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Chapter 1

Introduction

This dissertation represents innovative work in the field of decision making with un-

certainty. The intention of this work is to provide novel managerial insights to decision

making problems that confront many firms.

In the first part of this work, a firm with two servers faces the decision-making

problem of how to route arriving customers to two separate queues. Additionally,

the firm has the ability to dynamically assign its two servers to whichever queue it

sees fit. The servers may work together or separately, and we provide insights into

how the firm should optimally route customers and assign servers to queues. The

systems we analyze are subject to random customer arrivals and service times with

the uncertainty in these systems being drawn from these two areas.

In the second part of this work, the firm seeks to optimize a pricing decision for

an innovative product. Since the product is new, the firm has limited information

on the willingness of customers to pay for the item. To learn the true demand for

the product, the firm holds a series of auctions to elicit consumers’ valuations. The

primary decision making problem the firm faces is when to stop holding auctions,

where a limited number of units can be sold, and turn to a traditional fixed-price

sales campaign, where a large number of units can be sold. We solve a stopping time

problem for the firm, where the data input to the firm is updated consumer valuation

data received from the latest auction. In this problem, the uncertainty lies in the

consumer’s willingness to pay. The firm knows the variability in its willingness to pay
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forecast and it ultimately seeks to improve the quality of the forecast and the pricing

decision made from that forecast.

Our final contribution is the proposal of a new auction mechanism which will

theoretically induce auction participants to reveal their valuations for a product under

the assumption that the product will be available at a date in the near future for

an unknown fixed price. We refer to this mechanism as a second-price auction with

rebate. Additionally, we find symmetric equilibrium bidding strategies for three other

mechanisms, which can be used to reverse engineer auction bid data into willingness

to pay or demand curve information.
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Chapter 2

Server Allocation and Customer Routing Policies for Two Parallel

Queues when Service Rates are not Additive

2.1 Introduction

Consider a system of two parallel queues where customers arrive to each queue at

random times. There are two servers which may be allocated to either of the queues.

We assume Poisson arrivals and exponential service times. The firm has the choice of

instantaneously moving the servers at no cost and/or routing an arriving customer to

the other queue at some cost. The firm accepts all arrivals (i.e., rejecting customers

from both queues is not allowed). We seek to characterize optimal server allocation

and customer routing policies for this system.

One characteristic that distinguishes this model from previous work is that when

the two servers work together at the same queue, we allow for service rates which

are either superadditive or subadditive. In the case of superadditive service rates, we

show that the firm allocates both servers to the higher cost queue and only services

the lower cost queue when the higher cost queue is empty. We also show that the firm

will route customers from the higher cost queue to the lower cost queue according to

a monotonic switching curve policy. Additionally, we show that the firm will never

route a customer from the lower cost queue to the higher cost queue.

In the case of subadditive service rates, we present examples that show the com-

plexity of the optimal policy. We then prove the structure of the optimal routing
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policy for the case of symmetric arrival rates, service rates, and holding costs. We

show that the optimal routing policy follows a switching curve, where if we route

from queue 1 to queue 2 in one state, then we will also route from queue 1 to queue

2 if: (a) there is one more in line at queue 1 or (b) there is one more in line at queue

1 and one fewer in line at queue 2.

Routing Literature. Early analytical work in the area of routing to parallel queues

includes Haight (1958), where the asymptotic state probabilities are found in the

case of arrivals joining the shortest queue. Kingman (1961) finds the waiting time

distribution for the system of symmetric queues where arrivals are routed to the

shortest queue. Knessl et al. (1986) find approximations to the number of customers

at the two queues when the service rates are heterogeneous. A more in-depth analysis

of the properties of these systems can be found in Adan et al. (1991). Adan et al.

(2001) provides a survey of analytical solution methods for queueing systems of this

type.

Optimal customer routing policies have been studied extensively. Winston (1977c)

and Weber (1978) seek to to maximize the number of customers served within a finite

period of time. Winston (1977c) proves that routing customers to the shortest line

is optimal when arrivals follow a Poisson process and servers are identical and expo-

nential. For the case for general arrivals and identical servers, where the service time

distributions have non-decreasing hazard rates, Weber (1978) extends these results

to route customers to the queue with the shortest expected wait prior to entering

service. Others to show that routing to the shortest queue is optimal include Hordijk

and Koole (1990), Menich and Serfozo (1991), Sparaggis et al. (1996), and Koole

et al. (1999). Whitt (1986) provides counterexamples to show that joining the short-

est queue is not always optimal when the service time distributions are not increasing

failure rate.

In Hordijk and Koole (1990), a generalized shortest queue routing policy is shown

4



to be optimal. In their model, a general arrival process occurs, which may include

batch arrivals. Upon arrival, the job must be routed to one of m parallel queues.

There is a single exponential server at each queue. The servers are homogenous in

that they have identical mean service times. They provide two models with the goal

of maximizing the number of customers served in a finite time. In the first model,

each server has a finite buffer size, but the customers arrive one at a time. They show

that the value function is increasing and componentwise symmetric. Additionally,

they show that the value function will increase more by increasing the number in line

at a shorter queue than by increasing the number in line at a longer queue. Using

these properties, they are able to show that it is always better to route customers to

the shortest queue. In the second model, they assume infinite buffers, but customers

arrive in batches which must be assigned to the same queue. The size of the batch is

not known until after it is assigned to a queue. Similar properties are used to show

that routing to the shortest to queue is optimal.

Ephremides et al. (1980) also show that routing to the shortest queue is optimal

if the controller has full information on the state of the system. If the controller has

limited information, Ephremides et al. show that a round robin policy is optimal.

They also show that both the optimal policy and round robin policies are superior

to Bernoulli splitting (i.e., randomly assigning arrivals to a queue). While we know

Bernoulli splitting to be suboptimal, Koole (1996) proves that if the servers are ho-

mogeneous, then splitting equally between them is the best splitting policy. For early

work on deterministic and non-deterministic splitting, see Chow and Kohler (1979).

Xu and Zhao (1996) study the problem of two parallel queues with a single Poisson

arrival stream. Upon arrival, the customer is routed (at no cost) to one of the two

queues. Customers may be transferred amongst queues at a positive cost. Holding

costs and service rates may be heterogeneous in their model. Xu and Zhao prove

a switching curve structure for when it is optimal to route and jockey customers.
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They also prove that it is not optimal for jockeying of a customer from a low cost

queue to a high cost queue unless the high cost queue is empty. Other papers which

find switching curve policies for routing in parallel queues with no routing costs

include Larsen and Agrawala (1983), Lin and Kumar (1984), Viniotis and Ephremides

(1988), Xu et al. (1992), and Hordijk and Koole (1992). In Koyanagi and Kawai

(1995), the optimal routing policy for the routing problem is also found to follow

a switching curve structure when there is a positive routing cost. When there are

multiple heterogeneous servers, Derman et al. (1980) find that it is optimal to assign

arriving customers to the fastest open server available. They assume that customers

which arrive when all servers are busy are lost. This result is also reinforced in the case

of heavy traffic in Armony (2005). In the case of heterogeneous parallel servers and

multiple customer types, Winston (1977b) and Winston (1977a) show that customers

with longer expected service times should be routed to faster servers.

As a generalization of Hordijk and Koole (1990), optimal routing policies to m

parallel queues with a single exponential server at each queue is studied in Hordijk and

Koole (1992). In the more recent paper, Hordijk and Koole allow for the exponential

servers to have different mean service times. They prove that the customers should

be routed to a faster server when that server has a shorter queue. This only partially

characterizes the optimal policy. That is, they are able to say which queue a customer

should be routed to only if the fastest queue already has fewest customers upon the

new arrival. If the fastest queue has more customers waiting, no structure is given.

The method of proof, using the dynamic programming approach with value iteration,

is the same technique that we use in this study.

More recently, analysis of routing in systems with parallel servers has turned to

performance measures in heavy traffic. See Laws (1992), Harrison (1998), Harrison

and López (1999), Bell and Williams (2001), Armony (2005), Down and Wu (2006),

He and Down (2008), and Wu and Down (2008) for relevant work in this area. Our
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interest in heavy traffic is limited to the numerical study where we show that un-

der heavy traffic the relative value of routing is much more important than server

flexibility when service rates for pooled servers are subadditive.

Hariharan et al. (1990) considers the optimal routing and admission control poli-

cies for two parallel queues with an infinite number of identical exponential servers

working at each queue. Similar to our model, they allow for asymmetric customer

holding costs. However, they assume that the service rate at each queue is a linear

combination of the service rates of the servers working at the queue. The routing

and admission policies are shown to follow a switching curve. Xu (1994) also studies

the admission and scheduling of arrivals at nonidentical servers with the intention of

approximating the optimal thresholds. For surveys of the literature on the control of

admission, routing, and server allocation in parallel queues see Crabill et al. (1977),

Stidham and Weber (1993), and Kelly and Laws (1993).

While we do not consider the admission control problem, the routing monotonicity

results in all of the above papers are analogous to the routing threshold policy that

we present for the case of superadditive service rates (Theorem 1). We provide an

example for subadditive service rates which does not follow this monotonic routing

threshold policy. In the symmetric subadditive case, we are able to prove the structure

of the routing policy, which is not necessarily monotonic.

Server Allocation Literature. The literature on choosing optimal service rates

is also vast. Bell (1980) proves the optimal structure for the number of servers to

utilize in an M/M/c queueing system based on the state of the system. Sobel (1982)

provides conditions under which full service policies are optimal. Weber and Stidham

(1987) proves the optimality of service rate policies which are monotonic, while a

unified approach towards proving the structure of the optimal service rate policy is

presented in Stidham and Weber (1989). In these papers, there is a cost for servers

which increases as service rates are increased.
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Smith and Whitt (1981) and Calabrese (1992) prove that pooling of queues results

in more efficient queueing systems. Their results are consistent with our findings for

additive and superadditive service rates when servers are pooled. Since we always

pool our servers in the superadditive case, our model is similar to a polling system

(see Browne and Yechiali 1989 or Liu et al. 1992) with the exception that we allow

for routing of customers. Rajan and Agrawal (1996) provides a way to improve the

performance of a polling system where customers are routed to different queues which

will be attended to by a single server.

In our paper, the use of flexible servers overlaps with the literature on the use of

flexible servers in multiclass queues. Since we allow for server pooling and costless

server switching, our model is similar to the service of multiclass queues, with the

caveat that we also allow for customer routing. In Harrison (1975b) and Harrison

(1975a), optimal service polices and expressions for the profit are found for priority

queues with Poisson arrivals with arbitrary service distributions.

In Buyukkoc et al. (1985), the optimality of the cµ rule is established for discrete-

time queueing systems where preemption of service is allowed and the service time

distribution is geometric. The rule says that when there are N queues with holding

costs ci, i = 1, . . . , N , which are served by a single server with geometric service times

with mean 1/µi, it is optimal to serve the queues with the highest value of ciµi first.

The proof of the rule follows from a simple interchange argument.

The allocation of flexible servers has received more attention in recent literature.

Green (1985) approximates the waiting time distribution for a system of parallel,

heterogeneous servers with customers of two classes. One set of servers can only

serve one customer type while the other set of servers is flexible and can serve both

customer types. Ahn et al. (2004) analyzes the problem of how to allocate a flexible

server between two parallel queues in order to clear the system at the lowest possible

cost, where the cost is a linear holding cost per unit time for each job in the system.
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There are two types of jobs and two types of servers. The first server can only work on

jobs in his queue. The second server can work on both types of jobs, but at different

rates. They present conditions under which three different policies are optimal when

there are no arrivals and then show via a numerical study that these policies are

near optimal under light or moderate traffic. Andradóttir et al. (2003) prove that

generalized round-robin policies will perform well in systems with flexible servers and

non-zero switching times for servers to change which queue they serve.

Much of the research on flexible servers is in the area of serial, or tandem, queues.

Ahn et al. (1999) consider a tandem queueing system in which the servers may be

moved instantaneously between the queues. The goal is to minimize the cost to clear

the system, assuming no new arrivals. In their model, the service rates are additive,

but depend on which queue is being serviced. They show that, dependent upon the

holding costs and service rates, it is optimal to completely clear one of the queues

before beginning service on the other. This result is consistent with our result for

additive service rates in §3. Andradottir et al. (2001) treat a similar model, but

produce a different result. They model a two server, two station tandem queueing

network with Poisson arrivals and exponential service times, but have the objective of

maximizing the long-run average throughput, as opposed to minimizing holding costs.

They show that it is optimal to allocate one server to each queue unless the first queue

is blocked or the second queue is starved. This result is similar to the server allocation

policy presented in the symmetric case of subadditive service rates presented in §4.

Iravani et al. (1997) and Duenyas et al. (1998) consider the use of a single flexible

server in tandem queueing system and the optimal policies therein. Farrar (1993)

and Wu et al. (2006) prove optimal server assignment policies for tandem queueing

systems with dedicated resources at each queue and a floating server which can work

at either queue.

Analysis of flexible servers in parallel systems has received much less attention in
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the literature. Duenyas and Van Oyen (1995) treat the problem of parallel queues

which are serviced by a single server. Each queue is has a different holding cost

and the server may dynamically be assigned to any queue upon the completion of

a job. Similar to our model, they also assume that the server may instantaneously

move between queues. However, unlike our model, they do assign a cost for switching

the server between queues but do not allow for routing of customers from one queue

to another. They partially describe the optimal server allocation policy. Under the

assumption of linear holding costs, ci, they prove that it is optimal to serve the queue

with the highest value of ciµi until that queue is empty, although they do not suggest

what the server should after that queue has been depleted. Our structural results in

§3 are similar to Duenyas and Van Oyen’s in that we prove that both of our servers

work together at the higher cost queue until it is empty. Hofri and Ross (1987)

consider parallel queues with a single server, but they also assume a setup time when

the server switches between queues. They reason that the optimal server allocation

policy must be of a threshold type.

Our model is most similar to a variation contained in Hajek (1984). Hajek’s

model has two Poisson arrival streams to two queues. A third Poisson arrival stream

may be routed dynamically to either queue. There is no cost to routing an arrival,

but the system pays a linear holding cost per unit time for each customer in queue.

The holding cost coefficients in the model may be heterogeneous. There are two

heterogeneous, exponential servers, one at each queue. A third exponential server may

be allocated dynamically to either queue. The optimal routing and server allocation

policies are shown to follow a threshold structure. One of the main differences between

Hajek’s model and the one presented here is that we allow for non-linearity in the

service rates when two servers are combined. Additionally, we allow for the servers

to be switched between the queues, as opposed to allowing a floating server.

Our Contribution. While most previous work has addressed either customer rout-
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Figure 2.1: a3 = 0: Allocate server 1 to queue 1, server 2 to queue 2. a3 = 1:
Allocate server 2 to queue 1, server 1 to queue 2. a3 = 2: Allocate both servers to
queue 1. a3 = 3: Allocate both servers to queue 2.

ing or server allocation policies, our study addresses both. To our knowledge, this is

the first paper to address both issues simultaneously in the case where worker pool-

ing rates are not additive. Furthermore, we present a numerical study which provides

insights into when each option (customer routing or flexible server allocation) is more

beneficial.

The remainder of the paper is organized as follows. Section 2 describes the general

model. Section 3 provides results for the case when the servers work together at a

rate equal to or greater than additive. Section 4 provides structural properties of

the optimal policies for the symmetric case when the servers work together at a rate

less than additive. A numerical study is presented in Section 5. Lengthy proofs are

contained in the Appendix.

2.2 General Model

A firm operates two service facilities (see Figure 2.1) where customers arrive at queue

i, i ∈ {1, 2}, according to a homogeneous Poisson process with rate λi. Upon arrival

to the queue, the firm can accept the customer at the originating queue or route the

11



customer to the other queue for a one-time fixed payment of r. Customers can only

be routed to an alternate queue upon first arrival. Routing from one queue to the

other is instantaneous. The state of the system at time t is s(t) = (n1(t), n2(t)) ∈ S,

where n1(t) and n2(t) are the number of customers in queues 1 and 2, respectively.

We limit n1(t) and n2(t) to the set of nonnegative integers.

Denote by a = (a1, a2, a3) ∈ A the action that a firm takes at any point in time.

Let ai represent the action taken when a new customer arrives at queue i, i = 1, 2. We

set ai = 0 when the customer remains at queue i, and set ai = 1 when the customer

will be routed to the other queue. Let a3 ∈ {0, 1, 2, 3} represent the server allocation

policy where a3 = 0: allocate server 1 to queue 1 and server 2 to queue 2; a3 = 1:

allocate server 1 to queue 2 and server 2 to queue 1; a3 = 2: allocate both servers to

queue 1; a3 = 3: allocate both servers to queue 2.

The firm has two servers available to work at the two queues. It has the option

to allocate any server to any queue. We assume that moving a server is costless and

instantaneous. When working at separate queues, the servers complete jobs according

to an exponential distribution with rates µ1 and µ2 for servers 1 and 2, respectively,

independent of which queue they are serving. That is, server 1, when working alone,

works at rate µ1 at either queue 1 or queue 2. When both servers work at the same

queue, the combined service rate is µc. Let µ(s, a3) be the rate that the system is

processing customers. That is, µ(s, a3) = µ1 + µ2 if the servers are separated and

µ(s, a3) = µc if the servers are pooled together.

Let Y = {Y (t) : t ≤ ∞} be a controlled Markov process such that Y (t) = Yn

for Tn ≤ t < Tn+1 where Tn is the time of the nth jump of Y . The continuous-time

controlled Markov process is defined by Y = (S,A, c, λ, p, α), where S is the state

space, A is the action space, c is the cost structure, λ is the space representing the

exponential transition rates, p is the space representing the transition probabilities,

and α ≥ 0 is the discount rate.
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The firm pays a holding cost of h(n1, n2) per unit time when there are n1 customers

waiting in queue 1 and n2 customers waiting in queue 2. For a given state, s(t), the

firm chooses the actions of where to allocate servers and whether or not to route new

arrivals. Let π be a deterministic Markov stationary policy and let Π be the set of all

such policies. The cost during one transition takes the form of the following reward

function:

c(s, a) = Eπ
T1

[∫ T1

0

e−αth(s)dt+ e−αT1(ρ1(s, a1) + ρ2(s, a2))

]
.

The expectation is over T1, the sojourn time in state s given policy π is followed.

The first term inside the expectation is the discounted value of the holding cost as it

is continuously accrued until the next state transition. The second term reflects the

lump sum cost which is spent upon an arrival to either queue. The cost functions,

ρi(s, ai), are equal to the probability that the next state transition is an arrival at

queue i times ri if the action is to route the customer to the other queue (ai = 1),

and zero otherwise (ai = 0).

ρi(s, ai) =
λi

λ1 + λ2 + µ(s, a3)
· ri · 1{ai=1}, i = 1, 2

Note that the transition rate out of state s when action, a3, is taken is λ1+λ2+µ(s, a3).

Using the optimal policy over Π, define v(s) as the expected total discounted cost-to-

go function for initial state s at time 0:

v(s) = min
π∈Π

Eπ

[ ∞∑
n=0

e−αTnc(Yn, an)|Y0 = s

]
(2.2.1)

Using uniformization (Lippman 1975, Serfozo 1979), the continuous-time con-

trolled Markov process, Y = (S,A, c, λ, p, α), can be transformed into an equivalent

discrete-time Markov decision process, X = (S,A, c′, p′,Λ/(α+Λ)). First, we redefine
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the transition rates in such a way that the infinitesimal generator of Y is the same

as for a controlled Markov process, Y ′ = (S,A, c′, λ′, p′, α), with a constant (uniform)

sojourn parameter, Λ, where Λ = λ1 + λ2 + max[µc, µ1 + µ2]. Now, define the reward

function for Y ′ as

c′(s, a) = c(s, a)
α + λ1 + λ2 + µ(s, a3)

α + Λ
(2.2.2)

and the transition probabilities as

p′(i, a, j) =

⎧⎪⎨⎪⎩ 1 − (λ1 + λ2 + µ(i, a3))(1 − p(i, a, i))/Λ if i = j

(λ1 + λ2 + µ(i, a3))p(i, a, j)/Λ if i �= j.
(2.2.3)

From Serfozo (1979), we know that the infinitesimal generators of Y and Y ′ are equal

which implies that the two are equivalent decision processes. The process, X, can be

derived by taking the expectation of Y ′. Thus, X, Y ′, and Y are equivalent decision

processes. We present the discrete-time formulation of X below.

v(n1, n2) =
1

α+ Λ

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

h(n1, n2) + λ1 min[v(n1 + 1, n2), v(n1, n2 + 1) + r]

+λ2 min[v(n1 + 1, n2) + r, v(n1, n2 + 1)]

+ min

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

µ1v((n1 − 1)+, n2) + µ2v(n1, (n2 − 1)+)

+(Λ − λ1 − λ2 − µ1 − µ2)v(n1, n2),

µ2v((n1 − 1)+, n2) + µ1v(n1, (n2 − 1)+)

+(Λ − λ1 − λ2 − µ1 − µ2)v(n1, n2),

µcv((n1 − 1)+, n2) + (Λ − λ1 − λ2 − µc)v(n1, n2),

µcv(n1, (n2 − 1)+) + (Λ − λ1 − λ2 − µc)v(n1, n2)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
The last term is the minimum of four expressions. The first is to have server 1 at

queue 1 and server 2 at queue 2. The second is to have server 2 at queue 1 and server

1 at queue 2. The third is have both servers at queue 1. The fourth is to have both

servers at queue 2. Without loss of generality we can set α + Λ = 1 by scaling our
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time and constants appropriately. We can rewrite the above equation as

v(n1, n2) = h(n1, n2) + λ1 min[v(n1 + 1, n2), v(n1, n2 + 1) + r]

+λ2 min[v(n1 + 1, n2) + r, v(n1, n2 + 1)] (2.2.4)

+ min

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

µ1v((n1 − 1)+, n2) + µ2v(n1, (n2 − 1)+)

+(Λ − λ1 − λ2 − µ1 − µ2)v(n1, n2),

µ2v((n1 − 1)+, n2) + µ1v(n1, (n2 − 1)+)

+(Λ − λ1 − λ2 − µ1 − µ2)v(n1, n2),

µcv((n1 − 1)+, n2) + (Λ − λ1 − λ2 − µc)v(n1, n2),

µcv(n1, (n2 − 1)+) + (Λ − λ1 − λ2 − µc)v(n1, n2)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

We next show the intuitive result that the value function is increasing in both state

variables.

Lemma 1. If h(n1, n2) is increasing in n1 and n2, then the value function, v(n1, n2),

as given in equation 2.2.4 is increasing in n1 and n2.

We state the following lemma, which follows directly from the Lemma 1.

Lemma 2. For µc > max[µ1, µ2], if n1 = 0 (n2 = 0), then it is optimal to pool the

servers at queue 2 (queue 1).

Define the following operators on functions, f(n1, n2), for (n1, n2) ∈ Z
+ × Z

+,

where Z
+ is the set of nonnegative integers.

D1f(n1, n2) = f(n1 + 1, n2) − f(n1, n2)

D2f(n1, n2) = f(n1, n2 + 1) − f(n1, n2)

D
(2)
1 f(n1, n2) = D1D1f(n1, n2)

D
(2)
2 f(n1, n2) = D2D2f(n1, n2)

D21f(n1, n2) = D12f(n1, n2) = D1D2f(n1, n2)
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∆f(n1, n2) = f(n1 + 1, n2) − f(n1, n2 + 1)

∆(2)f(n1, n2) = ∆∆f(n1, n2) = ∆f(n1 + 1, n2) − ∆f(n1, n2 + 1)

These operators will be used throughout the paper.

2.3 Heterogenous Servers with Superadditive Pooling

Assume that when working at the same queue, the rate is µc, µc ≥ µ1 + µ2. We

also assume linear holding costs such that h(n1, n2) = h1n1 + h2n2. Without loss

of generality assume that h1 ≥ h2. We present the following lemma to simplify the

formulation.

Lemma 3. If µc ≥ µ1 + µ2, it is never optimal to allocate one server to each queue.

Proof. First, assume that v((n1−1)+, n2) ≤ v(n1, (n2−1)+). That is, in state (n1, n2)

we prefer to allocate both servers to queue 1 than to allocate both servers to queue

2. Since v(n1, n2) is increasing in n1 and n2, we have that

µcv((n1 − 1)+, n2) = µ1v((n1 − 1)+, n2) + µ2v((n1 − 1)+, n2)

+(µc − µ1 − µ2)v((n1 − 1)+, n2)

≤ µ1v((n1 − 1)+, n2) + µ2v(n1, (n2 − 1)+)

+(µc − µ1 − µ2)v(n1, n2)

and

µcv((n1 − 1)+, n2) = µ1v((n1 − 1)+, n2) + µ2v((n1 − 1)+, n2)

+(µc − µ1 − µ2)v((n1 − 1)+, n2)

≤ µ2v((n1 − 1)+, n2) + µ1v(n1, (n2 − 1)+)

+(µc − µ1 − µ2)v(n1, n2).
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Thus, the cost of allocating both servers to queue 1 is always less than or equal to

the cost of allocating one server to each queue.

Next, assume that v((n1 − 1)+, n2) ≥ v(n1, (n2 − 1)+). That is, in state (n1, n2)

we prefer to allocate both servers to queue 2 than to allocate both servers to queue

1. A similar argument gives us that the cost of allocating both servers to queue 2 is

always less than or equal to the cost of allocating one server to each queue.

Hence, the cost of allocating both servers to a single (preferred) queue is always

less than or equal to the cost of allocating one server to each queue.

The previous lemma lets us simplify equation 2.2.4:

v(n1, n2) = h1n1 + h2n2 + λ1 min[v(n1 + 1, n2), v(n1, n2 + 1) + r]

+ λ2 min[v(n1 + 1, n2) + r, v(n1, n2 + 1)]

+ µc min[v((n1 − 1)+, n2), v(n1, (n2 − 1)+)].

(2.3.5)

We now show the structure of the optimal server allocation and customer routing

policy.

Theorem 1. If h1 ≥ h2 and µc ≥ µ1 + µ2 then the optimal server allocation and

customer routing policy, π∗
sup, has the following structure:

A. Always pool both servers at queue 1 when n1 ≥ 1. If n1 = 0 then pool both

servers at queue 2 until n1 ≥ 1.

B. Never route a customer from queue 2 to queue 1.

C. The optimal routing policy takes the form of an increasing switching curve such

that if it is optimal to route an arriving customer from queue 1 to queue 2 in

state (n1, n2), then it is also optimal to route an arriving customer from queue

1 to queue 2 in states (n1 + 1, n2) and (n1, n2 − 1).

17



The following lemma describes the properties of the value function, which will

lead to the structure described in Theorem 1. Proof of the lemma is found in the

appendix.

Lemma 4. The value function under π∗
sup has the following properties for n1, n2 ≥ 0:

M1. D1v(n1, n2), D2v(n1, n2) ≥ 0 (increasing).

M2. ∆v(n1, n2) ≥ 0.

M3. (a) D1∆v(n1, n2) ≥ 0 and (b) D2∆v(n1, n2) ≤ 0 (diagonal dominance).

Proof of Theorem 1

A. If n1, n2 ≥ 1, the firm will prefer to allocate both servers to queue 1 instead of

allocating both servers to queue 2 if v(n1 − 1, n2) ≤ v(n1, n2 − 1). This follows

from property M2, ∆v(n1, n2) ≥ 0.

If n1 ≥ 1, n2 = 0, then the firm allocates both servers to queue 1 since v(n1 −
1, 0) ≤ v(n1, 0) (property M1).

If n1 = 0, n2 ≥ 1, then the firm allocates both servers to queue 2 since v(0, n2) ≥
v(0, n2 − 1) (property M1).

B. The firm will route a customer from queue 2 to queue 1 if and only if v(n1 +

1, n2) + r ≤ v(n1, n2 + 1). This is equivalent to ∆v(n1, n2) ≤ −r, which cannot

occur since ∆v(n1, n2) ≥ 0 (property M2). Thus, the firm will never route a

customer from queue 2 to queue 1.

C. The firm routes a customer from queue 1 to queue 2 in state (n1, n2) if and only

if v(n1, n2+1)+r ≤ v(n1+1, n2), or ∆v(n1, n2) ≥ r. The firm routes a customer

from queue 1 to queue 2 in state (n1 +1, n2) if and only if v(n1 +1, n2 +1)+r ≤
v(n1 + 2, n2), or ∆v(n1 + 1, n2) ≥ r. Thus, property M3(a), D1∆v(n1, n2) ≥ 0,

is a sufficient condition to ensure that if the firm routes a customer from queue
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1 to queue 2 in state (n1, n2), it will also route a customer from queue 1 to

queue 2 in state (n1 + 1, n2).

Similarly, for n2 ≥ 1, the firm routes a customer from queue 1 to queue 2 in state

(n1, n2−1) if and only if v(n1, n2)+r ≤ v(n1 +1, n2−1), or ∆v(n1, n2−1) ≥ r.

Thus, property M3(b), D2∆v(n1, n2) ≤ 0 for n1, n2 ≥ 0, is a sufficient condition

to ensure that if the firm routes a customer from queue 1 to queue 2 in state

(n1, n2), it will also route a customer from queue 1 to queue 2 in state (n1, n2−1).

�

If the holding costs are symmetric, we have that ∆v(n1, n2) = 0, which leads to this

corollary.

Corollary 1. If h1 = h2 then it is never optimal to route an arriving customer to a

different queue.

After it was shown that the servers are always pooled together when their com-

bined service rate is superadditive, the fact that they work at the higher cost queue is

not surprising, as it is consistent with the well-known cµ rule (Buyukkoc et al. 1985).

2.4 Subadditive Pooling

2.4.1 General Case

In many situations, pooling servers may result in some inefficiencies. For example,

if workers become distracted by each other or if there is a shared resource which is

overloaded with two workers, the overall productivity may fall. In this section we

consider the case of subadditive pooling, i.e., when µ1 + µ2 < µc.

As in the previous section, we assume linear holding costs, h(n1, n2) = h1n1 +

h2n2. We now provide an illustrative example to show how complex the pooling and

routing policies can become in the case of subadditive server pooling rates. We choose
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parameters: λ1 = 4.0, λ2 = 5.5 (arrival rates); µ1 = 8.0, µ2 = 7.0, µc = 14.025 (service

rates, the combined service rate is 93.5% of the sum); r = 3 (customer routing cost);

h1 = 10, h2 = 8 (holding costs); α = 0.025 (discount rate). The optimal server

allocation and customer routing are shown in figure 2.2 and 2.3.

Let’s observe the optimal dynamic server allocation policy. Only when n2 is large

relative the value of n1 do we allocate the faster server to queue 2. Also, the only time

we allocate both servers to queue 2 is when queue 1 is empty. However, when n1 is

large, relative to n2, we might allocate both servers to queue 1. The choice to allocate

both servers to queue 1 is only temporary. If queue 1 grows even longer, we choose to

put the faster server at queue 1 and slower server at queue 2. This phenomena points

to the fact that while the per unit holding cost at queue 1 is higher, the productivity

loss by pooling the servers may outweigh the benefit of shortening the higher cost

queue at the combined rate. Thus, it is often optimal to split the workers up when

the service rates are subadditive.

This example also shows that if the workers are separated, it is not obvious to

which queue each worker should be allocated. If we can dynamically move the servers,

intuition suggests that the faster worker should go to the queue with the higher

holding cost coefficient. However, we must also pay attention to the arrival rates.

Figure 2.4 shows the server allocation policy for a similar example, except that the

arrival rate at queue 2 is less than in the previous example. Based on these examples,

it appears that the size of the region where the faster server is allocated to the lower

cost queue increases as the arrival rate to the lower cost queue increases. It also

appears that the size of the region where both servers are allocated to the higher cost

queue increases as the arrival rate to the lower cost queue decreases. We conjecture

that the server allocation policies follow a switching curve, but as we can see in figure

2.2, the switching curves are not necessarily monotonic.

In contrast to the routing policy in the superadditive case, when service rates are
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Figure 2.2: Server allocation policy for subadditive pooling rates (i). h1 = 10, h2 = 8,
λ1 = 4, λ2 = 5.5, µ1 = 8, µ2 = 7, µc = 14.025, r = 3, α = 0.025. π1: Allocate server
1 to queue 1, server 2 to queue 2. π2: Allocate server 2 to queue 1, server 1 to queue
2. π3: Allocate both servers to queue 1. π4: Allocate both servers to queue 2.
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Figure 2.3: Customer routing policy for subadditive pooling rates (i). h1 = 10, h2 = 8,
λ1 = 4, λ2 = 5.5, µ1 = 8, µ2 = 7, µc = 14.025, r = 3, α = 0.025. π1: Allocate server
1 to queue 1, server 2 to queue 2. π2: Allocate server 2 to queue 1, server 1 to queue
2. π3: Allocate both servers to queue 1. π4: Allocate both servers to queue 2.
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Figure 2.4: Server allocation policy for subadditive pooling rates (ii). h1 =10, h2 =
8, λ1 = 4, λ2 = 4.9, µ1 = 8, µ2 = 7, µc = 14.025, r = 3, α = 0.025. π1: Allocate
server 1 to queue 1, server 2 to queue 2. π2: Allocate server 2 to queue 1, server 1 to
queue 2. π3: Allocate both servers to queue 1. π4: Allocate both servers to queue 2.

subadditive, there are times when it is optimal to route a customer from a lower cost

queue to a higher cost queue (see figure 2.3). This result is somewhat counterintuitive

as we consider the fact that the firm may route a customer from the lower cost queue,

only to be served at a slower rate at the higher cost queue. This is an interesting

insight. That is, there are times when a firm should put its best workers at lower cost

facilities while putting its slower workers at high cost facilities and transfer customers

from the low cost to the high cost facility. The reason for routing the customer is that

if queue 1 becomes empty, then both servers will work together at queue 2, resulting

in a loss of productivity. By balancing the load at both queues, the servers can work

at the fastest possible rate, reducing the overall cost. The reason for placing the

better worker at the lower cost queue is to ‘fight fires.’ As a reality check, the faster

worker is only allocated to the lower cost queue when the size of the lower cost queue

is much greater than the size of the higher cost queue.

