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CHAPTER I

Introduction

1.1 Dissertation Objectives

Cracking of metallic components in complex structural systems is an important struc-

tural health consideration for ground vehicles, ships, and aircraft. Detecting cracks, and

predicting fatigue life of structures has motivated many fundamental investigations into

crack initiation, fracture propagation, and nonlinear dynamics. This research concerns the

dynamics of cracked structures, where the focus is placed on the development of the com-

putational analysis framework for understanding their nonlinear vibration responses. This

work has important applications to structural health monitoring, and damage detection of

complex structures, with special attention to turbomachinery rotors with cracked blades.

Vibration analysis of cracked structures is an emerging area of research due to its

practical importance and numerous issues that arise in the context of linear and nonlinear

dynamics theories. From a practical viewpoint, due to the growing demands for reliable

damage detection techniques, vibration-based methods have been developed for various

types of mechanical and aerospace structures, such as microelectromechanical systems

(MEMS) to large jet engines, and airframes.

From a theoretical viewpoint, vibration problems of cracked structures possess non-

linearity due to the intermittent contact of the crack surfaces, which is called the “closing

1
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crack” or “breathing crack” effect. This nonlinearity obstructs the application of the con-

ventional linear vibration analysis tools, such as modal analysis and harmonic response

analysis. The most widely used method for tackling nonlinear vibration problems is the

application of conventional time integration methods, which is computationally very ex-

pensive even with today’s powerful computers. Therefore the development of accurate,

efficient, and stable vibration analysis framework for such structures is both challenging

and greatly needed.

Another computational issue arises for the analysis of nonlinear vibration of turbo-

machinery rotors with cracked blades, which is caused by the symmetry-breaking due to

cracking. For the nominal design of a bladed disk in a turbine engine rotor, the vibration

analysis of bladed disks can be greatly simplified by introducing the concept of cyclic sym-

metry where all the sectors are assumed to be identical. However, the cyclic symmetry of

bladed disks is destroyed if there are small differences in material properties or geometric

characteristics between individual blades, which is called mistuning. Although mistuning

is typically small in terms of individual blade properties, it can cause a drastic effect on

the system response. In particular, mistuning can also cause localization of the vibration

about a few blades, and the attendant concentration of vibration energy can lead to sharp

increases in maximum blade amplitude and stress levels. Therefore, it is important to con-

sider the effects of the nonlinearity caused by the cracking, as well as the complication

caused by the other mistuning effects, in order to understand the basic dynamics of such

structures.

Moreover, as the crack changes its geometrical properties, such as location, width, and

length, it has been observed that the vibration modes of cracked structures show an intri-

cate behavior, represented as eigenvalue loci veerings. Here, “veerings” refers to regions

in an eigenvalue plot where the loci approach each other and almost cross as the parameter
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is changed, but instead of crossing they appear to veer away from each other, with each lo-

cus then following the previous path of the other. In these regions, it is known that there are

interactions between vibration modes, which may lead to localization of vibration modes.

And hence it may accelerate the growth of the damage due to the concentration of vibra-

tion energy to the damaged location. Furthermore with regard to the veering phenomena

for nonlinear structural systems such as the cracked structures investigated in this research,

very little is known as to how the nonlinearities influence the response near such regions.

Furthermore, when considering very realistic computational models that have a large

number of degrees of freedom (DOF), one has to apply reduced order modeling techniques

in order to capture the essential dynamics with a smaller number of DOF. This greatly im-

proves the computational efficiency of the analysis, but for the vibration problems of the

kind dealt in this research, the computational time as well as the accuracy of the results

are greatly dependent on the complexity and the preciseness of the modeled nonlinearity.

Namely, the choice and the number of DOF involved in the contacting region at the crack

faces are the key factors for controlling the accuracy and computational time of the anal-

ysis. Therefore, in conjunction with the conventional reduced order modeling techniques,

it is necessary to construct an efficient way to control the complexity of the nonlinearity.

Motivated by these issues, the objectives of this research are to gain better understand-

ing of intrinsic nonlinear vibration phenomena in cracked structures, and to develop new

analysis techniques, with special attention to turbomachinery rotors with cracked blades.

In particular, they are summarized as follows:

• To develop an efficient nonlinear vibration analysis framework for a rotating cracked

blade

• To extend the analysis framework developed for the analysis of a cracked blade to
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the analysis of a turbomachinery rotor with a cracked blade

• To gain a basic understanding of a cracked structure near the natural frequency veer-

ings and to develop an efficient and accurate method to approximate the nonlinear

resonant frequencies

• To develop an efficient reduced order modeling framework for the analysis of a

cracked structure with a large number of nonlinear DOF

1.2 Background

1.2.1 Crack-closing effect

Early investigations on vibration of cracked structures generally used an assumption

that the cracks are always open, and thus contact between the crack surfaces does not occur.

For example, Shen and Pierre developed the cracked beam theory for beams with a single

edge crack [1] and with symmetric cracks [2], such that the effects of location and depth

of the cracks on the dynamics of the beams can be investigated. It is convenient to assume

that the crack is always open because the system remains linear. However, this assumption

is not accurate in some cases. For instance, for structures with fatigue-induced cracks, the

gaps between the crack surfaces are very small and the closing of the crack surfaces occurs

in reality. In particular, Gudmundson [3] reported that experimentally measured natural

frequencies of a beam with a fatigue crack differ from those obtained analytically without

considering the crack closing effect.

