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with cutoffs at 2.5 Å. The number of points in each section is labeled in gray.
For proteins where the RMSD of apo structures is larger than the RMSD
between apo and holo, there are 57, 44, and 12 proteins with apo RMSDs
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Abstract

Binding MOAD (Mother of All Databases) is the largest collection of high-quality, protein-
ligand complexes available from the Protein Data Bank. At this time, Binding MOAD
contains 11,368 protein-ligand complexes composed of 3583 unique protein families and
5363 unique ligands. We have searched the crystallography papers for all structures and
compiled binding data for 3543 (31%) of the protein-ligand complexes. The binding-affinity
data ranges 13 orders of magnitude. This is the largest collection of structural binding data
to date in the literature.

This database of protein-ligand complexes is proving very useful in exploring biophysi-
cal patterns of molecular recognition and enzymatic regulation. Mining Binding MOAD
has revealed physical differences in how enzymes and nonenzymes bind small molecules.
High-affinity ligands of enzymes are much larger than those with low affinity, but high-
and low-affinity ligands of nonenzymes are the same size. This suggests that different
approaches may be appropriate for improving the affinity of ligands. While the addition of
complementary functional groups is likely to improve the affinity of an enzyme inhibitor,
it may not be as fruitful for ligands of nonenzymes. For nonenzymes, small changes and
isosteric replacements might be more productive. Furthermore, nonenzymes were found
to have higher ligand efficiencies. The different efficiencies are not due to differences in
the physicochemical properties of the ligands; instead, the amino-acid composition of the
pockets are very different despite very similar distributions of amino acids in the overall
protein sequences.

This study aims to address the issue of protein flexibility upon ligand binding. The
influence of ligand binding on protein flexibility is examined by analyzing a large number
of proteins crystallized with and without ligands. A baseline comparison of the natural
variation of protein structure with and without ligands is first established, and then differ-
ences between the apo and holo are analyzed. It is shown that, in general, ligand binding
stabilizes the protein and results in a smaller backbone root mean square deviation (RMSD)
among holo-protein structures, compared the backbone RMSD of the apo-protein structures.
Furthermore, the holo structures appear to sample a smaller subset of the space inhabited
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by apo structures, because the difference between apo and holo structures is smaller than
variation seen among apo structures themselves. The size of the bound ligand does not
appear to matter in determining the rigidification. While ligand binding generally does
not induce large changes in the backbone, they are significant. Ligand binding does have
distinct impact on the active site, as revealed by all-atom, active-site RMSD and the range
of χ1 variation. Apo structures are observed to have a certain range of flexibility in their
active sites, just as holo structures have a similar, but smaller, degree of variation among
their active sites. However, greater variation has been found between these two groups as
opposed to within either group by themselves. This suggests that ligand binding induces
active-site side chains to occupy a different conformational space before and after binding.
The influence on the active site could not be easily attributed to features such as ligand size,
resolution, protein function, or catalytic composition.

The studies above illustrate the usefulness of large carefully annotated datasets for
studying protein-ligand interactions. Binding MOAD has almost doubled in size since it
was originally introduced in 2004, demonstrating steady growth with each annual update.
Several technologies are described, such as natural language processing, that help drive this
constant expansion.

In summary, Binding MOAD is a valuable resource. It has helped to illuminate funda-
mental differences between enzymes and nonenzymes and allowed for examination of the
influence ligand binding has in protein flexibility. It has great potential to further advance
our understanding of protein-ligand interactions.
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Chapter 1

Introduction

Proteins are responsible for many functions required for cellular life, such as signal transduc-
tion, metabolism, and structure. Many of these functions involve binding of small molecules.
While these are small organic compounds, peptides, or nucleotides, they can, as a whole, be
referred to as ligands, whether or not they are catalytic substrates.

Studying protein-ligand binding has important application in structure-based drug de-
sign (SBDD). A strategy in SBDD is to use computational techniques to virtually screen a
database of potential drugs and identify which compounds are likely to be active and which
compounds are likely to be inactive, thereby focusing and speeding up the drug development
process. While virtual screening is proving very helpful to pharmaceutical research, being
able to consistently and accurately predict activity of a compound is proving very difficult.
[3, 4] Furthermore, protein-ligand binding is proving to be an essential component of fields
such as chemical biology and metabolomics.

This dissertation studies protein-ligand binding by using an extensive database of high
quality protein-ligand crystal structures called Binding MOAD (Mother Of All Databases).
It uses this database to discover new principles of protein-ligand binding and also to refine
existing hypothesis involved in ligand docking and scoring. This dissertation describes three
primary studies. First, details of the database creation are described, including the criteria
used in selecting protein-ligand complexes for inclusion and what properties the entries have
as a collection. Second, a mining study searches for causes of highly efficient ligand binding.
Third, protein flexibility upon ligand binding is probed. Lastly, this dissertation describes
data structure and software development necessary for distributing Binding MOAD as well
as software developed to facilitate the annual updating and annotation of data for Binding
MOAD. As a whole, this dissertation outlines Binding MOAD as a major bioinformatics
resource and uses it to provide useful insights into protein-ligand recognition.
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1.1 Protein-Ligand Binding Theory

Theories about protein-ligand binding are constantly evolving. In 1894, Hermann Emil
Fischer proposed the “lock and key” model to describe enzyme substrate interactions, “en-
zyme and glycoside must fit together like a key and a lock in order to initiate a chemical
action upon each other.”[5, 6, 7] Linus Pauling said in 1948, “I think that enzymes are
molecules that are complementary in structure to the activated complexes of the reactions
that they catalyze.”[8, 9] Later, in 1958, Daniel Koshland established the “induced-fit”
theory that the protein’s binding site would adjust to accommodate the ligand.[10] The
current theory described proteins existing in an equilibrium ensemble of energetically similar
conformations.[11, 12, 13, 14, 15] A ligand may bind to any of the protein conformations.
This binding may shift the equilibrium of the system to a new distribution favorable to
the binding reaction.[16] Induced fit may be described as moderate binding to the lowest
energy conformation or tight binding to a higher energy conformation, whereas lock-and-key
binding could be described as tight binding to the lowest energy conformation.[11]

Ligand binding may induce protein structural rearrangements. These structural rear-
rangements may range from small side-chain movements to large loop reorganizations and
domain hinge movements.

1.2 Protein Flexibility

Proteins are naturally flexible macromolecules. This flexibility comes from being composed
of a string of amino acids, folded into a structure stabilized by non-covalent interactions.
Flexibility is an important component of binding substrates, catalyzing enzymatic reactions,
and releasing the products.[15, 17]

Studying the flexibility of binding sites has yielded some key insights. Jaap Heringa
and Patrick Argos observed cases of ligand binding induced strain in clusters of residues
in ligand binding sites. The strain was manifested as nonrotameric side-chain positions
with tight packing.[18] They hypothesized that the strain of displacing the side chain from a
rotameric minimum might help drive the catalytic reaction.[19] Irene Luque and Ernesto
Freire describe how the protein binding sites are often characterized by regions with high
stability and regions with low stability.[14, 20] Catalytic residues in enzymes are usually
in highly stable regions which may allow for preorganization of the binding site. Low
stability regions have been shown to play an important role in allosteric enzymes, allowing
for communication between an allosteric binding site and the active site. Some instable
regions have been shown to be necessary for proper protein function.[21]
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While there are some obvious differences between protein-protein binding hot spots and
protein-ligand binding, there are some interesting parallels, such as the role of rigid and
flexible residues at hot-spots. Nussinov showed that there are a few key rigid residues at
protein-protein hot spots that act as anchors, surrounded by flexible residues.[22, 23]

1.3 Scoring Protein-Ligand Binding

A natural test of scientific understanding of protein-ligand binding is to be able to predict
a binding mode and its affinity. Predicting the structure of the complex of a small ligand
with a protein (molecular docking) is a complex task. Docking is divided into two parts,
sampling and scoring. The first part is sampling of the conformational space of a protein-
ligand complex, identifying modes of the ligand binding to the protein. The second part is
evaluating and scoring the quality of interaction between the ligand and protein. Ideally,
the scoring function would be able to estimate binding affinities of the bound pose or, at
least, rank order the list of conformations. A majority of the effort in docking research has
focused on improving the scoring functions, as it has become obvious that scoring functions
have significant room for progress.[4, 3]

Scoring functions can be classified into three primary classes and a fourth class being a
hybrid mixture of the first three classes. The first class is composed of force-field based scor-
ing functions, which use the classical molecular mechanics force fields such as CHARMM
and AMBER.[24, 25] For example, I.D. Kuntz, using an AMBER-based force field was able
to dock, score, and identify the family of orientations closest to the experimental binding
geometry.[26] Force-field based scoring functions include GOLD[27], AutoDock[28], and
DOCK[29].

A second class is empirical scoring functions. Empirical scoring functions break the
binding free energy into different types of interactions, such as hydrogen bonds, ionic
interactions, hydrophobic contacts, and entropic penalties.[30] The functional forms in
empirical scoring functions follow force-field based scoring functions, although they are
often more simple.[31] A hurdle for developing empirical scoring functions is assigning
appropriate weights for each of the terms. Large and diverse training sets with binding data
are obviously important in order to generalize results to different systems (see Table 1.1).
Examples of empirical scoring functions include Score1(LUDI)[32], Score2(LUDI)[33],
F-Score[34], ChemScore[35], ProteusScore[35], HINT[36] and X-Score[37].

The third class comprises knowledge-based scoring functions. This class uses statistical
analysis of structures to derive a sum of potentials of mean force between the ligand and the
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protein. These are based on a statistical potential or knowledge-based approach, which is
derived from pairing frequencies of protein-ligand atom pairs observed in a database such as
the Protein Data Bank (PDB). In contrast to the empirical scoring functions, the knowledge-
based scoring functions convert structural information scores without any knowledge of
binding affinities, and thus may be more general because of a larger training set of available
structures.[38] The theory behind the statistical potential approach is the assumption of a
Boltzmann-distribution rule for a single, closed system held at fixed temperature that is
applicable to a database of structures.[38] Examples of knowledge-based scoring functions
include PMF[39], DrugScore[40], and SMoG[41], and ITScore[42, 38] (see Table 1.1).

The fourth type of scoring functions is “consensus” scoring functions.[31] There are
various methods of combining scoring functions, such as voting (intersection), rank voting,
weighted-sum ranks, and multivariate methods.[43] Examples include CScore by Tripos and
DS Ligand Score by Accelrys.

Table 1.1 Size of protein-ligand datasets used to training scoring functions

Year Complexes
Score1 1994 54
F-Score 1996 19
VALIDATE 1996 65
ChemScore 1997 112
ProteusScore 1997 82
Score2 1998 94
PMF 1999 225
BLEEP 1999 90
DrugScore 2000 83
SMoG 2002 119
HINT 2002 53
X-Score 2002 230
ITScore 2006 851

1.4 Protein-Ligand Databases

Databases are essential for analyzing protein-ligand binding. Not only can they be used
to develop and test scoring functions, but protein-ligand databases can be used for mining,
to search for physicochemical properties that correlate with tight, specific ligand binding.
The explosion of protein-ligand databases reflects the usefulness and interest in this area of
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research.

AffinDB

AffinDB collects binding-affinity data for protein-ligand complexes in the PDB, in a “bottom
up” approach.[44] It contains 474 PDB files with binding data for each PDB file. All of
the entries have binding data collected primarily from literature and previously published
collections of binding data.[37, 32, 45, 46] It does not explicitly exclude NMR or specify an
X-Ray resolution threshold.

BindingDB

BindingDB, developed by Michael Gilson, contains a voluminous amount of very high-
quality thermodynamic data.[47] It contains ∼ 20,000 binding data for ∼ 10,000 different
ligands.[48] BindingDB now holds some Ki data in addition to its isothermal calorime-
try (ITC) data. Additionally, experimental conditions are available for most of the data.
BindingDB has increased the number of proteins covered to 1005, as of December 2008,
considering any mutations as separate targets. Structural information is not available for
many complexes.

CLiBE

Computed Ligand Binding Energy (CLiBE) is a database of computed binding energies
for ligands in a set of PDB structures.[49] The binding energy is based on the AMBER
molecular mechanics force field. This binding energy is calculated for each ligand. Where
more than one ligand exists in a protein crystal structure, the energy for each ligand is
calculated independently. Unfortunately, the definition of ligands is not clearly given, but
might be assumed to be individual HETATM groups. Searching is based on PDB id, ligand
name, or protein name.

DrugBank

DrugBank - a pharmaceutical database - contains extensive cheminformatic and structural
information about drugs, and it contains bioinformatic and biological information about pro-
teins (drug target).[50] However, DrugBank does not connect proteins and ligands together
in a direct, structural fashion. For example, in the entry discussing Celecoxib, DrugBank
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presents extensive cheminformatic information(Drug Interactions, Half Life, InChi, LogP,
LogS, etc) and discusses two possible protein targets (one of which has a crystal structure,
2BIY, but this structure does not have a Celecoxib in the crystal structure). There is no
specific information connecting the ligand to the proteins. Neither does it mention the PDB
structure of carbonic anhydrase II structure crystallized with Celecoxib (1OQ5).

eF-Site

eF-Site is not strictly a protein-ligand database, but rather a database of protein pockets with
ligands.[51] However, it does link protein with their ligands because they are used to define
the binding pocket. eF-Site focuses on the electrostatic and physicochemical mapping of all
sites on proteins, using 5 Å distance cutoff. The authors used their technique for functional
annotation of a hypothetical protein to identify which ligands might bind to a given site,
based on homologous structural information.[52, 53] The authors have since developed tools
to allow searching and comparison among binding pockets.[54, 55]

FireDB

FireDB is a database of residues involved in ligand binding for a set of PDB structures,
annotated with functionally important residues.[56] Important residues are identified from
Catalytic Site Atlas (CSA) and consensus sequences generated from protein sequences
clustered 97% sequence identity.[57] Protein residues are identified at distance cut offs of
3.5, 4.0, and 4.5 Å. To limit the ligands to biologically important small molecules, solvents,
buffers, ions, DNA, RNA, peptides, very large ligands (where the ligand has two-thirds of
the atoms of the protein) are excluded. FireDB is a source of important residues for their
FireStar server, used to predict functionally important residues using SQUARE[58, 59].
FireDB strives to be inclusive including data from NMR and does not have a resolution limit
for crystal structures.

HIC-Up

HIC-Up also lists all HETATM groups in PDB files, as well as links to other resources
for further information.[60] HIC-Up is updated twice a year. HIC-Up provides a number
of ways to search for HETATM groups, including QuickXS mechanism, HETATM code
(three-character code ), trivial name (e.g., benzene), chemical formula (e.g., C6 H12 O6),
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number of non-hydrogen atoms index lists of chemical composition as well as by standard
search engines (google, AltaVista).

HET-PDB

HET-PDB Navi is a database of HETATM groups in the PDB.[61] It includes all HETATM
groups in the PDB file, as long as the HETATM group is not one of the basic twenty amino
acids or water. No affinity information is available.

Iditis

Though Iditis is no longer available, it provided access to the PDB files in a relational
database form.[62] This allowed direct Structured Query Language (SQL) queries against
the data. A graphical interface was available in addition to the command line access. Several
programs were used to extract the data from the PDB file and populate key tables. For
NMR files, various programs were used to select a few representative models from the
ensemble. Data available for queries included file properties (name, function, authors, dates,
resolution, etc), sequence, secondary structure, hydrogen-bonding interactions, electrostatic
interactions, torsion angles, solvent accessibility, and ligand groups.

KDBI

KDBI (Kinetic Data of Bio-molecular Interactions) is a collection of kinetic data for macro-
molecular interactions, whether they are protein-protein, protein-ligand, DNA-ligand, or
RNA-ligand interactions.[63] While there is information regarding proteins and ligands, the
focus is on pathway information. There is no structural information in the database.

KiBank

KiBank strives to connect Ki data to protein structural data, with the goal of providing
QSAR data sets.[64] KiBank first collected binding data taken from literature abstracts and
generated a 3D ligand structure from a 2D structure. KiBank then chose a crystal structure
from the PDB as representative for the protein (the crystal structure does not need to have
the ligand crystallized with the protein). Lastly, it added hydrogens and minimized the
structure. Though papers from the group have appeared as recently as 2006, it seems that
KiBank is no longer available.
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LigASite

LigASite, a database of binding sites, has the motto, “A gold-standard dataset of biologically
relevant binding sites in protein structures”.[65] It excludes NMR structures and has X-Ray
resolution limit of 2.4 Å. Like other protein binding-pocket databases, it uses ligands to
define binding sites, but restricts ligands to those HET groups that have at least 10 heavy
atoms, and defines the pocket as those residues within 4 Å of the ligand. However, this
database does not provide an easy mechanism to identify what ligands are used to define the
binding pocket for each protein. What is novel about LigASite is how the binding sites are
represented. The binding pockets are presented by apo proteins and the ligand site definition
is defined in a crystal structure of the same protein with a ligand (or more than one). The
matching of holo-protein structures with apo-protein structures should allow for interesting
studies for ligand binding induced changes.

Ligand-Protein DataBase

The Ligand-Protein DataBase (LPDB), developed by Charles L. Brooks III in 2001, has
roots in improving empirical scoring functions.[30] LPDB contains 195 complexes corre-
sponding to 51 different receptors (21 protein classes), annotated with binding data, with
178 unique ligands. The data are collected from six empirical scoring function training sets.
The LPDB is designed to be used along with a continuum set of pre-generated decoys to
assess scoring-function performance.

MSDsite

MSDsite is designed to allow extensive querying of the binding sites in the MSD
database.[66] This database contains all PDB ligands, their interactions with macromolecules
(protein, DNA, and RNA), coordination, protein sequences, and ProSite motifs. It aims
to annotate ligands with their topology, bond orders, and hybridization by means of their
database MSDchem. Annotated interactions including covalent bonds, ionic, hydrogen
bonding, van der Waals, planar groups (for certain groups of four or more atoms that are
recognized as being planar with each other), and “non-bonding interaction” for atom pairs
within 4 Å of each other but no bond type has been classified. Ligands are defined as any
HETATM group, including modified amino acids that are part of the main protein chain.
MSDsite allows for searching for any protein in the MSD database or for any PDB file
uploaded by a user. This database provides means to filter by experimental method (NMR,

8



X-Ray, Electron Microscopy, Theoretical), X-ray resolution, ProSite pattern, ligand and
protein content, as well as macromolecular target (DNA, RNA, or protein).

MSDMotif

MSDmotif is a database which aims to provide a mechanism for querying the PDB about
motifs.[67] It provides an extensive web interface for provides searches by PDB header
file information, small-molecule information, small 3D motifs (e.g. beta-bulge, beta-turn,
schellmann-loop, st-turn, etc), secondary structure elements, protein sequence patterns,
as well as protein side-chain, main-chain bonds and protein-ligand interactions (covalent,
ionic, hydrogen bonds, van der Waals, π interactions, and unidentified interactions within
4 Å. It provides the search results in a number of formats. The software to search for the
annotations is also provided under an Open Source software license. Ligands identification
is based on MSDsite. There is no protein cleanup.

PDBbind

Currently, PDBbind contains binding data on 3214 complexes, with 2084 unique ligands,
collected from the PDB.[68, 69] PDBbind was curated in a very similar fashion as Binding
MOAD but has some key differences. PDBbind focuses on complexes with only one ligand
in the crystal structure. PDBbind also excludes any complex binding a simple cofactor
such as ATP. While Binding MOAD uses a resolution threshold on crystal structures of
2.5 Å, PDBbind has no threshold value (the largest crystal structure resolution is 4.7 Å).
Binding MOAD also provides information on the structures when we do not have binding
data because they are still a valuable resource in database mining, and for knowledge-based
scoring functions while PDBbind only provides structures of complexes for which it has
binding data. The research projects around PDBbind focus on developing scoring functions
and searching ligand substructures.[70, 71, 72]

PDBcal

PDBcal focuses on ITC data for receptors (both proteins and nucleic acids) with structures in
the PDB[73]. For a given receptor, PDBcal attempts to identify the most relevant structure.
The PDB file referenced may have the ligand in the crystal structure, but it is not required
(e.g. for the protein concanavalin A with ligand pyranoside 1 the PDB file 1GKB is refer-
enced but contains no ligands). The referenced PDB structure may be an NMR structure,
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and no threshold resolution on X-Ray structures is used. Furthermore, there are examples of
a given protein, with data for different ligands, and each references the same PDB structure.
PDBcal makes the point that all data is extracted from the literature and not collected from
other existing datasets.

PDBLIG

PDBLIG was a database that attempted to match protein domains to ligand binding.[74]
Protein domains were classified using the CATH protein classification system. Intensive
effort was spent in appropriate definition of ligands, as ligands were analyzed for attachment
to other ligands and interactions with the protein. Separate HETATM groups were linked
if they were within covalent distance of each other (where distance cutoffs were used for
different atom types). Peptides were counted as ligands if shorter than 30 residues long.
Covalently attached ligands were separated from the protein and treated as valid ligands.
Ligands with missing coordinates or density were left as found in the PDB file. Bond orders
and formal charges were assigned to the ligands using HBADD. Interactions between ligand
and protein were calculated with LIGPLOT and HBPLUS. Ligands that were found in be-
tween protein units or had contact with fewer than five residues were discarded. Additionally,
ligands were classified into categories such as cofactor, nucleotide, sugar, organic or peptide.
Properties of the ligands were calculated to measure compliance with Lipinski’s “rule of
five”.[75] This database aimed at asking if different ligand types associated with certain
protein families and if protein families bound functionally or structurally similar ligands.
This database was initially generated by Inpharmatica, but this company was acquired by
Galapagos and PDBLIG no longer exists.

PDB-Ligand

PDB-Ligand was designed as a tool to structurally align all of the ligand-binding pock-
ets in the PDB, based on a flexible ligand-clustering method.[76] The clustering uses the
RMSD value between all residues within 6.5 Å of the ligand after alignment via the Kabsch
method.[77] The authors cluster 161 PDB files (which have 321 ATP binding sites) and
cluster them into 165 different clusters using 0.5 Å RMSD cutoff, and 91 clusters using a 1
Å cutoff.

The database contains NMR proteins and does not have an X-Ray threshold for the
proteins. It also contains nucleic acid structures. All HET groups are defined as ligands,
even if they are covalently attached to the protein or are simple ions such as magnesium or
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sodium. The website allows searches based on ligands, but it is case-sensitive. There is no
straightforward way to search based on proteins. A helpful statistics page citing some key
statistics is available. http://www.idrtech.com/PDB-Ligand/

PLD

The Protein Ligand Database (PLD) by John Mitchell is a small database of protein-
ligand complexes.[78] All of the entries are annotated with calculated binding energy
using the knowledge-based method BLEEP. Of the 485 entries, 345 were annotated
with experimental binding data. While ligand similarity scores have been calculated,
they are not available; additionally, the search functionality does not work. http://www-
mitchell.ch.cam.ac.uk/pld/index.html

ProNIT

The Protein-Nucleic Acid Interactions (ProNIT) database provides experimentally deter-
mined interaction data between proteins and ligands that are nucleic acids.[79, 80] It contains
information on the proteins and nucleotides as well as binding data (e.g. Kd , δG, δH, δCp)
as well as the bibliographic source of the information. No information as to the maxi-
mum or minimum length of the nucleic acid ligands. (It may well be that there are no
single-nucleotide ligands in this database).