Also note that the while the routing and server allocation policies appear to follow

22



a switching curve, the curve is not monotonic in the number at each queue. We prove

the nature of the routing policy switching curve for the special case of a symmetric

system in the next section.

2.4.2 Special Case: Symmetric Arrivals, Service Rates, and Costs

In this section, we assume that arrival rates, service rates, and holding costs are

symmetric, but that the combined service rate when both servers are pooled at the

same queue is less the sum of the two service rates when separate. Specifically, λ1 =

λ2 = λ, µ1 = µ2 = µ and that when working at the same queue, the combined rate is

µc, µc < 2µ. Assume linear, symmetric holding costs such that h(n1, n2) = h(n1 +n2)

for some constant, h > 0. The optimality equation (2.2.4) becomes

vt+1(n1, n2) = h(n1 + n2) + λmin[vt(n1 + 1, n2), vt(n1, n2 + 1) + r]

+ λmin[vt(n1 + 1, n2) + r, vt(n1, n2 + 1)]

+ min

⎛⎜⎜⎜⎜⎝
µvt((n1 − 1)+, n2) + µvt(n1, (n2 − 1)+)

µcvt((n1 − 1)+, n2) + (2µ− µc)vt(n1, n2)

µcvt(n1, (n2 − 1)+) + (2µ− µc)vt(n1, n2)

⎞⎟⎟⎟⎟⎠
(2.4.6)

The last term is the minimum of three expressions. The first is to have one server

at each queue. The second is have both servers at queue 1. The third is to have

both servers at queue 2. Using a sample-path argument, Potoff, Ahn, Lewis, and Beil

(2008) find the optimal server allocation policy.

Theorem 2. (Potoff, Ahn, Lewis, and Beil 2008) The optimal server allocation policy

for the decision process described in optimality equation 2.4.6 is to have the servers

work at separate queues unless one queue is empty. If one queue is empty, both servers

work at the nonempty queue.

Based on this theorem, we may simplify the optimality equation. We define the
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following operators on functions, f(n1, n2), for f : Z
+ × Z

+ �→ R.

T1f(n1, n2) = min[f(n1 + 1, n2), f(n1, n2 + 1) + r]

T2f(n1, n2) = min[f(n1 + 1, n2) + r, f(n1, n2 + 1)]

T3f(n1, n2) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

µf(n1 − 1, n2) + µf(n1, n2 − 1) if n1, n2 ≥ 1

µcf(n1 − 1, n2) + (2µ− µc)f(n1, n2) if n1 ≥ 1, n2 = 0

µcf(n1, n2 − 1) + (2µ− µc)f(n1, n2) if n1 = 0, n2 ≥ 1

2µf(n1, n2) if n1 = n2 = 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
Using these definitions, the optimality equation (2.4.6) is rewritten.

vt+1(n1, n2) = Tvt(n1, n2) = h(n1 + n2) + λT1vt(n1, n2)

+ λT2vt(n1, n2) + T3vt(n1, n2)

(2.4.7)

We now present the main result of this section.

Theorem 3. For the customer routing problem as described in optimality equation

2.4.6, the optimal policy, π∗
sub, has the following structure.

A. It is never optimal to route a customer to a queue that is either longer or of the

same length as the originating queue.

B. The optimal routing policy takes the form of an increasing switching curve such

that if it is optimal to route an arriving customer from queue 1 to queue 2 in

state (n1, n2), then it is also optimal to route an arriving customer from queue

1 to queue 2 in states (n1 +1, n2) and (n1 +1, n2−1). Similarly, if it is optimal

to route an arriving customer from queue 2 to queue 1 in state (n1, n2), then it

is also optimal to route an arriving customer from queue 2 to queue 1 in states

(n1, n2 + 1) and (n1 − 1, n2 + 1).

The proof of the following lemma is contained in the appendix.
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Lemma 5. The value function in equation 2.4.6 has the following properties under

policy π∗
sub for all t <∞:

P1. (a) ∆vt(n1, n2) = vt(n1 + 1, n2) − vt(n1, n2 + 1) ≥ 0 for n1 ≥ n2 ≥ 0.

(b) ∆vt(n1, n2) = vt(n1 + 1, n2) − vt(n1, n2 + 1) ≤ 0 for n2 ≥ n1 ≥ 0.

P2. (a) D1∆vt(n1, n2) = ∆vt(n1 + 1, n2) − ∆vt(n1, n2) ≥ 0 for n1 ≥ n2 ≥ 0

(b) D2∆vt(n1, n2) = ∆vt(n1, n2 + 1)−∆vt(n1, n2) ≤ 0 for n2 ≥ n1 ≥ 0 (partial

diagonal dominance).

P3. ∆(2)vt(n1, n2) = ∆vt(n1 + 1, n2) − ∆vt(n1, n2 + 1) ≥ 0 for n1, n2 ≥ 0.

We now show how the properties of the value function provide the structure for

the optimal policy as given in Theorem 3.

Proof of Theorem 3

A. An arrival at queue 1 will be routed to queue 2 if and only if v(n1, n2 +1)+ r ≤
v(n1 + 1, n2), or ∆v(n1, n2) ≥ r. If n2 ≥ n1, then ∆v(n1, n2) ≤ 0 by property

P1(b), and it is not optimal to route an arrival from queue 1 to queue 2 when

n2 ≥ n1. Similarly, an arrival at queue 2 will be routed to queue 1 if and only

if v(n1 + 1, n2) + r ≤ v(n1, n2 + 1), or ∆v(n1, n2) ≤ −r. If n1 ≥ n2, then

∆v(n1, n2) ≥ 0 by property P1(a), and it is not optimal to route an arrival

from queue 2 to queue 1 when n1 ≥ n2.

B. We first note that a necessary (but not sufficient) condition for the firm to

route a customer from queue 1 to queue 2 is that n1 > n2. The firm routes a

customer from queue 1 to queue 2 in state (n1, n2) if and only if ∆v(n1, n2) =

v(n1 + 1, n2) − v(n1, n2 + 1) ≥ r. Similarly, the firm routes a customer from

queue 1 to queue 2 in state (n1 + 1, n2) if and only if ∆v(n1 + 1, n2) = v(n1 +

2, n2) − v(n1 + 1, n2 + 1) ≥ r. Thus, property P2(a), D1∆v(n1, n2) ≥ 0 for
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Figure 2.5: Server allocation policy for subadditive pooling rates (iii). h1 = h2 = 2,
λ1 = λ2 = 1.5, µ1 = µ2 = 2, µc = 3.8, r = 0.1, α = 0.025. +: Allocate one server to
each queue. �: Allocate both servers to queue 1. ×: Allocate both servers to queue
2.

n1 ≥ n2 ≥ 0, is a sufficient condition to ensure that if a customer is routed from

queue 1 to queue 2 in state (n1, n2), then a customer will also be routed from

queue 1 to queue 2 in state (n1 + 1, n2).

The firm routes an arrival from queue 1 to queue 2 in state (n1+1, n2−1) if and

only if ∆v(n1 +1, n2−1) = v(n1 +2, n2−1)−v(n1 +1, n2) ≥ r. Thus, property

P3, ∆(2)v(n1, n2) ≥ 0, is a sufficient condition to ensure that if a customer is

routed from queue 1 to queue 2 in state (n1, n2), then a customer will also be

routed from queue 1 to queue 2 in state (n1 + 1, n2 − 1).

By an analogous argument, properties P2(b) and P3 are sufficient conditions

to ensure that if the firm routes an arrival from queue 2 to queue 1 in state

(n1, n2), then it also routes arriving customers from queue 2 to queue 1 in

states (n1, n2 + 1) and (n1 − 1, n2 + 1). �

Examples of server allocation and routing policies are shown in figures 2.5 and 2.6,
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Figure 2.6: Customer routing policy for subadditive pooling rates (iii). h1 = h2 = 2,
λ1 = λ2 = 1.5, µ1 = µ2 = 2, µc = 3.8, r = 0.1, α = 0.025. +: Do not route arrivals.
�: Route arrivals from queue 1 to queue 2. �: Route arrivals from queue 2 to queue
1.

respectively. Theorem 3 tells us that the routing threshold is for queue imonotonically

increasing in the number of customers at queue i. In a numerical study, however,

we found that the routing threshold can be characterized more fully than what is

presented in Theorem 3. In particular, the following properties, which we have seen

to hold in numerical examples, would ensure that the routing threshold policy is

concave and monotonic in the length of both queues.

By concave, we mean that the slope of the routing threshold is less than one.

Concavity of the routing switching curve occurs if the ∆v(n1, n2)−∆v(n1+1, n2+1) ≥
0 for n1 > n2 and ∆v(n1, n2) − ∆v(n1 + 1, n2 + 1) ≤ 0 for n1 < n2. Put plainly, this

condition says if we don’t route an arrival from queue 1 to queue 2 in state (n1, n2),

then we would not route an arrival from queue 1 to queue 2 in state (n1 + 1, n2 + 1).

We see this pattern very clearly in Figure 2.6.

Monotonicity of the routing switching curve in the length of both queues means

that if we route from queue 1 to queue 2 in state (n1, n2), then we would also route
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from queue 1 to queue 2 in state (n1, n2 − 1), as well as, state (n1 + 1, n2). This

monotonicity would follow immediately from D1∆v(n1, n2) ≥ 0 for all n1, n2, not just

n1 ≥ n2 (as in property P2). To prove this, a condition which limits the growth of

the value function is necessary. Specifically, we would need the condition µ(v(n1, n2 +

1) − v(n1, n2)) − (µc − µ)(v(n1 + 1, n2) − v(n1, n2)) ≥ 0 for n1 ≥ n2 ≥ 0.

Both of these properties hold in numerical examples, as no counterexamples were

able to be constructed. However, it is not possible to prove them using value iteration,

as the proof breaks down when evaluating boundary conditions. That is, for certain

boundary conditions, it is not possible to prove (via value iteration) that the condition

is either true or false. As such, we leave proof of these properties to future work.

2.5 Numerical Study

In this section, we explore the benefits of dynamic server allocation and customer

routing. In order to derive meaningful results, the numerical study was conducted

using the average cost criteria, as opposed to the total discounted cost criteria. We

compare three cases. The first case allows only for customer routing. The second case

allows for the firm to dynamically allocate the servers, but does not allow routing

of arrivals. The third case allows for both customer routing and dynamic server

allocation.

The main purpose of our numerical study is to find out under which circumstances

each option provides the most benefit. That is, suppose a decision maker must decide

which method of load balancing is best for his or her system, given that only one

option (customer routing or server flexibility) is available.

Methodology

We ran a full factorial experiment on a representative sample of values for each

parameter. To reduce the number of trials, we allocated the faster arrival rate to
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queue 1, as well as, the faster server to queue 1 in the ‘routing only’ case. We

assumed symmetric holding costs such that h1 = h2 ∈ {0.6, 1.2, 1.8, 2.4}. Rout-

ing costs took values r ∈ {0.00, 0.25, 0.50, 1.00, 1.50}. We chose the service rates

such that µ1 + µ2 = 4 with µ1 ∈ {2.00, 2.25, 2.50, 2.75, 3.00, 3.25, 3.50} and µ2 ∈
{0.50, 0.75, 1.00, 1.25, 1.50, 1.75, 2.00}. The combined service rate was selected such

that µc ∈ {2.6, 3.0, 3.4, 3.8}. To avoid trivialities, we did not allow µc < µ1. The

combined arrival rate took four separate values, λ1 + λ2 ∈ {1.0, 2.0, 3.0, 3.25}. For

λ1 + λ2 = 1.0, λ1 ∈ {0.50, 0.65, 0.80, 0.95} and λ2 ∈ {0.05, 0.20, 0.35, 0.50}. For

λ1 + λ2 = 2.0, λ1 ∈ {1.00, 1.25, 1.50, 1.75} and λ2 ∈ {0.25, 0.50, 0.75, 1.00}. For

λ1 + λ2 = 3.0, λ1 ∈ {1.50, 1.85, 2.20, 2.55} and λ2 ∈ {0.45, 0.80, 1.15, 1.50}. For

λ1 + λ2 = 3.25, λ1 ∈ {1.625, 2.000, 2.375, 2.750} and λ2 ∈ {0.500, 0.875, 1.250, 1.625}.
The largest value of λ1 + λ2 that we chose was 3.25. We found that for larger arrival

rates, the flexible server only system could not keep up in heavy traffic and that

the routing only system almost always performed better when pooling rates were

subadditive.

This factorial design provided 6480 sets of parameters which were then used to

find the optimal cost for each system, as well as, the costs to operate the systems

which allowed either routing only or flexible servers only. In this study, the ‘cost’ is

the gain from using the average cost formulation of our problem. In the ‘routing only’

system, we permanently allocate the faster server to the queue with the faster arrival

rate.

We chose to observe systems with symmetric holding costs to avoid confounding

our results. Higher holding costs can also be a proxy for slower service rates, as

we know from queueing theory (e.g., the cµ rule). Since we really want to vary the

parameters, hiµi, we gain more insight by maintaining symmetric holding costs in our

study. Equivalently, we could have made the service rates symmetric and allowed for

asymmetry in the holding costs.
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Figure 2.7: Average optimality gap as a function of routing costs relative to holding
costs.

We limit our numerical study to the case of subadditive pooling rates. For additive

and superadditive pooling, it is clear that the value of server flexibility will exceed

the value of routing when holding costs are symmetric (see Corollary 1).

The Effect of Routing Costs. We show in Figure 2.7 that as routing costs increase

(relative to the holding costs), the routing only case becomes less favorable and the

flexible server only case becomes more favorable. While we did not run calculations

for very large values of routing cost, it stands to reason that if the routing cost

(relative to the holding cost) were above some threshold value, the optimal system

would never route arrivals. This would cause the optimality gap for the flexible server

only case to go to zero. Additionally, after that threshold value of routing costs is

reached, the routing only system would simply be a system of two M/M/1 queues

and the suboptimality would not be affected by an additional increase in the routing

cost.

The Effect of Subadditive Pooling Rates. Figure 2.8 shows that for pooling

rates which are significantly less than additive, the routing only case performs much

better than the flexible server only case. The cases in which the flexible server system
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Figure 2.8: Average optimality gap as a function of combined server pooling rates.

performed the worst were typically when the combined arrival rates were high and

when the arrival rates at the queues were disproportionate to service rates at the

queues. For example, the worst cases had parameter values λ1 = 2.55, λ2 = 0.45, µ1 =

µ2 = 2.0, µc = 2.6. These cases boasted suboptimality of the flexible server case on

the order of 3400%, while the routing only case had a supoptimality of approximately

7%. Without the ability to route customers, queue 1 would not be stable, since the

single server service rate is less than the arrival rate, while the length of queue 2

would remain small. Even when the firm pooled servers at queue 1, the service rate

of 2.6 is only marginally higher than the arrival rate of 2.55, and the queue should

remain long. In the meantime, queue 2 is left unattended, and will also grow. By

allowing routing, arrivals to queue 1 can be routed to queue 2, effectively balancing

the system load.

Now, as the combined service rate grows, the flexible servers only case becomes

preferred. We know from Corollary 1 that when the combined service rate is additive

(or superadditive) and the holding costs are the same at both queues, the firm will

never route customers. The trend in Figure 2.8 supports this result. That is, the

suboptimality of of the flexible server only system tends to zero as the combined
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Figure 2.9: Average optimality gap as a function of traffic intensity.

service rate approaches the additive rates of the two servers.

The Effect of Traffic Intensity. One of the most interesting findings is the effect of

the traffic intensity on the suboptimality of each system. We find that the benefits of

routing outweigh those of server flexibility as the traffic intensity, (λ1 +λ2)/(µ1 +µ2),

increases (see Figure 2.9). One of the benefits of server flexibility is that both servers

will always work at a single queue when one of the queues becomes empty. This has

the effect of increasing the system service rate. However, as arrival rates increase,

each queue is less likely to become empty, reducing the impact of server flexibility.

Furthermore, as arrival rates increase, we would prefer that the system work at the

fastest possible rate, which occurs when the servers work at separate queues.

The Effect of Differences in Arrival Rates. Figures 2.10(a) shows that, for a

given traffic intensity, the value of routing becomes more valuable (i.e., decreasing

suboptimality) as the difference in arrival rates grows between the queues. Figure

2.10(b) shows that the opposite is true for the value of flexible servers. That is, as

the difference in arrival rates grows, so does the suboptimality of the flexible server

only system, especially in systems with larger arrival rates. As we can see in these
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Figure 2.10: Average optimality gap as a function of difference in arrival rates.
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Figure 2.11: Average optimality gap as a function of difference in service rates.

figures, the effect from the difference in arrival rates, λ1 − λ2)/(λ1 + λ2), is relatively

small when compared to the effect of the combined arrival rates, λ1 + λ2 (or traffic

intensity).

The Effect of Differences in Service Rates. For a given traffic intensity, the

difference in service rates seems to have a slightly negative effect on the routing only

system, but has a significant effect on the flexible server only system (see Figure

2.11(a) and 2.11(b)). That is, if there is a large difference in the service rates, the

routing only system will perform worse while the flexible server only system will

perform better. As we saw in the previous case, these effects are relatively small
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when compared to the effect of traffic intensity.

2.6 Conclusion

We have characterized the optimal policies for a system of parallel queues under

varying assumption. For superadditive server pooling rates, we found that the servers

never worked independently. In the case of subadditive pooling rates and a symmetric

system, we found that (under certain parameter values) the servers never worked

together.

Many of the properties used to prove the structure of the symmetric case of the

subadditive problem could also be used to prove the structure of general subadditive

service rates problem. Properties such as P2(a) and P2(b) in Lemma 5 could be used

to prove a switching curve structure for both the routing and server allocation policies.

While we were not able to find any counterexamples to disprove these properties in

our numerical experiments, their proof remains an open problem.

Our results were provided for the infinite horizon discounted cost criteria. It can

easily be shown that these results also apply to the average cost formulation of the

problem.

Our numerical study highlights the fact that the combination of routing and server

flexibility can provide tremendous improvement over systems which provide just one

or the other. The benefits of allowing both options is amplified for systems which

have significant variations in server capabilities or arrival rates at the two queues.

We showed that the most significant factor in determining which option creates more

value (routing or server flexibility) is the traffic intensity. For low traffic situations,

server flexibility provides more benefits, while for high traffic systems, routing proves

to be more beneficial.
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Appendix

Proof of Lemma 1

We will prove that the value function is increasing by induction using the value

iteration algorithm. For step i = 0, v0(n1, n2) = 0 by assumption. It follows that for

step i = 1, v1(n1, n2) = h(n1, n2), which is increasing in n1 and n2 by assumption.

Now, assume that vi(n1, n2) is increasing in n1 and n2 for an arbitrary iteration i.

Define the operators T1, T2, T3, and T on functions, f(n1, n2), for f : Z
+ × Z

+ �→ R

as

T1f(n1, n2) = min[f(n1 + 1, n2), f(n1, n2 + 1) + r]

T2f(n1, n2) = min[f(n1 + 1, n2) + r, f(n1, n2 + 1)]

T3f(n1, n2) = min

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

µ1f((n1 − 1)+, n2) + µ2f(n1, (n2 − 1)+)

+(Λ − λ1 − λ2 − µ1 − µ2)f(n1, n2)

µ2f((n1 − 1)+, n2) + µ1f(n1, (n2 − 1)+)

+(Λ − λ1 − λ2 − µ1 − µ2)f(n1, n2)

µcf((n1 − 1)+, n2) + (Λ − λ1 − λ2 − µc)f(n1, n2)

µcf(n1, (n2 − 1)+) + (Λ − λ1 − λ2 − µc)f(n1, n2)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
Tf(n1, n2) = h(n1, n2) + λ1T1f(n1, n2) + λ2T2f(n1, n2) + T3f(n1, n2)

Since vi+1(n1, n2) = Tvi(n1, n2), it will be sufficient to show that T1vi(n1, n2), T2vi(n1, n2),

and T3vi(n1, n2) are increasing in n1 and n2.

Part 1: T1vi(n1, n2) increasing in n1. We want to show that

T1vi(n1 + 1, n2) − T1vi(n1, n2) = min[vi(n1 + 2, n2), vi(n1 + 1, n2 + 1) + r]
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−min[vi(n1 + 1, n2), vi(n1, n2 + 1) + r]

is nonnegative. It is sufficient to check the following two cases.

Case a: T1vi(n1 + 1, n2) = vi(n1 + 2, n2).

T1vi(n1 + 1, n2) − T1vi(n1, n2) = vi(n1 + 2, n2) − min[vi(n1 + 1, n2), vi(n1, n2 + 1) + r]

≥ vi(n1 + 2, n2) − vi(n1 + 1, n2)

≥ 0

by the induction hypothesis.

Case b: T1vi(n1 + 1, n2) = vi(n1 + 1, n2 + 1) + r.

T1vi(n1 + 1, n2) − T1vi(n1, n2) = vi(n1 + 2, n2) − min[vi(n1 + 1, n2), vi(n1, n2 + 1) + r]

≥ vi(n1 + 1, n2 + 1) − vi(n1, n2 + 1)

≥ 0

by the induction hypothesis.

Part 2: T1vi(n1, n2) increasing in n2. We want to show that

T1vi(n1, n2 + 1) − T1vi(n1, n2) = min[vi(n1 + 1, n2 + 1), vi(n1, n2 + 2) + r]

−min[vi(n1 + 1, n2), vi(n1, n2 + 1) + r]

is nonnegative. It is sufficient to check the following two cases.

Case a: T1vi(n1, n2 + 1) = vi(n1 + 1, n2 + 1).

T1vi(n1, n2 + 1) − T1vi(n1, n2) = vi(n1 + 1, n2 + 1)

−min[vi(n1 + 1, n2), vi(n1, n2 + 1) + r]

≥ vi(n1 + 1, n2 + 1) − vi(n1 + 1, n2)
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≥ 0

by the induction hypothesis.

Case b: T1vi(n1, n2 + 1) = vi(n1, n2 + 2) + r.

T1vi(n1, n2 + 1) − T1vi(n1, n2) = vi(n1, n2 + 2) + r − min[vi(n1 + 1, n2), vi(n1, n2 + 1) + r]

≥ vi(n1, n2 + 2) − vi(n1, n2 + 1)

≥ 0

by the induction hypothesis.

Identical arguments prove T2vi(n1, n2) increasing in n1 and n2.

Part 3: T3vi(n1, n2) increasing in n1. We want to show that

T3vi(n1 + 1, n2) − T3vi(n1, n2)

= min

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

µ1vi(n1, n2) + µ2vi(n1 + 1, (n2 − 1)+)

+(Λ − λ1 − λ2 − µ1 − µ2)vi(n1 + 1, n2)

µ2vi(n1, n2) + µ1vi(n1 + 1, (n2 − 1)+)

+(Λ − λ1 − λ2 − µ1 − µ2)vi(n1 + 1, n2)

µcvi(n1, n2) + (Λ − λ1 − λ2 − µc)vi(n1 + 1, n2)

µcvi(n1 + 1, (n2 − 1)+) + (Λ − λ1 − λ2 − µc)vi(n1 + 1, n2)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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−min

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

µ1vi((n1 − 1)+, n2) + µ2vi(n1, (n2 − 1)+)

+(Λ − λ1 − λ2 − µ1 − µ2)vi(n1, n2)

µ2vi((n1 − 1)+, n2) + µ1vi(n1, (n2 − 1)+)

+(Λ − λ1 − λ2 − µ1 − µ2)vi(n1, n2)

µcvi((n1 − 1)+, n2) + (Λ − λ1 − λ2 − µc)vi(n1, n2)

µcvi(n1, (n2 − 1)+) + (Λ − λ1 − λ2 − µc)vi(n1, n2)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
is nonnegative. It is sufficient to check the following four cases.

Case a: T3vi(n1 + 1, n2) = µ1vi(n1, n2) + µ2vi(n1 + 1, (n2 − 1)+) + (Λ − λ1 − λ2 −
µ1 − µ2)vi(n1 + 1, n2).

T3vi(n1 + 1, n2) − T3vi(n1, n2) ≥ µ1(vi(n1, n2) − vi((n1 − 1)+, n2))

+µ2(vi(n1 + 1, (n2 − 1)+) − vi(n1, (n2 − 1)+))

+(Λ − λ1 − λ2 − µ1 − µ2)(vi(n1 + 1, n2) − vi(n1, n2))

≥ 0

by the induction hypothesis.

Case b: T3vi(n1 + 1, n2) = µ2vi(n1, n2) + µ1vi(n1 + 1, (n2 − 1)+) + (Λ − λ1 − λ2 −
µ1 − µ2)vi(n1 + 1, n2).

T3vi(n1 + 1, n2) − T3vi(n1, n2) ≥ µ2(vi(n1, n2) − vi((n1 − 1)+, n2))

+µ1(vi(n1 + 1, (n2 − 1)+) − vi(n1, (n2 − 1)+))

+(Λ − λ1 − λ2 − µ1 − µ2)(vi(n1 + 1, n2) − vi(n1, n2))

≥ 0
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by the induction hypothesis.

Case c: T3vi(n1 + 1, n2) = µcvi((n1 − 1)+, n2) + (Λ − λ1 − λ2 − µc)vi(n1, n2).

T3vi(n1 + 1, n2) − T3vi(n1, n2) ≥ µc(v(n1, n2) − v((n1 − 1)+, n2))

+(Λ − λ1 − λ2 − µc)(vi(n1 + 1, n2) − vi(n1, n2))

≥ 0

by the induction hypothesis.

Case c: T3vi(n1 + 1, n2) = µcvi(n1, (n2 − 1)+) + (Λ − λ1 − λ2 − µc)vi(n1, n2).

T3vi(n1 + 1, n2) − T3vi(n1, n2) ≥ µc(v(n1 + 1, (n2 − 1)+) − v(n1, (n2 − 1)+))

+(Λ − λ1 − λ2 − µc)(vi(n1 + 1, n2) − vi(n1, n2))

≥ 0

by the induction hypothesis.

A similar argument is used to show T3vi(n1, n2 + 1) − T3vi(n1, n2) ≥ 0. Since T

is a contraction mapping, Tvi(n1, n2) is a convergent sequence, and the limit of the

sequence, v∞(n1, n2), also has the property that it is increasing in n1 and n2. �

Proof of Lemma 4

Define the following operators on functions, f(n1, n2), for f : Z
+ × Z

+ �→ R.

T̃1f(n1, n2) = min[f(n1 + 1, n2), f(n1, n2 + 1) + r]

T̃2f(n1, n2) = min[f(n1 + 1, n2) + r, f(n1, n2 + 1)]

T̃3f(n1, n2) = min[f((n1 − 1)+, n2), f(n1, (n2 − 1)+)]

T̃ f(n1, n2) = h1n1 + h2n2 + λ1T̃1f(n1, n2) + λ2T̃2f(n1, n2) + µcT̃3f(n1, n2)
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The desired properties (M1 - M3) will follow by showing that for any step of the

value iteration algorithm, T̃ vi(n1, n2) ∈ V , where the set V is defined as the set of

functions, f : Z
+ × Z

+ �→ R, such that that the following properties hold for all

f ∈ V .

M1. D1f(n1, n2), D2f(n1, n2) ≥ 0 for n1, n2 ≥ 0 (increasing).

M2. ∆f(n1, n2) ≥ 0 for n1, n2 ≥ 0.

M3. (a) D1∆f(n1, n2) ≥ 0 for n1, n2 ≥ 0.

(b) D2∆f(n1, n2) ≤ 0 for n1, n2 ≥ 0 (diagonal dominance).

Assume that v0(n1, n2) = 0 for every state (n1, n2). It is immediate that v1(n1, n2) =

T̃ v0(n1, n2) = h1n1 +h2n2, and it is easy to show that T̃ v1(n1, n2) ∈ V for all n1, n2 ≥
0. Assume that vi(n1, n2) ∈ V for some iteration i. Then, T̃ vi(n1, n2) ∈ V by lemmas

1, 6, 7, and 8.

Since the operator T̃ is a contraction mapping, the sequence T̃ vi(n1, n2) converges

to the limit, v∞(n1, n2). Under the L∞ metric, the limit of any convergent sequence

of functions which satisfy the properties of V will also satisfy the the properties of

V , since the set V is complete. Consider a structured decision rule, π∗
sup, such that

properties A, B, and C of Theorem 1 are followed. Since T̃ vi(n1, n2) ∈ V , the

structured decision rule, π∗
sup, is optimal for the one stage problem with terminal

cost v∞(n1, n2). Existence of a structured decision rule follows from Theorem 5.1 of

Porteus (1982). �

Lemma 6. If f ∈ V then ∆T̃ f(n1, n2) ≥ 0 for n1, n2 ≥ 0 (property M2).

Proof. We write ∆T̃ f(n1, n2) as

∆T̃ f(n1, n2) = λ1∆T̃1f(n1, n2) + λ2∆T̃2f(n1, n2) + ∆T̃3f(n1, n2). (2.6.8)
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It is sufficient to show each of the three terms on the righthand side to be nonnegative.

Part 1: ∆T̃1f(n1, n2) ≥ 0.

T̃1f(n1 + 1, n2) − T̃1f(n1, n2 + 1) = min[f(n1 + 2, n2), f(n1 + 1, n2 + 1) + r]

−min[f(n1 + 1, n2 + 1), f(n1, n2 + 2) + r]

It is sufficient to check the following two cases for nonnegativity.

Case a: T̃1f(n1 + 1, n2) = f(n1 + 2, n2).

T̃1f(n1 + 1, n2) − T̃1f(n1, n2 + 1) ≥ f(n1 + 2, n2) − f(n1 + 1, n2 + 1)

= ∆f(n1 + 1, n2)

≥ 0

since f ∈ V .

Case b: T̃1f(n1 + 1, n2) = f(n1 + 1, n2 + 1) + r.

T̃1f(n1 + 1, n2) − T̃1f(n1, n2 + 1) ≥ f(n1 + 1, n2 + 1) + r − f(n1, n2 + 2) − r

= ∆f(n1, n2 + 1)

≥ 0

since f ∈ V .

Part 2: ∆T̃2f(n1, n2) ≥ 0. The proof is similar to above and is omitted.

Part 3: ∆T̃3f(n1, n2) ≥ 0.

T̃3f(n1 + 1, n2) − T̃3f(n1, n2 + 1) = min[f(n1, n2), f(n1 + 1, (n2 − 1)+)]

−min[f((n1 − 1)+, n2 + 1), f(n1, n2)]

Since ∆f(n1, n2) ≥ 0 and f(n1, n2) increasing in n1 and n2, we know that f(n1, n2) ≤
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f(n1 + 1, (n2 − 1)+) for f ∈ V . Thus,

∆T̃3f(n1, n2) = f(n1, n2) − min[f((n1 − 1)+, n2 + 1), f(n1, n2)]

≥ f(n1, n2) − f(n1, n2) = 0.

Lemma 7. If f ∈ V then D1∆T̃ f(n1, n2) ≥ 0 for n1, n2 ≥ 0 (property M3(a)).

Proof. We write D1∆T̃ f(n1, n2) as

D1∆T̃ f(n1, n2) = λ1D1∆T̃1f(n1, n2) + λ2D1∆T̃2f(n1, n2)

+D1∆T̃3f(n1, n2).

(2.6.9)

It is sufficient to show each of the three terms on the righthand side to be nonnegative.

Part 1: D1∆T̃1f(n1, n2) ≥ 0.

D1∆T̃1f(n1, n2) = ∆T̃1f(n1 + 1, n2) − ∆T̃1f(n1, n2)

= T̃1f(n1 + 2, n2) − T̃1f(n1 + 1, n2 + 1)

−T̃1f(n1 + 1, n2) + T̃1f(n1, n2 + 1)

= min[f(n1 + 3, n2), f(n1 + 2, n2 + 1) + r]

−min[f(n1 + 2, n2 + 1), f(n1 + 1, n2 + 2) + r]

−min[f(n1 + 2, n2), f(n1 + 1, n2 + 1) + r]

+ min[f(n1 + 1, n2 + 1), f(n1, n2 + 2) + r]

It is sufficient to check the following cases for nonnegativity.

Case a: T̃1f(n1 + 2, n2) = f(n1 + 3, n2) and T̃1f(n1, n2 + 1) = f(n1 + 1, n2 + 1).