If one considers the repetitive opening and closing of the crack surfaces, a case that is

referred to as a closing or breathing crack, then the system is nonlinear. The significance

of the effect of crack closing on the structural dynamics is reflected by the growing number

of research activities. For instance, Shen and Chu [4] have investigated the effects of crack

closing by employing the bi-linear oscillator representation, and they have shown that the
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dynamics in the time history and in the frequency response possess an apparent nonlinear-

ity. Chondros et al. [5] formulated an analytical model of a cracked beam including the

effect of crack closing. They succeeded in validating their theory by comparing the an-

alytically calculated lowest natural frequencies of the cracked beam with experimentally

measured values. Pugno et al. [6] investigated the nonlinear dynamic response of beams

with multiple closing cracks. Bovsunovsky and Surace [7] reported the superharmonic

vibrations of a beam with a breathing crack. However, the systems treated in those studies

were limited to simple structures such as beams and plates.

In addition to cracks, in order to accurately capture the dynamics of a rotating structure

such as a bladed disk in a turbine engine rotor, considering the effects of rotation on

the structural response is important. An extensive literature survey regarding research

activities on rotating beams was provided by Bazoune [8]. It should be noted that the

change in the rotating equilibrium configuration due to the inertial loading is of particular

interest for the vibration analysis of cracked structures. The initial gap between the crack

surfaces can change significantly with increasing rotation speed.

1.2.2 Symmetry-breaking

For the nominal design of a bladed disk in a turbine engine rotor, the vibration analysis

of bladed disks can be greatly simplified by introducing the concept of cyclic symmetry

where all the sectors are assumed to be identical. However, the cyclic symmetry of bladed

disks is destroyed if there are small differences in material properties or geometric char-

acteristics between individual blades, which is called mistuning. Although mistuning is

typically small in terms of individual blade properties (e.g., blade-alone natural frequency

variations on the order of 1%), it can have a drastic effect on the system response. In

particular, mistuning can cause localization of the vibration about a few blades, and the
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attendant concentration of vibration energy can lead to sharp increases in maximum blade

amplitude and stress levels. Therefore, a large amount of research activities have been

conducted for analyzing the vibration of mistuned bladed disks [9–11].

In contrast, there have been relatively few papers published to date concerning local-

ization and other effects on the forced vibration response of bladed disks due to cracking

of blades. The studies by Kuang and Huang [12, 13] considered free and forced response

analysis of rotating, shrouded bladed disks by modeling each blade as an Euler-Bernoulli

beam where the crack effect was treated as local disorder of the system. They showed

that the existence of the crack may change the vibration response of a bladed disk signifi-

cantly, and cause mode localization. In their recent work [14], they analyzed the stability of

a rotating bladed disk using Euler-Bernoulli beam models in conjunction with Galerkin’s

method for formulating the equations of motion, which they solved with perturbation tech-

niques. Fang et al. [15] investigated vibration localization of bladed disks due to cracks

for various parameters—including internal coupling factor, crack severity, engine order

of excitation, and number of blades—using a model with blades being treated as Euler-

Bernoulli beams, and the crack being modeled as a local stiffness loss based on a fracture

mechanics-based model. It was shown that even a small crack can cause vibration mode

and forced response localization. Hou [16] investigated crack-induced mistuning in an

analytical study based on a lumped-mass beam model, in which the local stiffness loss due

to cracking was expressed with a flexibility matrix method. However, all of these previous

studies used simplified models for cracked blades. Most importantly, their models were

linear, in the sense that the nonlinearity caused by the crack closing effect was not taken

into account.



7

1.2.3 Nonlinear vibration analysis methods

Since the vibration problems investigated in this research are not linear by nature,

application of conventional vibration techniques such as frequency response analysis and

modal analysis can lead to inaccurate results.

Namely for the linear systems, frequency response can be accurately obtained by ap-

plying harmonic forcing to the systems, and examining the amplitude and phase of the

resulting displacements field. This typically involves the assumption that if the forcing is

expressed as a harmonic function, then the response is also expressed as a harmonic func-

tion with the same frequency as the forcing. This assumption is no longer valid for the

nonlinear systems. Instead, the steady-state response of such systems should be considered

as a general periodic function. There are analytical and computational techniques for ob-

taining the steady-state solutions of such systems, such as the Lindstedt-Poincaré method,

method of multiple scales, the Krylov-Bogoliubov-Mitropolsky method, and the harmonic

balance method [17]. In particular, it is known that the harmonic balance method can be

applied to strongly nonlinear systems, and it produces accurate results with reasonable

and controllable computational costs. Therefore in this research, the Harmonic Balance

method is employed to calculate the steady-state response of the cracked structures. The

method uses an assumption that the steady-state solution of a nonlinear system can be ex-

pressed as a sum of harmonic functions with frequencies that are integer multiples or frac-

tional parts of the forcing frequency. Harmonic Balance techniques have been widely used

to analyze various types of systems with geometric nonlinearities such as dry-friction sys-

tems [18], blades with shroud constraints [19], bladed disks with dry-friction dampers [20],

and bladed disks with contact interfaces [21, 22]. Pioneering contributions for using this

type of technique include the alternating frequency/time-domain (AFT) method introduced

by Cameron and Griffin [23] and the Fast Galerkin method proposed by Ling and Wu [24].
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For both of these methods, the nonlinear forces are evaluated in the time domain and are

transformed back to the frequency domain by applying the Fast Fourier Transform (FFT).