Relibase

Relibase (Receptor Ligand Database)was originally developed by Manfred Hendlich in
1998, is currently maintained by Cambridge Crystallographic Data Centre (CCDC) in col-
laboration with Gerhard Klebe.[81] Relibase has developed into commercial application,
called Relibase+, using both PDB and proprietary databases. Relibase+ touts an extensive
collection of tools for searching and data mining. Tools include developmental tools such a
command-line interface and python libraries, as well as graphical user interface (GUI) tools
to explore topological similarities of cavities, crystal-packing effects, hotspot interactions,
water-mediated interactions, and protein-ligand binding.[82, 83, 84, 85]

Relibase is a subset of Relibase+, and is available upon registration to academic users.
However, almost all of the tools are limited to the commercial version. Relibase+ uses a
very broad definition for ligands. Relibase+ considers almost all HETATM groups in crystal
structures as ligands. Ligands include metal cations like magnesium, inorganic salts such as
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sulfate, common crystal additives like polyethylene glycol, and even modified amino acids
within the protein chain.

sc-PDB

The screening-PDB (sc-PDB) database was designed for database and inverse screening of
a subset of binding pockets in the PDB.[86, 87, 88] The authors created similar criteria to
those in Binding MOAD, limiting ligands to biologically relevant ligands and requiring an
X-ray resolution threshold of 2.5 Å. They divide their ligands into nucleotides, peptides,
small organics, and cofactors and show that the data is widely diverse.[87]

In the first screening study, the authors used GOLD to recover the known targets for four
unrelated ligands in an inverse screen. However, they cautioned that the screening procedure
be applied only to selective compounds after finding much less accurate inverse screening
results with adenosine monophosphate (AMP).[86] In two different screening studies, the
authors were able to show 70- to 100-fold enrichment of ligands and that inverse screening
is possible even with some revealed limitations.[86, 88]

SitesBase

SitesBase, developed by Nicola D. Gold and Richard M. Jackson from the University of
Leeds, is a database of protein-ligand binding pockets.[89, 90] Gold and Jackson apply two
different scoring functions to calculate the similarity of binding pockets. The first technique
is the “seq sim” score, which is calculated according to the method of Stark and Russel.[91]
The second method is the Poisson Index scoring scheme. The Poisson Index is calculated
with the number of size and matching atoms between two binding sites.

Their intention is to identify how different protein binding sites maintain selectivity
and specificity for their ligands To facilitate this, they predict cross-reactivity (i.e., pre-
dict drug side effects) and provide functional annotation of new and existing proteins.[92]
In fact, the authors were able to show cases where two proteins are diverse in structure,
function and sequence and yet share a common binding site. For example, SitesBase finds
Subtilisin DY (1BH6) is similar to proteinase A (1SGC). The two proteins do not share
any significant sequence similarity. However, their algorithm found that the two ligands,
a synthetic inhibitor N-benzyloxycarbonyl-ALA-PRO-PHE-chloromethyl ketone (1BH6)
and chymostatin (1SGC), are extremely similar in their score and can be superimpositioned
very well.[92]

The authors do not exclude NMR structures, nor do they have a threshold resolution on
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X-ray structures. The authors do exclude ligands that have less than six atoms, some ligands
that are not biologically relevant (e.g., TRIS buffer), peptides, and post-translationally
modified residues. However, SitesBase has problems with ligands that are composed of
more than one HETATM group in the crystal structure as it treats each HETATM group as
separate ligands, even if they are covalently attached to another HETATM. This database is
not browseable, downloadable, and not available to commercial entities. Furthermore, it has
not been updated since its initial release in 2006 using data available from the PDB as of
June 2005.

SMID

Small Molecule Interaction Database (SMID) was part of the Blueprint Initiative, and pro-
vided predictions of protein domain-small molecule interaction for proteins in Biomolecular
Interaction Network Database (BIND).[93, 94] SMID clustered known cases of similar
protein-ligand binding in attempts to find binding patterns. SMID used a tool, SMID-BLAST,
to predict a domain binding site from a given input sequence, from homologous protein
sequences. SMID-BLAST then provides a list of potential small molecule ligands based
on SMID scores and aligned binding pockets. SMID allowed searches based on ligands or
protein sequence. Unfortunately, it was unclear how ligands were defined from the PDB
structures in BIND.

SMID-BLAST was validated by trying to predict the ligand for 793 proteins crystal
structures, of which 472 (60%) matched the observed small molecule in the crystal structure.
However, the Blueprint Initiative failed and BIND and SMID are no longer freely available.
They have been sold to a commercial entitity.

SuperLigands

SuperLigands is a database that focuses on the ligands in the PDB.[95] It provides searches
by 2D chemical similarity to each other and to a set of 2396 drugs, 3D superimposition,
and provides the ligands in the MDL Mol file format which, in contrast to the PDB format,
includes information about bond types. Some cheminformatic information is available for
the ligands, such as how well each ligand measures against Lipinski’s “rule of five”.[75]
Protein information is limited to the PDB id for the protein-ligand complex.
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Structure and Cheminformatic Respositories

As the Protein Data Bank grew and developed, national laboratories such as the National
Center for Biotechnology Information (NCBI) and European Bioinformatics Institute (EBI)
have mirrored the data in the PDB and provided their own interface to the data. NCBI
developed the Molecular Modeling DataBase (MMDB) and EBI developed PDBsum and
E-MSD. Furthermore, each of these institutions has developed its own cheminformatic
databases and interfaces, which allow mining for ligands. Research Collaboratory for Struc-
tural Bioinformatics (RCSB) developed Ligand Depot (now called the Ligand Expo), NCBI
has PubChem, and EBI has MSDchem.

1.5 Conclusion

In this dissertation, I will describe how I have developed Binding MOAD and then mined it
for principles of protein-ligand binding, examining protein flexibility and ligand binding.

Chapter 2 discusses how Binding MOAD was developed. It describes the criteria used
to select crystal structures from the PDB for inclusion in Binding MOAD. It discusses the
extraction of binding data for the protein-ligand complexes from the literature. This chapter
describes how the data are organized for useful presentation. Finally, it gives a summary
description of the data in Binding MOAD.

Chapter 3 discusses a data-mining study of Binding MOAD. Because of the careful and
extensive annotation of binding data that went into Binding MOAD, it is a very appropriate
dataset for analyzing physicochemical properties that correlate with specific, tight binding.
This chapter discussed how mining revealed differences between enzymes and non-enzymes,
and the details of those differences, along with possible consequences with regard to drug
design. Namely, this chapter shows how careful examination of the data reveals how diver-
gent approaches may be more productive for improving the affinity of ligands for the two
types of proteins. It also reveals inherent flexibility differences in the amino-acid content of
enzymes versus nonenzyme binding sites.

Chapter 4 describes how Binding MOAD was used to survey protein flexibility in crystal
structures. While crystal structures are widely used as static protein models in SBDD, pro-
tein flexibility needs to be accounted for to accurately predict ligand binding. This chapter
measures ligand-induced changes (both in backbone RMSD and side-chain flexibility) as
seen in protein-ligand crystal structures. Both intrinsic and extrinsic variation in flexibility
from complexed and uncomplexed structures were investigated.

Appendix A discusses the architecture of the server used to distribute Binding MOAD
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online. It discusses how Binding MOAD uses a 3-tier model (client, application, and
database) implemented with a JBoss Application Server using the Jakarta Struts MVC
framework and a MySQL database for persistence. The appendix discusses how and why
these tools and technology are used to build the webserver for http://bindingmoad.org.

Appendix B discusses development of Natural Language Processing (NLP) tools for use
in the annual updating of Binding MOAD. The manual extraction of of binding affinity data
from the literature is a bottleneck step in the annual updating process. By turning to NLP, a
field of artificial intelligence and linguistics that turns human language into a form that can
be processed by computers, the step of extracting binding data from literature is partially
automated. This partial automation significantly speeds the annual updating process.

In conclusion, this dissertation will show that Binding MOAD was carefully crafted and
is aptly able to illuminate our understanding of protein-ligand binding.
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Chapter 2

Binding MOAD (Mother of All
Databases)

2.1 Introduction

Binding datasets for protein-ligand complexes were first used in computational chemistry
to develop scoring functions for ligand docking and de novo design of enzyme inhibitors.
The earliest relevant dataset was only 45 complexes[32] and more recent sets are 200-
800.[30, 96, 68] Some sets have been made available online, changing their nature from a
flat list of data in a paper to a dynamic and searchable tool for the scientific community. The
largest and most useful datasets are outlined below. The strengths of each are noted and
the comparative strengths of Binding MOAD are highlighted. Our aim is to make Binding
MOAD the largest possible collection of high-quality, protein-ligand complexes available
from the Protein Data Bank (PDB)[61] and augment that set with the inclusion of binding
data. When initially introduced in 2005, Binding MOAD contained 5331 protein-ligand
complexes, of which binding data was collected for 1375 (26%) of the protein-ligand com-
plexes. As the PDB grew, we have updated the dataset three times. Currently BindingMOAD
contains 11,368 structures, with binding data available for 3453 (30%) of these structures.
The numbers presented in the following text represent the current state of Binding MOAD.

2.1.1 LPDB

The Ligand-Protein Database (LPDB) has 195 complexes with binding data.[30] LPDB
also provides computer generated docking decoys to help researchers in developing more
accurate scoring functions. We do not plan to add decoys to Binding MOAD, but our
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dataset is an order of magnitude larger. LPDB has been analyzed to address redundancy
of the protein structures. The 195 complexes consist of 51 unique proteins in 21 protein
classes.[30]

2.1.2 Binding DB

In one of the first papers announcing the Binding Database (Binding DB), it was re-
ported to contain very high-quality thermodynamic data for 400 binding reactions (90
for biopolymers).[96] Binding DB has recently started to accept the deposition of Ki

data, and the number of entries has grown significantly to 3300 binding reactions
(http://www.bindingdb.org/bind/stat.jsp). Most of the data is now inhibition constants
for biopolymer binding. Binding DB’s strength lies in the volumes of information given
on experimental conditions used in determining binding information, including raw data in
some cases. Though we do not provide isothermal titration calorimetry details like Binding
DB, our dataset is larger and we supply structural data from the PDB. The complexes in
Binding DB are not cross-linked to their structural data.

2.1.3 PDBbind

PDBbind was created by Shaomeng Wang and coworkers.[68] It contains binding data
on 800 complexes with resolution 2.5 Å (559 structures > 2.5 Å are also provided as a
secondary set). PDBbind does not address redundancy, but does note that approximately 200
different types of proteins are present. This set was curated in a similar fashion as Binding
MOAD but focuses on complexes with only one ligand in a pocket. PDBbind also excludes
any complex binding a simple cofactor such as ATP. Binding MOAD is larger because we
do not ignore cofactors or protein-cofactor-ligand complexes. We also provide information
on the structures when we do not have binding data because they are still a valuable resource
in database mining. PDBbind only provides structures of complexes for which it has binding
data.

PDBbind and Binding MOAD were developed independently at the University of Michi-
gan, Ann Arbor. When we learned of our similar research efforts, we found that our goals
were synergistic. The research projects around PDBbind focus on developing scoring func-
tions and searching ligand substructures. Our focus with Binding MOAD is more on protein
binding sites and protein flexibility. In sharing binding data between our groups, we found a
disagreement of only 1%, which highlights the high accuracy and quality of binding data
collected in both groups. Disagreements were simple typos that were easily corrected by
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consulting the reference again. This arrangement allows both groups to double check all of
the data, basically eliminating the errors inherent in hand-processed data. This high level of
quality control is unheard of for datasets of this size.

2.1.4 Other Online, Protein-Ligand Databases Without Binding Data

Of course, various improvements are constantly being added to the PDB to provide ad-
ditional information and viewers to aid understanding protein-ligand complexes.[97, 98]
However, several other online resources deserve discussion. These databases do not present
binding data for the protein-ligand complexes in the PDB, but they do provide useful search
tools, various analyses, and viewers of PDB complexes.

Relibase+ and MSDsite are similar datasets that specifically focus on protein-ligand
complexes. In 2002, Relibase+ contained 15,454 PDB entries, 50,514 individual ligand
sites, and 4530 unique ligands.[83, 99] MSDsite is the newest resource in the MSD suite of
web-based tools from the European Bioinformatics Institute.[66] However, the description
of ligands in both datasets is unusual for our application. We have taken great care to make
extensive lists of molecules to exclude as ligands in Binding MOAD. Metal cations like
magnesium, inorganic salts such as sulfate, and common crystal additives like polyethylene
glycol are not counted as ligands in Binding MOAD, but they are ligands in Relibase+
and MSDsite. They even count modified amino acids in the protein chain as ligands. The
strengths of Relibase+ and MSDsite are that they provide powerful search tools for mining
their datasets for interaction patterns. A benefit to the description of ligands in Relibase+
and MSDsite is that it allows a user to investigate a protein’s interactions with a feature like
a modified residue, a structural zinc ion, or an inorganic reactive center in the active site.
These groups are simply considered to be part of the protein in Binding MOAD because
of its focus on substrates, organic cofactors, and inhibitors. Such an investigation is not
possible with Binding MOAD at this time.

PDBsum and MMDB do not focus on protein-ligand interactions, but they provide
resources that are very useful for those interests. PDBsum is an online resource from
Laskowski and Thornton[100, 101, 102] that provides analyses for all structures in the PDB
(not just protein-ligand structures). PDBsum provides chemical, enzymatic, and genomic in-
formation about the entry, and it provides viewers to analyze protein-ligand interactions. The
viewers display secondary structure, ligand interactions, and cavities. MMDB is Entrez’s
3D-structure database.[103] Its focus is protein data, but several resources for comparing
related sequence and structure have direct relevance for ligand binding.
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2.1.5 Redundancy in Protein-Ligand Databases

Binding databases available to-date usually do not address the issue of redundancy. Many
protein complexes have more than one bound structure. Many small datasets contain several
examples of HIV protease, dihydrofolate reductase, thrombin, trypsin, lysozyme, etc. To
address this issue in Binding MOAD, we have analyzed for redundancy and grouped proteins
by 90% sequence identity. Of 11,368 complexes in Binding MOAD, there are 3582 unique
protein families when clustered at 90% identity. In our nonredundant version of Binding
MOAD, each protein family is represented by the structure of the tightest binder. Of the
3582 complexes in the nonredundant set, we have obtained binding data for 1008. (In cases
were binding data was not available, best resolution and other factors were used to choose
representatives of the protein families). As we mine this database for general biophysical
properties, our results for redundant and nonredundant Binding MOAD can be compared to
measure the influence of bias in the structures available in the PDB. Also, inverse docking
techniques, where a single ligand molecule is screened against a set of many proteins, will
require a nonredundant set of protein complexes.[104, 86]

2.2 Methods

2.2.1 Top-Down Approach

Older protein-ligand databases were originally created by reading through the literature and
compiling lists of appropriate complexes and their binding affinities. This sort of bottom up
approach relies on finding good information in a relatively random fashion. We chose a top
down approach to create Binding MOAD so that it contained every protein-ligand complex
with a 3D structure. We started with the entire PDB,[61] removed inappropriate structures,
and used the remaining structures to guide our literature searches in a systematic fashion.
Since almost all protein structures are annotated with the authors’ names and the appropriate
reference, a starting point for the literature search is straightforward.

2.2.2 Paring Down the PDB

Perl scripts were written to determine whether each protein structure was an appropriate
entry for Binding MOAD (Figure 2.1). Our scripts originally took advantage of the STAR
parsers[105] from the Research Collaboratory for Structural Bioinformatics (RCSB) and
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Figure 2.1 Criteria to judge all PDB structures for entry into Binding MOAD. The scripts evaluate
each structure - one at a time - against all criteria, but this step-by-step diagram is given to show
the impact of each criterion. The numbers shown are taken from the first public release of Binding
MOAD.

the new mmCIF format from the uniformity project. The mmCIF files have gone through
additional checks to correct sequence and EC errors that may exist in the legacy PDB
files.[106] By using the mmCIF files, we plan to keep abreast of the newest improvements
in data from the RCSB, making our resource more timely, accurate, and valuable. Since
the uniformity project has not been continued, we now use the remediated PDB files, and
have modified our scripts to parse these files using the Bioperl PDB parser. Our technique is
similar to that used by Rognan and coworkers to create sc-PDB, a set of protein binding sites
for inverse docking.[86] The major difference is that we did not use a keyword search to
identify complexes. Our group and others have found that keyword searches miss complexes
that can be identified through analyzing the individual structures. Starting with the entire
PDB (22,660 structures on 8/19/2003), we eliminated theoretical models, NMR structures,
and structures with poor resolution (> 2.5 Å). Large macromolecular complexes between
proteins and nucleic acids were removed. However, we wanted to keep any metabolic
enzymes that process nucleic acids, so structures with chains of four nucleic acids or less
were kept in Binding MOAD. Short chains of 10 amino acids or less were counted as peptide
ligands. Short-chain ligands were identified in the SEQRES section of the PDB format
({ pdbx poly .seq scheme} data items in mmCIF format). Small molecule ligands
were identified in the HET and FORMUL (in PDB format) sections ({ chem comp} in
mmCIF) or in ATOM and HETATM (in PDB format) ({ atom site} in mmCIF). Initial
filtering of the database utilized the mmCIF files from the uniformity project, however,
currently we utilize the remediated PDB files.

Covalently linked ligands were identified by calculating the minimum distance between
the protein and each ligand. Minimum distances greater than 2.4 Å were defined as nonco-
valent. Values between 2.1-2.4 Å were examined visually to determine covalency. Distances
less than 2.1 Å were considered covalent unless the short contact was to a metal ion (we
considered many common catalytic metals to be part of the protein during this analysis).
All short contacts to metals were examined visually. This was crucial in the case of zinc-
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Table 2.1 Definition of Unusual HET Groups

Classification Type of HET (Examples)
111 Suspect
ligands

Sugars (glucose, galactose, fructose, xylose, sucrose, β -D-xylopyranose,
trehalose)
Small organic molecules (phenol, benzene, toluene, t-butyl alcohol)
Membrane components (phosphatidylethanolamine, palmitic acid, de-
canoic acid)
Small metabolites that may be buffer components (citric acid, succinate,
tartaric acid)

78 Partial lig-
ands

Chemical groups (amino group, ethyl group, butyl group, methoxy,
methyl amine)
Inorganic centers of transition state or product mimics (aluminum fluo-
rides, beryllium fluorides, boronic acids)
Modifications to amino acids (oxygens of oxidized CYS, phosphate
group on TYR)

511 Rejected
ligands

Unknown or dummy groups (UNK, DUM, unknown nucleic acid, frag-
ment of)
Salts and buffers (Na+, K+, CI−, PO−3

4 , CHAPS, TRIS, tetramethyl
ammonium ion)
Solvents (DMSO, hexane, acetone, hydrogen peroxide)
Crystal additives and detergents (polyethylene glycol, oxtoxynol-10,
dodecyl sulfate, methyl paraben, 2,3 propanediol, pentaethylene glycol,
cibacron blue)
Metal complexes that associate to the protein surface and are used for
phase resolution (terpyridine platinum, bis bipyridine imidazole osmium)
Metal ions that are part of the protein (Mg+2, Zn+2, Mn+2, Fe+2, Fe+3)
Catalytic centers that are part of the protein (4Fe-4S cluster, Ni-Fe active
center)
Heme groups (heme D, bateriochlorophyll, cobatamin, protoporphyrin
IX)

For brevity, not all compounds are listed.

containing enzymes where a zinc-ligand distance < 2.1 Å is not necessarily a covalent
bond.[107] HET groups within 2 Å of another HET were identified as multipart ligands
(unless they had partial occupancy and were actually two ligands occupying the same space).
If any group of a multipart ligand was covalently linked to the protein, all components are
identified as a covalent modification. This was important in the case of sugar chains on
glycosylated proteins. Proteins with covalent modifications can still be part of the database
if they have another acceptable ligand. If all ligands are covalent or inappropriate (see Table
2.1), the crystal structure is rejected.
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2.2.3 Extensive Hand Curation of the Data

The literature citations for all final structures were read to confirm the validity of the ligands
and find binding data. Our preference for affinity data is Kd over Ki over IC50. Table 2.1
shows the great care that was taken to ensure that entries in Binding MOAD contain only
appropriate protein-ligand structures. Short protein-ligand distances and suspect ligands
were flagged for visual inspection in a more careful hand-check stage. Suspect ligands are
crystal additives that are valid only in some cases. Partial ligands are molecules that cannot
be a ligand on their own but are often a component of multipart ligands. Any HET with 3
heavy atoms is automatically part of this list. The covalency check identifies if these HET
are modifications to the protein or a ligand.

The reason for our choice to reject or suspect various HETs in Table 2.1 is obvious in
many cases. The reader may notice that β -D-N-acetylglucosamine (GlcNac, NAG in the
PDB) is not on the suspect lists. We found that GlcNac was never used as a crystal additive.
It was either part of a ligand or a covalent modification that was readily identified by our
scripts.

Modifications to amino acids are on the partial ligand list because they can be part of
the protein or part of a peptide ligand. Complexes containing heme groups were rejected
because the covalent association of ligands to the central metals made it difficult for us to
properly identify the true ligands. In many cases, it was a small molecule (oxygen, carbon
dioxide). Of course, this neglects P450s which are very important in medicinal chemistry,
toxicology, and pharmacology.[108] We plan to add P450s to Binding MOAD in the future
to make it more useful.

2.2.4 Grouping the Proteins to Address Redundancy in the Data

It is desirable to group proteins by related structure and function so that users can compare
related systems. Enzyme classification (EC) numbers are used to broadly group entries into
classes with similar chemical functionality. Within these classes, proteins are grouped into
homologous protein families based on sequence.

The EC numbers and protein sequences are pulled from the mmCIF files of all appropri-
ate structures. To compare the sequences in Binding MOAD, we use BLASTp v2.2.7.[109]
Defaults are used (E = 10, BLOSOM62 matrix, gap cost = 11, gap extend cost = 1). To
create protein families, we use a cutoff of 90% sequence identity like HOMSTRAD,[110]
but our grouping of proteins is slightly different than the clustering used for grouping similar
sequences at the PDB.[111] The routine is presented in Figure 2.2:
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Figure 2.2 Currently, 3582 protein families exist over all EC classes. Our routine for grouping
proteins by EC number and 90% sequence identity is shown schematically below. The dashed arrows
represent a protein with two EC numbers being added to two EC classes. The bold arrows show how
a protein with no EC number is added to an EC class by sequence identity. The bold arrows represent
a protein that is nearly identical to the dashed protein, so it is added to the same two classes. The
gray arrow notes that the homologous protein families are compared in the end, and entries found
multiple in families are corrected.

1. Use BLASTp to compare each protein chain of each entry to all other chains.
2. All protein sequences are initially grouped into classes by the EC numbers. If a protein

has more than one EC number, it is a member of more than one EC class (dashed
arrows in Figure 2.2).

