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Abstract

This dissertation studies optimal exploration, defined as the collection of information about

given objects of interest by a mobile agent (the explorer) using imperfect sensors. The

key aspects of exploration are kinematics (which determine how the explorer moves in re-

sponse to steering commands), energetics (which determine how much energy is consumed

by motion and maneuvers), informatics (which determine the rate at which information is

collected) and estimation (which determines the states of the objects). These aspects are

coupled by the steering decisions of the explorer. We seek to improve exploration by find-

ing trade-offs amongst these couplings and the components of exploration: the Mission,

the Path and the Agent.

A comprehensive model of exploration is presented that, on one hand, accounts for

these couplings and on the other hand is simple enough to allow analysis. This model is

utilized to pose and solve several exploration problems where an objective function is to

be minimized. Specific functions to be considered are mission duration and total energy.

These exploration problems are formulated as optimal control problems and necessary con-

ditions for optimality are obtained in the form of two-point boundary-value problems. An

analysis of these problems reveals characteristics of optimal exploration paths. Several

regimes are identified for the optimal paths including the Watchtower, Solar and Drag

regime, and several non-dimensional parameters are derived that determine the appropriate

regime of travel. The so-called Power Ratio is shown to predict the qualitative features of

the optimal paths, provide a metric to evaluate an aircrafts design and determine an air-

crafts capability for flying perpetually. Optimal exploration system drivers are identified

xvi



that provide perspective as to the importance of these various regimes of flight.

A bank-to-turn solar-powered aircraft flying at constant altitude on Mars is used as a

specific platform for analysis using the coupled model. Flight-paths found with this plat-

form are presented that display the optimal exploration problem characteristics. These

characteristics are used to form heuristics, such as a Generalized Traveling Salesman Prob-

lem solver, to simplify the exploration problem. These heuristics are used to empirically

show the successful completion of an exploration mission by a physical explorer.
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Chapter 1

Introduction

1.1 Background

Humans have felt the drive to explore throughout history. In this dissertation, we deal with

exploration defined as the augmentation of knowledge about a geographic area through

the collection of information. The relationship between exploration and information is ex-

pressed in a quote by Thomas Jefferson who, in 1803, introduced the Lewis and Clark

expedition by writing to Congress “An intelligent officer... fit for the enterprise... might

explore the whole [Missouri River] line, even to the Western Ocean ... and return with the

information acquired, in the course of two summers.” The basic tenets of exploration can

be distilled from this statement. The objectives of exploration are to:

• Investigate an area or objects of interest within an area (the Mission),

•• Acquire and return information using a local topology (the Path),

• Satisfy constraints even in the presence of uncertainty and time limitations.

Current explorers, or agents, travel under seas (98), over land (59), in the air (96) and

in outer space (121). While the environments, challenges and agents differ, the objectives

of exploration remain the same.

In this dissertation, we seek to understand and exploit the couplings between the mis-

sion, the path and the agent of exploration. We first define these couplings in more explicit
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terms.

1.2 Exploration and Information

Shannon (117) wrote that information is produced when “one message is chosen from a set

of possible messages” and he introduced a theory to quantify this information. The earliest

application of this theory was in the engineering of communication systems, which convey

messages over a distance. We examine the engineering of information systems, not the

meaning of information. As Shannon stated, “Frequently the messages have meaning; that

is they refer to or are correlated according to some system with certain physical or concep-

tual entities. These semantic aspects of communication are irrelevant to the engineering

problem” (117). In this work, the message is the state of a particular object of interest or

area. Here, a state is a quantitative measure of an object, i.e., the size of an object, its

position, its visibility, the value of its scientific interest, etc, described by real numbers or

numbers of bits.

As shown in Figure 1.1, a communication process involves the encoding of a message

by an information source and the resultant signal is sent over a channel by a transmitter.

This signal may be corrupted by noise. A receiver (what we call an agent) receives the

signal, decodes it, and extracts meaning. The information transmitted through this process

is related to the probability of an intended message.
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(a) Communication Model

(b) Exploration Model

Figure 1.1 Schematic diagram of a general communication system (117) as related to an explo-

ration system

3



Communication and exploration are similar in that they both require an agent to extract

meaning from a signal. In the case of exploration, the agent is the explorer, the signal is the

measurements from the sensors (e.g., visual/optical, radar or sonar), and the information is

a measure of the probability distribution of the state of an object of interest, i.e., a measure

of uncertainty.

However, exploration is distinct from communication. Specifically, an agent has to

determine a path that is optimal (e.g., with respect to time or energy) subject to informa-

tion constraints and estimate the state of the object of interest from the signal. That is, a

communication receiver acts as a static explorer.

In this work, we view exploration as the collection of information for use in estimating

a state of an object of interest. The amount of information that is collected about the prob-

ability distribution describing the state is a constraint on the optimal exploration problem.

We assume that a fixed optimal code is used in all signal transmissions, hence we ignore

coding in the analysis. We use Shannon’s channel capacity equation as an example of how

the information rate is bounded. The limits on information (here called informatics, i.e., the

study of information systems), together with an analysis of agent kinematics and energy,

optimization theory, and state estimation are the basis for our model of exploration.

1.3 Exploration and the Agent

An autonomous agent of exploration is a vehicle equipped with a payload to carry out the

mission. Part of this payload is an onboard sensor, capable of collecting information from

an exploration area and used for estimating states. The rate of acquisition of information

is related to the distance between the sensor and the object of interest, i.e., we consider

range-dependent sensing. In our model, decreasing this distance increases the rate at which

information is collected. The vehicle, starting from an initial position, changes location

with a speed appropriate to its kinematic capabilities, mission objectives and energy char-
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acteristics. We refer to these energy characteristics as energetics as they describe the energy

collected and lost by the vehicle.

Real-world sensors are imperfect, with a degree of accuracy often depending upon mis-

sion, path and vehicle characteristics. Trades between these characteristics can influence

the capabilities of the agent and, as such, affect the completion of the mission. One such

trade involves the aperture of the sensor. The sensor aperture is the angular range of possi-

ble relative azimuths (the angle between the agent’s line of sight from its current position

to the object of interest and the line along the agents heading), centered along the vehicle’s

heading, within which information can be collected. An isotropic sensor is able to collect

information at all relative azimuths to the agent. Therefore, an isotropic sensor has a sensor

aperture of 360 degrees. A more typical sensor is non-isotropic, and has a sensor aperture

of less than 360 degrees.

Further sensor imperfections are include measurement noise and bandwidth limitations,

i.e., restrictions on the information collection rate. These imperfections all affect the abil-

ity of the agent to accurately measure the state. Hence, to increase measurement accuracy,

a filter is often required. This filter utilizes the information acquired along with noisy

measurements to form an accurate state estimate.

Additional capabilities of the agent, including payload capacity, must also be consid-

ered. Each capability comes with a cost, both in mass and money. These costs must be

balanced and can adversely affect exploration performance.

1.4 Exploration and the Environment

In this dissertation, the exploration environment includes an area to be explored and multi-

ple objects of interest each having state attributes expressed parametrically by real numbers

with known probability distributions. The agent that operates in the environment attempts

to accomplish the pre-defined exploration mission objectives.
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The following are assumptions related to the exploration problem presented in this dis-

sertation. 1) The exploration area is located on a spherical planet in circular orbit around a

star. 2) This planet has a spin-axis tilted with respect to the normal of the plane of its orbit.

3) The planet receives light in the form of energy waves traveling radially out from the

center of the star. 4) The planetary exploration area is located in the vicinity of a specified

planetary latitude and longitude. 5) The area is flat, i.e., within the area, the curvature of the

planet is neglected. 6) The area is free of obstacles and 7) the agent can move freely within

this area subject to its kinematics. Assumptions 1-4 affect the energy collection while 5-7

affect the vehicle path.

Various objects of interest with unknown states are located in the exploration area.

These objects of interest have a pre-specified, fixed position with states that are time-

invariant. Each object of interest is viewed as an omni-directional transmitter of a signal

whose message contains information about the state parameter. Inherent object properties,

including reflectivity, emissivity, and absorption, can increase or decrease the power of the

signal in relation to the transmission channel noise, i.e., the measurement noise. The over-

all strength of a transmitted signal is the object’s visibility and is expressed as the visibility

parameter. An agent at a given distance from a highly visible object collects information

faster than if the object is poorly visible. This visibility parameter is expressed as a constant

for each object of interest.

The states of the object of interest are to be estimated by the agent with an acceptable

level of variance of the estimation error. While not knowing where objects of interest may

be located is a serious concern, even objects with known positions can present problems.

Indeed, the sequence in which objects of interest must be investigated by an agent can

determine the success of an exploration mission. Once this sequence of objects has been

established, a path can be found that meets the requirements of the mission subject to the

constraints.
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1.5 Exploration and the Path

The exploration path is built from a time-history of the position of an agent. In a typical ex-

ploration problem, the decision of where to go strongly influences the quantity and quality

of information received. This coupling of kinematics and informatics makes exploration

problems particularly challenging: An optimal explorer must decide where to go so that

the path followed is the most informative subject to mission requirements. Choosing the

correct path, aligned with agent and sensor capabilities, is critical to mission success.

A path begins at the initial location of the agent within the exploration area. The entirety

of the path is restricted to satisfy agent kinematic constraints. Control decisions made by

the explorer alter the direction of the agent. A path that satisfies the mission requirements

allows an agent traveling on that path to collect the pre-specified amount of information

required by the mission objectives. Furthermore, a time-optimal or energy-optimal path

meets these objectives while satisfying the requirements for optimality.

Unfortunately, the most informative path is often neither time-optimal nor energy-

optimal. Worse, there is typically a trade-off between the amount of time to complete a

mission and the amount of energy required (especially for solar-powered vehicles). As

time and energy are often the expendables of an agent, finding an appropriate trade-off or

weighting can be critical for mission success.

1.6 The Difficulty of Exploration

The relationships between exploration and information, the agent, the environment and the

path have been outlined in the previous sections. These relationships must be considered

when steering an agent in an uncertain environment along informative paths to meet mis-

sion objectives. The technical challenges of the exploration problem arise from the multiple

couplings between several components: kinematics, informatics, energetics and state esti-

mation. These components are linked by the control decisions of the agent, the design of
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the agent and the environmental conditions. These interactions are illustrated in Figure 1.2.

This dissertation examines the relationship between the agent, the mission and the path

by considering the trade-offs of agent performance and cost, a priori and a posteriori knowl-

edge, and path duration and energy. A thorough understanding of these interactions allows

significant exploration improvements. The difficulty in exploration arises from balancing

these trade-offs while satisfying mission requirements.

Figure 1.2 A model describing the three interacting components of exploration (Mission, Path

and Agent) along with their subsequent trade-offs.

If a specific area is to be explored, the minimum amount of time, τ to collect at least I f

bits of information about objects of interest in the area, A, can be expressed as:

τ = |A|/(VWis(V, t f → ∞, I f )), (1.1)
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where A ⊂ ℜ2 is the area to be explored, V ∈ ℜ+ is the velocity of the vehicle, Wis is

the width of the sensor footprint where an object located within this footprint transmits

information to the vehicle, t f is the final time and I f is the amount of information to be

collected.

Exploration can become difficult if the time to explore an area approaches the maximum

mission duration, TM due to constraints, uncertainty, etc. Thus we define the difficulty of

exploration δ ∈ ℜ+ as:

δ = τ/TM, (1.2)

=
|A|

VWis(V, t f , I f )TM

. (1.3)

If δ > 1, the exploration problem cannot be solved with the current configuration. If δ < 1,

more trade-offs between the vehicle and sensor are available. In this dissertation, we study

problems where δ < 1 and examine how tradeoffs can affect the mission completion.

Consider a vehicle exploring at V = 1m/s with I f = 1bit, Wis = 1m and |A| = 100m2.

With a maximum mission duration of TM = 50s, δ = 2. Since δ > 1, the problem is too

difficult and the mission will not be completed within the specified mission duration. The

vehicle must increase its speed or increase the footprint width to decrease the difficulty of

exploration.

This simple example highlights several component interactions within the exploration

problem while providing a basic understanding of sensor, vehicle and environmental prop-

erties. Here, the trade-offs occurred in the mission objectives, i.e., TM. Later we consider

problems where trade-offs must occur at all levels of exploration.

Table 1.1 indicates the dependencies of the parameters of (1.3). The objectives of the

mission then drive the trade-offs of the vehicle and the sensor.

9



Table 1.1 Dependence of Parameters Related to the Difficulty of Exploration

Parameter Dependence

A Environment:Area

V Agent: Vehicle

Wis Agent: Vehicle, Sensor

Environment: Object of Interest

TM Mission Requirements

1.7 Problem Formulation and Original Contributions

To provide a specific platform from which to understand the inherent couplings in explo-

ration, we use a solar-powered, fixed-wing, airborne explorer with range-dependent sensors

mounted on a gimbal (i.e., banking the aircraft does not affect sensor pointing). The mis-

sion objectives are simple: to collect information to estimate the states of several objects

of interest located in the area. The aircraft operates in an environment within which there

are no obstacles. Simplifying assumptions are used in the following chapters to isolate and

study particular couplings within the context of this mission.

As motivation, consider the following scenario. The Mars Global Surveyor has iden-

tified several potential objects of scientific interest on the surface of Mars. An airborne

solar-powered explorer, capable of extended endurance and equipped with a radar sensor,

is deployed in the area. The Global Surveyor communicates the location of the objects

of interest to the explorer while noting that a dust storm is approaching (which motivates

the need for a minimum time path). The explorer must then plan a path that accurately

estimates the state of these objects of interest in a time-optimal manner, to avoid the dust

storm, and in an energy-optimal manner, to maintain its endurance flight. This motivates

the work presented in this dissertation.

Based on the integrated model to be presented in Chapter 3, the problem of explo-

ration with a solar-powered aircraft is formulated as an optimal control problem with the

steering decisions of the vehicle serving as the input. The present dissertation studies this

optimization problem and provides the following original contributions:
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• An integrated model of exploration accounting for couplings between the agent, mis-

sion and path is presented. These couplings rely on trade-offs between cost and

performance, a priori and a posteriori knowledge, and time and energy (See Fig-

ure 1.2). A specific example of a solar-powered aircraft exploring Mars is used to

illustrate the effect of these tradeoffs.

•• Time-optimal exploration paths satisfying mission objectives are presented whose

properties stem from analytic necessary conditions and simulation examples. Prop-

erties of these paths are used to formulate several heuristics to simplify and solve the

time-optimal exploration problem.

• Energy-optimal paths for a solar-powered aircraft in level flight are presented and

properties of energy-optimal paths are constructed. The so-called Power Ratio, a

dimensionless parameter that can be computed before flight, is shown to correctly

predict the regime of optimal flight. An analytic condition for perpetual endurance

accounting for location, time of year, environment and aircraft parameters is pre-

sented. The condition requires the Power Ratio to exceed a threshold, the Perpetuity

Threshold.

• A weighted cost function is used to find combination time-optimal and energy-

optimal paths. Properties of these paths are discussed and used to couple energy-

optimal flight to the exploration problem. For exploration paths, it is shown that

exploration is driven more by time than by energy.

• A heuristic to simplify path planning when non-isotropic sensors are used is pre-

sented analytically and empirically.

• The fundamental contribution in this work is the recognition and exploitation of the

coupling between information and exploration through considerations of the mission,

path and agent.
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The context and additional information pertinent to this problem is provided in the form

of a literature review in Chapter 2. Chapter 3 provides the complete model used throughout

the dissertation and additional background information for the methods used to solve the

optimal exploration problem. Chapter 4 considers time-optimal exploration while Chapter

5 considers energy-optimal exploration. Chapter 6 exploits the properties derived in Chap-

ters 4 and 5 to present time-optimal and energy-optimal exploration. Chapter 7 considers

vehicle performance trade-offs while Chapter 8 presents conclusions and future work.
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Chapter 2

Related Literature and Background

Exploration relies on several technical areas, each of which has a large body of recent lit-

erature. Although an exhaustive overview of the state of the art is beyond the scope of

this chapter, a brief review of the most relevant literature and concepts follows. Section

2.1 describes some features of information theory. Autonomous vehicles are discussed in

Section 2.2. As solar-powered aircraft are a focus in this dissertation, their history, design

and optimization is discussed in Section 2.3. Section 2.4 covers optimization, estimation

and optimal control. Section 2.5 surveys the field of exploration and information gathering.

2.1 Information Theory

Information is intuitively understood, but difficult to formulate mathematically. Shannon

was the first to fully recognize that information is a measurable quantity related to a mes-

sage being sent (117), that is, information is intrinsically related to the communication of

messages.

Communication is the transmission of a coded message over a noisy path or channel

to a receiver. Noise is a random additive process that disturbs or obfuscates the intended

transmission. The message received may or may not be faithful to the original due to the

added noise. A probabilistic decision must be made to recover the intended message from

the set of possible messages based on the noisy signal that was received. The measure of
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information from a given message can be regarded as the number of possible messages in

the set when one message is chosen, all choices being equally likely. Intuitively, receiving

the same message repeatedly increases the confidence and reduces the uncertainty that the

recovered message is correct, so the total information acquired increases.

Shannon provided a bound on the rate at which information can be transmitted. This

rate depends on the bandwidth, w, of the channel and on the strength of the signal-to-noise

ratio, SNR (the ratio of the signal power to the noise power). The maximum information

rate at which a channel can operate is defined by Shannon’s channel capacity equation,

İ = w log(1 + SNR). Actual information transmission rates may be lower, but the channel

capacity equation provides an upper bound. Multi-way channels are discussed in (132).

Fisher (46) introduced a different interpretation of information. He showed that it is

additive, in that the information yielded from two independent experiments is the sum of

the information from each of the experiments separately (74). Fisher’s idea of informa-

tion is connected to the inverse of a covariance, often used in estimation. Both definitions

recognize information as conveying meaning (the compactness (53)) about a probability

distribution.

From these definitions, information gathering is inherently a communication process.

Something, perhaps an object of interest, is a message source. Observation of this object of

interest requires the transmission of a signal over a noisy channel to a receiver or observer.

The rate of information that can be collected from a sensor is governed by the signal-to-

noise ratio and the specific way in which noise-affected-signal is processed. Roughly, the

signal-to-noise ratio is a measure of the amount by which a signal is obfuscated in transmis-

sion. Noise or disturbances can increase through transmission distance, distortion, terrain

occlusion, etc. Often, sensors are dependent upon geometry, emissivity and distance from

the collector. Active sensors require a signal to travel to and from an object of interest

(112). Passive sensors only collect signals.
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2.2 Autonomous Vehicles

Autonomous vehicles are now widely available and used in many areas of society. In this

section we focus on the control of autonomous vehicles rather than their design as we must

choose control decisions for the vehicle serving as the agent of exploration.

