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CHAPTER I

Introduction

In their trilogy [OP06b] [OP06a] [OP06c], Okounkov and Pandharipande com-

pletely determine the Gromov-Witten theory of curves. This thesis is the beginning

of a program extending their results to stacky curves. The logical starting point of

the trilogy is the second paper, [OP06a], which presents an explicit description of

the C∗-equivariant Gromov-Witten theory of P1 in terms of operator expectations for

the infinite wedge. Our main result is an analogous formula for the C∗-equivariant

Gromov-Witten theory of stacky toric P1, and an exploration of some of the immedi-

ate consequences of this operator expression, in particular that it satisfies the 2-Toda

hierarchy. We first explain what this means in simple terms by recalling the basics

of Gromov-Witten theory and the work of the Kyoto school on integrable hierar-

chies. After that we give an overview of our methods, beginning with a summary of

Okounkov and Pandharipande’s methods, which we closely follow.

1.1 Gromov-Witten Theory

Gromov-Witten theory studies the enumerative geometry of curves in a space.

First, the moduli space of stable maps Mg,n(X, β), where β ∈ H2(X,Z), is con-

structed. This Deligne-Mumford stack parameterizes pairs consisting of a nodal

genus g nodal curves C with n marked points pi, along with a holomorphic map

1
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f : C → X so that f∗[C] = β, that satisfy certain stability conditions which guar-

antee that such maps have only finitely many automorphisms. This stack is gen-

erally very singular, but the foundational result of Gromov-Witten theory is that

nevertheless it has a virtual fundamental class - a homology class of dimension

(dimX − 3)(1 − g) + 〈c1(TX), β〉 + n. Using this class, Gromov-Witten theory

studies the intersection theory of Mg,n(X, β) as though it were a smooth orbifold.

Gromov-Witten theory focuses on the intersections of two types of cohomology

classes. For 1 ≤ i ≤ n there is a line bundle Li, whose fiber overMg,n(X, β) is T ∗Cpi ,

the cotangent space to C at the ith marked point. The psi classes are the first chern

classes of these line bundles: ψi = c1(Li). The second type of class are those classes

pulled back from X. For 1 ≤ i ≤ n there are evaluation maps evi :Mg,n(X, β)→ X,

which takes a stable map to the image of the ith marked point: evi([C, f ]) = f(pi).

Using these evaluation maps, any cohomology class α ∈ H∗(X) may be pulled back

Mg,n(X, β).

A Gromov-Witten invariant is the integration of a product of ψ classes and pulled

back classes from X against the virtual fundamental class. In extremely nice sit-

uations, these invariants are enumerative: they count actual curves in X meeting

certain conditions imposed by the cohomology classes used. For instance, if we de-

note by Nd the number of degree d rational curves through 3d− 1 points in P2, then

we have

Nd =

∫
M0,3d−1(P2,d)

3d−1∏
i=1

ev∗i (pt).

In general, however, Gromov-Witten invariants will only give “virtual” counts of

curves. A G action on X induces a G action onMg,n(X, β). The virtual fundamental

class may be made equivariant, and equivariant cohomology classes may be pulled

back and integrated.
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With a few minor complications described in detail in the next chapter, the above

story holds true when X is not a smooth projective variety, but rather a Deligne-

Mumford stack or orbifold. Recall that an orbifold X is a topological space X

with some extra structure: each point x has a neighborhood Ux, an isotropy group

Gx (possibly trivial), and an isomorphism Ux ∼= Cn/Gx that should satisfy some

compatibility. We say X is effective if the generic point has trivial isotropy group

- then each Gx acts on Cn without a kernel. We will focus for now on the effective

case, and return to the ineffective case later. We define Cr,s to be P1 as a topological

space, but at 0 to be isomorphic to C/Zr, and at ∞ it is isomorphic to C/Zs. The

orbifolds Cr,s are the only effective orbicurves to have a C∗ action. The main result of

this thesis is an algebraic framework - to be described momentarily - that computes

all the equivariant Gromov-Witten invariants of the orbifolds Cr,s.

An important reason for studying Gromov-Witten invariants is their recursive

structure. The “boundary” strata of Mg,n(X, β) - those maps where the domain

curve C is nodal - decompose naturally as products of simpler such moduli spaces.

This yields various recursions among Gromov-Witten invariants. Famously, Kontse-

vich used a simple such recursion to calculate the Nd mentioned above. To express

these recursions, it is convenient to package all the Gromov-Witten invariants of a

space X into a generating function: we introduce formal variables to keep track of the

degree and genus of the map, as well as variables recording which cohomology class

is pulled back at each marked point, and which power of ψi is used. The generating

function FX is then a formal power series in these variables, where the coefficient of

each monomial is the corresponding Gromov-Witten invariant.

Packaged in this way, differential operators D with DFX = 0 give recursions

among Gromov-Witten invariants, and nice recursions can be written in terms of
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differential operators of this form. Furthermore, nice families of recursions give rise to

commuting families of differential operators D, all of which annihilate FX . Maximal

families of such commuting operators form an integrable hierarchy. Saying that the

Gromov-Witten theory of a space satisfies an integrable hierarchy corresponds to

saying that there is a particularly nice recursive algorithm for computing all the

Gromov-Witten invariants of a space from a certain base set.

It is of great interest when Gromov-Witten invariants satisfy integrable hierar-

chies. A famous example of this is the Witten-Kontsevich theorem, which asserts

that the Gromov-Witten theory of a point (i.e., the intersection of ψ classes on the

moduli space of curvesMg,n) satisfies the KdV hierarchy. Okounkov and Pandhari-

pande used their operator formalism to show that the equivariant Gromov-Witten

theory of P1 is a τ function of an integrable hierarchy known as the 2-Toda hierar-

chy. A τ function is simply a function of the form τ = eF , where F is a solution

of the hierarchy; this change is made because the equations of the hierarchy take a

convenient form when written in terms of τ functions.

Our main result is that the Gromov-Witten theory of Cr,s also satisfies the 2-Toda

hierarchy:

Theorem. Let τX be the generating function for the equivariant Gromov-Witten of

X = Cr,s. Then, after an explicit linear change of variables depending on r and s, τX

is a τ function for the 2-Toda hierarchy.

Using a different approach [MT], Milanov and Tseng have already obtained this

result. However, their method depends on extending Givental’s formalism to the

orbifold setting, which has not yet been completely carried out. Furthermore, our

operator formalism should later prove useful in investigating the Gromov-Witten

theory of more complicated orbifold curves.
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We now explain in more detail our operator formalism, and how it connects to

the 2-Toda hierarchy.

1.2 Integrable Hierarchies and the Kyoto School

The operator formalism we use and its relationship to the 2-Toda hierarchy was

developed by the Kyoto school (see [MJD] for a gentle introduction), and is an infinite

dimensional analog of the Plücker embedding of the Grassmannian in projective

space. To make the 2-Toda hierarchy more concrete, we explain this now.

Recall the Plücker embedding of G(k, n) in P(nk)−1. Let V be an n-dimensional

vector space with basis e1, . . . , en. Given a k-dimensional subspace U of V , and

choosing a basis u1, . . . , uk we form the vector u1 ∧ · · · ∧ uk ∈
∧k V . Choosing a

different basis of U only changes this vector by multiplying by a scalar, and so we

have a well defined map from G(k, n)→ P(
∧k V ), which is in fact an embedding.

Not every vector in
∧k V is indecomposable (i.e., of the form u1∧· · ·∧uk). In fact,∧k V has a basis given by Plücker coordinates: vectors of the form ei1 ∧ei2 ∧· · ·∧eik .

If we put together the ui as a k × n matrix, then expanding u1 ∧ · · · ∧ uk out in

Plücker coordinates corresponds to looking at the determinants of all k × k minors.

However, since these minors overlap their determinants are not independent, and

satisfy certain quadratic relations known as the Plücker equations. The Plücker

equations give defining equations for G(k, n) inside of P(∧kV ).

Recall also that the group GL(V ) obviously takes a k dimensional subspace to

another k-dimensional subspace, and acts transitively on these subspaces; thus an-

other way to view the Grassmannian inside P(∧kV ) is as the orbit of the element

e1 ∧ · · · ∧ ek under the induced action of GL(V ) on
∧
V . This is the viewpoint that

we will generalize for integrable systems.
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To generalize this story, we now make V an infinite dimensional vector space, with

basis ei, i ∈ Z + 1/2 a half integer. The infinite wedge
∧∞

2 V has a basis consisting

of those vectors of the form ei1 ∧ ei2 ∧ · · · for all decreasing sequences i1, i2, . . . of

half integers such that ik + k + 1/2 is constant for k sufficiently large. The infinite

wedge contains a distinguished element, the vacuum vector |0〉, consisting of the

wedge product of all e` with ` ∈ Z + 1/2, ` < 0.

The lie algebra gl∞ consists of those infinite matrices acting on V that have only

finitely many nonzero diagonals. The lie algebra gl∞ does not quite act on the infinite

wedge: there is seem issue with the action of diagonal matrices, that is carefully

described in Section 4.4. The infinite wedge is, however, a projective representation

of this lie algebra. The lie group GL(∞) consists of products of exponentials of things

in gl∞. An obvious infinite dimensional Grassmannian is then the orbit of GL(∞)

on the vacuum, which parameterizes infinite dimensional subspaces of V that only

differ from a fixed subspace in a finite dimensional way.

The infinite wedge and gl∞ is the algebraic framework we will use to express

the Gromov-Witten theory: we will produce several explicit infinite dimensional

matrices, and the Gromov-Witten invariants of Cr,s will be coefficients that describe

their action on the infinite wedge. Once we have done this, it will follow relatively

easily from the work of the Kyoto that the Gromov-Witten invariants satisfy the

2-Toda hierarchy, as we now describe.

The simplest integrable hierarchy to describe from this point of view is the KP

hierarchy: it describes this Grassmannian among all of the infinite wedge. Simi-

larly, the KdV hierarchy mentioned above is also the orbit of an infinite dimensional

group. The loop group of SL2 has a natural embedding inside GL(∞), and the

KdV hierarchy is the description of the vacuum vector under this orbit. The 2-Toda
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hierarchy is slightly more complicated: rather than describing the orbit of the vac-

uum, it simultaneously describes the orbit of all vectors of the infinite wedge under

GL(∞). Roughly speaking, solutions τM to the 2-Toda hierarchy are parameterized

by operators M on the infinite wedge in the closure of GL(∞). There are two sets

of a variables; monomials in the first set of variables correspond to elements v of the

infinite wedge; in τM they appear multiplied by monomials that describes Mv, the

action on M .

There is a little missing from this description; solutions to integrable hierarchies

should be power series, while in the above description they are given by elements

of the infinite wedge, or tensors of the infinite wedge with its dual in the case of

the 2-Toda hierarchy. This problem is taken care of by a construction originating

from physics: the Boson-Fermion correspondence. Another way to understand the

infinite wedge is as a highest weight representation of a Fermionic Heisenberg algebra.

Wedging and contracting by a given basis vector v give operators ψv and ψ∗v . For

distinct v these anticommute, otherwise their anticommutator is 1. Any Plücker

coordinate in the infinite wedge may be obtained by applying some series of these

operators to the vacuum vector. Because of this, the infinite wedge is sometimes

called fermionic fock space.

Similarly, we have that power series in an infinite set of variables is naturally a

highest weight representation of a Bosonic Heisenberg algebra, given by the operators

of multiplication by x and the partial derivative ∂
∂x

. For distinct variables these

operations commute, while for the same variable their commutator is one. Any

monomial can be obtained from 1 by applying some sequence of these operators.

It turns out that inside gl∞ there are operators that behave just like the Bosonic

operators. The resulting representation of the Bosonic Heisenberg algebra on the in-
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finite wedge turns out to be isomorphic to the representation of the Bosonic Heisen-

berg algebra on power series, and hence gives a nontrivial isomorphism between the

infinite wedge and power series. This isomorphism takes the basic Plücker coordi-

nates in the infinite wedge to Schur functions, and is a useful way to encode the

representation theory of the symmetric group, which is how we will connect to this

formalism.

Thus, the Boson-Fermion correspondence gives us a way to associate power series

to vectors in the infinite wedge. The differential operators that define our integrable

hierarchies are what result when we take the Plücker relations on the fermionic side

and see what they become on the bosonic side.

1.3 Ineffective Orbifolds and the decomposition conjecture

The above discussion has described our results on the effective orbifolds Cr,s; we

also describe the Gromov-Witten theory of ineffective toric orbifolds.

If the generic point of an orbfold has isotropy group K, then K will be the kernel

of the action of each Gx. We can quotient out by this copy of K in each Gx to

obtain a new orbifold Xrig, called the rigidification of X , and we say that X is a K

gerbe over Xrig. An example of an ineffective orbifold curve isM1,1, the compactified

moduli space of genus 1 curves with one marked point. Since every genus 1 curve

has an involution, the generic point of M1,1 has Z2 as its isotropy group. M1,1 is a

Z2 gerbe over C2,3.

These ineffective isotropy groups do not effect the topology of the orbifold, and

should rather been seen as extra structure. However, this extra structure has a

nontrivial effect on maps into the orbifold: not every map into the rigidification lifts

to a map into the gerbe.
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The handling of the ineffective case is first done in this paper, and is best un-

derstood in connection with a conjecture coming from physics. The decomposition

conjecture of [HHP+07] suggests that a CFT (conformal field theory) arising from a

K gerbe Y over an effective orbifold X should, after an appropriate change of vari-

ables, decompose into CFTs on disjoint spaces Xi. There is an explicit construction

of the Xi from Y ; for the gerbes considered in this paper, each Xi will be isomorphic

to the underlying effective orbifold X = Cr,s, and the index i runs over the set K∗ of

irreducible representations of K.

The simplest example of the decomposition conjecture is the Gromov-Witten the-

ory of BG, which can be viewed as a G gerbe over a point. Jarvis and Kimura

[JK02] have shown that the Gromov-Witten theory of BG satisfies multiple com-

muting copies of the KdV hierarchy, one copy for each conjugacy class of G. That

is, after an appropriate change of variables the Gromov-Witten theory of BG is the

disjoint union of the Gromov-Witten theory of a point, one for each conjugacy class

of G.

Over a point, only the trivial gerbe is possible. When the gerbe is nontrivial

the decomposition conjecture is more complicated: the CFTs on the spaces Xi must

be modified slightly by “turning on discrete torsion”. Physically, discrete torsion

is essentially the orbifold version of a B-field. Mathematically, it corresponds to

twisting the Gromov-Witten theory by a flat C∗ gerbe, as described in [PRY]. Note

that twisting GW theory by a flat C∗ gerbe is quite different from taking the GW

theory of the total space of a gerbe for a finite group. For smooth X , twisting

by a flat C∗ gerbe simply rescales the degree variable q. In contrast, for orbifolds

twisting the theory can change it drastically, but we show that in our case twisting

is captured entirely in rescalings of the degree variable q and the insertion variables.
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Additionally, the conjecture allows for a physically meaningless rescaling of the genus

variable u.

In the ineffective case, our operators act not on an infinite wedge, but on a related

fock space that encapsulates the representation theory of the wreath products of K

with Sn. This Fock space is essential a tensor product of |K| copies of the infinite

wedge, and our operators are well behaved with respect to this identification with a

tensor product of infinite wedges. As a result, this operator formalism leads to:

Theorem. Let Y be a banded K gerbe over X = Cr,s, and let τY , τX be the corre-

sponding generating functions for equivariant Gromov-Witten theory. Let K∗ be

the set of irreducible representations of K. Then after an explicit linear change of

variables we have

τY =
∏
γ∈K∗

τγ.

Here, τγ is the generating function for the equivariant Gromov-Witten theory of X

twisted by the flat C∗ gerbe prescribed by the decomposition conjecture.

This is the first complete verification of the decomposition conjecture for non-

trivial gerbes, although while this work was in progress a preprint appeared [AJTb]

announcing the general solution for all toric gerbes [AJTa]. Furthermore, put to-

gether with the previous theorem and the fact that the twisting merely amounts

to a rescaling of variables, we get as an immediate corollary that τY satisfies |K|

commuting copies of the 2-Toda hierarchy.

In addition to the immediate consequences of the operator formalism we have

already discussed, a large source motivation of this work lies in its future applica-

tions. We hope to further extend Okounkov and Pandharipande’s methods and use

degeneration techniques to address more complicated orbifold curves. The attraction

of orbifold curves is that while their geometry is simple enough that the Gromov-
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Witten theory is readily approachable, there is enough structure that we can hope

to get interesting answers.

A particular goal of this plan is a proof of the Virasoro conjecture for all effective

orbifold curves. Although integrable hierarchies known for a space are rather rare,

the Virasoro conjecture gives a set of differential operators that should annihilate

the generating function of any Kahler target space. These operators do not com-

mute, but rather form (half of) the Virasoro algebra. The Virasoro conjecture has

been proven for toric varieties by Givental, and flag and grassmannian varieties. In

these cases, there is some semisimplicity that produces the Virasoro operators. In

the third paper of Okounkov and Pandharipande’s trilogy, the Virasoro conjecture is

proven for all curves - this remains the only verification of the Virasoro conjecture in

the non-semisimple setting. Jiang and Tseng [JT] have stated a version of the Vira-

soro conjecture for orbifolds; our current work should allow us to extend Okounkov

and Pandharipande’s proof to orbifold curves, which would be the first verification

of the Virasoro conjecture for orbifolds, and would be particularly valuable as a

nonsemisimple example.

We note that some work toward the Gromov-Witten theory of more general orb-

ifold curves has been done by Paolo Rossi [Rosa], [Rosb] using techniques from sym-

plectic field theory; one important observation is that a genus 0 curves with 3 orbifold

points produce several more semisimple examples, where integrable hierarchies are

expected and relatively understood, and his techniques seem quite powerful here. In

the nonsemisimple case his approach is quite concrete, but as of yet does not appear

to give an approach to the Virasoro constraints.
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1.4 Background on Okounkov and Pandharipande’s work

As we will largely be building on the work of Okounkov and Pandharipande,

we now provide a broad sketch of the key points of their method, beginning with

their motivation. The starting point for their work was the Toda conjecture, first

put forth by physicists [EHY95], [EY94], which suggests that the (non-equivariant)

Gromow-Witten theory of P1 is governed by the 2-Toda hierarchy. Proving the Toda

conjecture is one of the main achievements of the trilogy. In earlier work [Pan00],

Pandharipande had shown that the Toda conjecture implies a certain Toda equation

for Hurwitz numbers, which count covers of the sphere with prescribed ramification.

In particular, the double Hurwitz number Hg(µ, ν) is the number of covers of P1 by

genus g curves with arbitrary profiles µ, ν over 0,∞, and simple ramifications at the

appropriate number of other points.

With Pandharipande’s work as motivation, Okounkov [Oko00] showed that in

fact double Hurwitz numbers satisfy the entire 2-Toda hierarchy. Combining the

classical expression of Hurwitz numbers in terms of the representation theory of the

symmetric group with the more recent description of the representation theory of

the symmetric group in terms of the infinite wedge, Okounkov encoded Hurwitz

numbers as operator expectations on the infinite wedge. The work of the Kyoto

school connects these operator expectations with integrable hierarchies, and so it

quickly follows that double Hurwitz numbers satisfy the whole 2-Toda hierarchy.

Starting from a conjectural 2-Toda hierarchy for Gromov-Witten theory, an operator

description of Hurwitz numbers was obtained.

The starting point of the trilogy is to work backwards from this development.

From the operator description of Hurwitz numbers an operator description of equiv-
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ariant Gromov-Witten theory is derived, which again leads to a 2-Toda structure.

This is done in two steps. First, virtual localization [GP] allows integrals over the

moduli space of stable maps to P1 to be computed in terms of related integrals over

the locus of C∗ fixed maps to P1. This locus has components indexed by labeled

graphs, and each component is essentially just a product of copies of Mg,n, and

in particular is smooth. The integrals over Mg,n that result from the localization

procedure involve terms coming from the normal bundle of the fixed locus, and are

known Hodge integrals.

The second step is to evaluate these Hodge integrals. This is done via the ELSV

formula, which expresses Hodge integrals in terms of single Hurwitz numbers - a

specialization of double Hurwitz numbers to the case where the cover is unramified

over ∞. An operator description for the equivariant Gromov-Witten invariants is

obtained from Okounkov’s operator description of Hurwitz numbers together with

combinatorial factors coming from localization and the ELSV formula. There are

technical issues that must be resolved, stemming largely from the fact that Hurwitz

numbers only make sense for integer values (the order of ramification), and so the

operators must be interpolated to complex values. This results in more complicated

operators than were present in the Hurwitz case, but it can be shown that they

are conjugate to the standard operators used in the 2-Toda hierarchy, and so the

equivariant Gromov-Witten theory of P1 also satisfies the 2-Toda hierarchy.

1.5 Overview of the present work

We will use the general method of Okounkov and Pandharipande outlined above

to construct our operator expression, although several new ideas are needed, par-

ticularly to deal with ineffective orbifolds. First, the orbifold structure introduces
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some new features to the localization process. Again, the fixed point loci are smooth

orbifolds indexed by labeled graphs. Each component is essentially a product of

Mg,r(BR) and Mg,s(BS), where R and S are the isotropy groups of X over 0 and

∞, respectively. Here r (respectively s) is an n-tuple of elements of R (or S) that

record the orbifold structure at the marked points, and are an essential new feature.

In the effective case, r is determined locally by the degree of the map, and so localiza-

tion is not much more complicated. In the case of a gerbe there is a global relation

between r, s, and the degree of the map which must be understood to carry out

localization. Our first important result is Lemma II.13, which explicitly describes

this relationship. This is perhaps best understood in analogy with the monodromy

of a principal bundle. A principal bundle is determined by its monodromy (or, for a

lie group with connection, its holonomy) around closed loops; for gerbes this mon-

odromy is around closed surfaces. Lemma II.13 computes the monodromy of our

gerbes in a way that can be easily applied to localization.

The normal bundle over the fixed locus produces integrals known as Hurwitz-

Hodge integrals, and to complete the second step, an analog of the ELSV formula

for them is needed. Such a formula was recently obtained in joint work with Pand-

haripande and Tseng [JPT]. For the effective orbifolds Cr,s, the resulting Hurwitz-

Hodge integrals are expressed in terms of certain double Hurwitz numbers. These

are still covered by Okounkov’s operator expression, and so in this case the same

procedure leads to an expression of the equivariant Gromov-Witten invariants in

terms of operator expectations on the infinite wedge. The operators have the same

general form, and so although the technical arguments must be adapted, Okounkov

and Pandharipande’s work can be followed quite closely.

In the presence of a K gerbe the relevant Hurwitz-Hodge integrals are encoded
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not in double Hurwitz numbers but in K wreath double Hurwitz numbers, which

count ramified covers of P1 with monodromy lying in a wreath product of K and

the symmetric group. Constructions parallel to those used for usual Hurwitz num-

bers exist for these K wreath double Hurwitz numbers. In particular, they can be

expressed in terms of the representation theory of the wreath product, and there

is a Fock space approach to this representation theory - that is, an analog of the

infinite wedge. This Fock space, developed and applied by Wang and collaborators

(e.g. [FW01]), is a tensor product of |K| copies of the infinite wedge. As a result,

for operators of the correct form, vacuum expectations decompose into a product of

operator expectations on the infinite wedge. This is a reflection of the decomposition

of the representation theory of K wreath products into the representation theory of

K and multiple copies of the representation theory of the symmetric group.

This decomposition has been utilized in Qin and Wang’s work on the equivariant

cohomology of the Hilbert scheme of points on the An resolution [QW]. For the

case of points in the plane, this is governed by a 2-Toda hierarchy; Qin and Wang’s

use the wreath product Fock space to show that in the case of points on the An

resolution, there are n + 1 commuting copies of the 2-Toda hierarchy. In light of

the decomposition conjecture, this result suggests applying their machinery to the

Gromov-Witten theory of gerbes, and was motivation for the formulation of the

orbifold ELSV formula in terms of wreath Hurwitz numbers.

As a warmup to our proof of the decomposition conjecture we give another appli-

cation of this wreath Fock space, by extending Okounkov’s result on double Hurwitz

to wreath Hurwitz numbers.

Theorem. Let τ be the generating function of double Hurwitz numbers, and τK be

the generating function of K-wreath Hurwitz numbers. Then, after an explicit linear
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change of variables, we have

τK =
∏
γ∈K∗

τγ

where the product is over K∗, the set of irreducible representations of K, and τγ is

a rescaling of τ .

1.6 Detailed Outline

Our first task, in chapter 2 is to recall the basics of orbifolds and orbifold Gromov-

Witten theory. We put an emphasis on gerbes, which are treated rather abstractly in

the literature, but are relatively concrete in our situation. In particular, we classify

and give explicit geometric constructions of all banded K gerbes over Cr,s for K finite

abelian. The key new result is lemma II.13, which describes how the gerbe effects

the Gromov-Witten theory. We also briefly describe the twistings of Gromov-Witten

theory that appear in the decomposition conjecture.

Chapter 3 carries out the localization part of the argument. Using disconnected

generating functions with unstable contributions greatly simplifies the final form by

allowing for a more uniform treatment of localization, and by allowing us to deal with

a sum over partitions rather than a sum over trees. The unwanted unstable terms

can be removed easily later. In the noneffective case, localization produces a sum

over partitions with parts labeled by elements of K, which correspond to conjugacy

classes in the wreath product. The end result is an expression for the equivariant

Gromow-Witten generating function of X in terms of the Hurwitz-Hodge generating

functions and combinatorial factors.

Chapter 4 provides the background needed on the wreath product and the Fock

space formalism for its representation theory. We explain how this Fock space is

essentially the tensor product of multiple copies of the infinite wedge. Wreath double-
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Hurwitz numbers are introduced, reduced to the representation theory of wreath

products, and expressed as vacuum expectations of operators on this Fock space.

After a quick review of the 2-Toda hierarchy, we show that the generating function

for wreath Hurwtiz numbers satisfies multiple commuting copies of it.

Chapter 5 combines the previous sections with the orbifold ELSV formula. We

begin by recalling the orbifold ELSV formula of [JPT], which evaluates the generat-

ing function of Hurwitz-Hodge integrals at appropriate integer values in terms of the

wreath Hurwitz numbers. Using the machinery of section ??, this provides operator

expectation formulas for the Hurwitz-Hodge integrals at these values. Interpolat-

ing from these integer values to an open subset of Cn is the technical heart of the

paper. The resulting operators are rather complicated, and some technical proofs

are postponed until the last chapter. Having produced an operator expression for

Hurwitz-Hodge integrals, we combine it with the localization analysis of section ??

to obtain our main result: an operator expression for equivariant Gromov-Witten

theory.

Chapter 6 applies the operator formula to derive the two main theorems men-

tioned above. First we prove the decomposition conjecture, exhibiting a change of

variables that produces the desired decomposition at the level of operators. We care-

ful interpret the rescaling of variables as twisting by flat C∗ gerbes. Then we address

the 2-Toda hierarchy, first deriving an explicit form of the lowest 2-Toda equation

by hand, and then presenting a change of variables between the Gromov-Witten

variables and the standard 2-Toda times to establish the entire hierarchy.