A method named hybrid frequency/time domain (HFT) method was proposed by Guillen

and Pierre [25] as the application of the AFT concept to dry-friction damped systems by

evaluating the nonlinear friction force in the time domain. By the application of mod-

ified Broyden’s method for solving the resulting nonlinear algebraic solution achieved

efficient analysis of large-scale complicated friction damped structures. The method was

further extended by Poudou and Pierre [20], such that the linear DOF of the system can

be condensed out and the final nonlinear equations contain only the nonlinear DOF. This

order-reduction technique in the solution level, in conjunction with the Craig-Bampton

method of component mode synthesis [26] in the preprocessing level, attained a compact

yet accurate reduced set of nonlinear equations. Utilizing the Hybrid Powell method [27]

for solving the nonlinear equations also contributed to the enhancement of the efficiency

of the method. Furthermore, the method was applied to vibration analysis of systems with

intermittent contact [28] as well as cracked beams [29] based on the successive application

of the penalty method [30].

On the other hand, the modal analysis for a linear system is a method to understand the

intrinsic vibration frequencies and shapes of the system, by simply calculating the eigen-

values and eigenvectors. This cannot be applied to the nonlinear systems, because the

assumption that the system has to be linear when calculating eigenvalues and eigenvectors

is not valid anymore. In particular, the cracked systems have discontinuities that open and

close during a vibration cycle, and hence the most linearization techniques fail to predict

the intrinsic system vibration frequencies and shapes. This class of nonlinear dynamical

systems is called a piecewise-linear system, because the system consists of multiple linear

systems separated by discontinuities. In this research, as a way to approximate the non-
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linear counterpart of the eigenvalues for such systems, an approximation method called

bilinear frequency approximation is generalized and used to approximate the nonlinear

resonant frequencies of cracked structures. The bilinear frequency was introduced as an

exact solution for a single-DOF piecewise-linear oscillator (e.g., [31]). It was based on

the fact that the eigenvalue of each linear system of the piecewise-linear oscillator can be

calculated by a standard way, and the actual vibration frequency of the piecewise linear

system can be obtained as an explicit function of the frequencies of the linear systems. It

was then applied to various systems such as a multi-DOF system with a clearance [32], and

simple cracked beams [4, 5, 33, 34] as an approximation method to predict the nonlinear

resonant frequencies of cracked beams.

1.3 Dissertation Outline

The remaining chapters of this dissertation are compiled from a collection of three

manuscripts submitted to scientific journals (either in review or in print) and one manuscript

prepared for journal submission. Therefore some of the background materials as well as

mathematical developments are repeated in various chapters.

Chapter II is devoted for the development of the nonlinear forced response analysis

framework for a rotating cracked blade. In particular, the solution of the forced vibration

response of a cracked turbine engine blade is investigated. Starting with a finite element

model of the cracked system, the Craig-Bampton method of component mode synthesis

is used to generate a reduced-order model that retains the nodes of the crack surfaces as

physical degrees of freedom. The nonlinearity due to the intermittent contact of the crack

surfaces, which is caused by the opening and closing of the crack during each vibration cy-

cle, is modeled with a piecewise linear term in the equations of motion. Then, the efficient

solution procedure for solving the resulting nonlinear equations of motion is presented.
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The approach employed in this study is a multi-harmonic, hybrid frequency/time-domain

(HFT) technique, which is an extension of the traditional harmonic balance method. First,

a simple beam model is used to perform a numerical validation by comparing the results

of the new method to those from transient finite element analysis (FEA) with contact el-

ements. It is found that the new method retains good accuracy relative to FEA while

reducing the computational costs by several orders of magnitude. Second, a representative

blade model is used to examine the effects of crack length and rotation speed on the reso-

nant frequency response. Several issues related to the rotation are investigated, including

geometry changes of the crack, shifts in resonant frequencies, and the existence of mul-

tiple solutions. For the cases considered, it is found that the nonlinear vibration response

exhibits the jump phenomenon only when rotation is included in the model.

Chapter III extends the analysis framework developed in Chapter II to the vibration

analysis of turbomachinery rotor with a cracked blade. The influence of small, random

blade-to-blade differences (mistuning) and rotation on the forced response are also con-

sidered. Starting with a finite element model, a hybrid-interface method of component

mode synthesis (CMS) is employed to generate a reduced-order model (ROM). The crack

surfaces are retained as physical degrees of freedom in the ROM so that the forces due

to contact in three-dimensional space can be properly calculated. The resulting nonlinear

equations of steady-state motion are solved by applying an alternating frequency/time-

domain method, which is much more computationally efficient than traditional time in-

tegration. Using this reduced-order modeling and analysis framework, the effects of the

cracked blade on the system response of an example rotor are investigated for various mis-

tuning levels and rotation speeds. First, the advantages of the selected hybrid-interface

CMS method are discussed and demonstrated. Then, the resonant frequency shift associ-

ated with the stiffness loss due to the crack and the vibration localization about the cracked
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blade are thoroughly investigated. In addition, the results of the nonlinear ROMs are com-

pared to those obtained with linear ROMs as well as blade-alone ROMs. It is shown that

several key system vibration characteristics are not captured by the simpler models, but

that some insight into the system response can be gained from the blade-alone response

predictions. Furthermore, it is demonstrated that while the effects of the crack often appear

similar to those of mistuning, the effects of mistuning and damage can be distinguished by

observing and comparing the response across multiple families of system modes.