3. Structures that do not have an EC number are checked against the existing EC classes.
If the sequence is 90% identical to any protein in an EC class, the sequence is added
to that class. These entries can be added to more than one class (see bold arrows in
Figure 2.2).

4. Any structures that do not have matches in the EC classes are initially grouped into a
nonenzyme class. The nonenzyme class can contain enzymes that lack EC numbers
or proteins that bind ligands but do not catalyze a reaction.

5. Homologous protein families in each EC class are created using the comparison matrix
generated from step 1. At this stage, two entries (A and B in a class) are grouped
together into a homologous family if one of the sequences in A is 90% identical to one
of the sequences in B. With 90% sequence identity being so strict for clustering, we
always found that any additional chains in entries A and B were also 90% sequence
identical.

6. In some cases, every entry in an EC class may be at least 90% identical to all other
entries. In those cases, the entire EC class is grouped into one homologous protein
family. In the nonenzyme class, there are many, different homologous protein families
because of the greater structural diversity.

7. At this point, the homologous families within all EC classes are compared to identify
any potential errors.

(a) For proteins with more than one EC number, we find nearly identical protein
families in more than one EC class. Only one of the families is retained and
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placed in the most appropriate EC class.
(b) If an error was made in the EC number of an entry, it will initially be placed into

the wrong EC class, but it will have little similarity to the other entries in that
class. The misplaced entry will have high similarity to the entries in another pro-
tein family in the correct EC class (e.g., HIV protease was given many different
EC numbers for historical reasons, but the entries must be grouped together).
The incorrectly labeled entry is moved to the proper class/family. At this time, a
missing or incorrect EC number in Binding MOAD can only be corrected if the
entry can be identified by its similarity to a homologous protein family in the
proper EC class.

8. The best entry in a protein family is the structure with the tightest binder. In cases
where a family has no entry with binding data, complexes of ligand-protein or ligand-
cofactor-protein are chosen over protein-cofactor complexes. The priority for choosing
a representative of the protein family is:

(a) Tightest binder (when binding data available)
(b) Best resolution (complexes with ligands preferred over complexes with just

cofactors)
(c) Wild-type over structures with site mutations
(d) Most recent deposition date
(e) When all criteria are the same, the representative is chosen based on comments

in the crystallography paper.

2.2.5 Annual Updates

We conduct updates annually to incorporate more structures into Binding MOAD as they
become available in the PDB. Our 2004 update began in August. The update procedure is:

1. Use the PDB’s list of obsolete entries to identify any existing structures in Binding
MOAD that should be removed.

2. Download a new set of mmCIF files. The previous version will be compared to
identify all new structures that have been added to the PDB since the last version of
Binding MOAD was created.

3. Identify good protein-ligand complexes in the new structures using our current scripts.
4. Any new HETs must be classified as suitable ligands or added to the suspect, partial,

or reject lists.
5. The literature portion of the updates should be faster because the number of complexes

will be significantly smaller than the existing set and almost all references will be
available as online PDF files.

6. Sequences will be added to existing classes and protein families, but regrouping all
sequences from scratch may be necessary to periodically confirm our protein classes
and families.

7. Each new structure will be compared with the leader of its homologous protein family
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to determine if the new structure is a better representative of the family.

2.3 Results and Discussion

After examining the PDB contents in our latest updated, January 1st, 2008 (48,178 entries),
a total of 11,368 valid protein-ligand complexes was obtained. Table 2.2 provides detailed
information about the functional roles of the proteins contained in Binding MOAD. Our
distribution of structures is a little different than that of sc-PDB[86] due to slightly dif-
ferent selection criteria. Three-fourths of the proteins are enzymes, with hydrolases and
transferases having the most representatives.

Table 2.2 Functional classification of current entries in Binding MOAD

Proteins identified with EC numbersa Entriesb

1.-.-.- (OXIDOREDUCTASE) 1914 (16.8%)
2.-.-.- (TRANSFERASE) 2495 (21.9%)
3.-.-.- (HYDROLASE) 3155 (27.8%)
4.-.-.- (LYASE) 653 (5.7%)
5.-.-.- (ISOMERASE) 427 (3.8%)
6.-.-.- (LIGASE) 254 (2.2%)
Total enzymes 8927 (78.5%)

Proteins without EC numbers Entries
Binding (lectin, streptavidin, agglutinins, etc.) 537 (4.7%)
Signalling, cell cycle, apoptosis 376 (3.3%)
Folding (chaperones, etc.) 55 (0.5%)
Immune (antibodies, immunoglobulins, cytokines, etc.) 254 (2.2%)
Mobility/structural (actin, myosin, etc.) 79 (0.7%)
Toxin/Viral 81 (0.7%)
Transcription, translation, replication proteins 263 (2.3%)
Transport (amino acid transporters, electron transport, etc.) 382 (3.3%)
Enzymes without EC numbers (eg., isopenicillin N synthase) 65 (0.6%)
Other 349 (3.1%)
Total proteins without EC numbers 2441 (21.5%)

aEnzyme counts include entries without EC numbers that could be identified through keywords or enzyme
names. Some were also identified by 90% sequence identity to entries with EC numbers.

bNumber of entries and their percentage of all 11,368 entries in Binding MOAD

Binding MOAD contains 5358 unique, valid ligands within the 11,368 complexes. Co-
factors, inhibitors, and substrates are all considered ligands in Binding MOAD. Figure 2.3
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provides the distribution of valid ligands by size. The ligands range from 4-176 heavy atoms.
The average molecular weight of the ligands in Binding MOAD is 455 g/mol; an example of
the average ligand is ATP which has molecular weight of 507 g/mol. Figure 2.3 shows that
the number of significantly larger ligands drops off quickly. The largest ligands are peptide,
nucleic acid, and sugar chains.

Figure 2.3 Distribution of the current 5358 unique ligands by molecular weight. The average
ligand in Binding MOAD is 455 g/mol. The largest are small chains of sugars, amino acids, and
nucleic acids.
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2.3.1 Clustering Binding MOAD into Homologous Protein Families

The protein sequences of the entries in Binding MOAD were grouped into homologous
protein families. When the set is clustered at 100% sequence identity, 6321 unique protein
sequences were identified. As one would expect when the criterion for sequence identity is
relaxed, fewer protein families are found and the size of the protein families increases (Table
2.3). Clustering at 90% sequence identity (our preference) produces 3582 homologous
protein families with the largest family containing 246 complexes. The largest families are
for systems that have been well studied for molecular recognition between proteins and
ligands (e.g., trypsin, thrombin, HIV protease, lysozyme, dihydrofolate reductase, etc.). In
Figure 2.4, a histogram of the homologous protein families shows that most of the families
have only a few entries. This reflects the emphasis in structural biology to identify new
structures and folds, rather than solve many structures of the same protein. Generally,
families contain multiple complexes when mutagenesis studies have been performed or

26



various ligands have been co-crystallized.

Table 2.3 Characteristics of Binding MOAD When Grouped Into Families by Sequence Identity

Clustering Criterion Number of homologous Size of the largest family
protein families (second largest family is also noted)

100% Sequence identity 6321 124 complexes1 (52)2

90% Sequence identity 3582 246 complexes3 (94)1

75% Sequence identity 3305 178 complexes3 (94)1

50% Sequence identity 2889 186 complexes3 (111)1

1Trypsin
2Thrombin
3HIV Protease

Figure 2.4 Histogram of the homologous protein families shows that most families have only a
few complexes. There is a near-exponential decrease in the number of larger and larger families.
This trend is basically the same for clustering at 100% sequence identity (blue), 90% (red), 75%
(yellow), and 50% (gray).

2.3.2 Nonredundant Binding MOAD

To create a nonredundant version of the dataset, we had to choose unique representatives for
each protein family. As outlined in the Methods, we made every effort to identify the tightest
binder to represent each family. For the dataset clustered at 90% sequence identity, 1857
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of the 3582 families contained only one complex, and so the choice for the representative
was obvious. The remaining families contained multiple complexes. For 724 of the families,
the representative was easily identified by binding data. Resolution was the deciding factor
for 335 of the families (either because there was no binding data or the binding affinity was
the same for more than one ligand). Of the remaining families, 46 were chosen based on
complexes with ligands being preferred to complexes with only cofactors, 13 were chosen by
wild-type over mutated protein, 24 by most recent deposition date, and 48 by other criteria
(R factor, comments about ligands in the paper, etc.)

The nonredundant version of Binding MOAD contains 3582 unique proteins. After
choosing the complexes for the nonredundant set as outlined above, this set contains binding
data for 1013 of the unique structures.

2.3.3 Binding-Affinity Data

The binding-affinity data contained within Binding MOAD ranges 13 orders of magnitude,
from low fM to high mM values (see Figure 2.5). The dataset contains mostly Kd and Ki

values. Only 159 entries have IC50 data, ranging 60 pM - 14 mM. For the 516 entries with
Kd data, values range 190 fM - 250 mM. The 700 entries with Ki data have the largest range
of binding affinity, 11 fM - 400 mM.

One of our primary goals is to obtain binding data for all entries in the full set of Binding
MOAD (all 11,368 complexes). At this time, only 3453 complexes (30%) in Binding MOAD
are augmented with binding data. Though this is much larger than other datasets with a
few hundred binding affinities,[30, 96, 32] we were disappointed to find that so few of
the structure papers notes binding-affinity data. A survey of the literature by Wang and
coworkers found a similar rate of binding data included in the crystallography papers.[68]

Of course, some of our complexes inherently lack binding data; protein-cofactor struc-
tures do not have Kd , Ki, or IC50 data for us to report. KM is the more appropriate binding
data for most cofactor-protein complexes, and we have started to collect that information
for our complexes. Protein-cofactor structures should be part of the dataset because they
can be very important in studying molecular recognition and drug design. For example, pat-
terns in ATP recognition can be extracted from ATP-binding domains to explain enzymatic
regulation or develop inhibitors.[112, 113]
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Figure 2.5 The distribution of binding-affinity data within Binding MOAD. Data is available as Kd
(red), Ki (blue), or IC50 (yellow). For this histogram, binding data were converted to free energies by
-RT ln (data). Though not strictly appropriate for many Ki or IC50, this simply provides a comparison
for the reader.

2.3.4 Database Growth and Updates

As mentioned above, we are committed to the growth and quality of Binding MOAD. Since
its introduction in 2004, Binding MOAD has regularly expanded its collection with new
data. Originally with 5331 crystal structures of protein-ligand complexes, it has increased
by almost 1500 each year, growing to 6638 in 2005 and then 8250 in 2006, reaching 9836
entries in 2007 and 11,368 with the latest update. This steady growth mirrors the growth
of the PDB (Binding MOAD contains approximately one-fourth of the PDB). The primary
literature for each crystal structure is read in order to verify the ligand and to extract any
affinity data for the ligand. Thus, adding new data to Binding MOAD involves reading
tremendous number of journal articles for manual annotation and validation of appropriate
ligands.

To facilitate the literature-checking process, a natural language processing (NLP) based
workflow tool called Binding Unstructured Data Analysis (BUDA) has been developed. The
NLP portion of BUDA is built upon the General Architecture for Text Engineering (GATE)
framework[114]. It identifies key sentences and phrases in papers and uses a weighted
scoring algorithm to rank the likelihood that the key sentences and phrases contain binding
data. The workflow portion of BUDA is used to interact with the researcher to organize
the data for the annotation process. From the workflow interface, the curators can sort the
articles by their weighted scores, review the annotated texts and highlighted sentences, and
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update the data into Binding MOAD.

Platform

Binding MOAD is built on proven technologies. The Binding MOAD database is based on
the Java 2 Platform, Enterprise Edition (J2EE), using an open-source JBoss Application
Server, Enterprise JavaBeans (EJB), and a MySQL database backend. These tools provide a
standards-compliant, easy-to-use website that unifies the presentation of structural, chemical,
and binding data in one simple format.

Improving User Experience

Having a flexible infrastructure, allows for changes in the web-site presentation. Efforts are
made to make the data as easily accessible as possible. We have removed the need for users
to login, and data is now freely accessible to private companies, non-profits, and foreign
institutions. Additional features have been added. A screenshot of the modified layout for a
datapage in Binding MOAD is shown in Figure 2.6.

Figure 2.6 Screenshot of the data page for 3ERK, showing the additional ligand data and the
connectivity to proteins with similar structure and function.
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Viewer

A new 3D protein viewer, EolasViewer, is available to view the ligand in the protein pocket.
The new viewer is built using the Eolus platform from Metamatics and it replaces the
previously used GoCavViewer. A screenshot of the viewer is shown in Figure 2.7 The new
viewer is still capable of selecting and viewing the ligand pocket using both ball-stick and
surface representations. EolasViewer incorporates significant improvements in the areas
of performance, visual quality, and back-end flexibility for future application development
efforts.

By taking advantage of rendering algorithms and OpenGL Shader Language (GLSL),
Eolus provides the new viewer with new representation styles. The surface representation
has been expanded to a fully transparent polygon surface. The proteins are rendered as
ribbons by default, and the entire protein (instead of only the ligand pocket atoms) can now
be rendered either as ribbon or ball-stick. Finally, many advanced features are planned for
future versions of this tool. Eolus is a platform for structual biology being developed in
conjunction with this and other tools.

Like its predecessor, the new Eolus-based viewer is built using a Java framework and we
are deploying it as a WebStart application. Eolus uses Jogl (Java Bindings for OpenGL) to
fully utilize the 3d acceleration features available in nearly all modern computers. These
two technologies, Java WebStart and OpenGL, provide nearly hands-free deployment of the
software, together with state-of-the-art performance and visual quality.

2.4 Conclusion

As stated above, we have developed and continue to expand Binding MOAD, in the future
we wish to contain more binding-affinity data (including the addition of KM for cofactors).
We have also committed to annual updates of the dataset to keep pace with the growth in the
PDB. Binding MOAD has over eleven thousand, hand-curated, protein-crystal structures that
contain biologically relevant ligands. Binding affinity data is available for almost one-third
of the entries. Part of the value of Binding MOAD is in its careful curating and in its size and
wealth of data. This has been only achievable because of the efforts invested to maintain the
continual growth. Binding MOAD has plans for even greater improvement. We are planning
to add similarity-based searches for the ligands. Furthermore, while we have been able to
use text-mining tools to speed up our annotation process, we are looking to make these tools
available online to allow users to mine text for additional types of data. We are now using
NLP to aid in our searching. Such NLP based text mining approaches can be readily applied
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Figure 2.7 EolasViewer for 3ERK. The SB4 ligand is shown in ball in stick inside the pocket. The
surfaces shown are the ligand surface in blue, the binding site in red and the solvent-exposed regions
of the binding site are in green. (Top) The protein backbone is shown as a gray ribbon, and in the
close-up (Bottom), the backbone is colored by B-factors.

to other bioinformatic projects. This technology can be used to extract a wide variety of
data - not just binding information - from the huge body of literature available today. NLP
is proving to be a valuable tool in aiding the curation of Binding MOAD. It has significantly
sped up the process of the annual updates of adding data.

We have made the dataset available online at http://BindingMOAD.org. This web-
accessible resource makes our information freely available to other research groups at
non-profit organizations (annual licenses are available to the private sector). Data from our
perl scripts and our hand curation include PDB id, EC class, homologous protein family,
binding-affinity data, and classification of each ligand in the entry (valid versus invalid).
The datapage for each complex in Binding MOAD provides this information to the user.
Our scripts also note the reason any PDB structure was excluded (resolution > 2.5 Å, no
appropriate ligand, etc.). If a user tries to access a PDB entry that is not part of Binding
MOAD, a datapage provides the reason for its exclusion from the dataset.

We are choosing to make the structures available as biological units rather than PDB
files. The biological units provide the proper multimer for biological activity. For instance,
only the proper dimer is provided when multiple dimers occupy a unit cell, or the proper
tetramer is provided from symmetry operations of a unit cell containing only the monomer.
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This will provide users with the structures that are most related to biological activity and
therefore the most appropriate for study.
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Chapter 3

Differences Between High- and
Low-Affinity Complexes of Enzymes and

Nonenzymes

3.1 Introduction

Both enzymatic and non-enzymatic proteins can bind small molecules, but enzymes catalyze
reactions and have a fundamentally different role from non-enzymes, which may have an
impact on their recognition of ligands. Do these two types of binding events have the same
physical characteristics? Furthermore, are there any differences between high-affinity com-
plexes and weaker binding events that can be linked to their physical contacts? To answer
these questions, physicochemical patterns were mined from our protein-ligand database
Binding MOAD (Mother of All Databases), where MOAD is pronounced “mode” as a pun
on a ligand’s mode of binding.[115, 116]

Binding MOAD is the largest curated database of high-resolution protein-ligand com-
plexes from the Protein Data Bank (PDB).[61] Though it only reflects proteins that can be
crystallized, these are the exact systems where structure-based insights will be used. The
PDB is the source of all structures used for docking and scoring development by academics.
However, the data used here are significantly larger than most sets used to develop existing
scoring functions, which are typically sets of <300 complexes of <50 unique proteins. We
use 2214 structures: 1790 enzymes and 424 non-enzymes (512 unique enzymes and 176
unique non-enzymes). This study provides an important benchmark of the current landscape
available from structural biology (incomplete and/or biased as it may be).

For this study, we have compared distributions of various properties between four classes
of protein complexes. Distribution analysis is used widely in many fields, and it is important

34



to stress that it does not define “absolute rules”, nor are the data presented as such. These
are general guidelines, and of course, there will be exceptions to those trends. Distribution
analysis can show that “men are taller than women” and “women live longer than men.”
Those trends are true even though some women are 6’ tall and some men live to 100.

Empirically derived rules can be very useful in discovering and applying new principles
in chemistry. One of the most well known examples is Lipinski’s Rule of Five, which
describes the physical properties of orally-available drugs.[75, 117] These rules provide
general guidelines for size, lipophilicity, and hydrogen-bonding characteristics that correlate
with the likelihood that a molecule can be orally absorbed into the body. The findings
are based on distribution data of the chemical characteristics of orally absorbed molecules
going into Phase-II testing. The dataset is biased by issues outside of pharmacokinetics
such as the need for good synthesis (not just accessible chemistry, but few steps in high
yield) and market considerations (completely economic, no basis in the thermodynamics
of protein-ligand binding). The rules do not hold for natural products, actively transported
molecules, molecules that require metabolism for activation, or most antibiotics, antifungals,
vitamins, and cardiac glycosides. There are plenty of molecules in Lipinski space that are
not drugs, and many molecules outside that space that are. Despite these limitations and
biases, the Rule of Five is used widely in the pharmaceutical industry.

We hope that the present work will also aid drug discovery. In this study, we provide
new patterns which describe high-affinity, protein-ligand binding and outline differences
between enzymes and non-enzymes. Of course, there will be examples that fall outside the
typical pattern, but these relationships provide a good description of the general landscape
that structural biology can provide at this time. We expect that our understanding will grow
as more structures become available through the various protein structure initiatives.[118]
These guiding principles may be useful in designing targeted libraries for drug discovery
and improving scoring functions. They are also important to advancing our fundamental
understanding of chemical biology, protein-ligand binding, and the biophysics that dictate
molecular recognition.

Non-covalent, small molecule binding is a tradeoff between the enthalpy gained by
making specific contacts between functional groups of the ligand and the protein and entropy
lost by forcing the ligand and protein into a specific conformation.[119, 120] Since this
study uses crystal structures it is difficult to fully account for the effect caused by entropy.
However, it is possible to determine the physical characteristics of the small molecule and
the protein which leads to the binding affinity.

Other studies[121, 122] have noted an inherent limitation in mining protein structures
for physical characteristics of binding. When a pocket is discovered on a protein surface,
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it is difficult to identify whether it is a true binding site or if it is capable of high-affinity
binding appropriate to represent drug-like binding. This study does not suffer from these
limitations; all sites have been curated to assure that they are true binding pockets, and the
high-affinity complexes are separated from those with low affinity.

Only complexes with binding data (Kd , Ki, or IC50) were used for this study. No com-
plexes in MOAD are annotated with Km data, so almost all ligands are inhibitors, agonists,
or antagonists (a small number are cofactors, 5%, included only for systems where affin-
ity data is appropriate). We specifically focused on the contacts between the ligand and
the protein, excluding any structure with poorly defined contacts such as missing atoms
from under-resolved density or ligands and side chains resolved in multiple orientations.
Distributions of ligand size, buried surface area (BSA), exposed surface area (ESA), and
other physical characteristics were examined for statistically significant differences between
four subsets of the complexes: high-affinity binding to enzymes, high-affinity non-enzymes,
low-affinity enzymes, and low-affinity non-enzymes. A common metric to evaluate lead
compounds is ligand efficiency.[123, 124, 125, 126] In this study, ligand efficiencies for the
different classes of proteins are reported as affinity per size (-∆Gbind divided by the number
of non-hydrogen atoms) and per the degree of contact between the ligand and the pocket
(-∆Gbind/BSA).

Here, we focus on the most significant differences between molecular recognition of
tight and weak binding to enzymes and non-enzymes.

3.2 Methods

Data for this study come from the largest comprehensive database of protein-ligand crystal
structures with binding data, Binding MOAD. The latest version of Binding MOAD was
created from structures released on 12/31/2006 or earlier; it contains 9836 complexes,
comprised of 3151 unique protein families binding 4659 unique ligands. The great care
taken in curating this dataset has been outlined elsewhere,[115] but it should be noted for
these purposes that ∼9,000 crystallography papers have been examined to determine the
appropriateness of every ligand (crystallographic additives, post-translational modifications,
and covalently bound ligands are excluded from consideration). From these efforts, binding
affinity data is available for 30% of the entries, with a preference for Kd data over Ki data
over IC50 values. The affinities were converted to free energies of binding by ∆Gbind =
-RT·ln(Kd) or simply approximated by ∆Gbind = -RT·ln(Ki or IC50) with a temperature of
298 K.
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High-affinity binding was defined Kd , Ki, or IC50 ≤250 nM (∆Gbind ≤-9 kcal/mol),
which is approximately the average of all the complexes with binding data in Binding
MOAD. Enzyme complexes were defined from the Enzyme Classification number in the
PDB file. The non-enzymes were annotated by hand using keywords reported in the remarks
section of the PDB entry. All complexes and binding data are available at the Binding
MOAD website, www.BindingMOAD.org.

To calculate surface areas, BSA and ESA were calculated with GoCAV using radii
based on united-atom OPLS parameters.[116] This code reports buried molecular surface
area (MSA) of the pocket and also defines ESA of the binding site, bounded by the 3D
coordinates of the ligand.

The SlogP for the ligands was calculated using MOE,[127] based on the method devel-
oped by Wildman and Crippen.[128] For the 2D and 3D descriptors calculated with MOE,
the idealized SDF files from the PDB were used if available; otherwise, the coordinates of
the ligand from the protein’s structure were taken. Hydrogens were added with MOE. In
an effort to identify any differences, all 2D and 3D ligand characteristics available within
MOE were compared for the four groups of complexes: high-affinity enzyme, low-affinity
enzyme, high-affinity non-enzyme and low-affinity non-enzyme.