The control of vehicles can be separated into several broad areas. A simple piloted ve-

hicle has no autonomy: all decisions are made by a human pilot. An augmented vehicle is

one where some tasks are performed automatically, such as with an altitude-hold autopilot

(68), while others are performed by a pilot. A tele-operated vehicle requires a human to be

operating the vehicle via a remote control. This type of control can introduce time-delays

that can be detrimental to the mission (118), (7). A fully autonomous vehicle operates by

pre-defined rules and algorithms that dictate its behavior and which can be adapted dur-

ing the mission. Although various combinations and variants of these types of control

can exist on the same vehicle (distributed by sub-system), in this dissertation, we discuss

autonomous vehicles that make their own decisions based upon specified constraints.

Unmanned Aerial Vehicles (UAVs) and other autonomous systems are increasingly

used for dirty, dull or dangerous missions (96). The most common use of these systems is

the collection of data for Intelligence, Surveillance and Reconnaissance missions. We are

particularly interested in missions where autonomous vehicles are tasked with exploring a

given area. An example of such a mission involves Mars exploration where objects of in-

terest have been located by the Mars Global Surveyor. The collection of a specified amount

of information is performed using spacecraft, air vehicles and/or rovers.

Though we do not focus on cooperative control in this dissertation, the work is ex-

tensible to cooperative agents. Cooperative vehicles collecting information in an optimal

manner have been considered in numerous papers (129), (53). The use of the information

filter to share information between autonomous agents has yielded a decrease in the over-

all computation time and subsequent increase in performance. We seek to build upon this

work by not considering how to maximize the amount of information collected, but only
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requiring the collection of enough information to successfully determine states of objects

of interest while performing under constraints (e.g., time, energy, etc).

2.3 Solar-Powered Aircraft

Although the current literature on solar-powered UAVs does not consider energy-optimal

path planning or perpetual flight, a substantial body of work is available on the analysis and

design of solar-powered aircraft. A brief review of this literature is as follows. The feasi-

bility of solar-powered flight is reviewed in (64) and (56), and the history of solar-powered

flight is discussed in (18), (33), and (9). Methods for analysis and design of solar-powered

aircraft are discussed in (136), (85), (138), (18), (139), (124), (33), (20), (104), (130),

(38), (48), (16), (137), (49), (100), (106), (39), (34), (93), (128), (40), (107), (9) and (41).

Specifically, the design of solar-powered aircraft has focused on geometric configuration

(20). Design of full aircraft systems can be found in particular in (33), (136), (85), (138),

(20), (130), (48), (16), (49), (100), (106), (39), (93), (108).

Optimization for solar-powered aircraft is discussed in the literature. Most path plan-

ning has only considered minimum power consumption during level flight (85). References

(130), (16) and (107) use an optimization procedure to design the aircraft based upon ex-

pected maneuvers and sunlight availability. Mission design is found in (41), (36), (55),

(35) with particular emphasis on where and when to fly. In most references, efficiency

through preliminary design is emphasized. Alternative methods to increase efficiency for

solar-powered aircraft are discussed in (21), (30) and (37). Reference (37) achieves a 30%

increase in efficiency by improving the cooling of solar cells. Energy-efficient flight is dis-

cussed in the literature on dynamic soaring (1), (2) and (3) and manned gliders (102) and

(90). However, nowhere in the literature is there a study optimizing the flight path itself

based upon the interaction of kinematics and solar energetics nor a design requirement for

perpetual endurance for solar-powered flight.
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2.4 Optimal Control and Estimation

Several broad works describing the methods of optimal control can be found in (23), (79),

and (125). In general optimization problems, the goal is to minimize a cost function while

satisfying some set of constraint functions. (125). In optimal control problems the cost and

constraints depend on control functions that act through a system of differential equations.

More specifically, constraints can be boundary conditions affecting the beginning or end

of a trajectory, path constraints restricting states along the path, or control constraints lim-

iting the range of control. Sometimes constraints are treated by adding terms to the cost

function that express the degree to which the constraints are violated. The optimal controls

formulated satisfy necessary conditions formed by Pontryagin and his coworkers (125).

A rough taxonomy of optimization problems is as follows. Optimization problems can

be either deterministic or probabilistic. In the deterministic case, even though the problem

data are described explicitly, parameters may be changing over time, such as in a path plan-

ning problem (23). The probabilistic case contain problems where data are uncertain. A

large literature is devoted to the understanding of uncertain systems and how control can

be maintained in the presence of uncertainty (75), (125).

Discrete time control and continuous time control differ in their form. Discrete time

problems are formed of sequential decisions (17), while continuous time problems are de-

scribed by differential equations (75). Another category includes static (80) and dynamic

(134) problems. An example of a static problem is finding the dimensions of an object that

maximize the volume under length constraints. Dynamic problems can be more difficult

as the choice of control changes the system itself. Each of these categories can be mixed

and matched as the situation requires with a large volume of literature devoted to particular

instances of each.

An important aspect of stochastic control is estimation. For example, an observer is of-

ten used to estimate the state of the system when it cannot be directly measured. The most

common type of observer is the Kalman Filter (66), which applies to linear systems. It has
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a natural extension (58) to nonlinear problems and has many applications in estimation and

control.

Other types of optimization problems have connections with exploration. An example

is the Traveling Salesman Problem (TSP) where the salesman must visit every city in a

country. The cost function is the total distance traveled, the order of the cities visited is the

control and the objective is to minimize the total distance. The TSP been extensively stud-

ied in the literature and many variants exist. The full problem remains unsolved, although

several heuristics and solutions for particular instances exist (78), (73), (81), (51), (103),

and (109).

The objective of general optimal path planning is not to visit every point in an area,

but to travel optimally between two points. The most relaxed (least constrained) problem

is that with a free final condition: the optimal path has no prescribed destination. An in-

terception problem constrains the final position of the vehicle, such as in missile terminal

guidance problems (42). In the rendezvous problem, the final position and velocity are

specified (71). It is the most constrained case considered in what follows.

Finding an optimal path can be challenging. Many methods exist for optimally solving

the basic trajectory planning problem (23). However, not all of them solve the problem in

its full generality. For instance, some methods require the workspace to be two-dimensional

and the obstacles, if any, to be polygonal. Despite many external differences, the methods

are based on few different general approaches: roadmap (76), (131), (83), cell decomposi-

tion (114), (115), (116), (131), (84), potential field (72), (77), (11) and probabilistic (67),

(127). Optimal control approaches have also been studied in (43) and (122). The numerical

method for finding optimal paths used in this thesis is discussed in Appendix B.

The use of optimal control to generate aircraft trajectories has been extensively covered

in the literature by (23), (10), (26), and (123) as well as many others. Generally, the concern

has been to fly in a fuel/energy-optimal manner (25), (110) and (113) or in a time-optimal

manner (45). Multi-objective cost optimization, in this case for fuel and time, is discussed
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in (133) and (32). Various methods have been employed to optimize aircraft trajectories,

including necessary conditions (52) and parameter reduction (89).

2.5 Exploration

Exploration typically has a single goal: to accurately obtain, interpret and use knowledge

about a given area. The information known beforehand, mission objectives and mission

constraints may vary. Special problems of particular interest include reconnaissance (97)

(collecting information about an object of interest and returning to a given location) and

surveillance (14) (collecting information by loitering in the vicinity of an object of interest

over a long period of time).

Other types of exploration are discussed in the literature. Area search problems, or area

coverage problems, are concerned with visiting every point (140). Patrolling problems re-

quire coverage along a given path (4). Broadly speaking, area coverage problems are those

in which an autonomous vehicle is tasked to cover a given area with its sensor footprint, or

its information signature. The footprint is the area within which an appreciable amount of

information can be collected. An example of this type of problem is the lawn-mower or the

milling problem. The essence of this problem is to find the shortest or optimal path for a

cutter such that every point in the area is within the path (8). The area may have obstacles

or the vehicle constraints (95). Area coverage problems are addressed in (12), (13), (87).

Additionally, emergency response coverage problems are addressed in (99).

A more complex problem occurs when the vehicle is unsure of its own location. The

simultaneous location and mapping (SLAM) problem requires a vehicle to locate itself

based on uncertain sensor measurements and previous mapping. Thus the SLAM system

must collect information about the environment and its own positional relation to the envi-

ronment. Many autonomous systems have been designed to account for SLAM techniques

including underwater vehicles without global positioning systems (GPS), the tracking of
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soldiers within buildings and ground or flying vehicles traveling in unknown areas. SLAM

has been widely covered in the literature such as in (120), (19), (92), and (22).

Information based exploration has been discussed in a few papers in recent years, most

notably in (63). Other information theoretic approaches have been applied to exploration in

several papers including (82), (126), and (119). Alternative missions include area searches

with SLAM (53), decentralized sensor control (31) and optimal sensor placement (86).

Although the collection of specified amounts of information can be viewed as a goal of ex-

ploration, little work in the literature studies a path optimization problem whose constraints

are information amounts about specific areas.

This work is concerned with exploiting the interaction between the facets of exploration

(kinematics, estimation, informatics, energetics) as well as with how requirements for ex-

ploration are traded between the agent, mission and path. This is fundamentally the main

contribution of this work.

The models used throughout this work along with the approach used in this dissertation

are presented in the following chapter.
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Chapter 3

Modeling and Approach

3.1 Introduction

In this dissertation, we consider a planet containing the exploration area, traveling in a cir-

cular orbit around a star with angular velocity Ω. The exploration area is in the vicinity

of a specified planetary longitude and latitude. A reference frame located at this longitude

and latitude has its x-axis oriented along an eastward vector, y-axis in the northern direction

and z-axis vertically ascending. With respect to this reference frame, a line connecting the

origin and the star has an azimuth and elevation (ã,e). Also defined in this reference frame

are the locations of m objects of interest at positions (a j,b j,0),1 ≤ j ≤ m, each with p

unknown states.

A single solar-powered aircraft explores the area, i.e., seeks to obtain accurate state-

knowledge of the m objects of interest. The aircraft is equipped with onboard sensors

mounted with a gimbal and outward facing with aperture α capable of collecting informa-

tion at a rate that depends on the aircraft position (x,y,0) relative to the locations of the

objects of interest. As we do not consider altitude effects on path planning for exploration,

we refer to locations and positions throughout this dissertation in the x− y plane of our

reference frame. As a consequence, we drop the z-coordinate when referring to positions.

This model remains common throughout the work but further assumptions are made to

analyze various subsystems. In this chapter, the complete model is discussed in detail and
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the approach used for analysis is presented.

3.2 Modeling

The model consists of several parts: the vehicle model containing kinematics, informatics,

detection and energetics, and the mission model including solar position and objects of in-

terest. Each component is presented below. In each component, several assumptions are

made. After presenting the component, we attempt to critique the assumptions made and

asses 1) the level of realism and 2) how sensitive the results are to these assumptions.

3.2.1 Vehicle Models

The agent of exploration is a solar-powered aircraft. The kinematic model of the aircraft is

presented along with the informatics and energetics.

Aircraft Kinematic Model

The bank-to-turn aircraft is assumed to fly in still air with coordinated turns and remain at

constant altitude with zero pitch angle. The equations of motion are:

ẋ = V cosψ, (3.1)

ẏ = V sinψ, (3.2)

ψ̇ =
g tanφ

V
, (3.3)

where x and y are the Cartesian coordinates of the vehicle, ψ is the heading angle, V is the

speed, g is the gravitational acceleration of the planet and φ is the bank angle. Without

(3.3), this model is the unicycle model (111). While the aircraft may bank, the onboard

sensors are assumed to be gimballed and maintain their horizontal attitude, i.e., the field of
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view is vertical descending, regardless of that of the vehicle. Vehicles without the need to

bank (i.e., ground and underwater vehicles) are only modeled by (3.1) and (3.2).

This abstract model of a vehicle has often been used for path planning (43) and ener-

getic (5) analysis. A full model of an aircraft would consider the effects of uncoordinated

turns (slipping or skidding), non-level flight in unsteady air, effects of a changing weight

distribution (due to resources being consumed) and many other nonlinear effects.

Gimballed sensors are often used by aircraft to maintain a sight-picture of the target, but

gimbals can have singular points. Additionally, gimbals rotate at a finite rate often leading

to delay between an aircraft maneuver and the corresponding gimbal response.

In this dissertation we are interested in planning the path of a vehicle that can main-

tain a sensor field of view. The forthcoming analysis remains insensitive to many of the

assumptions made above to simplify the analysis. However, if the vehicle would operate

in an area of unsteady air, path planning would become more difficult. We do not consider

this in this dissertation as a great deal of literature is devoted to the effects of path planning

disturbances (88).

Information Collection Model

We seek to collect a specified amount of information about each of the m objects of inter-

est. Without loss of generality, we assume that the required amount of information to be

collected is one bit for each object. To collect information, we use onboard active sensors,

e.g., radar.

A key idea of this work is to recognize and exploit the similarity between communica-

tion and exploration. Specifically, exploration can be viewed as a communication process

where the object of interest is the transmitter, the sensor is the receiver, the sensing pro-

cess is the noisy communication channel, and the sensed signal carries information about

the object of interest. Consequently, the maximum rate at which the sensor can collect

information about the object of interest is in fact the capacity (117) and depends on the
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signal-to-noise ratio of the channel through Shannon’s equation. Two of the many possibil-

ities for an information rate model include the Shannon and Fisher channel capacity rates

(53). Here we use Shannon’s channel capacity equation:

İ = w log2(1+SNR), (3.4)

where w is the channel bandwidth of the sensor and SNR is the signal-to-noise ratio.

Moreover, according to (112), a radar sensor on an aircraft located at Cartesian coordi-

nates (x,y) and observing object j at Cartesian coordinates (a j,b j) provides a reading with

signal-to-noise ratio of the form:

SNR j =
k4

j

((x−a j)2 +(y−b j)2)2
, (3.5)

where the visibility parameter k j depends on the jth object.

A non-isotropic sensor cannot collect information at equal rates at all relative azimuths

from the aircraft. Γ j(Θ) represents the sensitivity of the sensor aperture to the relative

azimuth Θ(x,y,a j,b j,ψ), and we assume that all radar sensing processes, viewed as com-

munication channels with inherent coding, have the same bandwidth, w.

In this dissertation we use a specific non-isotropic sensor as shown in Figure 3.1 where

we have constructed the aperture model:

Γ j(Θ(x,y,a j,b j,ψ)) =
−1

(1+ e(−(Θ(x,y,a j,b j,ψ)−α)/β ))
− −1

(1+ e(−(Θ(x,y,a j,b j,ψ)+α)/β ))
,

(3.6)

where α is the angular range parameter, i.e., the width of the sensor cone for small β , or

aperture, (65), β is the relative sharpness of the sensor cone and Θ is the relative azimuth

between the aircraft and the object of interest. This equation can also be represented as the

generic function Γ j(ψ,x,y,a j,b j,α,β ). Γ j(Θ(x,y,a j,b j,ψ)) can be regarded as the effi-
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ciency of the sensor, from zero to one, as a function of the relative azimuth Θ. An isotropic

sensor has a function such that
dΓ j(Θ)

dΘ = 0. It should be noted that Γ j is a differentiable

function which lends itself to analysis.
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Figure 3.1 An example of the sensitivity, Γ(Θ), of the non-isotropic sensor to to the relative

azimuth with 0.01 < β < 0.2. The aircraft and sensor are aligned with the 0 degree axis.

Expanding on (3.4) and (3.5), the information collection model is as follows:

dI j

dt
= Γ(Θ(x(t),y(t),a j,b j,ψ(t)))w log2(1+

k4
j

((x(t)−a j)2 +(y(t)−b j)2)2
),

1 ≤ j ≤ m, (3.7)

One difference between communication and exploration systems is that typically in

communication systems SNR is large. In exploration systems, SNR is typically small. For

analysis, we can simplify (3.7) by expanding log2(·) with a Taylor series assuming that the
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SNR is small. The information collection rate becomes:

dI j

dt
= Γ(Θ(x(t),y(t),a j,b j,ψ(t))) f racwk4

j((x(t)−a j)
2 +(y(t)−b j)

2)2,

1 ≤ j ≤ m, (3.8)

We assume here that collecting one bit of information is enough to achieve our mission

objectives. Realistically, information is often changing, non-unique and non-additive. An

appropriately detailed model of information collection is difficult to achieve, as has been

shown in (19), so in this dissertation we use an abstracted model of information collection

related to communication through Shannon (117).

Additionally, we use sensors that collect information at the channel capacity rate. Real

sensor systems have filters, amplifiers and other stages that can corrupt a signal. These

stages can be accounted for in the overall bandwidth of the sensor, modeled by w. Informa-

tion collection and sensors are complicated components, each a field of study in it of itself.

The abstract model presented here allows us to consider the finding of informative paths

(here for given objects of interest, but expandable to a general system) while minimizing a

cost.

Detection

The primary goal of exploration is to estimate the states of objects of interest. Unfortu-

nately, exploration occurs in an environment that is known only by probability distributions

and the SNR is finite. The measurement noise expressed in the SNR is assumed white and

Gaussian with a variance of Rv ∈ ℜ+. Some environmental systems themselves may not be

fully understood (such as the characteristics of the visibility parameter). This uncertainty

is expressed as process noise, assumed white and Gaussian with variance Rw ∈ ℜ+. In this

section we focus on objects of interest whose state can be represented by a real number.

The information collection model presented earlier does not allow the estimation of
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states, i.e., we do not know the signal’s meanings. To detect or recover the state even in

the presence of noise, we make use of an optimal estimator, in this case, a Kalman filter.

A typical Kalman filter can be used to estimate the state of the object, but has no inherent

dependence on the sensor range (and thus, on kinematics). We address this problem as

follows.

The general Kalman filter filtering problem has state dynamics expressed by:

ż = Hz+ w̃, (3.9)

ỹ = Cz+ v, (3.10)

while the equations for the Kalman Filter are:

Ṗ = HP+PHT −PCT R−1
v CP+Rw, (3.11)

˙̂z = Hẑ+K(ỹ−Cẑ), (3.12)

K = PCT R−1
v , (3.13)

where the state of the object of interest, z, has additive Gaussian process noise w̃ with vari-

ance Rw. Here P is the covariance matrix of the state, H is a linear matrix of state dynamics,

C is an output matrix of the sensors, Rv is the variance of the measurement noise, v is Gaus-

sian noise with variance Rv, Ẑ is the estimate of the state of the object of interest and ỹ is

the measurement output.

This generic filter has no dependence upon range to the object of interest from the agent,

a component of exploration. We now apply this general case to a specific formulation where

z is an unknown constant parameter and the standard kinematic model formulated above is

applied. Define Rv j as the variance of the measurement noise about a particular object of
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interest as a function of range as:

R−1
v j (t) =

k4
j

((x(t)−a j)2 +(y(t)−b j)2)2
, (3.14)

where x(t) and y(t) are obtained from (3.1) and (3.2). In this formulation, we assume that

k j is known.

Then (3.9) - (3.11) become:

ẋ = V cosψ, (3.15)

ẏ = V sinψ, (3.16)

ż j = 0, (3.17)

ỹ j = z j + v j, (3.18)

Ṗj(t) = −Pj(t)
√

wR−1
v j (t)

√
wPj(t), (3.19)

˙̂z j = K j(ỹ j −
√

wẑ), (3.20)

R−1
v j (t) =

k4
j

((x(t)−a j)2 +(y(t)−b j)2)2
, (3.21)

K j = Pj(t)
√

wR−1
v j (t), (3.22)

assuming that H j = 0, C j =
√

w and Rw j = 0,1 ≤ j ≤ m. We have chosen C j =
√

w to have

similarity with Shannon’s channel capacity equation.