Chapter IV examines the veering phenomenon due to the change in the crack param-

eters, which is motivated by the observation of two, closely-spaced resonant peaks in the

frequency response of a turbomachinery rotor with a cracked blade in Chapter III. Of par-

ticular interest is the vibration response in parameter regions where the natural frequency

loci show veerings. For a representative finite element model, it is shown that the veerings

due to crack length variation involve the switching of mode shapes and modal interactions.

The nonlinearity caused by the crack closing effect is then introduced, and its effect on the

vibration response near the veerings is discussed. The nonlinear forced response analysis

is carried out using a hybrid frequency/time domain method, which is based on the method

of harmonic balance. The nonlinear vibration response near loci veerings and crossings

due to the variation of crack length is investigated in detail. Finally, a novel method for

estimating the nonlinear resonant frequency is introduced by generalizing the concept of

bilinear frequency approximation, and the method is validated with the results of nonlinear

forced response analysis for several veering regions.

Chapter V proposes a novel reduced order modeling framework for nonlinear vibra-

tion problems of elastic structures involving intermittent contact. Of particular interest is

a vibration problem of plate-like elastic structures with a crack with a large number of

degrees of freedom involved on the crack surfaces. Due to the localized nature of such
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nonlinearity, the number of degrees of freedom on the surfaces greatly affects the com-

putational time of the analysis. Therefore, reducing the number of degrees of freedom on

the crack surfaces without significantly sacrificing the accuracy of the results is a critical

issue for conducting vibration analysis of such structures in a reasonable amount of time.

The focus is placed on the development of an efficient algorithm to select a set of nodes

on the crack surfaces, where nonlinear boundary conditions are imposed. The method is

developed based on a master degrees of freedom selection procedure for Guyan reduction,

and its accuracy, efficiency, and optimality are discussed in detail and compared with those

aspects of previous methods. The advantages of the new method are demonstrated in terms

of the accuracy of the frequency response and the corresponding time trajectories.

Finally in Chapter VI, conclusions are drawn and the contributions of this dissertation

are summarized, and ideas for future work are also discussed.



CHAPTER II

Efficient Nonlinear Vibration Analysis of the Forced
Response of Rotating Cracked Blades

2.1 Introduction

The vibration of cracked structures has attracted considerable interest from many re-

searchers [35] due to its practical importance and the numerous issues that arise in the

context of linear and nonlinear dynamics theories. From a practical viewpoint, due to the

growing demands for reliable damage detection techniques, vibration-based methods have

been developed for various types of structures such as turbine blades [36] and MEMS

structures [37].

In the early stages of this area of study, most investigations used an assumption that the

cracks of the structures are always open, and thus contact between the crack surfaces does

not occur. For example, Shen and Pierre developed the cracked beam theory for beams

with a single edge crack [1] and with symmetric cracks [2], such that the effects of location

and depth of the cracks on the dynamics of the beams can be investigated. It is convenient

to assume that the crack is always open because the system remains linear. However, this

assumption is not accurate in many cases. For example, for structures with fatigue-induced

cracks, the gaps between the crack surfaces are very small and the closing of the crack

surfaces occurs in reality. In particular, Gudmundson [3] reported that experimentally

13
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measured natural frequencies of a beam with a fatigue crack differed from those obtained

analytically without considering the crack closing effect.

If one considers the repetitive opening and closing of the crack surfaces, a case that is

referred to as a closing or breathing crack, then the system is nonlinear. The significance

of the effect of closing of the cracks is reflected by the growing number of research ac-

tivities. For instance, Shen and Chu [4] have investigated the effects of crack closing by

employing the bi-linear oscillator representation, and they have shown that the dynamics

in the time history and in the frequency response possess an apparent nonlinearity. Chon-

dros et al. [5] formulated an analytical model of a cracked beam including the effect of

crack closing. They succeeded in validating their theory by comparing the analytically

calculated lowest natural frequencies of the cracked beam with experimentally measured

values. Pugno et al. [6] investigated the nonlinear dynamic response of beams with multi-

ple closing cracks. Bovsunovsky and Surace [7] reported the superharmonic vibrations of

a beam with a breathing crack. However, the systems treated in those studies were limited

to simple structures such as beams and plates.

Furthermore, if the cracked structure is a rotating machinery component, such as a

bladed disk in a turbine engine rotor, then considering the effects of rotation on the non-

linear vibration response is important. An extensive literature survey regarding research

activities on rotating beams was provided by Bazoune [8]. It should be noted that the

change in the rotating equilibrium configuration due to the inertial loading is of particular

interest for the vibration analysis of cracked structures. The initial gap between the crack

surfaces can change significantly with increasing rotation speed.