Finally, chapter 7 contains the proofs of the two main technical lemmas. First,

we show that the operators we define actually converge on a certain region. Then,

we determine their commutators.



CHAPTER II

Orbifolds and their Gromov-Witten theory

2.1 Orbifold Background

This section is an idiosyncratic introduction to orbifolds and their Gromov-Witten

theory. The literature on stacks is notoriously abstract and general. To counteract

this, we strive to be intuitive, concrete and specific, and focus on the simplest ex-

amples we will need. We place particular emphasis on gerbes, as this material is

less standard and none of the existing presentations are particularly concrete. Our

treatment is by no means complete - for instance, there is no real discussion of stacks

as groupoids. For a more thorough introduction to orbifolds, we suggest [ALR07] as

a good starting place.

Section 2.1.1 introduces orbifolds, focusing on the notion of ineffective orbifold

or gerbe. Section 2.1.2 reviews orbifold cohomology and Chen-Ruan cohomology

in preparation for the cohomological classification of gerbes in 2.1.3. Then 2.1.4

reviews orbifold line bundles and their Chern classes in preparation for the explicit

construction of our class of gerbes in terms of the rth root construction in 2.1.5.

2.1.1 Orbifolds and gerbes

An orbifold X consists first of an underlying topological space, denoted |X | and

called the coarse moduli space. Each point x ∈ |X | has a neighborhood U that is

18
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isomorphic to a quotient Cn/Gx, for some finite group Gx, called the isotropy group

of x.

Example II.1. If M is a manifold, and G is a finite group acting on M , then the

quotient M/G admits the structure of an orbifold, which we denote [M/G]. For

instance, Zn acts on P1 by multiplying by roots of unity. The action is free away

from 0 to ∞, and the quotient P1/Zn is again topologically P1, but the orbifold

[P1/Zn] remembers that the action was not free at 0 and ∞ - these points each have

isotropy group Zn. Orbifolds of the type [M/G] are called global quotients

Example II.2. Not all orbifolds are global quotients. A pertinent example is

weighted projective space. As in the construction of normal projective space, let

C∗ act on Cn − {0} . However, rather than the standard action, take the action

given by t · (z1, . . . , zn) = (taiz1, . . . , t
anzn), for some ai ∈ Z≥1. We denote the result-

ing quotient Cn − {0}/C∗ as P(a1, . . . , an). One can check that each point has only

a finite stabilizer group, so that each point in P(a1, . . . , an) is locally a quotient by

a finite group. For instance P(2, 3) will topologically be a two sphere, but the point

corresponding to the orbit of (1, 0) will have an isotropy group of Z2, while the point

corresponding to the orbit of (0, 1) will have isotropy group Z3. All other points will

have trivial isotropy group, as all other C∗ orbits are free. On the other hand, we can

see that P(2, 2) will topologically just be a standard P1, but every point will have a

Z2 as their isotropy group, as −1 ∈ C∗ will act trivially.

The last example, P(2, 2), is one of the simplest examples of an ineffective orbifold.

Frequently when studying orbifolds, the action of Gx was required to be effective -

that is, the only element that fixed everything was the identity. Then we can describe

the orbifold in terms of local charts - each point x ∈ |X | has a neighborhood Ux and
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a chosen isomorphism between Ux and Ũx/Gx, with Ũx isomorphic to Rn, and we

can describe how to glue these charts on the overlaps. In the case of ineffective

orbifolds, this gluing picture is inadequate, and these ineffective orbifolds are now

most conveniently described in terms of a morita equivalence classes of proper lie

groupoids.

Briefly, this means we can represent an orbifold X as a small (objects form set)

category g. We use g0 and g1 to denote the sets of objects and morphisms, re-

spectively. Being a groupoid means that every morphism in this category is an

isomorphism; being a lie groupoid means that g0 and g1 both smooth manifolds and

all structure morphisms are smooth. The coarse moduli space |X | is obtained as

the quotient of the g0 by the equivalence relation that identifies isomorphic objects

- that is, x ∼ y if there is g ∈ g1 with s(g) = x, t(g) = y. The representation of

an orbifold as a groupoid is not unique. This should not be surprising, as is general

in category theory, the notion of isomorphic categories is too strong, and normally

the right notion is an equivalence categories. This is basically the case here, except

some care is needed because of the topologies on our categories; the notion of Morita

equivalence captures this. We refer the to [ALR07] for precise details and a more

leisurely exposition of this material.

A caveat: some algebraic geometers reserve the word “orbifold” for the effective

case, while the general case is merely a Deligne-Mumford stack; for us an orbifold

may be ineffective.

Example II.3. We have already seen one example of an ineffective orbifold: P(2, 2).

A more fundamental example are the spaces BG = [pt/G], the quotient of a point

by a finite group G acting trivially. These are called classifying stacks, as an orbifold

map from X to BG is equivalent to a principal G-bundle on X . It is instructive to
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compare this to the topological classifying spaces, BG. These gain something in that

they are honest spaces rather than orbifolds, but lose something in that they only

classify homotopy classes of maps, rather than just maps.

For each point x the elements of Gx that act ineffectively will form a normal

subgroup Kx / Gx. The isomorphism type of the group Kx will be locally constant,

and we will denote this common group by K. We can rigidify our orbifold by taking

the quotient of each isotropy group Gx by K to form the effective orbifold X rig. Then

our original orbifold X will be a bundle over X rig with fiber BK:

BK −−−→ Xy
X rig

In this case, we say that X is a K-gerbe over X rig. Note that if Y is a K-gerbe over

X , then |Y| is naturally isomorphic to |X |, and so allowing ineffective group actions

does not change the singularities that can be achieved in the underlying topological

space. Instead, gerbes should be thought of as an extra structure included.

Example II.4. If X is an orbifold, the space BK × X is a K-gerbe over X , called

the trivial gerbe.

Example II.5. In the discussion above, we have seen how gerbes are like fiber

bundles. Another important analogy to have in mind is group extensions. If

0→ K → H → G→ 0

is a short exact sequence of groups, then BH will be a K-gerbe over BG. In general,

if Y is a G-gerbe over X , and x ∈ X , we can also think of x as a point in Y . If Gx

is the isotropy group of x ∈ X , and Hx is the isotropy group of x ∈ Y , then Hx will

be a K extension of Gx.
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2.1.2 Orbifold Cohomology

We will make use of two types of orbifold cohomology. When we write H∗(X ) we

will mean the “classical” orbifold cohomology, i.e. H∗(X ) = H∗(BX ) the topological

cohomology of the classifying space of a groupoid representing X . This is a natural

extension of the classifying space of a group: indeed, BBG = BG, so that H∗(BG)

is just the usual group cohomology of G. We will be able to calculate the orbifold

cohomologies we are interested in without using a detailed understanding of the

groupoid presentation by using the fact that BX has a map to |X |, with fibers BGx

over x. In any case, the homotopy type of the classifying space turns out not depend

on the choice of groupoid used to represent X . Furthermore, although H∗(X ,Z) can

contain interesting torsion, it is a fact that H∗(X ,R) ∼= H∗(|X |,R).

In adition toH∗(X ), we will also make use of the Chen-Ruan cohomology, H∗CR(X ).

As a vector space, Chen-Ruan cohomology is just the usual cohomology, with coef-

ficients in C, of the inertia stack of X , denoted IX . An important and relatively

concrete way of viewing IX is as the space of constant maps from S1 to X . There is

a map IX → X given by evaluating the map, and the fiber over x ∈ |X | is the space

of maps from S1 to BGx, which, as discussed in Example II.3, is the space of principal

G bundles on S1. Considering the monodromy of this bundle around a generator of

π1(S1), we see that these are classified up to automorphism by conjugacy classes of

elements in Gx. Hence, elements of the inertia stack are often denoted (x, g), with

x ∈ X and g ∈ Gx. In general, IX will have many components. The elements

(x, e) with e the identity of Gx together form a component isomorphic to X . The

other components are often called the twisted sectors, using language originating

from string theory.

Although we have H∗CR(X ) = H∗(IX ,C) as vector spaces, the cup product and
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grading are different. We will not need the cup product, but it is obtained by a

push-pull construction and the Euler class of a natural obstruction bundle living

on the higher twisted sectors of X . We will, however, make use of the shift in

grading. Pulling back the tangent bundle of TX to IX , we get for each point

(x, g) ∈ IX a representation of 〈g〉, the group generated by g. As this group is

cyclic, the representation diagonalizes, so that g acts by diag(e2πir1 , . . . , e2πirn), n =

dim(X ), 0 ≤ ri < 1 ∈ Q. The degree shifting number ι(g), or age, of (x, g) is defined

to be the sum of the ri. It is easy to see that the degree shifting number is constant

on each component of the inertia stack, and so for T a twisted sector we will often

write ι(T ). For α ∈ Hk(T ), with T a twisted sector, the degree α as an element of

H∗CR(X ) is defined to be k + 2ι(T ), In general, this is only a rational number.

We will be interested in one dimensional orbifolds X that admit a C∗ action. This

immediately forces |X | = P1, and furthermore as any orbifolds points of X rig must

be fixed by the C∗ action, there can be at most two of them which we will take to be

0 and ∞. We will denote by Cr,s the effective orbifold with |Cr,s| = P1 and isotropy

groups Zr at 0 and Zs at ∞. If r = s, then Cr,s = [P1/Zr], while if r and s are

relatively prime, then Cr,s = P(r, s), the weighted projective space.

Example II.6. We calculate H∗CR(Cr,s). First, we need to understand the inertia

stack ICr,s. The nontwisted sector will just be Cr,s, and since this is topologically just

P1, its cohomology H∗(Cr,s,C) will be two dimensional, with a generator 1 ∈ H0 and

a generator ω ∈ H2. There is no normal bundle, and so there is no degree shifting.

There are r − 1 twisted sectors lying over 0, corresponding to the r − 1 noniden-

tity elements of the isotropy group at 0. We will denote these twisted sectors as

ICr,s(x), x = 1/r, . . . , (r− 1)/r, each of which is just a copy of BZr, and hence when

we take cohomology with C coefficients, we get a one dimensional space in degree 0.
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We denote the multiplicative identity of H∗(ICr,s(k/r),C) by 0k. Since the element

k/r acts on the tangent bundle of Cr,s by e2πk/r, the degree shifting number is k/r,

and so 0k ∈ H2k/r
CR (Cr,s). Similarly, we have elements ∞k ∈ H2k/s

CR (Cr,s), 1 ≤ k ≤ s−1

coming from the twisted sectors over infinity.

2.1.3 Cohomological classification of Gerbes

We will work with a particular class of gerbes over the effective orbifolds Cr,s. To

understand which ones it will be useful to have a general discussion of gerbes. Gerbes

were introduced and given a cohomological classification by Giraud in [Gir71]. This

classification is conveniently available in [Bre94] and [Bre]. The general answer uses

nonabelian cohomology, which appears intimidating, but is actually exactly what

arises when we try to glue together a gerbe on X from locally trivial ones and use

Čech theory.

We will only consider the case when K is abelian, in which case the relevant

nonabelian cohomology groups have a simplified description. The first part is a

principal Aut(K) bundle, which are classified by α ∈ H1(X ,Aut(K)), even if Aut(K)

is not abelian. From α, one can construct the associated K bundle K. Note that

K is not a principal K bundle - the fibers are not K-torsors, but copies of K as

a group. Thus, K can be viewed as a system of local coefficients, or as a locally

constant sheaf. Either way, we can consider elements β ∈ H2(X ,K). Gerbes are

essentially classified up to isomorphism by pairs (α, β). More precisely, such pairs

classifies K-gerbes, which is a gerbe with slightly more structure. In the case that

K is the trivial K sheaf, then we say the gerbe is banded; banded gerbes on X are

classified by the usual H2(X , K).
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Example II.7. We have already noted that an extension of groups

0→ K → H → G→ 0

can be viewed as a K-gerbe over BG. In the case that K is abelian, the cohomological

description of the gerbe coincides with the well known cohomological description of

group extensions as H2(G,K). The 1-cocycle α ∈ H1(G,Aut(K)) describes how

pullbacks of elements of G to H act on K by conjugation. If the gerbe is banded,

then the element H2(G,K) is just the usual description of a central extension in

terms of 2-cocycles.

Example II.8. Consider Z3 gerbes over P1. Since H1(P1,Aut(Z3)) = 0, we see that

Z3 gerbes on P1 are classified by H2(P1,Z3) = Z3. The element 0 corresponds to the

trivial gerbe P1 × BZ3, and the element 1 ∈ H2(P1,Z3 corresponds to the weighted

projective space P(3, 3). The third element is essentially P(3, 3) again, but relabeled

by the nontrivial automorphism of Z3. Topologically, the two nontrivial gerbes are

isomorphic; but as banded gerbes they have a labeling of the elements of the isotropy

groups that distinguish them.

Example II.9. Consider the global quotient [P1/S3], where σ ∈ S3 acts on P1

by σ · z 7→ sgn(σ)z, where sgn(σ) ∈ ±1 is the sign of the permutation. Then

Z3
∼= A3 ⊂ S3 acts trivially, and so we see that [P1/S3] is a Z3 gerbe over [P1/Z2].

Although topologically [P1/Z2] is simply connected, as an orbifold it has fundamental

group Z2, with P1 is its universal cover, and so H1([P1/Z2],Aut(Z3)) = Z2. The gerbe

[P1/S3] cannot be banded by the trivial Z2 gerbe. One way to see this is that the

isotropy group of 0 is S3, a nonabelian group. If [P1/S3] were banded, then restricting

to 0 would give a class in H2(Z2,Z3), which classifies abelian extensions of Z2 by Z3.

For the remainder of this paper,we will focus our attention on K-gerbes banded
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by the trivial bundle, with K an abelian group. Another way of understanding what

being banded means is to examine the map from |IX | → |X |. If we restrict this to

points of the form (x, k) with g ∈ K then, since K is abelian and conjugacy classes

are just elements, we expect the map to be a |K|-fold cover. Asking X to be banded

is equivalent to asking this to be the trivial cover.

In our simple case of gerbes over Cr,s, requiring our gerbes to banded is equivalent

to requiring that all of our isotropy groups are abelian, essentially because the central

extensions of cyclic groups are precisely the abelian extensions.

Since we want to understand banded abelian gerbes over Cr,s, we will need to

understand the second cohomology group H2(Cr,s,Zn). We have:

Lemma II.10. Let q = gcd(r, s, n). Then

H2(Cr,s,Zn) = H2(Cr,s,Z)/nH2(Cr,s,Z) = Zn ⊕ Zq.

Proof. This is a simple Mayer-Vietoris calculation. Consider the map from f :

BCr,s → |Cr,s| = P1. Define U = f−1(P1 \ {∞}) and V = f−1(P1 \ {0}). U and

V have deformation retracts onto f−1(0), f−1(∞), respectively, and so their coho-

mology will be isomorphic to that of BZr and BZs. The intersection U ∩ V will be

homotopy equivalent to S1, and so we Mayer-Vietoris gives

· · · → H i(Cr,s,Z)→ H i(BZr,Z)⊕H i(BZs,Z)→ H i(S1,Z)→ · · ·

Since H i(BZr,Z) is 0 for i even and Zr for i odd, we see that H3(Cr,s,Z) = 0,

while H2(Cr,s,Z) is isomorphic to Z⊕Zp, with p = gcd(r, s). Together with the long

exact sequence (2.1), this gives the desired result.

The isotropy group of a generic point of a banded K-gerbe over Cr,s will come

with an isomorphism to K, but the isotropy groups over 0 and ∞, which we will
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denote R and S, will be potentially nontrivial extensions of Zr and Zs by K. In

this case we will have a short exact sequence 0 → K → R → Zr → 0, and we

can determine which extension we have by pulling back the cohomology class of the

gerbe in H2(Cr,s, K) to H2(BZr, K) via the inclusion BZr → Cr,s and noticing that

H2(BZr, K) classifies central extensions of Zr by K. In the next section, following

a concrete construction of K-gerbes, we will give an alternate description of these

isotropy groups.

2.1.4 Orbifold Line Bundles and Chern Classes

Orbifold vector bundles are given locally by a line bundle on the orbifold chart,

together with a lifting of the group action to this bundle. In particular, the fiber of

an orbifold vector bundle over a point x is a representation of Gx. A vector bundles

on BG is precisely a representation of G.

As with topological spaces, orbifold line bundles L on X are classified by the first

Chern class c1(L) ∈ H2(X ,Z). For example, in the case of BG, a line bundle is a one

dimensional representation, or equivalently a homomorphism from G to C∗. Indeed,

these homomorphisms are classified by H1(G,C∗) ∼= H2(G,Z). In general, from an

orbifold line bundle one can construct an honest line bundle on the classifying space,

and we can take the chern class of that bundle.

In the case that X is effective, we can also construct, via Chern-Weil theory, a

class cw1(L) ∈ H2(X ,Q) [CR04]. In general, cw1(L) will be be a rational class, not

integral, and will not be enough to determine L. However, if we also remember the

representations of the isotropy groups that L provides, it is enough in the case when

X is an effective orbifold curve.

Let X be a smooth, effective, orbifold curve with orbifold points x1, . . . , xm of

order r1, . . . , rm, with L an orbifold line bundle on X . Each isotropy group has a
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distinguished generator 1j ∈ Gxj = Zrj , namely the element that acts on the tangent

space by e2πi/rj . This element must act on Lxj by some e2πikj/rj , 0 ≤ kk < rj. Then

the Chern-Weil class cw1(L) and the numbers kj/rj determine L. Furthermore, |X |

is a smooth curve, and from L one can construct a line bundle |L| on |X |, called

the desingularization of L, on the underlying smooth curve. Since we will use the

desginularization to calculate various cohomology groups, we review it now.

Around a point x ∈ X with orbifold structure Zr, an orbifold chart of the total

space of L will have coordinates (z, w), with z the curve direction and w the L direc-

tion. Then the preferred generator 1 ∈ Zr will act by 1 · (z, w) = (e2πi/rz, ea2πi/rw),

with a ∈ {0, . . . , r − 1} determined by the representation of Zr and Lx. Then the

map d : (C2 → C2) given by:

d : (z, w) 7→ (zr, z−aw)

from C2 → C2 will be Zr equivariant if we give the target Zr the trivial Zr ac-

tion. These later coordinates will form a local coordinate chart for the total space of

the desingularized line bundle |L|. The main point of the desingularization is that

there’s an isomorphism H i(X , L) = H i(|X |, |L|), and c1(|L|) +
∑
ai/ri = cw1(L).

Since c1(|L|) is integral, the fractional part of cw1(L) is determined by the repre-

sentations of the isotropy groups. In addition, together with the data for the local

chart, this allows us to calculate the C∗ weights on cohomology by working with the

desingularization instead.

2.1.5 Gerbes from the root construction

We now show how the root construction can be used to construct any banded

K gerbe on Cr,s from line bundles. Our gerbes are precisely the 1-dimensional toric

stacks. Toric stacks were introduce in [BCS05] and investigated further in [FMN],
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where it is shown that all toric stacks can be constructed using the root construction.

The root construction of these gerbes will provide us with an explicit description of

isotropy groups R (and S) as extensions of Zr (or Zs) by K, as well as help us

understand the effect the gerbe structure has on maps into X . As K is finite and

abelian, we fix a (not unique) isomorphism K = ⊕Zni . We will construct any K

gerbe as a fibered product of Zni gerbes.

We begin with a cohomological description of the root construction. Consider the

short exact sequence:

0→ Z ·n→ Z→ Zn → 0

and part of the corresponding long exact sequence in cohomology:

(2.1) H2(Cr,s,Z)
·n→ H2(Cr,s,Z)

g→ H2(Cr,s,Zn)→ H3(Cr,s,Z).

Since H2(Cr,s,Z) classifies line bundles over Cr,s and H2(Cr,s,Zn) classifies Zn gerbes,

the map g should give a way to construct a banded Zn gerbe out of a line bundle

- this is the root construction. Furthermore, we saw in the proof of Lemma II.10

that H3(Cr,s,Z) = 0, and so every banded Zn gerbe can be constructed this way. We

denote the gerbe constructed in this manner from a line bundle L by C(L,n)
r,s . Note

that this map is not injective: each gerbe can be constructed from infinitely many

different line bundles. We will use f : C(L,n)
r,s → Cr,s to denote the natural rigidification

map that forgets the gerbe.

The above construction for cyclic groups generalizes to any abelian group by a

fibered product construction. Explicitly, with K = ⊕mj=1Znj , let L1, . . . , Lm be line

bundles on Cr,s. Then we form a K-gerbe by taking the fibered product of the root

constructions for each of these line bundles. We will use the following notation for
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this:

C(Lj ,nj)
r,s = C(L1,n1)

r,s ×Cr,s · · · ×Cr,s C(Lm,nm)
r,s

Geometrically, the construction of a Zn gerbe on Cr,s from a line bundle L is easily

described: the total space of the line bundle has a natural C∗ action, which is just

the usual C∗ action on each fiber. If we remove the zero section, and then quotient

by C∗ acting by the nth power of the standard action, we get C(L,n)
r,s .

From the cohomological and geometrical descriptions it is difficult to understand

the more subtle properties of the gerbe, such as the space of maps into the gerbe, and

we will find it convenient to understand the gerbe in terms of the categorical property

that provides its name: on C(L,n)
r,s , f ∗(L) has a natural nth root. More carefully, on

C(L,n)
r,s there is an orbifold line bundle M , and an isomorphism φ : M⊗n → f ∗L. We

now illustrate the use of this property by using it give an explicit description of the

isotropy groups R and S of C(Lj ,nj)
r,s , and later we will use it understand the effect of

the gerbe on maps into the target space.

First, note that 1r ∈ Zr acts on Lj|0 by some e2πikj/r, and similarly 1s ∈ Zs acts

on Lj|∞ by some e2πilj/s. Let Mj be the njth root of Lj. The isotropy group of each

point of X contains a natural copy of Znj for 1 ≤ j ≤ m. From the fiber product

construction, it is clear that each Znj acts trivially on Mk for k 6= j, but nontrivially

on Mj. In particular, each isotropy group has an element gj that generates the given

Znj and acts on Mj by multiplication by e2πi/nj . Additionally, T0X is a representation

of R, on which K acts trivially, but any element mapping to 1 ∈ Zr under the

rigidification map X → Cr,s acts as e2πi/r. Hence, we see that the vector space

V =
m⊕
j=1

Mj|0 ⊕ T0X

is a faithful representation of R, and we have identified R as a subgroup of (S1)m+1.
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We will identify S1 with R/Z. Then the elements gj, 1 ≤ j ≤ m are identified with

(0, . . . , 0, 1
nj
, 0, . . . , 0).

To get a cocycle description of G0, we will need to choose a lifting of 1r ∈ Zr to

R, and the representation gives us a good one to chose: we will pick the element

g0 that acts on Mj by e2πikj/(rnj), so that g0 = (
kj
njr
, . . . , km

nmr
, 1
r
) in (S1)m+1. Writing

down the multiplication in terms of the gi, 0 ≤ i ≤ m then gives us a K 2-cocycle β

on Zr that describes R as a possibly nontrivial extension of Zr by K:

(2.2) β(a, b) =

 ( k1

n1
, . . . , km

nm
) a+ b ≥ 1

0 a+ b < 1

The data of β is contained in the element ( k1

n1
, . . . , km

nm
) ∈ K, which we will denote

k0 for the element describing R and k∞ as the element describing S. Frequently, we

will work just with R, as the argument over S is analagous, and we’ll frequently drop

the subscript and just refer to the element as k. When we wish to use the cocycle

description of elements of R, we will write them as ri = (ai, ki) ∈ Zr ×β K = R.

Some care is required with this notation, in that typically −ri 6= (−ai,−ki). In

fact, introduce

δr(x) =

 0 x 6= 0 mod r

1 x = 0 mod r

and δ∨r (x) by

δr(x) + δ∨r (x) = 1.

Then we have

(2.3) − (a, k) = (−a,−k − δ∨r (a)).

Recall that different line bundles L can produce the same gerbe. In this case, they

may give us different, but cohomologous, cocyle descriptions of the isotropy groups.
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2.2 Orbifold Gromov-Witten Theory

The main object of study isMg,n(X , β), the moduli space of stable maps f : Σ→

X , where Σ is an n-pointed, genus g nodal orbifold curve, and f∗[Σ] = β. We will

assume familiarity with the basics of Gromov-Witten theory in the smooth case, and

provide a sketch of how it differs in the orbifold case. Orbifold Gromov-Witten theory

was first introduced working in the sypmlectic category in [CR02], and worked out

in the algebraic category in [AGV]. The basic adjustment is that we wa t to allow

our orbifold curves to have some orbifold structure in order to probe the orbifold

structure of X , but we keep this to a minimum - the curve Σ might be forced to have

certain orbifold structure at the marked points or the nodes, and these are the only

structures we consider.

As in the manifold case, this moduli space will not in general be smooth, but

nevertheless we may construct a virtual fundamental class on it. Following Gromov-

Witten theory in the smooth case, we might then expect thatMg,n(X , β) would have

a virtual fundamental class of dimension

dim
[
Mg,n(X , β)

]vir
= (1− g)(dimX − 3) + n+ 〈cw1(TX ), β〉.

An obvious concern is that this is in general only a rational number, as cw1(TX )

will only be a rational class. We will return to this later, but we mention now that

in fact Mg,n(X , β) will be disconnected, and different components will have virtual

classes of different (integral) dimensions. To understand these components, we need

first to establish the second main difference of Orbifold Gromov-Witten theory: the

target of the evaluation maps is not X , as one might expect, but the inertia stack

IX . This is best explained by the following important example.

Example II.11. Consider the moduli space Mg,n(BG), for G a finite group. The
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first task is to understand how the evaluation map at the ith marked point takes

values in the inertia stack IBG. The inertia stack IBG has components IBG(c)

indexed by c ∈ G∗, where G∗ is the set of conjugacy classes of G. It is useful

to follow the conventions of string theory and consider the marked points as being

punctures - points removed from the curve. Consider a map

[f : Σ→ BG, p1, . . . , pn]

in the smooth locus of Mg,n(BG). This is equivalent to giving a principal G-bundle

π : Σ̃→ Σ \ {p1, . . . , pn}.

Transporting the fiber of π along a small loop Γi around the ith puncture pi gives a

well defined conjugacy class ci ∈ G∗. The evaluation map evi sends [f ] to I(BG)(ci).

Now, try to extend f over the ith puncture. This is equivalent to extending the

principal bundle π over the puncture. If ci is not the identity, there is nontrivial

monodromy around pi, and so the bundle will not extend smoothly. We will now

show, however, that if we give pi the appropriate orbifold structure, the principal

bundle will extend as an orbifold principal bundle.