D1∆T̃1f(n1, n2) = T̃1f(n1 + 2, n2) − T̃1f(n1 + 1, n2 + 1)
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−T̃1f(n1 + 1, n2) + T̃1f(n1, n2 + 1)

= f(n1 + 3, n2) − min[f(n1 + 2, n2 + 1), f(n1 + 1, n2 + 2) + r]

−min[f(n1 + 2, n2), f(n1 + 1, n2 + 1) + r] + f(n1 + 1, n2 + 1)

≥ f(n1 + 3, n2) − f(n1 + 2, n2 + 1)

−f(n1 + 2, n2) + f(n1 + 1, n2 + 1)

= D1∆f(n1 + 1, n2) ≥ 0

for f ∈ V .

Case b: T̃1f(n1 +2, n2) = f(n1 +3, n2) and T̃1f(n1, n2 +1) = f(n1, n2 +2)+ r. This

case violates the optimal customer routing policy. Specifically, this case says that it

is optimal to route a customer from queue 1 to queue 2 in state (n1, n2 + 1), but it

is also optimal to keep an arriving customer at queue 1 in state (n1 + 2, n2). This

violates properties M3(a) and M3(b), D1∆f(n1, n2) ≥ 0 and D2∆f(n1, n2) ≤ 0. It

is not necessary to verify nonnegativity in this case.

Case c: T̃1f(n1 +2, n2) = f(n1 +2, n2 +1)+r and T̃1f(n1, n2 +1) = f(n1 +1, n2 +1).

D1∆T̃1f(n1, n2) = T̃1f(n1 + 2, n2) − T̃1f(n1 + 1, n2 + 1)

−T̃1f(n1 + 1, n2) + T̃1f(n1, n2 + 1)

= f(n1 + 2, n2 + 1) + r − min[f(n1 + 2, n2 + 1), f(n1 + 1, n2 + 2) + r]

−min[f(n1 + 2, n2), f(n1 + 1, n2 + 1) + r] + f(n1 + 1, n2 + 1)

≥ f(n1 + 2, n2 + 1) + r − f(n1 + 2, n2 + 1)

−f(n1 + 1, n2 + 1) − r + f(n1 + 1, n2 + 1) = 0

Case d: T̃1f(n1 +2, n2) = f(n1 +2, n2+1)+r and T̃1f(n1, n2 +1) = f(n1, n2 +2)+r.

a2 − min[b1, b2] − min[c1, c2] + d2 ≥ a2 − b2 − c2 + d2 = D1∆f(n1, n2 + 1) ≥ 0 since
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f ∈ V .

D1∆T̃1f(n1, n2) = T̃1f(n1 + 2, n2) − T̃1f(n1 + 1, n2 + 1)

−T̃1f(n1 + 1, n2) + T̃1f(n1, n2 + 1)

= f(n1 + 2, n2 + 1) + r − min[f(n1 + 2, n2 + 1), f(n1 + 1, n2 + 2) + r]

−min[f(n1 + 2, n2), f(n1 + 1, n2 + 1) + r] + f(n1, n2 + 2) + r

≥ f(n1 + 2, n2 + 1) + r − f(n1 + 1, n2 + 2) − r

−f(n1 + 1, n2 + 1) − r + f(n1, n2 + 2) + r

= D1∆f(n1, n2 + 1) ≥ 0

for f ∈ V .

Part 2: D1∆T̃2f(n1, n2) ≥ 0. Since f ∈ V , it is never optimal to route a customer

from queue 2 to queue 1. Therefore, D1∆T̃2f(n1, n2) = D1∆f(n1, n2 + 1) ≥ 0 for

f ∈ V .

Part 3: D1∆T̃3f(n1, n2) ≥ 0.

∆T̃3f(n1 + 1, n2) − ∆T̃3f(n1, n2) = T̃3f(n1 + 2, n2) − T̃3f(n1 + 1, n2 + 1)

−T̃3f(n1 + 1, n2) + T̃3f(n1, n2 + 1)

= min[f(n1 + 1, n2), f(n1 + 2, (n2 − 1)+)]

−min[f(n1, n2 + 1), f(n1 + 1, n2)]

−min[f(n1, n2), f(n1 + 1, (n2 − 1)+)]

+ min[f((n1 − 1)+, n2 + 1), f(n1, n2)]

Since f ∈ V , it is optimal to allocate both servers to queue 1 unless n1 = 0 and

n2 ≥ 1. Thus,

∆T̃3f(n1 + 1, n2) − ∆T̃3f(n1, n2) = f(n1 + 1, n2) − f(n1, n2 + 1) − f(n1, n2)
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+1{n1≥1}f(n1 − 1, n2 + 1) + 1{n1=0}f(n1, n2).

If n1 = 0, then D1∆T3f(n1, n2) = ∆f(n1, n2) ≥ 0 for f ∈ V . If n1 ≥ 1, then

D1∆T3f(n1, n2) = D1∆f(n1 − 1, n2) ≥ 0 for f ∈ V .

Lemma 8. If f ∈ V then D2∆T̃ f(n1, n2) ≤ 0 for n1, n2 ≥ 0 (property M3(b)).

Proof. We write D2∆T̃ f(n1, n2) as

D2∆T̃ f(n1, n2) = λ1D2∆T̃1f(n1, n2) + λ2D2∆T̃2f(n1, n2)

+D2∆T̃3f(n1, n2).

(2.6.10)

It is sufficient to show each of the three terms on the righthand side to be negative.

Part 1: D2∆T̃1f(n1, n2) ≤ 0.

D2∆T̃1f(n1, n2) = ∆T̃1f(n1, n2 + 1) − ∆T̃1f(n1, n2)

= T̃1f(n1 + 1, n2 + 1) − T̃1f(n1, n2 + 2)

−T̃1f(n1 + 1, n2) + T̃1f(n1, n2 + 1)

= min[f(n1 + 2, n2 + 1), f(n1 + 1, n2 + 2) + r]

−min[f(n1 + 1, n2 + 2), f(n1, n2 + 3) + r]

−min[f(n1 + 2, n2), f(n1 + 1, n2 + 1) + r]

+ min[f(n1 + 1, n2 + 1), f(n1, n2 + 2) + r]

It is sufficient to check the following cases for nonnegativity.

Case a: T̃1f(n1, n2 + 2) = f(n1 + 1, n2 + 2) and T̃1f(n1 + 1, n2) = f(n1 + 2, n2).

D2∆T̃1f(n1, n2) = T̃1f(n1 + 1, n2 + 1) − T̃1f(n1, n2 + 2)

−T̃1f(n1 + 1, n2) + T̃1f(n1, n2 + 1)

= min[f(n1 + 2, n2 + 1), f(n1 + 1, n2 + 2) + r] − f(n1 + 1, n2 + 2)
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−f(n1 + 2, n2) + min[f(n1 + 1, n2 + 1), f(n1, n2 + 2) + r]

≤ f(n1 + 2, n2 + 1) − f(n1 + 1, n2 + 2)

−f(n1 + 2, n2) + f(n1 + 1, n2 + 1)

= D2∆f(n1 + 1, n2) ≥ 0

for f ∈ V .

Case b: T̃1f(n1, n2 +2) = f(n1 +1, n2 +2) and T̃1f(n1 +1, n2) = f(n1 +1, n2+1)+r.

D2∆T̃1f(n1, n2) = T̃1f(n1 + 1, n2 + 1) − T̃1f(n1, n2 + 2)

−T̃1f(n1 + 1, n2) + T̃1f(n1, n2 + 1)

= min[f(n1 + 2, n2 + 1), f(n1 + 1, n2 + 2) + r] − f(n1 + 1, n2 + 2)

−f(n1 + 1, n2 + 1) − r + min[f(n1 + 1, n2 + 1), f(n1, n2 + 2) + r]

≤ f(n1 + 1, n2 + 2) + r − f(n1 + 1, n2 + 2)

−f(n1 + 1, n2 + 1) − r + f(n1 + 1, n2 + 1)

= 0.

Case c: T̃1f(n1, n2 +2) = f(n1, n2 +3)+ r and T̃1f(n1 +1, n2) = f(n1 +2, n2). This

case violates the optimal customer routing policy. Specifically, this case says that it

is optimal to route a customer from queue 1 to queue 2 in state (n1, n2 + 2), but it

is also optimal to keep an arriving customer at queue 1 in state (n1 + 1, n2). This

violates properties D1∆f(n1, n2) ≥ 0 and D2∆f(n1, n2) ≤ 0. It is not necessary to

verify nonnegativity in this case.

Case d: T̃1f(n1, n2 +2) = f(n1, n2 +3)+r and T̃1f(n1 +1, n2) = f(n1 +1, n2+1)+r.

D2∆T̃1f(n1, n2) = T̃1f(n1 + 1, n2 + 1) − T̃1f(n1, n2 + 2)

−T̃1f(n1 + 1, n2) + T̃1f(n1, n2 + 1)
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= min[f(n1 + 2, n2 + 1), f(n1 + 1, n2 + 2) + r] − f(n1, n2 + 3) + r

−f(n1 + 1, n2 + 1) + r + min[f(n1 + 1, n2 + 1), f(n1, n2 + 2) + r]

≤ f(n1 + 1, n2 + 2) − f(n1, n2 + 3)

−f(n1 + 1, n2 + 1) + f(n1, n2 + 2)

= D2∆f(n1, n2 + 1) ≥ 0

for f ∈ V .

Part 2: D2∆T̃2f(n1, n2) ≤ 0. Since f ∈ V , it is never optimal to route a customer

from queue 2 to queue 1. Therefore, D2∆T̃2f(n1, n2) = D2∆f(n1, n2 + 1) ≤ 0 for

f ∈ V .

Part 3: D2∆T̃3f(n1, n2) ≤ 0.

D2∆T̃3f(n1, n2) = ∆T̃3f(n1, n2 + 1) − ∆T̃3f(n1, n2)

= T̃3f(n1 + 1, n2 + 1) − T̃3f(n1, n2 + 2)

−T̃3f(n1 + 1, n2) + T̃3f(n1, n2 + 1)

= min[f(n1, n2 + 1), f(n1 + 1, n2)]

−min[f((n1 − 1)+, n2 + 2), f(n1, n2 + 1)]

−min[f(n1, n2), f(n1 + 1, (n2 − 1)+)]

+ min[f((n1 − 1)+, n2 + 1), f(n1, n2)]

Since f ∈ V , it is optimal to allocate both servers to queue 1 unless n1 = 0 and

n2 ≥ 1. Thus,

D2∆T̃3f(n1, n2) = 1{n1≥1}f(n1 − 1, n2 + 1) + 1{n1=0}f(n1, n2)

−1{n1≥1}f(n1 − 1, n2 + 2) − 1{n1=0}f(n1, n2 + 1)

−f(n1, n2) + f(n1, n2 + 1).
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If n1 = 0, then D2∆T̃3f(n1, n2) = 0 for f ∈ V . If n1 ≥ 1, then D2∆T̃3f(n1, n2) =

D2∆f(n1 − 1, n2) ≤ 0 for f ∈ V .

Proof of Lemma 5

Properties P1 - P3 will follow by showing that for any step of the value iteration

algorithm, Tvt(n1, n2) ∈ V , where the set V is defined as the set of functions, f :

Z
+ × Z

+ �→ R, such that that the following properties hold for all f ∈ V . Properties

P4 - P7 are technical conditions necessary for proving P1 - P3.

P1. (a) ∆f(n1, n2) = f(n1 + 1, n2) − f(n1, n2 + 1) ≥ 0 for n1 ≥ n2 ≥ 0.

(b) ∆f(n1, n2) = f(n1 + 1, n2) − f(n1, n2 + 1) ≤ 0 for n2 ≥ n1 ≥ 0.

P2. (a) D1∆f(n1, n2) = ∆f(n1 + 1, n2) − ∆f(n1, n2) ≥ 0 for n1 ≥ n2 ≥ 0.

(b) D2∆f(n1, n2) = ∆f(n1, n2 + 1) − ∆f(n1, n2) ≤ 0 for n2 ≥ n1 ≥ 0 (partial

diagonal dominance).

P3. ∆(2)vt(n1, n2) = ∆f(n1 + 1, n2) − ∆f(n1, n2 + 1) ≥ 0 for n1, n2 ≥ 0.

P4. D1f(n1, n2), D2f(n1, n2) ≥ 0 for all n1, n2 ≥ 0 (increasing).

P5. f(n,m) = f(m,n) (symmetry).

P6. D
(2)
1 f(n1, n2), D

(2)
2 f(n1, n2) ≥ 0 for n1, n2 ≥ 0 (convexity).

P7. D12f(n1, n2) ≥ 0 for n1, n2 ≥ 0 (supermodularity).

Assume that v0(n1, n2) = 0 for every state (n1, n2). It is immediate that v1(n1, n2) =

Tv0(n1, n2) = h(n1+n2), and it is easy to show that Tv1(n1, n2) ∈ V for all n1, n2 ≥ 0.

Assume that vi(n1, n2) ∈ V for some iteration i. Then, Tvi(n1, n2) ∈ V by Lemmas 1,

9, 10, 11, 12, 13, and 14. Since the operator T is a contraction mapping, the sequence

Tvi(n1, n2) converges to the limit, v∞(n1, n2). Under the L∞ metric, the limit of any
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convergent sequence of functions which satisfy the properties of V will also satisfy the

the properties of V , since the set V is complete. Consider a structured decision rule,

δ, such that properties A and B of Theorem 3 are followed. Since Tvi(n1, n2) ∈ V ,

the structured decision rule, π∗
sub, is optimal for the one stage problem with terminal

cost v∞(n1, n2). Existence of a structured decision rule follows from Theorem 5.1 of

Porteus (1982). �

Lemma 9. For all f ∈ V ,

(i) ∆Tf(n1, n2) ≥ 0 for n1 ≥ n2 ≥ 0 (property P1(a)).

(ii) ∆Tf(n1, n2) ≤ 0 for n2 ≥ n1 ≥ 0 (property P1(b)).

Proof. We will prove ∆Tf(n1, n2) ≥ 0 for n1 ≥ n2 ≥ 0. The proof of (ii) is omitted

since it follows from symmetry (property P5). By definition,

∆Tf(n1, n2) = Tf(n1 + 1, n2) − Tf(n1, n2 + 1)

= λ∆T1f(n1, n2) + λ∆T2f(n1, n2) + ∆T3f(n1, n2)

(2.6.11)

It follows from symmetry that ∆Tf(n1, n2) = 0 if n1 = n2. For the remainder of

the proof we assume that n1 ≥ n2 + 1. It is sufficient to show that ∆T1f(n1, n2),

∆T2f(n1, n2), and ∆T3f(n1, n2) are all nonnegative.

Part 1: ∆T1f(n1, n2) ≥ 0.

∆T1f(n1, n2) = T1f(n1 + 1, n2) − T1f(n1, n2 + 1)

= min[f(n1 + 2, n2), f(n1 + 1, n2 + 1) + r]

− min[f(n1 + 1, n2 + 1), f(n1, n2 + 2) + r]

It is sufficient to check the following two cases.
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Case a: T1f(n1 + 1, n2) = f(n1 + 2, n2).

∆T1f(n1, n2) = f(n1 + 2, n2) − T1f(n1, n2 + 1)

≥ f(n1 + 2, n2) − f(n1 + 1, n2 + 1)

= ∆f(n1 + 1, n2) ≥ 0

since n1 ≥ n2 + 1.

Case b: T1f(n1 + 1, n2) = f(n1 + 1, n2 + 1) + r.

∆T1f(n1, n2) = f(n1 + 1, n2 + 1) + r − T1f(n1, n2 + 1)

≥ f(n1 + 1, n2 + 1) + r − f(n1 + 1, n2 + 1)

= r ≥ 0

Part 2: ∆T2f(n1, n2) ≥ 0.

T2f(n1 + 1, n2) − T2f(n1, n2 + 1) = min[f(n1 + 2, n2) + r, f(n1 + 1, n2 + 1)]

− min[f(n1 + 1, n2 + 1) + r, f(n1, n2 + 2)]

It is sufficient to check the following two cases.

Case a: T2f(n1 + 1, n2) = f(n1 + 2, n2) + r.

∆T2f(n1, n2) = f(n1 + 2, n2) + r − T2f(n1, n2 + 1)

≥ f(n1 + 2, n2) + r − f(n1 + 1, n2 + 1) − r

= ∆f(n1 + 1, n2) ≥ 0

since n1 ≥ n2 + 1.
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Case b: T2f(n1 + 1, n2) = f(n1 + 1, n1 + 1).

∆T2f(n1, n2) = f(n1 + 1, n2 + 1) − T2f(n1, n2 + 1)

≥ f(n1 + 1, n2 + 1) − f(n1, n2 + 2)

= ∆f(n1, n2 + 1) ≥ 0

since n1 ≥ n2 + 1.

Part 3: ∆T3f(n1, n2) ≥ 0. Since n1 > n2 ≥ 0, we can write

∆T3f(n1, n2) = T3f(n1 + 1, n2) − T3f(n1, n2 + 1)

=

⎡⎢⎣ µf(n1, n2) + µf(n1 + 1, n2 − 1) if n1, n2 ≥ 1

µcf(n1, n2) + (2µ− µc)f(n1 + 1, n2) if n2 = 0

⎤⎥⎦
− µf(n1 − 1, n2 + 1) − µf(n1, n2)

It is sufficient to show that the following two cases are nonnegative.

Case a: n2 ≥ 1.

∆T3f(n1, n2) = µ(f(n1, n2) + f(n1 + 1, n2 − 1) − f(n1 − 1, n2 + 1) − f(n1, n2))

= µ(∆f(n1, n2 − 1) + ∆f(n1 − 1, n2)) ≥ 0

since n1 ≥ n2 + 1.

Case b: n2 = 0.

∆T3f(n1, n2) = µcf(n1, n2) + (2µ− µc)f(n1 + 1, n2)

− µcf((n1 − 1)+, n2 + 1) − (2µ− µc)f(n1, n2 + 1)

= µc(f(n1, n2) − f(n1 − 1, n2 + 1))

+ (2µ− µc)(f(n1 + 1, n2) − f(n1, n2 + 1))

= µc∆f(n1 − 1, n2) + (2µ− µc)∆f(n1, n2) ≥ 0
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since n1 ≥ n2 + 1, and the proof is complete.

Lemma 10. For all f ∈ V ,

(i) D1∆Tf(n1, n2) ≥ 0 for n1 ≥ n2 ≥ 0 (property P2(a)).

(ii) D2∆Tf(n1, n2) ≤ 0 for n2 ≥ n1 ≥ 0 (property P2(b)).

Proof. We will prove D1∆Tf(n1, n2) ≥ 0 for n1 ≥ n2 ≥ 0. The proof of (ii) is omitted

since it follows from symmetry (property P5). It follows from elementary algebra that

D1∆Tf(n1, n2) = λD1∆T1f(n1, n2) + λD1∆T2f(n1, n2) +D1∆T3f(n1, n2).

Thus, it is sufficient to show that each of the terms, D1∆T1f(n1, n2), D1∆T2f(n1, n2),

and D1∆T3f(n1, n2), are nonnegative.

Part 1: D1∆T1f(n1, n2) ≥ 0.

∆T1v(n1 + 1, n2) − ∆T1v(n1, n2)

= T1f(n1 + 2, n2) − T1f(n1 + 1, n2 + 1) − T1f(n1 + 1, n2) + T1f(n1, n2 + 1)

= min[f(n1 + 3, n2), f(n1 + 2, n2 + 1) + r]

− min[f(n1 + 2, n2 + 1), f(n1 + 1, n2 + 2) + r]

− min[f(n1 + 2, n2), f(n1 + 1, n2 + 1) + r]

+ min[f(n1 + 1, n2 + 1), f(n1, n2 + 2) + r]

It is sufficient to show the following cases to be non-negative.

Case T1f(n1 + 2, n2) T1f(n1, n2 + 1)

a f(n1 + 3, n2) f(n1 + 1, n2 + 1)

b f(n1 + 3, n2) f(n1, n2 + 2) + r
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c f(n1 + 2, n2 + 1) + r f(n1 + 1, n2 + 1)

d f(n1 + 2, n2 + 1) + r f(n1, n2 + 2) + r

Case a: T1f(n1 +2, n2) = f(n1 +3, n2) and T1f(n1, n2 +1) = f(n1 +1, n2 +1).

f(n1 + 3, n2) − T1f(n1 + 1, n2 + 1) − T1f(n1 + 1, n2) + f(n1 + 1, n2 + 1)

≥ f(n1 + 3, n2) − f(n1 + 2, n2 + 1) − f(n1 + 2, n2) + f(n1 + 1, n2 + 1)

= ∆f(n1 + 2, n2) − ∆f(n1 + 1, n2)

= D1∆f(n1 + 1, n2) ≥ 0

follows from D1∆f(n1, n2) ≥ 0 for f ∈ V and n1 ≥ n2.

Case b: T1f(n1 +2, n2) = f(n1 +3, n2) and T1f(n1, n2 +1) = f(n1, n2 +2)+ r.

f(n1 + 3, n2) − T1f(n1 + 1, n2 + 1) − T1f(n1 + 1, n2) + f(n1, n2 + 2) + r

≥ f(n1 + 3, n2) − f(n1 + 1, n2 + 2) − r − f(n1 + 2, n2) + f(n1, n2 + 2) + r

= ∆f(n1 + 2, n2) − ∆f(n1 + 1, n2) + f(n1 + 2, n2 + 1) − f(n1 + 1, n2 + 2)

− f(n1 + 1, n2 + 1) + f(n1, n2 + 2)

= ∆f(n1 + 2, n2) − ∆f(n1 + 1, n2) + ∆f(n1 + 1, n2 + 1) − ∆f(n1, n2 + 1)

= D1∆f(n1 + 1, n2) +D1∆f(n1, n2 + 1) ≥ 0

follows from D1∆f(n1, n2) ≥ 0 for f ∈ V if n1 ≥ n2 + 1. If n1 = n2 = n, then

D1∆f(n1, n2 + 1) = ∆f(n+ 1, n+ 1)−∆f(n, n+ 1) = −∆f(n, n+ 1) ≥ 0 from

properties P1(b) and P5.

Case c: T1f(n1 + 2, n2) = f(n1 + 2, n2 + 1) + r and T1f(n1, n2 + 1) = f(n1 +
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1, n2 + 1).

f(n1 + 2, n2) + r − T1f(n1 + 1, n2 + 1) − T1f(n1 + 1, n2) + f(n1 + 1, n2 + 1)

≥ f(n1 + 2, n2) + r − f(n1 + 2, n2 + 1) − f(n1 + 1, n2 + 1)

− r + f(n1 + 1, n2 + 1)

= 0

Case d: T1f(n1 +2, n2) = f(n1 +2, n2 +1)+r and T1f(n1, n2 +1) = f(n1, n2 +

2) + r.

f(n1 + 2, n2) + r − T1f(n1 + 1, n2 + 1) − T1f(n1 + 1, n2) + f(n1, n2 + 2) + r

≥ f(n1 + 2, n2) + r − f(n1 + 1, n2 + 2) − r − f(n1 + 1, n2 + 1) − r

+ f(n1, n2 + 2) + r

= ∆f(n1 + 1, n2 + 1) − ∆f(n1, n2 + 1)

= D1∆f(n1, n2 + 1) ≥ 0

follows from D1∆f(n1, n2) ≥ 0 for f ∈ V for f ∈ V if n1 ≥ n2 +1. If n1 = n2 =

n, then D1∆f(n1, n2+1) = ∆f(n+1, n+1)−∆f(n, n+1) = −∆f(n, n+1) ≥ 0

from properties P1(b) and P5.

Part 2: D1∆T2f(n1, n2) ≥ 0.

∆T2v(n1 + 1, n2) − ∆T2v(n1, n2)

= T2f(n1 + 2, n2) − T2f(n1 + 1, n2 + 1) − T2f(n1 + 1, n2) + T2f(n1, n2 + 1)

= min[f(n1 + 3, n2) + r, f(n1 + 2, n2 + 1)]

− min[f(n1 + 2, n2 + 1) + r, f(n1 + 1, n2 + 2)]

− min[f(n1 + 2, n2) + r, f(n1 + 1, n2 + 1)]

+ min[f(n1 + 1, n2 + 1), f(n1, n2 + 2) + r]
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It is sufficient to show the following cases to be non-negative.

Case T2f(n1 + 2, n2) T2f(n1, n2 + 1)

a f(n1 + 3, n2) + r f(n1 + 1, n2 + 1) + r

b f(n1 + 3, n2) + r f(n1, n2 + 2)

c f(n1 + 2, n2 + 1) f(n1 + 1, n2 + 1) + r

d f(n1 + 2, n2 + 1) f(n1, n2 + 2)

Since n1 ≥ n2, cases a and b cannot occur since we never route from the shorter

queue to the longer queue (property P1). For the same reason, case c can only occur

if n1 = n2.

Case c: T2f(n1 +2, n2) = f(n1 +2, n2 +1) and T2f(n1, n2 +1) = f(n1 +1, n2 +

1) + r.

f(n1 + 2, n2 + 1) − T2f(n1 + 1, n2 + 1) − T2f(n1 + 1, n2) + f(n1 + 1, n2 + 1) + r

≥ f(n1 + 2, n2 + 1) − f(n1 + 2, n2 + 1) − r − f(n1 + 1, n2 + 1) + f(n1 + 1, n2 + 1) + r

= 0.

Case d: T2f(n1 +2, n2) = f(n1 +2, n2 +1) and T2f(n1, n2 +1) = f(n1, n2 +2).

f(n1 + 2, n2 + 1) − T2f(n1 + 1, n2 + 1) − T2f(n1 + 1, n2) + f(n1, n2 + 2)

≥ f(n1 + 2, n2 + 1) − f(n1 + 1, n2 + 2) − f(n1 + 1, n2 + 1) + f(n1, n2 + 2)

= D1∆f(n1, n2 + 1)

which is nonnegative for n1 ≥ n2 + 1. If n1 = n2 = n, then D1∆f(n1, n2 + 1) =

−∆f(n, n + 1) ≥ 0 from properties P1(b) and P5.
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Part 3: D1∆T3f(n1, n2) ≥ 0.

∆T3f(n1 + 1, n2) − ∆T3f(n1, n2)

= T3f(n1 + 2, n2) − T3f(n1 + 1, n2 + 1) − T3f(n1 + 1, n2) + T3f(n1, n2 + 1)

=

⎡⎢⎣ µf(n1 + 1, n2) + µf(n1 + 2, n2 − 1) if n2 ≥ 1

µcf(n1 + 1, n2) + (2µ− µc)f(n1 + 2, n2) if n2 = 0

⎤⎥⎦
− µf(n1, n2 + 1) − µf(n1 + 1, n2)

−

⎡⎢⎣ µf(n1, n2) + µf(n1 + 1, n2 − 1) if n2 ≥ 1

µcf(n1, n2) + (2µ− µc)f(n1 + 1, n2) if n2 = 0

⎤⎥⎦
+

⎡⎢⎣ µf(n1 − 1, n2 + 1) + µf(n1, n2) if n1 ≥ 1

µcf(n1, n2) + (2µ− µc)f(n1, n2 + 1) if n1 = 0

⎤⎥⎦
Since we assume n1 ≥ n2, we only need to verify three cases: (a) n1 ≥ n2 ≥ 1, (b)

n1 > n2 = 0, and (c) n1 = n2 = 0.

Case a: n1 ≥ n2 ≥ 1.

T3f(n1 + 2, n2) − T3f(n1 + 1, n2 + 1) − T3f(n1 + 1, n2) + T3f(n1, n2 + 1)

= µf(n1 + 1, n2) + µf(n1 + 2, n2 − 1)

−µf(n1, n2 + 1) − µf(n1 + 1, n2)

−µf(n1, n2) − µf(n1 + 1, n2 − 1)

+µf(n1 − 1, n2 + 1) + µf(n1, n2)

= µ(∆f(n1, n2) − ∆f(n1 − 1, n2) + ∆f(n1 + 1, n2 − 1) − ∆f(n1, n2 − 1))

= µ(D1∆f(n1 − 1, n2) +D1∆f(n1, n2 − 1)) ≥ 0

follows from D1∆f(x1, x2) ≥ 0 for f ∈ V and x1 ≥ x2. This condition holds if

n1 ≥ n2 + 1. If n1 = n2 = n, then D1∆f(n − 1, n) = −∆f(n, n + 1) ≥ 0 from
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properties P1(b) and P5.

Case b: n1 > n2 = 0.

T3f(n1 + 2, n2) − T3f(n1 + 1, n2 + 1) − T3f(n1 + 1, n2) + T3f(n1, n2 + 1)

= µcf(n1 + 1, n2) + (2µ− µc)f(n1 + 2, n2)

−µf(n1, n2 + 1) − µf(n1 + 1, n2)

−µcf(n1, n2) − (2µ− µc)f(n1 + 1, n2)

+µf(n1 − 1, n2 + 1) + µf(n1, n2)

= µc(f(n1 + 1, n2) − f(n1, n2)) + (2µ− µc)(f(n1 + 2, n2) − f(n1 + 1, n2))

−µ(f(n1 + 1, n2) − f(n1, n2) + f(n1, n2 + 1) − f(n1 − 1, n2 + 1))

= (µc − µ)(f(n1 + 1, n2) − f(n1, n2))

+(2µ− µc)(f(n1 + 2, n2) − f(n1 + 1, n2))

−µ(f(n1, n2 + 1) − f(n1 − 1, n2 + 1))

≥ (µc − µ)(f(n1 + 1, n2) − f(n1, n2))

+(2µ− µc)(f(n1 + 1, n2) − f(n1, n2))

−µ(f(n1, n2 + 1) − f(n1 − 1, n2 + 1))

= µ(f(n1 + 1, n2) − f(n1, n2 + 1) − f(n1, n2) + f(n1 − 1, n2 + 1))

= µ(∆f(n1, n2) − ∆f(n1 − 1, n2))

= µD1∆f(n1 − 1, n2) ≥ 0.

The first inequality follows from D1f(n1, n2) increasing in n1 for f ∈ V (prop-

erty P6). The last inequality follows from D1∆f(x1, x2) ≥ 0 for f ∈ V

and x1 ≥ x2. This condition holds if n1 ≥ n2 + 1. If n1 = n2 = n, then

D1∆f(n− 1, n) = −∆f(n, n + 1) ≥ 0 from properties P1(b) and P5.
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Case c: n1 = n2 = 0.

T3f(n1 + 2, n2) − T3f(n1 + 1, n2 + 1) − T3f(n1 + 1, n2) + T3f(n1, n2 + 1)

= µcf(1, 0) + (2µ− µc)f(2, 0)

−µf(1, 0) − µf(0, 1)

−µcf(0, 0) − (2µ− µc)f(1, 0)

+µcf(0, 0) + (2µ− µc)f(0, 1)

≥ µcf(1, 0) + (2µ− µc)f(2, 0)

−µcf(1, 0) − (2µ− µc)f(1, 1)

−µcf(0, 0) − (2µ− µc)f(1, 0)

+µcf(0, 0) + (2µ− µc)f(0, 1)

= (2µ− µc)(f(2, 0) − f(1, 1) − f(1, 0) + f(0, 1))

= (2µ− µc)D1∆f(0, 0) ≥ 0.

The first inequality follows from the optimality of splitting the servers when both

queues are not empty. The second inequality follows from D1∆f(n1, n2) ≥ 0

for f ∈ V and n1 ≥ n2 ≥ 0.

Lemma 11. If f ∈ V and n1, n2 ≥ 0, then ∆(2)Tf(n1, n2) ≥ 0 (property P3).

Proof. We begin by rewriting ∆(2)Tf(n1, n2) as the sum of three terms,

∆(2)Tf(n1, n2) = λ∆(2)T1f(n1, n2) + λ∆(2)T2f(n1, n2) + ∆(2)T3f(n1, n2).

We will show that each of the terms, ∆(2)T1f(n1, n2),∆
(2)T2f(n1, n2), and ∆(2)T3f(n1, n2),

are nonnegative.
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Part 1: ∆(2)T1f(n1, n2) ≥ 0.

∆(2)T1f(n1, n2) = ∆T1f(n1 + 1, n2) − ∆T1f(n1, n2 + 1)

= T1f(n1 + 2, n2) − T1f(n1 + 1, n2 + 1)

−T1f(n1 + 1, n2 + 1) + T1f(n1, n2 + 2)

= min

⎛⎜⎝ f(n1 + 3, n2)

f(n1 + 2, n2 + 1) + r

⎞⎟⎠− min

⎛⎜⎝ f(n1 + 2, n2 + 1)

f(n1 + 1, n2 + 2) + r

⎞⎟⎠
−min

⎛⎜⎝ f(n1 + 2, n2 + 1)

f(n1 + 1, n2 + 2) + r

⎞⎟⎠ + min

⎛⎜⎝ f(n1 + 1, n2 + 2)

f(n1, n2 + 3) + r

⎞⎟⎠
It is sufficient to show the following cases to be non-negative.