In this chapter, an efficient method to analyze the nonlinear vibration of a rotating

structure with a crack is proposed. In particular, the solution of the forced vibration of a

cracked turbine engine blade is investigated. The closing effect of the crack and the effects
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of rotation, including the change in the equilibrium configuration of the crack surfaces due

to quasi-static deformation of the rotating blade, are considered in this study.

For the steady-state response analysis, an asymptotic technique based on the Har-

monic Balance Method [17] is used in this study. Harmonic Balance techniques have

been widely used to analyze various types of systems with geometric nonlinearities such

as dry-friction systems [18], blades with shroud constraints [19], bladed disks with dry-

friction dampers [20], and bladed disks with contact interfaces [21, 22]. Pioneering con-

tributions for using this type of technique include the Fast Galerkin method proposed by

Ling and Wu [24], and the alternating frequency/time-domain (AFT) method introduced

by Cameron and Griffin [23]. For both of these methods, the nonlinear forces are evalu-

ated in the time domain and are transformed back to the frequency domain by applying

the Fast Fourier Transform (FFT). The hybrid frequency/time-domain (HFT) method was

proposed by Guillen and Pierre [25, 38] as the application of the AFT concept to dry-

friction damped systems by evaluating the nonlinear friction force in the time domain.

They also used the modified Broyden’s method for solving the resulting nonlinear alge-

braic solution and achieved efficient analysis of large-scale complicated friction-damped

structures. The HFT method was further extended by Poudou and Pierre [20], such that

the linear degrees of freedom of the system were condensed out. This order-reduction

technique in the solution level, in conjunction with the Craig-Bampton method of compo-

nent mode synthesis [26] in the preprocessing level, attained a compact yet accurate set of

nonlinear equations. Poudou and Pierre used the Hybrid Powell method [27] for solving

the nonlinear equations, and showed that this further enhanced the efficiency of the HFT

method. Furthermore, the method was applied to vibration analysis of systems with inter-

mittent contact [28] as well as cracked beams [29] based on the successive application of

the penalty method.
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In this chapter, this analysis framework is further developed by introducing a method

for modeling the intermittent contact of the crack surfaces under changes in quasi-static

equilibrium configurations due to rotation. This enables the analysis of the important ef-

fects of both rotation and crack closing for various crack lengths and operating conditions.

For some cases, it is found that the nonlinear vibration response exhibits the jump phe-

nomenon only when rotation is included in the model.

This chapter is organized as follows. In section 2.2, the background theory is reviewed

and the proposed modeling and analysis method for rotating cracked structures is derived.

In section 2.3, the method is applied to the forced response analysis of a finite element (FE)

model of a cracked beam to perform numerical validation. The forced response results are

compared to those from transient finite element analysis (FEA) with contact elements. In

section 2.4, the method is applied to the finite element (FE) model of a cracked blade with

a simple yet representative geometry. The effects of crack closing on the forced response

under both static and rotating conditions are examined and compared. As a potential

application to damage detection, the shifts in blade resonant frequencies due to cracks are

investigated. Conclusions from this chapter are summarized in section 2.5.

2.2 Mathematical Modeling

2.2.1 Equations of motion for rotating structures

For a structure that is rotating about a fixed axis with constant angular velocity Ω, the

position vector of a point on the structure can be expressed as r = ρ + u where ρ is the

undeformed position vector and u is the displacement vector measured from the unde-

formed position. Both vectors are defined in the body-fixed, rotating reference frame. The

formulation of the equations of motion can be separated into two parts as follows. First,

by decomposing the displacement vector into its quasi-static and dynamic components,
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u = us + ud, the quasi-static displacement due to the centripetal acceleration is obtained

by solving the following quasi-static equilibrium equation,

(K− Ω2Kg)us = Ω2Kgρ (2.1)

where Kg is the spin-softening matrix derived from the centripetal acceleration. The stress

state of the whole structure and the geometry of the crack surfaces at the equilibrium are

determined from Eq. (2.1). The stress state at the equilibrium affects the stiffness of the

structure, and hence results in the change of the equations of motion and the associated

reduced-order model, as will be discussed later. Furthermore, the rotation can lead to a

gap between the crack surfaces in the equilibrium configuration, which results in a qual-

itative change in the nonlinear vibration response. Next, the dynamic components of the

equations of motion of the structure can be expressed as,

Müd + (C− ΩCg)u̇d + (K + Ks − Ω2Kg)ud = b (2.2)

where M, C, and K are the mass, damping, and stiffness matrices of the structure un-

der a non-rotating condition; b is the external force applied to the structure; ΩCg is the

gyroscopic damping matrix; and Ks is the geometric stiffness matrix that is a first-order

approximation to the stiffness change due to the nonlinear stiffening effect of the rotation.

