+48¢), the system must be
in this configuration for a nonzero mission interval; otherwise, there is no need to move

in that configuration at all. Let the optimal strategy RS’ = 6lim RS, 5 m and the
' t—0 '
configuration '7,,,(t+)Eélirr:) Y (t+6t). Then the following lemma gives a recursive
t—

representation of the optimal reconfiguration strategy.
Lemma 1. RS\ = {1a(t")} U RSim U RSm1-

Proof. Suppose that the configuration chosen at RML=t+6t by a reconfiguration stra-
tegy will be used at least for the period 6t if there is no occurrence of module failure,
and also assume that there could be at most one failure occurrence during 6¢. Let §W be
the reward gained during this 6t When there is no failure,
E[W, 5 m |=E[W,n] + E[6W]. Thus, to have a maximum expected reward in this case,
RS st,m D{tm (t+6)} YRS, ' - Similarly, RS} D{Ym (t+68)}| JRS;'m-1 When we con-
sider the case of one failure occurrence. On the other hand, by definition, the system

does not transform into any configuration other than (i) 4, (t+6t) and (ji) the

11
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configurations belonging to RS} and RSy, ;. Thus, Lemma 1 follows immediately,
since the assumption at the beginning of this proof becomes true as §t—0.

Q.ED.

The above lemma can be used to determine recursively the optimal reconfiguration
strategy. With the knowledge of RS, , RS/, and their respective expected rewards

E[W,'n] and E[W,’,,,], the optimal configuration ~, (¢ *) can be determined by Theorem

1 below.

Theorem 1. 7, (¢") maximizes J, , () for weQ,, where
Jm (@) = p(w) - a(w)mX E[W, 5 4] (4)
Proof: >From Eq. (3), the variation of E[W, ] in 6t is

E[Wt+6t,m] - Elwt,m] = p(7m(t+6t)) bt - a('ym (t+6t)) m\ 6t E[Wt,m—ll + (5)

m\ 6t E[W, 5 1-W,; ]

Dividing both sides of Eq. (5) by 6t and taking limits as 6t — 0, we get the first deriva-

tive of E[W, , | with respect to ¢:

dE{Z"m] = (v, (t 7)) - a(v,, (tT)) mA E[W,,,H] - m\ E[Wt,m ‘Wt,m-ll (6)

The last term in the right-hand side of Eq. (8) is independent of the configuration
Ym(tT). By Lemma 1, 7,,(¢ ") maximizes the first two terms of the right-hand side of
Eq. (8) over all w€Q,,. Since this is true for all E[W;,, ] including E[W,}, ], the

theorem is proved. Q.E.D

We define the optimal reconfiguration problem for 4,,(¢*) in the following form:

Problem OR: maximize J;,(n,r) = p(n) - o(n,r) m\ E[W,}, ]
nr

12
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k
subject to Y (m;+r;) < m, and n; r, €T for i=1,2,..k.

=1
Though Lemma 1 and Theorem 1 provide a recursive relationship necessary for

obtaining RS,;,,,O, the relationship does not yield an acceptable solution. It requires a

solution to the OR problem for all t€(0,ty] (thus infinitely many times). As a remedy to
this difficulty, we will in the next section convert the OR problem so that it has to be

solved only when ~,, (¢ *)7#7a(¢), instead of for all t€[0,¢ ).

3.2. Problem Transformation

Once an optimal configuration at a moment during the mission is determined, it
will be used for a nonzero interval. Given m, it is therefore natural to look for the
switch times at which the optimal configuration has to be changed to maximize the
expected total reward. That is, we only have to solve the OR problem at those switch
times instead of for all t€[0,ty]. Let sl €[0,00] §=0,1,2,... and m=1,2,...,m be the

switch times for R .S',;,,, o where a,,? =0, and by definition

Yo (80 )E N m(a21)= lim 4,5 (s} +6t) for j>>1. Thus, as shown in Figure 2 for the case of
st—0+

no module failure, when the remaining mission lifetime decreases to sJ,, the system
should reconfigure itself from v, (s5™) to ~,1(s2) and then keep the same configuration

until RML=s.".

For two configurations w; and w,, one can say that w, is better than w, if
a(w;)=a(w,) and p(w;)>p(w;). Thus, in the following discussions we are concerned only
with configurations with different crash probabilities, i.e. a(w;)#a(w,), for all i7;j.

For convenience define a function A, : 1,, X0, — R as follows.