Case T1f(n1 + 2, n2) T1f(n1, n2 + 2)

a f(n1 + 3, n2) f(n1 + 1, n2 + 2)

b f(n1 + 2, n2 + 1) + r f(n1 + 1, n2 + 2)

c f(n1 + 2, n2 + 1) + r f(n1, n2 + 3) + r

The case where T1f(n1 +2, n2) = f(n1 +3, n2) and T1f(n1, n2 +2) = f(n1, n2 +3)+ r

is not allowed since it implies that we route arrivals from queue 1 to queue 2 in state

(n1, n2 +2), but not in state (n1 +2, n2). This violates the optimal routing policy for

f ∈ V . Specifically, the condition ∆(2)f(n1, n2) ≥ 0 is violated and it is not necessary

to verify nonnegativity for this case.
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Case a: T1f(n1 +2, n2) = f(n1 +3, n2) and T1f(n1, n2 +2) = f(n1 +1, n2 +2).

∆(2)T1f(n1, n2) = f(n1 + 3, n2) − T1f(n1 + 1, n2 + 1)

− T1f(n1 + 1, n2 + 1) + f(n1 + 1, n2 + 2)

≥ f(n1 + 3, n2) − f(n1 + 2, n2 + 1)

− f(n1 + 2, n2 + 1) + f(n1 + 1, n2 + 2)

= ∆f(n1 + 2, n2) − ∆f(n1 + 1, n2 + 1)

= ∆(2)f(n1 + 1, n2) ≥ 0

since ∆(2)f(n1, n2) ≥ 0 for f ∈ V .

Case b: T1f(n1 + 2, n2) = f(n1 + 2, n2 + 1) + r and T1f(n1, n2 + 2) = f(n1 +

1, n2 + 2).

∆(2)T1f(n1, n2) = f(n1 + 2, n2 + 1) + r − T1f(n1 + 1, n2 + 1)

− T1f(n1 + 1, n2 + 1) + f(n1 + 1, n2 + 2)

≥ f(n1 + 2, n2 + 1) + r − f(n1 + 2, n2 + 1)

− f(n1 + 1, n2 + 2) − r + f(n1 + 1, n2 + 2)

= 0

Case c: T1f(n1 +2, n2) = f(n1 +2, n2 +1)+ r and T1f(n1, n2 +2) = f(n1, n2 +
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3) + r.

∆(2)T1f(n1, n2) = f(n1 + 2, n2 + 1) + r − T1f(n1 + 1, n2 + 1)

− T1f(n1 + 1, n2 + 1) + f(n1, n2 + 3) + r

≥ f(n1 + 2, n2 + 1) + r − f(n1 + 1, n2 + 2) − r

− f(n1 + 1, n2 + 2) − r + f(n1, n2 + 3) + r

= ∆f(n1 + 1, n2 + 1) − ∆f(n1, n2 + 2)

= ∆(2)f(n1, n2 + 1) ≥ 0

since ∆(2)f(n1, n2) ≥ 0 for f ∈ V .

Part 2: ∆(2)T2f(n1, n2) ≥ 0.

∆(2)T2f(n1, n2) = ∆T2f(n1 + 1, n2) − ∆T2f(n1, n2 + 1)

= T2f(n1 + 2, n2) − T2f(n1 + 1, n2 + 1)

−T2f(n1 + 1, n2 + 1) + T2f(n1, n2 + 2)

= min

⎛⎜⎝ f(n1 + 3, n2) + r

f(n1 + 2, n2 + 1)

⎞⎟⎠− min

⎛⎜⎝ f(n1 + 2, n2 + 1) + r

f(n1 + 1, n2 + 2)

⎞⎟⎠
−min

⎛⎜⎝ f(n1 + 2, n2 + 1) + r

f(n1 + 1, n2 + 2)

⎞⎟⎠ + min

⎛⎜⎝ f(n1 + 1, n2 + 2) + r

f(n1, n2 + 3)

⎞⎟⎠
It is sufficient to show the following cases to be non-negative.

Case T2f(n1 + 2, n2) T2f(n1, n2 + 2)

a f(n1 + 3, n2) + r f(n1 + 1, n2 + 2) + r

b f(n1 + 2, n2 + 1) f(n1 + 1, n2 + 2) + r

c f(n1 + 2, n2 + 1) f(n1, n2 + 3)

The case where T2f(n1 +2, n2) = f(n1 +3, n2)+ r and T2f(n1, n2 +2) = f(n1, n2 +3)
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is not allowed since it implies that we route arrivals from queue 2 to queue 1 in state

(n1 + 2, n2), but not in state (n1, n2 + 2). This violates the optimal routing policy for

f ∈ V . Specifically, the condition ∆(2)f(n1, n2) ≥ 0 is violated and it is not necessary

to verify nonnegativity for this case.

Case a: T2f(n1 +2, n2) = f(n1 +3, n2)+r and T2f(n1, n2 +2) = f(n1 +1, n2 +

2) + r.

∆(2)T2f(n1, n2) = f(n1 + 3, n2) + r − T2f(n1 + 1, n2 + 1)

− T2f(n1 + 1, n2 + 1) + f(n1 + 1, n2 + 2) + r

≥ f(n1 + 3, n2) + r − f(n1 + 2, n2 + 1) − r

− f(n1 + 2, n2 + 1) − r + f(n1 + 1, n2 + 2) + r

= ∆f(n1 + 2, n2) − ∆f(n1 + 1, n2 + 1)

= ∆(2)f(n1 + 1, n2) ≥ 0

since ∆(2)f(n1, n2) ≥ 0 for f ∈ V .

Case b: T2f(n1 +2, n2) = f(n1 +2, n2 +1) and T2f(n1, n2 +2) = f(n1 +1, n2 +

2) + r.

∆(2)T2f(n1, n2) = f(n1 + 2, n2 + 1) − T2f(n1 + 1, n2 + 1)

− T2f(n1 + 1, n2 + 1) + f(n1 + 1, n2 + 2) + r

≥ f(n1 + 2, n2 + 1) − f(n1 + 2, n2 + 1) − r

− f(n1 + 1, n2 + 2) + f(n1 + 1, n2 + 2) + r

= 0
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Case c: T2f(n1 +2, n2) = f(n1 +2, n2 +1) and T2f(n1, n2 +2) = f(n1, n2 +3).

∆(2)T2f(n1, n2) = f(n1 + 2, n2 + 1) − T2f(n1 + 1, n2 + 1)

− T2f(n1 + 1, n2 + 1) + f(n1, n2 + 3)

≥ f(n1 + 2, n2 + 1) − f(n1 + 1, n2 + 2)

− f(n1 + 1, n2 + 2) + f(n1, n2 + 3)

= ∆f(n1 + 1, n2 + 1) − ∆f(n1, n2 + 2)

= ∆(2)f(n1, n2 + 1) ≥ 0

since ∆(2)f(n1, n2) ≥ 0 for f ∈ V .

Part 3: ∆(2)T3f(n1, n2) ≥ 0.

∆(2)T3f(n1, n2) = ∆T3f(n1 + 1, n2) − ∆T3f(n1, n2 + 1)

= T3f(n1 + 2, n2) − T3f(n1 + 1, n2 + 1)

−T3f(n1 + 1, n2 + 1) + T3f(n1, n2 + 2)

=

⎡⎢⎣ µf(n1 + 1, n2) + µf(n1 + 2, n2 − 1) if n2 ≥ 1

µcf(n1 + 1, n2) + (2µ− µc)f(n1 + 2, n2) if n2 = 0

⎤⎥⎦
−µf(n1, n2 + 1) − µf(n1 + 1, n2)

−µf(n1, n2 + 1) − µf(n1 + 1, n2)

+ min

⎡⎢⎣ µf(n1 − 1, n2 + 2) + µf(n1, n2 + 1) if n1 ≥ 1

µcf(n1, n2 + 1) + (2µ− µc)f(n1, n2 + 2) if n1 = 0

⎤⎥⎦
It is sufficient to show the following four cases to be non-negative.

Case a: n1, n2 ≥ 1.

∆(2)T3f(n1, n2) = µ(f(n1 + 1, n2) + f(n1 + 2, n2 − 1)) − µ(f(n1, n2 + 1) + f(n1 + 1, n2))

−µ(f(n1, n2 + 1) + f(n1 + 1, n2)) + µ(f(n1 − 1, n2 + 2) + f(n1, n2 + 1))
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= µ(∆f(n1, n2) − ∆f(n1 − 1, n2 + 1) + ∆f(n1 + 1, n2 − 1) − ∆f(n1, n2))

= µ(∆(2)f(n1 − 1, n2) + ∆(2)f(n1, n2 − 1)) ≥ 0

since ∆(2)f(n1, n2) ≥ 0 for f ∈ V .

Case b: n1 = 0, n2 ≥ 1.

∆(2)T3f(n1, n2) = µ(f(n1 + 1, n2) + f(n1 + 2, n2 − 1)) − T3f(n1 + 1, n2 + 1)

−T3f(n1 + 1, n2 + 1) + µcf(n1, n2 + 1) + (2µ− µc)f(n1, n2 + 2)

≥ µ(f(n1 + 1, n2) + f(n1 + 2, n2 − 1)

−f(n1, n2 + 1) − f(n1 + 1, n2))

−µcf(n1 + 1, n2) − (2µ− µc)f(n1 + 1, n2 + 1)

+µcf(n1, n2 + 1) + (2µ− µc)f(n1, n2 + 2)

= −(µc − µ)∆f(n1, n2) − (2µ− µc)∆f(n1, n2 + 1)

+µ∆f(n1 + 1, n2 − 1)

≥ −(µc − µ)∆f(n1, n2) − (2µ− µc)∆f(n1, n2)

+µ∆f(n1 + 1, n2 − 1)

= µ(∆f(n1 + 1, n2 − 1) − ∆f(n1, n2)

= ∆(2)f(n1, n2 − 1) ≥ 0

for f ∈ V . The first inequality follows from the optimality of splitting the

servers in state (n1 + 1, n2 + 1): µcf(n1 + 1, n2) + (2µ− µc)f(n1 + 1, n2 + 1) ≥
µ(f(n1, n2 + 1) + f(n1 + 1, n2)). The second inequality follows from ∆f(n1, n2)

decreasing in n2 for n2 > n1 and f ∈ V (property P2(b)).

Case c: n1 ≥ 1, n2 = 0.

∆(2)T3f(n1, n2) = µcf(n1 + 1, n2) + (2µ− µc)f(n1 + 2, n2)
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−T3f(n1 + 1, n2 + 1) − T3f(n1 + 1, n2 + 1)

+µ(f(n1 − 1, n2 + 2) + f(n1, n2 + 1))

≥ µcf(n1 + 1, n2) + (2µ− µc)f(n1 + 2, n2)

−µf(n1, n2 + 1) − µf(n1 + 1, n2)

−µcf(n1, n2 + 1) − (2µ− µc)f(n1 + 1, n2 + 1)

+µ(f(n1 − 1, n2 + 2) + f(n1, n2 + 1))

= (µc − µ)(f(n1 + 1, n2) − f(n1, n2 + 1))

+(2µ− µc)(f(n1 + 2, n2) − f(n1 + 1, n2 + 1))

−µ(f(n1, n2 + 1) − f(n1 − 1, n2 + 2))

≥ (µc − µ)(f(n1 + 1, n2) − f(n1, n2 + 1))

+(2µ− µc)(f(n1 + 1, n2) − f(n1, n2 + 1))

−µ(f(n1, n2 + 1) − f(n1 − 1, n2 + 2))

= µ(f(n1 + 1, n2) − f(n1, n2 + 1)

−f(n1, n2 + 1) + f(n1 − 1, n2 + 2))

= µ(∆f(n1, n2) − ∆f(n1 − 1, n2 + 1))

= µ∆(2)f(n1 − 1, n2) ≥ 0

for f ∈ V . The first inequality follows from the optimality of splitting the

servers in state (n1 + 1, n2 + 1): µcf(n1 + 1, n2) + (2µ− µc)f(n1 + 1, n2 + 1) ≥
µ(f(n1, n2 + 1) + f(n1 + 1, n2)). The second inequality follows from ∆f(n1, n2)

increasing in n1 for n1 > n2 and f ∈ V (property P2(a)).

Case d: n1 = n2 = 0.

∆(2)T3f(n1, n2) = µcf(n1 + 1, n2) + (2µ− µc)f(n1 + 2, n2)

−T3f(n1 + 1, n2 + 1) − T3f(n1 + 1, n2 + 1)
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+µcf(n1, n2 + 1) + (2µ− µc)f(n1, n2 + 2)

≥ µcf(n1 + 1, n2) + (2µ− µc)f(n1 + 2, n2)

−µcf(n1, n2 + 1) − (2µ− µc)f(n1 + 1, n2 + 1)

−µcf(n1 + 1, n2) − (2µ− µc)f(n1 + 1, n2 + 1)

+µcf(n1, n2 + 1) + (2µ− µc)f(n1, n2 + 2)

= (2µ− µc)(∆f(n1 + 1, n2) − ∆f(n1, n2 + 1))

= (2µ− µc)∆
(2)f(n1, n2) ≥ 0

The first inequality follows from the optimality of splitting the servers in state

(n1 +1, n2 +1). The second inequality follows from ∆(2)f(n1, n2) ≥ 0 for f ∈ V

and the proof is complete.

Lemma 12. If f ∈ V then Tf(n,m) = Tf(m,n) (property P5).

Proof. Note that Tf(n,m) = h(n+m)+λT1f(n,m)+λT2f(n,m)+T3f(n,m). First,

we show that T1f(n,m) + T2f(n,m) − T1f(m,n) − T2f(m,n) = 0.

T1vi(n,m) + T2f(n,m) − T1f(m,n) − T2f(m,n)

= min

⎛⎜⎝ f(n+ 1, m)

f(n,m+ 1) + r

⎞⎟⎠ + min

⎛⎜⎝ f(n+ 1, m) + r

f(n,m+ 1)

⎞⎟⎠
− min

⎛⎜⎝ f(m+ 1, n)

f(m,n+ 1) + r

⎞⎟⎠− min

⎛⎜⎝ f(m+ 1, n) + r

f(n, n+ 1)

⎞⎟⎠
= 0

since min[f(n+1, m), f(n,m+1)+r] = min[f(m+1, n)+r, f(n, n+1)] and min[f(n+

1, m) + r, f(n,m+ 1)] = min[f(m+ 1, n), f(m,n+ 1) + r] by symmetry of the value

function.
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We now show T3f(n,m) = T3f(m,n). There are two cases to check.

Case 1: m,n ≥ 1.

T3f(n,m) − T3f(m,n) = µ(f(n− 1, m) + f(n,m− 1)) − µ(f(m− 1, n) + f(m,n− 1))

= µ(f(n− 1, m) + f(n,m− 1) − f(n,m− 1) − f(n− 1, m)) = 0

The second equality follows from symmetry for f ∈ V .

Case 2: m ≥ 1, n = 0.

T3f(0, m) − T3f(m, 0) = µcf(0, m− 1) + (2µ− µc)f(0, m)

− µcf(m− 1, 0) − (2µ− µc)f(m, 0)

= µc(f(0, m− 1) − f(0, m− 1)) + (2µ− µc)(f(0, m) − f(0, m)) = 0

The second equality follows from symmetry, for f ∈ V .

Thus, Tf(n,m) = Tf(m,n) for all f ∈ V .

Lemma 13. (Property P6) For all f ∈ V ,

(i) D
(2)
1 Tf(n1, n2) ≥ 0 for n1, n2 ≥ 0.

(ii) D
(2)
2 Tf(n1, n2) ≥ 0 for n1, n2 ≥ 0.

Proof. We prove part (i). Part (ii) will follow by symmetry. Begin by rewriting

D
(2)
1 Tf(n1, n2) as the sum of three terms.

D
(2)
1 Tf(n1, n2) = λD

(2)
1 T1f(n1, n2) + λD

(2)
1 T2f(n1, n2) +D

(2)
1 T3f(n1, n2)

We will show that each of these terms is nonnegative for all f ∈ V .
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Part 1: D
(2)
1 T1f(n1, n2) ≥ 0.

D
(2)
1 T1f(n1, n2) = D1T1f(n1 + 1, n2) −D1T1f(n1, n2)

= T1f(n1 + 2, n2) − T1f(n1 + 1, n2)

−T1f(n1 + 1, n2) + T1f(n1, n2)

= min[f(n1 + 3, n2), f(n1 + 2, n2 + 1) + r]

−min[f(n1 + 2, n2), f(n1 + 1, n2 + 1) + r]

−min[f(n1 + 2, n2), f(n1 + 1, n2 + 1) + r]

+ min[f(n1 + 1, n2), f(n1, n2 + 1) + r]

It is sufficient to show the following cases to be non-negative.

Case T1f(n1 + 2, n2) T1f(n1, n2)

a f(n1 + 3, n2) f(n1 + 1, n2)

b f(n1 + 2, n2 + 1) + r f(n1 + 1, n2)

c f(n1 + 2, n2 + 1) + r f(n1, n2 + 1) + r

The case where T1f(n1 + 2, n2) = f(n1 + 3, n2) and T1f(n1, n2) = f(n1, n2 + 1) + r is

not allowed since it implies that the firm keeps arrivals at queue 1 in state (n1+2, n2),

but routes arrivals from queue 1 to queue 2 in state (n1, n2). This violates the optimal

routing policy and this case is not considered.

Case a: T1f(n1 + 2, n2) = f(n1 + 3, n2) and T1f(n1, n2) = f(n1 + 1, n2).

D
(2)
1 T1f(n1, n2) = f(n1 + 3, n2) − T1f(n1 + 1, n2)

−T1f(n1 + 1, n2) + f(n1 + 1, n2)

≥ f(n1 + 3, n2) − f(n1 + 2, n2)

−f(n1 + 2, n2) + f(n1 + 1, n2)
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= D1f(n1 + 2, n2) −D1f(n1 + 1, n2)

= D
(2)
1 f(n1 + 1, n2) ≥ 0

follows from property D
(2)
1 f(n1, n2) ≥ 0 for f ∈ V .

Case b: T1f(n1 +2, n2) = f(n1 +2, n2 +1)+ r and T1f(n1, n2) = f(n1 +1, n2).

D
(2)
1 T1f(n1, n2) = f(n1 + 2, n2 + 1) + r − T1f(n1 + 1, n2)

−T1f(n1 + 1, n2) + f(n1 + 1, n2)

≥ f(n1 + 2, n2 + 1) + r − f(n1 + 1, n2 + 1) − r

−f(n1 + 2, n2) + f(n1 + 1, n2)

= D2f(n1 + 2, n2) −D2f(n1 + 1, n2)

= D12f(n1 + 1, n2) ≥ 0

follows from property P7, D12f(n1, n2) ≥ 0 for f ∈ V .

Case c: T1f(n1+2, n2) = f(n1+2, n2+1)+r and T1f(n1, n2) = f(n1, n2+1)+r.

D
(2)
1 T1f(n1, n2) = f(n1 + 2, n2 + 1) + r − T1f(n1 + 1, n2)

−T1f(n1 + 1, n2) + f(n1, n2 + 1) + r

≥ f(n1 + 2, n2 + 1) + r − f(n1 + 1, n2 + 1) − r

−f(n1 + 1, n2 + 1) − r + f(n1, n2 + 1) + r

= D1f(n1 + 1, n2 + 1) −D1f(n1, n2 + 1)

= D
(2)
1 f(n1, n2 + 1) ≥ 0

follows from property D
(2)
1 f(n1, n2) ≥ 0 for f ∈ V .
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Part 2: D
(2)
1 T2f(n1, n2) ≥ 0.

D
(2)
1 T2f(n1, n2) = D1T2f(n1 + 1, n2) −D1T2f(n1, n2)

= T2f(n1 + 2, n2) − T2f(n1 + 1, n2)

−T2f(n1 + 1, n2) + T2f(n1, n2)

= min[f(n1 + 3, n2) + r, f(n1 + 2, n2 + 1)]

−min[f(n1 + 2, n2) + r, f(n1 + 1, n2 + 1)]

−min[f(n1 + 2, n2) + r, f(n1 + 1, n2 + 1)]

+ min[f(n1 + 1, n2) + r, f(n1, n2 + 1)]

It is sufficient to show the following cases to be non-negative.

Case T2f(n1 + 2, n2) T2f(n1, n2)

a f(n1 + 3, n2) + r f(n1 + 1, n2) + r

b f(n1 + 2, n2 + 1) f(n1 + 1, n2) + r

c f(n1 + 2, n2 + 1) f(n1, n2 + 1)

The case where T2f(n1 + 2, n2) = f(n1 + 3, n2) + r and T2f(n1, n2) = f(n1, n2 + 1)

is not allowed since it implies that the firm routes arrivals from queue 2 to queue 1

in state (n1 + 2, n2) but keeps arrivals at queue 2 in state (n1, n2). This violates the

optimal routing policy and this case is not considered.

Case a: T2f(n1 +2, n2) = f(n1 +3, n2)+ r and T2f(n1, n2) = f(n1 +1, n2)+ r.

D
(2)
1 T2f(n1, n2) = f(n1 + 3, n2) + r − T2f(n1 + 1, n2)

−T2f(n1 + 1, n2) + f(n1 + 1, n2) + r

≥ f(n1 + 3, n2) + r − f(n1 + 2, n2) − r

−f(n1 + 2, n2) − r + f(n1 + 1, n2) + r
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= D1f(n1 + 2, n2) −D1f(n1 + 1, n2)

= D
(2)
1 f(n1 + 1, n2) ≥ 0

follows from property D
(2)
1 f(n1, n2) ≥ 0 for f ∈ V .

Case b: T2f(n1 +2, n2) = f(n1 +2, n2 +1) and T1f(n1, n2) = f(n1 +1, n2)+ r.

D
(2)
1 T2f(n1, n2) = f(n1 + 2, n2 + 1) − T2f(n1 + 1, n2)

−T2f(n1 + 1, n2) + f(n1 + 1, n2) + r

≥ f(n1 + 2, n2 + 1) − f(n1 + 1, n2 + 1) − r

−f(n1 + 2, n2) + f(n1 + 1, n2) + r

= D2f(n1 + 2, n2) −D2f(n1 + 1, n2)

= D12f(n1 + 1, n2) ≥ 0

follows from property P7, D12f(n1, n2) ≥ 0 for f ∈ V .

Case c: T2f(n1 + 2, n2) = f(n1 + 2, n2 + 1) and T1f(n1, n2) = f(n1, n2 + 1).

D
(2)
1 T2f(n1, n2) = f(n1 + 2, n2 + 1) − T2f(n1 + 1, n2)

−T2f(n1 + 1, n2) + f(n1, n2 + 1)

≥ f(n1 + 2, n2 + 1) − f(n1 + 1, n2 + 1)

−f(n1 + 1, n2 + 1) + f(n1, n2 + 1)

= D1f(n1 + 1, n2 + 1) −D1f(n1, n2 + 1)

= D
(2)
1 f(n1, n2 + 1) ≥ 0

follows from property D
(2)
1 f(n1, n2) ≥ 0 for f ∈ V .
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Part 3: D
(2)
1 T3f(n1, n2) ≥ 0. We now show that D

(2)
1 T3f(n1, n2) ≥ 0.

D
(2)
1 T3f(n1, n2) = D1T3f(n1 + 1, n2) −D1T3f(n1, n2)

= T3f(n1 + 2, n2) − T3f(n1 + 1, n2)

−T3f(n1 + 1, n2) + T3f(n1, n2)

=

⎡⎢⎣ µf(n1 + 1, n2) + µf(n1 + 2, n2 − 1) if n2 ≥ 1

µcf(n1 + 1, n2) + (2µ− µc)f(n1 + 2, n2) if n2 = 0

⎤⎥⎦
−

⎡⎢⎣ µf(n1, n2) + µf(n1 + 1, n2 − 1) if n2 ≥ 1

µcf(n1, n2) + (2µ− µc)f(n1 + 1, n2) if n2 = 0

⎤⎥⎦
−

⎡⎢⎣ µf(n1, n2) + µf(n1 + 1, n2 − 1) if n2 ≥ 1

µcf(n1, n2) + (2µ− µc)f(n1 + 1, n2) if n2 = 0

⎤⎥⎦

+

⎡⎢⎢⎢⎢⎢⎢⎢⎣

µf(n1 − 1, n2) + µf(n1, n2 − 1) if n1, n2 ≥ 1

µcf(n1 − 1, n2) + (2µ− µc)f(n1, n2) if n1 ≥ 1, n2 = 0

µcf(n1, n2 − 1) + (2µ− µc)f(n1, n2) if n1 = 0, n2 ≥ 1

2µf(n1, n2) if n1, n2 = 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
It is sufficient to show the following cases to be non-negative.

Case a: n1, n2 ≥ 1.

D
(2)
1 T3f(n1, n2) = µ(f(n1 + 1, n2) + f(n1 + 2, n2 − 1)

−f(n1, n2) − f(n1 + 1, n2 − 1)

−f(n1, n2) − f(n1 + 1, n2 − 1)

+f(n1 − 1, n2) + f(n1, n2 − 1))

= µ(D1f(n1, n2) −D1f(n1 − 1, n2)

+D1f(n1 + 1, n2 − 1) −D1f(n1, n2 − 1))

= µ(D
(2)
1 f(n1 − 1, n2) +D

(2)
1 f(n1, n2 − 1))
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≥ 0

since D
(2)
1 f(n1, n2) ≥ 0 for f ∈ V .

Case b: n1 ≥ 1, n2 = 0.

D
(2)
1 T3f(n1, n2) = µc(D1f(n1, n2) −D1f(n1 − 1, n2))

+(2µ− µc)(D1f(n1 + 1, n2) −D1f(n1, n2))

= µcD
(2)
1 f(n1 − 1, n2) + (2µ− µc)D

(2)
1 f(n1, n2)

≥ 0

since D
(2)
1 f(n1, n2) ≥ 0 for f(n1, n2) ∈ V .

Case c: n1 = 0, n2 ≥ 1.

D
(2)
1 T3f(n1, n2) = µ(f(n1 + 1, n2) + f(n1 + 2, n2 − 1)) − T3f(n1 + 1, n2)

−T3f(n1 + 1, n2) + µcf(n1, n2 − 1) + (2µ− µc)f(n1, n2)

≥ µ(f(n1 + 1, n2) + f(n1 + 2, n2 − 1))

−µ(f(n1, n2) + f(n1 + 1, n2 − 1))

−µcf(n1 + 1, n2 − 1) − (2µ− µc)f(n1 + 1, n2)

+µcf(n1, n2 − 1) + (2µ− µc)f(n1, n2))

= µ(f(n1 + 1, n2) + f(n1 + 2, n2 − 1)

−f(n1, n2) − f(n1 + 1, n2 − 1))

−µc(f(n1 + 1, n2 − 1) − f(n1, n2 − 1))

−(2µ− µc)(f(n1 + 1, n2) − f(n1, n2))

= µ(f(n1 + 1, n2) + f(n1 + 2, n2 − 1)

−f(n1, n2) − f(n1 + 1, n2 − 1)
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−f(n1 + 1, n2 − 1) + f(n1, n2 − 1))

−(µc − µ)(f(n1 + 1, n2 − 1) − f(n1, n2 − 1))

−(2µ− µc)(f(n1 + 1, n2) − f(n1, n2))

≥ µ(f(n1 + 1, n2) + f(n1 + 2, n2 − 1)

−f(n1, n2) − f(n1 + 1, n2 − 1)

−f(n1 + 1, n2 − 1) + f(n1, n2 − 1))

−(µc − µ)(f(n1 + 1, n2) − f(n1, n2))

−(2µ− µc)(f(n1 + 1, n2) − f(n1, n2))

= µ(f(n1 + 2, n2 − 1) − f(n1 + 1, n2 − 1)

−f(n1 + 1, n2 − 1) + f(n1, n2 − 1))

= µ(D1f(n1 + 1, n2 − 1) −D1f(n1, n2 − 1)

= µD
(2)
1 f(n1, n2 − 1) ≥ 0.

The first inequality follows from the optimality of splitting the servers in state

(n1 +1, n2). The second inequality follows from D1f(n1, n2) increasing in n2 for

f(n1, n2) ∈ V (property P7). The last inequality follows from D
(2)
1 f(n1, n2) ≥ 0

for f(n1, n2) ∈ V .

Case d: n1 = n2 = 0. This implies that T3f(n1 + 2, n2) = µcf(1, 0) + (2µ −
µc)f(2, 0), T3f(n1 + 1, n2) = µcf(0, 0) + (2µ − µc)f(1, 0) and T3f(n1, n2) =

µcf(0, 0) + (2µ− µc)f(0, 0).

D
(2)
1 T3f(n1, n2) = µc(f(1, 0) − f(0, 0) − f(0, 0) + f(0, 0))

+(2µ− µc)(f(2, 0) − f(1, 0) − f(1, 0) + f(0, 0))

= µc(f(1, 0) − f(0, 0)) + (2µ− µc)(D1f(1, 0) −D1f(0, 0))

= µc(f(1, 0) − f(0, 0)) + (2µ− µc)D
(2)
1 f(0, 0) ≥ 0
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since f(n1, n2) is increasing in n1 and D
(2)
1 f(n1, n2) ≥ 0 for f ∈ V and the proof

is complete.

Lemma 14. If f ∈ V , then D12Tf(n1, n2) ≥ 0 for n1, n2 ≥ 0 (property P7).

Proof. Part 1: D12T1f(n1, n2) ≥ 0

D12T1f(n1, n2) = D1T1f(n1, n2 + 1) −D1T1f(n1, n2)

= T1f(n1 + 1, n2 + 1) − T1f(n1, n2 + 1)

−T1f(n1 + 1, n2) + T1f(n1, n2)

= min[f(n1 + 2, n2 + 1), f(n1 + 1, n2 + 2) + r]

−min[f(n1 + 1, n2 + 1), f(n1, n2 + 2) + r]

−min[f(n1 + 2, n2), f(n1 + 1, n2 + 1) + r]

+ min[f(n1 + 1, n2), f(n1, n2 + 1) + r]

It is sufficient to verify the following four cases for nonnegativity.

Case T1f(n1 + 1, n2 + 1) T1f(n1, n2)

a f(n1 + 2, n2 + 1) f(n1 + 1, n2)

b f(n1 + 2, n2 + 1) f(n1, n2 + 1) + r

c f(n1 + 1, n2 + 2) + r f(n1 + 1, n2)

d f(n1 + 1, n2 + 2) + r f(n1, n2 + 1) + r

Case a: T1f(n1 +1, n2 +1) = f(n1 +2, n2 +1) and T1f(n1, n2) = f(n1 +1, n2).

D12T1f(n1, n2) = f(n1 + 2, n2 + 1) − T1f(n1, n2 + 1)

−T1f(n1 + 1, n2) + f(n1 + 1, n2)

≥ f(n1 + 2, n2 + 1) − f(n1 + 1, n2 + 1)
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−f(n1 + 2, n2) + f(n1 + 1, n2)

= D1f(n1 + 1, n2 + 1) −D1f(n1 + 1, n2)

= D12f(n1 + 1, n2) ≥ 0

follows from property D12f(n1, n2) ≥ 0 for f ∈ V .

Case b: T1f(n1+1, n2+1) = f(n1+2, n2+1) and T1f(n1, n2) = f(n1, n2+1)+r.

D12T1f(n1, n2) = f(n1 + 2, n2 + 1) − T1f(n1, n2 + 1)

−T1f(n1 + 1, n2) + f(n1, n2 + 1) + r

≥ f(n1 + 2, n2 + 1) − f(n1 + 1, n2 + 1)

−f(n1 + 1, n2 + 1) + f(n1, n2 + 1)

= D1v(n1 + 1, n2 + 1) −D1v(n1, n2 + 1)

= D
(2)
1 v(n1, n2 + 1) ≥ 0

follows from property P6, D
(2)
1 f(n1, n2) ≥ 0 for f ∈ V .

Case c: T1f(n1+1, n2+1) = f(n1+1, n2+2)+r and T1f(n1, n2) = f(n1+1, n2).

D12T1f(n1, n2) = f(n1 + 1, n2 + 2) + r − T1f(n1, n2 + 1)

−T1f(n1 + 1, n2) + f(n1 + 1, n2)

≥ f(n1 + 1, n2 + 2) − f(n1 + 1, n2 + 1)

−f(n1 + 1, n2 + 1) + f(n1 + 1, n2)

= D2f(n1 + 1, n2 + 1) −D2f(n1 + 1, n2)

= D
(2)
2 f(n1 + 1, n2) ≥ 0

follows from property D
(2)
2 f(n1, n2) ≥ 0 for f ∈ V .
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Case d: T1f(n1 +1, n2 +1) = f(n1 +1, n2 +2)+r and T1f(n1, n2) = f(n1, n2 +

1) + r.

D12T1f(n1, n2) = f(n1 + 1, n2 + 2) + r − T1f(n1, n2 + 1)

−T1f(n1 + 1, n2) + f(n1, n2 + 1) + r

≥ f(n1 + 1, n2 + 2) − f(n1, n2 + 2)

−f(n1 + 1, n2 + 1) + f(n1, n2 + 1)

= D1f(n1, n2 + 2) −D1f(n1, n2 + 1)

= D12f(n1, n2 + 1) ≥ 0

follows from property D12f(n1, n2) ≥ 0 for f ∈ V .

Part 2: D12T2f(n1, n2) ≥ 0.