3.2.1 Statistical Analysis.

Statistical significance was assessed with the programs SAS[129] and JMP[130]. Initial
assessments used JMP to calculate all pair-wise correlations for the over 200 descriptors
calculated. For the descriptors showing interesting trends, the significance of the differences
between the distributions of physical properties were determined by the Wilcoxon rank-sum
test, which is most appropriate given the non-Gaussian distributions of the data. We also
performed one-way ANOVA, two-way ANOVA, and Tukey-Kramer HSD tests between the
four classifications. Since these second series of tests require near-normal distributions, the
square-root transform was applied to reduce the skew and bring the distributions closer to
normal.

Histograms of the distributions of ligand size were binned in increments of 5 heavy
atoms. Distributions of BSA and ESA were binned by 50 Å2. Those plotting ligand effi-
ciency were binned by 0.1 kcal/mol-atom for affinity per size or 10 cal/mol-Å2 for affinity
per degree of contact. Distributions of SlogP were binned by 2 log units. These bin sizes
were in proportion to the size of the datasets and were consistent with those automatically
generated by JMP.
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3.3 Results and Discussion

Considerable effort was made to determine direct mathematical relationships between affin-
ity and surface area, ligand size, or other characteristics of protein-ligand interactions,
but there was no global correlation across all complexes. Recent work by Coleman and
Sharp[131] based on the PDBbind dataset[69] also found no correlation between affinity
and surface area or depth of the binding pocket. Inspired by analyses of distributions of
ligand efficiencies from screening data,[123] we changed our approach and focused on
distributions of the properties between subsets of protein-ligand complexes.

Table 3.1 outlines the characteristics that differ between high-affinity and low-affinity
binding for enzymes and non-enzymes; all emphasized differences in the datasets have a
statistical significance >99.99% (p<0.0001) based on a two-tailed, Wilcoxon rank-sum
test. Figure 3.1 shows a comparison between each of the subsets of complexes, examining
the distribution of ligand sizes, BSA, SlogP, and ESA. Many of the low-affinity complexes
have ∼300 Å2 of BSA, but the high-affinity complexes display more contact. It has been
estimated that drug-like binding sites have ∼300 Å2 of solvent-accessible surface area
(SASA).[121] Our measurement for BSA is based on MSA, and so, the slightly higher
values of the high-affinity complexes are appropriately comparable.[121]

3.3.1 Different approaches for improving inhibitors of enzymes versus
non-enzymes.

For enzymes, there is a significant difference in the size of the ligands in high- and
low-affinity complexes (Figure 3.1). High-affinity ligands are much larger (11 more non-
hydrogen atoms). However, non-enzymes display very little difference in the size of the
ligands between high-affinity and low-affinity complexes (Table 3.1, Figure 3.1b). These
differences do not come from any influence of the inclusion of cofactors in the set. The
medians are nearly unchanged if they are removed from the dataset.

Sizes of the ligands point to a strong difference in the complexes, particularly in how to
improve an inhibitor for enzymes versus non-enzymes. To improve the affinity of an enzyme
inhibitor, it appears fruitful to add functional groups to increase the complementary contact
between the inhibitor and the protein. In contrast, improving ligands for non-enzymes may
best involve conservative changes which maintain the ligand’s size. Tight binders for non-
enzymes are less exposed than the low-affinity ligands, making them more sequestered from
the surrounding solvent (Table 3.1). Distributions of the calculated octanol/water partition
ratios (Figure 3.1a,b) show that high-affinity ligands are more hydrophobic than those with
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Table 3.1 Characteristics of Protein-Ligand Binding for Enzymes and Non-Enzymes in the Full
Dataset.

Median
Physical
Properties

Low Affinity
>250 nM
∆Gbind>-9
kcal/mol

High Affinity
≤250 nM
∆Gbind≤-9
kcal/mol

Comparisonb

Enzymes
∆Gbind
Sizec

BSA
ESA (%ESA)d

SlogP

-∆Gbind/atom
-∆Gbind/BSA

1048 complexes
-6.6 kcal/mol
21 atoms
305 Å2

87 Å2 (22%)

0.3

0.31 kcal/mol-
atom
21 cal/mol-Å2

742 complexes
-10.9 kcal/mol
32 atoms
419 Å2

144 Å2 (24%)

2.4

0.36 kcal/mol-
atom
26 cal/mol-Å2

High-affinity
ligands are
52% larger
and more
hydrophobic

Non-Enzymes
∆Gbind
Sizec

BSA
ESA (%ESA)d

SlogP

-∆Gbind/atom
-∆Gbind/BSA

234 complexes
-7.2 kcal/mol
22 atoms
265 Å2

118 Å2 (33%)

-2.2

0.28 kcal/mol-
atom
22 cal/mol-Å2

190 complexes
-10.4 kcal/mol
25 atoms
361 Å2

45 Å2 (11%)

1.5

0.41 kcal/mol-
atom
31 cal/mol-Å2

Low-affinity
ligands are
three times
more exposed
and more
hydrophilic

Comparisonb Non-enzymes have
17% greater ligand
efficiencies

aValues presented are medians for each population.
bAll differences noted in the comparisons sections have
a statistical significance of >99.99% (p<0.0001).
cLigand size is given in the number of non-hydrogen atoms.
dPercent exposure is ESA/(ESA+BSA).
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Figure 3.1 Comparisons of (A) enzyme complexes, (B) non-enzyme complexes, (C) high-affinity
complexes and (D) low-affinity complexes are presented. High-affinity enzymes are shown in dark
blue, and low-affinity enzymes are in green. High-affinity non-enzymes are in red, and low-affinity
non-enzymes are in gold. Distribution of ligand sizes (number of non-hydrogen atoms), buried
surface area of the pocket (Å2), SlogP, and exposed surface area (Å2) are given in normalized percent
frequencies. P-values show the significance of the difference in the medians of the distributions, as
determined by a two-tailed Wilcoxon rank-sum evaluation (insignificant differences have p>0.05).
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Figure 3.2 Limited correlation is seen between size and affinity in non-enzymes (A and B). The
proteins with “clusters” of points have smaller binding sites and no ligands over 40 non-hydrogen
atoms. The ligands have similar sizes and affinities for oligopeptide-binding protein (OBP), glutamate
receptor 2 (GluR2) and mannose-binding protein (MBP), arabinose-binding protein (ABP), and
estrogen receptor (ER) alpha and beta. The only non-enzymes with a range of ligand sizes are
maltose-binding protein and the non-enzymatic site on the SH2 domain of pp60src tyrosine kinase (C
and D, respectively).
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low affinity, but there is no significant difference between enzymes and non-enzymes in
this regard. It appears that “adding grease” equally improves binding to both enzymes and
non-enzymes, consistent with a general desolvation effect.[119]

The above trends for improving inhibitors for enzymes versus non-enzymes come from
observing patterns across different proteins (inter-protein relationships), but information to
improve inhibitors for a specific target must come from observing trends of one protein bind-
ing a variety of ligands (intra-protein binding trends). This is a more difficult comparison to
make because few proteins are crystallized with a significant range of bound ligands. For
the few that exist, we must divide them into enzymes and non-enzymes, further reducing
the sizes of the available datasets. The findings below are qualitative in nature. Overall, our
data show that enzymes appear to have better correlations between size and affinity than
non-enzymes.

In order to determine a relationship between ligand size and affinity within a protein
family (Figures 3.3 and 3.3), the complexes were grouped by 100% sequence identity. This
organization ensures that changes in affinity are the result of changes in the ligand and not
a mutation within the binding site. (For a few proteins, we were able to combine two sets
when the mutations were far from the active site and inconsequential.) Groups that contained
≥5 complexes were examined. For non-enzymes, there were only a few proteins available:
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Figure 3.3 Many examples are available of enzyme complexes that show a strong correlation
between size and affinity of the ligands; seven are given here (A-G). HIV-1 protease (G) demonstrates
that a large collection of ligands may show no correlation, but subsets of data may reveal strong
trends (data for the C95A and Q7K/L33I/L63I mutants). It is interesting that even small binding sites
with ligands of 40 non-hydrogen atoms or less (B,C,D) show a linear trend with affinity; this was not
seen for non-enzymes with small binding sites.
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oligopeptide-binding protein, glutamate receptor 2, estrogen receptor alpha, estrogen recep-
tor beta, arabinose-binding protein, mannose-binding protein, maltose-binding protein, and
src SH2-binding domain. For most of the non-enzymes, the ligands are very similar in size
and affinity. Six of the eight proteins have a small range of ligand sizes which shows little
correlation to affinity (Figure 3.3 a, b). The small range of observed ligand sizes supports
the idea that conservative changes are most appropriate for trying to improve ligands for
non-enzymes. However, the lack of a distinct trend between ligand size and affinity does
not necessarily prove that a trend could not be observed. It is unclear if the small range
of ligands is the result of the specificity of the protein systems or whether more diverse
complexes are simply not available from the PDB.

Only maltose-binding protein (Figure 3.3c) and the non-enzymatic site on the SH2
domain of pp60src tyrosine kinase (Figure 3.3d) have a significant range of ligand sizes.
The maltose-binding protein complexes contain sugar chains of varying length. Almost all
bind with roughly the same affinity, and this may be explained by the fact that the larger
ligands show little difference in the BSA contact, despite the very large range of sizes. The
non-enzymatic site on the SH2 domain of pp60src tyrosine kinase is the only non-enzyme
complex showing some correlation between ligand size and binding affinity. It is interesting
that the only exception in non-enzymes is a regulatory site on an enzyme. These linear
correlations reflect a trend across several ligands, ∆(∆Gbind/size), which is slightly different
than the ligand efficiency of an individual ligand, ∆Gbind/size. In the discussions below, we
will use the term “trend” or “correlation” when comparing across several ligands bound to
the same protein, ∆(∆Gbind/size).

In the case of enzymes in MOAD, thirty-seven proteins were available with five com-
plexes or more. Unlike non-enzymes, over half of the families showed correlations between
size and affinity. For brevity, only seven examples of MOAD’s enzymes are given in Figure
3.3. One of the most interesting features of the data in Figure 3.3 is that the slopes - the
overall trend for each set - vary significantly! Though a linear correlation can be found for
a good number of enzymes, the additive contributions of more functional groups appear
to be system dependent, with some contributions being rather small. The trends range
from 0.44 kcal/mol-atom for carboxypeptidase A (Figure 3.3b) to 0.09 kcal/mol-atom for
FK506-binding protein (Figure 3.3f). Most scoring functions use additive terms, and these
findings underscore the difficulty in developing a universal scoring function, appropriate for
all protein systems. Yang et al. have also noted these difficulties in development of their
M-Score scoring function.[72]

However, for 11 enzymes, there was no correlation; the ligands had roughly comparable
affinity and sizes, much like the non-enzyme examples. Three enzymes showed a very small
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range of ligand sizes and a large range in binding affinity. It is debatable whether these
trends are exceptional examples of the correlation expected for enzymes or whether they
indicate cases where only conservative changes in sizes are allowed, as would be expected
for non-enzymes. It is also possible that they result from an unusual set of ligands from one
chemical class.

Though Babaoglu and Shoichet have used fragments of inhibitors of β -lactamase to show
that ligand efficiency is not necessarily additive within a binding site,[132] fragment-based
design often couples these small building blocks in the pursuit of high-affinity ligands.[133]
From our data above, one might expect greater success for this strategy when targeting
enzymes where increasing size generally leads to increasing affinity. A recent study by
Hajduk compared fragment-based design for 14 enzymes and four non-enzymes to show that
ligand efficiency remained rather constant as the optimal leads were increased in size.[134]
The contributions were roughly additive for the best functional groups. The average trend
across these systems was 0.3 kcal/mol-atom, with individual systems showing trends from
approximately 0.23 to 0.51 kcal/mol-atom (reported as binding efficiency indices of 11-28
pKd units per MW in kDa). It is encouraging that the values are comparable to the ligand
efficiencies reported in Table 3.1.

Hajduk’s trends were presented for the most efficient ligands for each protein, empha-
sizing the most ideal cases of improving a ligand.[134] However, his data for Bcl-xL, a
non-enzyme with a large binding cleft, showed that many changes will not be optimal. A
detailed analysis for >2300 additional molecules showed that many had significantly lower
efficiencies. In fact, he suggests that chemical modifications that reduce the ligand efficiency
by >10% deviate too much from the ideal and indicate that either the location or chemical
nature of the modification is less desirable.

The HIV-1 protease data (Figure 3.3g) shows that there is a large scatter of inhibitor
sizes and affinities, but two subsets of data (from mutants of HIV-1 protease) show strong
linearity. This could demonstrate the same issue seen in Hajduk’s detailed analysis of
Bcl-xL.[134] The full set of data shows wide scatter and little trend, but a carefully chosen
subset could reveal idealized trends for a particular protein system or class of ligands from
a specific synthetic series. For HIV-1 protease, the compensation between enthalpy and
entropy can be hard to control. Lafont et al. have demonstrated that an increase in size
from the KNI-10033 inhibitor to the KNI-10075 inhibitor did not increase binding affinity
despite a more favorable enthalpy from a strong hydrogen bond.[135] The entropic penalty
of changing a thio ether (two heavy atoms) in KNI-10033 to a sulfonyl group KNI-10075
(four heavy atoms) is responsible for the lack of change in binding affinity. That study
noted that, although others have been able to optimize certain HIV-1 protease inhibitors with
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Figure 3.4 Distribution of ligand efficiencies per size (-kcal/mol-atom) and per contact (-kcal/mol-
Å2), given in normalized percent frequencies. Distributions present comparisons of (A) high-affinity
complexes (p<0.0001 in both cases) and (B) low-affinity complexes. High-affinity enzymes are
shown in dark blue, and low-affinity enzymes are in green. High-affinity non-enzymes are in red,
and low-affinity non-enzymes are in gold.
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respect to enthalpy, the enthalpy-entropy compensation could make optimization of affinity
impossible for some chemical series.

An important caveat should be considered in the preceding discussion. It is possible
that strong correlations between size and affinity can only be easily determined for large
binding sites. Large ligands can be truncated to provide smaller, weaker ligands that bind
to subsites. This would give a wide range of ligand sizes and affinities, allowing a definite
size-affinity relationship to emerge from the data. It may be more difficult to determine a
trend for a small binding site. This would still imply that enzyme inhibitors are more likely
to be improved through the addition of functional groups, simply because the binding sites
in enzymes are generally larger than those of non-enzymes. However, if this were the case,
the trend would be due to the size of the binding site and not necessarily the protein’s basic
function.

Though the size argument above is important to note, it is most likely not the cause of
the difference between enzymes and non-enzymes. Several examples of smaller binding
sites, characterized by ligands of 40 non-hydrogen atoms or less, are presented in Figures
3.1 and 3.3. For small non-enzymes, there are no proteins which show a correlation between
size and affinity. Conversely, there are several enzymes with small binding sites which do
show a good correlation of increased affinity with increased size.
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3.3.2 Ligand Efficiencies.

Distributions of ligand efficiencies are given in Figure 3.4. Ligand efficiency based on
contact (-∆Gbind/BSA) can be compared to established values for the desolvation effect.
The free energy of transferring a hydrophobic molecule from a hydrophobic solvent into
water has been estimated as 24-47 cal/mol-Å2, with the higher value being the most widely
accepted.[136, 137, 138] Honig and coworkers have noted this is lower than the value of 72
cal/mol-Å2, derived from the surface tension of a hydrocarbon-water interface.[138] Only
0.8% of the complexes in this study have ligand efficiencies that exceed 72 cal/mol-Å2 (i.e.,
greater than Honig’s value), and many have efficiencies ranging between 20-40 cal/mol-Å2.
The low-affinity complexes are roughly bounded by the 47 cal/mol-Å2 value (only 4.1%
have greater efficiencies), but the high-affinity complexes have large populations greater
than that value. Although, the complexes in Binding MOAD are not exclusively driven by
hydrophobic association, these values provide a yardstick for comparisons. However, it
should be noted that the range of values from the literature are based on SASA of small
molecules in differing environments (ligands), and our values are based on MSA of the
contacts within the pockets. While the comparison is not ideal, MSA-based values for
ligands are not prevalent in the literature, and SASA of a pocket is not equivalent to SASA
of a ligand.

For low-affinity complexes, the ligand efficiencies are basically the same for enzymes
and non-enzymes (Table 3.1, Figure 3.4b). However, the differences are significant in high-
affinity complexes (p <0.0001 for both efficiencies). The ligand efficiencies for high-affinity,
non-enzyme complexes are ∼17% greater than those of high-affinity, enzyme complexes
(Table 3.1). Non-enzymes in Figure 3.4a show a broader distribution of efficiencies and
much higher populations above 0.4 kcal/mol-atom (55% of high-affinity non-enzyme com-
plexes vs 37% of high-affinity enzyme complexes) and 30 cal/mol-Å2 (51% of non-enzymes
vs 35% of enzymes). On average over the high-affinity complexes, every atom and square

Ångstrom of buried cavity surface is worth more free energy in non-enzymes!

The differences in efficiencies between high-affinity enzymes and non-enzymes are not
dependent on the choice of cutoff between high- and low-affinity complexes. Even if the
full set of enzymes is compared to the full set of non-enzymes, the ligand efficiencies are
better for non-enzyme complexes. For the 1790 enzyme complexes, the median ligand
efficiencies are 0.33 kcal/mol-atom and 23 cal/mol-Å2; the median ligand efficiencies for
the 424 non-enzymes are 0.36 kcal/mol-atom and 26 cal/mol-Å2.

The same patterns for enzymes and non-enzymes are observed when redundancy is
removed. This is important because it corrects for some biases in the dataset by using
only one complex of a protein (some proteins have hundreds of entries and are heavily
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represented in the PDB). The non-redundant dataset in Binding MOAD is obtained by
grouping the proteins into families of 90% sequence identity and representing that family
by the single complex with the highest-affinity ligand - in essence, the optimal binding
event available for that individual protein. There are 688 unique complexes in this dataset,
512 enzymes and 176 non-enzymes. Again, the high-affinity enzymes (235 complexes)
have poorer ligand efficiency than the high-affinity non-enzymes (85 complexes). For the
non-redundant datasets, the median ligand efficiencies for high-affinity enzyme complexes
are 0.39 kcal/mol-atom and 28 cal/mol-Å2. The median ligand efficiencies for the non-
redundant, high-affinity, non-enzyme complexes are still larger at 0.44 kcal/mol-atom and
34 cal/mol-Å2. The smaller number of complexes produces nearly identical distributions,
and although the p-value of the comparison is slightly poorer (p = 0.04), it is still significant
(96%).

3.3.3 Efficiencies, evolution, and druggability.

The significant differences in ligand efficiencies suggest a differentiation in the binding
sites of these two classes of proteins, based on their function. This may reflect the different
evolutionary pressures upon enzymes and non-enzymes. The higher ligand efficiencies
of non-enzymes make them, in essence, more responsive to low concentrations of ligand
molecules. This is fitting, given their roles in signaling and regulatory control of cellular
function in response to stimuli. Conversely, enzymes are optimized to bind molecules,
change them, and release them again.

Ligand efficiencies are one key factor in describing the druggability of a target. Does
this imply that non-enzymes may be more druggable? In general, higher ligand efficiencies
mean that drug-like affinities can be obtained with smaller molecules. Smaller molecules
would tend to provide better oral absorption and fewer functional groups for toxicity
concerns.[139, 122, 140, 141] Of course, ligand efficiencies reflect “bindability”, and it is
important to recognize that there are additional properties that make a protein a suitable
drug target. It must be essential to the disease state. Leads must show selectivity to avoid
any negative consequences of off-target binding events. There are a myriad of ADME and
pharmacokinetic properties to be considered. However, the differences in ligand efficiencies
do indicate a greater likelihood to have better drug-like properties for inhibitors, agonist,
and antagonists of non-enzyme targets.

Many non-enzymes are the subject of intense drug discovery efforts in both the private
and public sectors; for instance, hormone receptors, signaling proteins, and transcription reg-
ulators are targets for anticancer treatment.[142, 143] Recent discussions on the druggability
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of protein-protein interfaces note that these difficult targets may be more amenable than
originally thought.[144, 145] Small molecules have been developed that bind to key hot-spot
regions with greater efficiencies and deeper burial than the natural partner. Furthermore,
many of the non-enzymes not represented in the PDB are membrane-bound receptors. Even
though they are not included here, it is likely that the additional information would support
the hypothesis that non-enzymes are more druggable, since they are the target of many
drugs. G-protein coupled receptors alone constitute 30% of the drugs on the market,[140]
and genomic analysis has indicated many more receptors are druggable.[146]

Our results are also in good agreement with a recent study that estimated the druggability
of 1096 non-redundant human proteins.[122] The predictions used a statistical model trained
on NMR-screening data using a small fragment library.[147] Four of the top six classes
were non-enzymes: vitamin-binding, steroid-binding, lipid-binding, and nucleotide-binding
proteins.[122] The non-enzymes that were predicted to be the least druggable were large
macromolecular complexes and are not reflected in Binding MOAD and this study.

3.3.4 What produces the higher ligand efficiencies in non-enzymes?

Obviously, the root cause of the disparity in ligand efficiencies between enzymes and
non-enzymes is of paramount interest. Though the ligands for non-enzymes are smaller,
the SlogP characteristics are roughly the same for high-affinity ligands of enzymes and
non-enzymes (Figure 3.1c). If the ligands are chemically similar, then the difference in

efficiencies must come from the protein pocket. The most significant difference is the de-
gree of exposure for ligands of non-enzymes versus enzymes. High-affinity ligands have
a median exposure of only 11% in non-enzymes, but 25% in enzymes (note that %ESA
are used instead of ESA to correct for the difference in sizes of the ligands). Low-affinity
ligands for non-enzymes are significantly more exposed (median of 33%), even more than
the low-affinity ligands for enzymes (22%). Tight and weak inhibitors have the same degree
of exposure in enzymes, but tight ligands for non-enzymes are much more encapsulated
than the weak ligands (p<0.0001). Other 2D and 3D ligand descriptors displayed no signifi-
cant patterns. This comparison was cognizant of correlations between characteristics; for
instance, differences in surface area are correlated to size and were not “double counted” as
additional differences between high-affinity ligands of enzymes vs non-enzymes.

Amino acid composition of the binding sites was examined (Figure 3.5, left column).
There is little difference between the binding sites of high- and low-affinity enzyme com-
plexes. The largest differences are an increase in Val content in high-affinity enzymes and
an increase in Arg in the low-affinity complexes. For enzymes, the hydrophobic residues
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Figure 3.5 The binding sites (left) and the entire protein sequences (right) are analyzed for amino
acid content. Distributions are given in normalized frequencies percent frequencies. Amino acids
within 4Åof the ligands are considered to comprise the binding site. Distributions of (A and B) low-
and high-affinity complexes of the same class show smaller differences than comparisons between
enzymes and non-enzymes (C and D). Amino acids are listed by hydrophobic, aromatic, cationic,
anionic, and hydrophilic nature. “X” denotes contacts with cofactors, unnatural amino acids, and
covalent modifications on the protein.