13
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plwr) - plwy)

A (wwg) = Ap (wp, wy) = ma(w,) - ma(w,)

where ofw;)#a(w,;) as mentioned above. Also, define two convenient sets

Lo (o))={ i, | a(@)<alri(sd))  and G (o1 J={ €0 | a(@)>alra(s3)

Then, the following theorem elucidates a useful property of the switch times s}, .

Theorem 2. For all tE(a,{;'l,a,{;]

min Am('Yn:(’v{l ),UJ) 2\ E[‘VC,‘MA] 2 max Am(7":(’i{l )rw) (7)
wELy, (8) wEG,, (81)

Proof:  Since 7, (t)=1,(s}) for all t€(si? sl], we have the following relationship

from Theorem 1:
o1 (85)) = a1 (24)) m\ E[W'm] 2 p(w) - ofw) mX E[W,5,,]  for all weQ,,.

P 1m(83)) - p(w)

Therefore, —
ma( Y (85 ))-ma(w)

> AE[W) 1] for all w satisfying e(w)<a(v,(t)), and

S NE[W/'na] for all  w satisfying  a(w)>a(v,(f)).

Q.E.D.

Note that E[W,', ] is a function of ¢. However, the function A, (7n(s})w) is
dependent upon configurations only. Once the optimal configuration '1,,:(3,{,) is known,

min A, (Ym(sh)w) and max A (vm(s2)w) can be determined. The only compu-
wel’m(srgn) UGG,,‘ (l,{‘)

tation needed to determine s/ is to calculate E[W;'m.1] recursively by Eq. (5) until Eq.
(7) becomes invalid. Thus, Theorem 2 provides the solution for 2’*!, which is the
infimum of {¢ | ¢>sJ and ¢ that does not satisfy Eq. (7) }. If Eq. (7) is valid for all

t>s), then si'=co. Theorem 2 also presents a special property of an optimal

14
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configuration. With an optimal configuration 7,4(s5), Ap (e (22 ),w) partitions Q,, into
two sets, L,, (s),) and G,, (s},), as shown above. An arbitrary configuration without this
property can never be an optimal configuration regardless of the remaining mission life-
time. It is important to notice that s) represents the reconfiguration time independent
of the presence of a module failure or not. Moreover, the solution to the OR problem is
embedded in the prdcess of solving for a,{,. To explore this property and make full use

of it, we present the following lemmas and theorem.
Lemma 2. E[W,},] is continuous and non-decreasing in ¢.

Proof:  >From Eq. (8), we can write a first order differential equation of E[W,,, ] with

respect to ¢ as follows.

dE[Wl,m]

7 T MAEWin] = sl (7)) + mA (1-alyn (¢7)) E[Wy pi]

Since p(7,(f)) is bounded for all ~,()€ER,, so is E[W,,] for all t€[0, t)] and

dE[W;

mé€{0,...,my}. Also, 0<o(v,, (#))<1 for all 5, ()€, . Thus, T

is finite
implying the continuity of E[W,, ] and, therefore, the continuity of E[W,,].

To prove that E[W,,,] is non-decreasing in ¢, we must show that
E[W'atml 2 E[W, 0] for all At>0. Let
RSpatm ={1m (1) | 0SESt+AL 1 ()=70 (t-AL) if £>AL, or 7. (0%) if t<AL ).
Then, it is easy to see that the expected reward based on RSy ¢, is larger than

E[W,']. Thus, E[W,\ s n|2E[W, 5] Q.E.D.

Lemma 3. For real numbers a; and b;, =123, where b,;>b,>b,,

a.—-Q, ad1—a3 . . al—a2 ar-0G3 a—a ay—a
if and only if Also, 1 2 LS

by-b, T by-by bi=by = byby by-b, by-bs

vV

if

15
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LSl ] > G,-Gg

andonlylfb 5, 2 5.0,

Proof: The proof is trivial and thus omitted.

Let @ (s )E{cb | S0, An (1m(02) )= min A (vn(e2)0) } Then,
wE ]
&, (35)546 if Ly, (32 )#¢. The following theorem gives a recursive relationship between

v (s)) and 7,1 (s5") when 8] <oo.

Theorem 3. If s} <oco, then 4 (si)€ED, (s4), and a(q, (si)<a(w) for all

WED , (32,)-

A '{.+1

Proof: >From the definition of switch time, v, (s5") exists if 2} <oco. First, we

prove that a(v,: (5))<a(vm (s} ). Since E[W,,] is non-decreasing, we have

max Ap (Ym(sh)w) < NE[W, ] < NE[W,'py]
wEL, (21) m

for  t€(s} ,82""].  Thus, .l,.,,,('y,,:(a,{, N>Jim(w) for all wEGL(sh). If
a(1, (8571)> a1, (32)), then v, (a)) is also an optimal configuration at t€(a}, 85,
which is contradictory to the definition of switch time. Therefore,

a(v, (s2) < a7 (s2)). This result also implies that &, (s )7#9.