The exploration problem does not specify a state to be found, only that a specified

amount of information be collected about the probability distribution of that state. The es-

timated state itself is independent of the optimization problem. A Kalman filter expressing
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these system dynamics is as follows:

ẋ = V cosψ, (3.23)

ẏ = V sinψ, (3.24)

Ṗj(t) = −Pj(t)
√

wR−1
v j (t)

√
wPj(t), (3.25)

R−1
v j (t) =

k4
j

((x(t)−a j)2 +(y(t)−b j)2)2
, (3.26)

An equivalent form of the Kalman filter is the Information Filter, derived in (5). The

Kalman filter from (3.11) can be reformed as:

Ṗj = H jPj +PjH
T
j −PjC

T
j R−1

v j C jPj +Rw j, (3.27)

ζ j = P−1
j , (3.28)

ζ jPj = I, (3.29)

0 = ζ̇ jPj +ζ jṖj, (3.30)

ζ̇ j = −P−1
j ṖjP

−1
j , (3.31)

= −P−1
j (H jPj +PJHT

j −PjC
T
j R−1

v j (t)C jPj +Rw j)P
−1
j , (3.32)

= −ζ jH j −HT
j P−1

j +CT
j R−1

v j (t)C j −P−1
j Rw jP

−1
j , (3.33)

= −ζ jH j −HT
j ζ j +CT

J R−1
v j (t)C j −ζ jRw jζ j (3.34)

Referring back to (3.23)-(3.26), we can simplify (3.34) as:

ζ̇ j =
√

wR−1
v j (t)

√
w, (3.35)

=
wk4

j

((x(t)−a j)2 +(y(t)−b j)2)2
(3.36)
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Therefore our final simplified model is:

ẋ = V cosψ, (3.37)

ẏ = V sinψ, (3.38)

ζ̇ j =
wk4

j

((x(t)−a j)2 +(y(t)−b j)2)2
. (3.39)

which is similar to the information collection model formulated from Shannon’s channel

capacity equation assuming the SNR is small. This similarity of the Kalman filter and

the Shannon formulation shows that information collection is the same as the reduction of

covariance. Knowledge of the covariance (or information collected) can now be used to

estimate the final state as:

˙̂z j =K(ỹ−
√

wẑ j), (3.40)

ỹ =
√

wz j + v, (3.41)

K = ζ−1
j

√
wR−1

v j (3.42)

Thus the Kalman filter with a range dependent covariance approximates Shannon’s

channel capacity equation for the information state. We use this new model with the esti-

mated state throughout this work.

This subsection provides one method (Kalman filters) to determine meaning from in-

formation collected. In the real-world, Kalman filters are often used to estimate the state of

a system from sensor measurements but add complexity to a system due to their computa-

tional requirements and subsequent required power usage. Thus meaning can be obtained

from an autonomous explorer at a cost to the system design. But meaning can be useful to

an explorer as it can affect the choice of path taken. In some situations, meaning obtained

during exploration can also change the mission objectives. Automatic target recognition

systems and artificial intelligence systems attempt to interpret meaning from information
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collected, but their current use remains limited. To date it is only human explorers that can

take advantage of real-time information interpretation to affect their course of exploration

and the finding of informative paths, but in many cases it is difficult to send humans to

explore.

In this dissertation we recognize the difficulty of information interpretation and mean-

ing and so focus on the collection of information. By explicitly defining information

collection and detection with an abstract mathematical model (as compared to the real-

world) we are able to distill general properties of exploration while understanding that

specific implementations could be greatly aided by online interpretation. These general

properties will still aid exploration when appropriate interpretation is available.

Energy Collection Model

In this work, an aircraft is used to illustrate the coupling between kinematics and energetics.

Other vehicles can be substituted with similar results. The aircraft is equipped with solar

cells, mounted on the top side of the wings, and gains solar energy from the star shining on

the cells.

During a time interval [to, t f ], the energy collected by the aircraft is:

Ein(φ(·), t f ) =
∫ t f

to

Pin(ϑ(φ(t),ψ(t)))dt, (3.43)

where Pin(ϑ(φ(t),ψ(t))) is the power collected by the aircraft and assuming that the solar

cells are mounted on a flat plate, let ϑ(φ(t),ψ(t)) be the incidence angle of the star rays

upon the solar cells. The power collected by the solar cells is given by:

Pin(φ ,ψ) = ηsolPsdScos(ϑ(φ ,ψ)), if cos(ϑ(φ ,ψ)) ≥ 0, (3.44)

= 0 if cos(ϑ(φ ,ψ)) < 0, (3.45)
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where ηsol is the efficiency of the solar cell, Psd is the solar spectral density, and S is the to-

tal area of the wing. If less than a full wing is covered by solar cells or there is obscurement

due to clouds, ηsol can be adjusted to account for this.

The incidence angle, ϑ(φ ,ψ) can be evaluated as follows. Define [g] = [x̂g, ŷg, ẑg]
T as a

vectrix (62) fixed to the ground with ẑg vertical ascending and x̂g along the local x-axis. If

ã and e are the azimuth and elevation of the star, then ŝ, the unit vector to the star, is given

as

ŝ = [g]T













cos(e)cos(ã)

cos(e)sin(ã)

sin(e)













. (3.46)

Define [a] = [x̂a, ŷa, ẑa]
T as a vectrix fixed to the aircraft. In terms of [g],

[a] = R1(φ)R3(ψ)[g], (3.47)

where,

R1(φ) =













1 0 0

0 cos(φ) sin(φ)

0 −sin(φ) cos(φ)













, (3.48)

R3(ψ) =













cos(ψ) sin(ψ) 0

−sin(ψ) cos(ψ) 0

0 0 1













, (3.49)

represent rotation matrices about the first and third axis, respectively. By inverting this

relationship, we obtain

[g] = R3(ψ)T R1(φ)T [a]. (3.50)
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Hence, ŝ(φ ,ψ) can be expressed, in the aircraft-fixed vectrix, as

ŝ(φ ,ψ) =













cos(e)cos(ã)

cos(e)sin(ã)

sin(e)













R3(ψ)T R1(φ)T [a]. (3.51)

Define the incidence angle ϑ(φ ,ψ) as the angle between the line-of-sight to the star

and the ẑ-axis of the aircraft-fixed vectrix. Then ϑ(φ ,ψ) = arccos(ŝ(φ ,ψ) · ẑa). Hence,

(3.51) yields:

cos(ϑ(φ ,ψ)) = cos(e)cos(ã)sin(ψ)sin(φ)− cos(e)sin(ã)cos(ψ)sin(φ)+ sin(e)cos(φ),

(3.52)

or,

cos(ϑ(φ ,ψ)) = sin(e)cos(φ)− cos(e)sin(φ)sin(ã−ψ). (3.53)

The discussion on assumptions for the energy-collection model will be provided in the

next subsection.

Energy Loss Model

Energy lost by the aircraft is derived from standard lift, drag and propulsion models (6).

During a time interval [to, t f ], the energy lost by the aircraft is:

Eout(φ(·),V (·), t f ) =
∫ t f

to

Pout(V,φ)dt. (3.54)

The constant altitude assumption requires Lcos(φ) = W where L is the lift and W is

the weight of the aircraft. The equations governing the power lost driving the propeller,
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Pout(φ ,V ), are:

Pout(φ ,V ) =
T (φ ,V )V

ηprop
, (3.55)

where,

T (φ ,V ) = D(φ ,V ), (3.56)

D(φ ,V ) =
1

2
ρV 2SCD(φ ,V ), (3.57)

CD = CDO
+KaC2

L(φ ,V ), (3.58)

CL(φ ,V ) =
2W

ρV 2Scosφ
, (3.59)

and T (φ ,V ) is the thrust of the aircraft, ηprop is the efficiency of the propeller, D(φ ,V ) is

the drag of the aircraft, CD(φ ,V ) is the coefficient of drag, ρ is the atmospheric density,

CDO
is the parasitic drag, the aerodynamic coefficient Ka = 1

επAR
represents the amount

whereby the induced drag exceeds that of an elliptical lift distribution, ε is the Oswald ef-

ficiency factor, AR = b2/S is the aspect ratio of the wing, b is the wingspan and CL(φ ,V )

is the coefficient of lift.

Many of the assumptions provided in the energetics model are simplifications from a

real-world aircraft. The top-surface of a wing is often curved (even if a reflex airfoil is

used) forcing the solar-cells to be curved (inducing material stesses) or for a faceted wing

to be used (inducing additional drag). Power collection efficiency is often affected by

much of the power management system including the maximum power-point tracker, bat-

tery chargers and onboard energy storage. Onboard energy storage is limited and charging

efficiencies can vary depending on level of current charge and the number of charge cycles

already undertaken as well as battery chemistry and battery depth-of-discharge. On aver-

age, however, these parameters can be accounted for in the solar cell efficiency parameter,
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ηsol .

The power provided by the star, modeled by the constant Psd , is not typically constant.

Cloud cover, varying thicknesses of atmosphere (such as when the sun is at the horizon

rather than overhead) and other disturbances can change Psd . But this parameter does not

vary greatly and the power collected by a solar cell still follows a nearly sinusoidal path

over the course of a solar-day.

The energy lost by an aircraft must also include the fixed-cost to run onboard electronics

and payload. Typically this cost is far less than what is required to fly and so is not included

in this study. Certain payloads, however, could make this a non-negligible cost. Additional

parameters can also be added to the energy-loss model including the higher-order terms of

drag and lift coefficients.

Overall, this model is a simplification of the true energy collection and loss model as

compared to the real-world. It has been shown to be an effective one, however, as described

in the literature review. We make use of this model to show the coupling between kinemat-

ics and energetics while understanding that a more precise model could perhaps be needed

in implementation.

3.2.2 Environmental Model

The aircraft explores an area within an environment containing several components that

interact with the exploration mission. A star is present that provides energy and objects of

interest are located in the exploration area. In this subsection, models are detailed to define

each of these components for use in this dissertation.

Solar Position Model

Assume that the aircraft flies in the atmosphere of a planet that (1) is in a circular orbit

around the star, and (2) has a spin axis that is inclined with respect to its orbital plane. De-
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fine [I] = [x̂I, ŷI, ẑI]
T as an inertial orthonormal vectrix fixed in the orbital plane, where x̂I is

a unit vector along the line of spring equinox, ŷI is in the orbital plane and ẑI is defined so

that the orbital angular motion is along +ẑI . If Ω is the angular velocity of orbital motion

and s̄ is a unit vector from the planet to the star, then we have

s̄ = −[x̂I cosΩt + ŷI sinΩt]

= −(cosΩt,sinΩt,0)[I]. (3.60)

Define [P] = [x̂P, ŷP, ẑP]T as a planet-fixed vectrix where x̂P at t = 0 is a unit vector

pointing along the line of spring equinox, ŷP is in the equatorial plane and ẑP is defined

so that the planet’s spin axis is along +ẑP. If ω is the spin rate of the planet and i is the

constant inclination of its spin axis, then

[P] = R3(ωt)R1(i)[I]. (3.61)

Now, define [l] = [x̂l, ŷl, ẑl]
T as a vectrix fixed at the aircraft’s location, where x̂l is along

the unit vector toward the local north, ŷl is along the unit vector toward the local west and

ẑl is along the ascending vertical. Then, the vectrices [P] and [l] are related by

[l] = R3(π)R2(
π

2
−λ )R3(γ)[P], (3.62)

where λ is the latitude, γ is the longitude and the elementary rotation matrix R2 is defined

as

R2(κ) =













cosκ 0 −sinκ

0 1 0

sinκ 0 cosκ













. (3.63)
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The elevation of the star is defined as

e = arcsin(s̄ · ẑl). (3.64)

From (3.61),

[I] = R1(−i)R3(−ωt)[P], (3.65)

and from (3.62),

[P] = R3(−γ)R2(λ − π

2
)R3(−π)[l]. (3.66)

Therefore, an expansion of (3.60) gives

s̄ =− (cos(Ωt),sin(Ωt),0)R1(−i)R3(−ωt)R3(−γ)

R2(λ − π

2
)R3(π)[l]

= −(cos(Ωt),sin(Ωt),0)R1(−i)R3(−ωt − γ)

R2(λ − π

2
)R3(π)[l]. (3.67)

Finally, from (3.64) and (3.67), the elevation of the star at the location of the aircraft is

e =arcsin(−(cos(Ωt),sin(Ωt),0)R1(−i)R3(−ωt − γ)

R2(λ − π

2
)R3(π)[0 0 1]T ) (3.68)

= arcsin(sin(i)sin(λ )sin(Ωt)− cos(λ )[cos(Ωt)cos(γ +ωt)

+ cos(i)sin(Ωt)sin(γ +ωt)]). (3.69)
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Similarly, the azimuth of the star is defined as

ã = arctan(
s̄ · ŷl

s̄ · x̂l

). (3.70)

From, (3.70) and (3.67), the azimuth of the star at the location of the aircraft is

ã = arctan(
−(cos(Ωt),sin(Ωt),0)R1(−i)R3(−ωt − γ)R2(λ − π

2
)R3(π)[0 1 0]T

−(cos(Ωt),sin(Ωt),0)R1(−i)R3(−ωt − γ)R2(λ − π
2
)R3(π)[1 0 0]T

)

= arctan(
cos(i)cos(γ +ωt)sin(Ωt)− cos(Ωt)sin(γ +ωt)

cos(Ωt)cos(γ +ωt)sin(λ )+ sin(Ωt)[cos(λ )sin(i)+ cos(i)sin(λ )sin(γ +ωt)]
),

(3.71)

where the inverse tangent must be defined in the correct quadrant.

By definition, sunrise is a time tr such that e(tr) = 0 and ė(tr) > 0. Sunset is a time ts

such that e(ts) = 0 and ė(ts) < 0. Daylight is the duration between a sunrise and the next

sunset, i.e., ts− tr. The solar day, tsd , is the interval between two consecutive sunrises. The

daylight duty cycle is the ratio between daylight and solar day, i.e., ts−tr
tsd

.

Other parameters, such as the Earth’s oblateness or nutation, may also affect this model

but to a negligible degree. For the purposes of path planning and analyzing the interation

between kinematics and energetics, this model provides the needed couplings.

Objects of Interest

The m objects of interest are located at Cartesian positions (a j,b j),1 ≤ j ≤ m. Each ob-

ject of interest has a certain emissivity, reflectivity and absorption which we collectively

assume to be represented by a known scalar value k j ∈ ℜ with units of meters known as

the visibility parameter.

Each object of interest can be viewed as a transmitter in a communication process where

the transmitted signal contains knowledge about a state of the object of interest. We assume
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each state, z ∈ ℜ to be time-invariant such that:

ż = 0 (3.72)

where, for example, z can represent the size of an object.

Realistically, objects of interest may not have time-invariant states and different state

values may be seen from different angles. Indeed, there may even be interference from

different objects of interest if viewed close together. These effects have not been modeled

here but remain an opportunity for future work.

3.3 Approach

Throughout this work, we pose optimal control problems with V (t) and ψ(t) serving as the

control functions. Data in these problems are based on the complete model of this chapter.

See Appendix A for a general statement of an optimal control problem together with its

necessary conditions. The necessary conditions take the form of two-point boundary-value

problems (TPBVP) involving the minimization of a Hamiltonian function.

In each chapter, the general conditions of Appendix A are specified for the problem

at hand. We then study solutions of the resulting TPBVPs to find characteristics of opti-

mal paths and the aircraft that travel on them. Specifically, we are interested in properties

that define families of paths or regimes of flight that characterize different aspects of the

optimal exploration problem. In addition to exploiting the necessary conditions for var-

ious purposes, optimal control inputs are computed for various example problems. See

Appendix B for the discretization approach that is used.

In Chapters 4 and 5, a problem is posed based on a restricted form of the complete

model where several simplifying assumptions are made. These assumptions are removed

in Chapter 6 where the full model is considered.

The proceeding approach is based on the definitions given in Chapter 1 and the com-
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plete model constructed in Chapter 3. Additionally, properties from the solutions of the

TPBVPs are utilized in Chapter 7 to find characteristics of vehicles and sensors.

40



Chapter 4

Time-Optimal Exploration

4.1 Introduction and Problem Formulation

This chapter is devoted to the problem of exploring an area in a time-optimal manner. The

objective of the mission is to collect information about m objects of interest with known

locations (a j,b j),1 ≤ j ≤ m. Although the information collected can be used to detect

the state of an object, this chapter focuses on information collection rather than classifi-

cation. Information is collected by an active onboard isotropic sensor (e.g., radar, sonar),

with a signal-to-noise ratio that decays as the reciprocal of the fourth power of the range

(3.7). Hence, the problem of time-optimal exploration features the coupling between air-

craft kinematics and information collection, which occurs through the signal-to-noise ratio

of the sensor.

Based on the integrated system model, the problem of exploration for autonomous ve-

hicles is formulated as an optimal path planning problem where the states are the Cartesian

coordinates of the vehicle and the amount of information collected about each object of

interest, the objective function is the total mission time, and the boundary conditions are

subject to inequality constraints that reflect the requirements of information collection.

We use the model presented in Chapter 3 with the following assumptions: 1) the aircraft

has enough on-board energy stored to complete its mission, 2) the aircraft can perform in-

stantaneous turns, 3) the sensor is isotropic and 4) V is constant. Therefore in this chapter
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we neglect equations (3.43), (3.54) and (3.3) from the general model and allow α = 2π ,

i.e., Γ j = 1.

We further assume that 5) that at least one bit of information about each object of in-

terest is required to accomplish the mission. Finally it is assumed that İ j(t) is given by

(3.7).

Here the mission is to fly from a given initial location (xo,yo) with free heading and

collect information, I j ≥ 1, from each object of interest. The aircraft departs at a given

initial time to and flies for at most the maximum mission duration, TM. The terminal posi-

tion (x(t f ),y(t f )) is free. The Optimal Path Planning Problem is then to find a flight path

that accomplishes the mission in a time-optimal manner, i.e., while minimizing the final

mission duration.

4.2 Optimal Path Planning

In this section, we derive the necessary conditions for time-optimal flight. The dynamic

optimization problem is to minimize, with respect to the time-history of the heading angle,

the time to accomplish the mission, i.e.,

min
ψ(·)

t f , (4.1)

subject to (3.1)-(3.7) and boundary conditions.

4.2.1 Necessary Conditions for Optimality

The necessary conditions for optimality for the minimization problem (4.1) are derived in

Appendix A. Here, these necessary conditions are applied to the current problem. With
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state [x,y, I1, I2, ..., Im]T and control input ψ , the Hamiltonian is:

H =
m

∑
j=1

λI j
w log2(1+

k4
j

[(x−a j)2 +(y−b j)2]2
)

+λxV cos(ψ)+λyV sin(ψ)+1, (4.2)

where λx, λy and λI j
,1 ≤ j ≤ m are costate variables.