D12T2f(n1, n2) = D1T2f(n1, n2 + 1) −D1T2f(n1, n2)

= T2f(n1 + 1, n2 + 1) − T2f(n1, n2 + 1)

−T2f(n1 + 1, n2) + T2f(n1, n2)

= min[f(n1 + 2, n2 + 1) + r, f(n1 + 1, n2 + 2)]

−min[f(n1 + 1, n2 + 1) + r, f(n1, n2 + 2)]

−min[f(n1 + 2, n2) + r, f(n1 + 1, n2 + 1)]

+ min[f(n1 + 1, n2) + r, f(n1, n2 + 1)]

It is sufficient to verify the following four cases for nonnegativity.

Case T2f(n1 + 1, n2 + 1) T2f(n1, n2)

a f(n1 + 2, n2 + 1) + r f(n1 + 1, n2) + r

b f(n1 + 2, n2 + 1) + r f(n1, n2 + 1)

c f(n1 + 1, n2 + 2) f(n1 + 1, n2) + r
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d f(n1 + 1, n2 + 2) f(n1, n2 + 1)

Case a: T2f(n1 + 1, n2 + 1) = f(n1 + 2, n2 + 1) + r and T2f(n1, n2) = f(n1 +

1, n2) + r.

D12T2f(n1, n2) = f(n1 + 2, n2 + 1) − T2f(n1, n2 + 1)

−T2f(n1 + 1, n2) + f(n1 + 1, n2)

≥ f(n1 + 2, n2 + 1) + r − f(n1 + 1, n2 + 1) − r

−f(n1 + 2, n2) − r + f(n1 + 1, n2) + r

= D1f(n1 + 1, n2 + 1) −D1f(n1 + 1, n2)

= D12f(n1 + 1, n2) ≥ 0

follows from property D12f(n1, n2) ≥ 0 for f ∈ V .

Case b: T2f(n1+1, n2+1) = f(n1+2, n2+1)+r and T2f(n1, n2) = f(n1, n2+1).

D12T2f(n1, n2) = f(n1 + 2, n2 + 1) + r − T2f(n1, n2 + 1)

−T2f(n1 + 1, n2) + f(n1, n2 + 1)

≥ f(n1 + 2, n2 + 1) + r − f(n1 + 1, n2 + 1) − r

−f(n1 + 1, n2 + 1) + f(n1, n2 + 1)

= D1v(n1 + 1, n2 + 1) −D1v(n1, n2 + 1)

= D
(2)
1 v(n1, n2 + 1) ≥ 0

follows from property P6, D
(2)
1 f(n1, n2) ≥ 0 for f ∈ V .

Case c: T2f(n1+1, n2+1) = f(n1+1, n2+2) and T2f(n1, n2) = f(n1+1, n2)+r.

D12T2f(n1, n2) = f(n1 + 1, n2 + 2) − T2f(n1, n2 + 1)
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−T2f(n1 + 1, n2) + f(n1 + 1, n2) + r

≥ f(n1 + 1, n2 + 2) − f(n1 + 1, n2 + 1) − r

−f(n1 + 1, n2 + 1) + f(n1 + 1, n2) + r

= D2f(n1 + 1, n2 + 1) −D2f(n1 + 1, n2)

= D
(2)
2 f(n1 + 1, n2) ≥ 0

follows from property D
(2)
2 f(n1, n2) ≥ 0 for f ∈ V .

Case d: T1f(n1 +1, n2 +1) = f(n1 +1, n2 +2) and T1f(n1, n2) = f(n1, n2 +1).

D12T2f(n1, n2) = f(n1 + 1, n2 + 2) + r − T2f(n1, n2 + 1)

−T2f(n1 + 1, n2) + f(n1, n2 + 1) + r

≥ f(n1 + 1, n2 + 2) − f(n1, n2 + 2)

−f(n1 + 1, n2 + 1) + f(n1, n2 + 1)

= D1f(n1, n2 + 2) −D1f(n1, n2 + 1)

= D12f(n1, n2 + 1) ≥ 0

follows from property D12f(n1, n2) ≥ 0 for f ∈ V .

Part 3: D12T3f(n1, n2) ≥ 0.

D12T3f(n1, n2) = D1T3f(n1, n2 + 1) −D1T3f(n1, n2)

= T3f(n1 + 1, n2 + 1) − T3f(n1, n2 + 1)

−T3f(n1 + 1, n2) + T3f(n1, n2)

= µf(n1, n2 + 1) + µf(n1 + 1, n2)

−

⎡⎢⎣ µf(n1 − 1, n2 + 1) + µf(n1, n2) if n1 ≥ 1

µcf(n1, n2) + (2µ− µc)f(n1, n2 + 1) if n1 = 0

⎤⎥⎦
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−

⎡⎢⎣ µf(n1, n2) + µf(n1 + 1, n2 − 1) if n2 ≥ 1

µcf(n1, n2) + (2µ− µc)f(n1 + 1, n2) if n2 = 0

⎤⎥⎦

+

⎡⎢⎢⎢⎢⎢⎢⎢⎣

µf(n1 − 1, n2) + µf(n1, n2 − 1) if n1, n2 ≥ 1

µcf(n1 − 1, n2) + (2µ− µc)f(n1, n2) if n1 ≥ 1, n2 = 0

µcf(n1, n2 − 1) + (2µ− µc)f(n1, n2) if n1 = 0, n2 ≥ 1

2µf(n1, n2) if n1, n2 = 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
It is sufficient to verify the following cases for nonnegativity.

Case a: n1, n2 ≥ 1.

D12T3f(n1, n2) = µ(D1f(n1 − 1, n2 + 1) −D1f(n1 − 1, n2)

+D1f(n1, n2) −D1f(n1, n2 − 1))

= µ(D12f(n1 − 1, n2) +D12f(n1, n2 − 1)) ≥ 0

since D12f(n1, n2) ≥ 0 for f ∈ V .

Case b: n1 ≥ 1, n2 = 0.

D12T3f(n1, n2) = µ(f(n1, n2 + 1) + f(n1 + 1, n2)

−f(n1 − 1, n2 + 1) − f(n1, n2))

−µc(f(n1, n2) − f(n1 − 1, n2))

−(2µ− µc)(f(n1 + 1, n2) − f(n1, n2))

= µ(f(n1, n2 + 1) + f(n1 + 1, n2)

−f(n1 − 1, n2 + 1) − f(n1, n2)

+f(n1, n2) − f(n1 − 1, n2)

−f(n1, n2) + f(n1 − 1, n2))

−µc(f(n1, n2) − f(n1 − 1, n2))

81



−(2µ− µc)(f(n1 + 1, n2) − f(n1, n2))

= µ(f(n1, n2 + 1) + f(n1 + 1, n2)

−f(n1 − 1, n2 + 1) − f(n1, n2)

−f(n1, n2) + f(n1 − 1, n2))

−(µc − µ)(f(n1, n2) − f(n1 − 1, n2))

−(2µ− µc)(f(n1 + 1, n2) − f(n1, n2))

≥ µ(f(n1, n2 + 1) + f(n1 + 1, n2)

−f(n1 − 1, n2 + 1) − f(n1, n2)

−f(n1, n2) + f(n1 − 1, n2))

−(µc − µ)(f(n1 + 1, n2) − f(n1, n2))

−(2µ− µc)(f(n1 + 1, n2) − f(n1, n2))

= µ(f(n1, n2 + 1) + f(n1 + 1, n2)

−f(n1 − 1, n2 + 1) − f(n1, n2)

−f(n1, n2) + f(n1 − 1, n2)

−f(n1 + 1, n2) + f(n1, n2))

= µ(f(n1, n2 + 1) − f(n1, n2)

−f(n1 − 1, n2 + 1) + f(n1 − 1, n2))

= µ(D1f(n1 − 1, n2 + 1) −D1f(n1 − 1, n2))

= µ(D12f(n1 − 1, n2)) ≥ 0.

The first inequality follows from D1f(n1, n2) increasing in n1 (property P6).

The second inequality follows from D12f(n1, n2) ≥ 0 for f ∈ V .

Case c: n1 = 0, n2 ≥ 1.

D12T3f(n1, n2) = µ(f(n1, n2 + 1) + f(n1 + 1, n2)
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−f(n1, n2) − f(n1 + 1, n2 − 1))

−µc(f(n1, n2) − f(n1, n2 − 1))

−(2µ− µc)(f(n1, n2 + 1) − f(n1, n2))

= µ(f(n1, n2 + 1) + f(n1 + 1, n2)

−f(n1, n2) − f(n1 + 1, n2 − 1)

+f(n1, n2) − f(n1, n2 − 1)

−f(n1, n2) + f(n1, n2 − 1))

−µc(f(n1, n2) − f(n1, n2 − 1))

−(2µ− µc)(f(n1, n2 + 1) − f(n1, n2))

= µ(f(n1, n2 + 1) + f(n1 + 1, n2)

−f(n1, n2) − f(n1 + 1, n2 − 1)

−f(n1, n2) + f(n1, n2 − 1))

−(µc − µ)(f(n1, n2) − f(n1, n2 − 1))

−(2µ− µc)(f(n1, n2 + 1) − f(n1, n2))

≥ µ(f(n1, n2 + 1) + f(n1 + 1, n2)

−f(n1, n2) − f(n1 + 1, n2 − 1)

−f(n1, n2) + f(n1, n2 − 1))

−(µc − µ)(f(n1, n2 + 1) − f(n1, n2))

−(2µ− µc)(f(n1, n2 + 1) − f(n1, n2))

= µ(f(n1 + 1, n2) − f(n1, n2)

−f(n1 + 1, n2 − 1) + f(n1, n2 − 1))

= µ(D1f(n1, n2) −D1f(n1, n2 − 1))

= µD12f(n1, n2 − 1)) ≥ 0.

The first inequality follows from D2f(n1, n2) increasing in n2 (property P6).
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The second inequality follows from D12f(n1, n2) ≥ 0 for f ∈ V .

Case d: n1 = 0, n2 = 0.

D12T3f(n1, n2) = µf(0, 1) + µf(1, 0) − µcf(0, 0) − (2µ− µc)f(0, 1)

−µcf(0, 0) − (2µ− µc)f(1, 0)

+µcf(0, 0) + (2µ− µc)f(0, 0)

= (µc − µ)(f(1, 0)− f(0, 0) + f(0, 1) − f(0, 0))

≥ 0

since f(n1, n2) is increasing in n1 and n2 for f ∈ V and the proof is complete.
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Chapter 3

Auctions to Learn Consumer Demand for a Product

with a Short Selling Horizon

3.1 Introduction

For a firm selling a new, innovative product, pricing is the crucial step to harvest the

value created in developing and producing the new product. Yet pricing is particu-

larly challenging for an innovative product, whose “newness” can naturally produce

uncertainty about its exact demand distribution. Complicating matters further, ob-

solescence or competitive entry threats can shorten sales horizons during which the

firm can capitalize on its product’s market potential.

As a motivating example, consider SawStop, a small entrepreneurial startup,

which recently developed a table saw with an innovative safety device that stops

the saw blade the instant it contacts human skin. After showcasing its invention at

tradeshows, initial orders were satisfied from SawStop at a price of approximately

$2,850 (Mehler 2005), whereas existing industry lines without the feature sold for

between $1000 and $2,500. Eventually the firm began distributing to specialty wood-

working stores, selling the saw at an MSRP of $3,270 (Johnson 2006). While SawStop

is the first saw with such safety features, an industry trade group, representing large

tool manufacturers (Black & Decker, Bosch, Ryobi, and others), announced that it

expects to have even better guarding mechanisms ready by sometime in 2007 (Skrzy-

cki 2006). With such an innovative product, SawStop had to estimate consumers’
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willingness to pay for this breakthrough safety feature, but do so quickly given the

looming threat of competitive entry.

In this paper we develop a framework and analysis of how a firm, with a product

developed and ready to sell but unsure of consumer demand (willingness to pay), can

strike a balance between two competing desires. On the one hand, the firm wishes

to spend time gathering information on consumer demand with which to determine a

fixed price, and on the other hand, the firm wishes to start mass market sales quickly

to take advantage of the short sales horizon. Because the product has already been

developed and is ready for sale, the firm is able to use a test market approach to

gathering data. Unlike a traditional test market that requires inventory positioned in

test stores and tightly controlled localized conditions (such as prices), we propose an

approach that utilizes online auctions as the test market channel. Online consumer

auctions are popular and growing – eBay had 222 million registered users in 2006

(eBay.com 2007), and by 2010 the online auction industry is expected to reach $65

billion in sales (Johnson and Tesch 2005). In addition to being relatively easy to set

up and run, the key benefit of an online auction test market is the ability to observe

consumer bids instead of just purchase/no purchase decisions.

In our model we divide the selling horizon into two phases: an initial phase in

which the product is sold exclusively by auction and demand information is gathered;

and a secondary stage in which a fixed price is set and the mass market is reached via

posted price retailers (e.g., nation-wide rollout to retailers). To our knowledge, this

study is the first to analytically model auctions to inform a mass-market, fixed-price

selling phase. Balancing the firm’s two competing desires, between information on

the one hand and more time to exploit the market on the other, is the crux of this

research problem, boiling down to a stopping time decision on when to abandon the

auction phase and begin the mass market sales phase.

In making this stopping time decision, we find that the firm must pay close at-
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tention to several key factors. First is its point estimates of purchase probabilities

at various prices, which are driven by observations of consumer bids in the auctions.

Second is the anticipated shape of the mass-market sales trajectory (which reflects

factors such as how the product will diffuse through the marketplace due to inno-

vative and imitative purchases, Bass 1969). Third is the amount of time remaining

in the selling horizon, which, depending on the shape of the sales trajectory, might

encourage or discourage the use of auctions for market research. Furthermore, in us-

ing auctions for market research in this setting, the firm can use a proactive auction

design that eases solution of the inverse problem between bids and willingness to pay,

facilitating purchase probability estimations.

Below we flesh out more context for this work, beginning with background in

auctions for market research and then moving to aspects of dynamic learning and

stopping time literatures.

3.1.1 Auctions for Market Research

A great deal of experimental and empirical work has been conducted using auctions

as a means for market research into willingness to pay, mostly in laboratory settings.

A seminal laboratory study by Hoffman et al. (1993) using products in the packaged

beef industry has been followed by other studies examining willingness to pay for new

products, e.g., pesticide-free fruit (Roosen et al. 1998) and milk produced with the aid

of bovine growth hormone (Fox et al. 1994). Experimental economists have widely

tested how subjects behave in various forms of laboratory auctions (see the text by

Kagel and Roth 1995), as well as how various auctions perform at eliciting “home-

grown” (not induced by the experimenter) willingness-to-pay information (Ruström

1998, Noussair et al. 2004). Econometric analyses of empirical data have taken bid

data from auctions in the field and reverse engineered it to reveal information on par-

ticipants’ willingness to pay; see, for example, the recent text by Paarsch and Hong
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(2006).

Inspired by this lineage of experimental and empirical auction work to estimate

willingness to pay, our paper develops an analytical (as opposed to experimental or

empirical) model of how online auctions might be used for demand learning during

the beginning of a short selling horizon. In an empirical study, Paarsch (1997) used

historical auction field data to suggest an optimal reserve price for government timber

auctions. While similar in spirit to our work, we treat the amount of data gathered

as a decision variable controlled by the firm, who trades off more data (and a better

informed fixed price) against more rapid entry to a mass market having a short selling

horizon. Our use of a segmented explore then exploit approach also distinguishes our

work from two other streams of analytical research on using auctions for demand

learning. In operations management, Pinker et al. (2007) model how observations

of previous auctions can be used to inform future auctions’ lot sizes. In computer

science, approximation algorithms have been developed to decide prices in so-called

on-line auctions whereby bidders arrive sequentially and upon bidding the firm must

immediately decide, based on past bid data, whether to reject or accept the bidder’s

offer (Bar-Yossef et al. 2002). At the other extreme, for the case in which the firm

holds a single auction in which all potential consumers in the market participate, but

the firm does not know the consumer willingness-to-pay distribution, Segal (2003)

creates a mechanism whereby the price for each bidder is set based on a demand

distribution inferred from other bidders’ bids.

In our study, the firm uses auctions for the express purpose of eliciting willingness-

to-pay information from consumers. Using selling mechanisms in such marketing

research experiments has the advantage that actual purchasing decisions can be tested

(as opposed to hypothetical surveys). Auctions, in particular, endogenously reveal

the demand level at various price levels, as opposed to simulated store experiments,

which only reveal demands at whatever fixed price the experimenter has set. But,
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in general, studies of auction experiments (in the lab or field) to elicit consumers’

willingness to pay, of particular interest to marketers, have not paid attention to

issues such as data censoring due to perceived outside options, affiliated beliefs about

the value of such outside options, or affiliated beliefs about the quality of the tested

product itself (Harrison et al. 2004). Such issues, if not controlled with the test

market design, should be addressed when reverse engineering demand information

from collected data. However, from a practical point of view it is likely easier to

attempt to control for these factors via a proactive approach to test market design,

and this motivates the second price sealed-bid auction with rebate introduced in §4.

The second price sealed-bid auction with rebate is a first step at mechanism design

for the express purpose of demand curve learning in field auctions to inform a fixed

price that will be available to consumers later. To our knowledge it is the first

auction mechanism for market research designed to take into account a future fixed

price purchasing opportunity.

That said, our results characterizing how the firm balances the tradeoffs between

more data and a shorter sales horizon, i.e., the stopping time decision, are robust to

whatever format of auction used, provided that the inverse problem mapping bids to

willingness to pay is somehow solved. These results are related to explore and exploit

stopping time literature that we discuss next.

3.1.2 Explore and Exploit

Once a product is ready for sale, demand information can be gathered by observing

actual sales under different conditions, for example, by varying posted prices (see

Balvers and Cosimano 1990 and references to the early literature therein, Aviv and

Pazgal 2005, Lin 2006), inventory levels (e.g., Scarf 1959, Lovejoy 1990, Lariviere and

Porteus 1999, Chen and Plambeck 2005), or product assortment (Caro and Gallien

2007). Our approach differs from these dynamic learning papers. First, we use
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auctions as a sales channel meant to gather demand information to set a fixed price.

Consumer bids in auctions offer more detail on valuations than purchase/no purchase

responses to a fixed price. Furthermore, auction observations are not censored by

inventory stockouts.

Second, in the demand learning literature cited above, the firm controlling pricing

(or inventory) faces a tradeoff between immediate gains by myopic control and future

gains by control which aids learning. For instance, higher posted prices allow the firm

to test the high end of the willingness-to-pay distribution at high per-unit profits, but

censor data from the low end. In our model the firm’s tradeoff is similar in spirit but

quite different in structure from those above. In particular, our firm faces a tradeoff

between short-term losses of product launch delay and long-term gains from demand

learning, where after making the decision to stop auctioning (the control decision

in our model), the firm sells via fixed price and learning ceases. Thus, rather than

continual learning over the short horizon by adjusting prices (or inventory) upwards

and downwards in response to demand history, we adopt a segmented approach more

akin to test market research methods whereby a pure explore phase (auctions) is

followed by a pure exploit phase (fixed price).

In introducing a stopping time problem framework for the use of auctions for

market research, our work is related to sequential learning models in economics and

management science. In the economics literature, for example, studies have analyzed

how the timing of investments by individual firms facing uncertainty affect aggregate

innovation diffusions (Jensen 1982) and economic investment cycles (Bernanke 1983).

In the management science literature, McCardle (1985) studies the adoption of a

new technology option whose profitability can be learned, with the firm sequentially

deciding whether to adopt, reject with a fixed payoff, or continue learning at a cost.

In our setting, the firm chooses among N “options” (prices) which have uncertain

but correlated values. Lippman and McCardle (1991) study a firm facing an infinite

95



number of options of uncertain but independent values; the firm learns about each

option by sequentially collecting costly information, but each option is examined one

at a time and either accepted or permanently discarded. In contrast, a main benefit of

using auctions is that our firm can simultaneously gather information on all N prices

by examining bids. Kornish and Keeney (2008) analyze simultaneous data collection

on two, independent, options, modelling the choice of which of two influenza vaccines

to produce before a flu season. Our model’s short selling season context implies a

finite horizon model, as does Kornish and Keeney’s production planning setting. One

of the key differences between our work and the literature is that the previous papers

all assume that the parameters are independent. In our model, one observation will

change all of the parameters in a way which is interrelated.

As is common in the sequential learning literature, these papers, and ours, specify

threshold results of the following type: “adopt” an option if its expected value based

on current information is high enough. We model the cost of information gathering

as the implicit cost of delaying product launch, which in turn depends upon the

evolution of demand from the moment of launch up to end of the selling horizon;

accordingly, we examine how threshold results depend on demand evolution aspects,

such as product diffusion (Bass 1969).

The remainder of the paper is organized as follows. The model and its assumptions

are described in §3.2. The main results of the chapter, characterizing the firm’s

dynamic decision policy on when to continue the auction phase and when to commence

the mass-market phase, are contained in §3.3. Subsection 3.3.3 discusses the special

case when fixed-price sales follow a diffusion process per the Bass model. Section 3.4

concludes. Proofs of results are included in the Appendix.
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3.2 The Model

We model a risk-neutral, revenue-maximizing firm selling a product over a finite

horizon of length T . In this stylized model, T can be thought of as the demand

window for the new product (Dolan 1993, Cohen et al. 1996), and could model the

time to product obsolescence, the length of the selling season for a fashion product, or

the time until low-cost imitator entry dissolves the firm’s ability to charge a profitable

margin for an innovative product. The firm is uncertain about consumers’ willingness-

to-pay, or valuation distribution, for the product. More precisely, for N possible

prices ordered p1 < p2 < · · · < pN , the firm is uncertain of wi, the true fraction

of customers whose valuation is at least pi. As is standard in sequential learning

problems (McCardle 1985, Kornish and Keeney 2008), we assume that the true wi’s

are static over the horizon, although the firm’s beliefs about the wi’s may change

based on its observations. Each individual consumer’s valuation for the product is

assumed to be private, independent, and identically distributed.

The selling horizon is divided into an auction phase and a fixed price phase.

During the auction phase, the firm updates its beliefs about consumer demand based

on data gathered from the auctions. The firm chooses the time at which to abandon

the auction learning phase and switch to selling to the mass market via a fixed price.

We begin by describing the fixed-price phase.

3.2.1 Fixed-Price Phase

Once a fixed price is set, say at pi, at some time, t ∈ [0, T ], the mass market sales

process begins. We envision this process as capturing sales in whatever fixed price

retail channels the firm chooses to use (e.g., brick and mortar stores, catalogs, inter-

net sales). We define m as the total market potential, that is, the size of the market

segment for which the product is targeted. (For example, for SawStop’s innovative

safety saw, the target market could be a segment from the population of private, com-
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mercial, and educator woodworkers.) Of course, not every consumer in the targeted

market would purchase the product; only those consumers whose valuation for the

product equals or exceeds the price, pi, would make a purchase. If wi is the expected

fraction of consumers willing to purchase the product at price pi, then we say the

market potential for pi is wim.

When the firm sets the price at pi, it cannot necessarily expect to sell wim units

before the end of the time horizon. The rate of market saturation that occurs z time

units after market entry is denoted by a(z), where
∫ T−t

z=0
a(z)dz ≤ 1 represents the

total fraction of the market that can be served over horizon [t, T ], for t the market

entry time and T the end of the horizon. For example, a(z) = λ ≤ 1/T for z ∈ [0, T ]

corresponds to constant market saturation rate of λ at the fixed price channel(s) –

stores, web sites, etc. – yielding an expected sales rate of wimλ. While a(z) could

describe a constant expected rate of sales, a(z) could also be a more general function

of time; one such model, empirically shown to have descriptive and predictive power

for the growth and decline of new product market saturation rates over time, is the

Bass diffusion model (Bass 1969, Mahajan et al. 2000). For generality, we will leave

the form of a(z) unspecified. One exception is §3.3.3, an illustrative section which

applies our results to the case of Bass diffusion. The total number of sales expected

over the horizon [t, T ] is wim
∫ T−t

z=0
a(z)dz. However, a discount rate of r is applied to

future revenue. For convenience we define the market size

M(t) � m

∫ T−t

z=0

a(z)e−rzdz, (3.2.1)

which can be thought of as the discounted revenue the firm would gain from time t

until the end of the horizon if every arriving customer purchased the product for $1.

Given pi and expected purchase fraction wi, the expected discounted future revenue

accruing to the firm upon stopping the auction phase and setting a fixed price at time
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t is equal to piwiM(t).

3.2.2 Auction Phase

The auction phase starts at the beginning of the horizon, i.e., at time t = 0. During

this phase, the firm only sells the product via fixed-duration auctions. We normalize

T such that an auction lasts 1 period. The demand data gathered during an auction

which begins at time t− 1 and ends at time t is summarized by a signal, st, and the

information captured by auctions up to time t is expressed by a sufficient statistic, Bt,

which is a function of (s1, s2, . . . , st) (see DeGroot 1970 for a discussion on sufficient

statistics). The stochastic processes which generate such data are left general, with

exceptions made explicit when needed (Corollaries 1 and 3, and Proposition 2). The

expected fraction of customers who will purchase at prices less than or equal to pi,

conditional on sufficient statistic Bt, is expressed by wi(Bt) = E[wi|Bt]. The firm’s

initial demand information at the beginning of the horizon is described by B0. For

generality, we do not specify the updating scheme used by the firm, but do assume

that point estimates of purchase probabilities are unbiased and take all information

available at time t into account:

E[wi(Bt+1)|Bt] = wi(Bt) for all i = 1, . . . , N. (3.2.2)

That is, point estimates are martingale. Note that all Bayesian updating schemes

satisfy the martingale assumption, but this need not be true in general. For exam-

ple, exponential smoothing, in which more recent data are given larger weights in

determining beliefs, does not satisfy the martingale assumption. Section 3.3.1 pro-

vides an example using Bayesian updating and a multidimensional Beta-multinomial

information structure.

We have not assumed a particular auction format or set of bidder beliefs and
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behaviors for the auction phase; all we assume is that, following each auction, the

firm is able to update its purchase probabilities for each price based on the data

signals it gathers during the auction. In §4 we propose a possible auction format,

specify accompanying assumptions on bidder behavior, and discuss how the updating

problem – essentially an inverse problem mapping bids to willingness to pay – could be

solved. Other auction formats, appropriate to other assumptions on bidder behavior,

could exist – for example, while §4 assumes rational behavior of bidders subject to

that section’s assumptions, other authors have examined computing willingness to pay

from auction data without assuming much in the way of structural bidder rationality

(e.g., Chan et al. 2007).

3.2.3 Firm’s Stopping Time Problem

Since the time horizon is limited, and any amount of time spent holding auctions

subtracts away from the time to sell to the mass market, it is necessary to stop

holding auctions at some point. The firm must choose when to stop gathering demand

information via auctions and commit to a fixed price for mass-market sales. Because

each auction lasts one period, we can cast the firm’s problem as a discrete time

stopping problem with information updating. At stage t, the firm decides between N+

1 alternatives: either commit to one of N fixed prices, {pi}N
i=1, which has an expected

discounted payoff of piwi(Bt)M(t) over the interval [t, T ], or continue auctioning for

at least one more period to gather additional demand information. δ � e−1r is the

discount applied to a payoff delayed one period into the future. Accordingly, the firm

solves the following dynamic program.

Jt(Bt) = max
{

max
j

{pjwj(Bt)M(t)}, δE[Jt+1(Bt+1)|Bt]
}
, (3.2.3)
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with the boundary condition JT (BT ) = 0 ∀ BT . The first expression in equation 3.2.3

is the value of stopping the auction phase, choosing the best price, and entering the

mass market. The second term is the expected value of continuing the auction phase

for one more time period.

Several modeling assumptions tacit in the above dynamic program warrant dis-

cussion before moving on. First, the variable cost to run an auction (running the

auction website) is zero. We relax this assumption in §3.3.4 and examine the case

with nonzero auctioning costs. Second, the model assumes the product’s marginal

cost is zero; a positive, constant marginal cost could easily be incorporated, with the

expected fixed-price profit of price pi becoming (pi − [marginal cost])wi(Bt)M(t).

Third, we do not include inventory holding costs, and it is assumed that the firm

has sufficient capacity or inventory to meet its demand. This is for simplicity, in order

to focus on demand learning for a new product, rather than focusing on issues such

as managing inventory before and after a new product launch. Two papers, Kumar

and Swaminathan (2003) and Ho et al. (2002), have focused on the latter, with a

Bass model backdrop. Both introduce optimal (or near-optimal) policies whereby a

capacitated firm delays launching the product to build an initial inventory stockpile

that mitigates shortages during the selling horizon. The agreement between this

type of policy on the one hand, and our framework of launch delay for learning on

the other, suggests that omitting capacity and inventory decisions from our analysis

would not greatly jeopardize our qualitative insights about demand learning; in fact,

concerns such as capacity limitations may prompt the firm to delay mass-market entry

for reasons beyond demand learning alone, allowing it to gather even more demand

information than it otherwise would.

Fourth, we assume that the mere presence of a test market does not appreciably

affect the underlying demand landscape for the product. That is, demand information

can be gathered from the test-market auctions without influencing the characteristics
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of the demand, namely the size M(t) of the potential mass market that can be reached

(i.e., given the opportunity to purchase) during [t, T ], and the unknown, underlying

distribution of such consumers’ willingness to pay. Intuitively, any test-market sales

(via auctions or any other means) may drive up demand by helping to spread positive

word of mouth for a product, or have an opposite effect if the product is not well

received. We leave such issues to future work, and focus here on learning a latent

demand landscape that is unaffected by the fact that we examine the demand with

a test market. We observe that while demand-influencing effects of test markets may

tend to be encouraged by a large number of test-market sales, auctions tend in the

opposite direction because they sell relatively few items. Note that a single-item

auction may have many bidders but still sell only one item.

Finally, we do not include revenue from the test market within the dynamic pro-

gram. Effectively, this assumes that the test market auction sales will be dwarfed by

mass-market, posted-price sales. To put this into perspective, if a firm sold 40,000

units in a year via the mass market (e.g., through a nation-wide rollout to retailers),

such mass-market sales would occur at an average rate of over 100 units per day.

Intuitively, such a firm is unlikely to indulge in continuing the auction phase simply

to capture additional auction revenue, which comes in at a much slower rate (auctions

held by eBay and other retailers can last over a day, see Lucking-Reiley 2000). Despite

revenue from the auctions not being a key concern, they do offer pricing information

for the many units that will be sold during the mass-market phase. In summary, we

model auctions as market research opportunities prior to mass-market sales of the

product. In this spirit, the auction format for market research introduced in the next

chapter seeks to maximize information gleaned from the auctions, rather than maxi-

mizing per-item auction revenue. (In contrast, the latter is traditionally the objective

of a profit-maximizing auctioneer in the auctions and operations literature.)
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3.3 Analysis of Stopping Time Problem

A firm armed with a method of inverting bids to willingness to pay is in a position

to collect data and update its purchase probability estimates for the N prices. In

general, the auction format or assumptions could require non-identity inversion map-

pings when recovering willingness to pay from observed auction data. However, for

convenience we will refer to bids and willingness to pay interchangeably when dis-

cussing data gained during the auction phase (this interchange will only be precise

in some settings, e.g., the second price with rebate auction format and assumptions

described in §4).

3.3.1 Examples

We begin by providing simple, illustrative examples of updating and the stopping

problem. We first illustrate how Bayesian updating converts bids to purchase proba-

bility estimates when the prior distribution of purchase probabilities comes from the

multidimensional Beta family. Then, we provide a simple example in which the firm

chooses to continue holding auctions rather than stopping and committing to a fixed

price.

Multidimensional Beta-multinomial Bayesian updating. For a set of non-negative pa-

rameters γ0, γ1, . . . , γN , the multidimensional Beta(γ0, . . . , γN) distribution over non-

negative random variables x0, . . . , xN ,
∑

i xi = 1, is defined as

f(x0, x1, . . . , xN) = xγ0−1
0 xγ1−1

1 · · ·xγN−1
N

Γ(γ0 + γ1 + · · ·+ γN)

Γ(γ0)Γ(γ1) · · ·Γ(γN)

where

Γ(k) =

∫ ∞

0

xk−1e−xdx.

For a positive integer argument k, Γ(k) = (k − 1)!. The multidimensional Beta
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distribution can take on a vast variety of shapes, depending on the parameter values.

The multidimensional Beta distribution describes the joint probability of N + 1

mutually exclusive events, where xi is interpreted as the probability of the ith event.

For purchase probabilities w1 ≥ w2 ≥ · · · ≥ wN , the value wi−wi+1 is the probability

of the event that a random customer’s valuation lies in interval [pi − pi+1). Suppose

the initial joint prior distribution of the event probabilities for the N + 1 intervals

[0, p1), [p1, p2), . . . , [pN ,∞) follows Beta(γ0,0, γ1,0, . . . , γN,0),

f(w1, w2, . . . , wN) =

(1−w1)
γ0,0−1(w1−w2)

γ1,0−1 · · · (wN−1−wN)γN−1,0−1w
γN,0−1
N

Γ(γ0,0 + γ1,0 + · · · + γN,0)

Γ(γ0,0)Γ(γ1,0) · · ·Γ(γ0,N)
.

The parameters of this distribution comprise the initial sufficient statistic, in other

words, B0 = (γ0,0, γ1,0, . . . , γN,0). The expected value of wi based on this initial prior

is wi(B0) =
∑

j≥i γj,0/
∑

j γj,0. We next discuss how the prior is updated based upon

the number of bids observed in each of the N + 1 price intervals. (Bayesian updating

with a multidimensional Beta prior is also discussed in Silver 1965.)