Next, we prove v, (s5)ed,, (s;). When there is one and only one wEL,, (s2), the
theorem automatically holds in case of s} <oo, since 7. (s5) exists and a(~,(s5))
cannot be larger than (Y (83)- Consider a configuration
WE{w | e(@)<a(Tm(85 M) <e(m(24)), WEQ, }. Since v (24™) is optimal and E[W,’,]

is continuous (and so is E[W,, ]), the following order can be obtained from Theorem 2:

16
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A (7m(‘r';|+l))w) Z )‘E[Wl,'m—l] 2 A (7m(‘9‘;5+1)771;(‘1{; ))
where t€(s}, ,5]. Appling Lemma 3, we have A,, (7,1 (85),w) = Ap (T (257,70 (22)).

For WEN satisfying a(1m (35 <a(w)<alrn (24)),
A (Vm (35 Ym (R )2E(W,; ] and E[Wyp 1|2 Ay (va(05™)w) for all t€(ah, o™,
The continuity in E[W,}, ] implies Ay (7p(s5™)Am(85))2 A0 (7 (2 Fw). >From
the second part of Lemma 3, we also obtain A, (Yo (s2)w) > Am (Ve (25),7m (25)).

Thus, vp (s57)E® (3).

If there is only one configuration in ®,, (s} ), the theorem is proved. Suppose there
exist two configurations, w; and w, then A, (vm(8h)w;) = Ap (Ve (8 )ws)
= Am (wy,wp). To satisfy Theorem 2, the configuration with the smallest a(w),
wED,, (31), becomes optimal for all t€(sl ,85t].

Q.E.D.

Theorem 3 indicates that, while solving for s/ in which A, (7, (s;,),w) has to be
minimized over L, (s} ), the optimal configurations 4, (s5'!) can be obtained simultane-
ously. Also, we can exclude the configurations wEG,, (s},) during the determination of
821 and v, (s.'). Note that even if &, (s),) is not empty, 5, (s2"!) does not always
exist since s}, may be infinite. When there is more than one element in ¢, (s2) and
8}, <oo, the configuration with the smallest crash probability in &, (s} ) is optimal for
the interval (s ,s2t!]. Note, however, that all other configurations in &, (s}) are

optimal only at hm+(a,,,+6t) Theorem 3 also provides additional properties concerning
8t—0

the optimal reconfiguration strategy as shown in the following corollaries.

Corollary 1. a(7,(20))<e(vm(s2)) and p(7, (2,2 )< o7, (23)) for all i>;.

17
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Proof: In  Theorem 3, we proved a(y.(si))<a(1a(s4)).  Since

An (1m(25),1m (857) 2 E[W,; | ]>0, we have p(1n(s5")<p(1m(24)).  QED.

Definition: A reconfiguration process is said to be acyclic if for ¢,5£¢t,,
e ) )="Tue (£ 2) implies Yage )(€1)="aget)="aq1 (¢ 2) for all t€[t,,¢,).
>From Corollary 1, 7, (3,) )57, (s ) for all i5£5. Also, if no repair is allowed dur-

ing the mission, the system degrades from the m module system to the m-1 module sys-

tem in case of a module failure. Thus, we immediately get the following Corollary 2.

Corollary 2.  The reconfiguration process based on RS,;,M, denoted by RF,;,,,O, is

acyclic.

Corollary 3. For all m€g{0,.,my} and j>0, if s)<oo, then

(1 (s5t1)) S A (2 .
o(1m(s5™) T al(vm(sh))

Proof:  Consider a remaining mission lifetime t€(s},,25""]. Since E[Ws] is non-

dEWi) o

decreasing and continuous in ¢, and, therefore, we have

dt
o0 9+1
ph”'(‘___""' +)1) > NE[W, i) from Eq. (8). >From Theorem 3, we get
ma(Yn(s5))

x 'm—l > . Jj , ": 8,{;” . hus, p(’h:(af’;-l)) > p(’Yn:("{l)) .
Pl 2 An (ralsa)va(saT) - TheS, 0 vGm) 2 alra(ed)

Q.E.D.

Definition: The coordinates of a configuration w are defined as (a(w),p{w)) in an x-y

plane.