In this problem formulation, we have no control constraints.

The state equations, consistent with (4.2), are:

ẋ = V cos(ψ), (4.3)

ẏ = V sin(ψ), (4.4)

İ j = w log2(1+
k4

j

((x(t)−a j)2 +(y(t)−b j)2)2
),1 ≤ j ≤ m. (4.5)

The costate equations are:

λ̇x =
m

∑
j=1

4k4
j w(x(t)−a j)λI j

((x(t)−a j)2 +(y(t)−b j)2)3∆ j
, (4.6)

λ̇y =
m

∑
j=1

4k4
j w(y(t)−b j)λI j

((x(t)−a j)2 +(y(t)−b j)2)3∆ j
, (4.7)

λ̇I j
= 0,1 ≤ j ≤ m, (4.8)

where ∆ j = (1+
k4

j

((x(t)−a j)2+(y(t)−b j)2)2 ),1 ≤ j ≤ m.

The first-order optimality condition for the minimization of the Hamiltonian with re-

spect to ψ is:

0 = vλy cos(ψ)− vλx sin(ψ). (4.9)
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The boundary conditions for this problem are:

x(0) given, (4.10)

y(0) given, (4.11)

I j(0) = 0,1 ≤ j ≤ m, (4.12)

x(t f ) free, (4.13)

y(t f ) free, (4.14)

I j(t f ) ≥ 1,1 ≤ j ≤ m, (4.15)

λI j
(t f ) = free if I j = 1,1 ≤ j ≤ m, (4.16)

λI j
(t f ) = 0 if I j > 1,1 ≤ j ≤ m, (4.17)

λx(t f ) = 0 (4.18)

λy(t f ) = 0. (4.19)

Equations (4.3) - (4.19) provide necessary conditions for optimality in the form of a

two-point boundary value problem.

The simplified Hamiltonian relying on (3.8) is:

H =
m

∑
j=1

λI j

wk4
j

[(x(t)−a j)2 +(y(t)−b j)2]2

+λxvcos(ψ)+λyvsin(ψ)+1 (4.20)

The simplified necessary conditions for the minimization of the Hamiltonian with re-
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spect to ψ become:

0 = vλy cos(ψ)− vλx sin(ψ), (4.21)

ẋ = vcos(ψ), (4.22)

ẏ = vsin(ψ), (4.23)

İ j =
wk4

j

((x(t)−a j)2 +(y(t)−b j)2)2
,1 ≤ j ≤ m, (4.24)

λ̇I j
= 0,1 ≤ j ≤ m, (4.25)

λ̇x =
m

∑
j=1

4k4
j w(x(t)−a j)λI j

((x(t)−a j)2 +(y(t)−b j)2)3
,

λ̇y =
m

∑
j=1

4k4
j w(y(t)−b j)λI j

((x(t)−a j)2 +(y(t)−b j)2)3
, (4.26)

and the boundary conditions remain the same as in (4.10) - (4.19).

4.3 Properties of Extremal Flight Paths

In terms of the complete model, visibility and isolation are quantified by the parameters k j

and w respectively. Specifically, the distance r j can be defined by the relationship:

I f = w log2

(

1+
k4

j

r4
j

)

, (4.27)

where after solving for r j,

r j =
k j

4

√

2
I f
w −1

, (4.28)

and is such that a radar located at distance r j from the jth object of interest collects in-

formation about that object at a rate of I f bits per unit of time. The set of objects of

interest is isolated if the m disks, centered at Cartesian coordinates (a j,b j) and with radii
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r j,1 ≤ j ≤ m, respectively, do not intersect. Define each of these m disks D j, where D j

is the isotropic visibility disk centered on the jth object of interest. When the vehicle is

within the visibility disk of the jth object, i.e., (x,y) ∈ D j, the object is considered visible.

Otherwise the object is invisible to the vehicle. Define D to be the union of all visibility

disks D j,1 ≤ j ≤ m, i.e., D =∪m
j=1D j. When an object is considered visible an appreciable

rate of information is collected.

Further definitions simplify the remaining analysis. Objects are said to be clustered if

their visibility discs are pathwise connected. Furthermore, clusters are said to be isolated

if they are not pathwise connected. Finally, an isolated object has the property of not being

in any cluster.

4.3.1 Properties of Time-Optimal Exploration

We can use the necessary conditions that minimize the Hamiltonian with respect to ψ to

prove the following properties of extremals.

Proposition 4.3.1. If the objects of interest are isolated, then the optimal flight paths are

approximated by sequences of straight lines (far from the objects of interest) connected by

short turns (near the objects of interest).

By far, we mean locations outside of the visibility disks for the objects of interest and

by near we mean locations within the visibility disks.

Proof of Proposition 4.3.1

Assume that the objects of interest are isolated. Whenever all objects of interest are in-

visible, i.e., (x,y) /∈ D, the right hand sides of (4.6) and (4.7) are negligible, implying that

the costates correponding to the Cartesian coordinates of the aircraft are approximately

constant. Then (4.9) implies that the heading angle of the aircraft is also approximately

constant, implying that its path approximates a straight line.
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When a vehicle approaches one of the objects of interest (and the object is visible),

the above argument no longer applies and the vehicle may turn. However, the turn is rel-

atively short because it is predicated upon closeness to the object of interest. Once the

vehicle leaves the vicinity of that object, it resumes an approximately straight path, as per

the above argument.

Corollary 4.3.2. If in addition to being isolated, the objects of interest are poorly visible,

then the problem becomes a traveling salesman problem (TSP) (44).

Proof of Corollary 4.3.2

In the TSP case, the information rate of each object approaches zero, through a low w or k j

or high separation distance between the object of interest and the aircraft. If we assume that

wk4
j

((x(t)−a j)2+(y(t)−b j)2)2 = 0, then λx and λy are constant and equal to zero as is required by

their final conditions. The optimality condition relates the ratio of λx and λy to the heading

angle, ψ . Thus, the heading angle remains constant and the aircraft travels straight.

It is optimal in this case for the aircraft to visit each object of interest individually before

switching to another target.

Proposition 4.3.1 implies that, in the isolated case, each aircraft essentially “visits” a

sequence of objects of interest, flying straight paths between them.

Proposition 4.3.3. When the visibility of all the objects of interest approaches infinity, t f

approaches zero and the length of path traveled by the aircraft approaches zero.

We call the situation described by Proposition 4.3.3 the Watchtower case.

Proof of Proposition 4.3.3

In the Watchtower case, each object’s information transmission rate approaches infinity,

either through a high bandwidth, w, or visibility parameter, k j, or low separation distance

between the object of interest and the aircraft. We assume that the denominator of (3.7) is
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never zero, that is, the aircraft is always away from any object of interest. As k j approaches

infinity, the right hand side of (3.7) also approaches infinity. For any final time of flight,

no matter how short, a k j can always be found that is large enough that, within the alloted

time, enough information can be collected to satisfy the boundary conditions. This means

that the aircraft does not need to move to collect information in the Watchtower case. This

argument is valid for all headings.

4.3.2 Control Rate

Although the problem stated in Section 4.2 has no constraint on the magnitude of the con-

trol, ψ , in the real-world, one should be concerned with the time rate of change of the

control. Real-world actuators are limited in control rate they can achieve and this must be

accounted for in the system design. The gentle rate of turn defined in Proposition 4.3.1 also

suggests a magnitude constraint. This magnitude can be evaluated as follows. Consider the

optimality condition, (4.9). A derivative with respect to time gives:

0 = V cos(ψ)λ̇y −λxV cos(ψ)ψ̇ −V λ̇x sinψ −λyψ̇ sinψ. (4.29)

Substitution of (4.6) and (4.7) into (4.29) gives:

0 = V cos(ψ)
4k4λI(y(t)−b)

((x(t)−a)2 +(y(t)−b)2)3
−λxV cos(ψ)ψ̇

−λyV ψ̇ sinψ −V
4k4λI(x(t)−a)

((x(t)−a)2 +(y(t)−b)2)3
sinψ. (4.30)

After rearranging, (4.30) becomes:

ψ̇ =
V cos(ψ) 4k4λI(y(t)−b)

((x(t)−a)2+(y(t)−b)2)3 −V
4k4λI(x(t)−a)

((x(t)−a)2+(y(t)−b)2)3 sinψ −λyψ̇ sinψ

λxV cos(ψ)+λyV sinψ
(4.31)
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When (x,y) /∈ D, ((x− a)2 +(y− b)2)3 becomes large. This drives λx and λy to zero

which, together with (4.31), indicates that ψ is approximately constant. Otherwise, the rate

of change of ψ depends on the rates at which information is collected about visible objects.

4.4 Characteristics of Optimal Paths

Figure 4.1 presents an optimal flight path for an aircraft exploring an area with three objects

of interest computed with the method presented in Appendix B. Each object is designated

by an “x” on the Figure. The small circles have radii r j defined in Equation (4.28). The

lengths on this and many of the following plots have been scaled by a characteristic length

lc, where lc in this dissertation is the visibility parameter of the first object of interest, k1.

In this example, the aircraft does not fly over the objects of interest, but only approaches

each of them and then turns away towards the next. Thus, the total optimal path consists of

straight flights and short turns.

In the TSP limiting case, all of the objects of interest have a very low visibility. Figure

4.1 presents the same objects of interest as in Figure 4.1, but each object is barely visible.

Here the aircraft must virtually reach the target before enough information is collected and

similarities to typical TSPs exist.

Figure 4.2 demonstrates a hybrid example: one object of interest is relatively visible

while two others are barely visible. The resulting optimal path is a gentle curve near the

visible object and a typical TSP touring path towards the other two objects.

4.4.1 Radius of Closest Approach

Consider a single vehicle approaching an isolated object with a second object far away.

To satisfy the information boundary conditions (4.16), the vehicle must enter the visibility

disk of the first object of interest for at least a short duration. The object itself, at the center

of the visibility disk, need not be encountered. The minimum range from the explorer to

49



0 1 2 3 4 5 6 7

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

X/l
c
 ()

Y
/l

c
 (

)

Figure 4.1 Optimal flight path for an aircraft with two objects of interest. The objects of interest

have equal visibility discs of radius r j and are centered at locations designated by an “x”.

the object of interest is the radius of closest approach.

This radius can be found as follows. Integrating (4.5) over a path satisfying the op-

timality condition yields the amount of information collected. Over a short time period,

the rate at which information is collected can be approximated by a constant. Similarly, a

path entering and leaving a visibility disk, on which a vehicle collects exactly one bit of

information, can be approximated by a parabola. The midpoint of the parabola is the point

at which exactly one half of the required amount of information is collected. This point is

also the smallest range from the explorer to the object of interest, the so-called radius of

closest approach.

The disk around the object defined by this radius of closest approach is the disk of in-

fluence for an object. Any path that penetrates this disk is guaranteed to collect at least the

specified amount of information by definition.
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Figure 4.2 Optimal flight path in a TSP limiting case with two objects of interest. The objects

have low visibility (as indicated by small visibility disks)

Although the radius of closest approach can be expected to vary as a function of the

relative location of the objects of interest, we have observed that, in practice, this variation

is small. Figure 4.4 illustrates a typical parametric study of the radius of closest approach

as a function of the angle σ between the line-of-sight to the closest object of interest and

the line between the two objects.

4.5 Information Constraints

During the vehicle mission, information is collected from each object of interest. Be-

cause of the inequality information boundary conditions, more than the specified amount

information can be collected during a time-optimal flight. At the end of flight, an object

j has an active information constraint if I j(t f ) = 1. These objects are called critical ob-
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Figure 4.3 Optimal flight path for a vehicle exploring an area with objects of interest with different

visibility parameters

jects. Alternatively, object j has an inactive information constraint if, at the end of flight,

I j(t f ) > 1.

4.5.1 Isolated Objects

In the case of isolated objects, active and inactive information constraints can be illustrated

by an example.

Using the aircraft model, consider a case with two isolated objects as in Figure 4.5.
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Figure 4.4 Optimal flight paths for a single aircraft when approaching an object of interest at dif-

ferent bearings. σ is the angle between the line-of-sight from the aircraft to the closest object of

interest and the line between the two objects. The visibility discs have been removed for a majority

of the second objects of interest for clarity.
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Figure 4.5 Optimal flight path for a single aircraft with two critical objects. The critical objects

of interest have exactly one bit of information collected at the end of flight.
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At the end of flight, there is exactly 1 bit of information collected about each of the two

objects of interest. If the objects were aligned with the original flight path of the aircraft,

as in Figure 4.6, one bit is collected about the second object while more than one bit of

information is collected about the first. Though other paths can be found collecting exactly

one bit of information about each object, they are not time-optimal. Indeed if Object 1 was

not present, or had no information constraint, the time-optimal path would lead directly

to Object 2. Now add the information constraint on Object 1. By the relaxation principle

(101), an extremal path satisfying the boundary conditions can do no better, i.e., complete

the mission in less time, than the path that is constrained by boundary conditions. Since

the original time-optimal path and the second extremal path are identical, the extremal path

must be time-optimal as well.

4.5.2 Clustered Objects

We illustrate active and inactive information constraints by example. In a simple clustered

case, as in Figure 4.7, the aircraft collects greater than one bit of information about the first

object and exactly one bit about the second.

In a more complicated clustered case, as in Figure 4.8, the aircraft must find a time-

optimal path that is constrained by information state boundary inequalities. Rather than

plan for each object of interest, however, our astute planner only needs to plan between the

critical objects. Thus the problem can be reduced in size from one with m objects to one

with only critical objects.
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Figure 4.6 Optimal flight path for a single aircraft with one critical object

56



−1.5 −1 −0.5 0 0.5 1 1.5

0

0.5

1

1.5

2

2.5

X/l
c
 ()

Y
/l

c
 (

)

(a) Flight Path

0 1 2 3 4 5 6 7 8
0

1

2

3

4

5

6

7

In
fo

rm
a
ti
o
n
 C

o
lle

c
te

d
 (

b
it
s
)

t/t
c
 ()

Object 1 Information

Object 2 Information

(b) Information Collection

Figure 4.7 Optimal flight path for a single aircraft with two non-isolated objects - one of which is

critical
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Figure 4.8 Optimal flight path for a single aircraft with many non-isolated objects

58



4.6 Time-Optimal Exploration Heuristics

Several heuristics have been created to simplify or solve the problem of time-optimal explo-

ration. While the optimal path can be found from solutions of the two-point boundary-value

problem, it is often difficult to solve this problem or even to initialize it correctly. The

heuristics in this section have been constructed from observed and analytical properties

of optimal solutions and can be used to find near-optimal paths or to initialize a TPBVP

solver.

4.6.1 Critical Objects Heuristic

Here we identify a heuristic that can be used for a class of problems with clustered objects.

Consider a set of objects whose Cartesian coordinates form a straight line. If a path is

formed by connecting the objects in a greedy fashion, the amount of information collected

about each object can be evaluated. Those objects whose final information state is exactly

one bit are declared to be critical objects. The flight path planned, at the end of the problem,

is optimized based only on the critical objects and their information boundary conditions.

If the objects are shifted slightly from their straight line configuration, the path is also

altered. While the optimal path can shift dramatically, even discontinuously, with these

small alterations, the optimum, or total mission time, shifts only slightly.

An example of this heuristic is shown in Figures 4.8 and 4.9. In the first, a greedy path

is optimized upon. The resulting flight path and information collection is shown. In the

second figure, only a path connecting the critical objects is optimized upon. The flight path

and final information collected about each object of interest is also shown.
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Figure 4.9 Optimal flight path for a single aircraft with a path planned only for the two critical

objects
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This heuristic can be used to simplify the computational requirements of solving the

TPBVP. Rather than plan for m objects of interest with 2m information constraints (ini-

tial and final constraints), the path planner only must plan for critical objects of interest, a

subset of the m objects.

4.6.2 Rubberband Heuristic

A simplified model of the exploration problem can be illustrated on a wooden board. Here,

each object of interest is represented by a screw, the radius of closest approach by a rub-

berband and the optimal path by a string. At constant speed, the length of the string is

proportional to the mission duration.

Figure 4.10 Wooden board demonstrating the RubberBand Heuristic

One property is the connection between vehicle speed and object visibility. As the air-

craft slows, it spends more time within the visibilitydisk and more information is collected.

Thus, the slower the speed of the aircraft, the larger the visibility disk. With knowledge of

the visibility parameter for each object of interest, we can find the speed a vehicle can travel

on a constant heading that assures all information requirements are met. Furthermore, we

can find the heading at which this speed is maximized. This property is shown in Figure

4.11
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Figure 4.11 Constant heading flight satisfying information boundary conditions

4.6.3 Generalized Traveling Salesman Problem

While useful, the critical objects heuristic and rubberband heuristic suffer from a need to

know the sequence of objects to visit. Each object is centered in a disk of influence, and

only one point within this disk needs to be visited to achieve mission objectives. Thus the

problem is similar to the TSP shown in Figure 4.13 and described earlier.

A generalized form of this problem, in which a salesman must visit one city within each

state, is appropriately called the Generalized Traveling Salesman Problem or GTSP(60).

GTSP Exploration considers a set of sets, Ŝ where s j ∈ Ŝ,1 ≤ j ≤ m contains elements.

These elements are the Cartesian positions within the disk of influence around object j.

Each set s j must have one element visited, i.e., the vehicle path must include an element

in each set, in a minimal time fashion. There is no requirement as to which element in a

set s j is visited. This transforms the exploration problem into one of object sequencing and
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Figure 4.12 Constant heading flight cost as a function of heading

element selection. Similar to the critical objects heuristic, if a set s is visited exactly once,

the information constraint associated with that set is active, otherwise it is inactive.

4.6.4 GTSP Solver

The GTSP solution is a path connecting each set s j where the sum of all the path lengths

is minimized. There are two things to consider when optimizing this path: 1) the distance

between subsequent objects of interest (the positions of which are elements of each set s j)

and 2) the cardinality of s j.

A TSP can be considered a GTSP with each set s j of cardinality one. The sequence of

elements visited determines the total path length. In the GTSP, the selection of the optimal

element in the set s j influences the total path length and can change which sequence of sets

to visit is optimal.
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Figure 4.13 An example of a Traveling Salesman Problem solution taken from travel.m in Matlab.

An algorithm is created to attempt to optimize both the sequence of sets and selection

of visited elements in each set. Consider a set of 15 objects of interest as in Figure 4.14.

A random path can be generated beginning at the aircraft initial position and continuing

through elements of each set s j. At each iteration of the algorithm, two subsets of Ŝ of size

two are chosen. If elements s j of these subsets can be swapped in the path sequence result-

ing in a reduction of the total path length, the swap is kept. This method is often known as

a 2-opt swap (135) and is a member of a family of similar swapping algorithms known as

k-opt (28).

If the swap is successful, a search algorithm, e.g., in Matlab, fminsearch, is used to find

the element of each s j,1 ≤ j ≤ m that provides the minimum total path length for a given
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Figure 4.14 GTSP solver start condition with 15 objects of interest

sequence. Each resulting iteration either successfully reduces the total path length or does

not change the path. The algorithm ends after a preset number of subsequent iterations

fails to reduce the total path length. One solution (though possibly not the optimal solu-

tion) is presented in Figure 4.15 where the computation time is a a function of iterations. In

this example, the computation time was approximately 5 minutes on a Windows XP laptop

running at 2 GHz with 2 GB RAM.