 35

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

A P V I L M C F Y W H K R E D N Q G T S X

Low-Affinity E

High-Affinity E

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

A P V I L M C F Y W H K R E D N Q G T S X

Low-Affinity E

High-Affinity E

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

A P V I L M C F Y W H K R E D N Q G T S X

High-Affinity NE

Low-Affinity NE

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

A P V I L M C F Y W H K R E D N Q G T S X

Low-Affinity NE

High-Affinity NE

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

A P V I L M C F Y W H K R E D N Q G T S X

High-Affinity NE

High-Affinity E

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

A P V I L M C F Y W H K R E D N Q G T S X

High-Affinity NE

High-Affinity E

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

A P V I L M C F Y W H K R E D N Q G T S X

Low-Affinity E

Low-Affinity NE

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

A P V I L M C F Y W H K R E D N Q G T S X

Low-Affinity E

Low-Affinity NE

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 

A High-Affinity vs Low-Affinity Enzymes  

Binding Sites  Entire Protein Sequences  

F
re

q
u

e
n

c
y

  

B High-Affinity vs Low-Affinity Non-Enzymes  

Binding Sites  Entire Protein Sequences  

F
re

q
u

e
n

c
y

  

C High-Affinity Enzymes vs Non-Enzymes  

Binding Sites  Entire Protein Sequences  

F
re

q
u

e
n

c
y

  

D Low-Affinity Enzymes vs Non-Enzymes  

Binding Sites  Entire Protein Sequences  

F
re

q
u

e
n

c
y

  

49



(Ala through Trp) on Figure 3.5 are 47.0% of the binding sites for high-affinity complexes,
but 43.9% for low-affinity ones. This is fitting with the aforementioned finding that the
high-affinity ligands are slightly more hydrophobic. The comparison between binding sites
of high- and low-affinity non-enzyme complexes shows more pronounced variation, but
also holds the general pattern of high-affinity complexes having more hydrophobic content.
The Ala-Trp residues are 55.9% of the binding sites for high-affinity complexes, but 43.2%
for low-affinity ones. What is most interesting is the comparison between enzymes and
non-enzymes, particularly for the high-affinity complexes. The hydrophobic content is
higher for non-enzymes (55.9% vs 47.0%), but the reader should recall that there is no
significant difference in the SlogP of the ligands (in fact, the median value for non-enzymes
is more hydrophilic). Why are more hydrophobic sites recognizing slightly more hydrophilic
molecules with better affinity? The answer may lie in the fact that the amino acids making
the contacts are significantly different. In high-affinity non-enzymes, Leu and Met provide a
large portion of the hydrophobic contacts, at the expense of Val and Ile. The non-enzyme’s
preference for Glu over Asp is reversed in high-affinity enzyme complexes, yet the use
of Lys and Arg is the same. Leu, Met, and Glu are larger than their counterparts Val, Ile,
and Asp. It is possible that those residues are slightly more polarizable. (Confirmation
will have to come from in-depth examinations of fully modeled complexes, inclusive of
added hydrogens, detailed atom typing, and possibly polarizable force fields. To do this
for thousands of complexes is a sizable effort, and outside the scope of the present study.)
It should be noted that differences in the binding sites are not correlated with differences
in the overall amino acid content; the reader should compare the left and right columns in
Figure 3.5. Leu, Met, Phe, Tyr, and Trp make up nearly the same percentage of residues
in the protein sequences, but not the binding sites. This selective placement of differing
residues within binding pockets may have direct relevance to analyses of hot-spot regions
and potential binding sites on proteins.[148, 149, 150]

3.3.5 Most druggable enzymes

Of course, many pharmaceutically relevant targets are enzymes. By no means is it sug-
gested that they are not appropriate drug targets, especially when they constitute 47% of the
drugs on the market[140] and a large percentage of new targets identified through genomic
analysis.[146] The distribution of ligand efficiencies for the enzyme classes suggests that
lyases and oxidoreductases are the most druggable enzymes, Figure 3.6. The distribution of
lyases is significantly shifted to higher efficiencies, standing out from the other data. The
better efficiencies for oxidoreductases come from an increased population in the tail of the
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Figure 3.6 Distribution of ligand efficiencies (-kcal/mol-atom) for enzymes, given in percent
frequencies normalized for the different number of complexes in each enzyme class. The distribution
of transferases (EC 2, 468 complexes), hydrolases (EC 3, 843 complexes), isomerases (EC 5, 60
complexes), and ligase (EC 6, 17 complexes) are the same and have been added together for this
example (black line). Oxidoreductases (EC 1, purple line, 256 complexes) have larger populations in
the higher efficiencies (p<0.0001). The distribution of lyases (EC 4, blue line, 139 complexes) is
notably shifted (p<0.0001)
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distribution. The median ligand efficiencies for the 139 lyases are 0.50 kcal/mol-atom and
33 cal/mol-Å2; and the median ligand efficiencies for the 256 oxidoreductases are 0.39
kcal/mol-atom and 26 cal/mol-Å2. The 1395 enzymes from the other four classes have
median efficiencies of 0.31 kcal/mol-atom and 23 cal/mol-Å2, which are significantly lower
(significance of ≥99.99% using the Wilcoxon test). It should be noted that the two enzymes
which were predicted to be most druggable in the aforementioned study were also lyases
and oxidoreductases, in that order.[122]

Recently, a new method was introduced to predict druggability of a binding site by
estimating the site’s maximum Kd based on the percent hydrophobic SASA and a scaling
factor for efficiency that is dependent on the curvature of the site.[121] The model was
trained on 8 enzymes and applied to 63 structures, comprised of complexes of 26 enzymes
and a single structure of the non-enzyme mdm2.[151] An important goal of the study was to
fit a predictive equation to assess druggability of a site based on protein-ligand structures of
orally available compounds. This feature of the study is important to note because the contri-
butions of various physical characteristics within the model should reflect both high-affinity
binding and oral bioavailability of the ligand. The model was fit under the assumption that
hydrophobic desolvation is the major driving force of binding, so terms based on electro-
statics were not included. The model was able to properly rank the training set, noting that
outliers were compounds with strong electrostatic components, prodrugs, or ligands that are
actively transported. The model was then used to identify new, druggable structures from the
PDB. It was interesting that the two newly identified targets were both enzymes. With only
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two new targets presented, it is not clear whether the model preferentially identifies enzymes
over non-enzymes, but a preference towards enzymes may be expected from their model
given the training and test sets used. Our data indicate that enzymes and non-enzymes may
require different models in such analyses. Furthermore, many of the ligand efficiencies in
our set exceed the established values for hydrophobic association, indicating that the most
efficient complexes have additional factors which contribute to their affinity. The affinity of
these complexes may not be well described by models based solely on hydrophobic SASA.

3.4 Conclusion

We have presented a substantial mining study of Binding MOAD, the largest public database
of curated protein-ligand structures with binding data. Physical characteristics of bound
ligands were compared between enzymes and non-enzymes as well as high-affinity and
low-affinity complexes. The comparison between ligand sizes for low-affinity versus high-
affinity binding shows that divergent approaches are likely needed to improve the affinity
of enzyme inhibitors versus those for non-enzymes. The traditional approach of adding
functional groups to fill more of the pocket may work for enzymes, but it may not be as
appropriate for non-enzyme systems. However, making ligands more hydrophobic appears
to aid binding in both enzymes and non-enzymes.

Non-enzymes have higher ligand efficiencies than enzymes, which may be a reflection
of their biological roles. This is also encouraging when considering the druggability of
non-enzymes. In the pharmaceutical industry, ligand efficiencies have become a metric
for evaluating hits from screening campaigns and even candidate compounds.[124] Our
results would caution against applying a rigid standard across all protein targets. At the very
least, a cutoff based on ligand efficiency should differ between enzymes and non-enzymes.
Ideally, cutoffs would differ between protein families and only be considered as one of
several guidelines in a selection process.

Binding MOAD provides strong support of several mathematical models cited
above,[151, 134, 122] particularly those of Hajduk and coworkers. Our results have implica-
tions for the development of scoring functions for docking and predicting druggability of a
binding site.[152, 153, 154, 155] The differences between non-enzymes and enzymes, as
well as the differences across enzymatic systems, underscore the challenges of developing
universal functions that perform well across all systems. Modest improvement might be
achieved by developing separate functions for enzymes and non-enzymes, with even greater
improvement expected for functions trained on specific protein families.
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Chapter 4

Protein Flexibility and Ligand Binding

4.1 Introduction

Proteins are naturally flexible biopolymers composed of a string of amino acids folded into
a largely non-covalent structure.[156] This flexibility is often tightly coupled to its function,
especially for enzymes. Understanding the flexibility in proteins is an important aspect in
areas such as protein folding, protein engineering, and rational drug design.

A key feature of protein-ligand binding sites is that they have both characteristically
rigid and flexible residues.[14, 157] Rigidity can aid in specificity and tightness of ligand
binding. Flexibility allows for the ligand to enter the active site and can be involved in
communication between allosteric sites and binding sites. Often clusters of residues near
binding sites tend to be in strained conformations.[18, 19] Ligand binding was seen to
induce strain in these residues, and it was hypothesized that this increase in internal energy
could be used by the protein for catalysis and ejecting the ligand from the active site.

Being able to fully account for induced changes is especially important in protein-ligand
docking. Protein-ligand docking is used to predict the orientation and direction of a lig-
and binding to a protein. While simple in theory, this task proves to be very difficult in
practice.[3, 4] A particular issue, known as the cross-docking problem, is illustrative of the
difficulties of accounting for protein flexibility in ligand binding. Cross docking attempts
to dock a ligand from one crystal structure into the binding site of another structure of the
same protein, but research shows that many ligands do not fit unless the protein is allowed
to adjust to the ligand.[158, 159, 160, 161] The larger the required adjustment, the harder
it is to accurately predict protein-ligand binding.[162] Protein flexibility needs to be taken
into account to accurately represent protein-ligand binding.

There have been many studies examining the extent and properties of ligand binding
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by comparing protein crystal structures with ligands (holo) and without ligands (apo). A
number of studies have examined the local characteristics of their respective binding sites,
such as side-chain flexibility, while other studies have examined global protein changes
upon ligand binding. Most studies fell into two categories: backbone root mean square
deviation (RMSD) analysis and side-chain rotation analysis.

Structural variation is smaller when assessed through backbone motion. Three studies
used small sets of 8-20 proteins to analyze backbone RMSD. Gutteridge and Thornton
found that enzymes bound to either a substrate or product tended to be more structurally
similar to each other than to free enzyme (substrate and product structures had an average
Cα RMSD of 0.36 Å while apo enzymes averaged 0.75 Å RMSD to the substrate struc-
tures and 0.69 Å RMSD to the product structure). Fradera et al found that the binding
site’s structure is preserved upon ligand binding as evidenced by the fact that the average
all-atom, active-site RMSD changes ≤ 1 Å, that more than 90% of atoms in contact with
the ligand move less than 1 Å, and that most binding sites had only modest changes in
their electrostatic potentials.[163] However, they found that these small movements induced
significant changes in volume and shape so that geometric similarity indices (η) ranged
from 0.44 to 0.90. Finally, Heringa and Argos described how ligand binding was sufficient
to induced strain and push some binding-site side chains into rotamers outside of the typical
minima.[18, 19]

Gutteridge and Thornton followed their work noted above by looking for conformational
changes upon ligand binding in a larger set of structures. Of 60 enzymes, ∼75% of holo-apo
pairs had Cα RMSD of ≤1 Å. This Cα RMSD was contrasted with the Cα RMSD observed
among apo-apo protein pairs as a baseline, where ∼83% of 31 apo-apo pairs had a Cα

RMSD of ≤1 Å.[164] Catalytic residues were observed to have more rigid backbones
compared to other residues in the active site, as measured by Cα RMSD. However, the
difference in rigidity was limited to the backbone; catalytic residues had equally flexible
side chains as noncatalytic residues.

Gunasekaran and Nussinov classified 98 proteins into three categories based on maxi-
mum Cα displacement between holo and apo structures: rigid proteins (≤ 0.5 Å), moderate
(0.5 Å < and ≤ 2.0 Å), and flexible (> 2 Å).[1] All classes had the same contact density, so
flexibility in certain residues was not due to loose packing. Rigid and moderately flexible
proteins were seen to have more polar-polar interactions: 35% and 34% for rigid and moder-
ately flexible versus 28% for flexible proteins. Overall, most of the ϕ , ψ changes between
apo and holo were minimal. All classes had a few binding-site residues with ϕ , ψ angles in
poor regions of the Ramachandran map. There were more in apo than holo structures, and
they tended to cluster near the binding site. (See Table 4.1).
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Table 4.1 Percent of residues with backbone ϕ , ψ angles in disallowed regions of a Ramachandran
plot. Data is shown for both the binding site and the entire protein. Data is taken from [1].

Holo Apo
Binding Site 1.2% 1.7%
Whole Protein 0.8% 0.9%

Brylinski and Skolnick evidenced that most apo-holo protein pairs did not exhibit a
significant structural difference, and that holo-holo protein pairs exhibited even less change,
using the Cα RMSD metric.[165] For 521 single domain apo-holo structural pairs, 80% had
an RMSD ≤ 1 Å, and among a set of single domained holo-holo proteins, ∼92% had an
RMSD ≤ 1 Å.

It is important to note that analyses of side chain reveal more protein flexibility and its
importance in docking. In a validation study of the SLIDE docking tool, Zavodszky and
Kuhn examined how many binding events could be modeled if an apo protein structure
was only allowed minimal side-chain rotations.[166, 167] They compared their SLIDE
docking tool to rigid docking with 20 different proteins (having 63 holo structures and 20
apo structures), where the backbone RMSD between the apo and holo structures ≤ 0.5 Å
(thus no backbone changes would be necessary to dock the ligand). Only minimal side-chain
changes were needed. SLIDE was able to dock all of the ligands within 2.5 Å RMSD of the
crystal-structure pose while rigid docking only worked for 32 of the 63 structures. SLIDE
changed 94% of the side chains by < 45◦ and 82% of the side chains less than 15◦. This
range of movement used in SLIDE can be compared with the natural variation observed
among different holo crystal structures. Among the holo crystal structures in their set, 90%
of the side chains changed by < 45◦, and 75% changed by < 45◦. Thus, small changes are
typical, but more importantly, they are critical for accurate results in half of their studied
protein structures.

Zhao, Goodsell, and Olson examined flexibility differences between amino acids. They
examined the variation of χ1 angles among different apo structures of the same protein
to establish limits of natural variation in side-chain χ1 of each amino acid. The authors
established ranges for each amino acid that represent 90% of the observed conformations.
Ile, Thr, Asn, Asp, and large aromatics showed limited flexibility, but Ser, Lys, Arg, Met,
Gln and Glu were very flexible.

Najmanovich et al examined side-chain flexibility upon ligand binding with their
BPK database of 221 proteins containing 523 holo structures matched with 255 apo
structures.[168] Overall, 94.4% of all χ1 angles changed less than 60◦. In 40% of the
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apo-holo protein pairs, none of the χ1 values differed by more than 60◦. However, the other
60% had at least one χ1 undergo a large conformation change beyond 60◦. Rotations of
60◦ or greater are significant enough that most rigid docking will fail, but more importantly,
many movements that are less than 60◦ will still be problematic. Therefore, less than 40%
of these structures can be adequately treated without including flexibility. This study then
showed that no correlation could be found between backbone movements (measured in
the largest Cα displacement) and side-chain flexibility (measured as the fraction of side
chains undergoing a change of ≥ 60◦. This easily explains cases where Cα RMSD implies a
protein is rigid, but χ-angle analysis reveals a flexible binding site.

These studies reveal that many residues in binding sites do not undergo significant
rearrangement upon ligand binding, but there are often a few key residues with significant
flexibility. However, some of the studies noted above are limited to very small sets of pro-
teins. Sampling issues become important with very small datasets. Additionally, some of the
studies contrast changes in the protein upon ligand binding (apo to holo) with changes seen
between two structures of the protein either with or without ligand (holo-holo comparisons
or apo-apo comparisons), but not both. While changes from ligand binding have been seen,
they have not been appropriately separated from inherent variation observed in proteins.

This study aims to address the issue of protein flexibility upon ligand binding, employing
a large dataset and focusing on contrasting inherent flexibility to changes upon binding.
Because each protein in the dataset has at least two holo and two apo structures, it can
compare the observed changes to variation seen among proteins with ligands (holo) as well
as with variation seen among proteins without ligands (apo). It uses a large and carefully
created dataset so that the observed differences can be statistically quantified. This study
describes a comprehensive set of 214 proteins, represented by 1276 holo and 983 apo protein
crystal structures. We describe statistically significant differences in flexibility upon ligand
binding, looking for correlations with other properties such as ligand size, crystal-structure
resolution, enzymatic function, and catalytic composition of residues.

Additional questions this study addresses are: first, are catalytic residues more or less
rigid than noncatalytic residues? Second, is there a difference in the type of binding
event, i.e., is there a difference in flexibility between enzymes (catalytic) and nonenzymes
(noncatalytic binding pockets)? Third, does the size of the ligand influence flexibility?
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4.2 Methods

4.2.1 Holo Dataset

Binding MOAD was used as a source of high quality protein-ligand complexes that have
a maximum of 2.5 Å resolution.[169] Biologically relevant ligands were differentiated
from opportunistic binders in the crystal structure (e.g. salts, buffers, phosphate ions).
Furthermore, this dataset has ensured that none of the ligands were covalently attached. For
biologically relevant ligands, the pocket was defined to include all protein residues that
were within a 4 Å radius around the biologically relevant ligands, which should capture
hydrogen-bonding and van der Waals interactions. Structures with more than one valid
ligand were excluded from this dataset in favor of binary protein-ligand complexes to ensure
that only one pocket was analyzed in each protein.

One unique feature about this set is the size of the ligands involved. This dataset allows
for ligands that are composed of more than one HETATM group from the crystal structure.
This study allowed peptides up to 10 amino acids, nucleotides up to 4 in length, as well as
other multipart ligands.

Each structure in the holo set was clustered based on sequence identity using stringent
criteria of 100% sequence identity to focus solely on the effect of ligand binding and not
the influence of a mutation. Sequence identity between structures was determined using
BLAST.[170]

4.2.2 Apo Dataset

A set of apo structures was identified by screening the PDB for structures of 2.5 Å resolution
or better and then identifying structures without any HET groups (except for water) or
only having HET groups that are not biologically relevant (like crystallographic additives).
Acceptable additives were restricted to HET groups of 5 atoms or less, as well as a molecular
weight of 100 Daltons or less. Each HET group was inspected for chemical appropriateness.

Apo structures were matched to holo structures by aligning sequences and requiring
100% sequence identity. Proteins that did not have at least two holo proteins and two apo
proteins were excluded from the datasets.
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4.2.3 Active-Site Identification

As most of the structures for a protein had different ligands bound and each had a different
set of residues near the ligand, the intersection of all sets of residues was used to identify
the binding pocket for the protein. A subset of residues identified as catalytically active was
created using the Catalytic Site Atlas (CSA), version 2.2.9.[57] The CSA is a set of residues
that have been annotated as having direct catalytic function in enzymes. It was built using
hand annotation of sites from literature and expanded by using sequence analysis to identify
residues in homologous structures[57].

4.2.4 RMSD Calculations

In order to compare the overall structural similarity of all the structures of a protein, we cal-
culated an average RMSD. Since RMSDs are pairwise comparisons, this involved choosing
a structure and comparing all other structures of that same protein to this structure. The
structure that yielded the smallest average RMSD for the all of the protein structures was
used (so that if any other structure was chosen, it would yield a higher average RMSD).
Two different RMSD calculations were done: one using all backbone atoms of the protein
and another using all atoms of residues in the active site. To examine the flexibility of the
side chains, χ1 was measured for residues with comparable torsion angles except for Gly,
Ala, and Pro. The variation for a given residue was measured by determining the maximum
range of χ1 values observed.

4.2.5 Ligand Size

The molecular weight (MW) for each ligand was calculated according to the formula for the
ligand in the PDB file. Some ligands are composed of more than a single HET component
and were appropriately treated as one large molecule. For example, the inhibitor TER-117,
in the PDB structure 10GS of Human Glutathione S-Transferase, is comprised of the HET
groups ’GLU BCS PG9’.

4.2.6 Permutation Test Based on the Bootstrap Method

To assess if an observed difference between two groups is sufficient to reject the null
hypothesis that the two groups have identical distributions, a permutation test based on
bootstrap sampling was used. To perform a permutation test, first, a measurement was
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taken of the difference between the two groups. This measurement is called the test statistic
Torig. Second, the observations were resampled into two new groups by pooling all of the
observations and then randomly assigning them into two new groups with the same size of
the two original groups. Third, the difference between the two new resampled groups was
measured and recorded as Tnew. The second and third steps are repeated a large number of
times, Ttotal . For all tests in this study, 10,000 resamples were taken. A two-sided p-value
was determined by taking the total number of times that the absolute value of Tnew was
greater than or equal to the absolute value of the original measurement Torig, divided by the
total number of resamples taken, Ttotal . This p-value estimates the likelihood of observing
the measurement in a random sample, or in other words, the probability that the two groups
are the same and the observed difference is a random anomaly.

4.3 Results and Discussion

4.3.1 Dataset Properties

The 2007 Binding MOAD release has 9836 protein-ligand complexes. When these 9836
structures are clustered at 100% sequence identity, there are 5526 different proteins. Upon
filtering for proteins with at least 2 holo structures and 2 apo structures, this dataset reduces
to 214 different proteins, represented by 1276 holo structures and 983 holo structures.

The protein with the most holo structures is tyrosine phosphatase 1B with 119 holo
structures. The second largest is thrombin with 46 holo structures. The protein with the
most apo structures is lysozyme with 175 apo structures, followed by ribonuclease A with
73 apo structures.

There is a range of ligand sizes (see Figure 4.1). Overall, 77% of the ligands are under
500 g/mol, and 92% of the ligands weigh less than 800 g/mol. The heaviest ligand is
bivalent nitrophenol-galactoside ligand BV4 in crystal structure 1RF2, which weighs 1795
g/mol (and inhibits the protein at an IC50 of 17.0 µM). The smallest ligand is the carbonic
anhydrase II inhibitor, 1,2,4-triazol, which weights 69 g/mol. The average MW of the
ligands is 398 g/mol.

4.3.2 Resolution

Based on the observation that binding a ligand appears to rigidify a protein, which might in
turn lead to better resolved crystal structures, correlation between resolution and binding
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Figure 4.1 Distribution of Ligand Sizes
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affinity was examined using all binding data available for holo proteins in Binding MOAD.
No correlation was found between how tightly a ligand binds and the resolution of a structure
(see Figure 4.2).

Resolution was investigated to see if it correlated with flexibility of apo and holo proteins.
Figure 4.3 shows that apo proteins tend to have the same resolution as holo proteins (an
average of 1.94 Å for holo and 1.94 Å for apo with no correlation between them). There are
117 structures that are better resolved as holo proteins than apo, and there are 97 proteins
that are better resolved in their apo form. The slight difference suggests that there is a light
influence, at best, for proteins when bound to a ligand.