18
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Using Figure 3, we can explain the relationships obtained from Corollary 3. Note
that the slope of the line segment between (a(vnm(s3)),2(7m(25)) and

(a(vm (857!

N,2(Vm (857Y))) is equal to mA, (Y (82 ), m (0551)). It is easy to see from Fig-
ure 3 or Theorem 3 that A, (v, (35 )7, (351Y)) is increasing in 5. Figure 3 also indicates
that the coordinates of the optimal configuration, i.e. (a(vn(2si))),0(vm(s5Y))), is
located  within the triangle surrounded by (0,0), (0,0(a(sk)), and
({7 (35)),0(7 (35))). When there is no configuration whose coordinates are within this
area or Eq. (7) is valid for all t>s%", s becomes infinite. Though the optimal confi-

gurations can be indicated from their coordinates, the switch times have to be computed

based on Theorem 2 in which no optimization problem is involved.

As a final solution step for the optimal reconfiguration strategy, we have developed
the following algorithm A(RS), in which 7, (s}) and E[W,},] are calculated using
Ym1(34) and E[W,, ] for all t€[0,to]. Complete algorithms to solve for ~,, (s J) will be
presented in the next section. When ¢, is large, a different algorithm, where ~,, (t+6t)
and E[W}s »] are computed based on 7,,(t) and E[W,5,] for all m€{0,...,m}, is better

than Algorithm A(RS) insofar as the storage requirement is concerned. However, the
underlying principles are the same.
Algorithm A(RS):
Step 1. initialization
la  For m=12,.mg, find v, (s,)) in which n maximizes p(w), wER,, .5 When

there is more than one configuration which maximizes p(w), the configura-

tion with the smallest crash probability is chosen.

®It is easy to prove that +,%(s,}) maximizes #(w) from Theorem 1 and E{Wg, |=0.
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1.b Find E‘[W,,',]=p(7l’(al‘))% (1-e ™ -Xte ™) for t€[0,¢,]. (Note that reconfi-
guration is not needed when m=1).
l.c Choose 6t to digitize t€[0,¢,).
1.d Set m:=1 and start the following recursive steps.
Step 2. Set m:=m+1, t:=0, and s;==2. If m>m, stop the algorithm.
Step 3. Find v, (s )€®,, (s5) and a7, (23 )) < (@) for wED,, (s57).
Step 4. Using 7, (s5!) as the optimal configuration, calculate E[W,}s ] by Eq. (5).

Step 5. Set t:=t+6t. If t>t,, go to Step 2
else if Ay, (Y (057"),7m(04))2E[Wy'm1], o to Step 4

else j:=3+1 and go to Step 3.

4. DETERMINATION OF OPTIMAL CONFIGURATION

As we defined in Section 2, a configuration w€fl,, can be specified by (n,r) where
n=|n,n,,.,n; ] represents the number of computing clusters for the task class ¢, and
r=|r,ro,.,r ] is the degree of redundancy associated with the computing clusters in the

task class s. It is assumed that the rewards gained from executing different task classes

k
are independent. Thus, the system reward rate, p(n), is equal to Y] p;(n;) where p; is
=1

the reward rate for the task class 1. Furthermore, since all modules within the system

are identical, the crash probability, o(n,r), can be represented by

(n;+1;) a;(n;,r;) where a;(n;,r;) is the crash probability when a module

M~

1
m =

assigned to the task class s fails, given there are n; computing clusters and r; redundant

modules in this task class.
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Consider the execution of class ¢ tasks. When there are n; computing clusters, the
task class can be treated as an n;-server system. Let fz) denote the performance of an
z-sever system. Ideally, the performance of the system is additive in z, i.e.
flz,+2,) = flz)+/(z,). However, due to task communications, resource sharing, and
other overheads, the performance of the system is sub-additive, i.e.
[z )+N(z,) 2> f(z,+2z,). In most cases, f(z) is a non-decreasing concave function of z as
evidenced in [20,21,22,23]. Following the evidenced tradition, we will consider here the
cases in which the reward rate for each task class, p;(n;), is a non-decreasing concave

function of the number of computing clusters, n; .

Let h;(n) be the crash probability of an n-module redundant computing cluster in
the task class 1. We assume that h;(n) is a decreasing convex function of n for all

i=1,2,...,.k. For simplicity, we assume that n h;(n) is also convex in n.” Thus, the

crash probability of the task class § is given by:

. r 42 . . r+l
a;(n;,r;) = (r;-n;r;)— hi(r;+2) + (m;-r; +n;r;)—

hi(r; +1)

. ri
where r;=|— |. This implies that (n; +r;) a;(n;,r;) is a piecewise linear and convex
n;

function of r;. When n; r; <r; <n;(r;+1), r, EI, the slope of the corresponding linear
piece is (r; +2) h; (r; +2) - (r; +1) h; (r; +1).