This algorithm can be supplemented by the use of other GTSP solvers (54). The appli-

cability of GTSP and TSP algorithms to time-optimal exploration problems allows a wide

range of literature to be leveraged (15), (57).
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Figure 4.15 GTSP solver end condition with 15 objects of interest

4.7 Summary of Time-Optimal Exploration

This chapter has presented an information-based formulation for time-optimal exploration.

The problem of optimal path planning is formulated by noting the similarity between

information and exploration. This formulation exploits the coupling of kinematics with

informatics. We have presented necessary conditions for optimality with multiple objects

of interest and a single vehicle. These necessary conditions have been solved using a dis-

cretization technique, which highlights the qualitative nature of extremals. This nature has

been characterized in several propositions. Several heuristics including the critical object

heuristic, rubber band heuristic and GTSP heuristic have been developed utilizing these

propositions to allow for quick solving of near-optimal flight paths when exploring in a

time-optimal manner.
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Chapter 5

Energy-Optimal Exploration

5.1 Introduction and Problem Formulation

Future exploration of Mars, laid out by the Vision for Space Exploration (91), requires long

endurance unmanned aerial vehicles that use resources that are plentiful on Mars. One pos-

sible way of achieving this is to use a solar-powered aircraft that flies perpetually, which

motivates the problems solved in this chapter. The aircraft considered in this chapter is

distinguished from the majority of aircraft by its power source: it is equipped with solar

cells on the upper surface of the wings as well as onboard energy storage. These solar cells

collect energy that is used to drive a propeller.

This chapter considers the problem of energy-optimal path planning for solar-powered

aircraft in level flight and quantifies the requirement for perpetual endurance in solar-

powered flight. Perpetual endurance is the ability of an aircraft to collect more energy from

the star than it loses in flying during a solar day. These problems feature the interaction be-

tween three subsystems: aircraft kinematics, energy collection, and energy loss. While the

current literature discusses methods to optimize aircraft aerodynamic design for energy us-

age, there is no approach that examines the coupling of solar energy collection and energy

loss with the aircraft kinematics nor is there a specific quantification of the requirement for

perpetual endurance of solar-powered flight in terms of aircraft and environmental param-

eters. Consequently, the purpose of this chapter is twofold: (1) to investigate the coupling
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between energy collection, energy loss and kinematics and account for it in optimal path

planning and (2) to identify the requirement for perpetual endurance.

In summary, the integrated model considered in this chapter is as follows. The bank

angle and speed determine the heading and the position of the aircraft through (3.1)-(3.3).

The bank angle, together with the star’s position from (3.69) and (3.71) determines the

incidence angle through (3.53). The incidence angle of the star together with the bank an-

gle and speed determine the energy collected and lost by the aircraft during flight through

(3.44)-(3.43) and (3.59)-(3.54), respectively.

The most significant limitations of the model (3.1)-(3.54) are the assumptions of quasi-

static equilibrium flight at constant altitude. Since these assumptions can be satisfied in

practice, but are restrictive, the energy optimization results presented in this chapter pro-

vide conservative bounds on what can be achieved when these assumptions are violated.

Removing these assumptions is the subject of future work.

5.2 Problem Formulation

This chapter considers the following two types of missions with associated problems:

5.2.1 Energy-Optimal Flight

Here the mission is to fly from a given initial location and heading (xo,yo,ψo) to a given

final location and heading (x f ,y f ,ψ f ) departing at a given initial time to and taking at most

a given mission time TM. We assume that TM is very short compared to daylight, hence

the star is fixed in the sky during the mission. To accomplish extended flight, we stitch

several missions together, where the final conditions of one mission become the initial con-

ditions for the next. The star is assumed to move between these missions. The Optimal

Path Planning Problem is then to find a flight path that accomplishes the mission in an

energy-optimal manner, i.e., while maximizing the final value of aircraft energy.
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5.2.2 Perpetual Loiter

Here the mission is to fly from a given initial location and time (xo,yo, to) so that, over the

time interval [to, to + tsd], the aircraft collects more energy from the star than it spends fly-

ing. We assume that the aircraft speed is suficiently small so that its longitude and latitude

do not change significantly over the duration of a solar day, hence the longitude and latitude

of the aircraft are fixed during the mission. The Perpetual Loiter Problem is then to derive

conditions on the aircraft and environment parameters introduced in Chapter 3 that make

the mission possible.

5.3 Optimal Path Planning

In this section, we derive the necessary conditions for energy-optimal flight. The dynamic

optimization problem is to maximize, with respect to the time histories of the bank angle

and speed, the final energy of the solar-powered aircraft, i.e.,

max
φ(·),V (·)

ETotal , (Ein −Eout), (5.1)

subject to (3.1)-(3.69) and boundary conditions.

5.3.1 Necessary Conditions for Optimality

The necessary conditions for optimality for the maximization problem (5.1) are derived in

Appendix A. Here, these necessary conditions are applied to the current problem. With

state [x,y,ψ]T and control input (φ ,V )T the Hamiltonian is:

H(x,y,ψ,λx,λy,λψ ,φ ,V ) = Pin(ϑ(φ ,ψ))−Pout(φ ,V )+λxV cosψ +λyV sinψ +λψ
g tanφ

V
,

(5.2)

69



where ϑ depends on φ and ψ through (3.53) and λx, λy, and λψ are the costates. Here, the

only control constraints are that V > 0 and |φ | < π
2

.

Remark 5.3.1. It is not necessary to impose a tight constraint on the magnitude of the bank

angle. Indeed, banking requires lifting (See (3.59)), lifting induces drag (See (3.57)), drag

requires thrust (See (3.56)), which implies power loss (See (3.55)). Since the path planning

aims at achieving optimal final energy, the magnitude of the bank angle is naturally limited

by these phenomena. Figure 5.1 provides a visualization of this phenomena.
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The state equations, consistent with (5.1), are:

ẋ =
∂H

∂λx
= V cos(ψ), (5.3)

ẏ =
∂H

∂λy
= V sin(ψ), (5.4)

ψ̇ =
∂H

∂λψ
=

g tan(φ)

V
. (5.5)

The costate equations are:

λ̇x =
−∂H

∂x
= 0, (5.6)

λ̇y =
−∂H

∂y
= 0, (5.7)

λ̇ψ =
−∂H

∂ψ
= −λyV cosψ +λxV sinψ −ηsolPsdScosecos(ã−ψ)sinφ . (5.8)

The first-order optimality conditions for the minimization of the Hamiltonian with re-

spect to φ and V are:

∂H

∂φ
= −ηsolPsdS(cos(e)cos(φ)sin(ã−ψ)+ sin(e)sin(φ))

− 4K(mg)2 sin(φ)

ηpropρSV cos3(φ)
+

gλψ

V cos2(φ)
= 0, (5.9)

∂H

∂V
= λx cos(ψ)+

8K(mg)2 sec(φ)2

ηpropρSV 2
−

3ρSV 2(CDo
+ 4K(mg)2 sec(φ)2

ρ2S2V 4

2ηprop

+λy sin(ψ)− gλψ tan(φ)

V 2
= 0. (5.10)

The second order Legrendre-Clebsch condition is that the Hessian of the Hamiltonian

be negative semi-definite, i.e.:

∂ 2H

∂ (φ ,V )2
≤ 0, (5.11)
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where, if

∂ 2H

∂ (φ ,V )2
=

[

Hφφ HφV

HφV HVV

]

, (5.12)

(5.13)

Hφφ =
ηpropηsolρPsdS2V (−(cos(φ)sin(e))+ cos(e)sin(ã−ψ)sin(φ))

ηpropρSV

+
−4K(mg)2 sec(φ)4 +2sec(φ)3(gλψηpropρScos(φ)−4K(mg)2 sin(φ)) tan(φ)

ηpropρSV
,

HφV = −gλψ sec(φ)2

V 2
+

4K(mg)2 sec(φ)2 tan(φ)

ηpropρSV 2
,

HVV =
8K(mg)2 sec(φ)2

ηpropρSV 3
−

3ρSV (CDo
+ 4K(mg)2 sec(φ)2

ρ2S2V 4 )

ηprop
+

2gλψ tan(φ)

V 3
.

(5.14)

The boundary conditions for point-to-point flight are:

x(to) = xo, (5.15)

y(to) = yo, (5.16)

ψ(to) = ψo, (5.17)

x(t f ) = x f , (5.18)

y(t f ) = y f , (5.19)

ψ(t f ) = ψ f . (5.20)
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Since the final time is free, then we must also satisfy:

H(x,y,ψ,λx,λy,λψ ,φ ,V )|t f
= 0,

t f < to +TM. (5.21)

However, if t f = to +TM, Eq. (5.21) does not necessarily hold.

Equations (5.3)-(5.21) provide necessary conditions for optimality in the form of a two-

point boundary value problem.

We will also define here the minimum power velocity, VPowermin
as:

VPowermin
= 4

√

4KW 2

3CDo
ρ2S2 cos2(φ)

. (5.22)

It is important to note the distinction between VPowermin
and VEnergymin

where VEnergymin
=

4

√

4KW 2

CDoρ2S2 cos2(φ)
= 1.31VPowermin

.

5.4 The Power Ratio

If ETotal < 0 in (5.1) we have that Pin < Pout on average. Conversely, if ETotal > 0 we have

Pin > Pout on average. These conditions may be expressed on average as Pin

Pout
< 1 or Pin

Pout
> 1,

respectively. When considering a straight unbanked flight path between an initial location

and a final location this ratio is:

PR(e) =
2ηpropηsolρPsdS2VPowermin

sin(e)

CDO
ρ2S2V 4

Powermin
+4K(mg)2

. (5.23)

where

VPowermin
= 4

√

4KW 2

3CDo
ρ2S2

. (5.24)
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We refer to the non-dimensional parameter PR as the Power Ratio.

On an energy-optimal flight, we can evaluate the energy collected and energy lost, and

compute another nondimensional quantity, the energy ratio, ER, as:

ER =

∫ t f

to

Pin(ϑ(φ ,ψ))dt

∫ t f

to

Pout(φ ,V )dt

. (5.25)

ER defines two flight regimes, which we call the Drag Regime and the Solar Regime, cor-

responding to ER < 1 and ER ≥ 1, respectively.

Table 5.1 Comparison of PR and ER on Energy-Optimal Paths

PR ER Error ((PR −ER)/ER)

2.3492 2.3511 -0.08%

2.2016 2.2125 -0.49%

2.0771 2.0745 0.13%

1.9112 1.9307 -1.01%

1.7704 1.7822 -0.66%

1.6304 1.6226 0.48%

1.4810 1.4548 1.80%

1.3149 1.2983 1.28%

1.1526 1.1551 -0.22%

1.0068 1.0041 0.27%

0.9385 0.9496 -1.17%

0.7861 0.8180 -3.9%

0.6315 0.6864 -8.00%

0.4751 0.5470 -13.14%

Although PR does not depend on (φ ,ψ, ã) with the assumptions made about the atmo-

sphere, it turns out that it closely approximates ER, as can be seen in Table 5.1. Table 5.1

is given for typical energy-optimal flight paths, with each entry generated with conditions

similar to those described in Table 5.2. These conditions were chosen as a representa-

tive sample of the many more sets of conditions examined in our numerical investigations.

Thus, we have the following:

Remark 5.4.1. PR is usually a good enough approximation of ER to determine the regime
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of the optimal flight.

5.5 Properties of Extremal Flight Paths

From the necessary conditions, we formulate the following propositions with proofs found

in Appendix C.

Proposition 5.5.1. If Psd is sufficiently small, then φ(t) = 0 and V = VEnergymin
generate a

path that satisfies the necessary conditions for optimal flight, and t f ≤ to +TM.

Note that, in practice, Psd small implies PR < 1. However, Proposition 5.5.1 does not

mean that PR < 1 implies φ(t) = 0 and V = VEnergymin
generate the only path that satisfies

the necessary conditions of optimality. It is possible to find additional paths (69) satisfying

the necessary conditions where PR < 1 and φ(t) 6= 0.

Proposition 5.5.2. If PR > 1, and TM and PR are sufficiently large, then the optimal path

must satisfy t f = to +TM and V = VPowermin
.

Proposition 5.5.2 implies that when PR > 1 and large enough, and TM is large enough,

the optimal path takes as much time as allowed, flying at the most advantageous speed.

Propositions 5.5.1 and 5.5.2 are proven in Appendix C, D and E, based on Remark 5.4.1.

5.5.1 Characteristics of Optimal Paths

The same set of simulation conditions was used for each result presented in this section.

These conditions are shown in Table 5.2. The method to find these trajectories is discussed

in Appendix B.

Figures 5.2 and 5.3 are representative samples of optimal flight paths. Each flight path

was then evaluated based upon flight duration and total energy at the end of flight. A

summary of the conditions and results for figure 5.2 is presented in table 5.3.
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Table 5.2 Simulation Conditions

Initial Position (xo,yo) (0,0) m

Initial Energy Eo 0 J

Initial Heading ψo 127 deg

Final Position (x f ,y f ) (700,1300) m

Maximum Mission Time TM 300 s

Velocity of Minimum Power VPowermin
15 m/s

Vehicle Parameters Metis Aircraft Appendix F
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Figure 5.2 Example of an energy optimal flight path based on table 5.3.
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Table 5.3 Figure 5.2 Simulation Conditions and Results

Star Position (ã,e) (0,45) deg

Solar Spectral Density Psd 380 W/m2

Final Heading ψ f 180 deg

Flight Duration t f − to 300 s

Total Final Energy ET 6764 J

Energy In Ein 12646 J

Of particular note, in Figure 5.2, is the positive value of ETotal at the end of flight, in-

dicating a net gain of energy. The flight duration is equal to TM. The final time, t f , is free

in this problem subject to t f ≤ to + TM. The aircraft also only made a slow, sweeping turn

with |φ(t)| << 1 at all times. Throughout the flight, the speed remained at a constant 15

m/s. The results from this flight are in accordance with Proposition 5.5.2.

A summary of the conditions and results for Figure 5.3 is presented in Table 5.4. The

major difference with the previous case is that the star has set. During this flight, the bank

angle is close to zero degrees, indicating almost no turning. The only turn was at the begin-

ning of flight to obtain a direct heading towards the destination. The control inputs during

this turn indicate a high bank angle for a short duration. The flight duration was only 80

s, much less than TM. In this case, the total energy at the end of the flight was negative,

indicating more energy was lost than collected. The speed throughout the flight remained

at a constant 19 m/s. The results from this flight are in accordance with Proposition 5.5.1.

Table 5.4 Figure 5.3 Simulation Conditions and Results

Star Position (ã,e) (0,0) deg

Solar Spectral Density Psd 380 W/m2

Final Heading ψ f 61 deg

Flight Duration t f − to 80 s

Total Final Energy ET -1776.1 J

Energy In Ein 0 J

As shown in Figures 5.2 and 5.3, the flight path characteristics vary widely as the star

elevation is changed. Figure 5.4 is obtained by varying the elevation of the star (with ã = 0)

and recording the total energy of the resulting optimal flight path while the remaining air-

craft, environmental and mission parameters are fixed. The elevation of the star is varied
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Figure 5.3 Example of an energy optimal flight path based on table 5.4.

from 0 to 90 degrees. While the total energy of the aircraft at the end of flight remains

positive, a nearly sinusoidal relationship between elevation of the star and energy emerges.

This relationship persists until the total energy becomes negative. At this transition point,

the trend departs from a nearly sinusoidal function, which suggests a change in regime.

The transition exhibited in Figure 5.4 supports the use of the Power Ratio as a predictor of

the optimal regime.

Disturbances such as wind can affect the flight path of the aircraft. These disturbances

are considered in (69).

5.5.2 Extremal Path Summary

In summary, extremal flight paths can be obtained as follows. When PR < 1, extremal flight

paths are best described by Proposition 5.5.1. When PR > 1, extremal flight paths satisfy
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Figure 5.4 Total energy at end of flight as a function of solar elevation

Proposition 5.5.2. From Proposition 5.5.1 and 5.5.2, the velocity in both regimes is not an

independent control but is instead dependent upon the regime and the bank angle.

5.6 Perpetuity Threshold

5.6.1 Derivation of the Perpetuity Threshold

For perpetual endurance, including the case of the loiter problem, it is required that, over

the duration of a solar day, the energy collected by the aircraft exceed or be equal to the

energy lost, i.e.,

Ein

Eout
≥ 1. (5.26)
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From (3.43) and (3.54), this is equivalent to:

∫ ts

tr1

Pin(ϑ(φ ,ψ))dt

∫ tr2

tr1

Pout(φ ,V )dt

≥ 1, (5.27)

where we need only consider the daylight hours for the power collected. Here, tr1
is the

time of sunrise on a solar day, ts is the next time of sunset, and tr2
is the time of sunrise on

the next solar day.

Since the final conditions for loiter are free and banking requires energy, energy-optimal

loitering paths have zero bank angle and a speed equal to VPowermin
. We use (3.44) and the

time-invariance of Pout to show that (5.27) is equivalent to

ηsolPsdS

∫ ts

tr

sin(e(t))dt

Pouttsd

≥ 1. (5.28)

Let ē be the average elevation of the star, i.e., let ē satisfy:

sin(ē) =
1

ts − tr

∫ ts

tr

sin(e(t))dt (5.29)

We can simplify (5.28) as

ηsolPsdS sin(ē)(ts − tr)

Pouttsd

≥ 1. (5.30)

Comparing this to (5.23), this inequality is equivalent to:

PR(ē) ≥ tsd

ts − tr
. (5.31)

Hence (5.31) solves the perpetuity problem by establishing the following:

Remark 5.6.1. Perpetual endurance is possible if and only if the Power Ratio, evaluated at
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the average star elevation, exceeds the reciprocal of the daylight duty cycle.

Remark 5.6.2. Note that the right hand side of (5.31) is always greater than or equal to

1. Therefore, perpetual endurance always requires that the Power Ratio, evaluated at the

average star elevation, be greater than or equal to 1.

5.6.2 Comparative Analysis of the Perpetuity Thresholds on Earth

and Mars

The results of Section 5.6.1 provide a threshold, dependent upon location and time, that

must be exceeded by the Power Ratio for perpetual endurance. Note that design parameters

and environmental parameters affect the Power Ratio and this will be studied in Chapter 7.

However, if we fix the design of the aircraft, we can examine the effect of environmental

parameters on the Power Ratio. Furthermore, we can compare the design requirements for

perpetual endurance between Earth and Mars.

The Perpetuity Threshold has been shown to be the ratio,
tsd

ts−tr
. We can compare this

ratio, as a function of mean anomaly Ωt and latitude, between Earth and Mars, as shown

in Figures 5.5 and 5.6. Note that the Perpetuity Threshold approaches infinity when the

daylight duty cycle approaches zero and we have limited the plot to thresholds smaller than

six. The arctic regions are those latitudes above 90◦− i and below −90◦ + i. During part

of the year, these regions can have extended periods of total darkness or total light, that is,

there are no local sunrises or sunsets for multiple rotations of the planet. For areas of total

light (i.e., arctic summer), the Power Ratio need only exceed 1 for perpetual endurance.