4.3.3 RMSD

Average backbone RMSD calculations were measured for each protein, as shown in Table
4.2. By comparing the backbone RMSD among apo structures to the backbone RMSD
for holo structures for the same protein, it is shown that the apo proteins are more varied
structurally (See Figure 4.4). In 72 cases, the apo structures showed at least 0.2 Å higher
backbone RMSD than holo structures (points above top-most dashed line). In only 22 cases,
did the holo structures exhibit a backbone RMSD more than 0.2 Å greater than the apo
(points to the right of the lower-most dashed line). In 120 of the 214 proteins, the holo and
apo structures were within 0.2 Å RMSD (points in between the two dashed lines in Figure
4.4). Most of the backbone RMSD values are less than 1 Å, with a significant portion being
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Figure 4.2 Resolution versus Free Energy of Binding
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Figure 4.3 Holo Resolution versus Apo Resolution

2.52.5

Å
)

2.2

R
es

o
lu

ti
o

n
 f

o
r 

A
p

o
 S

tr
u

ct
u

re
s 

(Å
)

2.2

R
es

o
lu

ti
o

n
 f

o
r 

A
p

o
 S

tr
u

ct
u

re
s 

(
R

es
o

lu
ti

o
n

 f
o

r 
A

p
o

 S
tr

u
ct

u
re

s 
(

1.9

R
es

o
lu

ti
o

n
 f

o
r 

A
p

o
 S

tr
u

ct
u

re
s 

(

1.9

R
es

o
lu

ti
o

n
 f

o
r 

A
p

o
 S

tr
u

ct
u

re
s 

(

1.6

R
es

o
lu

ti
o

n
 f

o
r 

A
p

o
 S

tr
u

ct
u

re
s 

(

1.6

R
es

o
lu

ti
o

n
 f

o
r 

A
p

o
 S

tr
u

ct
u

re
s 

(

1.3

R
es

o
lu

ti
o

n
 f

o
r 

A
p

o
 S

tr
u

ct
u

re
s 

(

1.3

R
es

o
lu

ti
o

n
 f

o
r 

A
p

o
 S

tr
u

ct
u

re
s 

(
R

es
o

lu
ti

o
n

 f
o

r 
A

p
o

 S
tr

u
ct

u
re

s 
(

1

R
es

o
lu

ti
o

n
 f

o
r 

A
p

o
 S

tr
u

ct
u

re
s 

(

1

R
es

o
lu

ti
o

n
 f

o
r 

A
p

o
 S

tr
u

ct
u

re
s 

(

0.7

R
es

o
lu

ti
o

n
 f

o
r 

A
p

o
 S

tr
u

ct
u

re
s 

(

0.7

R
es

o
lu

ti
o

n
 f

o
r 

A
p

o
 S

tr
u

ct
u

re
s 

(

0.7 1 1.3 1.6 1.9 2.2 2.5

R
es

o
lu

ti
o

n
 f

o
r 

A
p

o
 S

tr
u

ct
u

re
s 

(

0.7 1 1.3 1.6 1.9 2.2 2.5

Resolution for Holo Structures (ÅÅÅÅ)Resolution for Holo Structures (ÅÅÅÅ)

less than 0.5 Å.
For a given protein, the backbone RMSD measured between apo and holo is generally

smaller than the backbone RMSD across apo structures and larger than the backbone RMSD
across holo structures (See Figure 4.5 and 4.6 as well as Table 4.2). This suggests that
the holo structures are sampling a subset of the apo structures’ conformational space, else
the backbone RMSD for all structures would be greater than the backbone RMSD for apo
structures. There are implications in choosing holo structures over apo structures in docking
studies. As holo structures are more similar to each other than to the apo structure, a holo
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structure should be better than an apo structure for docking.
For holo structures, the all-atom active-site RMSD measurements are smaller than back-

bone RMSD measurements (see Table 4.2). For apo structures, the all-atom active-site
RMSD measurements are significantly smaller than the backbone RMSD measurements.
The small all-atom active site RMSD means there not much structural variation in active
site among holo structures or in active sites among apo structures. Figure 4.7 shows that
178 proteins have the holo structure all-atom active-site RMSD within 0.2 Å of the all-atom
active-site RMSD for apo structures. However, there is a large difference in the active-site
RMSD between holo and apo structures, as shown in Table 4.2 and Figures 4.8 and 4.9.
The active-site RMSD is larger between apo and holo structures compared to the active
site RMSD among apo or holo structures alone, suggesting that the holo and apo structures
occupy different conformational space. The difference between apo and holo active sites
supports the concept of ligand binding inducing a fit or inducing strain in the binding
site.[19] While ligand binding does not generally induce significant changes to the backbone,
as seen by Cα RMSD alignments, it has a significant impact on the side chains.

Figure 4.4 Average backbone RMSD measurements for proteins with ligands (holo) versus proteins
without ligands (apo). Data shown with a 1.5 Å RMSD cutoff. There are five structures that have
holo RMSDs greater than 1.5 Å and two holo structures have RMSDs greater than 1.5 Å. The 120
points that fall in between the dashed lines have very little difference in apo versus holo RMSD. Apo
structures show more structural variation for 72 proteins, and only 22 show more variation across
ligand bound structures.
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Table 4.2 Average RMSD Measurements

backbone RMSD (Å) active-site RMSD (Å)
Holo structures 0.34 0.19
Apo structures 0.46 0.25
Apo to Holo 0.42 0.60

Figure 4.5 Changes observed upon binding versus spread across unbound structures, with cutoffs
at 2.5 Å. The number of points in each section is labeled in gray. For proteins where the RMSD of
apo structures is larger than the RMSD between apo and holo, there are 57, 44, and 12 proteins with
apo RMSDs under 0.5 Å, between 0.5 Å and 1.0 Å, and above 1.0 Å, respectively. For proteins where
the RMSD of apo structures is smaller than the RMSD between apo and holo, there are 86, 6, and 9
proteins with apo RMSDs under 0.5 Å, between 0.5 Å and 1.0 Å, and above 1.0 Å, respectively.
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4.3.4 Comparing Holo and Apo Structures

To focus solely on side-chain behaviour, we examined the range of χ1 angles for residues
near the ligand pocket (see Figure 4.10). The ranges of χ1 were compared between apo and
holo structures (see Figure 4.11). The apo structures exhibited a wider range of dihedral
angles than holo (see figure 4.11). This is supported by a study of B-factors between holo
and apo structures where 71% become less mobile upon ligand binding, and 29% become
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Figure 4.6 Changes observed upon binding versus spread across bound structures with ligand with
cutoffs at 2.5 Å. The number of points in each section is labeled in gray. For proteins where the
RMSD of holo structures is larger than the RMSD between apo and holo, there are 48, 20, and 3
proteins with apo RMSDs under 0.5 Å, between 0.5 Å and 1.0 Å, and above 1.0 Å, respectively. For
proteins where the RMSD of holo structures is smaller than the RMSD between apo and holo, there
are 120, 14, as 9 structures with holo RMSDs under 0.5 Å, between 0.5 Å and 1.0 Å, and above 1.0
Å, respectively.
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more mobile.[171]
The difference in flexibility between holo and apo structures is supported by statistical

tests. The two-tailed permutation test estimates the probability that the difference in flexibil-
ity between holo and apo structures is random at p=0.0487 when 60◦ threshold is used, and
p=0.0803 when a 30◦ threshold is used. The fact that the 30◦ threshold has a smaller p-value
is reasonable because using the stricter 30◦ threshold will categorize more residues as being
flexible compared to a wider 60◦ threshold. Thus, with more residues being categorized as
“more flexible” the 30◦ threshold will show a slightly smaller difference between the two
populations.

The average residue in holo proteins exhibits a χ1 range of 27.2◦, while the χ1 range
in apo proteins averages 34.0◦ (see Figure 4.12). The average range when combining all
structures (including both holo and apo) is 54.9◦. The larger range of χ1 values for all
structures (compared to solely apo or holo structures, see Figures 4.13, 4.14) further supports
the view that ligand binding is inducing strain on the side chains, such that holo structures
are sampling additional orientations no sampled in the apo structures.
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Figure 4.7 All-atom RMSD of active sites in holo and apo structures. The points that fall in
between the gray, dashed lines have very little difference in apo versus holo active-site RMSD. There
are 23 proteins that show more structural variation without ligand compared to bound. There are 13
proteins that show more structural variation when bound to ligand than ligand-free.
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Figure 4.8 Changes observed upon binding versus spread in bound structures (all-atom, active-site
RMSD)
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4.3.5 Influence of Number of Structures Representing a Protein and
Ligand Size

It is possible that the larger χ1 ranges are seen when the apo and holo structures are com-
bined. The influence of how many structures represent a protein was analyzed (see Figures
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Figure 4.9 Changes observed upon binding versus spread in apo structures (all-atom, active-site
RMSD)
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Figure 4.10 Measuring the χ1 angle range. A Fischer-like projection, illustrating the variation in
dihedral angle for a given residue. Five different crystal structures of the same protein may have five
different dihedral angles for a given residue. Here, five different dihedral angles are represented with
a range of 68◦.

4.15, 4.16). For both apo and holo, proteins with more structures showed more flexibility
than proteins represented with fewer structures. There are two possible causes. First, the
proteins with more structures simply have more data to analyze and are more likely to
reveal variation at a given residue (thus a protein with 20 structures will have 20 side-chain
conformations of a given residue for analysis, but a protein with only two structures has
only two conformations per residue). Second, this study defines active-site residues as the
union of all residues within 4 Å of a ligand bound in any of its holo structures. In some
cases, proteins with more structures may have more residues defined as part of the binding
site. This allows for averaging conformational behavior over more χ angles. It is unlikely
that the binding-site definition is problematic because the site is defined the same in the apo
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Figure 4.11 The range of χ1 angles for binding-site residues is compared between apo structures
(gray circles) and ligand-bound, holo structures (black diamonds). Vertical lines emphasize that
70.0% of the residues in apo structures and 75.1% in holo structures had χ1 ranges ≤ 10◦, while
91.4% of the residues in apo structures and 93.0% in holo structures had χ1 ranges ≤ 60◦.
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Figure 4.12 Average range of active-site χ1 values in holo versus apo structures for each protein.

0

20

40

60

80

100

120

140

160

180

0 20 40 60 80 100 120 140 160 180

R
a
n

g
e 

o
f 
χ
1
 i

n
 A

p
o
 S

tr
u

ct
u

re
s

Range of χ1 in Holo Structures

and holo structures of the same protein. Furthermore, if we changed the definition of the
binding pocket such that it required that at least two structures to have the same residue with
within 4 Å of a ligand, it did not significantly change the results. When greater flexibility is
observed in sets with more available structures, does this simply reflect more chances to
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Figure 4.13 Average range of χ1 values in apo structures vs all structures for each protein.
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Figure 4.14 Range of χ1 values in holo structures versus all structures.
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observe rotameric changes, or do sets with many structures happen only when a protein is
flexible and more unique structures are solved and published? While the answer is unclear,
it does point to the need for large datasets, rather than single apo-holo pairs, for accurate
insights into protein flexibility.

68



The effect of ligand size on flexibility was examined. However, no properties had any
significant correlation with the average ligand size. For example, there was no correlation
between ligand size and percentage of residues with movements above any threshold, be-
tween average ligand size and average RMSD, or between average ligand size and average
resolution. (Data not shown)

Figure 4.15 Range of χ1 angles for binding-site residues of proteins that have only 2 holo struc-
tures, for proteins that have 10 holo structures or less, and for all proteins (regardless of the number
of holo structures).
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4.3.6 Influence of Amino-Acid Composition

Figures 4.17, 4.18, and 4.19 shows the inherent flexibility of amino acids (e.g., 81% percent
of Arg residues are found within 30◦ of each other). They show the propensity that each
amino acid has for rotameric variation. Overall, the trend follows (from least flexbile to most
flexible) Trp, Phe, Leu, His, Ile, Tyr, Thr < Asp, Lys, Gln, Asn < Met, Val, Cys, Glu, Arg.
Other studies have shown very similar trends, although the ranking is not exact.[172, 168]
The trend does match the pattern of large hydrophobic residues being more stericly con-
strained and large polar or charged residues being more flexible. It is interesting that Asp,
Lys, and Gln were not shown to be more flexible. Perhaps there is a connection with Asp
and Lys being common catalytic residues.
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Figure 4.16 Range of χ1 angles for binding-site residues of proteins that have only 2 apo structures,
for proteins that have 10 apo structures or less, and for all proteins (regardless of the number of apo
structures).
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4.3.7 Influence of Catalytic Residues

Flexibility of catalytic residues was measured and compared to the flexibility of noncatalytic
residues. Catalytic residues in holo proteins were not statistically different from noncatalytic
residues in holo proteins (p=0.7758 using 60◦). The trend holds likewise in apo proteins,
p=0.9546 that catlytic residues are the same as noncatlytic residues. The trend holds using a
30◦ threshold.

Gutteridge and Thornton also found no difference in flexibility between catalytic and non-
catalytic residues, but did find that noncatalytic residues tended to undergo more backbone
motions.[164]

4.3.8 Influence of Protein Function

Enzymes and nonenzymes are functionally different. Our previous work showed that nonen-
zymes have greater ligand efficiencies than enzymes, where ligand efficiency is defined as
the binding affinity divided by the number of heavy atoms in the ligand.[173] We hypoth-
esized that this difference is due to different evolutionary pressures: nonenzymes need to
be sensitive to low concentrations of signaling molecules whereas enzymes need to bind
molecules, change them, and then release them.

To see if there is a difference in their flexibility, the proteins were divided into enzymes
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Figure 4.17 Percentage of residues within a χ1 range.
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and nonenzymes based on their Enzyme Classification and annotated function. There
were 160 enzymes and 54 nonenzymes. No correlation with flexibility and function was
found. While highly efficient enzyme-ligand complexes have a higher propensity to have
certain residues in the active site compared to highly efficient nonenzyme ligand complexes,
there was not a clear difference in the flexibility between the two subsets of amino acids.
Highly efficient enzymes have Thr, Asp, and Val in the binding site and nonenzyme-ligand
complexes in turn display a higher propensity to have Tyr, Trp, Leu.[173]

Enzymes followed the same pattern as of proteins as a whole, for backbone RMSD,
active-site RMSD, and χ1 range patterns (see Table 4.3). This is very reasonable, consid-
ering that most of the proteins in this study are enzymes. Nonenzymes follow the pattern
for active-site RMSD and the χ1 range. Interestingly, nonenzymes had a larger backbone
RMSD between apo and holo structures than among apo structures. Nonenzymes also had
larger backbone RMSDs, active-site RMSDs, and χ1 ranges than enzymes, for holo, apo,
and holo to apo comparisons.
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Figure 4.18 Percentage of residues within a χ1 range.
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Table 4.3 Variation seen among and between holo and apo structures for both enzymes and
nonenzymes.

backbone RMSD (Å) active-site RMSD (Å) χ1 range
holo 0.27 0.17 26.2

Enzymes apo 0.39 0.18 31.6
holo-apo 0.32 0.46 50.1
holo 0.53 0.24 32.4

Nonenzymes apo 0.62 0.38 38.8
holo-apo 0.74 1.03 64.8

4.4 Conclusion

Understanding protein flexibility is important in drug design, especially when crystal struc-
tures are widely used as models for binding prediction[174]. This study examines how
ligand binding influences protein flexibility. More specifically, it uses a large collection of
proteins that have at least two holo and two apo structures, to examine what backbone and
active-site differences are observed in inherent variation among holo or apo structures and
what differences come from ligand binding.

It was been shown that ligand-free structures have a small degree of natural backbone
variation, as measured by backbone RMSD, and that most holo structures exhibit smaller
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Figure 4.19 Percentage of residues within a χ1 range.
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backbone RMSD values. The natural apo backbone variation becomes constricted upon
ligand binding, resulting in more backbone structural similarity among holo structures. Thus,
any given holo structure may be a better starting point for modeling ligand binding than
most apo structures. This is especially true considering that the of the size of the ligands did
not appear to influence flexibility.

Freire and Luque have illustrated how energy from ligand binding is not necessarily
uniformly distributed throughout the protein; binding sites can be regions of both high and
low stability.[14] We examined if there was a difference in flexibility between catalytic and
catalytic residues in active sites, as well as between enzymes (catalytic) and nonenzymes
(noncatalytic binding pockets). No differences, however, could be found based on these
classifications.

Shifting from examination of the global backbone changes to local influence of binding
in the active site revealed another level of ligand binding induced effects. Apo structure are
observed to have a certain range of flexibility in their active sites, just as holo structures
have a similar, but smaller degree of variation among their active sites. However, there is
greater variation between these two groups than there is within either group by themselves.
This is evidence of an induced fit, where ligand binding induces active-site side chains to
occupy a different conformational space than before. This conformational change upon
ligand binding is supported by both active-site all-atom RMSD and chi range analysis.
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Ligand binding has a demonstrable effect on protein flexibility, at several levels. The
influence on protein backbones becomes apparent, for example, upon looking at natural
flexibility across a broad selection of proteins. The insights in this study have come from
examining a panoply of holo and apo structures - highlighting the important contributions
that large datasets, such as Binding MOAD, can make in science.
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Chapter 5

A Novel Test Set for Evaluating Scoring
Functions

5.1 Introduction

Protein-ligand structure databases are important tools for studying principles of molecular
recognition. Binding MOAD, for example, has helped yield new insight into protein-ligand
binding, ranging from fundamental differences between enzymes and nonenzymes to ligand-
induced changes in flexibility.[173] Binding MOAD is valuable not only for generating
new knowledge, but also as a yardstick for testing current understanding and hypotheses. It
can serve as gold standard collection of known protein-ligand structures for evaluating and
improving algorithms used in molecular docking. Here, we demonstrate its use in creating
a new test set to evaluate scoring functions, one that poses a new question, “can scoring
functions distinguish biologically relevant binding across diverse proteins?”

Molecular docking has become an increasingly important computational tool in modern
structure-based drug design (see refs [175, 152, 153, 176, 177, 178] for review). Given the
three-dimensional structure of a protein, the molecular docking process starts with sampling
possible ligand orientations and conformations (referred to as modes) at the selected site
of the protein target and then ranks these modes according to their scores calculated with a
scoring function. The development of accurate scoring functions to evaluate putative modes
is a critical and challenging element in molecular docking. For years, different scoring
functions have been developed that boast different computational speeds and accuracy (see
Table 5.1). Roughly, these scoring functions can be grouped into three categories according
to their derivation: force-field based, empirical, and knowledge based.

Force-field based scoring functions are fully or partially evaluated on a set of force-field
parameters derived from both experimental work and quantum mechanical calculations to
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describe the interactions among atoms.[179, 24] When considering the multitude of ways
that explicit water molecules can compliment binding (see ref [180] and references therein),
conformational sampling and force-field based scoring functions are computationally too
expensive to be used in virtual database screening. As an alternative, the solvent effect can
be implicitly considered by the Poisson-Boltzmann model (e.g., [181, 182, 183, 184])
or generalized-Born model (see [185, 186] for review) in post-docking scoring (e.g.,
[187, 188, 189]). The most simplified method for modeling the solvent effect is to use a
distance-dependent dielectric constant to calculate the electrostatic interaction energy term
[26], which can be directly used to speed the docking process at the expense of accuracy.

A second category is empirical scoring functions whose parameters are derived by
reproducing the binding affinities of a training set of protein-ligand complexes with known
three-dimensional structures (e.g., [190, 191, 35, 32, 33, 192, 193]). Compared to force-field
based scoring functions, empirical scoring functions score protein-ligand complexes quicker
because of their relatively simple energy terms. The generality of an empirical scoring
function is typically restricted by the composition of its training set.

The third kind of scoring functions are the knowledge-based scoring functions
[194, 195, 196, 197], in which an inverse Boltzmann relationship is used to determine
pairwise energy potentials, directly converted from the occurrence frequencies between atom
pairs in a database of protein-ligand structures.[198, 41, 39, 199, 200, 201, 202, 203, 42, 38]
The derived pair potentials try to embody all the effects that govern ligand binding such
as electrostatic interactions, van der Waals interactions, hydrophobic effect, desolvation
penalties, etc. Knowledge-based scoring functions have a good balance between accuracy
and speed. Compared to empirical scoring functions, knowledge-base scoring functions can
be more general as a result of larger and more diverse training sets of protein-ligand struc-
tures available from the Protein Data Bank (PDB) because any structure can be used even
if binding affinity data is unknown.[61] The pair-potential feature of the knowledge-based
scoring functions also makes the scoring process as fast as the empirical scoring functions.

Currently, there are three common criteria that are used to evaluate a scoring function.[38]
The first criterion is binding-mode prediction, how closely a predicted ligand-binding mode
resembles the experimental structure. The second criterion is binding-affinity prediction,
whether or not the scoring function can rank order compounds by affinity or reproduce
the experimentally determined binding data. The third criterion is enrichment in virtual
database screening, whether or not the true inhibitors/binders can be ranked at the top of a
large database of ligands according to their binding scores for a protein target. Most current
scoring functions perform satisfactorily in one or two criteria [71]; however, it is challenging
for a scoring function to perform well in all three.[38]
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One common feature for the three above criteria is that they are designed to evaluate a
scoring function on a single protein-ligand complex or a specific protein target without con-
sidering the biological types of the bound ligand. With the rapid development of proteomics
projects, more and more protein-ligand structures are being determined experimentally
and deposited in the PDB [61]. It is noticeable that many bound ligands in the PDB are
biologically irrelevant; typical examples include additive molecules such as detergents for
crystallization purposes or buffer molecules. The presence of these molecules bound to
protein surfaces usually results from their high concentrations rather than from tight binding
interactions (a case referred to as “opportunistic binders” or “invalid ligands”).[169] Whether
a scoring function is able to discern invalid ligands from weakly-bound, biologically relevant
ligands is a new criterion proposed in the present work. It is desirable to extend scoring
functions to evaluate protein binding sites for the determination of function or druggability
of a pocket. This goal requires scoring functions to be able to discern biologically relevant
binding events from opportunistic ones over a wide range of proteins. This can be particu-
larly challenging if the biologically relevant binding is weak. An important counter issue is
“appropriate failures” when additives in a true site should score well if they are chemically
similar to the biologically relevant ligand.

In the present work, a diverse benchmark of valid and invalid protein-ligand complexes
from the PDB is presented. Four different scoring functions, representing different cate-
gories, are used to test this new benchmark. The influence of including entropic penalties
for rotatable bonds in ligands was also examined.

Table 5.1 Scoring functions and the size of training sets

Scoring Functions Year Complexes
Score1 1994 54
F-Score 1996 19
VALIDATE 1996 65
ChemScore 1997 112
ProteusScore 1997 82
Score2 1998 94
PMF 1999 225
BLEEP 1999 90
DrugScore 2000 83
SMoG 2002 119
HINT 2002 53
X-Score 2002 230
ITScore 2006 851
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5.2 Materials and Methods

5.2.1 Scoring functions

We selected four scoring functions from different categories to test our new benchmark. They
include an empirical scoring function, X-Score [37], a force field-based scoring function in
DOCK 4.0 [26, 29], a semi-empirical force-field based scoring function in AutoDock 4.0
[28, 204], and a knowledge-based scoring function, ITScore in MDock [42, 38, 205, 206].