As indicated in Algorithm A(RS), there are two nonlinear integer programming
problems to be solved for deriving the optimal reconfiguration strategy. The first, called

P,, is a nonlinear integer knapsack programming problem which has to be solved for

determining v, (3,.).

"Relaxation of these two assumptions will be discussed in Section 5.
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k
Py max Y p;(n;) (8)

B, =1 .

k
subject to Y, n; <m and n;€I" for i=12,..k.

=1
The second, called P,, is an integer fractional programming problem which is to
determine 7, (s2!), given v,(s%). P, can be expressed as:
k
plwo) - _}:Pi(”s)
P;: min I =l given wyEN,, (9)
ma(wy) - Y5 (n; +r;) a;(n;,r;)

=1

k k
subject to Y (n; +1;) a;(n;,r;)<ma(wy), Y p;(n;)<p(w,) and
=1

=1

k
Y (ni+r,)<m, n;,r, €I for i=1,2,....k.

=1
4.1 An Algorithm for Solving P,

The nonlinear integer knapsack problem has been considered for various applica-
tions such as resource allocation, portfolio-selection, capital budgeting, etc. Several
methods have been proposed for solving this problem; for example, dynamic program-
ming approaches [24,25], the shortest path algorithm [28), and ranking methods [27,28].
Michaeli and Pollatschek investigated the problem and provided a necessary and suffi-
cient condition for the optimal solution [29]. In this report, we develop a simple but
elegant algorithm for problem P,, under the assumption that p;(n;) is a concave func-

tion of n; 8

Let A;(n;)=p;(n;+1) - p;(n;). The principle of the algorithm is to allocate

®0ur algorithm is extremely efficient when m is not too large. According to [28], a general solution for
the problem P, is known to be intractable. However, the algorithm we developed is very simple as will be
shown below.
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modules such that the system can have maximum return.’

Algorithm A
Step 1. Set n, :==0 for all =1,2,...,k.
Step 2. Select ¢ * such that A .(n,.) = llg?%(kA,-(n,- ).
If A;.(n;.)<O0, then terminate the algorithm.

Step 3. n,.:=n_.+1 and m:=m-1. If m=0, then terminate the algorithm.

Otherwise, go to Step 2.

Clearly, it is not necessary to sort all A;(n;) for every m. A;(0) must be sorted

during the first iteration. However, since n,. is changed only in later iterations,
A;.(n;.) has to be evaluated and inserted into the previous sorted sequence. Note that

there are at most m iterations required for this algorithm to terminate.

Theorem 4. The result obtained from Algorithm A, denoted by

n‘=[n/,ns,...,n],is a solution to P,.

Proof: First, we introduce an additional task class k+1 where p;,,(7)=0 for all jeI.1°

Thus, the problem is converted to:

k+1
max Y p;(n;)
LR
E+1
subject to Y n,=m and n; €I for i=1,2,....k+1
=1

°The problem Py is not in the general form of the nonlinear integer knapsack programming problem,
since the coefficients of the linear constraint are all equal as indicated in Eq. (8).

10 The modules in this task class can be regarded as consisting of spare modules. So, the reconfiguration
problems for a system with and without spare modules can be treated as the same.
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As shown in [29], a necessary and sufficient condition' for the above problem is
pi(n;)+p;(n;) = pi(n; +2)+p;(n;-2) for each pair i, j (i=1,2,...,k+1; j=1,2,...,k+1; and
i7£5) and integer z where max (-1,-n;) < z < min (n;,1). Thus, to prove the theorem,
we only need to show that the above equation is valid for z=1 when n; >0. If n,’ and
n;' are obtained from Algorithm Ay, then A;(n;-1)>A;(n;"). Thus, the theorem fol-

lows. Q.E.D.

Another advantage of Algorithm A is that all 5, (s,') can be solved at once. By
assuming m, at the beginning, 7 (s, ), m€{0,...,m,} is obtained at the end of the m-th

iteration.