We have not considered regions of total darkness (i.e., arctic winter) in this dissertation be-

cause requirements on battery size put this case outside the scope of practical solar-powered

aircraft.

Table 5.5 compares the planetary characteristics of Earth and Mars.

The maximum deviation between the thresholds on Earth and Mars is 6.3% with a mean

deviation of −5×10−2%. The Perpetuity Thresholds between Earth and Mars are therefore
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Table 5.5 Planetary Characteristics of Earth and Mars

Earth Mars

Duration of Solar Day tsd 23.93 24.62 hours

Days in Year 365.25 687 days

Inclination of Axis i 23.5 25 deg
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Figure 5.5 Map of Daylight Duty Cycle on Earth

similar since the maximum and average deviations are small.

5.7 Summary of Energy-Optimal Exploration

Path-planning for solar-powered aircraft can be improved if a model that couples the kine-

matics with the energetics through the bank angle of the aircraft is used. By identifying and

predicting the regime of optimal flight through use of the Power Ratio, significant energy

savings can be made.

During perpetual flight, a positive total energy balance must be achieved over a solar
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Figure 5.6 Map of Daylight Duty Cycle on Mars

day. By translating this requirement on the Power Ratio, we obtain that perpetual solar-

powered flight is achievable if and only if the Power Ratio, evaluated at the average star

elevation, is greater than or equal to the reciprocal of the daylight duty cycle.

These requirements and regimes of flight enable a solar-powered aircraft to extend its

endurance (and thus loiter time) to collect the required amounts of information to com-

plete the exploration mission. In the following chapter we will consider a combination of

time-optimal and energy-optimal path planning for exploration missions.
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Chapter 6

Energy and Time Optimal Exploration

6.1 Introduction and Problem Formulation

The challenges of exploring an area while attempting to optimize a combination of the to-

tal energy at the end of the mission and the overall mission duration are considerable. To

maintain a positive total energy, a solar-powered aircraft must trade off the characteristics

of energy-optimal paths with those of time-optimal paths. Intuitively, if a solar-powered

vehicle is able to loiter, the total energy of the vehicle is likely to increase at the cost of

mission duration. Similarly, a vehicle flying along a time-optimal path should likely reduce

the number of its energy-saving maneuvers to achieve the mission objectives in a minimal

amount of time. In this chapter, we consider the problem of a combination of time-optimal

and energy-optimal path planning. The optimal path planning problem is formulated where

cost function is dependent upon both total energy at the end of the mission and the final

mission time to complete the mission and the boundary conditions subject to inequality

constraints that reflect the requirements of information collection.

We consider the full model presented in Chapter 3. The sensor used is isotropic and,

because the missions are short, the star is assumed fixed in the sky.

The mission is to fly from a given initial location and heading (xo,yo,ψo) so that, over

the time interval [to, to + TM], the aircraft collects a specified amount of information about

objects of interest. We assume that the aircraft kinematics follow (3.1) - (3.3) and that TM is
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very short compared to daylight, hence the star is fixed in the sky during the mission. The

Optimal Exploration Problem is then to find a flight path that accomplishes the mission in

a time-optimal and energy-optimal manner where the cost of time and energy are scaled by

T̄o and Ēo respectively and weighted by a parameter ζ ,0 ≤ ζ ≤ 1.

6.2 Optimal Path Planning

In this section, we derive the necessary conditions for time-optimal and energy-optimal

flight. The optimization problem is to maximize, with respect to the time-history of the

bank angle, a convex combination of the scaled final energy, ETotal/Ēo, of the solar-

powered aircraft and the negative of the scaled mission duration, TM/T̄o, i.e.,

max
φ(·)

[

ζ
ETotal

Ēo

− (1−ζ )
TM

T̄o

]

,0 ≤ ζ ≤ 1, (6.1)

subject to (3.1)-(3.69) and boundary conditions.

6.2.1 Necessary Conditions for Optimality

The necessary conditions for optimality for the maximization problem (6.1) are derived

in Appendix A. Here these necessary conditions are applied to the current problem. It is

interesting to note that since a linear combination of the costs from Chapter 4 and Chapter

5 are used in (6.1), the necessary conditions can be obtained as a linear combination of the

necessary conditions from those respective problems. With states [x,y,ψ, I1, I2, ..., Im] and

control input φ , the Hamiltonian is:
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H(x,y,ψ, I1, ..., Im,λx,λy,λψ ,λI1
, ...,λIm

,φ) = ζ (Pin −Pout)/Ēo − (1−ζ )1/T̄o +λxV cosψ

+λyV sinψ +λψ
g tanφ

V
+

m

∑
j=1

λI j
w log2(1+

k4
j

[(x(t)−a j)2 +(y(t)−b j)2]2
),

(6.2)

where λx, λy, λψ and λI j
,1 ≤ j ≤ m are the costates. Here, the only control constraint is

that V > 0. While the velocity is constrained by performance of the engine and altitude, it

is assumed that the aircraft can at least fly at the minimum-power velocity VPowermin
given

in (5.22). As discussed in Chapter 5, φ is limited by the nature of the problem.

The state equations, consistent with (6.1), are:

ẋ =
∂H

∂λx
= V cos(ψ), (6.3)

ẏ =
∂H

∂λy
= V sin(ψ), (6.4)

ψ̇ =
∂H

∂λψ
=

g tan(φ)

V
, (6.5)

İ j =
∂H

∂λI j

= w log2(1+
k4

j

((x(t)−a j)2 +(y(t)−b j)2)2
),1 ≤ j ≤ m. (6.6)

The costate equations are:

λ̇x =
−∂H

∂x
=

m

∑
j=1

4k4
j w(x(t)−a j)λI j

((x(t)−a j)2 +(y(t)−b j)2)3∆ j
, (6.7)

λ̇y =
−∂H

∂y
=

m

∑
j=1

4k4
j w(y(t)−b j)λI j

((x(t)−a j)2 +(y(t)−b j)2)3∆ j

, (6.8)

λ̇ψ =
−∂H

∂ψ
= −λyV cosψ +λxV sinψ −ηsolPsdScosecos(a−ψ)sinφ ,

λ̇I j
= 0,1 ≤ j ≤ m, (6.9)
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where ∆ j = (1+
k4

j

((x(t)−a j)2+(y(t)−b j)2)2 ),1 ≤ j ≤ m.

The first-order optimality condition for the maximization of the Hamiltonian with re-

spect to φ is:

∂H

∂φ
= −ηsolPsdSc(cos(e)cos(φ)sin(ã−ψ)+ sin(e)sin(φ))

− 4KW 2 sin(φ)

ηpropρSV cos3(φ)
+

gλψ

V cos2(φ)
= 0. (6.10)

The boundary conditions for exploration flight are:

x(to) = xo, (6.11)

y(to) = yo, (6.12)

ψ(to) = ψo, (6.13)

I j(to) = 0,1 ≤ j ≤ m, (6.14)

x(t f ) free, (6.15)

y(t f ) free, (6.16)

ψ(t f ) free, (6.17)

I j(t f ) ≥ 1,1 ≤ j ≤ m, (6.18)

λx(t f ) = 0, (6.19)

λy(t f ) = 0, (6.20)

λψ(t f ) = 0, (6.21)

λI j
(t f ) = free if I j(t f ) = 1,1 ≤ j ≤ m, (6.22)

λI j
(t f ) = 0 if I j(t f ) > 1,1 ≤ j ≤ m. (6.23)

Equations (6.3) - (6.23) provide necessary conditions for optimality in the form of a
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two-point boundary value problem.

6.3 Properties of Extremal Flight Paths

6.3.1 Properties from the Necessary Conditions

From the necessary conditions, we formulate the following propositions.

Proposition 6.3.1. If Psd is sufficiently small, Proposition 4.3.1 can be used to generate a

path that satisfies the necessary conditions for optimal flight, i.e., the time-optimal solution

may be used.

Proof of Proposition 6.3.1:

The aircraft is flying in the Drag Regime. Thus (6.9) and (6.10) simplify with φ = 0 as:

0 = −ηsolPsdSc cos(e)sin(ã−ψ)+
gλψ

V
, (6.24)

λ̇ψ = −λyV cosψ +λxV sinψ. (6.25)

If φ = 0, (6.24) implies that λψ is constant. Therefore λ̇ψ = 0 and (6.25) equals zero.

Then, (6.25) is equivalent to (4.9). Thus the necessary conditions for the minimization of

the Hamiltonian (4.2) with respect to ψ are reconstructed under the conditions of Proposi-

tion 4.3.1 and in the context of time-optimal and energy-optimal paths.

Corollary 6.3.2. If Psd is small and the vehicle is outside of all visibility disks, a constant

heading path is optimal for exploration.

Proof of Corollary 6.3.2:

From Proposition 5.5.1, a straight flight path when operating in the Drag Regime is

optimal. From Proposition 4.3.1, a time-optimal explorer travels straight when outside the

visibility disk of all objects.
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In summary, when Psd is small, a vehicle should fly along time-optimal paths (as es-

tablished in Chapter 4) to satisfy mission objectives while remaining time-optimal and

energy-optimal.

6.3.2 Characteristics of Optimal Paths

Here we consider simulation results for the full problem, i.e., the time-optimal and energy-

optimal path planning. The same set of simulation conditions was used for each result

presented in this section. These conditions are shown in Table 6.1.

Table 6.1 Simulation Conditions

Initial Position (xo,yo) (0,0) m

Initial Energy Eo 0 J

Initial Heading ψo 45 deg

Velocity of Minimum Power VPowermin
15 m/s

Vehicle Parameters Appendix F

Star Azimuth ã 180 deg

Star Elevation e 45 deg

Solar Spectral Density Psd 150 W/m2

Consider the cost function (6.1). We can compare the solution of the optimal control

problem produced for this cost function and that of a similar cost function:

max
φ(·)

[ζ Ein/(Eout Ēo)− (1−ζ )TM/T̄o] . (6.26)

These cost functions are not equivalent. However, here we consider solutions to the op-

timal control problem. Figures 6.1 and 6.2 compare the flight paths produced by optimizing

each of these cost functions. In each case, the final time and control forming the optimal

paths are within 1.5% of each other while a comparison of ER and PR shows a difference

of 0.56%. Each path is similar to the time-optimal path for a single aircraft flying between

two visible objects of interest.

If the mission ends when enough information is collected from both objects of interest,

we can evaluate the cost as follows. Figures 6.1 and 6.2 indicate that maximizing ETotal
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Figure 6.1 Example of time-optimal and energy-optimal flight paths as 0 ≤ ζ ≤ 1 with star posi-

tion (180,45) deg with a cost function including ETotal

produces the same control within 1.5% as maximizing ER for all ζ and thus the results

of the optimal control problems are indistinguishable. We therefore use ER in our cost

function for the following analysis:

max
φ(·)

[ζ Ein/(Eout Ēo)− (1−ζ )TM/T̄o] , (6.27)

= max
φ(·)

[ζ PR/Eo − (1−ζ )TM/To] , (6.28)

where ER has been shown to be approximately equal to PR by 5.4.1. As the star remains at

position (180,45) deg and neither the aircraft nor the environment changes between flight
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Figure 6.2 Example of time-optimal and energy-optimal flight paths as 0 ≤ ζ ≤ 1 with star posi-

tion (180,45) deg with a cost function including ER

examples, PR remains fixed. Thus, to maximize (6.28), the time should be minimized. We

can then state that:

Proposition 6.3.3. When attempting to both minimize the time of flight and maximize the

total energy at the end of flight, a time-optimal flight path is optimal for all values of

ζ ,0 ≤ ζ ≤ 1.

and

Remark 6.3.4. Exploration is driven by time rather than energy.
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6.4 Summary of Time-Optimal and Energy-Optimal Ex-

ploration

Path planning for solar-powered aircraft performing exploration missions can be improved

if we examine properties of the combination time-optimal and energy-optimal flight paths.

When Proposition 5.5.1 holds, the vehicle should fly in a time-optimal manner at VPowermin
.

When Proposition 5.5.2 holds, the extremal paths roughly follow the time-optimal path but

loiter after the mission objectives have been met. For solar-powered aircraft, a time-optimal

path is the best way to complete an exploration mission. The vehicle, however, must be ca-

pable of remaining in flight, i.e., PR ≥ 1. We examine the vehicle characteristics that allow

this and the impacts this has on vehicle payloads in the next chapter.
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Chapter 7

Exploration Agents

7.1 Introduction and Problem Formulation

Here we consider the third component of the exploration problem: the agent. Often the

performance of the exploration depends upon the agent capabilities. Both payload mass

and aircraft cost can limit this performance. More specifically for a solar-powered air-

craft, additional mass decreases the Power Ratio and increase the challenges of perpetual

flight (see Appendix G). Thus mass is a aircraft design driver and can restrict the ability

of onboard sensors. In fact, isotropic sensors are often the exception rather than the rule

for autonomous aircraft. In this chapter, we consider realistic restrictions upon the sensor

model.

This chapter considers the problem of time-optimal path planning with non-isotropic

sensors. The onboard sensors can only collect information when an object of interest is po-

sitioned within an active sensing cone with respect to the aircraft’s orientation. The aperture

of this sensor cone affects the solution to the optimal path planning problem. In fact, the

aperture diameter of non-isotropic sensors is often very small to achieve high resolution at

a far distance. This tunnel vision approach limits the ability of an area-coverage attempt to

solve this problem.

Again we use the model presented in Chapter 3 with the following assumptions: 1)

the aircraft has enough on-board energy stored to complete its mission, 2) the aircraft can
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perform instantaneous turns and 3) we assume that only one bit of information about each

object of interest is required to accomplish the mission.

Here the mission is to travel from a given initial location (xo,y0) with free heading and

collect at least one bit of information from each object of interest. The aircraft departs at

a given initial time to and flies for at most the maximum mission duration TM. The Opti-

mal Path Planning Problem is then to find a flight path that accomplishes the mission in a

time-optimal manner while accounting for non-isotropic sensors.

7.2 Optimal Path Planning

In this section, we derive the necessary conditions for optimality. While similar necessary

conditions have been developed in earlier chapters, here we account for non-isotropic sen-

sors, which affects the derivation. The dynamic optimization problem is to minimize, with

respect to the time-history of the heading angle, the time to accomplish the mission, i.e.,

min
ψ(·)

t f , (7.1)

subject to (3.1)-(3.7) and boundary conditions.

7.2.1 Necessary Conditions for Optimality

The necessary conditions for optimality for the minimization problem (7.1) are derived in

Appendix A. Here, these necessary conditions are applied to the current problem. With

states [x,y, I1, I2, ..., Im]T and control input ψ , the Hamiltonian is:

H =
m

∑
j=1

λI j
Γ(Θ)w log2(1+

k4
j

[(x(t)−a j)2 +(y(t)−b j)2]2
)

+λxvcos(ψ)+λyvsin(ψ)+1, (7.2)
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where λx, λy and λI j
,1 ≤ j ≤ m are costate variables.

In this problem formulation, we have no control constraints.

The state equations, consistent with (7.2), are:

ẋ = vcos(ψ), (7.3)

ẏ = vsin(ψ), (7.4)

İ j = Γ(Θ)w log2(1+
k4

j

((x(t)−a j)2 +(y(t)−b j)2)2
),1 ≤ j ≤ m. (7.5)

The costate equations are:

λ̇I j
= 0,1 ≤ j ≤ m, (7.6)

λ̇x =
m

∑
j=1

4k4
j wΓ(Θ)(x(t)−a j)λI j

((x(t)−a j)2 +(y(t)−b j)2)3

−
4k4

j w
δΓ(Θ)

δx
λI j

((x(t)−a j)2 +(y(t)−b j)2)2
, (7.7)

λ̇y =
m

∑
j=1

4k4
j wΓ(Θ)(y(t)−b j)λI j

((x(t)−a j)2 +(y(t)−b j)2)3

−
4k4

j w
δΓ(Θ)

δy
λI j

((x(t)−a j)2 +(y(t)−b j)2)2
. (7.8)

The first-order optimality condition for the minimization of the Hamiltonian with re-

spect to ψ is:

0 = vλy cos(ψ)− vλx sin(ψ)

−
m

∑
j=1

4k4
j w

δΓ(Θ) j

δψ λI j

((x(t)−a j)2 +(y(t)−b j)2)2
. (7.9)
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The boundary conditions for this problem are:

x(0) = xo, (7.10)

y(0) = yo, (7.11)

I j(0) = 0,1 ≤ j ≤ m, (7.12)

x(t f ) free, (7.13)

y(t f ) free, (7.14)

I j(t f ) ≥ 1,1 ≤ j ≤ m, (7.15)

λI j
(t f ) = free if I j = 1,1 ≤ j ≤ m, (7.16)

λI j
(t f ) = 0 if I j > 1,1 ≤ j ≤ m, (7.17)

λx(t f ) = 0, (7.18)

λy(t f ) = 0. (7.19)

7.2.2 Sensitivity to Sensor Aperture

In this subsection we will analyze the effect of a non-isotropic sensor on the necessary

conditions.

The sensitivity of the necessary conditions to a non-isotropic sensor appears in three

areas: the optimality condition and the two costates for position. If
dΓ(Θ)

dΘ = 0, the
δΓ(Θ)

δΘ

term would reduce to zero and eliminate the fractional component of the optimality condi-

tion. This term includes a kind of ’map’, turning the heading towards unvisited objects of

interest. If instead, Γ(Θ) were not dependent upon Θ, as in Chapter 4, any objects outside

of the vehicle’s initial sensor cone would never be visited.

97



7.3 Properties of Path Planning with Non-Isotropic Sen-

sors

The objective of exploration is to collect information about states of specific objects in the

exploration area. Often, this information is used to classify or identify a particular object

of interest. While visiting an object directly will ensure classification, we have shown it

is usually only needed to approach an object and classify it from a distance. Here we use

the theory and information collection model developed in the previous chapters to predict

where the location of classification can occur. Knowledge of this point or set of points can

be used to find paths between multiple objects of interest.

When an object is to be classified, a certain amount of information needs to have been

collected about it. In this dissertation, we consider information to be additive. Roughly, the

inverse of information is variance, or uncertainty about the state of an object. An alterna-

tive way of looking at the location of classification is that it is the point where uncertainty

has been reduced to a given threshold. This threshold is predetermined as a given level of

confidence. Rather than increasing information collection, we seek to reduce uncertainty

to a predefined level so as to make a confident decision.

The model of information collection defined earlier provides the maximum rate of in-

formation that can be achieved with the onboard sensor and a particular object of interest.

By integrating forward in time along a predefined path, we can predict the amount of in-

formation accrued at a given time instant. If we examine all the straight paths passing near

an object of interest from an initial vehicle location, we can predict every point where the

information boundary conditions are met. This is illustrated in Figure 7.1. Because of

the non-isotropic nature of the sensors in this chapter, information is only collected upon

approach to the object of interest. Isotropic sensors allow for a prediction curve that can

encircle an object of interest.