Let bt be the number of unique bids (observations) received during the tth auction,

lasting from t− 1 to t. For i = 1, . . . , N − 1 let bi,t be the number of such bids that

are in interval [pi, pi+1), with b0,t the number of bids in [0, p1) and bN,t the number

in [pN ,∞). The true probability that a bid will lie in [pi, pi+1) is wi − wi+1. In other

words, (b0,t, . . . , bN,t) follows a multinomial distribution with N + 1 different event

possibilities and bt trials.

After the tth auction, the parameters of the prior distribution are updated. For

each i, parameter γi,t � γi,t−1 + bi,t. That is, the number of observations made within

the ith price interval is added to the ith interval’s parameter. The new sufficient

statistic is Bt = (γ0,t, γ1,t, . . . , γN,t). At stage t, the expected value of wi, based on

the current prior, is wi(Bt) =
∑

j≥i γj,t/
∑

j γj,t. This estimate for the fraction of
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customers who will purchase at price pi can essentially be thought of as the ratio

of the number of “successes” (valuations observed in interval [pi,∞)), to the total

number of observations, starting from an initial set of parameters B0.

Simple stopping problem. Assume that priors are updated according to the multidi-

mensional Beta-multinomial information structure. Suppose T = 2, with M(0) =

1000, M(1) = 970, and M(2) = 0. The firm has an initial sufficient statistic

B0 = (0.5, 3, 1.5) with the following prices and priors: p1 = 14, p2 = 32, w1(B0) = 0.6,

w2(B0) = 0.3. If the number of arrivals per auction is deterministic and set to 1, and

δ = 1, then at time t = 0, the expected value of continuing for one more auction is

E
[
max {p1w1(B1)M(1), p2w2(B1)M(1)} ∣∣B0

]
= M(1)

(
(1 − w1(B0)) max[7.00, 8.00] + (w1(B0) − w2(B0)) max[9.33, 8.00]

+ w2(B0) max[9.33, 13.33]
)

= 9, 700.

We have used the fact that M(2) = 0 and it is always optimal to stop if t = 1. On

the other hand, if the firm stops at t = 0, the expected profit is

max[p1w1(B0)M(0), p2w2(B0)M(0)] = 9, 600.

In this case, at t = 0, it is optimal to continue the auction for one more period. A nec-

essary, but not sufficient, condition for continuing the auction phase is that additional

information can alter the optimal price choice. In this example, the valuation of the

single additional observed bid is either below p1, between p1 and p2, or above p2, and

the corresponding optimal price for each possibility is p2, p1, and p2, respectively. In

general, the incremental benefit of choosing a better price must be tempered with the

loss in market size (e.g., M(0) vs. M(1)).
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3.3.2 Structure of the Stopping Problem

We now shed light on when is it optimal to stop the auction phase and turn to a fixed

price. We begin by proving structural properties of the stopping time problem, and

then characterize how the dynamics of mass-market sales affect the firm’s decision.

Given the unrestricted richness of the sufficient statistic, Bt, it would be nice to

find a simple 1-dimensional statistic of Bt which admits a threshold optimal stopping

policy. For example, the expected fraction of customers willing to purchase at price

pi, wi(Bt), is a 1-dimensional statistic. However, given the sheer volume of poten-

tial histories, it is possible that vastly different sufficient statistics share the same

purchase probabilities but have different stopping policies. For example, it could be

that wi(B̂t) = wi(Bt), but B̂t describes a history with 10 data points for which gath-

ering more data is optimal, while Bt is describes a history with 10,000 data points

for which new data is likely to have little impact on priors and stopping is optimal.

Thus some common ground between histories, or their sufficient statistics, must be

imposed before a 1-dimensional statistic can admit a stopping threshold. To this end,

define a set of sufficient statistics at time t by Ωt, which, for example, could be the

set of sufficient statistics having 10 data points. If certain behavior over the sufficient

statistics in set Ωt exist, a threshold result can obtain. Below we establish conditions

that ensure a stopping policy threshold exists over the wi(Bt)’s. In the proposition,

Bt+1 and B̂t+1 are the stage t + 1 updates of stage t sufficient statistics Bt and B̂t,

respectively. The term w−i(Bt) = (w1(Bt), . . . , wi−1(Bt), wi+1(Bt), . . . , wN(Bt)) is the

vector of point estimates excluding that of price i, and p = (p1, p2, . . . , pN) denotes

the vector of prices.

Proposition 1. (Effect of point estimates.) Let Ωt be a set of sufficient statistics

such that, for any Bt, B̂t ∈ Ωt, if wi(B̂t) ≥ wi(Bt) and w−i(B̂t) = w−i(Bt) then

E[φ(wi(B̂t+1))|B̂t] ≥ E[φ(wi(Bt+1))|Bt], (3.3.4)
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for any bounded, nondecreasing function φ. Then for any Bt ∈ Ωt there exist thresh-

olds hit(w−i(Bt),Ωt,p), i = 1, . . . , N , such that if wi(Bt) ≥ hit(w−i(Bt),Ωt,p) it is

optimal to stop the auction and commit to price pi, and if wi(Bt) < hit(w−i(Bt),Ωt,p)

for all i, it is optimal to continue the auction phase. The thresholds, hit(w−i(Bt),Ωt,p),

are nondecreasing in pj and wj(Bt), j �= i.

To interpret Proposition 1 it is helpful to consider the following example, stated

as a corollary. Let bt+1 denote the number of bidders in the t+ 1st auction.

Corollary 1. The results of Proposition 1 apply to the case where priors are updated

using the multidimensional Beta-multinomial information structure and Ωt is any set

of sufficient statistics containing the same number of observations, if [bt+1|Bt] and

[bt+1|B̂t] have the same distribution for all Bt, B̂t ∈ Ωt.

By restricting to sufficient statistics having the same number of observations, the

effect of the purchase probability point estimates on the stopping decision can be

characterized. Corollary 1 states that, for the multidimensional Beta-multinomial

information structure, if the firm finds it optimal to stop and choose price pi at a

certain history of S observations, then it is also optimal to stop and choose price pi

at any other S-observation history whose purchase probability point estimates are at

least as large for price pi but no larger for the other prices. To keep the comparisons

between different histories apples-to-apples, the corollary requires that the number of

bids received in the t+1st auction should not depend on the particular S-observation

history at time t. (As just one example, this would hold for Poisson bidder arrivals

even with an arrival rate that depends on t and S.) The upshot of Corollary 1 is that,

while it is still possible that the firm chooses “incorrectly” (the optimal decision under

limited information may not be that taken under full information), as it gathers more

demand information the firm will eventually make a choice once a particular pricing

option looks particularly dominant.
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This threshold structure of Proposition 1 is illustrated in Figure 3.1 for a case in

which the firm is deciding between just two prices. For readability, where the meaning

is clear, we suppress the dependence of wi(Bt) on Bt. For values of (w1, w2) near the

origin, the firm’s optimal decision is to continue the auction phase. Holding w2 fixed,

when w1 increases (moves to the right), the firm continues to prefer perpetuating the

auction phase until w1 becomes so large that it reaches the threshold h1t(w2,Ωt,p),

which is the boundary separating the ‘continue the auction phase’ region from the

‘stop and choose p1’ region. At this point the firm prefers stopping and selecting

price p1, and the firm continues to prefer this for any further increase in w1. This

occurs even though continuing the auction phase and gathering more bid data would

allow the firm to update its priors on both prices simultaneously. Finally, note that

Proposition 1 does not guarantee uniqueness of an optimal price once the decision to

stop has been made. The choice of price will be such that the value of piwiM(t) is

maximized; it is conceivable that many choices of price may give the same maximal

value, as represented by the diagonal line w1p1 = w2p2 dividing the stopping regions

in Figure 3.1.

At its core, Proposition 1 examines the tradeoff between more information and

faster entry to market. Condition (3.3.4) in the proposition is used to show that

the more optimistic the firm is today about the market, the less the firm expects to

regret entering. The underlying martingale assumption made on the updating process

(equation (3.2.2)) also plays a role in Proposition 1, as it helps to ensure that it is

better to stop today and set the price at pi rather than wait until tomorrow and

set the price at the same pi. Proposition 1’s result is similar in spirit to threshold

results in other sequential learning studies (e.g., McCardle 1985, Kornish and Keeney

2008), although Proposition 1 treats an N -dimensional case, all N payoff options are

updated in every period, and the options’ payoffs are correlated rather than assumed

to be independent.
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Figure 3.1: Structure of the optimal stopping time policy when there are two prices (N =
2).

At this point it is worth fleshing out the reason why thresholds in Proposition 1

depend on the set of histories, Ωt. For this purpose, we use multidimensional Beta-

multinomial updating as a backdrop. Consider a setting in which the firm is de-

liberating between two prices, as depicted in Figure 3.1. To gain intuition as to

why the stopping decision depends on the set of sufficient statistics in addition to

the purchase probability point estimates, consider two extreme cases, where Ωt and

Ω′
t are sets of sufficient statistics with 3 and 90 observations, respectively. Suppose

w1(Bt) = 2/3 and w2(Bt) = 1/3. One might ask, for the stopping time decision, is

it important whether or not Bt ∈ Ωt or Ω′
t? Consider what happens to the priors

after one additional bid is received. If Bt ∈ Ωt, the updated point estimates will be

(w1(Bt+1), w2(Bt+1)) = (2
4
, 1

4
), or (3

4
, 1

4
), or (3

4
, 2

4
), each with probability 1/3, depend-

ing upon which interval, [0, p1), or [p1, p2), or [p2,∞), contains the new bid. On the

other hand, if Bt ∈ Ω′
t, the updated priors will be (w1(Bt+1), w2(Bt+1)) = (60

91
, 30

91
), or

(61
91
, 30

91
), or (31

91
, 61

91
), each with probability 1/3. Clearly, the number of preexisting ob-

servations (3 versus 90) has a dramatic effect on the expected change in priors caused

by continuing the auction phase. In particular, it can be shown that the expected ben-
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efit of gathering exactly one additional auction’s worth of data is always decreasing

in the number of previous observations, for the multidimensional Beta-multinomial

structure (see Proposition 7 in the Appendix).

Next, it is shown how the thresholds described in Proposition 1 are affected by

the shape of the market size function, M(t), as time elapses.

Proposition 2. Suppose the stochastic processes generating auction data are station-

ary, i.e., [Bt+k|Bt = B] has the same distribution as [Bs+k|Bs = B] for all s, t, k.

1. (Longer remaining horizon can encourage auctioning.) If the market size

function, M(t), is log-concave over [t − 1, T − 1], then if the optimal decision

at time t is to continue auctioning, the optimal decision under the same priors

(sufficient statistic) at time t− 1 is also to continue auctioning.

2. (Longer remaining horizon can discourage auctioning.) If the market

size function, M(t), is log-convex over [t−1, T −1], then if the optimal decision

at time t − 1 is to continue auctioning, and with probability one the firm will

enter before time T − 1, the optimal decision under the same priors (sufficient

statistic) at time t is also to continue auctioning.

Proposition 2 shows that, in the firm’s stopping time decision, the amount of

time remaining in the horizon plays a key role. Part 1 says that, with a log-concave

market size function, the more time remaining in the horizon, the more the firm is

willing to delay the mass market entry in order to gather data. If a firm prefers

to continue auctions with a given set of priors (or sufficient statistic) and remaining

horizon, the firm would also prefer to continue auctioning with the same priors and

more time remaining. As Figure 3.2 illustrates, the stopping regions become larger

as the remaining time horizon shrinks. Part 1 requires log-concavity of the market

size function M(t). This assumption holds if M(t) is concave, which in turn holds if
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Figure 3.2: For a given set of sufficient statistics Ω, the continuation region shrinks as time
elapses if M(t) is log-concave. Below the diagonal, the (− · −) lines are hit(w−i(B),Ω,p),
and the (· · · ) lines are hi(t+k)(w−i(B),Ω,p), for i = 1, 2. For readability, dependence on
sufficient statistic B ∈ Ω is suppressed in the figure labels.

the rate of market saturation a(z) is (weakly) decreasing in z, the time since mass

market launch.

In contrast, if the rate of market saturation is highly convex in the time from

mass market launch, early market entry is extremely valuable to the firm, in order

to give the saturation curve time to pick up speed and make large gains late in the

horizon. This is the intuition behind part 2 of Proposition 2, which says that with a

log-convex market size function, the decision to continue auctioning with a long time

horizon would, under the same priors, continue to be optimal for a shorter horizon.

That is, under a highly convex market size function, the stopping regions can shrink

even as the horizon becomes shorter — late in the horizon there is so little time to

ramp up sales that the firm has less to lose by delaying entry, and accordingly is more

willing to continue auctioning. That is, the market size will be roughly the same for

a certain number of periods, so it is more important to set the price optimally than

to go to market quickly.
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Proposition 2 makes use of assumptions on the auction data process and the

firm’s entry decisions. First, the stochastic processes generating auction data are

time insensitive, meaning that auctions are assumed to generate the same types and

amounts of data, regardless of when they take place. This would not be the case,

for example, if the firm knew bidding traffic would be very slow in early periods but

increase dramatically for later periods. If auctioning offsets the cost of waiting only

if traffic is high (i.e., auctioning can be beneficial only when the horizon is short but

not when it is long), this would violate part 1 of the proposition if the market size is

log-concave. Conversely, if traffic drops off in later periods, the stopping region might

grow over time even for a log-convex market size function. Finally, part 2 requires

that the firm wishing to continue auctioning at time t− 1 enters the market by time

T − 2. While technical, this assumption is not unreasonable; if M(t) is log-convex,

the firm’s market size decreases convexly as the firm delays its entry time towards T .

To see why the entry assumption is important, suppose the firm continues at time

t − 1 due primarily to the profitable prospect of gathering exactly T − t periods of

data before entering. For a firm with the same priors but facing a horizon one period

shorter, gathering T − t periods of data would take it to the end of the horizon, at

which point no sales can be made, lessening the appeal of continuing to auction at

time t.

In summary, a longer time horizon can encourage or discourage furthering the

auctioning phase, depending on the shape of the market size function. A log-concave

market size function implies that as the remaining horizon shrinks, more sales would

be lost by postponing entry to the market, and the impetus to enter the market

becomes larger. In contrast, delay becomes less costly as the remaining horizon

shrinks under a log-convex market size function, as the number of sales that delaying

market entry sacrifices decreases as time elapses. The managerial insight is that,

while a longer time horizon might naturally be seen to invite more data gathering
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under an optimal auction market research strategy, this intuition is sensitive to the

trajectory of sales in the mass market.

Up to this point we have left the form of the market size function, M(t), un-

specified. However, this function could depend on any number of parameters. For

example, the following subsection discusses the case in which mass market sales follow

a Bass diffusion, where the relevant parameters capture the effects of two customer

groups: innovators, who purchase based solely on external influences (e.g., mass mar-

ket advertising), and imitators, who purchase based solely on internal factors (e.g.,

recommendations of past purchasers). Other parameters could model influences such

as the number of stores willing to stock the product, or the geographic footprint of

the firm’s marketing campaign. The next result describes how the firm’s stopping

time decision can be sensitive to any such parameter, which we label as x.

Proposition 3. (Effect of market size parameters.) Let x be some parameter of

the market size function, M(t), and let I ⊆ R be a subset of the real line. If ∂
∂x

(
M(s)
M(t)

)
is continuous and ∂

∂x

(
M(s)
M(t)

)
|x ≥ 0 (≤ 0) (= 0) for all s ≥ t and x ∈ I, the stopping

region shrinks (grows) (does not change) as the market size parameter, x, increases

within set I.

Proposition 3 describes how the firm’s market entry decision depends on param-

eters that influence the market size. The proposition implies that, if M(s)/M(t) is

monotonic in x for all s ≥ t, the firm’s stopping time decision is of a threshold type

in the market parameter, x. For example, if M(s)/M(t) is monotonically increasing

in x, then holding t, Bt, and all other parameter values fixed, once the firm prefers

market entry with parameter value x0 it continues to prefer market entry for any

parameter value smaller than x0.

The derivative condition describes how changing x affects the percent of market

size lost by delaying entry. Intuitively, a parameter’s impact on the stopping decision

is affected by both today’s market size and future market sizes. A main insight of the
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proposition is that ratios of the market sizes can be used to describe the effect on the

stopping decision. To put the proposition in these terms, for any given parameter x

that affects the market size, a larger value of x encourages market entry if increasing

x always boosts the percentage of market size that would be lost by postponing entry.

The opposite conclusion holds if larger x instead always reduces the percent of market

size sacrificed by delaying entry, in which case increasing x favors further auctioning.

Proposition 3 may appear to require rather restrictive assumptions on the be-

havior of M(t). However, the proposition’s conditions can be established for natural

market models and parameters. The results in the next section show precisely this

for a market diffusion model, for which the parameters in question are coefficients

of innovation and imitation. But first, a very simple application of Proposition 3

directly utilizes the fact that M(t) is proportional to the total market potential, m.

Corollary 2. (Effect of total market potential.) The firm’s stopping decision

does not depend on the particular size of the total market potential, m.

In other words, Corollary 2 says that without loss of generality, the firm can ignore

the particular size of m in its stopping time analysis since m is a scaler in the market

size function, M(t). This follows from Proposition 3, which says that the market size

parameters affect the firm’s stopping time behavior based only the ratio of current

and future market sizes. While revenues depend strongly on the total possible market

size m, the stopping decision depends on factors such as point estimates, time, and

the shape of the sales trajectory (market size function shape) over time. Of course,

this could change if fixed costs are associated with holding auctions; see §3.3.4 where

we show that, under nonzero auctioning costs, the stopping regions would shrink as

m grows.
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3.3.3 Diffusion Sales Process

A widely applied model of new product adoption is the diffusion model first pioneered

by Bass (1969) and since applied in many studies of new product introduction, fore-

casting, and sales management (Mahajan et al. 1990). The Bass model presents

new product adoption as a diffusion process, akin to that of a contagious agent. In

the model, there are two types of customers: innovators, who purchase based solely

on external influences (e.g., mass market advertising), and imitators, who purchase

based solely on internal factors (e.g., recommendations of past purchasers). In this

subsection we will assume that the rate of market saturation can be described by the

following differential equation, where A is the antiderivative of a:

a(s) =
dA(s)

ds
= α(1 − A(s)) + βA(s)(1 − A(s)). (3.3.5)

Here α is the coefficient of innovation and β is the coefficient of imitation as described

by Bass. To solve (3.3.5), we set a boundary condition A(0) = 0. This accounts for the

assumption (discussed on page 102) that the number of sales during the auction phase

is negligible, and is consistent with imitation effects being insensitive to unsuccessful

purchase attempts (Kumar and Swaminathan 2003). With this boundary condition,

the diffusion equation becomes A(s) =
(
1 − e−(α+β)s

)
/
(
1 + βe−(α+β)s/α

)
. Product

adoptions, which follow trajectory A(s), are taken to occur within the population of

potential purchasers (e.g., Mahajan and Peterson 1978, Kalish 1985, Kalish and Lilien

1986). If the size of this population for fixed price pi is wim, and mass-market sales

begin at time t, then wimA(T−t) is the expected number of sales for the horizon [t, T ].

For the sake of tractability, we will ignore discounting, and set M(t) = mA(T − t) for

t ≤ T . That is,

M(t) =

{ m(1−e−(α+β)(T−t))
1+ β

α
e−(α+β)(T−t)

for t ∈ [0, T ]

0 otherwise.
(3.3.6)
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Figure 3.3: Sensitivity of sales trajectory to market parameters. A larger coefficient of
imitation, β, enhances convexity in the sales trajectory due to “outbreak” effects. If the co-
efficient of innovation, α, outweighs the coefficient of imitation (α > β), the sales trajectory
is everywhere concave.

During a diffusion process, cumulative sales increase in the time from market

launch. An example of the diffusion process is shown in Figure 3.3. How the shape of

the sales trajectory depends on α and β can be understood by concentrating on each

type of sales individually. Innovative sales increase at a decreasing rate (concavely)

in the time since market launch, since their growth rate is proportional to the size of

the untapped market (the first term on the righthand side of (3.3.5)). In contrast, the

imitative sales rate is proportional to cumulative sales and the size of the untapped

market, as captured by the second term on the righthand side of (3.3.5). When the

size of the untapped market is still large, imitative sales grow at an increasing rate

(convexly) as more cumulative sales spark more imitative purchases, analogous to the

initial phase of an epidemiological outbreak. The convex imitative sales growth is

only temporary, however, as a dwindling untapped market size inevitably drags the

growth rates of both imitative and innovative sales to zero.

We next see how Propositions 1, 2, and 3 play out when sales follow a Bass dif-
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fusion. Since Proposition 1 does not depend on the market size function, its result

clearly applies to the Bass diffusion setting. That is, when sales follow a Bass diffu-

sion, stopping decision thresholds over purchase probability point estimates exist for

updating structures satisfying the conditions of Proposition 1 (e.g., multidimensional

Beta-multinomial updating, per Corollary 1). Our next result applies Proposition 2

to characterize how these thresholds change with time.

Corollary 3. (Longer remaining horizon encourages auctioning for Bass

sales diffusion.) Let the market size be given by (3.3.6), and suppose the stochastic

processes generating auction data are stationary. If the optimal decision at time t is

to continue auctioning, then the optimal decision at t − 1 under the same sufficient

statistic is also to continue auctioning.

Corollary 3 says that a longer time horizon always favors further auctioning when

sales follow a Bass diffusion and auction data processes are stationary. While the

imitative effect can initially cause pronounced convexity in the sales curve (see Fig-

ure 3.3), no matter how large β is, the market size curve is still log-concave. That is,

it never becomes “too convex,” and a longer horizon always makes auctioning more

desirable. Next, we further explore how the shape of the market size function impacts

the firm’s stopping decision. The following results apply Proposition 3 to describe

how the stopping regions are affected by changes in the coefficients of innovation and

imitation. First, we see that increasing the innovation coefficient always encourages

delaying market entry.

Corollary 4. (Innovator effect encourages auctioning.) Suppose the market

size, M(t), is given by (3.3.6). The stopping region always shrinks as the coefficient

of innovation, α, increases.

Corollary 4 further characterizes how the shape of the sales curve affects the firm’s

stopping time (market entry) decision. It says that for any coefficients of imitation
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and innovation, and for any time t and sufficient statistic, Bt, the stopping region of

Proposition 1 shrinks with the coefficient of imitation, α. Interestingly, increasing the

coefficient of imitation can have the exact opposite effect, as the next result shows.

Corollary 5. (Imitator effect can discourage auctioning.) Suppose the market

size, M(t), is given by (3.3.6), and let coefficient of imitation β = β0. There exists a

t0 ≤ T such that for t ≥ t0, there exists a δ > 0 such that the stopping region grows

in β for β ∈ (β0 − δ, β0 + δ). Furthermore, there exists α0 such that α < α0 implies

t0 = 0.

The first part of Corollary 5 states that when we are sufficiently close to the end of

the time horizon (t ≥ t0), the stopping region grows with the coefficient of imitation,

as long as the coefficient of imitation is near the original value, β0. The second

part of the corollary states that the above property holds for all t ∈ [0, T ] when the

coefficient of innovation is sufficiently small, relative to β0. The key to Corollaries 4-5

lies in how strengthening innovation or imitation rates change the relative market loss

caused by delaying entry, compared to immediate entry. For ‘innovative’ consumers,

the innovative sales rate is proportional to only the size of the untapped market, which

decreases as sales accumulate. Thus, the more sales can exhaust the potential market

before reaching the end of the horizon (the higher the coefficient of innovation), the

smaller the relative sales loss caused by delaying entry.

In contrast, the rate of imitative sales is proportional to cumulative sales as well as

the size of the untapped market. The “contagion” effect initially causes the imitative

sales rate to increase rapidly. During this phase, delaying entry reduces the snow-

ball effect of sales. If sales do not have enough time to saturate the market before

reaching the end of the selling horizon, under stronger contagion effects (higher coef-

ficient of imitation), delaying market entry results in a larger loss relative to entering

immediately. This is the case if the coefficient of innovation is very small (making

the initial ramp-up very slow), or the time horizon is short (t ≥ t0). Like a sudden
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epidemic outbreak that wanes quickly due to a lack of susceptible individuals, with

a long enough selling horizon or strong enough imitative or innovative effects, the

market eventually becomes saturated before the end of the horizon. In this case, the

more sales that accumulate before reaching the end of the horizon (the higher the

coefficient of imitation), the smaller the relative sales loss caused by delaying entry.

This explains why Corollary 5 only applies locally near β0.

3.3.4 Nonzero Auctioning Costs

In this subsection we explore the case in which the variable cost to run auctions and

gather bid data during a single period is c, paid at the end of each auction period.

The dynamic program formulation (3.2.3) changes in the natural way, adding −δc to

the last term in the maximization (equation (3.4.20) in the Appendix). We have the

following results.

Proposition 4. (Effects of point estimates and remaining time under nonzero

auctioning costs.) For the firm’s stopping time decision under nonzero auctioning

costs, Propositions 1 (thresholds in purchase probability point estimates) and part 1

of Proposition 2 (stopping regions grow with remaining time for log-concave market

size function) hold as before.

However, Proposition 3 (the effect of market size parameters) must be slightly

changed to accommodate the effect of nonzero auctioning costs.

Proposition 5. (Effect of market size parameters under nonzero auctioning

costs.) Let x be some parameter of the market size function M(t), and I ⊆ R. If

∂
∂x

(
M(s)
M(t)

)
and ∂

∂x
M(t) are continuous, and ∂

∂x

(
M(s)
M(t)

) ∣∣
x

and ∂
∂x
M(t)

∣∣
x

are both ≥ 0

(≤ 0) (= 0) for all s ≥ t and x ∈ I, then the stopping region shrinks (grows) (does

not change) as the market size parameter, x, increases within set I.

Proposition 5 immediately implies that stopping regions shrink with the total
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potential market size m, which scales M(t). The managerial insight here is that,

when auctions are costly to operate, both shape and magnitude of the market size

function are important. Intuitively, the magnitude is important to help offset the

variable cost of running auctions, and shape is important to ensure that not too

much of the market is sacrificed by delay. The importance of magnitude is what

prevents part 2 of Proposition 2 from holding as before; we can have cases where,

even with a log-convex market size function, the stopping region does not shrink with

time. If the market size dips far below the auctioning cost, say pNM(t+ 1) < c, then

no matter what the shape of M(t), continuing the auction phase at t − 1 will not

imply that under the same sufficient statistic continuing at t would be optimal.

Finally, as auctions become more costly, the firm naturally becomes more inclined

to enter the mass market sooner:

Proposition 6. (Costlier auctioning encourages mass-market entry.) The

stopping region grows as c, the variable cost to run auctions and gather bid data

during a single period, increases.

3.4 Conclusions

This paper presents a framework and analysis for deploying online auctions as a

demand-learning tool. By using online auctions for initial sales of a new product for

which demand is uncertain, information on consumer willingness to pay can be gath-

ered before a fixed price is set for the mass market (e.g., posted-price retailers). We

study how long a firm should delay market entry in order to learn demand informa-

tion: On one hand, delaying mass-market entry allows demand learning and enables

a more effective pricing decision. But on the other hand, a finite sales horizon means

that launch delays subtract from the time available to make sales in the mass market.

We focus on closed-form characterizations of insights, in order to build intuition on

how online auctions might best be used in this novel context.

120



The firm’s decision about when to enter the mass market is modeled as a dynamic

program, one trading off better demand information versus faster market entry. The

two key elements of the model – the demand information accumulation process (i.e.,

auction format and associated information updating structure), and the mass-market

sales process (i.e., shape of the mass-market sales trajectory), are left general, pro-

vided the information updating process is martingale. General insights are derived,

and applied to infer implications for specific instances (such as Bayesian information

updating, or diffusion-based market saturation processes).

The demand information gathering process informs the firm’s predictions about

the consumer’s probability of purchase at N different price points. There is an ap-

pealing structure for the optimal policy: once the expected return of one price p

(essentially, price times probability of purchase) emerges as sufficiently attractive rel-

ative to all other prices, the firm sets p as the fixed price and enters the mass market.

This is captured by Proposition 1. The upshot is that, while it is still possible that

the firm chooses “incorrectly” (the optimal decision under limited information may

not be the same as under full information), as more demand information is gath-

ered the firm will eventually make a choice once there is a pricing option that looks

particularly dominant.

While the firm waits to discover which price becomes particularly attractive, it

must also weigh the implications of the sales trajectory pattern for the mass market.

When sales are anticipated to “snowball” dramatically in the time from mass-market

launch, the firm may wish to forego prolonged demand information gathering and

simply jump into the mass market quickly in order to allow sales sufficient time to

ramp up prior to the end of the horizon. However, when sales growth is expected to

need less ramping-up, or even decrease over time, the firm has less to lose by delaying

its mass-market launch and auctioning for demand learning is more attractive. In

fact, this latter case prevails for the classic and well-tested Bass model of new product
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diffusion, suggesting that for practical applications auctioning at the outset of a short

selling horizon may indeed be attractive. These results are captured by Proposition 2

and Corollary 3. Additional results, Proposition 3 and Corollaries 4-5, characterize

how entry decisions depend on other factors of the market trajectory. For example,

when applied to the Bass model these results suggest that innovator effects encourage

auctioning, while imitator effects can discourage it. In practice, because innovator

effects may be possible to strengthen through activities such as increased advertising,

a larger promotional budget could be seen as one way to “buy time” for the firm who

wishes to delay mass-market launch to allow for further demand learning via auctions.

Mass-market fixed pricing helps focus our results on the main tradeoff between

learning demand through auctions on one hand, and delaying market entry on the

other (this tradeoff can become rather complex to characterize, see, for example,

the proof of Corollary 1). Future work could perhaps extend the results to include

additional complexities such as enhanced revenue capture through flexible posted

pricing during mass-market selling. Flexible posted pricing would also extend the

firm’s learning opportunities into the mass-market phase. While in this paper we

have focused on auctions as the demand-learning forum, examining the use of auctions

in tandem with one or more other demand learning strategies, such as strategically

adjusting posted prices to observe demand impacts during the mass-market phase, is

an interesting, but daunting, opportunity for future work.
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Appendix

Proof of Proposition 1

To prove existence of the thresholds, it is sufficient to show that, for Bt ∈ Ωt,

piwi(Bt)M(t)−δE[Jt+1(Bt+1)|Bt] is nondecreasing in wi(Bt) for all t and i (prices). (In-

creasing wi(Bt) can be thought of as shifting from Bt to B̂t ∈ Ωt, where wi(B̂t) > wi(Bt)

and w−i(B̂t) = w−i(Bt).) First, it is shown that piwi(Bt)M(t)−Jt(Bt) is nondecreas-

ing in wi(Bt) by induction on t. Clearly this holds for t = T , since JT (BT ) = 0 and the

first term is increasing in wi(BT ). Assume that it holds for t+ 1 for some t ≤ T − 1.

Now,

piwi(Bt)M(t) − Jt(Bt)

= piwi(Bt)M(t) − max
[
p1w1(Bt)M(t), . . . , pNwN(Bt)M(t), δE[Jt+1(Bt+1)|Bt]

]
.

On the righthand side, the result is trivially nondecreasing in wi(Bt) if the maximum

of the second term is one of the first N expressions. If the maximum of the second

term is the last expression, then

piwi(Bt)M(t) − Jt(Bt)

= piwi(Bt)M(t) − δE[Jt+1(Bt+1)|Bt],

= piwi(Bt)M(t) − δE[piwi(Bt+1)M(t+ 1)|Bt]

+δE[piwi(Bt+1)M(t+ 1)|Bt] − δE[Jt+1(Bt+1)|Bt],

= piwi(Bt)
(
M(t) − δM(t+ 1)

)
(3.4.7)

+δE[piwi(Bt+1)M(t+ 1) − Jt+1(Bt+1)|Bt].

The first term of (3.4.7) is derived by noting that E[wi(Bt+1)|Bt] = wi(Bt) by the

martingale assumption, equation (3.2.2). This term is nondecreasing in wi(Bt) since
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M(t) is nonincreasing in t. The expression piwi(Bt+1)M(t + 1) − Jt+1(Bt+1) is non-

decreasing in wi(Bt+1) by the induction hypothesis, and also clearly is a bounded

function. By equation (3.3.4), the expectation of this expression, conditional on Bt,

is nondecreasing in wi(Bt), and thus it has been shown that piwi(Bt)M(t)− Jt(Bt) is

nondecreasing in wi(Bt). The existence of the threshold function follows immediately

from the fact that piwi(Bt)M(t)−δE[Jt+1(Bt+1)|Bt] is nondecreasing in wi(Bt), which

was just shown. Next, it is shown that the threshold function, hit(w−i(Bt),Ωt,p), is

nondecreasing in w−i(Bt).