In this study, the gyroscopic damping matrix ΩCg is neglected because the Coriolis effects

are not significant for a blade or a beam with a small thickness-to-width ratio [39]. How-

ever, the matrices Ω2Kg and Ks are included, and they are generated using the commercial

finite element code ANSYS [40]. It is noted that, for the types of structures considered

in this study, the combined effect from both geometric stiffness and the spin softening

matrices tends to increase the natural frequencies as the rotational speed increases.
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2.2.2 Reduced-order modeling

Typically, finite element models of complex structures such as bladed disk assemblies

have a large number of degrees of freedom (DOF). Therefore, before attempting to solve

the nonlinear vibration problem for a cracked structure, it is advantageous to use some

form of modal analysis to condense DOF that are not subject to the nonlinear contact

forces and thus reduce the model size. For this purpose, the Craig-Bampton method [26]

of component mode synthesis (CMS) is employed in this study. The system DOF are first

partitioned into a set of active DOF and a set of omitted DOF. The physical DOF of the

nodes on the crack surfaces are chosen as active DOF in the reduced-order model so that

the motion of the nodes in the physical three-dimensional space can be tracked. Other

DOF that need to be tracked in physical coordinates, such as key response points, can also

be included in the active set. For each active DOF, a constraint mode is defined as the

static shape induced in the structure by a unit displacement at that DOF, while all the other

active DOF are held fixed. In addition to the constraint modes, a set of normal modes

associated with the omitted DOF is calculated by holding all the active DOF fixed. These

normal modes can then be truncated for a frequency range of interest to reduce the model

size.

Defining the Craig-Bampton transformation matrix ΨCB, which contains the constraint

modes and the truncated set of normal modes, the equations of motion of the undamped

system can be reduced to the following equation

MCBq̈ + KCBq = bCB, q,bCB ∈ Rnnm+na (2.3)

where MCB = ΨT
CBMΨCB, KCB = ΨT

CBKΨCB, u = ΨCBq, bCB = ΨT
CBb, nnm is the

number of retained normal modes, and na is the number of active DOF. The generalized

coordinates q now contain both the active DOF and the truncated set of modal coordinates,
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i.e., q = [uT
a ,u

T
n ]T where ua is the vector of displacements corresponding to the active

DOF, and un is the vector of modal coordinates. In general, the size of the reduced-order

model is much smaller than the size of the original finite element model, i.e., nnm +na �

nFEM.

It is noted that the Craig-Bampton method is usually used to reduce multiple compo-

nents and then assemble them into a global model of a larger structure. However, here

it is used because it provides a convenient modeling framework for systems with contact

nonlinearity [41], such as the cracked blade discussed in this chapter, especially when the

number of DOF contributing to the nonlinearity is much smaller than the number of the

other (linear) DOF. In the proposed modeling method for the cracked structures, the DOF

associated with the nodes describing the crack surfaces are retained as active DOF in the

reduced-order-model, and hence they are directly accessible in the equations of motions

to calculate the contact forces. Furthermore, the modal properties of interest of the orig-

inal FE model, which are mostly the contributions from the large number of linear DOF

in the original system, can still be preserved with smaller number of linear DOF in the

reduced-order-model.

2.2.3 Equations of motion for cracked structures

Given a reduced-order model of a rotating structure with cracks, the equations of mo-

tion of the structure can be written as

Mq̈ + Cq̇ + Kq = b + f(q) (2.4)

where b is the external forcing vector, and f(q) is the vector of nonlinear forces due to

the intermittent contact at the cracks. Recall that all the finite element DOF on the crack

surfaces are retained as active DOF in the reduced-order model. The nonlinear forces and

the associated coordinate transformations at the crack surfaces are discussed in detail in
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the following subsection.

2.2.4 Crack surface modeling

In considering the nonlinear interaction at the crack surfaces, the relative motion of

the surfaces plays an important role. Namely, since the structure is discretized into an

FE model and the DOF associated with the nodes on the crack surfaces are retained in

the reduced-order model, the relative motion of the nodes determines the behavior of the

nonlinear force. In the analysis of contacting bodies using FE models, determination of

contact points and calculation of contact forces are not usually trivial because a node on

one surface does not necessarily coincide with a node on the other surface at the moment

of contact. Therefore, a contact pair is defined as two nodes that are considered to be in

contact with each other when certain conditions are satisfied. Each contact pair is labeled,

and a set of numbers of contact pairs is defined as Ccp. In addition, a set of node numbers

that form the contact pairs is defined as Cc. The contact conditions and the resulting linear

transformation are summarized as follows.

In this analysis, only the normal displacement of the nodes on the crack surfaces is

considered. In the following formulation, the subscript 1 of the normal vectors denotes

this direction. In addition, the normal direction is chosen such that the origin of the normal

vector is on the surface that belongs to the stiffer side of the structure. In this chapter, this

surface is referred to as surface A. For each contact pair, the node on the surface A is

called node A and the other node is called node B, which is on the surface B.

The normal vector at the node A of the ith contact pair is not uniquely determined if

the node belongs to multiple elements, which is the general case. Hence, in the proposed

method, the normal vector at the node A of the ith contact pair is taken to be the mean
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norm, which is defined as

ni
1 =

∑N i
e

j ci
j

||
∑N i

e
j ci

j||
, where ci

j =
aj

1 × aj
2

||aj
1 × aj

2||
, i ∈ Ccp (2.5)

where aj
1 and aj

2 are the vectors that connect the node A and its adjacent nodes in the jth

element, and N i
e is the number of surface elements which contain the node as one of their

vertices. N i
e depends on the number of elements where the node belongs. For example,

N i
e = 4 if the node forms vertices of four elements such as shown in Fig. 2.1a. Care must

be taken in the choice of aj
1 and aj

2 such that their cross product points outward from the

surface.