4.2 An Algorithm for Solving P,

The solution of P, can be divided into two levels: the lower level is to determine r;’,
1=1,2,..,k by minimizing the objective function (9) for a given n; the higher level prob-
lem is to determine n;’ by minimizing the objective function (9) with the calculated r;’
from the lower level. Since the only place that r;’s appear is in the denominator of the
objective function, the lower level problem can be stated as follows:

k
Py: min Y (n; +r;) a;(n;,r;) (10)

=1

k k
subject to Y r; < m-Y n; and r; €I for i=12,....k

=1 =1

The problem P, is an integer knapsack programming problem which is to minimize

the sum of nonlinear functions. If (n;+r;) a,;(n;,r;) is convex with respect to r,, we

! The necessary and sufficient condition given in [29] is used for minimizing the sum of convex func-
tions. Here, we consider the maximization of the sum of concave functions.
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can apply an  algorithm similar to A, in which we choose

mink {(n; +1;4+1) a;(n; ,r; +1) - (n; +1;) a;(n;,r;)} in place of

1<

max, {pi(n; +1)-p;(n; )} in Algorithm A,. When (n,+r;) a;(n;,r;) is not convex, the
1<4<

lower level problem becomes a non-convex programming problem. There is no guarantee
that the solution obtained by Algorithm A ; is the global minimum.

k
Let A(n)=min Y] (n; +r;) a;(n;,r;) obtained from solving P, given n. Thus, the

fi =1

problem P, can be converted to the following form:

. Awo)-p(n)
" el An) -

subject to A(n)<ma(w,) and p(n)< p(w,)

PS:

k
Y, n; <m and n, €I for i=1,2,...,k.

=1

>From Corollary 3, the triangle area surrounded by (0,0), (0,s(n°), and

( 1 A(n°),p(n%) is a feasible region described in terms of the configuration coordinates.
m

Since there does not exist an explicit form of mapping from the configuration coordinates
to n, an enumeration is the only means to find whether a configuration is within this

triangle region of the configuration coordinates.

Consider the use of an explicit enumeration (or brute force enumeration) for solving

k
P;. For every possible combination of n; satisfying the constraint Y, n; <m, we map the
=1
plwo)-p(n)
ma(w)-A(n)

combination into r,°, A(n), and Then, the configuration with the

minimum ratio is chosen as the optimal configuration. When there are k task classes

and m modules available, the total number of combinations in n to satisfy the constraint
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k
Yon,<m is (mz-k) Thus, when the size of the system is moderate, the explicit

i=1
enumeration approach is reasonable. For example, when k=3 and m=12, the total

number of enumerations is 455.

Moreover, there are two important and advantageous properties associated with the

explicit enumeration: (i) The coordinates of all feasible configurations for m available

modules, that is (—1- A(n),p(n)), can be obtained from the enumeration. Thus, from
m

Theorem 3, we can easily determine all optimal configurations, v, (s ); (i) When we

solve problem P, for r;’ with m=m, the other r,"s are determined simultaneously for

k
all m€{¥)n;, ...,my}. We obtain the coordinates, incorporated with p(n), of all feasi-
=1

ble configurations for m€{l,...,my}. Therefore, the optimal configurations v, (s},) for
mé€{l,...,m,} can be determined. These two properties lead to a situation in the deter-
mination of reconfiguration strategy that the explicit enumeration has to be conducted

only once.

When both k¥ and m are large, the explicit enumeration becomes intractable. An
immediate candidate for approximate solutions is to aggregate task classes into a small
number of groups and then perform the explicit enumerations for the system and for

each group.

Remarks on Fractional Programming Problems

For a general fractional programming problem, the objective function in Eq. (11) is
no longer convex or concave with respect to n; even if A(n) is convex or concave with
respect to n; [30]. For a continuous nonlinear fractional programming problem, some

equivalent or dual problems have been proposed in [31,32]. With integer comnstraints,
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Chandra and Chandramohan [33] suggested to apply a branch and bound method after
solving the continuous problem. However, no example or analysis is provided to show

the efficiency of their algorithm.

A recent survey on the methods of solving the fractional programming problem [34]
has discussed three different state-of-the art approaches. The first approach uses vari-
able transformation and is probably the most efficient method for linear fractional pro-
gramming problems. The second approach deals with the problem as a nonlinear pro-
gramming problem and applies a suitable search algorithm to find the solution. The
third approach uses an auxiliary parameterized problem which is briefly discussed below.