The threshold function for price i must be nondecreasing in wj(Bt), i �= j. To

see this, the threshold occurs when piwi(Bt)M(t) is greater than or equal to all

pjwj(Bt)M(t), i �= j, and when piwi(Bt)M(t) is greater than δE[Jt+1(Bt+1)|Bt]. In

the first case, the threshold must be nondecreasing in wj(Bt). In the second case, it is

necessary that the expectation, E[Jt+1(Bt+1)|Bt], is nondecreasing in wj(Bt) for all j,

which follows from a simple induction argument and equation (3.3.4). The behavior

of the threshold in pj, j �= i, is similar. �

Proof of Corollary 1

Multidimensional Beta-multinomial updating satisfies the martingale assumption (3.2.2)

by the definition of Bayesian updating and conditional expectation. On page 103 we

discussed a sufficient statistic for multidimensional Beta-multinomial updating. Be-

low we will use a slightly different sufficient statistic, using terminology from page 103.

To this end, let Sj,t �
∑

i≥j γi,t. Let w � (w1, w2, . . . , wN), and let w−i be the vector

excluding wi.

Note that St � (S0,t, S1,t, . . . , SN,t) is a sufficient statistic, and wi(Bt = St) =

Si,t/S0,t. Thus for two histories, Bt = St and B̂t = Ŝt, having the same number

of observations S0,t, with wi(B̂t) ≥ wi(Bt) and w−i(B̂t) = w−i(Bt), it must be that

Ŝi,t ≥ Si,t and Ŝj,t = Sj,t j �= i. In words, compared to St, Ŝt has some observations
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(bids) shifted from interval [pi−1, pi) to [pi, pi+1).

Note that the joint prior distribution of w0 ≥ w1 ≥ · · · ≥ wN+1 is multidimensional

beta,

f(w|Bt) = Γ(S0,t)

N∏
j=1

(wj − wj+1)
Sj,t−Sj+1,t−1

Γ(Sj,t − Sj+1,t)
, where SN+1,t � 0. (3.4.8)

Integrating (3.4.8) over wi ∈ [wi+1, wi−1] shows that the marginal distribution, f(w−i|Bt),

depends only on S−i,t, which from the arguments above equals Ŝ−i,t (the subscript

−i refers to all but the ith element). Thus, we conclude that f(w−i|Bt) = f(w−i|B̂t).

However, since

f(wi|Bt) = w
Si,t−1
i (1 − wi)

S0,t−Si,t−1 Γ(S0,t)

Γ(Si,t)Γ(S0,t − Si,t)
, (3.4.9)

it is easy to see that Ŝi,t > Si,t implies f(wi|Bt) �= f(wi|B̂t). To show that equation

(3.3.4) holds (our desired result), we will use the notion of likelihood ratio ordering,

denoted “≤LR” (see p12 of Müller and Stoyan 2002). By definition, for two random

variables X and Y , X ≤LR Y if and only if fX(v)fY (u) ≤ fX(u)fY (v) for all u ≤ v.

It is easy to check using (3.4.9) that [wi|Bt] ≤LR [wi|B̂t].

Towards showing (3.3.4) holds, we first characterize properties ofE[φ(wi(Bt+1))|Bt].

Define p0 � 0, pN+1 � ∞, w0 = 1 and wN+1 = 0. Let Kj , j = 0, . . . , N be the number

of bids received in the t+ 1st auction that are greater than or equal to price pj. Note

that K0 is the total number of bids received in the auction. (Thus K0 is the same as

bt in the statement of Corollary 1.) Let Bt+1 � (S0,t +K0, S1,t +K1, . . . , SN,t +KN) �

St + K denote the updated sufficient statistic after the t + 1st auction. We now

show that E[φ(wi(Bt+1))|Bt, K0,w] is nondecreasing in wi for all K0, w, and Bt. Let

0 ≤ kj ≤ K0 be the number of bids in interval [pj , pj+1). Then

E[φ(wi(Bt+1))|Bt, K0,w]
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=
∑

k0,...,kN

s.t.
∑N

j=0 kj=K0

K0!

N∏
j=0

(wj − wj+1)
kj

kj!
φ(wi(St + K)) (3.4.10)

=
K0∑

R=0

∑
kj , j �=i−1,i

s.t.
∑

j �=i−1,i kj=K0−R

K0!
∏

j=1,...,N
j �=i−1,i

(wj − wj+1)
kj

kj!
(3.4.11)

×
R∑

ki−1=0

(wi−1 − wi)
ki−1

ki−1!

(wi − wi+1)
R−ki−1

(R− ki−1)!
φ(wi(St + K)),

where for the second equality we have rewritten the terms using R = ki−1 + ki. We

differentiate the above with respect to wi using the product rule.

dE[φ(wi(Bt+1))|Bt, K0,w]

dwi
=

K0∑
R=0

∑
kj , j �=i−1,i

s.t.
∑

j �=i−1,i kj=K0−R

K0!
∏

j=1,...,N
j �=i−1,i

(wj − wj+1)
kj

kj!

R−1∑
ki−1=0

(wi−1 − wi)
ki−1

ki−1!

(wi − wi+1)
R−ki−1−1

(R− ki−1 − 1)!

×
(
φ(wi(St + (K0, . . . , Ki−1, Ki−1 − ki−1, Ki+1, . . . , KN)))

−φ(wi(St + (K0, . . . , Ki−1, Ki−1 − ki−1 − 1, Ki+1, . . . , KN)))

)
,

which is nonnegative since φ is nondecreasing and wi(St+1) = Si,t+1/S0,t+1. Finally,

using the Corollary’s assumption, Pr(K0 = j|Bt) = Pr(K0 = j|B̂t), and for conve-

nience writing this probability as simply Pr(K0 = j), we have

E[φ(wi(Bt+1))|Bt]

=

∫
w

f(w|Bt)

∞∑
j=0

E[φ(wi(Bt+1))|Bt, K0 = j,w] Pr(K0 = j)dw

≤
∫

w

f(w|Bt)
∞∑

j=0

E[φ(wi(B̂t+1))|B̂t, K0 = j,w] Pr(K0 = j)dw (3.4.12)

=

∫
w−i

f(w−i|Bt)

∫
wi|w−i

(
f(wi|Bt,w−i)
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∞∑
j=0

E[φ(wi(B̂t+1))|B̂t, K0 = j,w] Pr(K0 = j)
)
dw

=

∫
w−i

f(w−i|Bt)

∞∑
j=0

∫
wi|w−i

(
f(wi|Bt,w−i)

E[φ(wi(B̂t+1))|B̂t, K0 = j,w] Pr(K0 = j)
)
dw (3.4.13)

=

∫
w−i

f(w−i|Bt)

∞∑
j=0

Ewi|Bt,w−i

[
E[φ(wi(B̂t+1))|B̂t, K0 = j,w]

×Pr(K0 = j)
]
dw

=

∫
w−i

f(w−i|B̂t)

∞∑
j=0

Ewi|Bt,w−i

[
E[φ(wi(B̂t+1))|B̂t, K0 = j,w]

×Pr(K0 = j)
]
dw (3.4.14)

≤
∫

w−i

f(w−i|B̂t)

∞∑
j=0

Ewi|B̂t,w−i

[
E[φ(wi(B̂t+1))|B̂t, K0 = j,w]

×Pr(K0 = j)
]
dw (3.4.15)

=

∫
w

f(w|B̂t)

∞∑
j=0

E[φ(wi(B̂t+1))|B̂t, K0 = j,w] Pr(K0 = j)dw

= E[φ(wi(B̂t+1))|B̂t].

The inequality in (3.4.12) follows from substituting Ŝt for St in equation (3.4.10) and

noting that φ(wi(St+1)) is nondecreasing in Si,t+1. The interchange of the integral and

the infinite summation in (3.4.13) is allowed by the dominated convergence theorem

since

∣∣∣∣∣ lim
n→∞

n∑
j=0

f(wi|Bt,w−i)E[φ(wi(B̂t+1))|B̂t, K0 = j,w] Pr(K0 = j)

∣∣∣∣∣ < f(wi|Bt,w−i)Q

for some Q < ∞ and f(wi|Bt,w−i)Q is measurable. The equality in (3.4.14) follows

by f(w−i|Bt) = f(w−i|B̂t), which was established above. To understand the inequal-

ity in (3.4.15), first note that [wi|Bt] ≤LR [wi|B̂t] (also established above) implies

[wi|Bt,w−i] ≤st [wi|B̂t,w−i] (where ≤st denotes stochastic dominance, see p13 Müller
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and Stoyan 2002). Since we showed E[φ(wi(Bt+1))|Bt, K0,w] is nondecreasing in wi

for all K0, w, and Bt, the inequality in (3.4.15) follows by the definition of stochastic

dominance. �

Fewer past observations encourages auctioning for one extra period with

multidimensional Beta-multinomial updating.

Proposition 7. Suppose the firm updates its priors using the multidimensional Beta-

multinomial information structure, and Bt contains x0 observations of bidder valua-

tions, while B̂t only contains y < x0 observations. If wi(Bt) = wi(B̂t) = w̄i for all

i = 1, . . . , N and at time t and sufficient statistic Bt the firm prefers continuing the

auction phase for exactly one additional period (entering at time t + 1) to entering

immediately (entering at time t), the same would also be preferred at time t with

sufficient statistic B̂t.

Proof. We first show that for any s > 0,

E[max
j

{pjwi(Bt+s)}|Bt] ≤ E[max
j

{pjwi(B̂t+s)}|B̂t]. (3.4.16)

Let d be the number of bids received during (t, t+s], and let ki be the number of such

bids in the interval [pi, pi+1), where p0 � 0 and pN+1 � ∞. Hence, d =
∑N

j=0 kj. For

shorthand let k � (k0, . . . , kN). Set w̄0 = 1 and w̄N+1 = 0. We establish (3.4.16) by

showing that, for all d, Ek[maxj{pjwi(Bt+s)}|Bt, d] ≤ Ek[maxj{pjwi(B̂t+s)}|B̂t, d].

Let j∗(k, x0) � arg max
j

{
pjw̄jx0 + pj

∑N
m=j km

x0 + d

}
,

and let g(x) � Ek

[
pj∗(k,x0)w̄j∗(k,x0)x+ pj∗(k,x0)

∑N
m=j∗(k,x0)

km

x+ d

]
.
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Expanding the expectation we can write

g(x) =
d!

x+ d

∑
k0,...,kN

s.t.
∑N

j=0 kj=d

N∏
l=0

(w̄l − w̄l+1)
kl

kl!

⎡⎣pj∗(k,x0)w̄j∗(k,x0)x+ pj∗(k,x0)

N∑
m=j∗(k,x0)

km

⎤⎦ .

For any constants c and d, ∂
∂x

pjw̄jx+pjc

x+d
=

dpjw̄j−pjc

(x+d)2
. Letting

hm(k) =

⎧⎪⎪⎨⎪⎪⎩
pj∗(k,x0)w̄j∗(k,x0) − pj∗(k,x0) if m ≥ j∗(k, x0),

pj∗(k,x0)w̄j∗(k,x0) otherwise,

and letting ei be the vector of all zeros except for a 1 in ith position, we can write

∂g(x)

∂x
=

d!

(x+ d)2

∑
k0,...,kN

s.t.
∑N

j=0 kj=d

N∏
l=0

(w̄l − w̄l+1)
kl

kl!

N∑
m=0

kmhm(k),

=
(d− 1)!

(x+ d)2

∑
k0,...,kN

s.t.
∑N

j=0 kj=d−1

N∏
l=0

(w̄l − w̄l+1)
kl

kl!

N∑
i=0

(w̄i − w̄i+1)

×
[
hi(k + ei) +

N∑
m=0

kmhm(k + ei)

]
.

We now re-write the terms involving the summation over m:

(d− 1)!

(x+ d)2

∑
k0,...,kN

s.t.
∑N

j=0 kj=d−1

N∏
l=0

(w̄l − w̄l+1)
kl

kl!

N∑
i=0

(w̄i − w̄i+1)

N∑
m=0

kmhm(k + ei)

=
(d− 1)!

(x+ d)2

N∑
i=0

N∑
m=0

∑
k0,...,kN

s.t.
∑N

j=0 kj=d−1, km≥1

∏
l=0,...,N

l �=i,m

(w̄l − w̄l+1)
kl

kl!

· (w̄i − w̄i+1)
ki+1

(ki + 1)!

(w̄m − w̄m+1)
km−1

(km − 1)!
(ki + 1)hm(k + ei)(w̄m − w̄m+1),

where we have used the fact that the terms involving km = 0 are zeroed out. Sub-

129



stituting k̃i = ki + 1, k̃m = km − 1, k̃j = kj for j �= i,m, we can re-write the terms

as

(d− 1)!

(x+ d)2

N∑
i=0

N∑
m=0

∑
k̃0,...,k̃N

s.t.
∑N

j=0 k̃j=d−1, k̃i≥1

N∏
l=0

(w̄l − w̄l+1)
k̃l

k̃l!
k̃ihm(k̃ + em)(w̄m − w̄m+1)

=
(d− 1)!

(x+ d)2

N∑
m=0

∑
k̃0,...,k̃N

s.t.
∑N

j=0 k̃j=d−1

N∏
l=0

(w̄l − w̄l+1)
k̃l

k̃l!
(d− 1)hm(k̃ + em)(w̄m − w̄m+1),

where we have used the fact that
∑N

i=0 k̃k = d − 1 and terms for which k̃i = 0 zero

out. Hence,

∂g(x)

∂x
=

(d− 1)!

(x+ d)2

∑
k0,...,kN

s.t.
∑N

j=0 kj=d−1

N∏
l=0

(w̄l − w̄l+1)
kl

kl!

N∑
i=0

(w̄i − w̄i+1)

× [
hi(k + ei) + (d− 1)hi(k + ei)

]
=

d!

(x+ d)2

∑
k0,...,kN

s.t.
∑N

j=0 kj=d−1

N∏
l=0

(w̄l − w̄l+1)
kl

kl!

N∑
i=0

(w̄i − w̄i+1)hi(k + ei).

We next show that
∑N

i=0(w̄i − w̄i+1)hi(k+ei) ≤ 0 for all fixed k such that
∑N

j=0 kj =

d− 1 (hence ∂g/∂x ≤ 0). For such a fixed k, define

jq � arg max
j

{
pjw̄jx0 + pj

∑N
m=j km

x0 + d− 1

}
.

Price pjq may or may not remain optimal once the dth arrival is considered. If the

dth arrival has a valuation below p1, the optimal choice of price will not change from

pjq . Thus, h0(k + e0) = pjqw̄jq . If the dth arrival has a valuation above p1 but below

p2, the optimal price will either change to p1 or remain at pjq . If the dth arrival

has a valuation above p2 but below p3, the optimal price will either change to p2

or remain at p1 or pjq (whichever price was optimal for an arrival between p1 and
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p2). Continuing in this manner, define the indices, j1, . . . , jq−1, as the q − 1, q ≥ 1,

indices for which the optimal price changes for arrivals with valuations less than pjq .

Define the indices, jq+1, . . . , jq+r, as the r, r ≥ 0, times the optimal price changes for

arrivals with valuations greater than pjq . Let l∗ = arg maxl=q,...,q+r{pjl
w̄jl

− pjl
}, and

set w̄jr+q+1 = 0. We can then write

N∑
i=0

(w̄i − w̄i+1)hi(k + ei) = (1 − w̄j1)pjqw̄jq +

q+r∑
l=1

(w̄jl
− w̄jl+1)(pjl

w̄jl
− pjl

)

≤ (1 − w̄j1)pjqw̄jq +

q−1∑
l=1

(w̄jl
− w̄jl+1)(pjl

w̄jl
− pjl

) + w̄jq(pjl∗ w̄jl∗ − pjl∗ )

≤ (1 − w̄j1)pjl∗ w̄jl∗ +

q−1∑
l=1

(w̄jl
− w̄jl+1)(pjl

w̄jl
− pjl

) + w̄jq(pjl∗ w̄jl∗ − pjl∗ ),

= (w̄jq − w̄j1)pjl∗ w̄jl∗ +

q−1∑
l=1

(w̄jl
− w̄jl+1)(pjl

w̄jl
− pjl

) + pjl∗ (w̄jl∗ − w̄jq) ≤ 0.

The second inequality follows since l∗ ≥ q implies pjl∗ ≥ pjq and hence pjl∗ w̄jl∗ ≥
pjqw̄jq . The final inequality follows since w̄i ≥ w̄j for i ≤ j, and w̄i ≤ 1 for all i.

Now, having established that ∂g/∂x ≤ 0, we can write

Ek[max
j

{pjwj(Bt+s)}|Bt, d] = g(x0) ≤ g(y)

= Ek

[
pj∗(k,x0)w̄j∗(k,x0)y + pj∗(k,x0)

∑N
m=j∗(k,x0)

km

y + d

]

≤ Ek

[
max

j

{
pjw̄jy + pj

∑N
m=j km

y + d

}]
= Ek[max

j
{pjwj(B̂t+s)}|B̂t, d].

Because the above holds for all d, we have established (3.4.16), from which the propo-

sition follows easily. �
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Proof of Proposition 2

We begin with part 1. Suppose that at time t − 1 and sufficient statistic Bt−1 = B,

stopping the auction phase and entering the mass market is optimal. We show that

stopping would also be optimal were the time instead t. Let t + K be the optimal

stopping time over horizon [t, T ] for a firm with sufficient statistic B at time t. If

during horizon [t−1, T ] the firm pretends to have started from time t instead of t−1,

it can do no better than if it optimizes its stopping time relative to its true starting

point of t− 1. Thus if stopping is optimal at time t− 1, then

T−t∑
k=1

Pr(K = k)δkEBt−1+k |K=k[max
i

{piwi(Bt−1+k)}|Bt−1 = B]M(t − 1 + k)

≤ max
i

{piwi(B)}M(t − 1).

Dividing both sides by M(t− 1) yields

T−t∑
k=1

Pr(K = k)δkEBt−1+k |K=k[max
i

{piwi(Bt−1+k)}|Bt−1 = B]
M(t − 1 + k)

M(t− 1)

≤ max
i

{piwi(B)}.

For now, suppose thatM(t−1+k)/M(t−1) ≥M(t+k)/M(t) for all k ∈ {1, . . . , T−t}.
Thus,

T−t∑
k=1

Pr(K = k)δkEBt−1+k |K=k[max
i

{piwi(Bt−1+k)}|Bt−1 = B]
M(t + k)

M(t)

≤ max
i

{piwi(B)}.
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Since the data updating process is assumed to be stationary, we can write

T−t∑
k=1

Pr(K = k)δkEBt+k|K=k[max
i

{piwi(Bt+k)}|Bt = B]
M(t+ k)

M(t)

≤ max
i

{piwi(B)}.
(3.4.17)

The LHS of (3.4.17) is the payoff (divided by M(t)) of continuing auctioning at time

t when following optimal stopping policy t+K. Thus, (3.4.17) implies that stopping

the auction phase is optimal at time t and sufficient statistic Bt = B, as long as we

can show M(t − 1 + k)/M(t − 1) ≥ M(t + k)/M(t). Clearly the inequality holds at

k = T − t, since M(T ) = 0. For k ∈ {1, . . . , T − t− 1} it is sufficient to show that

∂

∂s

(
M(s + k)

M(s)

)
≤ 0

for s ∈ [t− 1, t]. Since M(s + k) > 0 for k = 1, . . . , T − t− 1, this is equivalent to

∂
∂s

(M(s + k))

M(s+ k)
≤

∂
∂s

(M(s))

M(s)
,

which holds if M(·) is log-concave over [t− 1, T − 1].

Proof of part 2 is analogous to that of part 1. Suppose that at time t − 1 and

sufficient statistic Bt−1 = B, continuing the auction phase is optimal. We show that

continuing the auction phase would also be optimal were the time instead t. Let

t−1+K be the optimal stopping time if following an optimal policy from time t−1.

Since by assumption t− 1 +K ≤ T − 2 with probability one, if continuing is optimal

at time t− 1, then

T−t−1∑
k=1

Pr(K = k)δkEBt−1+k|K=k[max
i

{piwi(Bt−1+k)}|Bt−1 = B]
M(t − 1 + k)

M(t− 1)

≥ max
i

{piwi(B)}.
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For now, suppose that M(t−1+k)/M(t−1) ≤M(t+k)/M(t) for all k ∈ {1, . . . , T −
t− 1}. Thus,

T−t−1∑
k=1

Pr(K = k)δkEBt−1+k|K=k[max
i

{piwi(Bt−1+k)}|Bt−1 = B]
M(t + k)

M(t)

≥ max
i

{piwi(B)}.

Since the data updating process is assumed to be stationary, we can write

T−t−1∑
k=1

Pr(K = k)δkEBt+k|K=k[max
i

{piwi(Bt+k)}|Bt = B]
M(t + k)

M(t)

≥ max
i

{piwi(B)}.
(3.4.18)

The LHS of (3.4.18) is the payoff (divided by M(t)) of continuing auctioning at time

t and stopping at t+K per the optimal policy for the firm starting from time t− 1.

When continuing auctioning from time t, the true optimal stopping policy in [t+1, T ]

performs at least as well as when following the stopping time policy t + K. Thus,

(3.4.18) implies that continuing the auction phase is optimal at time t and sufficient

statistic Bt = B, as long as we can show M(t− 1 + k)/M(t− 1) ≤M(t+ k)/M(t). It

is sufficient to show that

∂

∂s

(
M(s + k)

M(s)

)
≥ 0

for all k ∈ {1, . . . , T−t−1}, s ∈ [t−1, t]. Since M(s+k) > 0 for k ∈ {1, . . . , T−t−1},
this is equivalent to

∂
∂s

(M(s + k))

M(s+ k)
≥

∂
∂s

(M(s))

M(s)
,

which holds if M(·) is log-convex over [t− 1, T − 1]. �
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Proof of Proposition 3

We first show that ∂/∂x(M(s)/M(t))
∣∣
x
≥ 0 for all t ≤ s ≤ T , x ∈ I, implies the

stopping region shrinks as the market size parameter, x, increases within I. Let

x1, x2 ∈ I. Suppose that at time t, with sufficient statistic Bt and market size pa-

rameter x1, continuing the auction phase is optimal. We show that continuing the

auction phase would also be optimal were the market size parameter x2 ≥ x1. Let

Mk(t) be the market size at time t with parameter xk, and Sk be the optimal stopping

time if following an optimal policy as if the market size function is Mk, k ∈ {1, 2}. If

continuing is optimal with parameter x1, then

T∑
s=t+1

Pr(S1 = s)δs−tEBs|S1=s[max
i

{piwi(Bs)}|Bt]
M1(s)

M1(t)
≥ max

i
{piwi(Bt)}.

When the market parameter is x2, the optimal stopping policy, S2 ∈ [t + 1, T ], per-

forms at least as well as when following the stopping time policy, S1, which is optimal

under market parameter x1. By assumption we have M1(s)/M1(t) ≤ M2(s)/M2(t).

Thus, when continuing the auction phase is optimal at time t, sufficient statistic Bt,

and market size parameter x1 we have

T∑
s=t+1

Pr(S2 = s)δs−tEBs|S2=s[max
i

{piwi(Bs)}|Bt]
M2(s)

M2(t)

≥
T∑

s=t+1

Pr(S1 = s)δs−tEBs|S1=s[max
i

{piwi(Bs)}|Bt]
M2(s)

M2(t)
(3.4.19)

≥ max
i

{piwi(Bt)},

and continuing the auction phase is optimal at time t, sufficient statistic Bt, and

market size parameter x2.

The proof of the expanding stopping regions case is analogous. With parameter

x1, if stopping at t with Bt is optimal then continuing and following stopping time S2
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is worse than stopping. This and the assumption that M1(s)/M1(t) ≥ M2(s)/M2(t)

can be used to show that stopping is also optimal with parameter x2 ≥ x1. We omit

the details for brevity. Combining the arguments for both of the above cases implies

that the stopping regions do not change if ∂/∂x(M(s)/M(t)) = 0 for s ≥ t. �

Proof of Corollary 3

Differentiating the natural log of (3.3.6) twice with respect to t is easily shown to

always be non-negative, immediately yielding the result. �

Proof of Corollary 4

The result follows by showing that M(s)/M(t) is monotonically increasing in α and

that Proposition 3 applies. The result holds trivially for s = T . For t ≤ s < T ,

∂

∂t

(
∂

∂α
M(t)

M(t)

)
≥ 0 ⇒

∂
∂α
M(s)

M(s)
≥

∂
∂α
M(t)

M(t)
⇒ ∂

∂α

(
M(s)

M(t)

)
≥ 0.

Accordingly, we will show that

∂

∂t

(
∂

∂α
M(t)

M(t)

)
≥ 0

for all α, β > 0 and all t ∈ [0, T ]. Let γ � (α+ β)(T − t). The derivative,

∂

∂t

(
∂
∂α
M(t)

M(t)

)
=

(α + β)e−γ
(
e−γ(α− 3β) + βe−2γ(γ + 2) + αγ − α + β

)
(α + βe−γ)2(1 − e−γ)2

,

will be non-negative if and only if

D(t) � e−γ(α− 3β) + βe−2γ(γ + 2) + αγ − α + β ≥ 0.
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Since D(T ) = 0 for all α, β, if we can show that D(t) is decreasing on [0, T ], it will

follow that D(t) must be non-negative. Differentiation yeilds

∂D

∂t
= (α + β)

(
e−γ(α− 3β) + βe−2γ(2γ + 3) − α

)
.

D(t) will be decreasing if and only if

F (t) � e−γ(α− 3β) + βe−2γ(2γ + 3) − α ≤ 0.

Since F (T ) = 0, F (t) will be non-positive if either (i) F (t) is increasing on [0, T ], or

(ii) F (t) is unimodal on [0, T ] (decreasing then increasing) with F (0) ≤ 0. Taking

the derivative of F (t),

∂F

∂t
= (α + β)e−γ

(
4βe−γ(1 + γ) + α− 3β

)
.

Define

G(t) � 4βe−γ(1 + γ) + α− 3β, with
∂G

∂t
= 4β(α+ β)γe−γ ≥ 0.

The derivative of G(t) is non-negative, which implies that G(t) is increasing on [0, T ].

This also implies that the derivative of F (t) can change signs at most one time. Also,

since G(T ) = α+β > 0, F (t) is increasing at t = T . Thus, F (t) is either (i) increasing

on [0, T ] or (ii) decreasing then increasing on [0, T ].

Case 1. G(0) ≥ 0. Since G(t) is increasing, G(t) ≥ 0 for all t ∈ [0, T ], which implies

that F (t) is increasing for all t ∈ [0, T ]. Thus, F (t) ≤ 0 and D(t) ≥ 0 for all t ∈ [0, T ].

Case 2. G(0) < 0. Since G(t) is increasing and G(T ) > 0, we know that F (t) is

unimodal (decreasing then increasing) on [0, T ]. To finish the proof, it is necessary

to show that F (0) < 0 when G(0) < 0. To this end, note that e−γG(t) < 0 ⇐⇒

137



G(t) < 0. Furthermore,

F (t) − e−γG(t) = e−γ(α− 3β) + βe−2γ(2γ + 3) − α− 4βe−2γ(1 + γ) − e−γ(α− 3β),

= −βe−2γ(2γ + 1) − α < 0.

Thus, if G(0) < 0, then F (0) < 0 and F (t) is decreasing then increasing on [0, T ],

implying that F (t) ≤ 0 and D(t) ≥ 0 for all t ∈ [0, T ]. �

Proof of Corollary 5

The proof is similar in spirit to that of Corollary 4. First, note that ∂/∂β(M(s)/M(t)) ≤
0 holds trivially if s = T . For fixed β, we show there exists a t̂(β) < T such that

∂

∂t

(
∂
∂β
M(t)

M(t)

)
< 0

for all t ∈ [t̂(β), T ). For readability, where convenient we will suppress the argument

β when writing t̂. Let γ � (α + β)(T − t). We have

∂

∂t

(
∂
∂β
M(t)

M(t)

)
< 0 ⇐⇒ D(t) � (−3α+β)e−γ − (βγ−α+β)e−2γ −α(γ− 2) > 0.

It is easy to verify that D(T ) = 0. We show there exists t̂ < T such that ∂D(t)/∂t < 0

for all t ∈ [t̂, T ). First,

∂D(t)

∂t
> 0 ⇐⇒ F (t) � (−3α + β)e−γ − (2βγ − 2α+ β)e−2γ + α > 0 and

∂F (t)

∂t
> 0 ⇐⇒ G(t) � −3α + β − 4(βγ − α)e−γ > 0.

G(T ) = α + β > 0 implies F (t) is strictly increasing at t = T . Since F (T ) = 0, we

have that there exists t̂ < T such that F (t) < 0 for all t ∈ [t̂, T ). Hence, ∂D(t)/∂t < 0
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for all t ∈ [t̂, T ) and D(t) > 0 for all t ∈ [t̂, T ).

Next, we show that t̂ = 0 for α sufficiently small. In particular, for α sufficiently

small,

∂

∂t

(
∂
∂β
M(t)

M(t)

)
< 0 for 0 ≤ t ≤ T − 1.

It is easy to check that if α = 0, D(t) > 0 ⇐⇒ β(T − t) > ln(β(T − t) + 1), which

holds for all t ≤ T − 1 and β > 0. For the moment, we find it convenient to think of

D as a function of both t and α. Since D is continuous in t and α, D is uniformly

continuous over compact domain (t, α) ∈ [0, T − 1] × [0, 1], where, without loss of

generality, for compactness we have chosen 1 as an upper bound on α. Thus, there

exists α0 > 0 such that 0 < α < α0 implies D(t) > 0 for all t ∈ [0, T − 1].

Fixing α, if t̂(β0) ≤ T − 1, setting t0 = t̂(β0) implies ∂/∂β(M(s)/M(t))
∣∣
β=β0

< 0

for t0 ≤ t ≤ s ≤ T −1. Since D is continuous in t and β, D(t) is uniformly continuous

over compact domain (t, β) ∈ [t0, T −1]× [0, β0 +1], where, without loss of generality,

we have chosen β0 +1 as an upper bound on the β. Thus, there exists 0 < δ < 1 such

that β ∈ (β0−δ, β0+δ) implies D(t) > 0 for all t ∈ [0, T−1]. Finally, if t̂(β0) > T−1,

set t0 = T (the trivial case). Applying Proposition 3 completes the proof. �

Proof of Proposition 4

Without loss of generality, we will assume that the fixed cost c is paid at the end of

each auctioning period, that is, (3.2.3) becomes

Jt(Bt) = max
[
max

j
{pjwj(Bt)M(t)},−δc + δE[Jt+1(Bt+1)|Bt]

]
. (3.4.20)

The proof of Proposition 1 showed that for all Bt ∈ Ωt, piwi(Bt)M(t)−δE[Jt+1(Bt+1)|Bt]

is nondecreasing in wi(Bt) for all t and i. Since δc is just a constant, the same proof

can be used to show that piwi(Bt)M(t) + δc− δE[Jt+1(Bt+1)|Bt] is nondecreasing in

wi(Bt) for all t and i, and the result follows.
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To show that part 1 of Proposition 2 holds, we use an argument very similar to

the original proof of part 1 of Proposition 2, whose notation we reuse here. Suppose

that at time t − 1 and sufficient statistic Bt−1 = B, stopping the auction phase and

entering the mass market is optimal. We show that stopping would also be optimal

were the time instead t. Let t + K be the optimal stopping time over horizon [t, T ]

for a firm with sufficient statistic B at time t. If during horizon [t − 1, T ] the firm

pretends to have started from time t instead of t − 1, it can do no better than if it

optimizes its stopping time relative to its true starting point of t−1. Thus if stopping

is optimal at time t− 1, then

T−t∑
k=1

Pr(K = k)δkEBt−1+k |K=k[max
i

{piwi(Bt−1+k)}|Bt−1 = B]
M(t − 1 + k)

M(t− 1)

−
T−t∑
k=1

Pr(K ≥ k)δk c

M(t− 1)
≤ max

i
{piwi(B)}.

Log-concavity of M over [t− 1, T − 1] implies that M(t− 1 + k)/M(t− 1) ≥M(t+

k)/M(t) for all k = 1 . . . T − t. Together with M(t − 1) ≥ M(t) and stationarity of

the data updating process, this implies

T−t∑
k=1

Pr(K = k)δkEBt+k|K=k[max
i

{piwi(Bt+k)}|Bt = B]
M(t + k)

M(t)

−
T−t∑
k=1

Pr(K ≥ k)δk c

M(t)
≤ max

i
{piwi(B)}. (3.4.21)

The LHS of the inequality above is the payoff of continuing auctioning at time t when

following optimal stopping policy t+K. Thus, stopping the auction phase is optimal

at time t and sufficient statistic Bt = B. �
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Proof of Proposition 5

The argument is similar in spirit to that used in the proof of Proposition 3, whose nota-

tion we reuse here. We first show that ∂/∂x(M(s)/M(t))
∣∣
x
≥ 0 and ∂/∂xM(t)

∣∣
x
≥ 0

for all s ≥ t, x ∈ I, implies the stopping region shrinks with market size parameter,

x, for x ∈ I. Let x1, x2 ∈ I, and x1 ≤ x2. Suppose that at time t, with sufficient

statistic Bt and market size parameter x1, continuing the auction phase is optimal.

We show that continuing the auction phase would also be optimal were the market

size parameter x2 ≥ x1. Let Mk(t) be the market size at time t with parameter xk,

and Sk be the optimal stopping time if following an optimal policy as if the market

size function is Mk, k ∈ {1, 2}. If continuing is optimal with parameter x1, then

T∑
s=t+1

Pr(S1 = s)δs−tEBs|S1=s[max
i

{piwi(Bs)}|Bt]
M1(s)

M1(t)
−

T∑
s=t+1

Pr(S1 ≥ s)δs−t c

M1(t)

≥ max
i

{piwi(Bt)}.