For the case of a rotating structure, in general there is an initial gap between the crack

surfaces. The amount of the gap at the equilibrium must be calculated so that the contact

between nodes can be detected properly. The two nodes of the ith contact pair are assumed

to be aligned along the normal direction ni
1 at the equilibrium, and the contact occurs when

the relative distance between the nodes becomes zero. Let di be the vector of relative
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distance between the node A and node B, i.e.,

di = (xi
B − xi

A), i ∈ Ccp (2.6)

where xi
A and xi

B denote the equilibrium positions of the node A and node B of the ith

contact pair. The gap of the ith contact pair, gi, is then defined as the projection of di onto

the normal direction ni
1, i.e.,

gi = |(di)Tni
1|, i ∈ Ccp (2.7)

The schematic of the relation between the gap and the contact pairs is shown in Fig. 2.1b.

In order to align one of the coordinates of the nodes along the normal direction, and

also to force one of the coordinates to point outward from the surface, a linear transforma-

tion is introduced. The three mutually perpendicular directions at the node A are defined

as ni
1, ni

2, and ni
3, where ni

2 is an arbitrarily chosen unit vector that is perpendicular to ni
1,

and ni
3 = ni

1 × ni
2. The linear transformation can then be defined so that the displace-

ment vector of the node A, ui
A, and that of the node B, ui

B, are expressed in the new local

coordinate systems, the 1-axis of which is the normal direction defined for the contact

pair. Let ūi
A and ūi

B be the displacement vectors in the new coordinate system, then the

transformations may be written as ui
A = Pi

Aūi
A where Pi

A = (ni
1,n

i
2,n

i
3)

ui
B = Pi

Būi
B where Pi

B = −Pi
A

, i ∈ Ccp (2.8)

Considering all the contact pairs in the setCcp, and defining q = [uT
c ,q

T
nc]

T, q = [uT
c ,q

T
nc]

T,

where uc contains ui
A and ui

B for all i ∈ Ccp, uc contains ui
A and ui

B for all i ∈ Ccp, and

qnc contains all the DOF that do not contribute to form contact pairs, the transformation

may be assembled into the global matrix form, uc

qnc

 =

Pc 0

0 I


 uc

qnc

 (2.9)
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where Pc is a block-diagonal matrix with Pi
A and Pi

B for all i ∈ Ccp along its diagonal

blocks. This transformation is expressed more compactly as

q = Pq (2.10)

Applying this transformation to Eq. (2.4) yields,

Mq̈ + Cq̇ + Kq = b + f(q) (2.11)

where M = P−1MP, C = P−1CP, K = P−1KP, b = P−1b, and f(q) = P−1f(q).

From Eq. (2.11), the coordinates can be rearranged so that the first coordinates of the nodes

of the ith contact pair, which are now alined along the normal direction ni
1, are featured as

follows

M
i



üi
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üi
o
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+ C

i
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u̇i
B

u̇i
o
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i
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A
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B
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o

qnc
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= b

i
+



f i
A(ui

A, u
i
B)

f i
B(ui

A, u
i
B)

f i
o

0


(2.12)

where ui
A and ui

B are the first coordinates of nodes A and B of the ith contact pair, ui
o and

f i
o contain the coordinates and nonlinear forces for all other DOF for the nodes in Cc. The

nonlinear forces f i
A and f i

B are defined as, f i
A = −k∗ 〈ui

B + ui
A − gi〉

f i
B = f i

A

(2.13)

where k∗ is a coefficient that penalizes the relative normal penetration of the nodes, and

〈·〉 denotes the Macaulay bracket defined as 〈x〉 = 1
2
(x + |x|), i.e., 〈x〉 = 0 if x < 0, and

〈x〉 = x if x > 0. In order to exploit the symmetry of Eq. (2.13), the following coordinate

transformation is introduced [29]:ui
nl

ui
l

 =
1√
2

1 1

1 −1


ui

A

ui
B

 = Ri
c

ui
A

ui
B

 , i ∈ Ccp (2.14)
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Note that (Ri
c)
−1 = (Ri

c)
T = Ri

c. This transformation leads to the separation of the DOF

in i ∈ Ccp into nonlinear DOF, ui
nl, and linear DOF, ui

l. This nomenclature is based on the

result of the transformation of the nonlinear forces:

Ri
c

f i
A(ui

A, u
i
B)

f i
B(ui

A, u
i
B)

 =

−√2k∗
〈
ui

nl − gi/
√

2
〉

0

 (2.15)

That is, the nonlinear force acts only upon the nonlinear DOF ui
nl.