Let F 5 denote the feasible region for P;. Define the auxiliary problem Q) by

Q) min lwo) - pln) - n{maluo) - An)

nEF3

Let z(n) be the minimum value of Q(n). It is shown that if z(q)=0, then an optimal
solution of Q(n) is also an optimal solution of P4 [34]. Hence, an algorithm is needed to
search for n° such that z(°)~0 by solving Q(n) iteratively. Thus, the complexity of
this algorithm is based on the efficiency of solving Q(n) and the search algorithm, e.g.
Newton's method, binary search, etc. Meggido [35] proposed an algorithm which com-
bines the search for ° and the dynamic programming approach to Q(5). The resulting

algorithm requires O(km? log m) evaluations of A(n) and p(n).

Note that the problem Q(y) is the same as the problem OR, i.e. a nonlinear knap-
sack programming problem. It might be more efficient to solve the OR problem directly
instead of searching for #°. When f(n) is convex with respect to n;, the objective func-

tion becomes concave with respect to m; implying that Algorithm A, can be applied.
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The algorithm A ; which includes Algorithm A g is provided below using an operator P,

and a function A; defined by:

1)1 (D)E(n 1,8 2,..,",‘_1.”,' +l’"j+l: e e ,nk)

A; (n)}=p(P;(n)) - p(n) - AE[W,, m-1)(B(P;(n))-A(n))
Algorithm A

Step 1. Set L:=0 and U:=t,,.
Step 2. (a). Set t; ;=L + h(_l}]\-/—[;l for h=1,2,...,N.

(b). For h=1,2,...,N
(b1). Set dm:=m and n,:=0 for i=1,2,....k.
(b2). Solve for A(P;(n)) as indicated in the solution of P, and A;(n)
for +=1,2,....k.

(b3). Select 1 * such that A‘.=lxgaé(kA,-(n). If A,.(n)<0, go to (b5).

(b4). n:=P,.(n) and dm:=dm-1. If dm£0, go to (b2).
(b5). Set v, (¢4 ):=n.

Algorithm A, determines the optimal configurations for the small number of parti-
tions of the mission lifetime. If the optimal configurations at ¢, and ¢,,; are different,
the solution can be refined by setting L=t¢,, U=t;,, and then repeating Step 2 of A,.
This will lead to a more accurate switch time between ¢, and ¢;,,. Although Algorithm

A, only provides one level partitions, it is easy to extend to more refined partitions.

4.3. An Example of the Optimal Reconfiguration Strategy

Consider a system with 12 modules at the beginning of the mission. The module

failure rate is assumed to be 0.0005 and the mission lifetime is 1000. The tasks to be
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executed during the entire mission are grouped into three classes whose respective
reward rates p;(n; ) and crash probabilities h,;(n) for +=1,2,3 are listed in Table 1. In
addition, we include the constraints n; >1 for +=1,2,3, indicating that at least one com-

puting cluster must be available for each task class throughout the entire mission.

Applying the explicit enumeration given in Section 4.2, we can easily find all
m(8h) for 4<m<12 which are listed in Table 2. Table 3 gives the switch times for
each optimal configuration. The optimal reconfiguration strategy is obtained from the
combination of both of these two tables. Notice that certain optimal configurations will

never be used. For instance, v5(s ) is one of them since s 2 =o0.

As shown in this example, the optimal reconfiguration strategy is derived off-line in
table form before the mission. For on-line use of the strategy the system only needs to
look up the tables of optimal configurations and switch times (e.g. Tables 2 and 3). In
this way, the system will follow an optimal reconfiguration trajectory using (i) the switch
times in the same row of the two tables for the case of no module failure or (ii) row
changes in the tables and then the switch times in case of module failures. In Figure 4,

the configuration trajectories, reward rates, and crash probabilities are plotted if the

module failures occur when RML are 800, 520, 400, and 310.!2

5. DISCUSSION

5.1. Concluding Remarks

In this report, we have addressed the problem of reconfiguring non-repairable
multi-module systems. Since we treated the problem for general multi-module comput-

ing systems, both the problem formulation and the solution approach of this report have

These are random and known only via failure detection mechanisms. For a demonstrative purpose, we
used arbitrarily chosen values.
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high potential use for designing the growing number of fault-tolerant multiprocessors

and computer networks.

Given multiple modules, computing clusters with appropriate redundancy for each
task class are formed so that the resulting system may meet both requirements of perfor-
mance and reliability in an optimal fashion. Because of the inherent trade-off between
performance and reliability, we need to determine system configurations which specify
the number of computing clusters and redundant modules for each task class. In addi-
tion to the conventional passive reconfiguration strategy which is invoked only upon
detection of a module failure, we have shown the need of an actsve reconfiguration stra-
tegy which allows the system to reconfigure itself as the mission progresses, regardless of
the occurrence of module failure. Thus, the active reconfiguration strategy provides the
optimal configurations by taking into account both the progression of the mission and

the degradation of the system due to module failures.