From analysis of the necessary conditions as well as examination of example cases,

several properties of optimal paths with a non-isotropic sensor can be stated.
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Figure 7.1 Non-Isotropic Information Boundary Condition Satisfaction Prediction

Proposition 7.3.1. When traveling between several objects of interest, if the objects of in-

terest are isolated, then the optimal flight paths consist of sequences of straight lines (far

from the objects of interest) connected by instantaneous turns (near the objects of interest).

Proposition 7.3.1 is illustrated in Figure 7.4.

Proposition 7.3.2. When positioned at either endpoint of the prediction curve, the angle

between the vehicle’s heading and the line of sight to the object of interest will equal half

of the width of the sensor cone.

Proposition 7.3.2 is illustrated in Figure 7.2.

Proposition 7.3.3. When a line from the vehicle’s initial position to the second object of

interest passes through the prediction curve, the vehicle will travel straight to the second

object of interest and collect more than the specified amount of information from the first
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Figure 7.2 Illustration of Proposition 7.3.2 when α = 2π
3

object of interest. When the line travels through the endpoints of the prediction curve, the

vehicle will travel straight to the second object of interest and collect exactly the specified

amount of information from the first object of interest.

Proposition 7.3.3 is illustrated in Figures 7.5 and 7.6.

Proposition 7.3.4. If Proposition 7.3.2 does not hold, the vehicle will travel to the a point

on the first object of interest’s prediction curve closest to the next sequential object of

interest and make an instantaneous turn to travel straight to the second object.

Proposition 7.3.4 is illustrated in Figure 7.4.

These propositions can be utilized to create an algorithm to travel between multiple

objects of interest. The key point in satisfying the boundary conditions is to predict the

location where constraint satisfaction occurs.
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Figure 7.3 Method to travel through a sequence of objects of interest

A real-world implementation of this algorithm is more complicated. While in this dis-

sertation we have assumed that information accrues according to (3.7), often this is not the

case. Additionally, we have assumed information is received at the maximum rate possible.

Implementation is still possible, however, if the prediction curve is continuously updated

(at a rate faster than the travel time of the vehicle to the turning point).

Most Automatic Target Recognition (ATR) systems return a value for uncertainty along

with a state estimate (for example, a Kalman filter used in this way continuously updates

the covariance matrix). While the information rate shown in (3.7) is the maximum value,

it does set an upper limit on the distance from the object of interest that the vehicle must

travel. By satisfying the boundary conditions set by the true covariance (from the ATR),

we can account for the probable nonlinearity of uncertainty reduction. At each timestep, an

estimate for the prediction curve is generated based on (3.7). As the vehicle travels, infor-

mation is collected, uncertainty is reduced and the initial value for information needed is

no longer zero but depends upon the remaining uncertainty from the ATR. Thus a feedback

loop is formed where the input is the desired uncertainty value, the plant is an estimate
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based upon the maximum rate of information achievable and the error is the difference

between this maximum and the information actually collected by the ATR.

A better solution would be to use an estimator to examine the true rate of information

collection by the ATR and estimate the true value of k j. This would correct the information

model for environmental conditions and give a better prediction of the curve for constraint

satisfaction.

It should be noted that this algorithm can be implemented with any sequencing method.

This offers the flexibility of improving an optimal TSP type path that visits each object to

one that takes advantage of the prediction curve (a generalized TSP problem).

7.3.1 Characteristics of Optimal Paths

An example optimal path between two objects of interest with a vehicle equipped with

a non-isotropic sensor is shown in Figure 7.4. Here conditions for Proposition 7.3.4 are

satisfied.

Proposition 7.3.3 is illustrated in both figures 7.5 and 7.6.

An implementation of Algorithm 1 is shown in Figure 7.7. The sequence of objects

was chosen using a greedy algorithm. Other methods, such as a TSP solver may also be

utilized. An optimal solution would need to utilize a Generalized TSP solver or directly

solve the necessary conditions.

7.4 Empirical Results

The previously described algorithm using a non-isotropic sensor was implemented in a lab-

oratory setting using a ground-based vehicle equipped with non-isotropic ultrasonic sensors

with a total aperture of 12 degrees. The vehicle was tasked with estimating the correct ra-

dius of a cylindrical object of interest which was obscured through the use of acoustically

translucent material. A second object of interest was used in the path planning process with
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Figure 7.4 Illustration of Proposition 7.3.4

no obscuring material.

The results of this study are presented in Figures 7.8 and 7.9. The vehicle was able to

correctly reduce the uncertainty about the radii of the objects of interest without directly

visiting the objects of interest. Furthermore, the rate of decay of uncertainty was similar to

the inverse of the information collection model used in this dissertation.

7.5 Summary of Exploration with Non-Isotropic Sensors

While the capabilities of the vehicle can decrease the sensor performance, it is still pos-

sible to complete exploration mission objectives and collect information about objects of

interest, even in the presence of uncertainty. By accounting for the couplings between the

components of exploration, we can successfully design, test and deploy optimal exploration

agents capable of accounting for trade-offs on all levels of exploration.
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Figure 7.8 A plot of several different paths for the explorer overlaid on the video of the explorer

finishing the exploration mission. A clear plot is presented in Figure 7.9
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Figure 7.9 A plot of several different paths for the explorer. Shown are the greedy (TSP) path, the

predicted, information-optimal, path and the actual ground track of the vehicle. Also shown is the

point where 1 bit of information is collected.
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Figure 7.10 A plot of the decay of covariance as a function of iteration. Note that after the covari-

ance is reduced to the appropriate threshold for the first object of interest it is reset for the second

object of interest.
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Chapter 8

Conclusions

8.1 Summary and Contributions

Today we send autonomous explorers far across the cosmos, deep under the sea and high

into the air. These explorers are often limited, by capabilities and by constraints, which

makes satisfying mission objectives difficult. Challenges are present in all of the compo-

nents of exploration: the mission, the path and the agent, and their link to information.

When we design any of these components of exploration, we must be cognizant of the

trade-offs that exist within them. A priori knowledge with a posteriori knowledge, time

with energy and cost with performance. Little work has been done to recognize these

trade-offs let alone exploit them to ease the exploration problem.

This dissertation was undertaken to identify properties of optimal exploration missions

that recognize and exploit the interactions between the components of exploration. As a

motivating example, the specific case of a solar-powered aircraft flying on Mars is consid-

ered.

Exploration is formulated as an optimal control problem with the steering decisions

of the vehicle serving as the input. Inherent in the problem is the recognition of exist-

ing parallels between communication and exploration. Specifically, an agent may collect

information in a manner similar to that of a communication receiver, but has the addi-

tional benefit of mobility. This mobility allows the agent to choose a path that is optimally
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informative. The full model presented combines kinematics, informatics, estimation and

energetics to form an integrated system from which the properties of exploration can be

distilled.

This work first examines time-optimal exploration paths where the mission objective,

to collect information about objects of interest, is expressed as inequality boundary condi-

tions. Several regimes of flight are identified, including the preference to fly straight while

objects of interest are not visible and to gently turn when they are visible. Heuristics are

presented that take advantage of these properties to improve path planning in the cases of

isolated and clustered objects. Furthermore, a connection is drawn between the General-

ized Traveling Salesman Problem and time-optimal exploration, allowing a large literature

to be leveraged to find time-optimal flight paths.

Time, however, is not the only cost of an optimal exploration mission. Real-world ve-

hicles require energy to travel, and, to emphasize this point, we analyze path planning for a

solar-powered aircraft. Several regimes of flight are identified, each of which has different

energy-optimal path characteristics.

Though individual properties for time-optimal and energy-optimal paths are presented,

we are interested in an exploration mission that requires a combination of the total energy

at the end of the mission and the mission duration to be optimized. Through simulation and

analysis, general properties of path planning for exploration are derived.

Finally, constraints upon the agent are considered within the context of the exploration

problem. Paths are planned for a vehicle with an onboard non-isotropic sensor. A heuristic

algorithm, based upon properties derived from simulation examples, is presented that al-

lows for path planning even in the presence of many objects and uncertainty. This algorithm

is implemented empirically with a single exploration agent.
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8.2 Conclusions

The challenges of exploration are inextricably linked to the interactions of its components,

but these challenges can be mitigated through an understanding of the trade-offs. In this

dissertation, we provide a new, coupled model for exploration systems. By concentrat-

ing on information collection rather than classification, we have decoupled the problem of

exploration from that of detection.

Throughout this work, we have considered several optimal path planning problems. We

have shown that when flying in a time-optimal manner, an aircraft should fly straight when

far from the objects of interest and gently turn when close. The sequence of objects to be

visited can be determined through the use of a GTSP heuristic and a sample is provided.

When using solar-powered aircraft, the Power Ratio, a non-dimensional parameter that

can be computed at design time, is shown to correctly predict the regime of optimal flight.

The Power Ratio is also shown to be important in evaluating the ability of a solar-powered

aircraft to fly perpetually. If the Power Ratio is larger than the so-called Perpetuity Thresh-

old, perpetual flight is possible. Both the Power Ratio and Perpetuity Threshold were

previously undefined.

Most exploration missions require both energy and time to be optimized. We have

found that an exploration vehicle should fly along straight paths no matter what the regime

of flight. In fact, a study of this problem reveals time is a driver for exploration missions

while energy is not.

Extended endurance flight requires a Power Ratio that is greater than one, or that more

energy be collected than lost over the course of the mission. This requirement can be used

to specify the capabilities of the vehicle and its payload. Even with degraded capabilities,

we empirically show an exploration agent successfully completing a mission in an optimal

manner. Specifically we have found properties of flight when using a non-isotropic sensor.
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8.3 Future Work

In this work, we have treated information as a measure of uncertainty in knowledge of

the state and the rate of information collection as a channel capacity. We have also de-

coupled exploration and classification (in this work we considered information collection

rather than classification). Additional work should be completed to develop flight paths

that take the stochastic nature of information into account, for instance, treating the prob-

lem in a Bayesian manner. An understanding must also be provided of the additive nature

of information, most likely through the use of Fisher’s definition.

Furthermore, we assume an object of interest transmits the same information at all

relative azimuths, i.e., each object of interest is an isotropic transmitter. Typically this

assumption does not hold. One method to address this issue is to consider non-isotropic

objects of interest rather than only non-isotropic sensors. In this dissertation, we define a

non-isotropic sensor that has a sensitivity that depends on the location of the object of in-

terest relative to that of the vehicle. Many other types of sensors exist and further analysis

should be completed to examine properties of optimal exploration paths when these sensors

are utilized.

Efforts should continue to develop and analyze solar-powered aircraft. Due to their

short history, their capabilities are only now being realized in the form of several ad-

vanced programs at the government, academic and industry levels. In this dissertation,

we consider solar-powered aircraft in level flight. Further work should continue to exam-

ine solar-powered aircraft capable of non-level flight and accelerated flight. As the Power

Ratio has proven to be useful in determining many capabilities of these vehicles, additional

studies should be undertaken to investigate its relevance (or perhaps that of an equivalent

parameter) in non-level and accelerated flight.

This work is naturally extensible to cooperative exploration systems. Indeed, dis-

tributed explorers can ease the difficulty of exploration. The exploration area may be

divided between cooperative vehicles, or vehicles can collaborate, in which case knowledge
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is shared. However, considerations must be given to the type of multi-vehicle interactions

that occur. These interactions require a deeper understanding of the nature of information

and its relationship to state estimation. For instance, cooperative exploration can be viewed

as a distributed sensing problem within which the sensors choose paths that are informative

in the global sense though perhaps not locally.

Preliminary work shows that the basic properties discovered in this dissertation are

also present in the cooperative exploration case. Thus, further extensions of this work in-

clude empirical studies to expand upon the exploration problem and to identify additional

constraints and components that affect cooperative exploration. It is expected that these

cooperative explorers will be useful for both civilian and military endeavors. Indeed, the

US Air Force is now interested in increasing the uses for unmanned vehicles by 2010 (61)

including usage of multiple heterogenous vehicles. NASA too employs collaborative ex-

ploration techniques in the tasking of its Martian satellites (50) to find areas of interest for

the Mars Exploration Rovers.

Finally, it should be noted that exploration problems are and will continue to be preva-

lent in the foreseeable future. Human existence is characterized by curiosity and explo-

ration missions often provide fundamental results that improve (or dictate) basic scientific

understanding. Here on Earth, many exploration missions still exist in a variety of challeng-

ing environments, but exploration should continue beyond Earth as well. This dissertation

used an example of a solar-powered aircraft exploring Mars. While this mission is not yet

feasible, it requires only human ingenuity and political will to complete. But this is only

one of many places yet to be explored. Asteroids, moons, planets and deep space all lack

even a fundamental understanding of their characteristics. This dissertation has laid some

basic groundwork for enhancing exploration missions. It is hoped that these missions will

occur and that, someday, the agents are no longer autonomous, but that it is humans, who,

once more, explore the unknown.
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Appendix A

Optimal Control

Optimal control problems can take on many forms. The one considered here involves a gen-

eral n-order dynamic system with n-dimensional state x(t) (components xi(t), i = 1, ...,n)

and an m dimensional control function u(t), that for 0 ≤ t ≤ t f , satisfy the conditions

ẋ(t) = f (x(t),u(t)), (A.1)

u(t) ∈ Ω ⊂ ℜm, (A.2)

x(0) = x0,xi(t f ) = xi f , i ∈ I ⊂ {1, ...,n} . (A.3)

Here, Ω is the constraint set for the control function, xo is a specified initial state, and

xi f , i ∈ I are specified values of the terminal state (for i /∈ I the values of xi(t f ) are uncon-

strained or “free”). Subject to conditions (A.1) - (A.3) the objective is to find u(t) such that

a cost

J =
∫ t f

0
C(x(t),u(t))dt, (A.4)

is minimized over a suitable class of u(t) (for example, u(t) is piecewise continuous). The

functions f (x,u) and C(x,u) are smooth (at least continuously differentiable).

Suppose an optimal control u∗(t) exists and x∗(t) is the corresponding solution of (A.1)-
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(A.3) with x∗(t) = x(t) and u∗(t) = u(t). Then the pair (x∗(t),u∗(t)) satisfies a set of

necessary conditions. See, for example, (27) and (80). For optimal control problem (A.1)

- (A.4), the conditions take the form of a two-point boundary value problem (TPBVP) of

order 2n with n conditions at t = 0 and n conditions at t = t f . The conditions are stated

elegantly in terms of a so-called Hamiltonian function:

H(x,u,λ ) = C(x,u)+
n

∑
i=1

λi fi(x,u), (A.5)

x ∈ ℜn,u ∈ ℜm,λ ∈ ℜn (A.6)

Specifically λ ∗(t) exists such that the following conditions are satisfied for 0 ≤ t ≤ t f

and i = 1, ...,n:

ẋ∗o(t) = fi(x
∗(t)u∗(t)λ (t)) =

∂H

∂λ i
(x∗(t),u∗(t),λ (t)), (A.7)

λ̇ ∗
i (t) = −

n

∑
j=1

λ j(t)
∂ f j

∂x j
(x∗(t),u∗(t))− ∂C

∂xi
(x∗(t),u∗(t)) = −∂H

∂xi
(x∗(t),u∗(t),λ (t)),

(A.8)

conditions (A.3) are satisfied, λi(t f ) = 0 for i /∈ I, (A.9)

u∗(t) = argmin
v∈Ω

H(x∗(t),v,λ ∗(t)), (A.10)

if t f is free H(x∗(t f ),u
∗(t f ),λ

∗(t f )) = 0. (A.11)

In summary, the TPBVP consists of the equations of motion (A.7), the costate equations

(A.8), the split boundary conditions (A.9), the minimum principle (A.10) and a special con-

dition (A.11) that applies to the Hamiltonian when t f is free. It is possible in rare situations

that (A.7) - (A.11) are satisfied with C(x,y) deleted.
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When Ω = ℜm the minimum principle implies

∂H

∂u
(x∗(t),u∗(t),λ (t)) = 0, (A.12)

∂ 2H

∂u2
(x∗(t),u∗(t),λ (t) ≥ 0. (A.13)

Here ∂H
∂u

and ∂ 2H
∂u2 are respectively the gradient vector and Hessian matrix of H with respect

to u. Expressions (A.12) can replace (A.10) in the TPBVP, but then the TPBVP is a weaker

set of necessary conditions than (A.7) - (A.11).

118



Appendix B

Discretization Procedure

To obtain numerical approximations of optimal paths, we discretize the optimal control

problem as follows. For a chosen integer n ≥ 1, we subdivide the interval [to, t f ] into n

subintervals [to, t1], [t1, t2], ..., [tn−1, t f ] of equal duration. In each subinterval we assume that

the control input is constant, i.e., (φ(t),V (t)) = (φ j,V j), t ∈ [t j, t j+1], where the parameters

(φ j,V j),0 ≤ j ≤ n−1, are unknown.

We treat the parameters (φ j,V j), 0 ≤ j ≤ n− 1, and t f as inputs to a nonlinear opti-

mization problem. As an initial choice, in all subintervals we choose φ j = 0, V j = VPowermin

and t f = to +TM. Constraints upon this problem are imposed from the boundary conditions

in the optimal control problem. The objective function is the given by the specific prob-

lem formulation. We then numerically solve for optimal flight paths using the MATLAB R©

Optimization Toolbox function fmincon and the ordinary differential equation solver ode45.
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Appendix C

Proofs of Propositions 5.5.1 and 5.5.2

Propositions 5.5.1 and 5.5.2 were inferred from observed characteristics of numerical ap-

proximations of optimal flight paths. We will now prove them through application of the

necessary conditions (5.3)-(5.11), using Experimental Fact 5.4.1.

C.1 Proof of Proposition 5.5.1

We first assume that φ(t) = 0, simplify the necessary conditions and solve for the states

and costates subject to the constraints (5.15)-(5.21). This results in:

φ = 0, (C.1)

V = VEnergymin
, (C.2)

ψ = arctan(
y f − yo

x f − xo

), (C.3)

t f =
x f − xo

cosψV
=

y f − yo

sinψV
, (C.4)

λx = 0, (C.5)

λy = 0, (C.6)

λψ =
V ηsolPsdScos(e)sin(ã−ψ)

g
, (C.7)
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where each of the costates is constant. Here, both V and ψ remain constant at their initial

values. A derivation of (C.1)-(C.7) is provided in Appendix D. The flight duration depends

on the distance to the final destination and the velocity.

It is shown in Appendix D that the flight conditions (C.1)-(C.7) satisfy the second order

condition for optimality. Since φ = 0 yields a path that satisfies the necessary conditions

for optimal flight, we have proven Proposition 1.

C.2 Proof of Proposition 5.5.2

Since ETotal > 0, the optimal path must satisfy Ein −Eout > 0. From Experimental Fact 1,

this yields Pin −Pout > 0. For ETotal large enough, Pin −Pout will be large enough to be the

dominant term in the right hand side of (5.2). Therefore, H > 0 when PR > 1 and large

enough.