Working in a neighborhood isomorphic to C∗ around pi, if ci has order n, then

we see that if φn : C∗ → C∗ is the map φn(z) = zn, then φ∗n(π) has monodromy

cni = 1. Thus, while π does not extend across 0, φ∗n(π) does. Moreover, choosing an

isomorphism of one of the fibers of π with G gives both a particular element γi of

the conjugacy class ci, and an isomorphism φ∗n(π)
∼
= C∗ × G. If we put a Zn action

on C×G by

l · (z, g) 7→ (e2πil/nz, γ`i g)

then this extends the Zn action on φ∗n(π) and gives an orbifold chart for an extension

of π to pi as an orbifold principal bundle. A similar phenomenon governs the orbifold
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structures at the nodes. Intuitively, we think of nodes arising when some loop S1 ⊂ Σ

shrinks to a point. Restricting f to this S1, we get a map f : S1 → BG. If this map

corresponds to the trivial principal bundle, then we can add in a non-orbifold node;

if it is nontrivial, then to extend the principal bundle to the node we must allow

the node to develop an orbifold structure as in the preceding paragraph. Switching

which branch of the node we are focusing on reverses the orientation of the S1, and

replaces a principal bundle having monodromy c with one having monodromy c−1,

hence opposite branches of a node must map under the evaluation map to inverse

twisted sectors. This is known as a balanced node; we only consider maps where all

nodes are balanced.

For c = (c1, . . . , cn) a tuple of n elements of G∗, we define the space

Mg,c(BG) = ev−1
1 (IBG(c1)) ∩ · · · ∩ ev−1

n (IBG(cn)).

Since the IBG(ci) are open and closed, Mg,c will be as well, but it need not be a

component - in general, it will still be disconnected.

The picture for general X is similar: if the ith marked point maps to a point x,

then the evaluation map should map to IBGx, and this picture fits together in a way

that globally the evaluation maps land in IX .

Knowing this, we can start to make sense of the apparent fractional dimension

of our moduli spaces: the natural cohomology classes we will want to integrate on

Mg,n(X , β) will be pull backs via the evaluation maps of Chen-Ruan cohomology

classes, which can have non-integral degree. The fractional dimension simply means

that to get a nonzero number, we should have to pull back classes whose total degree

is the dimension.

To understand this even further, we consider the analogs of the subspacesMg,r(BG)
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for more general stacks X . But while all components of Mg)(BG) had the same di-

mension, in general Mg,n(X , β) will break into open and closed subsets of different

(virtual) dimension depending on how the marked points interact with the isotropy

of X . Each marked point pi will map under the evaluation map to some twisted

sector Ti. Since the twisted sectors are open and closed, their inverse images under

the evaluation maps will be open and closed as well. Letting T = (T1, . . . , Tn) be an

n-tuple of twisted sectors, we can consider the subspace

Mg,T (X , β) = ev−1
1 (T1) ∩ · · · ∩ ev−1

n (Tn) ⊆Mg,n(X , β)

Recalling that the degree shifting number is constant on components, we define

(2.4) ι(T ) =
n∑
k=1

ι(Tk)

Then 2ι(T ) will be the total contribution of the degree shifting numbers from all

cohomology classes pulled back via evaluation maps. Apart from this contribution,

the degree of the pulled back cohomology classes will be integral, and so we have

that Mg,T (X , β) has a virtual fundamental class of complex dimension

dim
[
Mg,T (X , β)

]vir
= (1− g)(dimX − 3) + n+ 〈cw1(TX ), β〉 − ι(T ).

We note that there is some subtlety in defining the line bundle Li corresponding

to the cotangent space of the ith marked point. This should in general be an orbifold

line bundle, with the standard representation of the group action there. The usual

ψ classes, ψi = cwi(Li) take this orbifold structure into account. However, we could

also consider a ψ class that corresponded to the cotangent bundle over the coarse

underlying curve, forgetting this orbifold structure. We denote these classes by ψi;

on a component where the ith marked point has an orbifold structure of order n, we

have ψi = nψi.
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2.2.1 Equivariant Theory

A G action on X naturally induces a G action on IX in its guise as constant

maps from S1 to X . Thus, we define the G-equivariant Chen-Ruan cohomology

of X , H∗CR,G(X ) to be isomorphic to H∗G(IX ) as a vector space, with the grading

shifted by the age, and the cup product deformed by the equivariant Euler class of

the obstruction bundle, though we will not require the use of the cup product.

We give Cr,s a C∗ action as follows. Removing the two orbifold points gives a

copy of C∗ which we give the standard C∗ action. This then extends naturally to an

action on all of Cr,s. Since 0 and ∞ are fixed points, their tangent spaces, which are

already Zr and Zs representations, are also C∗ representations. To calculate these

representations, consider an orbifold chart around 0, i.e. a map f : Ũ → U , with U

a neighborhood of 0 in Cr,s,, and f invariant under the Zr action on Ũ : z 7→ e2πi/rz.

Then T0Cr,s is identified with T0Ũ . To give Ũ a C∗ action so that f is equivariant,

we see that this tangent space must have weight 1/r, since f is the map z 7→ zr.

Similarly, T∞Cr,s is a C∗ representation with weight −1/s. This remains true when

we consider a banded gerbe over Cr,s.

The C∗ equivariant cohomology ring of a point is a polynomial ring in one variable

C[t], with t ∈ H2
C∗({pt},C) being the first Chern class of the standard representation

of C∗ on C. By the map f : X → pt, we get a map f ∗ : C[t] → H∗C∗ , turning the

equivariant cohomology of any space into a C[t]-module.

Let i : F → X be the inclusion of the fixed point set F of a C∗ action on X. Then

Atiyah-Bott localization says (see [AB84] for an introduction) that, after localizing

the appropriate element of C[t], the equivariant cohomology rings of X and F are

isomorphic, with explicit isomorphisms given by i∗ and i∗
eC∗ (NF )

. As a result, we will

only need to understand the fixed point sets of our spaces and their equivariant
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normal bundles (or virtual normal bundles) in the larger spaces.

The inertial orbifold IX will have will have |K| components isomorphic to X , and

(r−1)|K| or (s−1)|K| components isomorphic to BR or BS, respectively. Thus, the

fixed point set of the action on IX will consist of a disjoint union of points: there

will be |R| = r|K| components over 0, and |S| components over ∞. The cocycle β

we constructed in 2.2 gives us a bijection between R and K × Zr, and we will use

this to identity the fixed point components of the C∗ action on IX , and hence to

identify a basis of the localized cohomology. We will denote by 0(a, k),∞(b, k), a ∈

Zr, b ∈ Zs, k ∈ K the generators of the cohomology of the component fixed point

set of IX corresponding to the element (a, k) ∈ R, (b, k) ∈ S, respectively. By the

degree shifting, we see that 0(a, k) ∈ H2a
CR(X ), and ∞(b, k) ∈ H2b

CR(X ), where we

recall our abusive identification of Zn with the corresponding subgroup of Q/Z.

The main result of this paper is the calculation of equivariant Gromov-Witten

invariants. Our target space X will have a C∗ action, which naturally induces a C∗

action onMg,n(X , β). Then there will be a virtual fundamental class of the expected

dimension in equivariant homology, the ψ classes will be equivariant, and we will be

able to pull back and integrate equivariant classes from the target.

We will use the following notation for the equivariant Gromov-Witten invariants:〈
n∏
i=1

τki(γi)

〉◦
X ,g,β

=

∫
[Mg,n(X ,β)]C∗

n∏
i=1

ψ
ki
i ev∗i (γi),

where γi ∈ H∗orb,C∗(X ,C), and β ∈ H2(X ). The superscript ◦ denotes the connected

theory, while 〈 〉• represents the theory where possibly disconnected domain curves

are allowed.

The main object of study will be the equivariant Gromov-Witten potential func-

tion F of X . We introduce variables {xi(a, k)}, {x∗i (b, h)}, corresponding to insertions



38

of τi(0(a, k)) and τi(∞(b, k)), respectively. Then we define

τ =
∞∑
g=0

∞∑
d=0

u2g−2qd〈
exp

(∑
i,a,k

xi(a, k)τi(0(a, k)) +
∑
j,b,h

x∗j(b, h)τj(∞(b, h))

)〉•
X ,g,d

.

2.2.2 Orbifold Structure and Maps from Curves

Our goal in this section is to understand how orbifold structures on X affect maps

from curves into X . Due to localization, we only need to under C∗ invariant maps,

which have a particular simple form. Contracted components must be mapped to a

fixed point - namely zero or infinity. Furthermore, all ramification must happen over

zero or infinity, and so the only noncontracted maps possible are topologically the

standard z 7→ zd maps from P1 → P1. In this section we work describe the behavior

of the orbifold structure of such maps. The behavior of the effective isotropy is

determined locally by the degree, while determining the interaction with the gerby

isotropy is a global phenomenon: the behavior at 0 effects the behavior at ∞.

The interaction of the degree of the map and the image in the effective quotient

of the isotropy group is contained in the following:

Lemma II.12. Let Zr and Zn act on C as their standard embeddings in C∗, and let

f : C/Zr → C/Zn be a representable map of orbifolds which on coarse moduli spaces

gives the map z 7→ zd. Then r = n/ gcd(d, n) and the standard generator of Zr maps

to d ∈ Zn.

Proof. The map f : C/Zr → C/Zd must lift to an equivariant map g from C → C
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which covers f :

C g−−−→ C

zr

y zn

y
X f−−−→ C/Zn

Since f is of the form z 7→ zd, then we must have g(z) = za, and commutativity

gives an = rd. Then there is some k with a = kd/ gcd(d, n) and r = kn/ gcd(d, n),

we need to show that k = 1.

Suppose the generator 1 ∈ Zr maps to l ∈ Zn, then since g is equivariant, we have

e2πia/rza = g(e2πi/rz) = e2πil/rg(z) = e2πil/rza

Since f is representable, the map on isotropy groups must be injective, and so we

must have that e2πia/r has order r, that is, a and r are relatively prime - which forces

k = 1.

Finally, we see that the generator of Zr maps to a/r = d/n ∈ Zd.

In contrast to the effective part, the image of a degree d map in the ineffective

part of the isotropy is completely unconstrained locally. There are, however, global

monodromy constraints. We will only need to consider maps from P1 with two

orbifold points, mapping to zero and infinity. The key point is that if the degree of

the map and the orbifold behavior of one of the points is fixed, the orbifold behavior

at the other marked point uniquely determined by the gerbe structure. We prove

this in the case of the Zn gerbe coming from a line bundle L; the general case follows

via the fibered product construction.

Lemma II.13. Suppose that C is an orbifold is that is topologically a P1 with orbifold

structure only over 0 and ∞,X = C(L,n)
r,s , and f : C → X is a representable, C∗ fixed

map of degree d. Suppose 1r ∈ Zr acts on L0 by a/r, 1s ∈ Zs acts on L∞ by b/s.

Then cw1(L) = `+ a/r + b/s for some ` ∈ Z.



40

Then if the generator of the isotropy group of 0 in C maps to (d, u) ∈ R, and the

generator of the isotropy over ∞ maps to (d, v) ∈ S, we have that

d`+

⌊
d

r

⌋
a+

⌊
d

s

⌋
b = u+ v mod n.

Since u and v are in Zn, this determines one from the other.

Proof. By lemma II.12, the image of the isotropy group in the effective parts of the

isotropy groups are indeed as given, and so we must show that the ineffective parts

of the isotropy satisfy the above relation.

By construction, over X L has an nth root M . We have

(2.5) cw1(f ∗(M)) =
d

n
cw1(L) =

d`

n
+
d

r

a

n
+
d

s

b

n

On the other hand, we know that the fractional part of cw1(f ∗(M)) is determined

by the behavior of the isotropy groups on M , which are known: 1 ∈ Zn acts as 1/n,

and 1/r ∈ Zr, 1/s ∈ Zs act by a/(nr), b/(ns), respectively.

We see then that the generator of the isotropy group at 0 on C acts on f ∗(M) by〈
d
r

〉
a
n

+ u
n
, while the generator of the isotropy group at∞ acts on f ∗(M) by

〈
d
s

〉
b
n

+ v
n
.

Subtracting these contributions from the total Chern-Weil class of f ∗(M) in (2.5),

we see that the contribution from 0 can be viewed as

d

r

a

n
−
〈
d

r

〉
a

n
− u

n
=

⌊
d

r

⌋
a

n
− u

n

and a similar equation holds for the contribution from zero. Thus we see that

d`

n
+
a

n

⌊
d

r

⌋
+
b

n

⌊
d

s

⌋
− u

n
− v

n

must be an integer, which is the desired result.
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For the fibered product case, with X a K gerbe over Cr,s, u and v will be elements

of K. The result of our lemma will be an equation that holds in each Zni , with a, b, `

replaced by ai, bi, `i. The ai and bi package together to k0 and k∞, respectively, and

we will package the `i as L, so that we have:

(2.6) u+ v = dL +

⌊
d

r

⌋
k0 +

⌊
d

s

⌋
k∞

as an equation in K.

Note that this monodromy condition seemingly depends upon which line bundle

we pick, and not just the gerbe. This is because different line bundles produce

different cocycles for the group extension - the changes in monodromy a different

line bundle gives are exactly what are needed to account for the different cocycle.

2.2.3 Results on M(BR)

In the last section we derived what we would need to know about the positive

degree maps; in this section we examine the contracted maps. We will be interested

in the moduli spaces Mg,n(BR), with R a finite abelian group. The evaluation

maps evi take values in IBR, which since R is abelian is the disjoint union of |R|

components, IBG(y), y ∈ R. We will use

r = (r1, . . . , rn)

to denote an n-tuple of elements of R, and so work with Mg,r(BR).

Note that the Mg,r(BR) may themselves be composed of multiple components;

we have fixed the monodromy of the R cover around the marked points, but not

the monodromy around the 2g noncontractable curves. In particular, in the case

the ri = 0 are all trivial, we have the trivial monodromy component, consisting of

trivial covers. Similarly, in case the ri are all contained in some subgroup H < R,
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the subset of covers where all the monodromy is contained in H will be a union of

components.

OverMg,r(BR) the orbifold curves C and their principal R-bundles C̃ fit together

into universal curves U = [Ũ/R]. There is a bundle E, the Hodge bundle, over

Mg,r(BR), whose fiber over a point is H0(C̃, ωC̃), i.e. sections of the dualizing sheaf.

The R action on Ũ induces an R action on E, and thus E will be split into sub-bundles

on which R acts by its irreducible representations. We will label these subbundles

either by the representation or the irreducible character ρ ∈ R∗ it affords:

(2.7) E =
∑
ρ∈R∗

Eρ

The bundles Eρ are called Hurwitz-Hodge bundles. We will denote their chern

classes by

λρi = ci(Eρ).

Integrals on Mg,r(BR) of λρi and ψi are called Hurwitz-Hodge integrals.

In chapter III, localization will reduce the calculation of equivariant Gromov-

Witten invariants of X to certain Hurwitz-Hodge integrals. The integrals appearing

will be those corresponding to the R representation T0X . Since T0X is one dimen-

sional, this arises from a multiplicative character φ0 : R → C∗. If X is ineffective,

φ0 will have kernel K; in any case, its image will exactly be Zr ⊂ C∗. Let U be

one dimensional representation of Zr induced by the standard inclusion Zr ⊂ C∗, in

other words, on U , 1 acts by multiplication by e2πi/r. Then

T0
∼
= φ−1

0 (U).

In fact, the map φ0 induces a morphism

Mg,r(BR)
φ̃0→Mg,φ0(r)(BZr)
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by taking the quotient of the K action on each cover (see [JPT]), and ET0 = φ̃∗0EU .

It will be convenient to know the dimension of ET0 over Mg,r(BR). From the

above, we see that this is the dimension of EU overMg,φ0(r)(BZr), and so in particular

the dimension depends only on the image of r in Zr.

The orbifold Riemann-Roch formula computes this dimension:

(2.8) dim ET0 = g − 1 + ι(r) + δK

here ι(r) is the degree shifting number of the total space T0, i.e., the rational number

obtained by taking the image of R in Zr, identifying elements of Zr with the rational

numbers a/r, 0 ≤ a < r, and then adding them in Q, and

(2.9)

δK =

 1 on those components where the monodromy generates a subgroup of K

0 on all other components

.

2.2.4 Decomposition and Discrete Torsion

This section examines the decomposition conjecture of [HHP+07] and how it per-

tains to our situation. The precise general statement of the decomposition conjecture

is somewhat involved, and involves twisting Gromov-Witten theory by a flat C∗ gerbe.

Although the effects of this twisting in general are highly nontrivial, in our case the

twisting is extremely simple, and amounts to simply rescaling some of the variables

of the generating function. Thus, this section can be skipped without much loss.

We begin with a brief and incomplete discussion of twisting by flat gerbes before

explaining the general form of the decomposition conjecture and sketching that the

twistings relevant in our case can be entirely captured by rescaling variables.

Twisted Gromov-Witten theory was introduced mathematically in [Rua] and

[PRY], although it had existed in some form in the physics literature under the
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name discrete torsion since [Vaf]. There, given a global quotient orbifold X = Y/G

for some finite group G, Vafa shows how to twist by an element α ∈ H2(G,S1).

This has since been generalized to twisting by a flat S1 gerbe with connection, which

are classified by H2(X , S1). In the case of a global quotient X = Y/G, there is an

induced map X → BG, and so pulling back cohomology classes we see that twist-

ing by a flat gerbe indeed extends Vafa s discrete torsion. We note that while the

mathematical literature cited above reserves the term “discrete torsion” for twisting

by an element in H2(G,S1), the physics literature appears to use it to reference any

such twisting: see e.g. [Sha].

These twistings should be understood as an extended and orbifold version of the

physical notion of “B-fields”. We briefly recall this story in the case of a smooth man-

ifold. Mirror symmetry predicts that Gromov-Witten theory should have H2(X,C)

as a parameter space. The real part H2(X,R) corresponds to the choice of symplec-

tic form, the imaginary part H2(X, iR) corresponds to the B-fields. Physically, the

twisting winds up appearing in an exponent, and so the only dependence is on the

class up to the image of H2(X, 2πiZ). By the long exact sequence induced from

0→ Z→ R→ S1 → 0

we see that the space of B-fields includes into the group H2(X,S1), with cokernel

the torsion part of H3(X,Z).

These cohomology groups have geometric significance. As mentioned aboveH2(X,S1)

classifies isomorphism classes of flat S1 gerbes with connection, and H3(X,Z) clas-

sifies isomorphism types of S1 gerbes, with the torsion part being flat gerbes. The

map between the two cohomology groups corresponds to forgetting the connection.

Thus, it appears that classically a B-field corresponds to a choice of flat connection

on the trivial S1 gerbe, which provides some motivation for the idea of trying to
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twist Gromov-Witten theory by nontrivial S1 gerbes with flat connection.

For smooth X, the twisting procedure traces through some complicated geometry

only to result in simple algebra. The state space of twisted Gromov-Witten invariants

are the same, namely H∗(X,C). Twisting by a class Φ ∈ H2(X,S1) simply multiplies

the Gromov-Witten invariants with curve class β ∈ H2(X,Z) by Φ(β) - which is

easily capture by rescaling the degree variable q by the appropriate root of unity.

To give the briefest sketch of the story, the flat gerbe with connection gives rise to

the holonomy line bundle, a line bundle with connection on the loop space LX. The

state space should really be the cohomology of X with coefficients in the holonomy

line bundle restricted to X ⊂ LX as the space of constant loops; it turns out that

this line bundle on X is canonically trivial, and thus our state space is the usual

cohomology of X.

For a flat gerbe over an orbifold X , we play the same game, but things are more

complicated. Again, from the flat gerbe a line bundle is constructed on LX . The

space of constant loops gives a containment IX ⊂ LX , and the state space of the

twisted theory is the cohomology of the cohomology of the holonomy line bundle

restricted to IX . The holonomy line bundle restricted to IX , with some related

structure, is known as an inner local system, which are used to twist Chen-Ruan co-

homology. Furthermore, while topologically trivial gerbes produce topological trivial

inner local systems, there is no longer a canonical trivialization. As a result, in

this case, the twisting is only slightly more complicated than the twisting in the

smooth case: in addition to rescaling the degree variable q, we must also rescale the

cohomology variables xi.

We now give an explanation of the decomposition conjecture, restricting ourselves

to the case of abelian groups for simplicity.
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Recall that part of the cohomological classification of K gerbes was a principal

Aut(K) bundle over X . Using the obvious action of Aut(K) on K∗ - the set of

irreducible representations of K - we construct the associated principal K∗ bun-

dle over X , which we denote Y . The decomposition conjecture asserts that up to

a physically meaningless rescaling of the genus variable u, the Gromov-Witten in-

variants of K are equal to particular twisted Gromov-Witten invariants of Y . It is

known as the decomposition conjecture because Y will in general be disconnected,

and so the Gromov-Witten theory of X will decompose as a product of the twisted

Gromov-Witten invariants of the components of Y .

In the case we will be interested in, the space Y and the flat gerbes we twist by

take a particularly simple form. For a trivially banded abelian gerbe, which we are

primarily interested in, the Aut(K) bundle is trivial, and so Y will consist of one

copy of X for each element of K∗. Since K is abelian, each such representation will

be one dimensional, and hence be equivalent to a homomorphism ϕ : K → C∗. Since

trivially banded abelian gerbes are classified by α ∈ H2(X , K), we see an easy way

to construct the cohomology class of a C∗ gerbe with connection: on the component

of Y labeled by ϕ, we take the image ϕ∗(α) of α under the map

H2(X , K)
ϕ∗→ H2(X ,C∗)

induced by ϕ. The decomposition conjecture states that the Gromov-Witten in-

variants of X are those of Y , twisted by ϕ∗(α) on the component of α labeled by

ϕ.

In our case, this twisting simply results in rescaling of variables. SinceH3(Cr,s,Z) =

0, we see that this class must correspond to a trivial C∗ gerbe, but with a potentially

nontrivially connection; and so the resulting holonomy line bundle and inner local

system must also be trivial. However, since the inner local system is not canonically
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trivial, some rescaling of the cohomology variables also appears.



CHAPTER III

Localization

In this section we carry out Atiyah-Bott localization with respect to the induced

C∗ action on the moduli space of maps. As is typical, this allows us to express any

Gromov-Witten invariant as a sum over certain labeled trees, with terms weighted by

linear Hurwitz-Hodge integrals. While sums of trees are complicated to deal with, by

working with the disconnected generating function we find that we can instead write

this as a sum over partitions in the effective case, or sums of K-labeled partitions in

the case of a K-gerbe.

3.1 Generating Functions

Localization will express the Gromov-Witten invariants of X in terms of integrals

of tautological classes over M g,r(BR) and M g,s(BS). These integrals are conveniently

encoded in the generating function:

H0,◦
g,r (z1, . . . , zn) =

∫
Mg,r(BR)

`(r)∏
i=1

zi

1− ziψi

∞∑
i=0

(−r)iλT0
i .

Similarly, H∞,◦g,s encodes the Hodge integrals that occur at ∞; we will sometimes

omit the superscript. As usual, • will denote the disconnected theory, and if neither

symbol is present the connected theory is used.

In the cases where Mg,r(BR) is unstable, we will find it convenient to set the

48
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value of H◦g as follows. First, if
∑n

i=1 ri 6= 0 ∈ R, the monodromy condition is not

met, and we set H◦g,r = 0. The remaining balanced contributions are:

(3.1) H0
0,id(z) =

1

|R|z
, H0

0,(r1,−r1)(z1, z2) =
z1z2

|R|(z1 + z2)

Including the unstable terms will allow for a uniform treatment of localization.

Note that in the stable cases H◦g,r is a polynomial, while in the unstable cases it

is only a rational function. This fact will allow us to easily remove the unwanted

unstable cases later.

We assemble the Hg into an all genus generating function:

H◦r (z1, . . . , zn, u) =
∑
g≥0

u2g−2H◦g,r(z1, . . . , zn).

We use H•r (z1, . . . , zn, u) to denote the disconnected function, where our source curve

is potentially disconnected:

H•r (z1, . . . , zn, u) =
∑

P∈Part(r)

`(P )∏
i=1

H◦Pi(zPi , u)

=

∫
M•g,r(BR)

n∏
i=1

zi

1− ziψi

m∑
i=0

(−r)iλT0
i .

Here Part(r) denotes the set of partitions of the set {1, . . . , n}, with possibly

empty parts, and `(P ) denotes the number of parts of the partition P . Note that we

can break H• into a genus expansion, but must allow curves of negative genus:

H•r (zr, u) =
∑
g∈Z

u2g−2H•g,r(zr).

Because of the unstable contributions, H•r (zr) will be a rational function, with simple

poles occurring at zi = 0 for those i with ri = 0 and at zi + zj = 0 when ri = −rj.
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We denote by G◦g,d,r,s(zr, ws) the `(r) + `(s)-point function of genus g, degree d

equivariant Gromow-Witten invariants of X :

G◦g,d,r,s(zr, ws) =

∫
[Mg,r+s(X ,d)]vir

C∗

`(r)∏
i=1

ziev∗i (0ri)

1− ziψi

`(s)∏
j=1

wjev∗j(∞sj)

1− wjψj
.

When d = 0 and the moduli space would be unstable, we make the following con-

ventions, which are compatible with the localization procedure and the unstable

contributions we defined earlier. All unstable 0-point functions are set to 0:

G◦0,0() = G◦1,0() = 0

Any unstable 1 or 2 point functions that would be empty by monodromy considera-

tions are set to zero, i.e. if
∑
ri or

∑
sj are nonzero. The remaining 1 and 2-point

functions are defined as follows:

G◦0,idR(z1) =
1

|R|z1

, G◦0,idS(w1) =
1

|S|w1

(3.2)

G◦0,0,r1,−r1(z1, z2) =
tz1z2

|R|(z1 + z2)
, G◦0,0,s1,−s1(w1, w2) =

tw1w2

|S|(w1 + w2)

G◦0,0,{0},{0}(z1, w1) = 0.

We define G◦d,r,s(zr, ws, u) to take into account all genus invariants:

G◦d,r,s(zr, ws, u) =
∑
g≥0

u2g−2G◦g,d,r,s(zr, ws).

Similarly, we denote the disconnected functions by G•d,r,s(zr, ws, u).

G•d,r,s(zr, ws, u) =
∑

P∈Partd(r,s)

1

Aut(P )

`(P )∏
i=1

G◦di(zPi , wP ′i , u).

Here an element P ∈ Partd(r, s) is a set of triples (di, Pi , P
′
i ) such that the di form

a partition of d, where some parts could be 0, and the Pi , P
′
i form partitions of r, s,

respectively, where some parts are allowed to be empty. Since the unstable zero

point, zero degree functions are defined to vanish only a finite number of partitions

have nonzero contribution to any given term.
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3.2 Localization graphs and weighted partitions

In this section we describe the fixed point loci of the C∗ action on Mg,r,s(X , d).

For connected curves, the loci will be indexed by certain labeled graphs Γ, and

the corresponding fixed point locus will be denoted MΓ. However, summing over

all graphs is a complicated procedure. Considering disconnected curves simplifies

matters: in this case, we will sum over all K-labeled partitions of d.

The sets of edges e and vertices v of Γ will be denoted E(Γ) and V (Γ), respectively.

The vertices of the graph will represent contracted components, while the edges will

represent components mapping to X with positive degree. An incident edge-vertex

pair will be called a flag of Γ, and will be denoted F , with F (Γ) being the set

of all flags; a flag then represents a node between a contracted and noncontracted

component.

Consider a stable map f : C → X fixed under the induced C∗ action onMg,r,s(X , d).