Using the expected total reward or Meyer's performability as the criterion for deter-
mining the optimal configurations, we have explored the properties of the optimal confi-
gurations, which are useful for deriving solutions. A feasible region is described in terms
of the configuration coordinates. Although it is easy to find the configuration coordi-
nates, the inverse mapping from the coordinates to a configuration does not exist in

closed form, thereby requiring less elegant enumerations.

In order to derive the optimal configurations, two nonlinear integer programming
problems have to be solved. The first is a knapsack problem for which we have
developed a simple but elegant algorithm. The second is a fractional programming prob-
lem, which is basically a non-convex programming problem. For the fractional program-

ming problem we have used an explicit enumeration which is effective for small m and k.
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We have also discussed the other approaches known for solving the fractional program-
ming problem. They do not appear any better than the explicit enumeration or solving
the optimization problem, OR, directly. Also, note that the elimination of this assump-

tion is equivalent to dynamic classification of incoming tasks.

As shown in the example of Section 4.3, the optimal reconfiguration strategy can be
represented by two tables: one is for optimal configurations; the other for switch times.
Although the solution procedures to obtain these two tables are complex, they can be
computed off-line. The real reconfiguration during the mission is performed just by look-

ing up these two tables.

5.2. Extensions

Several assumptions that we used can be relaxed at the expense of a more complex
optimization procedure. For instance, the reward rate could be affected by the degree of
redundancy incorporated in a task class. In such a case, we need to change p(n) to
p(n,r). The optimization problem P, can no longer be decomposed into two levels.
When the concavity of p;(n;) and the convexity of a{n,,r;) do not exist, the optimiza-

tion problems become non-convex and thus, are more difficult to solve.

We can also remove the assumption that the reward rate and the crash probability
must be stationary, i.e. independent of the mission lifetime. For such a case, let p(w,t)

and a(w,t) be used in place of p(w) and o(w), respectively. The problem OR, then,

becomes to maximize
Jym (W) =p(w,t) - a(w,t)m\E[W, ] for wefl,,.

Obviously, this time dependency does not increase any complexity if we solve the prob-

lem OR directly.
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In place of the total expected reward, a generalized objective function for the

optimal configurations could be defined as E[R(W; n ). Note that R(W) should be

non-decreasing but may not be continuous. It could be a step function as in the example
in [19], or any other discontinuous function with finite jumps. When R(W) is not addi-
tive, i.e. R(W+W,)#R(W,)+R(W,), the optimal configuration at the current moment
is dependent on the total reward accumulated up to the current moment. Hence, the
determination of an optimal configuration must consider both the past and future confi-
guration trajectories, thereby making the optimization problem very complex and diffi-
cult. The difficulty can be foreseen by comparing the optimal configuration problem
with the general stochastic optimal control problem. The optimal control problem usu-
ally uses the summation (or integration) of the functions of variables as an objective
function to be optimized. However, the optimal configuration problem requires the use
of a function of the summation of variables, making the decomposition of these variables

impossible. This is a matter of further research.
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Figure 3. The Coordinates of Optimal Configurations.
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n 1 2 3 4 ) 6 7 8
hy(n) 0.6 0.3 0.1 0.05 0.005 0.003 0.002 0.001
pi(n) 1.0 1.8 24 2.9 - 3.3 3.6 3.8 3.9
hs(n) 0.5 0.25 0.1 0.05 0.025 0.013 0.005 0.002
pa(n) 0.8 1.5 2.2 2.8 34 4.0 4.6 5.1
hy(n) 0.3 0.1 0.05 0.01 0.05 0.03 0.02 0.01
piln) 0.6 1.2 1.7 2.2 2.7 3.2 3.6 4.0

Table 1. Crash Probabilities h{n) and Reward Rates p{n) Used in the Example.
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Table 2. Optimal Configurations for the Example



2, sl o P P S 8 ol &,
m= 0 1194 () - - - - - -
m=>5 0 436 1391 0o - - . - -
m= 0 349 938 1150 oo - - - -
m=17 0 755 1364 2813 - - - - -
m== 0 254 573 635 739 1379 () - -
m=9 0 227 506 643 760 1108 00 - -
m==10 0 206 455 541 574 807 1098 1611 0

m=11 0 188 413 490 602 716 1321 o0 -
m==12 0 104 173 314 378 447 646 ) ()

Table 3. Switch Times for the Example
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