X-Score

The empirical scoring function X-Score includes three individual scoring functions of
HSScore, HPScore, and HMScore as [37]

HSScore = CVDW,1 ·VDW+CH−bond,1 ·HB+Chydrophobic,1 ·HS+Crotor,1 ·Ntor +C0,1

HPScore = CVDW,2 ·VDW+CH−bond,2 ·HB+Chydrophobic,2 ·HP+Crotor,2 ·Ntor +C0,2

HMScore = CVDW,3 ·VDW+CH−bond,3 ·HB+Chydrophobic,3 ·HM+Crotor,3 ·Ntor +C0,3
(5.1)

where the van der Waals (VDW) energy term is calculated by a Lennard-Jones 8-4 potential,
the hydrogen-bonding term (HB) is obtained from the hydrogen bonds between protein
and ligand, and the rotor term (RT) stands for the number of effective rotatable bonds
in the ligand molecule. The HS, HP, and HM terms calculate the buried, hydrophobic
molecular surface of the ligand, the pairwise hydrophobic atom-contact potential, and the
microscopic match of hydrophobic ligand atoms to the binding pocket, respectively. The
coefficients in the scoring functions were obtained by fitting the binding affinities of 200
protein-ligand complexes with known structures [37]. In the present study, we used the
average of the scores from the three scoring functions in Eq. (5.1) to represent the X-Score
of a protein-ligand complex.
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AutoDock

The scoring function in AutoDock 4.0 is a semiempirical, force-field based scoring function
which includes five energy terms [28, 204]

∆G = Wvdw ·∑
i, j

(
Ai j

r12
i j
− Bi j

r6
i j

)
+ Welec ·∑

i, j

(
qiq j

ε(ri j)ri j

)
+ Whbond ·∑

i, j
E(t)

(
Ci j

r12
i j
− Di j

r10
i j

)
+ Wtor ·Ntor

+ Wsol ·∑
i, j

(SiVj +S jVi)e(−r2
i j/2σ2)

(5.2)

where the first two energy terms are classic VDW and electrostatic interactions and have
the same forms as the force-field scoring function in DOCK 4.0 [26, 29]. The third term
stands for the contribution from hydrogen bonds between protein and ligand. The fourth
term considers the loss of torsional entropy of a ligand upon binding in which Ntor is the
number of rotatable bonds in the molecule. The last term describes the solvation effect. The
weighting coefficients for the five energy terms were obtained by fitting the known binding
constants of 188 protein-ligand complexes. [204]

DOCK

The scoring function in DOCK 4.0 [29] represents a typical force-field based scoring func-
tion whose energy parameters are taken from the Amber force field [26]. This scoring
function includes VDW and electrostatic interaction energy components

E = ∑
i

∑
j

(
Ai j

r12
i j
−

Bi j

r6
i j

+
qiq j

ε(ri j)ri j

)
(5.3)

where ri j stands for the distance of protein atom i and ligand atom j, Ai j and Bi j are the
VDW parameters, and qi and q j are the atomic charges. The effect of solvents is implicitly
considered by using a distance-dependent dielectric constant ε(ri j).
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ITScore

ITScore is an iterative knowledge-based scoring function developed using a training database
of 781 protein-ligand complexes structures from the PDB [42, 38], representing a set of
effective pair potentials resulting from the overall effects of all binding factors. The binding
score is calculated by summing up all the atomic pairs between protein atom i and ligand
atom j as

EITScore = ∑
i, j

ui j(r) (5.4)

where r is the distance between the atom pair i j. The effective pair potentials ui j(r) are
iteratively derived until they can discriminate the native structures from decoys for 99% of
the protein-ligand complexes in the training set. The ITScore scoring function has been
implemented in MDock, a program for docking against an ensemble of protein structures.
[205, 206]

Adding Torsional Entropic Penalties

X-Score and AutoDock contain terms that penalize a score for each rotatable bond in a
ligand on the bases that restricting each torsion carries an entropic cost. Similar terms are not
included in DOCK or ITScore. The additive nature of both DOCK and ITScore inherently
bias large ligands to score well (a well-known limitation of many scoring routines). This
caveat can be particularly problematic in our study because several additives in the decoy
set are large detergents.

To investigate the effect of incorporating torsional entropy penalties for the ligands we
calculated two set of binding scores with and without a torsional ligand term. To remove
the torsional term from X-Score and AutoDock, we simply set the coefficients Crotor and
Wtor to zero in Eqs. (5.1) and (5.2). These are referred to as X-Score-tor and AutoDock-tor,
respectively. To add a torsional term to DOCK and ITScore in a straight forward way, we
added wtor ·Ntor to Eqs. (5.3) and (5.4) where Ntor is calculated by X-Score (its rotatable
bound count) and wtor (a scaling factor for the torsional penalty term) was simply set to 1
for this work. These are referred to as DOCK+tor and ITScore+tor. This was chosen for
simplicity. Furthermore, we did not wish to unfairly bias the performance of DOCK and
ITScore by explicitly fitting new parameters for this purpose.
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5.2.2 Hit and Decoy Dataset

The test set was composed of protein-ligand crystal structures, organized into two groups: a
hit set of 33 complexes (Table 5.2) and a decoy set of 30 complexes (Table 5.3). Hits have
biologically relevant ligands. The decoys are extraneous molecules found in the crystal
structures, such as buffers, detergents, and solvents. While the decoys are true binding
events appropriately resolved in the crystal structure, they are weak, opportunistic binding
events induced by the high concentrations in the crystalline environment. There are 59
different protein families in the dataset of 63 complexes, where a family is defined as a set
of proteins that are at least 50% sequence identity to each other. The four families with
more than one structure in the test set are chalcone synthase (1CGZ is a hit while 1D6F is
a decoy), pim1 kinase (1YXX is a hit, while 1YXS is a decoy), protein kinase A (1APM
and 1Q61 are both decoys), glycine amidinotransferase (9JDW and 7JDW are both hits).
Affinity data is available for 15 of the 33 hits(45%). A broad range of affinities was desired,
given the task at hand.

Table 5.2 Hits

PDB ID Ligand Binding Data PDB ID Ligand Binding Data
1B0O PLM 1T0O GAL
1CGZ STL 1TR7 MPD Kd=0.15µM
1CHM CMS Ki=0.22mM 1UTJ ABN Kd=0.144mM
1E02 UNA IC50=0.7µM 1VG0 GER Kd=0.8nM
1EXF GLY 1VYG ACD Kd=10nM
1FDQ HXA Kd=53.4nM 1W3J OXZ Kd=484nM
1FEN AZE 1YFS ALA
1FJ4 TLM IC50=25µM 1YP0 PEF
1HDC CBO Ki=1.0µM 1YXX LI7
1OTH PAO IC50=100nM 2ACO VCA Kd=2.5µM
1P4F DRG 2B77 3CA
1PB9 4AX Ki=240µM 2CCS 4BH IC50=8.2µM
1PEA ACM 2J1S FUL
1POT SPD Kd=3.2µM 3YAS ACN
1PX8 XYP 7JDW DAV
1R9E PGO 9JDW ABA
1RQ5 CTT

Structures in the hit set were chosen from Binding MOAD, a database of high-quality
protein-ligand crystal structures[115]. Each of these structures has a resolution better than
2.5 Å and a non-covalently attached ligand. All ligands in all the structures contained in
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Table 5.3 Decoys. Those in real binding sites are noted with asterices as “acceptable failures”

PDB ID Ligand PDB ID Ligand PDB ID Ligand PDB ID Ligand
1APM OCT 1N2F* DTT 1S2U* PEG 2CJP* PG4
1D5R* TLA 1OLL EDO 1SHV MA4 2G47 DIO
1D6F* B3P 1PK3 BME 1TTO TRS 2GW5 IPA
1D7H* DMS 1PPA* ANL 1UN8 MYY 2I3A BTB
1FZV MPD 1Q44* MLA 1YXS IMD 2J8X URE
1IZ2 SUM 1Q61 MG8 1ZR3* MES 8CHO P4C
1LI0 BCT 1QST* EPE 229L* GAI
1LIH PHN 1RJM EP1 2BF3 HTO

Binding MOAD are classified as valid (biologically relevant) or invalid (molecules such
as salts, buffers, detergents, and solvent). Structures where cofactors were not interacting
with a ligand were desired. Furthermore, all structures in both sets were restricted to a pH
range of 6-8. This gave a limited range of biologically relevant pH where the protein setup
could be more accurately automated. To create a suitable decoy set, the same requirements
of resolution and non-covalently attached ligands was also used. If possible, decoys were
chosen from PDB files that had only one small molecule in the structure. Multi-part ligands,
peptides, and nucleotides were not considered as decoys. Ligands in the decoy set were
chosen to be chemically similar to at least one ligand in the hit set. This resulted in both
the hit and decoy sets having ligands with very similar distributions of size, SlogP, and
logS. Figures 5.1 - 5.3 show that the ligands in both sets primarily ranged from 100-500
molecular weight, -4 to 8 SlogP, and -6 to 2 logS. (SlogP and logS were calculated using
MOE.[127]) Finally, it was important to avoid comparing sets of well-buried hits to surface-
bound additives. Figure 5.4 shows that the distributions of buried surface area (BSA) are
very similar for the hits and decoys. This is critical because BSA is proportional to the
number of protein-ligand contacts that will dictate a docked score. Every effort was made
to choose complexes to obtain similar distributions in the degree of exposure for the small
molecules in the hit and decoy sets. This proved to be difficult to accomplish, especially
while simultaneously restricting the chemical characteristics to remain the same between the
two sets. Figure 5.5 shows that the decoys have a distribution shifted ∼10% more exposed.
There is a strong bias in the hits to be 0 - 25% exposed, but 6 complexes have hits that range
from 25 - 60% exposed. Of the decoys, 10 complexes are in that range.
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Figure 5.1 Histogram of Hit and Decoy Sizes
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Figure 5.2 Histogram of SlogP for Hits and Decoys
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Figure 5.3 Histogram of logS for Hits and Decoys
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Figure 5.4 Histogram of Buried Surface Area (BSA) for Hits and Decoys
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Figure 5.5 Histogram of Percent Exposed Surface Area (%ESA) for Hits and Decoys
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5.2.3 Scoring protein-ligand complexes

It is important to stress that all bound ligands, hits and decoys, were maintained in their
crystallographic coordinates. This was done to focus on scoring without introducing dif-
ferences arising form the docking routines. All the protein-ligand structures were prepared
in the Chimera software from UCSF [207] by first removing water molecules and metal
ions from the complex structures. Next, the protein and ligand were separated for parameter
setting, but later reassociated for scoring. Then, hydrogens and charges were added to both
the protein and the ligand. The protein atoms were assigned Amber charges, and the ligand
was assigned with Gasteiger charges [208]. After preparing the protein and ligand, the
binding-energy scores for all the complexes were calculated by using X-Score, AutoDock
4.0, DOCK 4.0, and MDock programs.

5.2.4 Receiver Operating Characteristic Curves

The scoring functions performance was evaluated by comparing the rank ordering of real
ligands (true positive hits) versus decoys (false positives) with the receiver operator charac-
teristic (ROC) curves. A perfect scoring method would rank order all hits before decoys,
achieving a curve that starts at the origin (0,0), goes straight to the upper left hand corner of
the ROC plot (1,0), and then to the upper right (1,1). A scoring method with no predictive
power would equally rank hits and decoys, achieving a line starting from the origin (0,0)
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going straight to the upper right (1,1). Area under the curve (AUC) provides a quantitative
measure for comparison for ROC curves. A perfect scoring function would have a ROC
curve with an AUC of 1.0, while the poorer scoring function described above would score
an AUC of 0.5, no better than random assignment.

5.3 Results and Discussion

The test set is composed of 33 valid hits and 30 decoys. Both the hit set and the decoy set
contain the buffer (4S)-2-methylpentane-2,4-diol (MPD). This compound exemplifies the
challenge for scoring functions to be able to distinguish the biological context of binding
events. While there are many extraneous molecules that appear in crystal structures, many
are not suitable as decoys, especially when restricted to be chemically similar to the hit set
of ligands. As Figure 5.6 shows, the sets were carefully chosen so that the two classes could
not be easily distinguished by molecular weight, logS, SlogP, or BSA. Similar BSA between
the two sets is very important as it is directly proportional to the number of contacts that
contribute to the scores.

Figure 5.6 ROC Plot of Percent Exposed Surface Area (%ESA), Exposed Surface Area (ESA),
Buried Surface Area (BSA), Molecular Weight (MW), logS, and SlogP. The areas under the curve
(AUCs) are noted in the figure legend.
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Table 5.4 Number of decoys in the top scoring results.

In Top 10% In Top 20% In Top 40% In Top 50%
(out of 6) (out of 13) (out of 25) (out of 32)

ITScore 0 1 3 7
Dock4 2 2 6 10
AutoDock4 1 2 7 11
X-Score 1 1 5 9

5.3.1 Analysis of Scoring Functions

It is important to note that the scoring with X-Score, DOCK, and ITScore were performed
“blindly”. As part of our collaboration, the Carlson group provided the Zou lab with the
full list of 63 complexes, without noting which were hits and which were decoys. The
Zou group scored the full list with and without torsional entropy penalties for the ligands
(X-Score, DOCK+tor, ITScore+tor, X-Score-tor, DOCK, ITScore, respectively). ROC plots
were generated by the Carlson lab to reveal performance. Rankings with AutoDock (and
AutoDock-tor) were performed by the Carlson lab subsequently to include more diversity in
the study.

We were delighted that X-Score, AutoDock, DOCK, and ITScore all performed well,
preferentially distinguishing hits over decoys (Figures 5.7 - 5.11). This is very promising
for extending current scoring functions to new uses in structural proteomics like predicting
druggability or function of a protein. Most of the biologically relevant ligands in protein-
ligand crystal structures are well buried.[103] Tight-binding ligands have, on average, more
BSA than weakly bound ligands.[160] During the creation of the dataset, we were very
careful to match the BSA of hits and decoys. The ROC plots show that BSA does not
distinguish hits from decoys (Figures 5.6), and this emphasizes that all the scoring functions
are out-performing a mere count of contacts in evaluating the ligands.

5.3.2 Torsional Entropy

Hits were ranked over decoys whether or not torsional entropy terms were included, but it
is important to note that adding the penalty significantly reduced the false positive rate in
the highest-ranked ligands (Figures 5.8 - 5.11). This was seen for all the scoring functions.
Including a torsional term in ITScore and DOCK improved performance (AUC increased by
0.02 and 0.05, respectively), and removing the term from X-Score and AutoDock degraded
performance (AUC decreased by 0.09 and 0.02, respectively). Of course, removing a term
from a scoring function should degrade its performance, but it was interesting that the
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changes in AUC are nearly the same for all the scoring functions. Furthermore, the terms
are essential to all the scoring functions in the most critical region of the ROC plot (lower
left) where the highest-ranked compounds are shown.

A close look at the ranked scores by ITScore with and without the ligand torsional
penalty showed that the ranks of two decoy complexes (PDB codes: 8CHO and 1UN8)
were significantly changed when the term was included. These decoy complexes are long,
chain-like ligands that are not expected to be biologically important (see Figure 5.12). These
invalid ligands are large and extremely flexible. For example, the ligand in 8CHO has a total
of 18 rotatable bonds, and 1UN8 has 25. In these cases, the ligand’s large size results in a
good score because of the many contacts, and the penalty term is needed to incorporate the
high conformational entropy loss for the ligand when the torsions become restricted.

It was a little serendipitous that the torsional penalty could be added to ITScore and
DOCK for this application (ITScore+tor and DOCK+tor, Figures 5.8, 5.9). It is promising
that performance could be further improved by properly fitting these terms into DOCK
and ITScore. While knowledge-based potentials like ITScore aim to represent all physical
contributions to binding, it is still restricted to any limitations in its training set. ITScore’s
training set is much larger than others, but torsional entropic penalties of the ligand will not
be well accounted for unless the training set includes ligands with many rotatable bonds.
Pair-wise potentials are iteratively trained by identifying native poses over incorrect poses,
but docking ligands with many rotatable bonds is inherently difficult because of their large
conformational space. This incompatibility means that pair-wise potentials simply cannot
account for this penalty well at this time. Most likely, the most appropriate approach is to
iteratively fit a new term as a corrective measure when training the pair-potential.

5.3.3 Top-Scoring Complexes

A set of hits was consistently ranked highly by the scoring functions, see Table 5.5. These
hits are diverse, ranging from carbohydrates (1RQ5), steroids (1HDC), arachidonic acid
(1VYG), to analogs of retinol (1FEN) and ornithine (1OTH). Most of the hits are substrate
or product analogs. One hit is an actual substrate: cellotetrose is bound to the catalytically
inactive E796Q cellobiohydrolase mutant (1RQ5). Other hits are nonenzymes binding
their ligands. Nonenzyme examples include spermidine/putrescine-binding protein binding
spermidine (1POT), β -lactoglobulin (1B0O), and brain fatty acid binding protein (1FDQ).
However, each of these hits are biologically relevant and make important contacts with the
protein - whether it be in an active site or a dimerization interface.

The bisubstrate analog N-phosphonacetyl-L-ornithine binds in the ornithine transcar-
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bamolyase (1OTH) active site, located in a cleft between domains with an IC50=100nM.[209]
The principal protein residues that interact with ligand are Asn 199, Asp 263, Ser 267, and
Met 268. Asn 199 is involved in domain closure; the catalytic Cys 303 forms a charge relay
system with Asp 263 and interacts with the α-amino group of L-ornithine.

The 1POT structure details spermidine binding to spermidine/putrescine-binding protein
PotD, with a Kd3.2=µM.[210] The polyamine spermidine binds in the acidic substrate-
binding site, located between the N- and C-domains. The 1.8-Å resolution structure clearly
shows the oxygen atoms from Thr 35, Glu 36, Tyr 85, Asp 168, Glu 171, Asp 257, and Gln
327 interacting with the three nitrogens of spermidine. The protein formed a hydrogen bond
with the terminal amino group of the aminobutyl moiety of the spermidine and formed two
hydrogen bonds to the hydroxyl group of Thr 35 and the main-chain carbonyl oxygen of Ser
211.

1FEN is bovine plasma retinol-binding protein (RBP), which was crystalized with the
retinol analog axerophtene in a study that examined how RBP recognized different retinol
analogs.[211] Axerophtene exhibited the same mode of binding as retinol, binding in the
RBP β barrel. The axerophtene analog did not induce conformational changes in a flexible
loop region at the entrance of the beta-barrel (although such loop changes were observed
with other retinol analogs such as fenretinide and retinoic acid). However, exerophtene’s
hydrogen atom in place of retinol’s hydroxyl end group was cited as being responsible for
the reduced affinity and activity in RBP.

The 1CGZ structure of chalcone synthase contains a bound molecule of resveratrol, a
product analog.[212] Binding site residues Ser 133, Glu 192, Thr 194, Thr 197 and Ser
338 surround the coumaroyl-derived portion of resveratrol molecule and interact primarily
through van der Waals contacts. One prominent hydrogen is formed between the carbonyl
oxygen of Gly 216 and the phenolic oxygen of resveratrol.

2ACO structure is a functional dimer of the bacterial outer-membrane lipocalin Blc.[213]
Blc is bound with vaccenic acid, an unsaturated C18 fatty acid, in a binding site that spans
across the Blc dimer (vaccenic acid covers 89 Å2 and 171 Å2 of the two monomers). Blc
binds vaccenic acid with a Kd=2.5µM and displays a preference for lysophospholipids over
other fatty acids or phospholipids, suggesting that Blc may be involved in cell envelope
lysophospholipid transport.

The 1VYG X-ray crystal structure of fatty acid binding protein Sm14 is used to explain
ligand selectivity.[214] Sm14 has numerous tight specific interactions, among which the
most important one is a strong directional π-cation interaction between the guanidinium
group of Arg 78 and the C8-C9 double bond in arachadonic acid. Sm14 binds arachadonic
acid with a Kd=10nM.[214]
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1FJ4, the β -ketoacyl-acyl carrier protein synthase is inhibited by thiolactomycin (TLM)
with an IC50=25µM.[215] TLM mimics malonyl-ACP and forms strong hydrogen bond
interactions with the two catalytic histidines, His 298 and His 333. An unsaturated alkyl
side chain in TLM interacts with a small hydrophobic pocket is stabilized by π-stacking
interactions that come from intercalating the isoprenoid tail into the space between Pro 272
and its associated peptide bond and the peptide bond between Gly 391 and Phe 392. TLM
forms hydrogen bonds with the two active site histidines, His 298 and His 333, and to a
network of waters which is held in place by the carbonyl oxygen of Val 270 and by the
amine group of Gly 305.

Examining well-scored decoys can be very enlightening, as it can help reveal any caveats
and issues of a given scoring function. Furthermore, it is desirable to have “failures” where
decoys in true active sites score well because they are chemically similar to the biologically
relevant ligand. Of the 30 decoys, 11 were observed to bind in active sites (1D5R, 1D6F,
1D7H, 1N2F, 1PPA, 1Q44, 1QST, 1S2U, 1ZR3, 229L, 2CJP).

Each of the scoring functions highly ranked a similar subset of the decoys, listed in Table
5.6. The scoring functions tended to rank some similar compounds at the top. While there
is a general similarity of ranked results, the order and composition varies between scoring
functions. There is not just one class that dominates the well scored decoys. Top-scoring
decoys include phospholipids that were purified along with the protein (phosphatidyl-
glycerol and a modified palmitate) as well as detergent additives (N-octanoyl-sucrose and
β -octylglucoside), buffers (TAPS, HEPES, Tris buffers), as well as small organic compounds
(guanidinium, cyclohexylammonium, toluene).

There is one structure that was highly ranked by each of the scoring functions. 1D5R,
pten tumor suppressor bound to a molecule of tartarate buffer. Here, tartarate binds in the
active site, making similar contacts to those seen binding the substrate inositol (1,3,4,5)-
tetrakisphosphate.[216] Complexes that were highly ranked by 3 of the scoring functions
include 1RJM, 1IZ2, 1LIH, 1PPA, 1Q61, 1RJM, 1UN8, 1ZR3, and 1IZ2. In the 1RJM
structure, EP1 is not in the active site of the protein, but rather in a hole in the center of the
MenB trimer.[217] The molecules negatively charged sulfonic acid head group interacts
via well ordered water molecules with the positively charged Arg 202 side chains. Also
among the top scoring decoys is alpha1-antitrypsin (1IZ2), where the the ligand bound is
N-octanoyl-sucrose (SUM), a detergent additive in the crystallization matrix. The detergent
molecules tail was partially inserted into the protein, not in the active site. The extracellular,
ligand-binding domain of the aspartate receptor is bound to 1,10-phenanthroline, a metal-
lopeptidase inhibitor. Phenanthroline is bound to the ligand-binding domain that would
physiologically be embedded in the bacterial extracellular membrane, and is known not to
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interfere with aspartate binding.[218]
Several top-scoring decoys are in ligand binding sites, reflecting interactions that could

be important for substrate binding. For example, in 1QST is a HEPES buffer is bound
in the acetyl-CoA binding site of tetrahymena GCN5, a nuclear histone acetyltransferase
enzymes.[219] The buffer 2-(N-morpholino)-ethanesulfonic acid (MES) is found in the
binding site of macro-domain of human core histone variant macroH2A1.1 (1ZR3).[220] In
the steroid sulfotransferase 1Q44, a molecule of the malate buffer binds in the active site
(binding pocket is determined by comparing 1Q44 with the homolog 1J99). The bacterial
hydroperoxide resistance protein Ohr (1N2F) has two cysteines in the active site Cys 60 and
Cys 124 which bind DTT.[221] While these decoys are opportunistic binders, the fact that
they score well is encouraging because they are binding in biologically critical sites.