Note that this is the same equation as derived in the proof of Proposition 3, except

for the term involving c, the cost of auctioning for another period. By assumption we

have M1(s)/M1(t) ≤ M2(s)/M2(t), and M1(t) ≤ M2(t) implies c/M1(t) ≥ c/M2(t).

Thus,

T∑
s=t+1

Pr(S1 = s)δs−tEBs|S1=s[max
i

{piwi(Bs)}|Bt]
M2(s)

M2(t)
−

T∑
s=t+1

Pr(S1 ≥ s)δs−t c

M2(t)

≥ max
i

{piwi(Bt)}. (3.4.22)

When the market parameter is x2, the true optimal stopping policy S2 in [t + 1, T ]

performs at least as well as when following the stopping time policy S1 that would be

optimal were the market parameter instead equal to x1. Thus, (3.4.22) implies that

continuing the auction phase is optimal at time t, sufficient statistic Bt, and market
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size parameter x2. Similar reasoning applies for the other cases of the proposition. �

Proof of Proposition 6

The argument follows immediately from noting that the LHS of (3.4.21) decreases in

c. �
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Chapter 4

On the Theory Auctions with a Fixed Price Purchasing Option for

Losing Bidders

4.1 Introduction

Consider the following situation. A firm holds an auction for a single unit of a new

product. Bidders in the auction know that the product will be offered for sale at a

fixed price at a retail outlet in the near future. Intuitively, the option of purchasing

the product at a fixed price after losing the auction will cause the participants in the

auction to lower their bids by some amount.

In this chapter we present four different auction mechanisms to address this sit-

uation. These mechanisms are not necessarily optimal in the sense of maximizing

auction revenues, but they can be used to effectively gather willingness to pay infor-

mation from consumers. Presumably, we would like to construct auction mechanisms

in which the conversion from bid data to the distribution of consumer valuations is

trivial.

We allow the auction to take the form of a first-price or a second-price auction.

Additionally, after the fixed price is set, the firm may, or may not, choose to offer a

rebate to the winner of the auction if the price paid at auction exceeds the fixed price

set by the firm. We refer to these four cases as first-price auction without rebate,

first-price auction with rebate, second-price auction without rebate, and second-price

auction with rebate. In this chapter, we find the symmetric equilibrium bidding
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strategies for each of these mechanisms. Of particular interest, we find that the

second-price auction with rebate induces bidders to truthfully reveal their valuations

during the auction.

In the preceding chapter, we used the data from auctions to update our beliefs of

consumers’ valuations for a new product. An updating scheme must account for the

type of signals which it processes. The signals provided by the auction will depend on

the auction format, bidder beliefs, and bidder behavior. In the recent auction mar-

keting research literature, Harrison et al. (2004) pointed out the need to account for

data censoring due to issues such as bidder beliefs about outside purchasing options

(e.g., bidders knowing the item will eventually be sold via fixed price) or affiliated

bidder beliefs about the outside option or product quality (which can influence the

bidding in an open-bid, e.g., English format). One could attempt to address these

issues with an elaborate updating scheme that carefully reverse engineers consumers’

true willingness to pay from their observed bids, and indeed sophisticated reverse en-

gineering has been done in studies on field data from auctions featuring confounding

factors such as publicly announced reserve prices that censor the available observa-

tions (Paarsch 1997). However, another option, available if the researcher controls

the auction design, is to design an auction format which makes the willingness-to-

pay distribution more easily recoverable from the observed bids. This motivates the

second-price auction with rebate mechanism discussed in this chapter, which is de-

signed to elicit truthful bidding from consumers. Truthful bidding simplifies the firm’s

belief updating process by eliminating the need for it to reverse engineer bid data to

recover valuations. This auction format is a first step at auction design for the ex-

press purpose of learning demand to inform a fixed price that will later be available

to consumers. To our knowledge it is the first auction mechanism for market research

designed to take into account a future fixed price purchasing opportunity.

While the marketing literature has not considered auctions followed by an outside
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purchase opportunity, there has been considerable treatment in the field of finance

with respect to the underpricing of initial public offerings (IPOs). When a firm sells

new shares, traditionally, it hires an underwriting company to determine the offering

price. As a form of market research during the book building process, the underwriting

firm gathers indications of interest from institutional investors, which will be used to

inform the asking price. Benveniste and Spindt (1989) study a mechanism in which

investors indicate their interest in an IPO (bids), after which the underwriting firm

determines an optimal offer price and allocation schedule based on the bids received.

Instead of using book building to sell the IPO, some firms have chosen to use auctions

for this purpose, see Biais et al. (2002) and Biais and Faugeron-Crouzet (2002).

The analytical work in this chapter builds upon the theory of first-price and

second-price auctions without the option to purchase the item at a future date.

For early papers on bidding strategies without a secondary purchase opportunity,

see Vickrey (1961), Myerson (1981), Riley and Samuelson (1981), and Milgrom and

Weber (1982). For a concise exposition of these works, see Krishna (2002).

The chapter is organized in the following manner. Assumptions underlying our

model are provided in §4.2. The equilibrium bidding strategies for the different auc-

tion mechanisms are found in §4.3, §4.4, §4.5, and §4.6. All proofs are contained

within the text. Concluding remarks are made in §4.7.

4.2 Model Assumptions

We apply the following behavioral assumptions for the equilibrium analysis of this

section. These assumptions help formalize our example of how the bid-to-valuation

inversion might be aided by auction design. We assume that individual consumers

are risk-neutral, have use for a single unit, and if they fail to purchase via auction

they will purchase at the fixed price provided it does not exceed their valuation.

Consumers are patient, that is, indifferent between receiving the good at auction or
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purchasing it later at the fixed price provided the payment is the same (i.e., there is no

discounting). Consumers who arrive to the auction account for the fact that the item

will eventually be available to them at a fixed price. However, they view the future

fixed price as exogenous, an assumption best made when many bidders participate

in the auction phase, thereby drowning out any one particular bid’s influence on the

firm’s pricing decision. Finally, we assume that the underlying willingness-to-pay

distribution is the same for all consumers. This assumption means that the firm can

recover mass-market willingness to pay directly from observed bids.

More formally, valuations are independent and identically distributed with cumu-

lative density function G0(·) on support [0, ω]. Each consumer wants only one item.

There is an auction in which the high bidder wins the object. If a bidder does not

win the auction, she may purchase the object at a later date for some unknown price,

T , where T has distribution H(·) on support [0, ω]. The distribution of the second

highest valuation, Y1, is given by G(·). That is, G(x) = G0(x)
N−1 when there are

N bidders. Let β(x) denote the strictly increasing equilibrium bidding strategy of

a bidder with valuation x. A bidder wins the auction with bid, b, if b ≥ β(Y1), or

equivalently, Y1 ≤ β−1(b). Let Π(b, x) denote the expected payoff to a bidder with

valuation x when bidding b.

The symmetric equilibrium bidding strategies are now found for the following four

cases: second-price auction without rebate (II); first-price auction without rebate (I);

first-price auction with rebate (IR); and second-price auction with rebate (IIR). The

cases are presented in this order since an important result from the second-price

auction without rebate case is necessary for the analysis of the first-price auction

mechanisms. The ‘rebate’ simply means if a bidder wins the auction and pays more

than the fixed price which is determined at a later date, the firm will refund the

difference. All auctions are assumed to be sealed bid.
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4.3 Second-Price Auction without Rebate

First, consider the common second-price auction format. In this case, no rebate is

given to the winning bidder if the fixed price is less than the price paid at auction.

We shown that consumers shade their bid when they know the item will be available

at a later date for an unknown price, T .

Theorem 1. In a second-price auction without rebate, a symmetric equilibrium bid-

ding strategy is

βII(x) = x−
∫ x

0

(x− t)h(t)dt = x−
∫ x

0

H(t)dt

for all valuations, x ∈ [0, ω].

Proof. The profit function for a bidder in the second-price sealed-bid auction is given

by

ΠII(b, x) = G(β−1(b))

(∫ β−1(b)

0
(x− β(y))g(y)dy

G(β−1(b))

)

+

(
1 −G(β−1(b))

)∫ x

0

(x− t)h(t)dt

=

∫ β−1(b)

0

(x− β(y))g(y)dy+

(
1 −G(β−1(b))

)∫ x

0

H(t)dt

(4.3.1)

Assume the other N − 1 bidders follow bidding strategy β(x) = x− ∫ x

0
H(t)dt. Note

that β(x) is increasing since β ′(x) = 1 −H(x) > 0. Substitution yields

ΠII(b, x) =

∫ β−1(b)

0

(
x− y +

∫ y

0

H(t)dt

)
g(y)dy

+

(
1 −G(β−1(b))

)∫ x

0

H(t)dt.

(4.3.2)
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It is helpful to find the inverse of the bidding function. Since

β(x) = x−
∫ x

0

H(t)dt

and

β(β−1(x)) = x

the inverse is found implicitly from

x = β−1(x) −
∫ β−1(x)

0

H(t)dt. (4.3.3)

Differentiating 4.3.2 with respect to the bid, b, gives the following first order condition.

∂Π(b, x)

∂b
=

(
x− β−1(b) +

∫ β−1(b)

0

H(t)dt

)
g(β−1(b))

β ′(β−1(x))

− g(β−1(b))

β ′(β−1(x))

∫ x

0

H(t)dt

=

(
x− β−1(b) +

∫ β−1(b)

0

H(t)dt−
∫ x

0

H(t)dt

)
g(β−1(b))

β ′(β−1(x))

= 0

(4.3.4)

The first order condition reduces to

0 = x− β−1(b) +

∫ β−1(b)

0

H(t)dt−
∫ x

0

H(t)dt

= x− b−
∫ β−1(b)

0

H(t)dt+

∫ β−1(b)

0

H(t)dt−
∫ x

0

H(t)dt

b = x−
∫ x

0

H(t)dt

(4.3.5)

The second equality follows by substitution of equation 4.3.3. It remains to show that

this solution is unique. The profit function is now shown to be unimodal since it is

151



strictly concave whenever the first order condition is satisfied.

∂2Π(b, x)

∂b2
=

(
x− β−1(b) +

∫ β−1(b)

0

H(t)dt−
∫ x

0

H(t)dt

)
∂

∂b

(
g(β−1(b))

β ′(β−1(x))

)

− g(β−1(b))

β ′(β−1(x))

(
(1 −H(β−1(b)))

β ′(β−1(x))

) (4.3.6)

At the first order condition, the first term is zero and the second term is negative

since β ′(·) > 0, H(·) < 1, and g(·) > 0. Since the function is concave at the first

order condition, the solution in 4.3.5 is unique.

Without the option of buying the item at a later date, each bidder would bid their

valuation. When the product is available at a later date, the bidders discount their

bid by the amount ∫ x

0

(x− t)h(t)dt.

This term can be rewritten as H(x)E[x−T |T < x], which is the probability that the

fixed price is less than the valuation, x, times the expected surplus given that the

fixed price is less than the valuation.

The following corollary is extremely useful for proving the equilibrium bidding

strategies for first-price auctions in the upcoming sections.

Corollary 1. For all x �= z, x, z ∈ [0, ω] and distributions, G(·), H(·), the following

inequality is true.

G(z)(z − x) −
∫ z

x

(
G(t) +G(z)H(t) −G(t)H(t)

)
dt > 0. (4.3.7)

Proof. Consider the second price auction without rebate. From the preceding the-

orem, if β(x) = x − ∫ x

0
H(t)dt, then Π(β(x), x) − Π(β(z), x) > 0 since β(x) is a

symmetric equilibrium strategy. It is now shown that Π(β(x), x) −Π(β(z), x) is pre-
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cisely the expression given in 4.3.7.

Π(β(z), x) =

∫ β−1(β(z))

0

(
x− y +

∫ y

0

H(t)dt

)
g(y)dy

+

(
1 −G(β−1(β(z)))

)∫ x

0

H(t)dt

= xG(z) −
∫ z

0

yg(y)dy +

∫ z

0

∫ y

0

H(t)g(y)dtdy

+(1 −G(z))

∫ x

0

H(t)dt

= xG(z) − zG(z) +

∫ z

0

G(y)dy +

∫ z

0

∫ z

t

H(t)g(y)dydt

+(1 −G(z))

∫ x

0

H(t)dt

= G(z)(x − z) +

∫ z

0

G(y)dy +

∫ z

0

H(t)(G(z) −G(t))dt

+(1 −G(z))

∫ x

0

H(t)dt

= G(z)(x − z) +

∫ z

0

G(y)dy +G(z)

∫ z

0

H(t)dt

−
∫ z

0

G(t)H(t)dt+ (1 −G(z))

∫ x

0

H(t)dt

Finding the desired difference,

Π(β(x), x) − Π(β(z), x)

= G(z)(x− x) +

∫ x

0

G(y)dy +G(x)

∫ x

0

H(t)dt

−
∫ x

0

G(t)H(t)dt+ (1 −G(x))

∫ x

0

H(t)dt

−G(z)(x− z) −
∫ z

0

G(y)dy −G(z)

∫ z

0

H(t)dt

+

∫ z

0

G(t)H(t)dt− (1 −G(z))

∫ x

0

H(t)dt

= G(z)(z − x) −
∫ z

x

(
G(t) +G(z)H(t) −G(t)H(t)

)
dt.

(4.3.8)

Thus, the expression is greater than zero.
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4.4 First-Price Auction without Rebate

The item is to be auctioned with the following rules. The highest bid wins and pays

the amount of the highest bid. Losing bidders have the option to buy the item at a

later date for an unknown price, T . If the price paid at auction is higher than the

fixed price, no rebate is given. The expected payoff for a consumer with valuation x

when he bids b is given in equation 4.4.9.

ΠI(b, x) = G(β−1(b))(x− b) + (1 −G(β−1(b))

∫ x

0

(x− t)h(t)dt

= G(β−1(b))(x− b) + (1 −G(β−1(b))

∫ x

0

H(t)dt

(4.4.9)

The optimal bidding strategy is now found by solving the differential equation derived

from the first order conditions. Differentiating 4.4.9 with respect to the bid, b, gives

the first order condition.

∂Π(x, b)

∂b
=

g(β−1(b))

β ′(β−1(b))

(
x− b−

∫ x

0

(x− t)h(t)dt

)
−G(β−1(b)) = 0 (4.4.10)

Letting b = β(x) and rearranging 4.4.10 yields the following differential equation.

g(x)

(
x− β(x) −

∫ x

0

(x− t)h(t)dt

)
− β ′(x)G(x) = 0 (4.4.11)

Let y = β(x).

g(x)

(
x− y −

∫ x

0

(x− t)h(t)dt

)
−G(x)y′ = 0 (4.4.12)

This is a differential equation of the form M(x, y) + N(x, y)y′ = 0. Note that

My(x, y) = −g(x) = Nx(x, y), implying that this is an exact differential equation

(Boyce and DiPrima 1992). Therefore, there exists a function, ψ(x, y), such that

ψx(x, y) = M(x, y) and ψy(x, y) = N(x, y) where ψ(x, y) = k is an implicit solution
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to the differential equation. ψ(x, y) is now found.

ψ = −yG(x) + v(x)

ψx = −yg(x) + v′(x)

= −yg(x) + g(x)

(
x−

∫ x

0

(x− t)h(t)dt

)

v(x) = G(x)

(
x−

∫ x

0

(x− t)h(t)dt

)
−

∫ x

0

G(t)(1 −H(t))dt

ψ = −yG(x) +G(x)

(
x−

∫ x

0

(x− t)h(t)dt

)
−

∫ x

0

G(t)(1 −H(t))dt = k

To find the constant, k, note that β(0) = 0 = y(0). Thus, k = 0. Solving for y gives

the symmetric equilibrium bidding strategy.

βI(x) = x−
∫ x

0

(x− t)h(t)dt−
∫ x

0

G(t)(1 −H(t))dt

G(x)

= x−
∫ x

0

H(t)dt−
∫ x

0

G(t)(1 −H(t))dt

G(x)

(4.4.13)

The result is formally proven.

Theorem 2. In the first-price auction without rebate, a symmetric equilibrium bid-

ding strategy is

βI(x) = x−
∫ x

0

(x− t)h(t)dt−
∫ x

0

G(t)(1 −H(t))dt

G(x)

= x−
∫ x

0

H(t)dt−
∫ x

0

G(t)(1 −H(t))dt

G(x)
.

Proof. First, note that β(x) is increasing.

β ′(x) = 1 −H(x) − (G(x))2(1 −H(x)) − g(x)
∫ x

0
G(t)(1 −H(t))dt

(G(x))2

=
g(x)

∫ x

0
G(t)(1 −H(t))dt

(G(x))2
> 0

(4.4.14)
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Assume that the N − 1 other bidders use the strategy as described. It is necessary to

show that a bidder with valuation x has no incentive to bid as though his valuation

was z, z �= x. That is, Π(β(x), x)−Π(β(z), x) > 0. Substituting the bidding function

into 4.4.9 gives

Π(β(z), x) = G(β−1(β(z)))(x− β(z)) + (1 −G(β−1(β(z)))

∫ x

0

H(t)dt

= G(z)(x− β(z)) + (1 −G(z))

∫ x

0

H(t)dt

= G(z)

(
x− z +

∫ z

0

H(t)dt+

∫ z

0

G(t)(1 −H(t))dt

G(z)

)

+ (1 −G(z))

∫ x

0

H(t)dt

= G(z)(x− z) +G(z)

∫ z

0

H(t)dt+

∫ z

0

G(t)(1 −H(t))dt

+ (1 −G(z))

∫ x

0

H(t)dt.

(4.4.15)

The difference is now found.

Π(β(x), x) − Π(β(z), x)

= G(x)(x− x) +G(x)

∫ x

0

H(t)dt

+

∫ x

0

G(t)(1 −H(t))dt+ (1 −G(x))

∫ x

0

H(t)dt

−G(z)(x− z) −G(z)

∫ z

0

H(t)dt

−
∫ z

0

G(t)(1 −H(t))dt− (1 −G(z))

∫ x

0

H(t)dt

= G(z)(z − x) −G(z)

∫ z

x

H(t)dt−
∫ z

x

G(t)(1 −H(t))dt

= G(z)(z − x) −
∫ z

x

(
G(t) +G(z)H(t) −G(t)H(t)

)
dt > 0

(4.4.16)

The last inequality follows from Corollary 1. Thus, the bidding strategy is a symmet-

ric equilibrium.

Without the option of purchasing at the fixed price, the equilibrium first-price
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auction bidding strategy is β(x) = E[Y1|Y1 < x] (see Krishna 2002). With the option

to purchase later, the symmetric equilibrium bidding strategy from above can be

written as

βI(x) = E[Y1|Y1 < x] − 1

G(x)

∫ x

0

(
G(x)H(t) −G(t)H(t)

)
dt,

which is strictly less than E[Y1|Y1 < x].

4.5 First-Price Auction with Rebate

Consider the first-price auction with rebate. The highest bid wins and pays the

amount of the highest bid. Losing bidders have the option to buy the item at a later

date for an unknown price. If the fixed price of the item is less than the winning

bid, the winning bidder gets a rebate for the difference. The expected payoff for a

consumer with valuation x when he bids b is given in equation 4.5.17.

ΠIR(b, x) = G(β−1(b))

(
x− b+

∫ b

0

(b− t)h(t)dt

)

+ (1 −G(β−1(b))

∫ x

0

(x− t)h(t)dt

= G(β−1(b))

(
x− b+

∫ b

x

H(t)dt

)
+

∫ x

0

H(t)dt

(4.5.17)

Differentiating 4.5.17 with respect to the bid, b, gives the first order condition.

∂Π(x, b)

∂b
=

g(β−1(b))

β ′(β−1(b))

(
x− b+

∫ b

x

H(t)dt

)
−G(β−1(b))(1 −H(b)) = 0 (4.5.18)

Letting b = β(x) and rearranging 4.5.18 yields the following differential equation.

g(x)

(
x− β(x) +

∫ β(x)

x

H(t)dt

)
− β ′(x)G(x)(1 −H(β(x)) = 0 (4.5.19)
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Let y = β(x).

g(x)

(
x− y +

∫ y

x

H(t)dt

)
−G(x)(1 −H(y))y′ = 0 (4.5.20)

This is a differential equation of the form M(x, y) + N(x, y)y′ = 0. Note that

My(x, y) = −g(x)(1 − H(y)) = Nx(x, y), implying that this is an exact differential

equation. Therefore, there exists a function, ψ(x, y), such that ψx(x, y) = M(x, y)

and ψy(x, y) = N(x, y) where ψ(x, y) = k is an implicit solution to the differential

equation. ψ(x, y) is now found.

ψ = −G(x)

(
y −

∫ y

0

H(t)dt

)
+ v(x)

ψx = −g(x)
(
y −

∫ y

0

H(t)dt

)
+ v′(x)

= −g(x)
(
y −

∫ y

0

H(t)dt

)
+ g(x)

(
x−

∫ x

0

H(t)dt

)

v(x) = G(x)

(
x−

∫ x

0

H(t)dt

)
−

∫ x

0

G(t)(1 −H(t))dt

ψ = −G(x)

(
y −

∫ y

0

H(t)dt

)
+G(x)

(
x−

∫ x

0

H(t)dt

)

−
∫ x

0

G(t)(1 −H(t))dt = k

To find the constant, k, note that β(0) = 0 = y(0). Thus, k = 0. While it is not

possible to solve for y explicitly, the optimal bidding strategy can be found implicitly.

βIR(x) −
∫ βIR (x)

0

H(t)dt = x−
∫ x

0

H(t)dt−
∫ x

0

G(t)(1 −H(t))dt

G(x)
(4.5.21)

The result is now formally proven.

Theorem 3. In the first-price auction with rebate, a symmetric equilibrium bidding
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strategy is to bid βIR(x) which implicitly solves

βIR(x) −
∫ βIR (x)

0

H(t)dt = x−
∫ x

0

H(t)dt−
∫ x

0

G(t)(1 −H(t))dt

G(x)
.

Proof. First, we verify that β(x) is increasing. Taking the derivative of both sides

gives the following.

β ′(x) −H(β(x))β ′(x) = 1 −H(x)

− (G(x))2(1 −H(x)) − g(x)
∫ x

0
G(t)(1 −H(t))dt

(G(x))2

β ′(x)(1 −H(β(x))) =
g(x)

∫ x

0
G(t)(1 −H(t))dt

(G(x))2

β ′(x) =
g(x)

∫ x

0
G(t)(1 −H(t))dt

(G(x))2(1 −H(β(x)))
> 0

(4.5.22)

Assume that the N − 1 other bidders use the strategy as described. Is is now shown

that a bidder with valuation x has no incentive to bid as though his valuation was

z, z �= x. That is, Π(β(x), x)−Π(β(z), x) > 0. Substituting the bidding function into

4.5.17 gives

Π(β(z), x) = G(β−1(β(z)))

(
x− β(z) +

∫ β(z)

0

H(t)dt−
∫ x

0

H(t)dt)

)

+

∫ x

0

H(t)dt

= G(z)

(
x−

∫ x

0

H(t)dt− z +

∫ z

0

H(t)dt

+

∫ z

0

G(t)(1 −H(t))dt

G(z)

)
+

∫ x

0

H(t)dt

= G(z)

(
x− z +

∫ z

x

H(t)dt

)
+

∫ z

0

G(t)(1 −H(t))dt

+

∫ x

0

H(t)dt

159



The difference is now found.

Π(β(x), x) − Π(β(z), x)

= G(x)

(
x− x+

∫ x

x

H(t)dt

)
+

∫ x

0

G(t)(1 −H(t))dt+

∫ x

0

H(t)dt

−G(z)

(
x− z +

∫ z

x

H(t)dt

)
−

∫ z

0

G(t)(1 −H(t))dt−
∫ x

0

H(t)dt

= G(z)(z − x) −
∫ z

x

(
G(t) +G(z)H(t) −G(t)H(t)

)
dt > 0

The last inequality follows from Corollary 1. Thus, the bidding strategy in equation

4.5.21 is a symmetric equilibrium.

It is easily seen that bids are higher when a rebate is given. That is, βIR(x) >

βI(x). It is unclear whether this bid amount is greater than the equilibrium bid in a

first-price auction without the option of purchasing at a later date.

4.6 Second-Price Auction with Rebate

It is now shown that a second-price auction with rebate results in bidders truthfully

revealing their valuations. A bidder will either win the object in the auction and pay

the second highest bid, or if the bidder loses the auction, he will purchase the item

for some unknown price at a later date if the fixed price is less than his valuation.

If the payment made by the winner of the auction is greater than the fixed price, a

rebate is given for the difference.

The intuition behind this format is as follows. The rebate against the fixed price

addresses the issue of bid adjustment due to the existence of an outside option (future

fixed price) As we explain below, the second price sealed-bid auction with rebate

ensures truthful bidding in equilibrium, even if the bidders anticipate a future outside

option of purchasing at a fixed price. The expected payoff to a bidder with valuation

x when bidding b is given below when the N−1 other bidders follow bidding strategy
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β(x).

ΠIIR(b, x) = G(β−1(b))

(∫ β−1(b)

0
(x− β(y))g(y)dy

G(β−1(b))

+

∫ β−1(b)

0

∫ β(y)

0
(β(y)− t)h(t)g(y)dtdy

G(β−1(b))

)

+

(
1 −G(β−1(b))

)∫ x

0

(x− t)h(t)dt

=

∫ β−1(b)

0

(x− β(y))g(y)dy

+

∫ β−1(b)

0

∫ β(y)

0

(β(y) − t)h(t)g(y)dtdy

+

(
1 −G(β−1(b))

)∫ x

0

H(t)dt

(4.6.23)

Theorem 4. The symmetric equilibrium bidding strategy for a second-price auction

with rebate is βIIR(x) = x.

Proof. Assume that the N −1 of the N bidders follow strategy β(x) = x. It is shown

that this strategy is also optimal for the remaining bidder. Equation 4.6.23 is now

rewritten to reflect the bidding strategies of the other N − 1 bidders.

ΠIIR(b, x) =

∫ b

0

(x− y)g(y)dy+

∫ b

0

∫ y

0

(y − t)h(t)g(y)dtdy

+

(
1 −G(b)

)∫ x

0

H(t)dt

= xG(b) − bG(b) +

∫ b

0

G(y)dy +

∫ b

0

∫ y

0

H(t)g(y)dtdy

+

(
1 −G(b)

)∫ x

0

H(t)dt

= G(b)(x− b) +

∫ b

0

G(y)dy +

∫ b

0

∫ b

t

H(t)g(y)dydt

+

(
1 −G(b)

)∫ x

0

H(t)dt

= G(b)(x− b) +

∫ b

0

G(y)dy +G(b)

∫ b

0

H(t)dt
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−
∫ b

0

G(t)H(t)dt+

(
1 −G(b)

)∫ x

0

H(t)dt

= G(b)(x− b) +

∫ b

0

G(y)dy +G(b)

∫ b

x

H(t)dt

−
∫ b

0

G(t)H(t)dt+

∫ x

0

H(t)dt

The first order condition is used to find an optimal bid, b, when the valuation is x.

∂Π(b, x)

∂b
= g(b)(x− b) −G(b) +G(b)

+ g(b)

∫ b

x

H(t)dt+G(b)H(b) −G(b)H(b)

= g(b)

(
x− b+

∫ b

x

H(t)dt

)
= 0

(4.6.24)

Clearly, the first order condition is satisfied when b = x. To verify uniqueness,

the profit function is shown to be strictly concave when the first order condition is

satisfied. The implies that the profit function is unimodal.

∂2Π(b, x)

∂b2
= g′(b)

(
x− b+

∫ b

x

H(t)dt

)
− g(b)(1 −H(b))

= −g(b)(1 −H(b)) < 0

(4.6.25)

by the first order condition above and the fact that H(t) ≤ 1 and g(t) > 0 for all

t ∈ [0, ω].

A simple interpretation of this result is to think of the unknown fixed price as

another bidder in a tradition second-price auction. The winner of the auction pays

the minimum of the fixed price or the second highest bid. By offering the rebate,

the firm takes the risk away from bidders, inducing them to bid their valuations.

Note that equilibrium bidding strategy is not affected by the number of bidders,

the distribution of bidders’ valuations, or the distribution each bidder places on the

unknown fixed price.
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The second price sealed-bid auction with rebate is detail free in the sense that

bidders can compute a bidding strategy without having to estimate the underlying

consumer valuation distribution, number of bidders, distribution of the fixed price,

etcetera. This is particularly important for a new product whose consumer valuation

distribution is quite possibly unknown to individual consumers. The proposed rebate

is, to our knowledge, novel in auction design, but from an implementation stand-

point is akin to standard, post-purchase price matching guarantees common in many

consumer markets, including electronics, office products, appliances, and books (Jain

and Srivastava 2000, Srivastava and Lurie 2001). Note that the rebate is necessary; if

it were eliminated, bidders would account for the future fixed price by bidding below

their true valuation as we saw in §4.3.

While the above game-theoretical analysis can be useful for a firm wishing to solve

the bid-to-willingness-to-pay inverse problem, the question of how well a given auc-

tion format actually induces truthful bidding in practice is an empirical one. While

consensus has not been reached in the literature on this issue (e.g., Noussair et al.

2004), one prominent alternative, truthful auction-like mechanism used widely by

experimental economists eliminates the connection between payments and other bid-

ders’ bids. Called the Becker-DeGroot-Marschak (BDM) mechanism (dating back to

the seminal paper in the psychology literature by these authors, Becker et al. 1964),

this mechanism accepts sealed bids and generates a random selling price at which all

bids exceeding it transact. In the absence of a future fixed price option, the BDM

mechanism is incentive compatible, or truthful (e.g., Kagel and Roth 1995, p79). In

the proof of Theorem 4, we show that, in the presence of a fixed price option (and un-

der the assumptions of §4.2), the BDM mechanism remains incentive compatible if a

rebate is used. Thus, the rebate approach proposed in this chapter preserves incentive

compatibility for both second-price (Vickrey) and BDM mechanisms, which are the

two most widely studied demand-revelation mechanisms in experimental economics
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(Noussair et al. 2004).

4.7 Conclusion

In this chapter, we have presented a theory on the bidding strategies for consumers

who participate in auctions where there is a future option for losing bidders to pur-

chase at an unknown fixed price. The results are intuitive in that the outside option

causes bidders to reduce their bid amounts, relative to what their bids would have

been in first-price and second-price auctions without the option to purchase at a fixed

price.

We found that the second-price auction with rebate induced the bidders to truth-

fully reveal their valuations. In the second-price auction without rebate, the bidders

reduced their bids by an amount that depended only upon the distribution of the

fixed price. In the first-price auction with rebate and without rebate, we showed that

bidders shade their bids by amounts that depend on both the distribution of the fixed

price and the distribution of the valuations of the other bidders.

While Corollary 1 may not appear to instill any managerial insights, it does pro-

vide a mathematical contribution which may have wider application than that which

was found in this study. The reason why this seems plausible is that the construct of

Corollary 1 was found to occur naturally in the proofs of symmetric bidding strategies

for three different mechanisms – the second-price auction without rebate, the first-

price auction without rebate, and the first-price auction with rebate. It is possible

that this construct finds itself naturally in other multi-period auction mechanisms,

as well.

In this study, we have made no attempt to justify whether these mechanisms are

optimal in the sense of maximizing auction revenue. The rationale for using these

mechanisms is to get data for market research by reverse engineering bid data into

a willingness to pay distribution. To that end, this work has provided a theoretical
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basis.
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Chapter 5

Conclusion

This dissertation has has used methods from decision making under uncertainty to

provide important insights into the control of queueing systems and stopping time

problems related to market research. We have also proven equilibrium bidding strate-

gies for several auction formats which could conceivably be used to collect willingness

to pay information from consumers.

One of our main contributions in the field of queueing theory was to combine

server allocation and customer routing policy decisions into a single model. Through

an extensive numerical study, we were able to prescribe which form of flexibility has

the most benefit, based on the parameters of the system. We also diverge from the

literature in that we study the case of server pooling where there is a loss of efficiency

when the servers work together. While this phenomenon is common in actual systems,

it has proven difficult to obtain analytical results, and hitherto, has remained absent

from the literature.

Our work on using auctions for market research is novel in the sense that we

explicitly model the cost of gaining additional information as the loss in future market

potential. We provided conditions under which changes in model parameters will

either encourage or discourage the continuation of gathering information prior to

launching a product to the mass market. Additionally, in the second part of this

dissertation, we made a contribution to the literature on stochastic orderings. In

particular, we showed that a vector of dependent random variables is decreasing in
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convex order as more data points are obtained for a specific dependence structure

and random variables with a Beta-Binomial distribution (see Proposition 7 in the

Appendix of chapter 3).

Finally, we make contributions to theory of auctions in our analysis of the symmet-

ric equilibrium bidding strategies in first and second price auctions when there will

be a buying opportunity at a later date. Our focus was on obtaining the equilibrium

symmetric bidding strategies, so that we can reverse engineer bids to actual willing-

ness to pay data, rather than on revenue equivalence or optimality of the auction

format for auction revenue purposes.
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