Any marked point, node, or contracted component must map to a fixed point of X ,

namely 0 or∞. Furthermore, any ramification points of a noncontracted component

must lie over 0 or ∞ as well. Thus, any noncontracted component can be ramified

over at most two points, and so, on the level of coarse curves the only possible non-

contracted component allowed is the standard degree d map P1 → P1, z 7→ zd, which

we call edge maps, because they will be represented by edges of Γ.

If we have two contracted components connected directly by a node, we may

smooth that node and remain a fixed map. We call a maximal set of contracted

components connected by nodes a vertex map, represented by vertices of Γ.

In contrast to nodes between contracted components, a node between an edge

and a vertex map cannot be smoothed without leaving the fixed point locus. So the
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fixed point loci correspond to bipartite graphs Γ with the following labels.

Each edge e ∈ E(Γ) carries a labeling of the degree d(e) ∈ Z≥1 of the map from

P1 → P1 that the edge represents. Additionally, we must specify the behavior of

each edge with regard to the gerbe structure. By Lemma II.13, to do so it is enough

to specify a single element k(e) ∈ K. We choose this element so that (d(e),−k(e) +⌊
d(e)
s

⌋
k∞) ∈ S is the monodromy on the edge side of the node. Let σ(d) denote the

monodromy on the vertex side of the node over ∞. Recalling Equation (2.3)

−(a, k) = (−a,−k − δ∨r (a))

and using

(3.3)
⌊a
r

⌋
+

⌊
−a
r

⌋
= −δ∨r (a)

we have that:

(3.4) σ(e) =

(
−d(e), k(e) +

⌊
−d(e)

s

⌋
k∞
)
.

The factor of
⌊
±d(e)
s

⌋
k∞ appears awkward, but it is a convenient, symmetric way to

account for the Equation (2.3) for −(a, k). Additionally, this choice of k(e) will be

convenient later in our operator description of Gromov-Witten theory.

Given the monodromy at ∞ and the degree of the map, Lemma II.13 deter-

mines the monodromy at 0. In particular, for a degree d map with monodromy

(d(e),−k(e) +
⌊
d(e)
s

k∞
⌋
) at infinity, the monodromy on the edge side at 0 must be

(d(e), k(e)+
⌊
d(e)
r

⌋
k0 +d(e)L) from 2.6. Then if ρ(e) is the monodromy on the vertex

side over ∞, we have, similar to Equation (3.4), that

ρ(e) =

(
−d(e),−k(e)− d(e)L +

⌊
−d(e)

r

⌋
k0

)
.
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Had we not included the extra term in the definition of σ(e), it would have appeared

in the formula for ρ(e). If F is a flag on e, we will sometimes write ρ(F ) or σ(F ) to

denote ρ(e) or σ(e).

Each vertex v ∈ V (Γ) carries the labeling of which fixed point it mapped to

- we will write v0 or v∞ when we want to indicate that a vertex is mapped to

zero or infinity. The genus of the contracted curve will be denoted g(v), and the

marked points contained on the contracted curve, with orbifold data, will be a subset

r(v0) ⊆ {1, . . . , `(r)} (or s(v∞) ⊆ {1, . . . , `(s)}). We will find it convenient to write

e(v) for the number of edges incident to a vertex e, and choose a labeling for them:

e1, . . . , ee(v). We will use di to denote the degree of ei.

Each vertex curve will have a marked point where it is glued to each adjacent

edge. The image of this marked point in the isotropy group is determined by the

behavior of the edge as described above. We will write ρ(v0) or σ(v∞) to denote the

tuples ρ(ei) or σ(ei), where i ranges over all adjacent edges.

We will want some additional notation when working with disconnected curves.

For any map, the set of d(e) and k(e) together form a K-weighted partition of d,

which we will denote µ = {(µi, ki)}. We will write ρ(µ) and σ(µ) to denote the set of

all ρ(ei) and σ(ei), and ρ(µi) to denote ρ(ei). We will write g0 and g∞ for the genus

of the (disconnected) curves over 0 and ∞.

To determine the topology of the the fixed point locusMΓ, we note that the only

deformations allowed while staying within the fixed point locus are deforming the

vertex curves. Thus, each vertex v will contribute a moduli space of stable maps to

R or S, which we denote Mv. From the above, we see that

Mv0 =Mg(v0),r(v0)+ρ(v0)(BR)

and similarly for a vertex over infinity.
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We must also keep track of the isometries of the curve. Automorphisms of the

graph preserving all labelings will give automorphisms of curves. Automorphisms of

the vertex curves are included in the fine moduli spaces Mv.

For an edge curve, we have the usual automorphisms of the degree d map obtained

by rotating by a dth root of unity. Additionally, in the presence of a gerbe, each

edge has an additional |K| worth of automorphisms, see, e.g., [CC].

Finally, there are subtle factors coming from gluing nodes together. As presented

in [AGV], maps from a nodal curve C with components C1 and C2 glue along the

rigidified inertia stack

(3.5) hom(C,X ) = hom(C1,X )qI(X ) hom(C2,X )

The important point is that the gluing really happens not over the inertia stack I,

but over the rigidified inertia stack I. Recall that point (x, g) of the inertia stack has

isotropy group G(x,g) isomorphic to C(g), the centralizer of g in Gx. In the rigidified

inertia stack, these isotropy groups are replaced by C(g)/〈g〉.

In our case, this will be the group R/〈ρ(e)〉. Thus, for each node over 0, gluing

over the rigidified inertia stack means that we must multiply the virtual fundamental

class by a factor of |R|/|ρ(e)|.

A more geometric explanation of this factor is as follows. Let C̃i to be an orbifold

chart of Ci in a neighborhood of the orbifold node in question. Then the fibers of

C̃1, C̃2 over the node are each isomorphic as R-sets to R/ρ(e). Gluing the map into

a map of nodal curves is equivalent to giving a R-equivariant isomorphism of these

two fibers, and there are clearly |R|/|ρ(e)| distinct such isomorphisms.

Taking all of these factors into account, on the level of virtual fundamental classes,

we have:
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(3.6)
[
MΓ

]
=

1

Aut(Γ)

∏
e∈E(Γ)

1

|K|d(e)

|R|
|ρ(e)|

|S|
|σ(e)|

∏
v∈v(Γ)

[
Mv

]
Some caution is in order when dealing with these fixed point loci - some of the

vertices of the graph might not actually correspond to a collapsed component. We

will conventionally act as if this does not happen, and “destabilize” our curves by

requiring that every edge actually be adjacent to two vertices, and that every vertex

represents a contracted curve. This will take us out of the context of stable curves,

but our conventions for dealing with these unstable contributions will give the same

answer as if we had dealt with the stable curve, as verified in Section 3.6. Further-

more, by considering the destabilized curves our formulas will become much more

uniform.

An example illustrating essentially all the possibilities is a genus 0 degree 3 stable

map to C2,3, consisting of two P1 components, one mapping with degree 2 to the

target, joined by a node mapping to ∞ to the other component, which has degree

1. For this to happen, we see that our two components must be joined with a node

with Z3 isotropy, and the point mapping to 0 with degree 1 must have Z2 isotropy.

The destabilization will consist of a chain of 5 P1 components, joined with nodes.

The first and last components will be contracted to 0, and the middle component

will be contracted to ∞. Thus, we would consider the fixed point set of this graph

to be M0,2(BZ2, 1/2, 1/2) ×M0,1(BZ2, 0) ×M0,2(BZ3, 1/3, 2/3). We will evaluate

tautological classes on these unstable moduli spaces using equation (3.1), and in

Section 3.6 check that these conventions give the correct contributions.
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3.3 The virtual normal bundle

To use Atiyah-Bott localization, we need to compute the equivariant Euler class

of the virtual normal bundle of each fixed point component. If we have a point

f ∈MΓ ⊂M in some fixed point locusMΓ, then the splitting of TfM into TfMΓ,

the tangent space of the fixed locus, and NfMΓ, the normal bundle of the fixed locus,

can be accomplished by looking at the C∗ action: TfMΓ will be the 0-eigenspaces

of the action, and the nonzero, or moving, eigenspaces will make up the normal

directions of MΓ at f .

Intuitively, if we think of f as a map C → X , then f ∗(TX ) should describe the

ways of deforming f . But since we identify isomorphic maps, we should quotient out

by TC, which corresponds to reparametrizations of the source curve, and the result

should in some sense be the tangent space of stable maps. Using obstruction theory

and derived categories, this can all be made precise, and we get an exact sequence:

0→H0(C, TC)→ H0(C, f ∗(TX ))→ T 1 →

→H1(C, TC)→ H1(C, f ∗(TX ))→ T 2 → 0

where T 1 − T 2 is the tangent space to M in K-theory. So, using superscript m to

denote the moving part, we find that the reciprocal of the Euler class of the normal

bundle should be:

(3.7)
1

e(N)
=
e(H0(C, TC)m)

e(H1(C, TC)m)

e(H1(C, f ∗(TX ))m)

e(H0(C, f ∗(TX ))m)

In the remainder of this section we compute each equivariant Euler class in turn,

writing them in terms of the contribution by each vertex. We write only the con-

tributions of vertices over 0; the contributions coming of vertices over ∞ have the

same form with t replaced by −t, r by s, and R by S.
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The term H0(C, TC) parameterizes infinitesimal automorphisms of the source

curve. Conventionally, all vertex components are stable, and hence have no infinites-

imal automorphisms. Each edge curve is a topological P1 with two nodes that need

to be fixed by the automorphisms, and so we see that each H0(Ce, TCe) should be

one dimensional. It is spanned by any section s of TCe vanishing at both 0 and ∞.

By Chern-Weil theory, we see that in this case s must vanish simply at each of 0

and ∞. Choose a connection ∇ on TP1, then locally the derivative ∇s would be a

section of TCe ⊗ T ∗Ce. Furthermore, since s vanished simply, ∇s would not vanish

on the fiber over 0, and so we may identify H0(Ce, TCe) with TCe⊗T ∗Ce. Since the

C∗ actions on TP1 and T ∗P1 have opposite weights and group actions, T0Ce ⊗ T ∗0Ce

would have a weight 0 C∗ action and a trivial action of the isotropy group. As this

vector space can be identified with H0(Ce, TCe), we see that this contributes only to

the tangent bundle, and not the normal bundle, and so e(H0(Ce, TCe)
m) = 1.

The term H1(C, TC) parameterizes infinitesimal smoothings of the nodes in the

source curve. By our graph conventions there is a node for every flag, and these are

the only nodes that contribute to the normal bundle. The node n between Ce and

Cv contributes TnCe ⊗ TnCv. Note that even if we have a twisted node, this space

has trivial group action, since all nodes are balanced.

As TnCv is on the contracted component, it will have trivial C∗ action. This is

dual to the cotangent space of the contracted curve at that special point, and the

underlying curve may have an orbifold point there. So the Euler class of this line

bundle would be the ψ-class, or using our ψ classes pulled back fromMg,n, e(TnCe) =

− 1
|ρ(e)|ψ.

On the other hand, TnCe will be topologically trivial, but will have a nontrivial

C∗ action. The weight of this C∗ action picks up a factor of 1/d to ensure the map
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is equivariant, and a factor of 1/|ρ(e)| from the orbifold structure, and so the total

C∗ weight is 1/(d|ρ(e)|). So in total, a node n attached to an edge of degree d, with

isotropy mapping to ρ(e) at 0 will contribute to e(H1(Ce, TCe)) by:

t

|ρ(e)|d
− 1

|ρ(e)|
ψ =

t

|ρ(e)|d
(1− dψ/t)

Thus, the total contribution of all node smothing terms at a vetex v0 to 1
e(NΓ)

is:

(3.8) t−e(v)

e(v0)∏
i=1

(
|ρ(ei)|

di

1− diψi/t

)

3.4 Normalization exact sequence

We calculate H0(C, f ∗(TX )) and H1(C, f ∗(TX )) together using the normalization

long exact sequence, coming from resolving the nodes forced by the graph. For

convenience, we will introduce the notation ξ = f ∗(TX ). Tensoring the short exact

sequence

0→ OC →
⊕
e∈E(Γ)

OCe
⊕
v∈V(Γ)

OCv →
⊕

F∈F(Γ)

OF → 0

by ξ and taking the long exact sequence in cohomology, we have:

0 → H0(C, ξ)→
⊕
e∈E(Γ)

H0(Ce, ξ)
⊕
v∈V(Γ)

H0(Cv, ξ)→
⊕

F∈F(Γ)

H0(Cf , ξ)→

→ H1(C, ξ)→
⊕
e∈E(Γ)

H1(Ce, ξ)
⊕
v∈V(Γ)

H1(Cv, ξ)→
⊕

F∈F(Γ)

H1(Cf , ξ)→ 0.

We now exam the terms of this sequence in detail.

Flags

As the CF are not curves but nodes, they are zero dimensional and so H1(CF , ξ) =

0. To calculate H0(CF , ξ), we need to understand the action of the isotropy group

on ξ0. The group action on this vector space is pulled back from the standard

representation of Zr, so if the image of ρ(F ) in Zr is nonzero, this is a nontrivial
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representation, and so contributes 0. However, if ρ(F ) ∈ K, the representation will

be trivial. Since T0 has C∗ weight 1/r, it will contribute t/r to the Euler class.

The image of ρ(F ) in Zr is completely determined by the edge degree modulo r.

Thus, the flag contribution from each vertex v0 will be

(3.9)

(
t

r

)(#di=0 mod r)

.

Edges

We compute the contribution of H i(Ce, ξ) by using the isomorphism with the

cohomology of the desingularization H i(|Ce|, |ξ|). If Ce is an edge of degree d, then

since cw1(X ) has degree 1/r + 1/s, ξ = f ∗TX will have degree d(1/r + 1/s). The

curve Ce has isotropy Z|ρ(e)| at 0, and the generator acts on f ∗(T0X ) by its image

in Zr, which is d mod r. So the generator acts by 1/|ρ(e)| on the tangent bundle

and
〈
d
r

〉
on f ∗TX . Recalling the discussion of the desingularization in (2.1.4), we see

that the C∗ weight of |f ∗TX| will be that of f ∗TX ⊗ (T ∗Ce)
a, where a = |ρ(e)|

〈
d
r

〉
.

Thus, the C∗ weight of |f ∗TX| at 0 is:

1

r
− |ρ(e)|

〈
d

r

〉
1

|ρ(e)|d
=

d

dr
− d mod r

dr
=

1

d

⌊
d

r

⌋
Similarly, we see that the degree of |f ∗TX| will be

d

r
+
d

s
− d mod r

r
− d mod s

s
=

⌊
d

r

⌋
+

⌊
d

s

⌋
As this is nonnegative, H1(Ce, f

∗TX ) will be zero, while H0(Ce, f
∗TX ) will be⌊

d
r

⌋
+
⌊
d
s

⌋
+ 1 dimensional. Any eigensection of the desingularization |f ∗TX| can

vanish only at 0 and ∞, and so our eigensections are given by sections that vanish

to order k at 0 and order
⌊
d
r

⌋
+
⌊
d
s

⌋
− k at ∞, for 0 ≤ k ≤

⌊
d
r

⌋
+
⌊
d
s

⌋
.

To determine the weight of a section vanishing k times at 0, note that the kth

derivative would locally be a section of |f ∗TX|⊗ωk|Ce| that is nonzero at 0. Now, the
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weight of ω|Ce| at 0 is −1/d, and so we see that the eigensection vanishing to order

k at 0 has C∗ weight
〈
d
r

〉
1
d
− k

d
. Hence, as k varies there are sections of every weight

that’s a multiple of 1/d from −
⌊
d
s

⌋
/d to

⌊
d
r

⌋
/d. One section has zero weight, and so

contributes to the virtual tangent bundle rather than the virtual normal bundle. We

split this edge contribution between the zero and infinity by associating the positive

weighted sections with 0 and the negatively weighted sections with ∞. With this

convention, the contribution coming from a degree d edge attached to 0 is:

(3.10)
db

d
rct−b

d
rc⌊

d
r

⌋
!

.

Vertices

We now consider the terms H i(Cv, f
∗T0X ). For a vertex over 0, we have f : Cv →

BR, and so f is equivalent to a principal R bundle C̃v over Cv. The bundle f ∗T0X on

Cv corresponds to a topological trivial bundle on C̃v, but with a potentially nontrivial

lift of the R action. The group H i(Cv, f
∗T0X ) is isomorphic to the R invariant part

of H i(C̃v,O)⊗ T0X .

The dimension of H0(C̃v,O) will be the number of components of the R-cover C̃.

If the collection of all monodromy around loops generates some subgroup H ⊂ R,

then C̃ will have |R|/|H| components, and as an R representation H0(C̃v,O) will be

the regular representation of R/H. Thus, H0(Cv, f
∗T0X ) will be one dimensional if

the R action on T0X factors through R/H, and zero otherwise, or equivalently, it

will be one dimensional if H ⊂ K, and zero otherwise. Since T0X has C∗ weight 1/r,

we can use the notation from 2.9 and write

(3.11) e(H0(Cv, f
∗T0X ) =

(
t

r

)δK
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To calculate H1(Cv, f
∗T0X ), we apply Serre duality to see that:

(H1(C̃v,O)⊗ T0X )R = (H0(C̃v, ω)∨ ⊗ T0)R

= (E∨)T ∗0

= E∨T0
.

In addition to the topological structure of the bundle, T0X has a C∗ action with

weight 1/r. So the equivariant Euler class of this bundle is

(3.12)

(
t

r

)m
−
(
t

r

)m−1

λT0
1 + · · · ± λT0

m =

(
t

r

)m m∑
i=0

(
−r
t

)i
λT0
i

Here we are using m = dim(ET0) = g − 1 + ι(r(v) + ρ(v)) + δK .

The δK term here exactly cancels the contribution of H0(Cv, ξ), and so in future

appearances we will cancel it.

Total Contribution

We combine (3.8),(3.9),(3.10) and (3.12) to find the total contribution of a vertex

lying over 0 to 1
e(NΓ)

. Additionally, we draw the 1/|ρ(e)| and 1/|σ(e)| factors from

the gluing factors appearing in (3.6) to cancel the similar term appearing in (3.8).

Combining those terms and simplifying using

ρ(v) + #di = 0 mod r = e(v)−
e(v)∑
i=1

〈
di
r

〉
and 〈

di
r

〉
+

⌊
di
r

⌋
=
di
r

we obtain

(3.13)
tg−1+ι(r(v))−

∑
di/r

rg−1+ι(r(v))−
∑ 〈 dir 〉+e(v)

e(v)∏
i=1

db dir ci⌊
di
r

⌋
!

di

1− diψi/t

∑(−r/t)iλT0
i

as the total contribution of a vertex v0.

The contribution from a vertex v∞ is completely analogous,with t replaced by −t,

and r and R replaced by s and S.
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3.5 Global localization contributions

We now apply the localization calculations to express the Gromov-Witten gener-

ating function G• in terms of the Hurwitz-Hodge generating functions H•. We’ve

established the contribution to the virtually normal bundle from each vertex ap-

pearing in a localization graph. We now investigate the effect of localization on the

integrands appearing in G•r,s.

The integrand over the point 0 is exactly

`(r)∏
i=1

ziev∗i (0ri)

1− ziψi
.

Let ϕ : MΓ → Mg,r,s(X , d) be the inclusion. We will have ϕ∗(ψ) = ψ; consider

ϕ∗(0ri). For ri not belonging to K, the corresponding component of the IX is zero

dimensional, and we have ϕ∗(ri) = ri. However, for ri ∈ K, the component of the

twisted sector will be one dimensional, and we will have ϕ∗(ri) = tri. Thus, localizing

gives us a factor of

t#(ri∈K),

and otherwise, considering both the integrand and the virtual normal bundle, the

integral appearing will be∫
M•g0,r+ρ(µ)(BR)

`(r)∏
i=1

zi

1− ziψi

`(µ)∏
j=1

µi

1− µiψ/t

∞∑
`=0

(−r/t)`λT0
` .

After some rescalings, we can express this in terms of H0,•
g,0 . Namely, replac-

ing ψ with tψ and λi with tiλi multiplies the integral by t to the dimension of

Mg0,r+ρ(µ)(BR), which is 3g0− 3 + `(r) + `(µ). After this, the z terms will appear as

zi

1− tziψi
,

and so we must multiply the integrand by t`(r). Canceling part of this term with the

factor of t#(ri∈K) appearing from localization, we see that the contribution can be
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written as

t−(3g0−3+`(r)+`(µ)+#(ri /∈K))H0,•
g0,r+ρ(µ)(tzr, µ),

with the analogous statement for the integrals appearing over ∞.

Combining this with the other factors appearing in (3.13), as well as the factors

of |R| and |S| appearing from the node gluing and automorphism in equation (3.6),

we can write the total vertex contribution over 0 as

(3.14) |K|`(µ) t
2−2g0+ι(r(v))−|µ|/r−#(ri /∈K)−`(µ)−`(r)

rg−1+ι(r(v))−
∑ 〈µir 〉

`(µ)∏
i=1

µ
bµir c
i⌊
µi
r

⌋
!

H0,•
g0,r+ρ(µ)(tzr, µ)

with similar contribution over ∞. To obtain the global contribution, we must com-

bine these with the remaining global gluing and automorphism factor of

1

Aut(Γ)

∏
e∈E(Γ)

1

|K|d(e)
.

This differs from equation (3.6) because we have canceled the factor of |σ(e)||ρ(e)|

in the previous section, as well as the contributions of |R| and |S| appearing just

previously. Additionally, working with automorphisms of the weighted partition µ

correctly accounts of the weight shift:

1

z(µ)
,

where

z(µ) = Aut(µ)

`(µ)∏
i=1

|K|µi

will appear again in section IV.

Some global constraints will be useful.

For each component of a graph, the corresponding genus is the sum of the genera

of all the vertices, plus the number of loops in the graph, which can be calculated

by e− v + 1. So the total genus of a connected graph is:

g(Γ) = |E(Γ)| − |V (Γ)|+ 1 +
∑

v∈V (Γ)

g(v) = |E(Γ)|+ 1 +
∑

v∈V (Γ)

(g(v)− 1).
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Working with our disconnected curves and partitions, it will be more convenient to

use the euler characteristic, which is additive under disjoin union:

2g(Γ)− 2 = (2g0 − 2) + (2g∞ − 2) + 2`(µ).

We can now express the disconnected n+m point function G•d,r,s in terms of the

functions H

Define

(3.15) Jr(zr, µ, u, t) =
r
∑ 〈µir 〉−ι(r)(|K|u/t)`(µ)

t|µ|/r+#(ri /∈K)+`(r)−ι(r)

`(µ)∏
i=1

µ
bµir c
i⌊
µi
r

⌋
!

H0,•
r+ρ(µ)

(
µ, tzr,

u

tr1/2

)
And for Js we replace r with s and ρ with σ, but otherwise keep things the same.

Then we have:

(3.16) G•d,r,s(zr, ws, u) =
∑
|µ|=d

1

z(µ)
Jr(zr, µ, u, t)Js(zs, µ, u,−t).

3.6 Unstable Contributions

We check here that the unstable localization contributions we have defined agree

with the localization procedure. There are two unstable moduli spaces to consider,

M0,1 and M0,2. The first arises from vertices with one edge and no marked points;

the second from vertices with either one marked point and one edge, or no marked

points and two edges. Each case is checked, first presenting the result of our local-

ization scheme, followed by the actual contribution. We work with a vertex over 0;

the usual adaptations cover vertices over ∞.

One edge, no marked points

By monodromy considerations the edge must have degree divisible by r and the

node must have trivial monodromy. Using this, and the fact that r(v) is empty, we
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see that the contribution of this vertex to (3.14) is

|K|t
1−d/r

r−1

dd/r

(d/r)!
H0,◦

0,0 (d).

Our convention (3.1) for unstable hodge integrals evaluations H to be 1
|R|d . Thus,

factoring out the t−d/r dd/r

(d/r)!
as edge contribution, we see that the total vertex contri-

bution by our localization scheme should be simply t
d
.

On the actual curve, we have an edge Ce of degree d with no marked points over 0.

This has the usual edge contribution, but there is an additional factor, as this map

has infinitesimal automorphisms contributing to the H0(C, TC) term of the equation

(3.7) for the inverse euler class of the virtual normal bundle. These automorphisms

exactly correspond to the T0Ce, which has C∗ weight precisely t
d
.

One edge, one marked point

Denoting by r1 ∈ R the monodromy of the marked point, and d the edge degree.

Then the contribution to equation (3.14) is

|K|t
1+ι(r1)−δr1 /∈K−d/r

r−1+ιr−〈 dr 〉
dd/r

(d/r)!
H0,◦

0,{r1,−r1}(tz1, d).

Factor out the edge contribution of (d/t)b
d
rc/(

⌊
d
r

⌋
)! leaves a factor of t−〈

d
r 〉. Simpli-

fying using ι(r1) =
〈
d
r

〉
and evaluating the Hurwitz Hodge term according to (3.1),

we have that the total contribution here is:

tδr1∈Kz1d

tz1 + d
.

For the actual curve, we have an edge of degree d, with a marked point with mon-

odromy r1 over 0. There are no node gluing or automorphism terms here, simply the

contribution from the integrand in the definition of G, namely

z1ev∗10r1
1− z1ψ

.



66

We saw in the previous section that ev∗1(0r1) localizes to tδr1∈K . In this case, since the

marked point constrained to map to 0, we see that ψ1 localizes to −t/d. Substituting

these in and simplifying, again the actual localization contribution agrees with the

contribution of our scheme.

Two edges, no marked points

In our scheme, letting d1 and d2 be the two sides of the node, with monodromies

ρ1 and ρ2 we have ρ1 = −ρ2 by monodromy considerations. The contribution to

equation (3.14) of this vertex is is:

|K|2 t−d1/r−d2/r

r−1−〈 d1r 〉−〈 d2r 〉
d
b d1r c
1⌊
d1

r

⌋
!

d
b d2r c
2⌊
d2

r

⌋
!
H0,◦

0,{ρ1,ρ2}(d1, d2).

Factoring out the usual edge terms and evaluating the unstable Hodge integral ac-

cording to convention, we see that this simplifies to

|K|(t/r)−〈
d1
r 〉−〈 d2r 〉 d1d2

d1 + d2

.

On the actual curve, we have edges of degrees d1 and d2 meeting directly in a

node. Although in the destabilized curve there would be two nodes, in fact there is

only one, and so the correct contribution from the automoprhism and gluing term

from (3.6) is |R||ρ1| ; note that we have |ρ1| = |ρ2|.

The node smoothing term contributing to 1/e(H1(C, TC)m) in (3.7) contributes

the Euler class of the tensor product of the tangent spaces at either side of the node,

which is

1

t/(d1|ρ1|) + t/(d2|ρ2|)
=
t−1|ρ1|d1d2

d1 + d2

.

Finally, although there are no contracted vertices, there is a flag term appearing

in the normalization long exact sequence. The isotropy group will act nontrivially

on the flag term if
〈
d1

r

〉
6= 0, in which case the contribution is zero; otherwise, the
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contribution is t/r. Using the fact that the node is balanced, we can write this as

(t/r)1−〈 d1r 〉−〈 d2r 〉.