From Appendix A we may express the transversality conditions as:

[λ T δx−Hδ t]
t f

to
= 0, (C.8)

or, when focusing on the variation of the final time,

H(t f )δ t f = 0. (C.9)

Since H > 0, δ t f = 0 which implies that the final time is fixed. Therefore t f = to +TM,

which proves the first claim.

We must now examine the velocity of the aircraft when ETotal > 0. Consider an ex-

tremal path that satisfies boundary conditions (5.15)-(5.21) with V > VPowermin
. If this same

path is flown with V = VPowermin
, ETotal will be higher than with V > VPowermin

. Since veloc-

ity is constrained to be greater than or equal to VPowermin
, a maximum ETotal occurs when

V = VPowermin
. Thus V = VPowermin

is optimal and we have proven the second claim and
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Proposition 5.5.2.
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Appendix D

Derivation of Drag Regime First Order

Necessary Conditions

D.1 Satisfaction of the Drag Regime First Order Neces-

sary Conditions

The first order necessary conditions, evaluated at φ = 0, are:

∂H

∂φ
= −ηsolPsdSc cos(e)sin(ã−ψ)+

gλψ

V
= 0, (D.1)

∂H

∂V
= λx cos(ψ)+

8KW 2

ηpropρSV 2
−

3ρSV 2(CDo
+ 4KW 2

ρ2S2V 4 )

2ηprop
+λy sin(ψ) = 0, (D.2)

ẋ =
∂H

∂λx
= V cos(ψ), (D.3)

ẏ =
∂H

∂λy
= V sin(ψ), (D.4)

ψ̇ =
∂H

∂λψ
= 0, (D.5)

λ̇x =
−∂H

∂x
= 0, (D.6)

λ̇y =
−∂H

∂y
= 0, (D.7)

λ̇ψ =
−∂H

∂ψ
= −λyV cosψ +λxV sinψ. (D.8)

123



Since λ̇x, λ̇y, and ψ̇ are all zero, λx, λy and ψ are all constants. Equation (D.2) becomes

a function of constant parameters and V . From this we can see that V must be constant as

well. Similarly, (D.1) is now a function of constant parameters and λψ . Accordingly, λψ

must also be constant, and:

λ̇ψ = −λyV cosψ +λxV sinψ = 0. (D.9)

Now (D.1) yields:

λψ =
ηsolPsdV Scos(e)sin(ã−ψ)

g
. (D.10)

We can now solve for λx and λy using (D.2) and (D.9) as:

λx = −(−4KW 2 +3CDO
ρ2S2V 4)cosψ

2ηpropρSV 2
, (D.11)

λy =
(−4KW 2 +3CDO

ρ2S2V 4)sinψ

2ηpropρSV 2
. (D.12)

which are on average small evaluated with typical aircraft parameters.

Consider a straight and level flight path from point A to point B. If Pin is small, the total

energy during this flight is:

ETotal = Pout∆t, (D.13)

where ∆t is the duration of the flight. Since a destination is given, ∆t can be rewritten as

d/V where d is the distance between point A and point B. Hence the minimum energy

velocity is:

VEnergymin
= 4

√

4KW 2

CDo
ρ2S2 cos2(φ)

= 1.31VPowermin
, (D.14)
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which is also the velocity at which the aircraft is most aerodynamically efficient.

D.2 Satisfaction of the Drag Regime Second Order Con-

dition

The second order condition is:

∂ 2H

∂φ 2
≤ 0, (D.15)

where, if

∂ 2H

∂φ 2
=

[

α β

β γ

]

,

(D.16)

α =
ηpropηsolρPsdS2V (−(cos(φ)sin(e))+ cos(e)sin(ã−ψ)sin(φ))

ηpropρSV

+
−4KW 2 sec(φ)4 +2sec(φ)3(gλψηpropρScos(φ)−4KW 2 sin(φ)) tan(φ)

ηpropρSV
,

β = −gλψ sec(φ)2

V 2
+

4KW 2 sec(φ)2 tan(φ)

ηpropρSV 2
,

γ =
8KW 2 sec(φ)2

ηpropρSV 3
−

3ρSV (CDo
+ 4KW 2 sec(φ)2

ρ2S2V 4 )

ηprop

+
2gλψ tan(φ)

V 3
.

To check that the second order condition is satisfied, we show that the left hand side of

(D.15) is negative definite. This holds by Sylvester’s Criterion, if, and only if, the determi-

nant of the first nested principal minor of (D.16) is negative and the determinant of (D.16)

is positive.

We will begin with the first nested principal minor as

125



ηpropηsolρPsdS2V (−(cos(φ)sin(e))+ cos(e)sin(ã−ψ)sin(φ))

ηpropρSV

+
−4KW 2 sec(φ)4 +2sec(φ)3(gλψηpropρScos(φ)−4KW 2 sin(φ)) tan(φ)

ηpropρSV
. (D.17)

By simplifying and assuming φ = 0 according to Proposition 1, we obtain,

−4KW 2 −ηpropηsolρPsdS2V sin(e), (D.18)

which is always negative, and the first criterion is satisfied.

We must next examine the determinant of (D.16) which, if φ = 0, reduces to

(−g2λψη2
propρ2S2 +16K2W 4 +12CDo

Kρ2S2V 4W 2 +3CDo
ηpropηsolρ

2PsdS4V 5 sin(e)

+4KηpropηsolρPsdS2VW 2 sin(e))/V 4. (D.19)

In (D.19), we substitute expression (D.10) for λψ to obtain

(A+D)(3C +D)−B2, (D.20)

where

A = V PsdρS2ηpropηsol sin(e), (D.21)

B = V PsdρS2ηpropηsol cos(e)sin(ã−ψ), (D.22)

C = CDo
ρ2S2V 4, (D.23)

D = 4KW 2. (D.24)

If Psd is small enough, then expression (D.20) is positive, which completes the proof.
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Appendix E

Energy-Optimal Flight Paths with Free

Destination

The purpose of this section is to show that φ = 0 yields paths that are extremal (i.e., sat-

isfy the first and second order conditions for optimality) with respect to the problem of

energy-optimal flight with free destination.

If φ = 0, the state equations become:

ẋ =
∂H

∂λx
= V cos(ψ), (E.1)

ẏ =
∂H

∂λy

= V sin(ψ), (E.2)

ψ̇ =
∂H

∂λψ
= 0, (E.3)

showing that the heading is constant.

The first two costate equations are:

λ̇x =
−∂H

∂x
= 0, (E.4)

λ̇y =
−∂H

∂y
= 0, (E.5)

which, combined with the boundary conditions (5.15)-(5.21) show that λx = λy ≡ 0. This
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simplifies the last costate equation as:

λ̇ψ =
−∂H

∂ψ
= 0, (E.6)

which, combined with the boundary conditions (5.15)-(5.21) shows that λφ ≡ 0.

After the above simplifications, (5.9) reduces to:

∂H

∂φ
= −ηsolPsdSc cos(e)sin(ã−ψ) = 0, (E.7)

which is satisfied by letting ψ = a, i.e., by letting the aircraft head in the direction of the

star.

Similarly, (5.10) reduces to:

∂H

∂V
=

8KW 2

ηpropρSV 2
−

3ρSV 2(CDo
+ 4KW 2

ρ2S2V 4 )

2ηprop
= 0. (E.8)

which is only satisfied if V = VPowermin
.

The second order condition reduces to:

∂ 2H

∂ (φ ,V )2
≤ 0, (E.9)

where, if

∂ 2H

∂ (φ ,V )2
=

[

Hφφ HφV

HφV HVV

]

, (E.10)

(E.11)
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Hφφ =
ηpropηsolρPsdS2V (−sin(e))

ηpropρSV
+

−4KW 2

ηpropρSV
, (E.12)

HφV = 0, (E.13)

HVV =
8KW 2

ηpropρSV 3
−

3ρSV (CDo
+ 4KW 2

ρ2S2V 4 )

ηprop
. (E.14)

(E.15)

It is easily checked that choosing φ = 0 and V = VPowermin
yields Hφφ < 0 and

Hφφ HVV > 0, implying that the second order condition is satisfied.

In summary, choosing φ = 0, ψ = a and V = VPowermin
yields a path that satisfies the

first and second order conditions for optimality for the problem of energy-optimal flight

with free destination.
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Appendix F

Aircraft Model Parameters

F.1 The Metis Aircraft

The aircraft model used in all simulations and numerical results in this paper were devel-

oped by the University of Michigan SolarBubbles Team (70), (24), and (29). Aerodynamic

coefficients were evaluated through the use of Athena Vortex Lattice and Fluent and verified

experimentally through full size wind tunnel testing(24).

The flying wing aircraft, pictured in Figure F.1, has the characteristics listed in Table

F.1.

Table F.1 Aircraft Model Parameters

Wing Area S 0.1566 m2

Mass m 1.2 kg

Wingspan b 0.711 m

Oswald Efficiency Factor ε 0.992

Parasitic Drag CDo
0.011

Propeller Efficiency ηprop 0.7

Air Density ρ 1.29 kg/m3

F.2 The Hui Aircraft

The glider aircraft, pictured in Figure F.2, Hui, has the characteristics listed in Table F.2.
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Figure F.1 Wind Tunnel Aircraft Model

Table F.2 Hui Model Parameters

Wing Area S 1.25 m2 Ref. (24)

Mass m 1.95 kg Ref. (24)

Wingspan b 3.01 m Ref. (24)

Oswald Eff. Factor ε 0.9139 Ref. (24)

Parasitic Drag CDo
0.0065 Ref. (24)

Propeller Eff. ηprop 0.7 (est)

F.3 The Gossamer Penguin

The Gossamer Penguin was developed by AeroVironment in 1979 as a manned solar-

powered aircraft. Approximate aerodynamic coefficients as found in Refs (85) and (105)

are listed in Table F.3 and the aircraft is pictured in Figure F.3.
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Figure F.2 The Huitzilopochtli Aircraft

Table F.3 Gossamer Penguin Model Parameters

Wing Area S 30.85 m2 Ref. (85)

Mass m 67.13 kg Ref. (105)

Wingspan b 21.6 m Ref. (105)

Oswald Eff. Factor ε 0.94 (est)

Parasitic Drag CDo
0.01 (est)

Propeller Eff. ηprop 0.7 (est)
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Figure F.3 The Gossamer Penguin
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Appendix G

Aircraft Design with the Power Ratio

As proven previously, the Power Ratio provides a metric for evaluating the regime of op-

timal flight for a solar-powered aircraft as well as its ability to maintain perpetual flight.

Here we evaluate how characteristics of the aircraft and the environment affect the Power

Ratio. To maintain perpetual flight, the value of the Power Ratio must exceed the inverse of

the daylight duty cycle. Hence, requirements on the Power Ratio drive vehicle mass (as is

shown in the derivation to follow). This mass constraint influences the computational and

payload capacity of the aircraft.

G.1 Comparatison of the Power Ratios on Earth and

Mars

The Power Ratio, (5.23), can be rewritten as

PR =
[

0.402Psdηsol sin(e)
√

ρg
2
3

]





4

√

η4
propb6ε3π3S3

CDo
m6



 , (G.1)

highlighting the separate roles of environmental and aircraft parameters, respectively. Fur-

thermore, if a constant loading and thickness are assumed across the wing planform, we

can set m = ρwS where ρw is the mass per unit area of the wing using AR = b2/S. This
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simplifies (G.1) as

PR =
[

0.402Psdηsol sin(e)
√

ρg
2
3

]





4

√

η4
propε3π3AR3

CDo
ρ6

w



 , (G.2)

which indicates that to increase the Power Ratio, a low wing density and high aspect ratio

should be used. To-date, all successful solar-powered aircraft have low wing density and

high aspect ratio (18). The second term in the right hand side of (G.2) elucidates why this

is so.

To compare the power ratios of a given aircraft on Earth and Mars, rewrite (G.2) as

PR = 0.402ηsol sin(e)
4

√

η4
propε3π3AR3

ρ6
w

(

Psd
√

ρ

g
3
2 4
√

CDo

)

, (G.3)

where Psd , ρ , g and CDo
are all determined by the planet. Note that CDo

depends on the

Reynolds number of the aircraft, which itself depends upon viscosity and atmospheric den-

sity. The contributions of Psd , ρ , g and CDo
to the Power Ratio (G.3) are summarized in the

term

Psd
√

ρ

g
3
2 4
√

CDo

, (G.4)

whose values on Earth and Mars can be compared. Table G.1 compares the constant envi-

ronmental parameters, Psd , ρ and g, on Earth and Mars.

Table G.1 Environmental Parameters on Earth and Mars

Earth Mars

Psd 1,353 589 W/m2

g 9.86 3.71 m/sec2

ρ 1.29 0.015 kg/m3

Psd
√

ρ

g
3
2

49.63 10.10 ( kg

m3 )
3
2

Note that the quantity
Psd

√
ρ

g
3
2

is 4.9 times larger on Earth than on Mars. Reference (94)

also compares solar-powered flight on Earth and Mars and reaches a similar conclusion, but
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without accounting for parasitic drag. We must indeed consider CDo
in (G.4). Since CDo

depends upon velocity, atmospheric density and viscosity, a comparison of its values on

Earth and Mars is not straightforward. Figure G.1 illustrates this comparison over a range

of speeds. Note that CDo
is always smaller for Earth than for Mars.
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Figure G.1 Comparison of CDo
on Earth and on Mars

With Figure G.1 we can compute the Pout as a function of velocity for both Earth and

Mars as in Figure G.2.

Combining the results of Table G.1 and Figure G.1 leads to the following conclusion:

The Power Ratio of an aircraft on Earth is always at least 4.9 times larger than the Power

Ratio of the same aircraft on Mars.
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G.2 Comparison of Requirements for Perpetual Endurance

on Earth and Mars

The results of these sections allow us to make the following general statement:

For a given latitude and time of year, it is always easier to design an aircraft to fly

perpetually on Earth than on Mars.

Several items contribute to this statement:

• The Perpetuity Thresholds for a given date and latitude are almost identical on both

planets (see Section 5.6.2)

•• The contribution of environmental parameters in the Power Ratio is always at least

4.9 times larger on Earth than on Mars.
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G.3 Comparison of Solar Powered Aircraft

The University of Michigan SolarBubbles Student Team has been designing, building and

testing an aircraft for solar-powered flight. It is named Huitzilopochtli, or Hui for short,

after the sun god of the Aztecs, and is a glider-based aircraft used for engineering educa-

tion and as an autonomous vehicle test platform. Details of this aircraft can be found in

Appendix F. Its primary area of flight is near Ann Arbor, Michigan, at a latitude of 42.22N

deg and longitude of -83.75W deg. We assume an arbitrary flight date of August 6th.

Table G.2 Perpetuity Parameters

Mean Anomaly Ωt 136 deg

Duration of Solar Day tsd 24 hours

Duration of Daylight ts − tr 14.2 hours

Perpetuity Threshold PT 1.7

Average Elevation ē 45.95 deg

From the analysis in Section G, the Power Ratio of Hui on Earth is 8.86. Since this

Power Ratio exceeds the Perpetuity Threshold in Table G.2, Hui is capable of perpetual en-

durance on Earth. Moreover, the Power Ratio of Hui on Mars is 1.8. Since the Perpetuity

Thresholds on Earth and Mars are very similar, we conclude that the Hui would also be

capable of perpetual endurance on Mars.

The Gossamer Penguin was the first manned, solar-powered aircraft. Built in 1979, and

based upon the Pathfinder solar panel, this aircraft was flown several times across the Mo-

jave desert. The design parameters and assumptions about this aircraft are shown in (69). If

we again compare the Power Ratio of this aircraft between Earth and Mars we find that it is

1.03 on Earth while only 0.21 on Mars. Hence, the Gossamer is capable of solar-powered

flight on Earth but would not have that capability on Mars.

The above examples illustrate that some solar-powered aircraft are quite capable of

perpetual endurance on both Earth and Mars, but others can only fly solar-powered on

Earth.
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G.4 Earth’s Atmosphere

The Power Ratio has a strong dependence upon the environment, which can influence the

capability of an aircraft to maintain extended solar-powered flight. In this section we ex-

amine the affect of altitude on the Power Ratio.

An overview of atmospheric physics can be found in Ref. (47) and Appendix H. As

an illustrative example, consider Earth’s atmosphere. By taking all the altitude-dependent

environmental parameters into account, the total power collected by Hui in perpetual flight

is shown in Figure G.3.
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Figure G.3 The total power for Hui at altitude.
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The so-called Solar Ceiling is the maximum altitude at which solar-powered aircraft

can fly. There is also an optimal altitude for the aircraft to fly. These locations cannot be

computed analytically but can be found numerically as in (G.3).
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Appendix H

Earth’s Atmosphere

The atmosphere on Earth can be divided into several layers based on temperature. These

layers are the Troposphere, Stratosphere, Mesosphere, and Thermosphere. While other

layers exist above an altitude of 640km, we do not consider them in this dissertation. The

vertical pressure distribution can be found from the barametric equation:
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Figure H.1 Atmospheric Temperature at Altitude

p(h) = poe
M

RmT (h) , (H.1)

where p(h) is the pressure at altitude h, po is the pressure at sea level, M is the molar mass

of Earth’s air, Rm is the molar universal gas constant and T (h) is the temperature at altitude
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h. Pressure as a function of altitude is shown in Figure H.2.
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Figure H.2 Atmospheric Pressure as a function of Altitude

The density of the atmosphere is very important to any aircraft. Before flight, airline

pilots must look at the density altitude, or the equivalent altitude based on the current den-

sity of the location. Density is directly dependent on temperature and pressure through the

ideal gas law shown in (H.2). As temperature increases, density decreases. This is why in

many tropical countries, many international airlines take off at night (when it is cooler and

thus denser) to save fuel.

ρ =
p

RT
, (H.2)

where R is the universal gas constant. The change of density with altitude is shown in

Figure H.3.

CDo
depends on the Reynolds number and velocity of the flight. The Reynolds number

depends on the density of the fluid as well as its viscosity. Viscosity changes with altitude,

shown in Figure H.4, roughly as
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Figure H.3 Atmospheric Density at Altitude

µ = 1.458e−6

√

T (h)

(1+110.4/T (h)
. (H.3)
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Figure H.4 Atmospheric Viscosity at Altitude

At VPowermin
, CDo

for the Hui aircraft is shown in Figure H.5.

Gravitational pull also fades with altitude according to the equation

g(h) = go(1−2h/RE), (H.4)
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Figure H.5 Parasitic Drag at Altitude

where g(h) is the gravitational acceleration as a function of altitude, go is gravitational pull

at seal level, and RE is the mean radius of the Earth at sea level. The decrease of gravity as

a function of altitude is shown in Figure H.6.
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Figure H.6 Gravitational Acceleration at Altitude

The power spectral density of starlight increases with altitude. Though no definitive

study has been completed (since solar-flight is a rarity), here we assume a proportional re-

lationship between Psd and air density. Psd also depends on the location on Earth and the

amount of cloud cover in the area. Typically, most cloud cover occurs below high altitude

aircraft. If cloud cover is present, it can be accounted for through ηsol , the efficiency of the

solar cells.
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