Some of the decoys are identified by modeling molecules into unaccounted electron
density based on size, shape, and chemical environment. Usually the molecule is readily iden-
tified as a component of the crystallization matrix. In δ5-3-ketosteroid isomerase(8CHO), a
molecule of the polyethylene glycol was modeled to fit the density.[222] Other cases exist
where the ligand was not from the crystallization matrix. Analine (ANL) is seen to bind
near a proposed phospholipid substrate site in the crystal structure of phospholipase A2
(1PPA). Its origin, however, is a mystery and was identified by fitting electron density.[223]
Occasionally, the the molecule is assumed to have been co-purified along with the protein.
In the dihyroxyacetone kinase structure (1UN8), the ligand is identified as 2-myristic(C14)-
3-palmitic(C16)-phospholipid.[224] Here, the lipid binds the protein in ellipsoidal shape
pocket (5 by 11 Å wide), two acyl chains extend 15 Å into the pocket where they are
surrounded by apolar side chains, and the lipid head group lies exposed to solvent at the
entrance of the pocket.

5.4 Conclusion

This study puts forth a new criteria for evaluating scoring functions: the ability to discern
between opportunistic binding by opportunistic ligands (decoys) and biologically important
ligands (hits). Accordingly, a new test set is put forth, containing 33 hits and 30 decoy
structures. The decoy and hits structures show similar distributions of physicochemical
properties such as MW, hydrophobicity, solubility, and BSA. Four different scoring func-
tions, representative of knowledge-based, force-field, and empirical functions, are used to
evaluate this test set. The results show that these four scoring functions are able to discern
decoys from hits and achieve ROCs with AUC of 0.85 (ITScore+tor), 0.72 (DOCK4+tor),
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Figure 5.7 ROC Plot of scoring functions, BSA and ESA (optimal performance for ITScore and
DOCK4 included torsional penalties
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Figure 5.8 ROC Plot of ITScore
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Figure 5.9 ROC Plot of DOCK4
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Figure 5.10 ROC Plot of AutoDock4
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Table 5.5 Best Scoring Hits. Hits ranked high by two or more scoring functions are in plain text.
Unique complexes are in italics.

ITScore+tor DOCK4+tor
PDB Ligand Rank %ESA PDB Ligand Rank %ESA
1RQ5 CTT 1 17.6 1OTH PAO 1 1.9
1OTH PAO 2 1.9 1POT SPD 3 0.0
1POT SPD 3 0.0 1RQ5 CTT 5 17.6
1W3J OXZ 4 5.2 2CCS 4BH 6 6.6
1CHM CMS 5 0.8 1HDC CBO 7 23.7
1T0O GAL 6 4.6 1CGZ STL 8 1.6
1PX8 XYP 7 5.1 1FEN AZE 9 11.2
1FEN AZE 8 6.4 1FJ4 TLM 10 3.7
2ACO VCA 9 12.1 1VYG ACD 11 6.5
1VYG ACD 10 6.5 1UTJ ABN 12 10.4

AutoDock4 X-Score
PDB Ligand Rank %ESA PDB Ligand Rank %ESA
1OTH PAO 1 1.9 1HDC CBO 1 23.7
1POT SPD 2 0.0 1RQ5 CTT 2 17.6
1CGZ STL 3 1.6 1UN8 MYY 3 15.2
1VYG ACD 4 6.5 1CGZ STL 4 1.6
1FJ4 TLM 6 3.7 1VYG ACD 5 6.5
2ACO VCA 7 12.1 1VG0 GER 7 28.1
1UTJ ABN 8 10.4 1YXX LI7 8 5.0
1VG0 GER 9 28.1 2ACO VCA 10 12.1
1YXX LI7 10 5.0 1P4F DRG 11 5.7
1W3J OXZ 12 5.2 1FJ4 TLM 12 3.7

0.72 (AutoDock4), and 0.81 (X-Score). The approximation of ligand torsional entropy in
the scoring functions is shown to be important in ranking the protein-ligand complexes.

This test set has potential to help improve algorithms used in molecular docking by pro-
viding a different measure for docking success. Its further development will be essential to
extending scoring functions to new purposes like identifying protein function or estimating
the druggability of a pocket.
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Table 5.6 Best Scoring Decoys. Unique complexes are in italics, decoys commonly ranked high
are in plain text. Acceptable failures of decoys in real binding sites are marked with a star.

ITScore+tor DOCK4+tor
PDB Ligand Rank %ESA PDB Ligand Rank %ESA
1UN8 MYY 13 15.2 1RJM EP1 2 3.6
1D5R TLA* 19 5.2 1D5R TLA* 4 5.2
1IZ2 SUM 21 30.1 1ZR3 MES* 17 5.4
2I3A BTB 27 34.6 1LI0 PHN 21 39.4
1ZR3 MES* 28 5.4 1IZ2 SUM 22 30.1
1TTO TRS 29 32.0 1QST EPE* 23 13.3
1RJM EP1 31 3.6 229L GAI 26 17.3
1LIH PHN 33 39.4 1TT0 TRS 28 32.O
1APM OCT 35 17.5 1SHV MA4 29 35.4
1Q61 MG8 37 18.7 1PPA ANL* 30 5.2

AutoDock4 X-Score
PDB Ligand Rank %ESA PDB Ligand Rank %ESA
1D5R TLA* 5 5.2 1UN8 MYY 5 15.2
1ZR3 MES* 11 5.4 1SHV MA4 16 35.4
229L GAI* 20 17.3 1IZ2 SUM 17 30.1
1PPA ANL* 21 5.2 1RJM EP1 23 3.6
1UN8 MYY 22 15.2 1Q61 MG8 25 18.7
1D7H DMS* 24 13.2 1APM OCT 26 17.5
1QST EPE* 25 13.3 1BF3 HTO 27 3.2
1Q44 MLA* 27 6.6 1PPA ANL* 29 5.2
1N2F DTT* 28 16.8 1LIH PHN 30 39.4
1Q61 MG8 29 18.7 1D5R TLA* 33 5.2
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Figure 5.11 ROC Plot of X-Score
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Figure 5.12 The phospholipid ligands and their corresponding complexes for 8CHO (left) and
1UN8 (right). The ligands are represented in stick mode, and the protein is shown by molecular
surface. The figure was prepared by PyMOL.[2]
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Appendix A

BindingMOAD.org Architecture

A.1 Introduction

Communication and dissemination of information play an essential role in science. Until
discoveries and insight are shared with others, they remain locked and hidden. The data
in Binding MOAD has been made available online since 2004. This section describes
the technology and principles of software development to create and disseminate Binding
MOAD from a high-level architectural view.

Binding MOAD uses a Java 2 Enterprise Edition (J2EE) framework and 3-tier model
(client, application, and database). A framework is a set of classes and interfaces that are
designed to help solve a specific problem and act like a skeleton code for a developer to
build upon. The 3-tier model is mechanism for describing a separation of function. The
user interacts with the application through the client tier. The client tier is comprised of
a standard web browser (such as Internet Explorer) which accesses the website over the
Internet. The middle tier coordinates the users HTTP requests and handles calculations,
logic, and decisions to manage information flow and dynamically generate web pages. The
database tier is where data is stored and retrieved.

A.2 Client Tier

The client tier is how the user interacts with the application. In this case, the client tier is
comprised of a standard web browser (such as Internet Explorer, Firefox, Safari, etc.) to
view Binding MOAD via the Internet at “http://BindingMOAD.org”. The web is an ideal
mechanism for making Binding MOAD available to the scientific community (as opposed
to requiring users to install programs on their own computers or making data available via
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ftp). The webserver is publicly accessible, and the user is not required to register or logon to
access to the data.

One of the services available via Binding MOAD is the EolasViewer, a Java based
program which allows you to view the protein-ligand cavity for a given crystal structure in
Binding MOAD. The EolasViewer runs using Webstart, which is integrated into Java. Thus,
the user needs to have a working Java environment installed along with the Java 3D API,
which is freely available in both proprietary and open source versions. The EolasViewer su-
percedes the GoCAVViewer for visual examination of protein-ligand complexes. A working
Java install is also required for the ChemAxon viewer, which allows the user to view the
ligand in 2D.

A.3 Database Tier

The database tier is how data is stored and retrieved (see Figure A.1). Here, MySQL is used
as the database for persistence. Data from hand curation and data extraction include PDB id,
EC class, homolog family, binding affinity data, and classification of each ligand in the entry
(ligand class: ligand, multipart ligand, common cofactor, metal ion, covalent modification
to the protein, or crystal additive). The data include the reasons any PDB structure was
excluded. This is parsed and loaded into the server and is stored in a MySQL database.
The data can either be loaded though a java interface through Binding MOAD, or it can be
loaded directly into the MySQL database.

A.4 Middle Tier

The middle tier, also called the web tier, is responsible for most of the functionality. It is the
workhorse that handles HTTP requests from the client, communicates with the database, and
manages the information flow to dynamically generate the webpages. We are running JBoss
4, an open source Java2 Enterprise Edition (J2EE) application server. The JBoss application
server provides and integrate several technologies, including a Tomcat web containter, Enter-
prise Java Beans (EJB) for data management, and Jakarta Struts framework[225, 226, 227].
The Web container manages presentation of HTML, XML, JSP, Servlets, and details relating
to application state such as connection-pooling, security, and session handling. The big ad-
vantage of JSP is its ease of maintenance during the semi-annual updates; new and corrected
data are automatically propagated to the data pages. JBoss compiles JSP to dynamically
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Figure A.1 The EJB data model in BindingMOAD. These MySQL tables represent the types of
data. Primary keys for each table are listed and foreign keys are given in italics. The data model is or-
ganized around two central tables MoadletEJB and LigandSuperRelationEJB. MoadletEJB describes
a protein entry in Binding MOAD (PDB id, protein family and class, authors who submitted the
structure, etc). LigandSuperRelationEJB describes the relationships between proteins and the ligands
(name of the ligand, binding data, valid/invalid ligand, and files needed for the GoCAVviewer). The
tables in “gray” (KineticDataEJB and LigandInfoEJB) represent data and features that could be
added to Binding MOAD; they are shown to illustrate their place as appropriate data is expanded.

 

generate valid, standards-compliant XHTML and CSS. There are a variety of convenient tag
libraries for efficient JSP development.

The EJB container mediates communication between the database tier and the web con-
tainer and handles many operation critical behaviors. The data modeling in EJB allows for
expansion without significant changes to the code. The Jakarta Struts framework implements
the Model-View-Controller (MVC) using servlets and Java Server Pages (JSP) technology.
MVC is a design pattern that essentially decouples the business logic in the application
from the presentation, which allows the developer to change either the appearance or the
business logic, without significantly affecting the other components.[228] A framework
can be defined as a reusable abstraction of code wrapped in a well-defined API, akin to a
software skeleton that controls program flow of control.

A.5 Maintenance and Expansion

A key indication of good code is maintainability and ease of adding new features. Since
Binding MOAD was first release, we have added chemical information for the ligands
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(names, formulas, SMILE strings, 2D pictures, etc) and increased the number of searchable
fields. Additional changes that can be added include more levels of classification based
on different percent similarity (50%, 75%, 100% identical proteins), searching against
structural similarities of binding sites (or protein structure as a whole), on-the-fly searching
of proteins via BLASTp, adding kinetic data to affinity data, providing a download feature
for the user to obtain the structures and binding data from search results, SMILE string
searches, and ability to search and calculate chemical similarities of ligands. Adding new
data and relationships between data is possible due to a structured and flexible software
infrastructure using proven technologies.

Data Integrity

Great care is taken to ensure that the data in Binding MOAD is accurate and correct. In
cases where binding data is not available, a link is provided to encourage users to deposit
information. Our deposition page contains fields for binding data, its reference in the litera-
ture, and the user’s name and e-mail address. While other databases provides pages where
users actively add data to their existing database, we are concerned with security and data
integrity, so we opt to review and analyze all data before it is entered into Binding MOAD.

To ensure that the data integrity is maintained on the server, we have adopted several
security practices including a hardened server (running a stripped-down system without
unnecessary services), have consciously taken a number of precautions to aid security such
as not displaying unfiltered user-entered text (to prevent insertion-type attacks), placing JSP
files behind WEB-INF (to prevented inappropriate access and ensures that the user views
work). The JBoss web server provides many security enhancements as part of its adherence
to the J2EE specifications that explicitly forbid many common types of remote-initiated
attacks.

A.6 Conclusion

These technologies provide a robust and scalable infrastructure with a large community
appropriate for this project. It allows seamless addition of new features and data. This
modular software infrastructure allows for individual components to be easily adapted and
expanded to allow additional plugins, relationships, and data.
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Appendix B

Updating Binding MOAD - Data
Management and Information Workflow

B.1 Introduction of Protein-Ligand Databases

In medicinal chemistry and structure-based drug design, a major aim is to discover small
molecules that bind a target protein with tight affinity, but predicting protein-ligand interac-
tions is not trivial. Proteins are dynamic, and some can bind a wide variety of ligands.[11]
Ligands can also change conformation upon binding. Much work has gone into developing
docking, scoring functions, and estimating binding affinities.[3] These types of studies
rely on accurate databases of protein-ligand complexes which are used to train models and
fit equations. Such databases are also essential to data-mining studies used to derive the
biophysical patterns that dictate ligand binding.[116]

Currently, there are several available protein-ligand databases, such as Binding
MOAD[115], LPDB[30], MSDsite[66], Relibase[99], BindingDB[47], PDBbind[69], eF-
Site[51], PDB-Ligand[76], SuperLigands[95], PLD[78], HET-PDB[229], PDBsite[230],
Ligand Depot[98], sc-PDB[87], AffinDB[44], KiBank[64], and PDBLig[74] , each having a
different scope. Some simply list compounds from the Protein Data Bank (PDB)[61], some
focus solely on structural analyses, some present only binding data, and others are cohesive
datasets with all of these elements.

Binding MOAD is the largest collection of curated protein structures with biologically
relevant ligands annotated with binding affinities from the literature.[116, 115] Our dataset
distinguishes itself from the gamut of protein-ligand databases because of its extensive
number of entries, high quality hand curation, and regular addition of data. Binding MOAD
contains all appropriate complexes (protein-ligand, protein-ligand-cofactor, and protein-
cofactor), whether or not binding data is available, making it four times larger than its closest
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competitor.

B.2 Updating the Protein-Ligand Structures in Binding
MOAD

Maintaining the online resource, correcting errors, and keeping pace with the growth of the
PDB has well exceeded the initial efforts to create Binding MOAD from 2001-2003.[115]

There are several phases to our semi-annual update process. First, any structures iden-
tified as incorrect are removed from the current dataset; these are structures added to the
PDB’s “obsolete list” since the last update. Second, we identify which new PDB entries
meet our criteria. Third, we asses the literature. And lastly, the new entries are added into
the existing database and published on the web. Removing obsolete entries and adding new
entries is relatively straightforward. Our discussions below focus on the identification of
new structures and their annotation with information from the literature.

It is straightforward to obtain the subset of new structures in the PDB, added subsequent
to our last update. These entries are then evaluated through a series of Perl scripts to ensure
that they meet our requirements: only X-ray crystal structures of resolution greater than
2.5Å (no NMR structures), must contain a protein but no nucleic acid macromolecules, must
contain at least one valid ligand.[115]

The most complicated aspect is the evaluation of ligands. Only non-covalent ligands
are considered, and these are identified by calculating the minimum distance between the
protein and the molecule to ensure that it is longer than a covalent bond. No crystallographic
additives are considered valid, such as buffers (e.g. Tris, CHAPS), ions (phosphate, chlo-
ride), solvents (water, DMSO, acetone), detergents (Triton-X, polyethylene glycol), metal
ions (Mg2+), or catalytic centers that are part of the protein (4Fe-4S cluster). Small nucleic
acid chains (4 nucleic acids or less) or peptides (10 amino acids or less) are valid ligands by
our definitions.

All structures are manually viewed to verify the validity of the ligands. This is essential
when the minimum distance between the ligand and protein is longer than a traditional bond
but too short for typical van der Waals contact. The complex is also verified by examining
the paper which reports the structure. Visualization and the original reference are particularly
needed in the case of certain molecules that we label “suspect”; these are molecules like
citrate which can be a valid ligand but can also be a buffer component.
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B.3 Annotating the Structures with Information from the
Literature

Tremendous effort has gone into annotating each entry with experimental data from the liter-
ature. Each structure is augmented with information on its functional relationships to other
structures in the database, classification of all ligands in the structure (valid/invalid/covalently
attached), and binding data. For valid ligands, we also note if any atoms are unresolved
or resolved in multiple orientations because these cases may be problematic for certain
applications.

Every PDB file contains the primary reference in the literature. These are read to assess
the quality of the structure, the validity of the ligands, and the binding data. Full-length
HTML and PDF formatted papers are obtained from the various publishers. Assessing the
literature is a sizable task, covering ∼ 2000 papers each year! An improvement was needed
to make this exercise more tractable: BUDA (Binding Unstructured Data Analysis) makes
the curation more efficient and accurate. It consists of two primary applications integrated
using a bibliographic control. The first is a text processing application built upon the GATE3
platform, provided by Sheffield University. The second is a custom curation workflow tool
developed using the Ruby programming language.

B.3.1 Natural Language Processing in BUDA

Natural Language Processing (NLP) refers to a broad category of techniques used to ana-
lyze and derive understanding from unstructured information, primarily human-readable
text. A subset of these techniques, the identification and assembly of desired information
elements from within a document or set of documents, is commonly referred to as infor-
mation extraction (IE). IE for biochemical data from the scientific literature is a difficult
and heavily-researched area.[231, 232] For Binding MOAD’s curation, we identify precise
quantitative information related to the interactions between specific proteins and ligands in
biomedical experiments.

The NLP in BUDA begins with the evaluation of full text articles using GATE (Figure
B.1). GATE processes text to create annotations that can be stored as data for an application
in XML and/or outputted into a modified version of the input document (Figure B.1). The
standard distribution of GATE includes several processing components, the most important
of which are the ANNIE plug-ins.

ANNIE includes tokenisers, a sentence splitter, a part-of-speech tagger, and ANNIE
Gazetteer, a plug-in designed for term lookup. [114] Each of these creates annotations of its
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Figure B.1 BUDA’s GATE pipeline consists of ANNIE plug-ins, a set of modified lookup lists
for the Gazetteer, a cascade of eight JAPE grammars, and final processing and export tools. Our
additions to the lookup lists consist of keywords, constant names, molar unit symbols, etc. The JAPE
transducers recombine the annotations created by ANNIE and the modified Gazetteer to annotate
larger phrases and full sentences. For instance, one transducer is used to group cardinal numbers with
molar units (e.g., nM, mM, pM, etc.) and annotate the groups as BUDAUnits. A second transducer
then identifies and highlights patterns where a constant name is very near a BUDAUnit. This cascade
forms an annotation that is a very strong predictor for binding data.

Parser Splitter Tokenizer Lookup Transducer Tagger

IE Pipeline x
8

GATE and related scripts

BUDA Dashboard and Workflow

 New 
PDB

entries

Perl 
scripts IE

Relevance
scoring

Record 
data

Review
papers

Assign and
curate

Upload new
data into MOAD

Structures
for MOAD

  HTML 
of full 
papers

Figure B.2 Markup of the NLP on the HTML of a representative article. Information is highlighted
in the text as well as the figure captions. Markup is also highlighted in tables (not shown)
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own specific type relating to the features of a parsed document. GATE’s JAPE transducer
provides grammar processing. This allows us to create our own pattern-recognition rules
and controls. The rules can apply additional annotations or conditionally trigger GATE
functionalities using Java code.

Finally, GATE provides an overall framework, including a run-time user interface and a
Java API, in which these components can be run in a controlled “pipeline.” In our case, we
specifically developed the pipeline to process scientific articles as HTML files as they are
loaded into GATE corpora. (PDF files can also be processed, but with less accuracy and
functionality.)

B.3.2 Information Extraction and Information Retrieval in BUDA

Many previously-published IE projects extract values only where they are easily accessible
via a computational (text mining) tool[233, 94, 234], but the Binding MOAD project seeks
to identify binding values from all available articles. The values may appear within sentences
of the text, entries of tables, and even within figures (Figure B.2). Data outside the general
text will usually be missed with typical IE applications. However, many indirect references
to binding data can be identified and extracted from the full text. These indirect references
can be used to create a relevance score, indicating the likelihood of the article containing
desired binding data. The creation of such a score is commonly used in information retrieval
(IR)[235], a second branch of NLP. Thus, we have designed BUDA to process text and use
a combined application of both IE and IR.

The appearance of many related terms in meaningful combinations within sentences will
cause the passage to be heavily annotated within BUDA. From an IE perspective, the anno-
tations are useful to the curators reviewing the article because they highlight the probable
location of the appropriate data (Figure B.2). From an IR perspective, the combination of
terms will serve to increase the relevancy score for the article as a whole. Higher scores
identify articles that are the most likely to contain binding data, and lower scores correspond
to articles that most likely do not contain binding data.

We developed a separate module using Ruby to perform BUDA’s relevance scoring. The
module performs operations on the XML files created by GATE’s NLP pipeline processing.
These XML files contain annotations of different types that are assessed and summarized
by the module. The relevance score is a weighted sum of eight parameters “including
different phrases and specific key words” that are tallied by the application. With each
parameter, the number of occurrences is weighted by a distinct multiplicative factor, and
the results are summed to obtain a final score for each article. Thus, the score in the BUDA
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application is completely determined by the choice of parameters and weighting factors.
The weighting factors were largely determined by inspection. Using a test data set, in which
the presence or absence of binding data was known, the weighting factors were modified
until the algorithm’s determination of the presence of binding data performed optimally.
The overall algorithm also uses the length of the target article for scaling purposes.

The relevance scores created in BUDA are exported to the curation application as XML
with the annotated originals in HTML. Curators then use the scores to sort articles and focus
on those with the best probability of containing binding data.

B.4 Result of Updates

After our 2006 update of Binding MOAD, it contained all appropriate entries deposited
within the PDB prior to 1/1/2007. Binding MOAD contained 9837 protein-ligand com-
plexes organized into 3151 unique protein families with 4665 unique ligands. The workflow
described above was used to assess the crystallography papers for all 9837 structures and
obtain binding data. Binding data was available for 2950 (30%) of the structures. The tool
was used again in the 2007 update to provide the current version of Binding mOAD, which
now exceeds 10,000 structures.

These numbers express our dedication to constantly improving Binding MOAD and
likewise reflect on the wealth Binding MOAD has to offer. Each annual update has added ∼
1500 protein-ligand structures, with ∼ 500 having binding data. As the PDB continues its
significant expansion, new technologies will be even more crucial for adapting for curating
and annotating this resource with knowledge from the literature.
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