Combining these three contributions gives

|R|
|ρ1|

t−1|ρ1|d1d2

d1 + d2

(t/r)1−〈 d1r 〉−〈 d2r 〉 = |K|(t/r)−〈
d1
r 〉−〈 d2r 〉 d1d2

d1 + d2

,

which agrees with the contribution given by our localization scheme.



CHAPTER IV

Wreath Products and Fock Spaces

In the previous chapter, virtual Atiyah-Bott localization reduced the Gromov-

Witten invariants we are interested in to the calculation of Hurwitz-Hodge intergrals.

The orbifold ELSV formula, which we will introduce at the beginning of the next

chapter, expresses these integrals in terms of wreath Hurwitz numbers. In this chap-

ter, we pause to introduce Hurwitz numbers and wreath Hurwitz numbers. These

have expressions in terms of the representation theory of the symmetric group and of

wreath products. These representation theories, in turn, are conveniently expressed

have Fock space formalisms: in the case of the symmetric group, this is the infinite

wedge; in the case of wreath products, it is essential a tensor product of copies of the

infinite wedge. Finally, the Kyoto school of integrable hierarchies relates operators

on these Fock spaces to integrable hierarchies. This chapter reviews these elements

and their connections, first deriving an expression for wreath Hurwitz numbers in

terms of operators on these Fock spaces, and then using this connection to show

that in fact wreath Hurwitz numbers satisfy multiple commuting copies of the 2-

Toda hierarchy. We begin in section 4.1 with a review of double Hurwitz numbers

and their connection with the center of the group algebra of the symmetric group.

Section 4.2 extends this familiar story to wreath Hurwitz numbers. In the follow-

68
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ing section, we review the representation theory of the wreath product, and use it

obtain an expression for the wreath Hurwitz numbers. The content of these three

sections is classical. More modern material begins in section 4.4, which introduces

the Fock space formalism. It begins with the infinite wedge, and then presents the

corresponding Fock spaces for wreath products, a formalism that has been developed

and applied and Wang and collaborators. This section concludes with an operator

expression for wreath Hurwitz numbers, which will be applied in the next chapter.

The last section 4.5, is a short detour illustrating the connection to integrable sys-

tems: it shows that wreath Hurwitz numbers satisfy multiple commuting copies of

the 2-Toda hierarchy. This result is an easy generalization of [Oko00], and should be

viewed as a gentle inroduction to the 2-Toda hierarchy.

4.1 Hurwitz Numbers and the Symmetric Group

The double Hurwitz number Hur◦g,d(µ, ν) counts the number of maps

f : Σ→ P1

from smooth connected curves Σ, where f has ramification profile µ over 0, ν over

∞, and simple ramification over

b = 2g − 2 + `(µ) + `(ν)

fixed other points. The number b is determined by the Riemann-Hurwitz formula to

ensure that Σ will have genus g. The number of such covers does not depend on the

location of the b points in the base; for convenience, we will fix them to occur at the

points of Ub, the set of bth roots of unity. In the case that ν = (1)d corresponds to

no ramification, we call the result a single Hurwitz number, and denote it Hur◦g(µ).

In addition to this geometric description, Hurwitz numbers have a simple ex-

pression in terms of multiplication in ZSd, the center of the group algebra of the
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symmetric group. Let f : Σ → P1 be a cover counted by Hur◦g,d(µ, ν). Away from

the preimages of 0,∞ and Ub, the map f is a topological covering space. Choose a

basepoint b0 ∈ P1 and loops Γ0,Γ∞,Γ1, . . . ,Γb, based at b0, around 0,∞ and the b

roots of unity respectively, so that

Γ0Γ1 · · ·ΓbΓ∞ = 1 ∈ π1(P1 \ {0,∞, Ur}, b0).

Labeling the d preimages of b0 in Σ, we see that parallel transport of the preimages

of f around Γi gives an element σi ∈ Sd. The ramification conditions imposed on

f imply that σ1, . . . , σb are all transpositions, while σ0 has cycle type µ and σ∞ has

cycle type ν. Since Σ is connected, the σi must act transitively on 1, . . . , d. Finally,

since the loop Γ0Γ1 · · ·ΓbΓ∞ is contractible, we must have

σ0σ1 · · ·σbσ∞ = 1.

So, from the map f and our choice of labeling, we constructed elements σi ∈ Sd

satisfying:

(i) σ0 and σ∞ have cycle types µ and ν, respectively.

(ii) The elements σ1, . . . , σb are transpositions.

(iii) σ0σ1 · · ·σbσ∞ = 1

(iv) The group generated by all the σi acts transitively on {1, . . . , d}

This process is reversible: given elements σi satisfying properties (i)-(iv), by the

Riemann existence theorem we may construct a Hurwitz cover Σ, together with a

labeling of the sheets. As property (iv) is what guarantees the cover is connected, el-

ements satisfying properties (i)-(iii) correspond to Hurwitz covers where Σ is possibly

disconnected.
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Recall for any group G, the group algebra C[G] is an algebra with basis [g] ∈ G

and multiplication [g] ∗ [g′] = [gg′]; it can also be viewed as C valued functions on

G with product given by convolution. The center of the group algebra ZC[G] is

sometimes called the class algebra, because it consists of those functions that take

on the same value for elements in the same conjugacy class. Thus, for c ∈ G∗ a

conjugacy class, the elements Cc defined by

Cc =
∑
g∈c

[g] ∈ ZC[G]

form a basis of ZC[G]. For z ∈ ZC[G], we will use the expression [1]z to denote the

coefficient of the identity in z, or in the function point of view, the value of z on 1.

For Sd, conjugacy classes correspond, via the cycle type, to partitions µ; we denote

the resulting element of ZSd by Cµ, and denote by T the sum of all transpositions

(corresponding to the partition (21d−2)). From the above discussion it is immediate

that:

Hur•g,d(µ, ν) =
1

d!
[1]Cµ · Cν · T b.

4.2 Wreath Products

The wreath product Gd = G o Sd is defined by

Gd = {(g, σ)|g = (g1, . . . , gd) ∈ Gd, σ ∈ Sd},

(g, σ)(g′, σ′) = (gσ(g′), σσ′).

Conjugacy classes of Gd are determined by their cycle type [Mac95]: for each

m-cycle (i1i2 · · · im) of σ, the element
∏m

j=1 gij is well defined up to conjugacy in

G. We will denote the set of conjugacy classes of G by G∗, and use c to denote a

conjugacy class. The cycle type of an element (G, σ) is the G∗-labeled partition µ



72

where the underlying partition µ is the usual cycle type of the permutation σ, and

the part µi corresponding to the cycle (i1i2 · · · im) is labeled with the conjugacy class

cµi = (
∏m

j=1 gij). Two elements of Gd are conjugate exactly when they have the same

cycle types, and so cycle types label the conjugacy classes of Gd.

Given a G∗-labeled partition µ, we can form |G∗| separate partitions µc, for c ∈ G∗,

by taking only those parts of µ labeled by c. We denote

`(µ) = `(µ) =
∑
c∈K∗

`(µc).

Let ζc denote the size of the centralizer of an element in the conjugacy class c,

and z(µ) denote the size of the ecntralizer of an element in the conjugacy class µ.

Then we have

z(µ) = |Aut(µ)|
`(µ)∏
i=1

ζcµi.

For a cycle type µ we denote the corresponding element in ZGd, the center of the

group algebra of Gd, as Cµ. For c ∈ G∗, we will denote by Tc ∈ ZGd the element

corresponding to the conjugacy class (2c) = {(2, c), (1, Id), . . . (1, Id)}. Of particular

interest will be the class T0, corresponding to the case where c = Id.

There are several plausible ways to define wreath Hurwitz numbers; we give here

the one naturally occurring in relation to abelian Hurwitz-Hodge integrals. We define

the Gd Hurwitz numbers Hur•g,G(µ, ν) to be the count of degree d|G| covers f : Σ→

P1, with monodromy in the group Gd, with prescribed monodromy: the monodromy

over 0 and ∞ must be µ and ν, respectively, the monodromy over each of the b =

2g − 2 + `(µ) + `(ν) roots of unity must be τ0, and the map must be unramified

elsewhere.

In the cases we will consider, G will be abelian, and so the diagonal copy of G ∈ Gd

will commute with the natural copy of the symmetric group Sd ⊂ Gd. Thus, each
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cover counted by Hur•g,G(µ, ν) will have a G action. The quotient space Σ/G will be a

usual Hurwitz cover counted by H•g (µ, η), and away from f−1(0), f−1(∞), Σ→ Σ/G

will be a principal G bundle. From the definition of the cycle type, if pi ∈ f−1(0)

corresponds to part µi, then the monodromy of the principal bundle around pi will

be cµi . This process is reversible: given a degree d cover counted by H•g (µ, η), and a

principal G bundle as above, we can construct a Gd Hurwitz cover.

The connectivity requirement we put on Hur◦g,G(µ, ν) is not that the total cover

is connected, but only that the quotient of this cover by G is connected. Thus,

Hur◦g,G(µ, ν) may be seen as counting the covers counted in the usual double Hurwitz

problem, but each cover is weighted by the number of principal G bundles over it

with monodromies cµ over f−1(0) and monodromies cν over f−1(∞).

By the same logic as the previous section, we have that:

(4.1) Hur•g,K(µ, ν) =
1

|Kd|
[1]Cµ · Cν · T b0 .

4.3 Representation Theory

We will use G∗ to denote the set of irreducible characters of G, and use γ to denote

an element of G∗. Just as the conjugacy classes of Gd are indexed by G∗-labeled

partitions of d, irreducible characters of Gd are indexed by G∗-labeled partitions of

d. We will use λ to denote such a labeled partition, where the part λi is labeled

by the representation γλi . The character indexed by λ may be described as follows.

Given an irreducible character γ of G induced by the representation Vγ, the wreath

product Gd acts naturally on V ⊗dγ , with Sd permuting the factors and Gd acting

factor by factor. If Uλ is the irreducible representation of Sd indexed by λ, then, Gd

acts on Uλ via the forgetful map Gd → Sd. It turns out that the action of Gd on
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Uλ ⊗ V ⊗dγ is irreducible.

More generally, given a G∗ labeled partition λ, we can form the |G∗| partitions

λ
γ
, where γ is an irreducible character and λ

γ
consists of those parts of λ labeled by

γ. Then ⊗
γ∈G∗

Uλγ ⊗ V
⊗|λγ |
γ

is an irreducible representation of the subgroup∏
γ∈G∗

G|λγ |

of Gd, and it induces up to an irreducible representation Uλ of Kd, which yields the

irreducible character indeed by λ.

As with any finite group, the center of a group algebra ZGd has two natural bases:

the conjugacy class basis Cµ, which we have used above, and the character basis, Rλ,

indexed by λ the irreducible characters, which on an element g takes the value χλ(g).

Rλ =
∑

η∈Conj(Kd)

χληCη

The basis Rλ has two nice properties.

First, ZGd is a Frobenius algebra, and so has an invariant hermitian inner product

given by the linear form

〈Cµ〉 =
1

|Gd|
δµ,id,

i.e., on basis elements we have

〈Cµ, Cη〉 = 〈Cµ · Cη〉

and the form is extended to all of ZGd. The basis Rλ is orthonormal with respect

to this inner product.

Secondly, multiplication in the Rλ basis is semisimple; we have

Rλ ·Rµ = δλ,µ

(
|Gd|

dimλ

)
Rλ.
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Expressed in terms of the representation basis, we have

Cµ =
∑
λ

1

z(µ)
χλµRλ.

Note the χ - we are taking the complex conjugate. In the case when all characters

are real - for example, with Sd - this is not necessary.

Since formula (4.1) for the Gd Hurwitz numbers involves calculating powers of

the element T0, it will be convenient to work with the representation basis, where

multiplication is diagonal. We choose to write the change of basis as follows: define

the central character by

fµ(λ) =
|Cµ|χλµ
dimλ

and fµ(λ) is its complex conjugate.

Then

Cµ =
∑
λ`d

χλµ
z(µ)

Rλ

=
∑
λ`d

dimλ

|Gd|

[
|Cµ|

dimλ
χλµ

]
Rλ

=
∑
λ`d

dimλ

|Gd|
fµ(λ)Rλ.

With this notation, we see that the number of covers of P1 with monodromy µi

around point pi can be expressed as:

1

|Gd|
[id]

n∏
i=1

Cµi =
1

|Gd|
[id]

n∏
i=1

∑
λ`d

dimλ

|Gd|
fµi(λ)Rλ


=

1

|Gd|
[id]
∑
λ`d

dimλ

|Gd|

n∏
i=1

fµi(λ)Rλ

=
∑
λ`d

(
dimλ

|Gd|

)2 n∏
i=1

fµi(λ)

Since the left hand side is real, we may replace the right hand side with its complex

conjugate, which just replaces every occurence of f with f .
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So in particular, since

dimλ

|Gd|
fµ(λ) =

|Cµ|
|Gd|

χλµ =
1

z(µ)
χλµ

we have

(4.2) Hur•g,G(µ, ν) =
1

z(µ)

1

z(ν)

∑
λ`d

χλµχ
λ
νfT (λ)b.

For this formula to be of much use, we must haveconvenient ways to calculate χλν

and fT (λ). This will be provided by the Fock space formalism, an extension of the

infinite wedge used to study the symmetric group.

4.4 Fock Space

It is natural to study the representation theory of Gd for all d at once. In this

section we will construct a graded vector space with inner product, ZG, whose degree

d piece will be isomorphic to ZC[Gd] as a normed vector space. The Fock space

formalism identifies ZG as an irreducible heighest weight representation of a certain

Heisenberg algebra, which can also be viewed as the tensor product of copies of the

charge zero part of the infinite wedge,
∧∞

2
0 V . The Heisenberg algebra structure

provides a convenient description of two bases for ZG, vλ and Pµ, so that the change

of basis between them is the character table of Gd.

We begin with a brief introduction to the infinite wedge, mmostly following Ok-

ounkov.

Let V is the vector space with basis labeled by the half-integers. We use the

underscore to represent the corresponding basis vector

V =
⊕
i∈Z

i+
1

2
.

The infinite wedge
∧∞

2 V is the span of vectors of the form i1 ∧ i2 ∧ . . . with

ik ∈ Z + 1
2

a decreasing series of half integers so that ik + k + 1/2 is constant for
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k >> 0. Physicists call the infinite wedge space fermionic Fock space, and it can

be thought of as a model for Dirac’s sea of electrons, where all but finitely many

negative energy states must be filled.

The fermionic creation and annihilation operators ψj and ψ∗j , j ∈ Z + 1
2

act on∧∞
2 V as follows:

ψj(i1 ∧ i2 ∧ . . . ) = j ∧ i1 ∧ i2 ∧ . . .

and

ψ∗j (i1 ∧ i2 ∧ . . . ) = δj,i1i2 ∧ i3 · · · − δj,i2i1 ∧ i3 ∧ · · ·+ δj,i3i1 ∧ i2 ∧ · · · − · · · .

In words, the operator ψj adds a vj to the wedge. The operator ψ∗j removes a vj,

with the appropriate sign convention, if vj is present, and annihilates vectors with

no vj present. They satisfy the following anticommutation relations, where we use

the notation [x, y]+ for the anticommutator xy + yx:

[ψi, ψ
∗
j ]+ = δij

[ψi, ψj]+ = [ψ∗i , ψ
∗
j ]+ = 0.

Observe that the operator ψiψ
∗
j acts as the operator Ei,j ∈ gl(V ) would on the

infinite wedge. However, a matrix M with an infinite number of nonzero entries

may not have a well defined action on the infinite wedge, because it would involve

an infinite sum. In particular, under the naive representation of gl(V ), the identity

matrix would have an inifnite sum for every element in the infinite wedge. To remedy

this situation, we normalize the representation by introducing the normal ordering

convention:

: ψiψ
∗
j :=

 ψiψ
∗
j , j > 0

−ψ∗jψi, j < 0

.
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We extend this to quadratic expressions in the ψ and ψ∗ linearly. Following

this convention, we see that the the normal ordering of the operator that would

correspond to the identity matrix, which we call the charge operator C, has a well

defined action on the infinite wedge:

C =
∑

i∈Z+1/2

Ei,i =
∑

i∈Z+1/2

: ψiψ
∗
i : .

Indeed, this process extends: letting Eij for i, j ∈ Z + 1
2

be the standard basis of

gl(∞). Then

Eij 7→: ψiψ
∗
j :

gives a projective representation of the lie algebra gl(∞) on
∧∞

2 V .

For 0 6= k ∈ Z, we define the operators

αk =
∑
i∈Z+ 1

2

Ei−k,i.

The operators αk form a Heisenberg algebra:

[αn, αm] = nδn,−m.

Vectors of
∧∞

2 V that are eigenvectors of C with eigenvalue x are said to have

charge x. Similarly, if L is an operator on
∧∞

2 V with [C,L] = x then L is said to

have charge x.

The energy operator is defined by

H =
∑
k∈Z+ 1

2

kekk.

Similarly, vectors of
∧∞

2 V that are eigenvectors of H with eigenvalue h have

energy h, and operators with [H,L] = h are also said to have energy h.

The kernel of C consists of those vectors of
∧∞

2 V with charge 0, and will be

denoted
∧∞

2
0 V ; we will mostly be working in this subspace. Note that charge 0
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operators preserve
∧∞

2
0 V , and since the operators in gl∞ have charge 0,

∧∞
2

0 V will

be a representation of gl∞.

The subspace
∧∞

2
0 V has a natural basis vλ labeled by partitions λ:

vλ = λ1 −
1

2
∧ λ2 −

3

2
∧ λ3 −

5

2
∧ . . .

We give
∧∞

2
0 V an inner product by making the basis {vλ} orthonormal.

It is easily seen that the vλ form an eigenbasis of
∧

0 V for H, with Hvλ = |λ|vλ.

The vacuum vector v∅ corresponds to the zero partition. The vacuum expectation

〈A〉 of an operator A on
∧∞

2 V is defined by the inner product

〈A〉 = (Av∅, v∅)

We define the vector space ZG to be the tensor product of |G∗| copies of
∧∞

2
0 V .

We give it the inner product coming from the tensor product; in other words, we

introduce the basis

vλ ∈ ZG =
⊗
γ∈G∗

vλγ

and declare it to be orthonormal.

As ZG ⊂
⊗

γ∈G∗
∧∞

2 V , and we’ve defined a lot of interesting operators acting on

the infinite wedge, we get a lot of interesting operators acting on ZG. To describe

them, we use:

Convention IV.1. For M an operator on
∧∞

2 V , and γ ∈ G∗, we define

Mγ = Id⊗ · · · Id⊗M ⊗ Id · · · Id

where the M occurs on the component labeled γ.

We will most often use convention IV.1 on operators M that have charge 0, in

which the resulting operator Mγ will act on ZG.
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The operators αγn, then, satisfy the commutation relations

(4.3) [αγn, α
γ′

m] = nδγ,γ′δn,−m

We have a linear map

ch :
∞⊕
d=0

ZGd → ZG

defined by

ch(Rλ) = vλ.

We immediately see that ch preserves the inner product.

We now give a useful description of the vectors ch(Cµ).

For c ∈ G∗, we define

(4.4) αcn = αn(c) =
∑
γ∈G∗

γ(c−1)αγn

The second notation will be useful to avoid nested subscripts. A warning is in

order: we have expressed αcn as a linear combination of the αγn. We also have, in

ZCG, the expression for Cc in terms of Rγ, i.e., the inverse character table of G.

Though simlar, these expressions do not agree; they differ by a factor of ζc.

We see from the above that the αcn span the same space of operators as the αγn,

and the relationship can be inverted:

(4.5) αγn =
∑
c∈G∗

1

ζc
γ(c)αcn

This observation and basic character theory tell us that

[αcn, α
c′

m] = nζcδc,c′ζc′δn,−m

Define the vector Pµ ∈ ZG by

Pµ =

`(µ)∏
i=1

αci−µi |0〉
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Then Pµ form a basis of ZG, and in fact we have

ch(Cµ) =
1

z(µ)
Pµ

Since ch is an isomorphism, we have that the change of basis between the Pµ and

the vλ are given by a multiple of the character table of Gn; explicitly, we have

〈Pµ, Sλ〉 =

In addition to the bases Cµ and Pλ, which come simply from the fact that the

graded pieces of ZG are the centers of group algebras, the heisenberg algebra structure

provides us with another basis for ZG, namely

Pλ =
∏

α−λi(R
i) |0〉 .

The basis Pλ nicely factors the representation theory of ZG, decoupling it into

the representation theory of G and the representation theory of Sd. The change of

basis between the vλ and the Pλ is determined, via (4.5, 4.4), by the character table

of G. On the other hand, the change of basis between the Pλ and the Pµ is clearly

just |G∗| copies of the character table of Sd. This is one of the key observations of

Qin and Wang [QW].

In their work on the Gromov-Witten theory of curves, Okounkov and Pandhari-

pande make extensive use of operators Er for r ∈ Z. We follow our above convention

in extending their definition to

Eγr (z) =
∑
k∈Z+ 1

2

ez(k−
r
2

)Eγ
k−r,k +

δr,0
ς(z)

.

where

ς(z) = e
z
2 − e

−z
2 .



82

We warn the reader that this definition conflicts with the definition of E (i)
r (z) given

in section 4.2 of [QW].

The operator Eγr (z) has energy −r, and specialize to the standard bosonic opera-

tors αγr on ZG:

Eγr (0) =
∑
k∈Z+ 1

2

Eγ
k−r,k = αγr , r 6= 0.

The operators Eγr (z) satisfy Eγr (z)∗ = Eγ−r(z), and satisfy the following commuta-

tion relation:

(4.6) [Eγr (z), Eγs (w)] = ς

det

 a z

b w


 Eγr+s(z + w).

For γ 6= γ′, we of course have

[Eγr (z), Eγ′s (w)] = 0.

Further following Okounkov and Pandharipande, we define operators Pγk , k > 0:

Pγk
k!

= [zk]Eγ0 (z).

The operators Pk are intimately related to the character theory of the symmetric

group, and their simplification via the use of completed cycles [OP06b]. In particular,

the operator

F2 =
P2

2
=
∑
k∈Z+ 1

2

k2

2
Ek,k

acts diagonally on the basis vλ, and multiplies it by χλ(T ).

In [FW01], this result is extended to the wedge product. For c ∈ G∗, they define

(4.7) F c2 =
∑
γ∈G∗

|G|2γ(c)

(dim γ)2ζc
Fγ2

and in Theorem (3), show that:
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(4.8) F c2vλ = χλ(Tc)vλ

When we return to Gromov-Witten theory, we will restrict our attention to G = K

is abelian, and focus on the case c is the class of the identity, which we will denote

by 0. In this case formula (4.7) simplifies considerably:

(4.9) F0
2 = |K|

∑
γ

Fγ2 .

We note that we can now express wreath Hurwitz numbers as an expectation on

ZG. Starting with equation (4.2), using the transition functions between Pµ and vλ,

and the quoted result (4.8), we see that

Lemma IV.2.

Hur•g,d(µ, ν) =
1

z(µ)

1

z(ν)

〈
`(µ)∏
i=1

αµi(c
µ
i )
(
F0

2

)b `(ν)∏
j=1

α−νj(c
ν
j )

〉
.

4.5 Commuting 2-Toda Hierarchies for Wreath Hurwitz Numbers

In this section, we extend the results of [Oko00] to wreath Hurwitz numbers.

We first package the disconnected wreath Hurwitz numbers into a convenient

generating series. We will use two separate sets of variables sci , t
c
i , c ∈ G∗ to index

the ramification conditions over 0 and ∞, respectively. We will make use of the

related set of variables sγi , t
γ
i , γ ∈ G∗. These variables sets will be related by the

inverse of the relations (4.4) and (4.5), namely:

sγm =
∑
c∈G∗

γ(c−1)scm,

and

scm =
∑
γ∈G∗

ζ−1
c γ(c)sγm.
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Then it is clear that ∑
γ∈G∗

sγmα
γ
m =

∑
c∈G∗

scmα
c
m,

which we will for convenience denote αsm.

For µ a conjugacy class {(µj, cj)}, we will use

sµ =

`(µ)∏
j=1

scjµj

and analogously for tν .

Okounkov showed that the generating function for ordinary disconnected Hurwitz

numbers

τ(s, t, q, β) =
∑

Hur•g(µ, ν)qdsµtν
βb

b!

was a tau function for the 2-Toda hierarchy. We now review what this means.

Recall that for a matrix M , the set of k × k minors satisfy a set of quadratic

relations known as the Plücker relations. For M ∈ GL(∞), v, w ∈
∧∞

2 V , the matrix

elements (Mv,w) are basically minors of the infinite matrix M , and hence satisfy

Plücker relations. The 2-Toda hierarchy is what results when we package these

matrix elements in a generating function τ , and ask what the Plücker relations say

about τ .

Introduce the operator

Ω =
∑

k∈Z+1/2

ψk ⊗ ψ∗k.

The operator Ω is GL(∞) invariant: we could replace the bases {ψk}, {ψ∗k} with

any basis of the creation operators and its corresponding dual basis of annihilation

operators and still obtain Ω. As a consequence, we have that

[M ⊗M,Ω] = 0
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for any M in GL(∞), or more generally for any operator M in the closure of the

image of GL(∞) in End(
∧∞

2 V ). Hence, for any v, v′, w, w′ ∈
∧∞

2 V , we have that

([M ⊗M,Ω]v ⊗ v′, w ⊗ w′) = 0,

which is a compact way to encode the Plücker relations.

Using the vertex operators

Γ±(t) = exp

(∑
k>0

tk
α±k
k

)

and the translation operators T

T
∧

ei =
∧

ei + 1

we can encode all possible nonzero matrix elements of M in the generating functions

τMn (t, s) =
〈
T−nΓ+(t)MΓ−(s)T n

〉
.

The differential equations for the τMn (t, s) resulting from the Plücker relations are

known as the 2-Toda hierarchy. For all our τ functions, the various τn will be

rescalings of τ0, and so will actually satisfy a more restrictive hierarchy. We say that

a function is a τ -function for the 2-Toda hierarchy if it is of the form τM0 for some

M ∈ GL(∞).

As an example, we derive now the lowest equation of the hierarchy explicitly,

following Okounkov.

Let v∅ be the vacuum, and define other vectors by

v� = α−1v∅; v1 = Tv∅; v−1 = T−1v∅.

Then we see that

Ωv∅ ⊗ v� = v1 ⊗ v−1,
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Ω∗v1 ⊗ v−1 = v∅ ⊗ v� − v� ⊗ v∅

and so we get the equation

(Mv1, v1)(Mv−1, v−1) = (Mv∅, v∅)(Mv�, v�)− (Mv∅, v�)(Mv�, v∅)

which can be rewritten as

〈
T−1MT

〉 〈
TMT−1

〉
= 〈M〉 〈α1Mα−1〉 − 〈α1M〉 〈Mα−1〉 .

In terms of the τ functions, this is

τn+1τn−1 = τn
∂2

∂t1∂s1

τn −
∂

∂s1

τn
∂

∂t1
τn,

or, finally,

∂2

∂t1∂s1

log τn =
τn+1τn−1

τ 2
n

.

We define

τG(s, t, q, β) =
∑

Hur•G,g(µ, ν)qd sµtν
βb

b!

with the usual identification b = 2g − 2 + `(µ) + `(ν). Then we have:

Theorem IV.3. Expressed in the variables sγm, the function τG factors into the

product of |G∗| functions τγ. The function τγ depends only on the sγm, and is a τ

function of the 2-Toda hierarchy.

Proof. We will use the operator

H0 =
∑
γ∗

Hγ

on ZG.

Following Convention IV.1, we introduce the vertex operators:

Γγ±(s) = exp

(
∞∑
k=1

sγk
k
αγ±k

)
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We similarly define

Γc±(s) = exp

(
∞∑
k=1

sck
k
αc±k

)
.

and

Γ0
±(s) =

∏
γ∈G∗

Γγ±(s) =
∏
c∈G∗

Γc±(s).

Restricting to the case where we consider only T0, we note that

F0
2 =

∑
γ∈G∗

|G|
dimVγ

Fγ2 .

Using the vertex operators and equation (IV.2), we immediately have

τG(s, t, q, β) =
〈

Γ0
+(s)qH

0

eβF
0
2 Γ0
−(t)

〉
=

∏
γ∈G∗

〈
Γγ+(s)qH

γ

e
β
|G|

dimVγ
Fγ2 Γγ−(t)

〉
=

∏
γ∈G∗

τ(sγ, tγ, q,
|G|

dimVγ
β).

Thus, we see that expressed in terms of the variables sγ, the function τG becomes

a product of |G∗| tau functions of the 2-Toda hierarchy, in independent variable

sets.



CHAPTER V

Operator Expressions for Gromov-Witten theory

This chapter ties together the previous chapters to prove the main result: an

operator expression for the equivariant Gromov-Witten invariants of X . The first

step is to obtain an operator expression for the Hurwitz-Hodge integrals H•r (zi, u).

Section 5.1 briefly reviews [JPT], joint work with Pandharipande and Tseng, that

should be viewed as an extension of the ELSV formula from Hodge integrals to

Hurwitz-Hodge integrals. This result, together with the previous chapter, provides

an operator formalism for H•r (zi, u) at certain discrete values of the zi. Section 5.2

interpolates this expression to an open domain of Cn. This interpolation requires

several technical lemmas whose proofs are relegated to the appendices. Finally, the

operator expression for Hurwitz-Hodge integrals is combined with the results of the

localization procedure to produce an operator expression for the Gromov-Witten

invariants of X .

5.1 Orbifold ELSV Formula

The ELSV formula [ELSV01] relates Hodge integrals and Huritwz numbers:

Hurg(µ) =
b!

Aut(µ)

`(µ)∏
i=1

µµii
µi!

∫
Mg,`(µ)

∑g
i=0(−1)iλi∏`(µ)

j=1(1− µjψj)
.

88
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It is important to note that the left hand side is only defined when the µi are

positive integers, while the right hand side makes sense for arbitrary values of the µi.

However, since the right hand side is a rational function of the µi, the ELSV formula

also determines Hodge integrals in terms of Hurwitz numbers.

The ELSV formula has been extended in [JPT] to determine linear Hurwitz-Hodge

integrals of arbitrary abelian groups. Recall that any irreducible representation φ of

a finite abelian group R is pulled back from the standard representation U of Zr as

the group of units:

0→ K → R
φ→ Zr → 0.

Choose a preimage x ∈ R of 1 ∈ Zr, and define k = rx ∈ K, and define rk to be

the weighted partition

rk = {(r,−k), . . . (r,−k)︸ ︷︷ ︸
d/r times

}.

Since K is abelian a K∗-weighted partition is really just a K weighted partition. For

µ = {(µi, kµi )} , define an `-tuple of elements of R by

−µ = {kµ1 − µ1x, . . . , k
µ
` − µ`x}.

Note that while the parts of µ are unordered, an ordering is chosen for −µ.

Then Theorem 3 in [JPT] gives the following formula for certain Kd Hurwitz

numbers in terms of Hurwitz-Hodge integrals:

Hur◦g,K(rk, µ) =
b!

Aut(µ)
r1−g+

∑ 〈µir 〉 `(µ)∏
i=1

µ
bµir c
i⌊
µi
r

⌋
!

∫
Mg,−µ(BR)

∑∞
i=0(−r)iλφi∏`(µ)

j=1(1− µjψj)

=
|K|`(µ)b!

z(µ)
r1−g+

∑ 〈µir 〉 `(µ)∏
i=1

µ
bµir c
i⌊
µi
r

⌋
!
H0,◦
g,−µ(µ).(5.1)

We will now derive a more convenient version of this formula for our use. Suppose
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that
〈−µi

r

〉
= ai

r
, 0 ≤ ai < r. Then we have that

−µi = kµi − µix

= kµi +

(⌊
−µi
r

⌋
r + ai

)
x

= kµi +

⌊
−µi
r

⌋
k + aix,

giving the monodromy conditions −µ in terms of the cocycle description of R =

Zr ×β K.

For

r = (r1, . . . , r`(r)); ri = (ai, ki) ∈ Zr ×β K = R

we introduce the K-weighted partition

µr
i =

(
µi, ki −

⌊
−µi
r

⌋
k
)
.

Shifting the monodromy conditions of both sides of equation (5.1) by
⌊−µi

r

⌋
and

summing over genus, we see that for µ a partition with −µi mod r = ai, we have:

(5.2) H0,•
r (µ, u) =

∑
g

(
ur1/2

)2g−2 r−
∑ 〈µir 〉
|K|`(µ)

z(µr)

b!

`(µ)∏
i=1

⌊
µi
r

⌋
!

µ
bµir c
i

Hur•g,K(rk, µ
r).

We now express the function H0,•
r in terms of the Fock space formalism, by using

the operator formula we derived for the Hur•g,K(µ, ν) we derived in section IV. To

keep our formulas compact, for m ∈ Z and k ∈ K we introduce the operator α̃km

defined by:

(5.3) α̃km = αm(k −
⌊m
r

⌋
k).

Then by equation (IV.2), we have:

Hur•g,K(rk, µ
r) =

1

|K|d/rrd/r(d/r)!
1

z(µr)

〈
αr(−k)d/r

(
F0

2

)b `(µ)∏
i=1

α̃ki−µi

〉

=
1

z(µr)

〈
e
αr(−k)
|R|

(
F0

2

)b `(µ)∏
i=1

α̃ki−µi

〉
.
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Substituting this into equation (5.2) with u replaced with u/r1/2, we obtain:

(5.4) H0,•
r

(
µ,

u

r1/2

)
= u−|µ|/r−`(µ) r

−
∑ 〈µir 〉
|K|`(µ)

`(µ)∏
i=1

⌊
µi
r

⌋
!

µ
bµir c
i

〈eαr(−k)
|R| euF

0
2

`(µ)∏
i=1

α̃ki−µi

〉
.

As was the case with the usual ELSV formula, this formula evaluates Hr(z) only

when zi is an integer. The monodromy conditions on each point give the further

restrction that, if ri = (ai, ki) ∈ Zr ×β K, then zi ∼= −ai( mod r). However, Hr is a

polynomial (or, in the disconnected case, a rational function), and the orbiofld ELSV

formula provides an infinite number of evaluations, and so this formula determines

the function Hr(zr) for all values of z. Our next goal is to refine equation (5.4) to an

operator formula that does this explicitly, i.e. to interpolate the right hand side so

that it makes sense for µi a complex number.

5.2 Interpolating the Operator expression

In this section we interpolate the operator expression for Hurwitz-Hodge integrals

from the previous section, which is valid only for integers satisfying a congruency

condition, to one valid for a certain open domain of Cn. In addition to interpolating

the expression, we adapt it slightly by conjugating by an operator that fixes the

vacuum. This will not change the vacuum expectation, and will give us operators

that make the decomposition easier to see.

The strategy is as follows. We will first replace the operators from the previous

section, which only make sense for µi integers, with operators Ari(zi, u) that appear

to be formal power series, but that simplify when zi = µi in the previous section

to the operators of the orbifold ELSV formula. By studying the convergence of

the Ari(zi, u), and computing their commutators, we will eventually show that their

vacuum expectations are rational functions. Then, since the orbifold ELSV formula
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says these rational functions agree with the Hurwitz-Hodge generating functions at

infinitely many points, we will be able to deduce that they are in fact equal.

Before we introduce the key operators, we recall some preliminary notation. Recall

the Pochhammer symbol:

(x+ 1)n =
(x+ k)!

x!
=

 (x+ 1)(x+ 2) · · · (x+ n) n ≥ 0

(x(x− 1) · · · (x+ n+ 1))−1 n ≤ 0

.

From the definition, (x+1)n vanishes for −n ≤ x ≤ −1 an integer, and 1/(x+1)n

vanishes for 0 ≤ x ≤ −(n+ 1) an integer.

We will also use the notation

S(z) =
ς(z)

z
=

sinh(z/2)

z/2
.

For 0 ≤ a ≤ r − 1 and γ ∈ K∗, we define

(5.5) Aγa/r(z, u) =
z(γ(−k)r)a/r

z + a
S(|R|uz)

z+a
r

∞∑
i=−∞

ziS(|R|uz)i

(1 + z+a
r

)i
Eγir+a

(
|K|uz

)
.

The operators Aγa,r(z, u) will play the analog of the operators A(x, y) in [OP06a],

although we have made a few minor changes. First, we use z, u as the two variables,

where [OP06a] has z, zu. Additionally, we have modified their operators slightly. In

case R is the trivial group, there is only one such operator, A0
0/1, which simplifies to

A0
0/1(z, u) = S(uz)z

∞∑
i=−∞

u−iς(uz)i

(1 + z)i
E0
i (uz).

This is the same as the operator A(z, uz) from [OP06a] except for the factor of u−i.

As Ei has energy i, this change amounts to conjugating by the operator uH . Since H

and its adjoint fix the vacuum, this does not affect operator expectations of products

of the A. Furthermore, this rescaling is in many ways rather natural - it was already

used in [OP06a] to prove Proposition 9 about convergence.
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We will use a related definition: for r = (a, k) ∈ Zr ×β K = R, we define

(5.6) Ar =
∑
γ∈K∗

γ(−k)Aγa/r.

These definitions are motivated by:

Proposition V.1. Let ri = (ai, ki) ∈ Zr ×β K = Rn and zi > 0, zi ≡ −ai mod r.

Then

H•r

(
zr,

u

r1/2

)
= (u|K|)−`(r)

〈
`(r)∏
i=1

Ari(zi, u)

〉
.

We note that this proposition does not determine the Aγa/r, and our choice of

definition is not the one that follows most naturally from the orbifold ELSV formula

in the previous section. However, shortly we will see that our definition is well

suited for seeing decomposition. The relevant properties are visible now: the only

dependence on the choice of K and R appear in a global factor of γ(k), and in the

factors of |K|, but this second dependence can be absorbed by rescaling u (recall

that |R| = r|K|).

Proof. We begin by recalling Equation (5.4):

H0,•
r

(
µ,

u

r1/2

)
= u−|µ|/r−`(µ) r

−
∑ 〈µir 〉
|K|`(µ)

`(µ)∏
i=1

⌊
µi
r

⌋
!

µ
bµir c
i

〈eαr(−k)
|R| euF

0
2

`(µ)∏
i=1

α̃ki−µi

〉

when µi = −ai mod r.

Since αr(−k) and F0
2 , both annihilate the vacuum, the vacuum expectation above

(ignoring the prefactors) is equivalent to〈
`(µ)∏
i=1

e
αr(−k)
|R| euF

0
2 α̃ki−µie

−uF0
2 e
−αr(−k)
|R|

〉
.

It will be useful to change our point of view, so that the identification of ZK with⊗∧∞
2

0 V γ is more visible. By equation (4.4) we have:

αr(−k) =
∑
γ∈K∗

γ(k)αγr ,
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and similarly, expanding α̃ki−µi by its definition (5.3), we find that

α̃ki−µi =
∑
γ∈K∗

γ(−ki)γ(k)b
−µi
r cαγ−µi .

So, using Equation (4.9) to expand F0
2 , we see that

e
αr(−k)
|R| euF

0
2 α̃ki−µie

−uF0
2 e
−αr(−k)
|R|

=
∑
γ∈K∗

γ(−ki)γ(k)b
−µi
r c
(
e
α
γ
r
|R| eu|K|F

γ
2 αγ−µie

−u|K|Fγ2 e
−γ(k)α

γ
r

|R|

)
.

Since both Hγ and Hγ∗ annihilate the vacuum, we can further conjugate each

operator by cH
γ

γ , for any constants cγ, and not change the vacuum expectation. Note

that this has the effect of rescaling by cEγ all operators on
∧∞

2 V γ that change the

energy by E . We will conjugate each operator by∏
γ∈K∗

(uγ(k))
Hγ

r .

This will leave Fγ2 fixed, and rescale αγr by (uγ(k))−1 and αγ−µi by (uγ(k))µi/r. Using

m

r
+

⌊
−m
r

⌋
=
〈m
r

〉
− δ∨r (m) = −

〈
−m
r

〉
to simplify the powers of γ(k) we see that:〈∑

γ∈K∗
γ(−ki)γ(k)b

−µi
r c (uγ(k))−H

γ/r eγ(k)
α
γ
r
|R| eu|K|F

γ
2 αγ−µie

−u|K|Fγ2 e
−γ(k)α

γ
r

|R| (uγ(k))H
γ/r

〉

=

〈∑
γ∈K∗

uµi/rγ(−ki)γ(k)−a/re
α
γ
r

u|R| eu|K|F
γ
2 αγ−µie

−u|K|Fγ2 e−
α
γ
r

u|R|

〉
.

Canceling the prefactor of u with the factor of u appearing in Equation (5.4), we see

that to prove the proposition, we must show that for z = −a mod r we have

(5.7) Aγa/r(z, u) = r−〈
z
r 〉γ(−k)a/r

⌊
z
r

⌋
!

zb
z
rc

(
e
α
γ
r

u|R| eu|K|F
γ
2 αγ−ze

−u|K|Fγ2 e−
α
γ
r

u|R|

)
.

We will now investigate the term in parentheses, beginning by recalling Equation

(2.14) of [OP06a]:

euF2α−me
−uF2 = E−m(um),
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which we will use as

(5.8) eu|K|F
γ
2 αγ−ze

−u|K|Fγ2 = Eγ−z(u|K|z).

Now we consider the effect of the eα
γ
r /(u|R|) terms.

Since

[αr, E−m(w)] = ς(rw)E−m+r(w),

we see that

e
α
γ
r

u|R|Eγ−m(w)e
−αγr
u|R| =

∞∑
i=0

1

i!

[(
αγr
u|R|

)i
, Eγ−m(w)

]
e
−αγr
u|R| + Eγ−m(w)

=
∑

0≤j≤i

(
1

u|R|

)j
1

i!

(
i

j

)
[αγr , [. . . , [α

γ
r︸ ︷︷ ︸

j times

, Eγ−m(w)]] . . . ]

(
αγr
u|R|

)i−j
e
−αγr
u|R|

=
∞∑
j=0

1

j!

(
ς(rw)

u|R|

)j
Eγ−m+jr(w).

When m = z and w = u|K|z we see that ς(rw)
u|R| = zS(u|R|z). Writing −z =

a− ( z+a
r

)r, we set b = z+a
r

, and h = j − b, so that the sum becomes:

(5.9)
∞∑

h=−b

1

(h+ b)!
(zS(u|R|z))h+b Eγa−br+jr(u|K|z)

=
1

b!
(zS(u|R|z))b

∞∑
h=−b

(zS(u|R|z))h
b!

(h+ b)!
Eγa+hr(u|K|z).

Since

b!

(h+ b)!
=

1

(1 + b)h
=

1

(1 + z+a
r

)h

vanishes if b ∈ Z, b ≤ −(h+ 1), extending the sum to all h ∈ Z does not change the

value when z = −a mod r. Using b = (z + a)/r =
⌊
z
r

⌋
+ δ∨r (a), we can rewrite the

prefactor in (5.9) as (
rz

z + a

)δ∨r (a)
zb

z
rc⌊
z
r

⌋
!
S(u|R|z)

z+a
r .

Substituting this in and simplifying, we have shown (5.7), and so are done.
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Like equation (5.4), we have proven Proposition V.1 only for restricted values of

zr. Our next goal is to show that Proposition V.1 actually holds for all values of zr

in an open domain in C`(r).

The first step is see for what values of zr the left hand side actually makes sense.

When zi 6= −ai mod r, the sum in the definition of Aγai/r is infinite in both dimen-

sions, and so the energy of the operators Ari(z, u) will in general be bounded on

neither side, and hence we have no reason to suppose that the right hand side of

Proposition V.1 makes sense except as a formal power series.

In fact, the right hand side of Proposition V.1 has nice convergence properties.

In particular, we define Ω ⊂ Cn by

Ω =

{
(z1, . . . , zn) ∈ Cn

∣∣∣∣∀k, |zk| > k−1∑
i=1

|zi|
}
.

The operators Aγa/r have poles at negative integers, but away from these, we have

Proposition V.2. Let K be a compact set,

K ⊂ Ω ∩ {zi 6= −1,−2, . . . , i = 1, . . . , n}.

Then for all γ ∈ K∗, 0 ≤ ai < r, and µ, λ partitions, the series

〈
Aγa1/r

(z1, u) · · · Aγan/r(zn, u)µ, λ
〉

converges uniformly and absolutely for all sufficiently small u 6= 0.

The proof of Proposition is presented in Appendix 7.1, which follows the general

argument for the proof of Proposition 3 in [OP06a], with some modification and

expanded exposition.

As a consequence of Proposition 5.2, we see that the vacuum expectation

〈
Aγa1/r

(z1, u) · · · Aγan/r(zn, u)
〉
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is an analytic function of (z1, . . . , zn, u) in a neighborhood of the origin intersect

Ω× C∗. Hence, we may expand it as a convergent Laurent series.

It will be important for us to control the terms appearing with negative exponents.

To that end, for any ring U , we denote by U((z)) the ring of formal Laurent series

with coefficients in U and degree bounded below:

U((z)) =
{∑

i∈Z

uiz
i
∣∣∣ui ∈ U, ui = 0∀i << 0

}
.

Then we have

Lemma V.3.〈
Aγa1/r

(z1, u) · · · Aγan/r(zn, u)
〉
∈ C[u±1]((zn))((zn−1)) · · · ((z1)).

Note that this does not say that power of zn appearing in the right hand side is

bounded below - in general, it will not be. Rather, if we fix arbitrary p1, . . . , pn−1,

then the powers of zn appearing as the coefficient of zp1

1 · · · z
pn−1

n−1 will be bounded

below. However, as the pi go to infinity, the powers of zn can go to negative infinity.

Proof. The key point is that the powers of z appearing in coefficient of Eγm in Aγa/r is

bounded below by
⌊
m
r

⌋
. Indeed, the prefactors of z/(z + a) and S appearing in the

definition (5.5) contribute only positive powers of z. The ς i factor of the coefficient

of Eir+a has leading term zi, and the factor 1
(1+(z+a)/r)i

also contributes only positive

terms.

Since Eγ∗m has energy m, we see that, apart from the constant term of 1/ς(|K|uz)

appearing in Aγ0/r(z, u) which will also contribute a z−1 term, we have:

(5.10) Eγ∗a/r(z)vγµ = O(z−b
|µ|
r c),

where we are studying the growth as z → 0, and so this means that there are no

terms appearing with lower exponent.
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This immediately implies that the power of z1 appearing will be bounded below

by −1, coming from the constant term, as there are no vectors of negative energy.

Applying Equation (5.10) inductively to each zi in turn gives the result.

On Ω, we could also expand H•r as a Laurent series, in a similar manner.

Note that changing the order of the zi changes the definition of the domain Ω, and

hence the Laurent expansion. In particular, the function 1
z+w

can be expanded as a

geometric series in two different ways, depending on which of |z| and |w| is bigger:

(5.11)
1

z + w
=

1

w
− z

w2
+
z2

w3
− . . . , |z| < |w|

(5.12)
1

z + w
=

1

z
− w

z2
+
w2

z3
− . . . , |z| > |w|

Subtracting equation (5.12) from equation (5.11), we get the formal series

δ(z,−w) =
1

w

∑
i∈Z

(
− z
w

)n
which converges nowhere, but acts as a formal delta function at z = −w because it

satisfies satisfies

(5.13) (z + w)δ(z,−w) = 0.

Since the two point unstable contribution is
zizj

|R|(zi+zj) , and occurs in genus 0, we

see that swapping the order of (zi, ri) and (zi+1, ri+1), should change the Laurent

expansion of H•r (zr,
u
r1/2 ) by( u

r1/2

)−2

δri,r∨i+1

zizi+1

|R|
δ(zi,−zi+1) = δri,r∨i+1

zizi+1

u2|K|
δ(zi,−zi+1)

Comparing this with Proposition V.1 and taking note of the prefactor of (u|K|)−`(r)

suggests the following formula for the commutators of the Ari(z, u):

[Ar1(z, u),Ar2(w, u)] = δr1,−r2|K|δ(z,−w).
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We will derive this formula as a corollary of the following commutator formula for

the Aγa/r(z, u), which we will make further use of later:

Lemma V.4.

[Aγa/r(z, u),Aγ
′

b/r(w, u)] = δγ,γ′δr(a+ b)γ(k)−(a+b)/rzwδ(z,−w).

The proof of Lemma V.4 is rather technical, and we defer its proof until 7.2.

Corollary V.5.

[Ar1(z, u),Ar2(w, u)] = δr1,−r2|K|δ(z,−w).

Proof. Let r1 = (a, k1) ∈ Zr ×β R, r2 = (b, k2). Then, expanding Ar1 ,Ar2 by their

defintion (5.6), we have:

[Ar1(z, u),Ar2(w, u)] =
∑

γ,γ′∈K∗
γ(−k1)γ′(−k2)[Aγa/r(z, u),Aγ

′

b/r(w, u)]

=
∑
γ∈K∗

γ(−k1 − k2 − δ∨r (a)k)δa,b∨zwδ(z,−w)

By character orthogonality, this sum is zero if k1 + k2 6= −δ∨r (a)k, and |K|

otherwise. From the definition of R = Zr ×β K, this combines with δa,b∨ to give

|K|δr1,−r2 .

As a further corollary of Lemma V.4, we see that the left hand side of Proposition

V.1 has poles exactly where the right hand side does, and otherwise is a power series:

Corollary V.6. The series: ∏
i<j

ri=−rj

(zi + zj)

 〈Ar1(z1, u) · · · Arn(zn, u)〉

is independent of the ordering of the (zi, ri), and is an element of

∏
{i|ρi=0}

z−1
i C[u±1][[z1, . . . , zn]].
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Proof. That the series is independent of the ordering is immediate from Corollary

V.5 and Equation (5.13). Because the series is independent of ordering, to show that

it is a power series except for a factor of z−1
i for i with ri = 0, it is enough to do

so for z1. However, this follows immediately from the proof of Proposition V.3 and

Equation (5.6) expanding Ari in terms of Aγa/r.

We note that the series above is not fully symmetric in the zi, but is under the

action of Aut(r) ⊂ Sn.

Proposition V.7. The coefficients of powers of u in the right hand side of Proposi-

tion V.1,

[um] 〈Ar1(z1, u) · · · Arn(zn, u)〉 ,m ∈ Z

are rational functions in the zi, with at most simple poles along the divisors zi+zj = 0

for i, j with ri + rj = 0, and divisors zi with ri = 0.

Proof. From Corollary V.6, and the fact that expanding 1/(zi + zj) on Ω will only

introduce negative powers of zn, we see that it is enough to show that the coefficient

of zn is bounded from above. We will accomplish this by pairing any factor of z`n,

with ` positive, by a factor of u`/2, and then show that in the remaining terms the

powers of u appearing have degree bounded below.

We will consider the expansion of the A in terms of the E , and hence terms of the

form

〈Ek1(u|K|z1) · · · Ekn(u|K|zn)〉 .

These terms vanish unless
∑
ki = 0 and kn ≤ 0.

As in the definition of Aγ1/r (Equation (5.5)) the Ek appear with k = a + ri, we

see that if an = 0, we must have i ≤ 0, while if an 6= 0 we must have i ≤ −1. In
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either case, the pole at z = −a occurring in the prefactor will be canceled, and the

vacuum expectation will depend on zn only through terms of the form

(5.14) (ur)a/rS(|R|uz)
z+a
r

from the prefactor,

(5.15) exu|K|zn

from the definition of E , and

(5.16)
zn
r

(
zn + an

r
− 1

)
· · ·
(
zn + an

r
+ i+ 1

)
× (znS(|R|uzn))i

from the coefficient of Ean+ir, where the first term in the product is zn/r instead of

(zn + an)/r because we have multiplied it by the prefactor zn/(zn + an).

Now, it is clear that in term (5.15), zmn occurs with coefficient um. There is a less

obvious grouping for the terms of the form (5.14) - rewriting S as elnS , and using

the Taylor expansion for ln(1 + x), we see that the term z`n occurs with a coefficient

of up, with p ≥ `/2. Finally, to handle the zn appearing in (5.16), observe that the

first product is a polynomial in zn of degree −i, and so we can pair it with the zin

appearing, to get all negative powers of zn, except for those paired with u. We have

thus shown that all positive appearances of zn occur with a positive power of u as

well. Furthermore, the only u appearing as a negative power are those coming from

the constant term of E0, and so we are done.

From Proposition V.7 it follows easily that Proposition V.1 holds on an open set,

not just on the integers:

Theorem V.8.

H•r (zr,
u

r1/2
) = (u|K|)−`(r)

〈
`(r)∏
i=1

Ari(zi, u)

〉
.
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Proof. By Proposition 5.2 the coefficients of u on the right hand side are analytic

on Ω, and by Proposition V.7, they are actually rational. The same is true of the

coefficients of the u on the left hand side, and by Proposition V.1, the two sides agree

when zi is a positive integer congruent to −ai mod r. The set of such zi in Ω forms

a Zariski dense set, and hence the two sides are equal.

The precise definition of our operators were chosen so that they would be com-

patible with decomposition, and we illustrate this now with Theorem V.8.

Expanding

Ari(zi, u) =
∑
γ∈K∗

γ(−ki)Aγai/r(zi, u)

5.3 Global operator expression

Recall that the culmination of our localization calculation was equation (3.16):

G•d,r,s(zr, ws, u) =
∑
|µ|=d

1

z(µ)
Jr(zr, µ, u, t)Js(zs, µ, u,−t).

Combining the definition of J (3.15) with Theorem V.8 for H gives:

Jr(zr, µ, u, t) =
r
∑ 〈µir 〉−ι(r)(|K|u/t)`(µ)

t|µ|/r+#(ri /∈K)+`(r)−ι(r)

`(µ)∏
i=1

µ
bµir c
i⌊
µi
r

⌋
!

H0,•
r+ρ(µ)

(
µ, tzr,

u

tr1/2

)

=
r
∑ 〈µir 〉−ι(r)(|K|u/t)−`(r)
t|µ|/r+#(ri /∈K)+`(r)−ι(r)

`(µ)∏
i=1

µ
bµir c
i⌊
µi
r

⌋
!

〈`(r)∏
i=1

Ari

(
tzi,

u

t

) `(µ)∏
j=1

Aρ(µj)

(
µj,

u

t

)〉
.

Define the operator P∅ to be projection onto the vacuum vector. Then, taking

the adjoint of the operator definition of Js(zs, µ, u,−t), we can write G• as a single
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vaccuum expectation:

(5.17) G•d,r,s(zr, ws, u) =

∑
|µ|=d

1

z(µ)

r
∑ 〈µir 〉−ι(r) ( |K|u

t

)−`(r)
t|µ|/r+#(ri /∈K)+`(r)−ι(r)

`(µ)∏
i=1

µ
bµir c
i⌊
µi
r

⌋
!

 s
∑ 〈µis 〉−ι(s)

(
|K|u
−t

)−`(s)

(−t)|µ|/s+#(si /∈K)+`(s)−ι(s)

`(µ)∏
i=1

µ
bµis c
i⌊
µi
s

⌋
!


〈∏

Ari

(
tzi,

u

t

) `(µ)∏
j=1

Aρ(µj)

(
µj,

u

t

)
P∅

`(µ)∏
j=1

Aσ(µj)

(
µj,

u

−t

)∗∏A∗si (−twi,−ut )
〉
.

We introduce some definitions to simplify Equation 5.17. We first package every-

thing pertaining to µ into one operator:

(5.18) Qd =
∑
|µ|=d

1

z(µ)
r
∑ 〈µir 〉t−|µ|/rs∑ 〈µis 〉(−t)−|µ|/s

`(µ)∏
i=1

µ
bµir c
i⌊
µi
r

⌋
!

`(µ)∏
i=1

µ
bµis c
i⌊
µi
s

⌋
!

 `(µ)∏
j=1

Aρ(µj)

(
µj,

u

t

)
P∅

`(µ)∏
j=1

Aσ(µj)

(
µj,

u

−t

)∗ .
In addition, we modify the operators A to contain the appropriate prefactors. We

define

Aγ
a/r(z) =

1

t

(
t

r

)a/r
tδr(a)

|K|u
Aγa/r(tz, u/t)(5.19)

=
(tγ(−k))a/r

tδ∨r (0)|K|u
tz

(tz + a)
S(|R|uz)

tz+a
r

∞∑
i=−∞

(tzS(|R|uz))i

(1 + tz+a
r

)i
Eγir+a(|K|uz),

and similarly,

Ari(z) =
∑
γ∈K∗

γ(−ki)Aγ
a/r(z).

With these definitions, we see that Equation 5.17 simplifies to:

G•d,r,s(zr, ws, u) =

〈∏
Ari(zi)Qd

∏
A∗si(wi)

〉
.

We continue now by investigating the operator Qd, and showing that it can sim-

plify vastly.
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Note that since the inner produce is Hermitian, and (αγn)∗ = αγ−n, it follow imme-

diately that (αkn)∗ = α−k−n.

Now, by Equation (5.7), we have that

Aρ(µj)

(
µj,

u

t

)
= r−〈

µj
r 〉
⌊µj
r

⌋
!

µ
bµjr c
j

∑
γ∈K∗

γ(−k0)

〈−µj
r

〉
γ(−ρ(µj))e

tα
γ
r

u|R| e
u|K|
t
Fγ2 αγ−µje

−u|K|
t
Fγ2 e−

tα
γ
r

u|R| .

The prefactors here will cancel with some of those in (5.18). Furthermore, recalling

the definition of ρ(µj):

ρ(µj) =

(
−d(µj),−kj − µjL +

⌊
−µj
r

⌋
k0

)
.

we see

γ(−ρ(µj)) = γ(kj)γ(L)µjγ(−k0)

⌊−µj
r

⌋
.

The last factor here can combine with one in (5.18). Furthermore, as the last two

exponentials fix the vacuum vector, and operators with γ 6= γ′ commute, all of the

exponentials will cancel except for an initial appearance of each for each γ. Even

if no terms corresponding to a given γ appear, we can include the factor, as it will

simply annihilate the vacuum. Hence, we can group these exponents together into

one factor of:

e
tαr(0)
u|R| e

u
t
F0

2

Similar arguments hold for the operators over ∞, and so, defining:

P̃d =

`(µ)∏
j=1

(∑
γ∈K∗

γ(kj)γ(L)µjγ(k0)
µj
r αγ−µj

)
P∅

`(µ)∏
j=1

(∑
γ∈K∗

γ(kj)γ(k∞)
µj
s αγ−µj

)∗

we have

Qd =
∑
|µ|=d

t−|µ|/r(−t)|µ|/s 1

z(µ)
e
tαr(0)
u|R| e

u
t
F0

2 P̃de
u
−tF

0
2 e
−tα−s(0)

u|R| .
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The notation P̃d stems from the fact that P̃d will be a twisted version of Pd,

projection on to the energy d eigenspace of ZK :

Pd =
∑
|µ|=d

1

z(µ)

`(µ)∏
j=1

α−µj(−ki)P∅
`(µ)∏
j=1

αµj(ki)

=
∑
|µ|=d

1

z(µ)

`(µ)∏
j=1

(∑
γ∈K∗

γ(kj)α
γ
−µj

)
P∅

`(µ)∏
j=1

(∑
γ∈K∗

γ(−kj)αγ−µj

)
.

Indeed, we see that apart from the γ(L), γ(k0) and γ(k∞) terms, this is exactly P̃d;

if L = k0 = k∞=0, then P̃d = Pd. Since these factors are exactly what capture the

gerbe structure of X if our gerbe were trivial, with the trivial cocycle description,

they would all be zero. So the twisting of our projection operator corresponds to the

twisting of the gerbe.

To understand this twisting better, it is convenient to understand the usual pro-

jection operator in terms of the decomposition of ZK =
⊗∧∞

2 V γ:

Pd =
∑

∑
dγ=d

⊗
γ∈K∗

Pγ
dγ

(5.20)

=
∑

∑
dγ=d

⊗
γ∈K∗

 ∑
|µγ |=dγ

∏
αγ−µγj

Pγ
∅

∏
αγ
µγj

 .

Now, since our twisted projection operator differs from Pd by multiplying αγ−µj by(
γ(L)(γ(k0)/t)1/r

)µj , and similarly with the operators over infinity, we see from (5.20)

that:

P̃d =
∑

∑
dγ=d

⊗
γ∈K∗

γ(k0)dγ/rγ(L)dγγ(k∞)dγ/sPγ
dγ
.

Since P̃d acts diagonally in the vλ basis, and the operator F0
2 does as well, they

commute. Thus, expanding the α−r(k0) in terms of αγ in Equation (5.18), we have:

Qd = t−|µ|/r(−t)|µ|/se
tαr(0)
u|R| P̃de

−tα−s(0)

u|S| .
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Introducing

H̃ =
∑
d

dP̃d

and defining

G•r,s(zr, ws, u, q) =
∑
d

G•d,r,s(zr, ws, u)qd,

we have that

G•r,s(zr, ws, u, q) =

〈∏
Ari(zi)e

tαr(0)
u|R|

(
q

t1/r(−t)1/s

)H̃
e
−tα−s(0)

u|S|
∏

A∗si(wi)

〉
.

Recall that G•r,s includes, by definition, unstable contributions, and hence is not

the true Gromov-Witten potential. However, this is easily remedied. The unstable

contributions, defined in Equation (3.2) result from the degree 0, genus 0, one and

two point functions, and hence all terms here include a zi or wi with a non-positive

exponent. Thus, if we restrict our attention to only positive powers of the variables,

we will not include any unstable contributions, and hence recover the usual Gromow-

Witten potential.

Denote by Ar[i] = [zi+1]Ar(z). Then, we have

∑
g∈Z

∑
d≥0

u2g−2qd
〈∏

τki(0ri)
∏

τ`j(∞sj)
〉•
g,d

=

〈∏
Ari [ki]e

tαr(0)
u|R|

(
q

t1/r(−t)1/s

)H̃
e
−tα−s(0)

u|S|
∏

A∗sj [`j]

〉
.

Additionally, if we define

τ(x, x∗, u) =
∑
g∈Z

∑
d≥0

u2g−2qd
〈

exp
(∑

xi(r)τi(0r) +
∑

x∗j(s)τj(∞s)
)〉•

g,d

then we have

τ(x, x∗, u) =

〈
e
∑
xi(r)Ar[i]e

tαr(0)
u|R|

(
q

t1/r(−t)1/s

)H̃
e
−tα−s(0)

u|S| e
∑
x∗j (s)A∗s [j]

〉
.



CHAPTER VI

Decomposition and Integrable Hierarchies

6.1 Decomposition

We now present a change of variables that expresses the τ function for X as a

product of τ functions for Xeff = Cr,s.

Recalling that

A(a/r,k)(z) =
∑
γ∈K∗

γ(−k)Aγ
a/r(z),

so that

Aγ
a/r(z) = γ(k0)δ

∨
r (a)

we define

yi(a/r, γ) =
∑
k∈K

γ(k)xi(a/r, k),

so that ∑
k∈K

xi(a/r, k)A(a/r,k)[i] =
∑
γ∈K∗

yi(a/r, γ)Aγ
a/r(z)[i].

Then, expressed in the y variables, we have that

τ(y, y∗, u) =

〈
e
∑
yi(a/r,γ)Aγ

a/r
[i]

(∑
γ∈K∗

e
tα
γ
r

u|R|

)
qH̃

(∑
γ∈K∗

e
−tαγ−s
u|S|

)
e
∑
y∗j (b/s,γ)Aγ∗

b/s
[j]

〉

=
∏
γ∈K∗

〈
e
∑
yi(a/r,γ)Aγ

a/r
[i]e

tα
γ
r

u|R|
(
qγ(k0)1/rγ(k∞)1/sγ(L)

)Hγ
e
−tαγ−s
u|S| e

∑
y∗j (b/s,γ)Aγ∗

b/s
[j]

〉

107
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We can see decomposition on the operator level as follows: each factor in the

product above differs only slightly from the operator expression for when K = 0.

The factor of q on each has been multiplied by γ(k0)1/rγ(k∞)1/sγ(L), Aγ
a/r[i] differs

from Aa/r[i] by a factor of γ(−k0)a/r, and u has been multiplied by |K|.

The first two factors together are exactly turning on discrete torsion, while the

third factor is a physically meaningless “dilaton shift.”

Given the decomposition, for the rest of the section we will work in the effective

case. To that extend, let

M = e
∑
xi(a/r)Aa/r[i]e

tαr
ur qHe

−tα−s
us e

∑
x∗j (b/s)A∗b/s[j],

. so that τ = 〈M〉. Then, to show that τ is a τ function of the 2-toda hiearchy, we

must show that we can conjugate M to the form Γ+(t)MΓ−(s), for appropriate M .

This conjugation will give a linear change of variables relating the xi and x∗i variables

of equivariant Gromov-Witten theory to the standard ti, si variables of the 2-Toda

hierarchy.

However, before showing that this conjugation exists, we will derive an explicit

form of the lowest equation of the hierarchy by hand. An ingredient we will use in

this derivation is the equivariant string equation, which we derive in the next section.

6.2 Equivariant string and divisor equations

The equivariant string equation will follow from the equivariant divisor equation.

Recall that our generating functions include unstable contributions, and so the usual

proof would require modifying. We will derive it from the operator formalism instead.

The equivariant divisor equation describes insertions of the class of a point with

no psi insertions. Suppose that r is an n tuple, and let r̃ be the n+ 1-tuple obtained

by adding 0 in the first position. Then we have
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Proposition VI.1.

[z1
0 ]G•d,̃r,s(zr̃, ws, u) =

(
d− 1

24
+ t
∑

zi

)
G•d,r,s(zr, ws, u).

Proof. Using the operator formula ?? for Gd, we see that:

[z1
0 ]G•d,̃r,s(zr̃, ws, u, q) =

〈∏
A0[0]Ari(zi)e

tαr(0)
ur P̃de

−tα−s(0)

us

∏
A∗si(wi)

〉
,

and so our first goal is to understand A0/r[0], the coefficient of z in A0. By

equation 5.19, we have

A0/r(z) =
1

u
S(ruz)

tz
r

∞∑
i=−∞

(tzS(ruz))i

(1 + tz
r

)i
Eir(uz).

We see that A0/r[0] will have contributions from i ≤ 1. In particular, examining

the i = 1 and i = 0 terms, since

Er(uz) = αr +O(z)

and

E0(uz) =
1

u
z−1 + C + (H − 1

24
)uz +O(z2),

we have

A0/r[0] =
t

u
αr + C − 1

24
+ . . .

where the dots are terms that have positive energy, and thus have an adjoint that

annihilates the vacuum.

Note that in the case r = 1, this differs from the expression in [OP06a] in that α1

is multiplied by t
u
, which agrees with the rescaling of the operators we have made.

Since the operators C and H both fix the vacuum, we can replace our operator

with t
u
αr +H − 1

24
, and so we have

[z1
0 ]G•d,̃r,s(zr̃, ws, u, q) =

〈(
t

u
αr +H − 1

24

)∏
(Ari(zi)e

tαr(0)
ur P̃de

−tα−s(0)

us

∏
A∗si(wi)

〉
.
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Now, since

[αr, Ea+ir(uz)] = ς(urz)Ea+(i+1)r(uz)

we have[
t

u
αr,

∞∑
i=−∞

(tzS(ruz))i

(1 + tz+a
r

)i
Eγir+a(uz)

]
=

∞∑
i=−∞

(a+ ri+ tz)
(tzS(ruz))i

(1 + tz+a
r

)i
Eγir+a(uz)

where we have used the identity (1 + x+ y)(1 + x)y = (1 + x)1+y and reindexed the

sum. Then, since

[H, Ea+ir(uz)] = −(a+ ir)Ea+ir(uz)

it follows immediately that[
t

u
αr +H,Aa/r(z)

]
= tzAa/r(z).

Then, since [H,αr] = −rαr and HPd = dPd, we have that(
t

u
αr +H

)
e
tαr
ur = e

tαr
ur HPd = de

tαr
u|R| P̃d,

and so commuting t
u
αr +H to the center proves the result.

The equivariant string equation describes insertions of the identity in equivariant

cohomology with no psi insertions. However, due to localization, we can express this

in terms of insertions of 0(0, 0) and ∞(0, 0):

1 =
0(0)−∞(0)

t
.

The following differential operator, then, inserts τ0(1):

(6.1) ∂ =
1

t

(
∂

∂y0(0)
− ∂

∂y∗0(0)

)
.

To obtain an explicit form for the lowest equation of the hierarchy, we will use

the string equation in the following form
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Proposition VI.2.

〈
eτ0(1)

∏
τki(0(ai/r))

∏
τ`j(∞(bj/s))

〉•
g,d

=
[∏

zi(ai/r)
ki+1

∏
wj(bj/s)

`j+1
]
e
∑
zi(ai/r)+

∑
wj(bj/s)G•g,d(z, w, u)

6.3 Explicit form of the lowest equation

Recall that one form of the lowest equation in the 2-Toda hiearchy was:

〈
T−1MT

〉 〈
TMT−1

〉
= 〈M〉 〈α1Mα−1〉 − 〈α1M〉 〈Mα−1〉 ,

and so, to find this equation for Gromov-Witten theory, we need the operator that

contain α1. Using the definition of A (5.19) and the same reasoning in the previous

section, we see that

[z]A1/r(z) =
t1/r

u
α1 + . . .

where the . . . are terms of positive energy, and hence whose adjoint annihilates the

vacuum. We have also assumed that r > 1, if r = 1, then there is no t, and there

is also a constant term. Since r = 1 is exactly the case treated by Okounkov and

Pandharipande, we will assume from here that r, s > 1. In that case, we have, we

have that

∂

∂x0(1/r)
τ(x, x∗, u) = 〈(t

1/r

u
α1)M〉

and

∂

∂x∗0(1/s)
τ(x, x∗, u) = 〈M(

t1/s

u
α−1)〉

and so we have

(6.2) τ
∂2

∂x0(1/r)∂x∗0(1/s)
τ − ∂

∂x∗0(1/s)
τ

∂

∂x0(1/r)
τ =

t1/r+1/s

u2
〈T−1MT 〉〈TMT−1〉,

and so we must investigate the conjugation of M by powers of T .
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Now, T−1Er(z)T = ezEr(z), as follows from the definition, with some care taken

in the case of E0. From this, it is immediate that

T−1Aa/r(z)T = euzAa/r(z)

. Furthermore, it is clear from the definitions that T commutes with the αk and that

T−nHT n = H + nC +
n2

2
.

Since C commutes with the A and the αk and annihilates the vacuum, its appearance

will have no effect.

First, note that the effect of conjugating the A by T will multiply each operator by

ezu, but, by our form of the string equation, Proposition VI.2, doing this is equivalent

to applying the operator eu∂. Furthermore, we can replace T−nqHT n with qn
2/2qH ,

and so we have that

(6.3)
〈
T−nMT n

〉
= qn

2/2enu∂τ

and so 〈
T−1MT

〉 〈
TMT−1

〉
= qeu∂τe−u∂τ.

Putting this together with equation (6.2), and modifying using the same simpli-

fication of the 2-Toda equation as before, we get:

Theorem VI.3. Suppose, r, s > 1. Then the τ function satisfies the following 2-

Toda equation:

∂2

∂x0(1/r)∂x∗0(1/s)
log τ =

qt1/r+1/s

u2

eu∂τe−u∂τ

τ 2
.
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6.4 Change of Variables

In this next two sections we show that M can be conjugated to the required form,

and show the resulting linear change of variables from the Gromov-Witten times to

the standard 2-Toda times. We will treat all our matrices as operators acting on V ,

not on
∧∞

2 V .

More particular, we want to show that there exists an upper triangular matrix

Wr, called the dressing matrix, so that

W−1
r exp

(∑
xi(a/r)Aa/r[i]

)
Wr = Γ+(t)

this gives a linear change of variables between the 2-Toda time variables t and the

Gromov-Witten variables xi(a/r). Taking the adjoint replacing t with −t, we set

W †
r = W ∗

r |t7→−t

so that

W †
r exp

(∑
x∗i (a/r)A

∗
a/r[i]

) (
W †
r

)−1
= Γ−(s)

Then, we will have that

〈M〉 =
〈
WrΓ+(t)MΓ−(s)W †

s

〉
,

with

M = W−1
r e

tαr
ur qHe

−tα−s
us

(
W †
s

)−1
.

Since Wr and W †
r are upper triangular, we have

W ∗
r v∅ = W †

r v∅ = v∅.

If, additionally, Wr and W †
r were unitriangular, we would have

(6.4) W ∗
r T

nv∅ = W †
r T

nv∅ = T nv∅,



114

which would imply

τn =
〈
T−nMT n

〉
=
〈
T−nWrΓ+(t)MΓ−(s)W †

sT
n
〉

=
〈
T−nΓ+(t)MΓ−(s)T n

〉
,

and hence that the τn were τ functions of the 2-Toda hierarchy. We could, however,

choose a Wr that is upper triangular but not unitriangular. This would leave τ0,

our original Gromov-Witten τ function, unchanged. However, this would change the

functions τn by multiplying it by some function of q, u, t. Note, though, that a priori

the τn had nothing to do with Gromov-Witten theory; we related it to Gromov-

Witten theory through equation (6.3): τn = qn
2/2enu∂τ .

Multiplying W by a diagonal matrix, then, well keep τ0 unchanged, but give us a

different change of variables to the standard 2-Toda times, and multiply τn by some

function.

We will be concerned only the operators Aa/r[k] for k ≥ 0. These have the form

Aa/r[k] =


ta/r

au
αa+kr + . . . a 6= 0

t
u
α(k+1)r + . . . a = 0

where the dots stand for terms of larger energy. Hence, there exists an upper trian-

gular matrix Wr so that

W−1
r A1/r[0]W = α1.

Note that W is not unique - if we multiply Wr by an element that commutes with

α1, the result above would still hold.

Since the Aa/r[k] commute by (V.4), and have the form above, if we define

Ãa/r[k] = WAa/r[k]W−1

then we must have

(6.5) Ãa/r[k] =
∑
`≤k+1

ca,k,`(u, t)αa+`r,
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since the Ãa/r[k] must commute with Ã1/r[0] = α1.

In fact, we have the following lemma

Lemma VI.4. The coefficients ca,k,`(u, t) are monomials in u, t.

The proof of Lemma VI.4 is rather technical, and makes use of the hypergeometric

function material found in the appendices. We will postpone its proof until the next

subsection. However, once this lemma is in hand, the change of variables follows

easily. If the ca,k,`(u, t) are monomials, they are identical to their asymptotics as

u→ 0. So the full change of variables is equivalent to the change of variables in the

u→ 0 limit. But by Equation (5.19), in the u→ 0 limit, we have:

Aa/r(z) ∼ (t)a/r

tδ∨r (0)u

tz

(tz + a)

∞∑
i=−∞

(tz)i

(1 + tz+a
r

)i
αir+a

and in the u→ 0 limit the operator Wr is diagonal, and we have, for a 6= 0:

∑
k≥0

zk+1Ãa/r[k] =
ta/r

ut

∑
n≥0

(tz)n+1∏n
i=0(i+ tz+a

r
)
αa+nr

and for a = 0: ∑
k≥0

zk+1Ã0/r[k] =
1

u

∑
n≥1

(tz)n∏n
i=1(i+ tz

r
)
αnr.

6.5 Proof of the Monomial lemma

We now present the proof of Lemma VI.4, following [OP06a].

When tz = 0 mod r and tw = −a mod r, we have that:

A0/r(z)Aa/r(w) =
tz
r

!( tw+a−r
r

)!

( tz+tw+a−r
r

)!

(z + w)
tz+tw+a−r

r

z
tz
r w

tz+tw+a−r
r

Aa/r(z + w)

From Equation (5.19), we see that if we assign the grading

deg u = deg t = − deg z = r,
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then Aa/r is homogeneous of degree a + (δa,0 − 2)r. From this, we see that the

operator Aa/r[k] has degree a+ kr − r(1− δa,0).

The first thing to note is that, since we are viewing our operators as acting on V ,

we can restate equation (6.5) as

(6.6) Aa/r[k] =
∑
`≤k

ca,k,`(u, t)Aa/r[0]A0/r[0]`,

and find, since A0/r[0] has degree 0, that the degree of ca,k,`(u, t) is kr. Using this

fact, we can begin to show the ca,k,` are monomials.

Proposition VI.5. For k ≥ 0, ` > 0 the coefficients ca,k,` are monomials.

Proof. Since everything is homogenous, we set u = 1 for convenience. By equa-

tion 6.6, it is enough to show that the expansion of Aa/r[k] into terms of the form

Aa/r[0]A0/r[0]j has monomial coefficients for j ≥ 0. Thus, by induction, it is enough

to show that the coefficients ba/r,k,`(t) in the expansion

A0/r[0]Aa/r[k] =
∑
k≤`+1

ba/r,k,`(t)Aa/r[`]

are monomials, or equivalently to find the coefficient of zw`+1 in A0/r(z)Aa/r(w).

Expanding this product, we have:

(6.7) A0/r(z)Aa/r(w) =
ta/r

tδ∨r (a) (|K|u)2

tw

(tw + a)
S(|R|uz)

tz
r S(|R|uw)

tw+a
r ×

∞∑
i,j=−∞

(tzS(|R|uz))i

(1 + tz
r

)i

(tzS(|R|uw))j

(1 + tw+a
r

)j
Eir(|K|uz)Ejr+a(|K|uw).

Using Ea(z)Eb(w) = e(aw−bz)/2Ea+b(z + w), we can rewrite the second line as

∑
m∈Z

Emr+a (|K|u(z + w))

×
∑
n∈Z

e|K|u((m−n)rw−nrz−az))/2 z
m−nS(|R|uz)m−n

(1 + z
r
)m−n

wnS(|R|uw)n

(1 + w+a
r

)n
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=
∑
m∈Z

(ς(|R|uz)/|R|u)me|K|u(mwr−az)/2

(1 + z
r
)m

Emr+a (|K|u(z + w))

×
∑
n∈Z

(− z
r
−m)n

(1 + w+a
r

)n

(
1− e−|R|uw

1− e|R|uz

)n
where we have used 1

(1+ z
r

)m−n
= (−1)n (−z/r−m)n

(1+ z
r

)m
, and expanded the S. Now, the

second sum over S can be expressed in terms of Gauss’s hypergeometric functions:

(6.8) 2F1

 − z
r
−m, 1

1 + w+a
r

;
1− e−|R|uw

1− e|R|uz

+ 2F1

 −w+a
r
, 1

1 + z
r

+m

;
1− e|R|uz

1− e−|R|uw

− 1.

The hypergeometric series converge when the argument has size less than one,

hence the first converges for |w| < |z| � 1, while the second converges for |z| <

|w| � 1. Therefore, we can find the coefficient we want as the sum of a contour

integrals over two separate domains. However, if m > 0, then each function will

converge for |z| = |w| = ε � 1, and we deform both integrals to this common

contour. Then, Lemma VII.4 applies directly, and we can replace (6.8) with:

(1− v)m+ z+w+a
r

(−v)
w+a
r

Γ(1 + w+a
r

)Γ(1 + z
r
)

Γ(1 + z+w+a
r

)

where

v =
1− e−|R|uw

1− e|R|uz
.

For cancellation purposes, it is convenient to further rewrite (6.8) with:

e|K|u(az−wm)/2 ς(|R|u(w + z))m

(1 + z+w+a
r

)m

(1 + z
r
)m

ς(|R|uz)m
ς(|R|u(w + z))

z+w+a
r

ς(|R|uw)
w+a
r ς(|R|uz)

z
r

Γ(1 + w+a
r

)Γ(1 + z
r
)

Γ(1 + z+w+a
r

)

where we have used Γ(1 + x+m) = Γ(1 + x)(1 + x)m.

Substituting this in, we see that
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(6.9) A0/r[0]Aa/r[k] =
1

(2πi)2

∫∫
|z|=|w|=ε

dzdw

z2wk+2
×(

1 + w
z

) tz+tw+a−r
r(

w
z

) tw+a−r
r

Γ(w+a
r

)Γ(1 + z
r
)

Γ( z+w+a
r

)
Aa/r(z + w) + · · ·

here the terms need some explanation.

The fractional powers of w
z

are defined using the cut w/z /∈ (−∞, 0]. Since w, z

are small on the contour of integration, the singularitiy at z = −w is still integrable.

Finally, the negative energy terms of Aa/r(z + w) are nonsingular at 0, and so have

unambiguous extension. The · · · represent terms of non-negative energy, since the

expansion of Aa/r here is ambiguous.

Expanding (z + w)`+1 by the binomial coefficient, using the definitions, and in-

serting a few factors of t that cancel we see that this gives:

(6.10) ba/r,k,`(t) =
1

(2πi)2

`+1∑
a=0

(
`+ 1

a

)∫∫
|z|=|w|=ε

dzdw

z2−awk+a+1−`×(
1 + tw

tz

) tz+tw+a−r
r(

tw
tz

) tw+a−r
r

Γ( tw+a
r

)Γ(1 + tz
r

)

Γ( tz+tw+a
r

)

which is indeed a monomial in t of degree 1 + k − `.

We can deduce that all the ca,k,` are monomials for all ` from the case for positive

` as follows. Define the operator

Dr = W−1
r

(
t

u
αr +H − 1

24

)
Wr.

Then, since [
t

u
αr +H,Aa/r(z)

]
= tzAa/r(z),

we have that

(6.11)
[
Dr, Ãa/r[k]

]
= tÃa/r[k − 1].
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Furthermore, since t
u
αr + H − 1

24
is exactly the nonpositive energy part of A0/r[1],

we have that Dr = αr plus terms of positive energy.

Since [Dr, α1] commutes with α1, we see that Dr must have the form

Dr = αr +
∑
n>0

dr,n(u, t)Hα−n.

The coefficients dr,n are uniquely determined by 6.11 from the ca,k,` with ` > 0.

These, in turn, determine the rest of the ca,k,`.



CHAPTER VII

Proofs of Technical Lemmas

7.1 Convergence of A

We follow the arguments of the [OP06a] closely, but give a complete and self

contained presentation.

The main result we will want is that, for all compact K ⊂ Ω, and all u sufficiently

small, the matrix elements

(
n∏
i=1

Aγiai/r(zi, u)vν , vλ)

converge absolutely and uniformly.

First, we note that we can really work with just one γ at a time - the operators

for different γi commute, and so the matrix element above will break into

∏
γ∈K∗

(

nγ∏
i=1

vγν , vλ).

7.1.1 Review of Lemmas

In this section we present the proofs of several lemmas we needed to show conver-

gence. They are essentially directly from [OP06a], but we have included them, with

slightly expanded proofs, for completeness.

Lemma VII.1. Let ν be a partition of k. Then for any l, there are at most k+ l+ 1

120
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partitions λ of l with

(Aγa/r(z)vν , vλ) 6= 0.

Proof. The operator Aγa/r(z, u) is a weighted sum of operators Eγm(z), which add or

subtract a border strip of size |m|. There are at most |ν| ways of subtracting a border

strip, in case ν is larger, and m+ `(ν) ≤ |λ| ways of adding a border strip of size m,

in case λ is larger. The operator Eγ0 (z) acts diagonally in the vν basis, and we have

included the +1 term to handle the case ν and λ are both empty.

The following lemma, which appears in [OP06a] as Lemma 5, bounds the size of

the matrix elements of the operators Er(z):

Lemma VII.2. For any two partitions ν, λ, if |ν| 6= |λ|, then

|(E|ν|−|λ|(z)vν , vλ)| ≤ exp

(
|ν|+ |λ|

2
|z|
)
.

If |ν| = |λ|, but ν 6= λ, then

(E0(z)vν , vλ) = 0,

and if ν = λ we have ∣∣∣∣(E0(z)vν , vλ)−
1

ς(z)

∣∣∣∣ ≤ |ν| exp (|ν||z|) .

Proof. Recall the definition:

Er(z) =
∑
k∈Z+ 1

2

ez(k−
r
2

)Ek−r,k +
δr,0
ς(z)

.

Recall also the action of Ek−r,k in the Maya diagram representation of ν. When

r 6= 0, this action is as follows. If the circle marked k is empty, or the circle marked

k − r is full, then Ek−r,kvν = 0. Otherwise, Ek−r,k sends vν to ±vµ, where µ is the

partition whose Maya diagram is obtained from that of ν by moving the stone in

circle k to circle k − r.
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For r = 0, the operator Ek,k acts by zero if the kth circle of the Maya diagram for

λ is unchanged from the Maya diagram for the empty partition, and acts by the sign

of k if the kth circle has been changed from that of the vacuum. Thus, we see that

E0(z) acts diagonally in the vλ basis, and the lemma holds if |λ| = |ν| but λ 6= ν.

Setting r = |ν| − |λ|, we see that there if r 6= 0, there is at most one k such that

Ek−r,k sends vν to vλ. For this k, consider the circles marked k and k − r on the

Maya diagrams for ν and λ. At k, exactly one of µ and λ must have a stone; at k−r,

the other of ν, λ will have a stone. Thus, regardless of whether k, k − r are positive

or negative, at these two spots one of ν or λ will differ from the vacuum vector. If

k, k− r have the same sign, each partition will agree with the vacuum vector at one

spot and differ at the other, while if k and k − r have the same signs, then one of

the partitions will differ from the vacuum vector at both spots.

When the Maya diagram for µ differs from the vacuum vector at spot k, in the

corresponding Russian diagram of µ lying above the Maya diagram there is a strip of

cells lying directly above the interval from k to 0 that contains |k|+ 1/2 cells. So, if

k, k− r have the same sign then by the preceding paragraph we have |k|+ |k− r| <

|ν|+ |λ|, by taking the corresponding strips. If, on the other hand, k and k− r have

the same sign, then inside a single partition we have two strips of sizes |k|+ 1/2 and

|k− r|+ 1/2. These two strips overlap in exactly one square, the one directly above

the origin. So we have |k|+ |k − r| ≤ |ν|+ |λ|, with equality occurring when one of

ν, λ is a border strip and the other one is empty.

So regardless of the signs of k and k − r, we have∣∣∣k − r

2

∣∣∣ ≤ ∣∣∣∣k2
∣∣∣∣+

∣∣∣∣k − r2

∣∣∣∣ ≤ |λ|+ |ν|2

and so if r 6= 0 the lemma holds.

Finally, in case ν = λ, we note that, for any circle k that so that Ek,kvν 6= 0, there
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is a box in the Russian diagram above the Maya diagram. These boxes are distinct,

except possibly the box above the origin. So, unless ν = � is the partition of 1, we

see that the number of k with Ek,kvν 6= 0 is less than or equal to |ν|, and as for each

such k we have |k| < |ν|, we have that the lemmas holds in this case.

Finally, in case ν = �, we have that

|(E0(z)v�, v�)− 1

ς(z)
| = |ez/2 − e−z/2| < e|z|.

Lemma VII.3. For fixed k0, kn ∈ Z, the series

∑
k1,...,kn≥0

n∏
i=1

z
ki−ki−1

i

(di)ki−ki−1

converges absolutely and uniformly on compact subsets K ⊂ Ω for all values of di /∈ Z.

Proof. If we factor out the terms including k1, what we have is:

(7.1)
∑
k1≥0

(z2/z1)k1

(d1)k1−k0(d2)k2−k1

Since the di /∈ Z, there are no poles from the denominator, and since on Ωz2/z<1,

by the ratio test the factor (7.1) converges absolutely and uniformly on compact sets.

We study this function with respect to k2.

Consider the series

(7.2)
∑
k1≥0

wk1

(1)k1+1(1)k2−k1+1

=

k2∑
k1=0

wk1

k1!(k2 − k1)!
+
∑
k1>k2

(k1 − k2)!wk1

k1!

with w = |z1/z2|.

On the one hand, taking n derivatives with respect to w changes the series to

∑
k1≥n

wk1−n

(1)k1−n+1(1)k2−k1+1

=
∑
k1≥0

wk1

(1)k1+1(1)(k2−n)−k1+1

,
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and so for n large enough series (7.2) bounds series (7.1).

On the other hand, using the right hand side of (7.2), we see by the binomial

theorem that the first sum is equal to

(1 + w)k2

k2!

and that we can bound the second series by

1

k2!

wk2+1

1− w
.

So on compact sets inside Ω, the sum with respect to k1 behaves like

1

k2!

(
|z1|+ |z2|
|z2|

)k2

.

Then, the sum of the original series with respect to z1 and z2 behaves like

∑
k2≥0

1

k2!

(
|z1|+ |z2|
|z2|

)k2 (|z2|/|z3|)k2

(d3)k3−k2

=
∑
k2≥0

1

1k2+1(d3)k3−k2

(
|z1|+ |z2|
|z3|

)k2

which is of the form (7.1), and so converges absolutely and uniformly since on Ω, |z1|+

|z2| < |z3|. Iterating this argument, the lemma is proven.

7.1.2 Proof of main convergence result

First, we expand the sum as a sum over all intermediate partitions, λ = µ0, µ1, . . . , µn =

ν (note that due to a typo in [OP06a], this is the opposite order of the partitions

present there) :(
n∏
i=1

Aγai/r(zi, u)vν , vλ

)
=

∑
ν=λ0,λ1,...,λn=λ

n∏
i=1

(
Aγai/r(zi, u)vλi , vλi−1

)
Let |λi| = ki, and define bi by bi/r =

〈
kn−

∑
j>i aj

r

〉
. Then the matrix element

above is zero unless ki = bi mod r, and so we define `i so that ki = bi + r`i. Then

we have that

ki − ki−1

r
= `i − `i−1 +

bi − bi−1

r
= `i − `i−1 − δ(bi < bi−1) +

ai
r
.
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Now, for fixed λi with |λi| = ki, we consider the term
(
Aγai/r(zi, u)vλi , vλi−1

)
appearing in the product above. Fixing a ki−1, we expand the definition of A, taking

the one relevant E term. Bounding the number of possible λi−1 using Lemma VII.1,

and the matrix element of E by Lemma VII.2, we have:

(7.3)

∣∣∣∣∣∣
∑

|λi−1|=ki−1

(
Aγai/r(zi, u)vλi , vλi−1

)∣∣∣∣∣∣ ≤
(ki + ki−1 + 1)

∣∣∣∣∣∣zi(ur)
ai/r

zi + a
S(|R|uzi)

zi+ai
r

(
γ(k)
|R| ς(|R|uzi)

)pi
(1 + zi+ai

r
)pi

exp

(
ki + ki−1

2
|K|u|zi|

)∣∣∣∣∣∣
with pi = ki−ki−1−ai

r
= `i − `i−1 − δi, and δi = δ(bi < bi−1).

We have ignored the 1
ς(z)

terms appearing in E0(z), as they are analytic for u 6= 0

and will not affect convergence. Similarly, from here on we will ignore the zi
zi+a

and

S terms, for as u→ 0,S(|R|uzi)→ 1, and so for small u,S(|R|uzi)
zi+ai
r will be single

valued and analytic, and so will also have no effect on convergence. Furthermore, we

can rewrite the above in terms of the `i.

As a result, we see must consider sums of the form∑
`i≥0

p(`i)(ur)
aie

|K|ziu
2

(ki−1+ki)
(ς(|R|uzi)/|R|)pi

(1 + zi+ai
r

)pi

The term raised to the power ki is

exp

(
|K|u(|zi|+ |zi+1|)

2

)(
ς(|R|uzi)
ς(|R|uzi+1)

)1/r

,

and, as u→ 0, we see that this goes to (zi−1/zi)
1/r. Thus, eliminating the irrelevant

polynomial factor, it is enough to consider the sum:

∑
`i≥0

(
zi−1

zi

)`i−`i−1−δi

(1 + zi+ai
r

)`i−`i−1−δi
.

The δi terms can be absorbed into the `i to give a sum of the form of Lemma

VII.3, with some terms missing, taking di = 1 + zi+ai
r

.
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7.2 Commutators of A

This section presents the proof of Lemma V.4:

[Aγa/r(z, u),Aγ
′

b/r(w, u)] = δγ,γ′δa/r,b∨/rγ(k)−δ
∨
r (a) zw

r
δ(z,−w).

7.2.1 The commutators as a hypergeometric function

From the definition of Aγa/r, it is clear that [Aγa/r(z, u),Aγ
′

b/r(w, u)]=0 if γ 6= γ′, so

we assume γ′ = γ. Expanding the commutator using the definition of A (5.5) gives:

(7.4) [Aγa/r(z, u),Aγb/r(w, u)] = (rγ(−k))a+b/r z

z + a

w

w + b
S(|R|uz)

z+a
r S(|R|uw)

w+b
r∑

i,j∈Z

(zS(|R|uz))i

(1 + z+a
r

)i

(wS(|R|uw))j

(1 + w+b
r

)j
[Eγir+a(|K|uz), Eγjr+b(|K|uw)]

By ([?]) we know that

(7.5)

[Eγir+a(|K|uz), Eγjr+b(|K|uw)] = ς
(
u|K|((ir+a)w−(jr+b)z)

)
Eγ(i+j)r+a+b(u|K|(z+w))

so reindexing with i+ j = n, we see that the second line of (7.4) can be written

(7.6)
∑
n∈Z

cn,a,b(z, w)Eγnr+a+b(u|K|(z + w))

with

(7.7)

cn,a,b(z, w) =
∑
i∈Z

(zS(|R|uz))i

(1 + z+a
r

)i

(wS(|R|uw))n−i

(1 + w+b
r

)n−i
ς(u|K|((ir + a)w − ((n− i)r + b)z)).

Note that cn,a,b(z, w) is independent of k, so that we have separated out the depen-

dence on the group extension that forms R.

We assume that n = 2m is even; an analogous argument works when n− 2m− 1

is odd. Temporarily suppressing the last ς factor, we can rewrite Equation 7.7 as:

(7.8)
(zS(|R|uz))m

(1 + z+a
r

)m

(wS(|R|uw))m

(1 + w+b
r

)m

∑
i∈Z

(1 + z+a
r

)m

(1 + z+a
r

)i

(1 + w+b
r

)m

(1 + w+b
r

)n−i

(
zS(|R|uz)

wS(|R|uw)

)i−m
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By reindexing j = i−m and using

(7.9)
(1 + x)d
(1 + x)e

=
1

(1 + x+ d)e−d
= (−1)e−d(−x− d)d−e

the sum becomes

(7.10)
∑
j∈Z

(−w+b
r
−m)j

(1 + z+a
r

+m)j
(−1)j

(
ς(|R|uz)

ς(|R|uw)

)j
,

where we have also converted the S to ς.

Factoring back in the ς and expanding ς(x) = ex/2 − e−x/2 we get two sums, and

since

u|K|((ir + a)w − ((n− i)r + b)z) = u|K|(rj(w + z) + aw − bz + rmw − rmz),

we can factor the j terms into the sum, so that we have

(7.11) e
u|K|

2
((rm+a)w−(rm+b)z)

∑
j∈Z

(−w+b
r
−m)j

(1 + z+a
r

+m)j

(
1− e|R|uz

1− e−|R|uw

)j

− e
u|K|

2
((rm+b)z−(rm+a)w)

∑
j∈Z

(−w+b
r
−m)j

(1 + z+a
r

+m)j

(
1− e−|R|uz

1− e|R|uw

)j
Recalling the definition of Gauss’s hypergeometric function

(7.12) 2F1

 x, 1

y

; z

 =
∞∑
i=0

(x)i
(y)i

zi

we see that the j ≥ 0 part of either sum gives us us a hypergeometric function.

Taking the j ≤ 0 sum of the first line, we get, by substituting i = −j,

(7.13) e
u|K|

2
((rm+a)w−(rm+b)z)

∑
j≤0

(−w+b
r
−m)j

(1 + z+a
r

+m)j

(
1− e|R|uz

1− e−|R|uw

)j

= e
u|K|

2
((rm+a)w−(rm+b)z)

∑
i≥0

(− z+a
r
−m)i

(1 + w+b
r

+m)i

(
1− e−|R|uw

1− e|R|uz

)i
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A similar expression holds for the first line. We’re using the j = 0 contribution

twice, so we also need to subtract off that, getting

e
u|K|

2
((rm+a)w−(rm+b)z) ·

[
2F1

 −w+b
r
−m, 1

1 + z+a
r

+m

;
1− e|R|uz

1− e−|R|uw

(7.14)

+ 2F1

 − z+a
r
−m, 1

1 + w+b
r

+m

;
1− e−|R|uw

1− e|R|uz

](7.15)

−e
u|K|

2
((rm+b)z−(rm+a)w) ·

[
2F1

 −w+b
r
−m, 1

1 + z+a
r

+m

;
1− e−|R|uz

1− e|R|uw

(7.16)

+ 2F1

 − z+a
r
−m, 1

1 + w+b
r

+m

;
1− e|R|uw

1− e−|R|uz

](7.17)

− ς(u|K|((rm+ a)w − (rm+ b)z))(7.18)

We repackage this slightly by noting that interchanging (z, a) and (w, b) swaps

(7.14) with (7.17) and (7.15) with (7.16), and multiplies (7.18) by −1. This leads us

to define:

(7.19) fm,u(z, k, a, b) = e
u|K|

2
((rm+a)w−(rm+b)z)

2F1

 −w+b
r
−m, 1

1 + z+a
r

+m

;
1− e|R|uz

1− e−|R|uw


− e

u|K|
2

((rm+b)z−(rm+a)w)
2F1

 −w+b
r
−m, 1

1 + z+a
r

+m

;
1− e−|R|uz

1− e|R|uw


− ς(u|K|((rm+ a)w − (rm+ b)z))

2

Putting it all together, we have shown that when n = 2m we have

(7.20)

cn,a,b(z, w) =
(ς(|R|uz)/|R|)m

(1 + z+a
r

)m

(ς(|R|uw)/|R|)m

(1 + w+b
r

)m
[fm,u(z, a, w, b)− fm,u(w, b, z, a)]
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A similar argument shows that when n = 2m− 1 and we define

(7.21) gm,u(z, a, w, b) =

u|K|mr + b+ w

ς(|R|uw)

(
e
u|K|

2
((rm+a)w−((m−1)r+b)z)

2F1

 1− w+b
r
−m, 1

1 + z+a
r

+m

;
1− e|R|uz

1− e−|R|uw


− e

u|K|
2

(((m−1)r+b)z−(rm+a)w)
2F1

 1− w+b
r
−m, 1

1 + z+a
r

+m

;
1− e−|R|uz

1− e|R|uw

)

then we have

(7.22) cn,a,b(z, w) =
(zS(|R|uz))m

(1 + z+a
r

)m

(wS(|R|uw))m

(1 + w+b
r

)m
[gm,u(z, a, w, b)− gm,u(w, b, z, a)]

7.2.2 Hypergeometric Function Identities

In this section we prove two lemmas about hypergeometric functions. These are

exactly lemmas 16 and 17 from [OP06a]. For completeness, we present a slightly

extended discussion here.

Note that the definition we have used of Gauss’s hypergeometric function,

(7.23) 2F1

 a, b

c

; z

 =
∞∑
i=0

(a)i(b)i
(y)ii!

zi, |z| < 1,

is only valid for |z| < 1. The Euler integral gives an extension of this definition, valid

on C with a cut along [1,∞):

(7.24) 2F1

 a, b

c

; z

 =
Γ(c)

Γ(b)Γ(c− b)

∫ 1

0

tb−1(1− t)c−b−1(1− tz)−adt.

In the definitions of f and g above, the only use of 2F1

 a, b

c

; z

 used is with

b = 1. In this case, the hypergeometric function is degenerate. The hypergeometric

differential equation is:
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and the function

Because of this degeneration, when we analytically continue 7.24 through [1,∞),

we only add elementary terms to our solution. Lemmas VII.4 and VII.5 captures

this behavior.

We will need the β-function integral:

(7.25)

∫ 1

0

tp−1(1− t)q−1dt =
Γ(p)Γ(q)

Γ(p+ q)

Lemma VII.4. For z /∈ [0,∞) we have:

2F1

 −x, 1
y + 1

; z

 =

1− 2F1

 −y, 1
x+ 1

;
1

z

+
(1− z)x+y

(−z)y
Γ(y + 1)Γ(x+ 1)

Γ(x+ y + 1)

Proof. Since one of our b = 1, the Euler integral (7.24) simplifies, and then integrating

by parts and substituting v = zt gives:

2F1

 −x, 1
y + 1

; z

 = y

∫ 1

0

(1− t)y−1(1− tz)xdt(7.26)

= 1− x
∫ 1

0

(1− t)y(1− tz)x−1zdt

= 1− x
∫ 1

0

(1− v

z
)y(1− v)x−1dv(7.27)

+x

∫ 1

z

(1− v

z
)y(1− v)x−1dv(7.28)

In (7.27), we recognize the first integral (7.26) with x and y interchanged and 1/z

replacing z, giving the first term of (VII.4). We transform (7.28) into the beta

integral (7.25) by making the substitution v = z + (1− z)t:

x

∫ 1

z

(1− v

z
)y(1− v)x−1dv =

(1− z)x+y

(−z)y
x

∫ 1

0

ty(1− t)x−1dt

=
(1− z)x+y

(−z)y
Γ(y + 1)Γ(x+ 1)

Γ(x+ y + 1)
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A similar argument shows

Lemma VII.5. For z /∈ [0,∞) we have:

x2F1

 −x+ 1, 1

y + 1

; z

 =

y

z
2F1

 −y + 1, 1

x+ 1

;
1

z

+
(1− z)x+y−1

(−z)y
Γ(y + 1)Γ(x+ 1)

Γ(x+ y)

Proof. We again use the Euler integral (7.24), this time making the substitution

v = tz immediately:

x2F1

 −x+ 1, 1

y + 1

; z

 = xy

∫ 1

0

(1− t)y−1(1− tz)x−1dt

=
xy

z

(∫ 1

0

(
1− v

z

)y−1

(1− v)x−1dv

−
∫ 1

z

(
1− v

z

)y−1

(1− v)x−1dv

)

=
y

z
2F1

 −y + 1, 1

x+ 1

;
1

z


+

(1− z)x+y−1

(−z)y
Γ(y + 1)Γ(x+ 1)

Γ(x+ y)

7.2.3 Symmetry

Lemma VII.6. The functions fm,u(z, a, w, b) and gm,u(z, a, w, b) are analytic in a

neighborhood of the origin and symmetric under interchanging (z, a) with (w, b).

Proof. We begin by applying (VII.4) to each of the hypergeometric terms in the

definition of fm,u(z, a, w, b) (7.19). The resulting hypergeometric terms are exactly
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those appearing in fm,u(w, b, z, a). Furthermore, the terms coming from the 1 in

(VII.4) will exactly cancel the ς terms in the definition of fm,u(z, a, w, b). So it

remains to show that the two Γ terms will cancel. the actual factors of Γ will be the

same for each, and so we must show

e
u|K|

2
((rm+a)w−(rm+b)z) (1− v)x+y

(−v)y
= e

−u|K|
2

((rm+a)w−(rm+b)z) (1− v′)x+y

(−v′)y

where

x = m+
w + b

r
, y = m+

z + a

r

v =
1− e|R|uz

1− e−|R|uw
and v′ =

1− e−|R|uz

1− e|R|uw

Since v = e|R|u(z+w)v′ and (1− v) = e|R|uz(1− v′) we have

(1− v)x+y

(−v)y
= eu|R|((x+y)z−y(z+w) (1− v′)x+y

(−v′)y

Then we note that

|R|u[(x+ y)z − y(z + w)] = |R|u(xz − yw)

= u|K|((mr + b)z − (mr + a)w)

So we’ve see that fm,u has the desired symmetry where its definition makes sense

and Lemma VII.4 is applicable.

Note that if m = −j − b/r, for some positive integer j, then the Pochhammer

symbols in the denominator will eventual have a z term, and we will apparently have

a simple pole there. We will assume for now that m does not have this form; then

the only possibility singularities of f come from the singularities of Gauss’s hyper-

geometric function at 1 and ∞. Because of the Euler integral, the hypergeometric

function is well defined and analytic away from the cut along [1,∞), and so f will

be defined unless the arguments of the hypergeometric function lie on that cut.
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So fm,u(z, a, w, b) is well defined unless one of

1− e−|R|uz

1− e|R|uw
,

1− e|R|uz

1− e−|R|uw
≈ − z

w

fall on [1,∞), and fm,u(w, b, z, a) is well defined unless one of

1− e−|R|uw

1− e|R|uz
,

1− e|R|uw

1− e−|R|uz
≈ −w

z

fall on [1,∞). So the only place where fm,u(z, a, w, b) might not be analytic around

the origin is the divisor z + w = 0. However, we can calculate explicitly that fm,u is

in fact analytic here, and hence in a neighborhood of the origin.

The apparent singularities for certain values of m can be seen to not happen, as

the they don’t appear in the w.

When z = −w, the arugment of the hypergeometric function becomes one, and

then applying

(7.29) 2F1

 a, b

c

; 1

 =
Γ(c)Γ(c− a− b)
Γ(c− a)Γ(c− b)

to the hypergeometric function appearing in fm,u(z, a,−z, b), we see that

(7.30) 2F1

 z−b
r
−m, 1

1 + z+a
r

+m

; 1

 =
Γ(1 + z+a

r
+m)Γ(2m+ a+b

r
)

Γ(2m+ 1 + a+b
r

)Γ( z+a
r

+m)
=

z+a
r

+m

2m+ a+b
r

We see that

fm,u(z, a,−z, b) = ς(−u|K|(2rm+ a+ b)z)

(
z+a
r

+m

2m+ a+b
r

− 1

2

)

= ς(−u|K|(2rm+ a+ b)z)
z + a−b

2

2mr + a+ b

= −
z + a−b

2

mr + a+b
2

sinh(u|K|(rm+
a+ b

2
)z)

In particular, we will need the case when m = a = b = 0. This is easily seen to

be −u|K|z2.
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Similarly, if we apply (7.29) to the hypergeometric functions appearing in the

definition of g, we see that

(7.31)

2F1

 1 + z−b
r
−m, 1

1 + z+a
r

+m

; 1

 =
Γ(1 + z+a

r
+m)Γ(2m+ a+b

r
− 1)

Γ(2m+ a+b
r

)Γ( z+a
r

+m)
=

z+a
r

+m

2m+ a+b
r
− 1

Plugging this in, we see

gm,u(z, a,−z, b) = u|K|mr + b− z
ς(−|R|uz)

z+a
r

+m

2m+ a+b
r
− 1

ς(−u|K|(2rm− r + a+ b)z)

Here, we will need the case that n = −1, so m = 0 and a + b = r. Then, this

simplifies to

(7.32) g0,u(z, a,−z, r − a) = −u
2|K|2z(z + a)(z − b)

ς(|R|uz)

We see everything commutes except possibly the constant term appearing in

E0(u|K|(z + w)). First, note that E0 appears in two cases: n = a = b = 0 and

n = 1, a + b = r. In each case, we must keep track of the prefactors appearing

in (7.4), (7.22) and (7.20). In both cases, we have m = 0, and so these last two

prefactors are identically 1.

The prefactor from (7.4) is

(rγ(−k))(a+b)/r z

z + a

w

w + b
S(|R|uz)

z+a
r S(|R|uw)

w+b
r

.

Since we only care about the value of the factor along the singularity z + w = 0,

we note that in the first case, since a = b = 0, this factor is 1, while in the second

case a+ b = r means that this factor is

(7.33) rγ(−k)
z

z + a

z

z − b
S(|R|uz).
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Putting it all together, we see that in the f case (n even), the prefactors are

identically one when z + w = 0, and so the commutator is really

(7.34)
f0,u(z, 0, w, 0)

ς(|K|u(z + w))
− f0,u(w, 0, z, 0)

ς(|K|u(z + w))
= zwδ(z,−w)

Similarly, in the g case, note that the prefactors from Equation 7.33 together with

Equation 7.32 gives:

−γ(−k)ru2|K|2z3S(|R|uz)

ς(|R|uz)
= −γ(−k)u|K|z2,

and so the commutator gives us

−γ(−k)u|K|z2

(
1

ς(u|K|(z + w))
− 1

ς(u|K|(w + z))

)
= γ(−k)zwδ(z,−w).
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