Next, q is re-ordered such that q = [uT
A,u

T
B,u

T
o ,q

T
nc]

T and a vector q′ is defined as

q′ = [uT
nl,u

T
l ,u

T
o ,q

T
nc]

T where uA, uB, unl, and ul contain ui
A, ui

B, ui
nl and ui

l for all i ∈

Ccp respectively, and uo includes the DOF associated to the second and third coordinates

of all the nodes in Cc. Assembling Ri
c into a global matrix form, it may be written as

uA

uB

uo

qnc


=



RAA
c RAB

c 0 0

RBA
c RBB

c 0 0

0 0 I 0

0 0 0 I





unl

ul

uo

qnc


(2.16)

or

q = Rq′ (2.17)

where RAA
c , RAB

c , RBA
c , and RBB

c contain the components of Ri
c for all i ∈ Ccp at appro-

priate locations. Note again that the transformation matrix R is orthogonal and symmetric.

Defining qnl = unl, and ql = [uT
l ,u

T
o ,q

T
nc]

T, Eq. (2.11) can then be transformed as fol-

lows:

M′

q̈nl

q̈l

+ C′

q̇nl

q̇l

+ K′

qnl

ql

 = b′ +

fnl(qnl)

0

 (2.18)

where M′ = R−1MR, C′ = R−1CR, K′ = R−1KR, b′ = R−1b. The superscript “′” is

omitted for convenience in the subsequent formulation.
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2.2.5 Equations of motion in the frequency domain

The solution technique used in this study is an extension of the HFT method [20, 25,

28,29,38,42], which in turn was an extension of the AFT method [23]. Recently, the HFT

method has been applied to systems with intermittent contact and cracks by Poudou et

al. [28,29,42]. The basic assumption of this approach is that the steady state response can

be expressed as a truncated Fourier series:

q =

qnl

ql

 = <

 nh∑
k=0


Qnl,c

k

Ql,c
k

− j

Qnl,s
k

Ql,s
k


 ejkωt

 = <

(
nh∑

k=0

(Qc
k − jQs

k)ejkωt

)
(2.19)

where nh is the number of non-zero harmonics to be used and j =
√
−1. Note that Qc

k and

−Qs
k are the vectors of real and imaginary parts of kth Fourier coefficients of q, which

correspond to the cosine (c) and sine (s) components of the motion. In the same manner,

the external force b and the nonlinear force f are expressed as

b =

bnl

bl

 = <

 nh∑
k=0


Bnl,c

k

Bl,c
k

− j

Bnl,s
k

Bl,s
k


 ejkωt

 = <

(
nh∑

k=0

(Bc
k − jBs

k) ejkωt

)
(2.20)

f =

fnl

0

 = <

 nh∑
k=0


Fnl,c

k

0

− j

Fnl,s
k

0


 ejkωt

 = <

(
nh∑

k=0

(Fc
k − jFs

k) ejkωt

)
(2.21)

Substituting Eqs. (2.19), (2.20), and (2.21) into Eq. (2.18) and applying the method of

harmonic balance [17] yields the following equation for the kth harmonic

ΛkQk = Bk + Fk (2.22)
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where Q0 = Qc
0, B0 = Bc

0, F0 = Fc
0, Λ0 = K, Qk = [(Qc

k)T, (Qs
k)T]T, Bk =

[(Bc
k)T, (Bs

k)T]T, Fk = [(Fc
k)T, (Fs

k)T]T, and

Λk =

−(kω)2M + K (kω)C

−(kω)C −(kω)2M + K

 (2.23)

for k = 1, . . . , nh. The Eq. (2.22) can be written in partitioned formΛnl,nl
k Λnl,l

k

Λl,nl
k Λl,l

k


Qnl

k

Ql
k

 =

Bnl
k

Bl
k

+

Fnl
k

0

 (2.24)

where, again, each partition has both cosine and sine blocks for k = 1, . . . , nh or just a

cosine block for k = 0. Moreover, the size of the set of nonlinear equations, Eq. (2.24), can

be further reduced without any loss of accuracy. That is, the equations can be expressed in

terms of the nonlinear variables only [20], and Eq. (2.24) becomes

Λred
k Qnl

k = Bred
k + Fnl

k (Qnl) (2.25)

where

Λred
k = Λnl,nl

k −Λnl,l
k (Λl,l

k )−1Λl,nl
k

Bred
k = Bnl

k −Λnl,l
k (Λl,l

k )−1Bl
k

Assembling this into a global matrix form, the set of nonlinear equations are obtained as

ΛredQnl = Bred + Fnl(Qnl) (2.26)

where Λred is a pseudo-block diagonal matrix with Λred
k for k = 0 . . . nh along its diag-

onal blocks, Qnl = [(Qnl
0 )T, . . . , (Qnl

nh
)T]T, Bred = [(Bred

0 )T, . . . , (Bred
nh

)T]T, and Fnl =

[(Fnl
0 )T, . . . , (Fnl

nh
)T]T. The set of nonlinear equations (2.26) is iteratively solved by the

Hybrid Powell Method [27]. One should note that F, which are the Fourier coefficients of

the nonlinear force, are obtained at each iteration by applying the Fast Fourier Transform
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(FFT) to the time history of the nonlinear force, f , which was obtained by imposing the

displacement vector from the previous iteration [28]. This hybrid frequency/time-domain

procedure is summarized as:

Qnl F−1

−→ q(t)
(2.13)−→ f(q(t))

F−→ F
(2.26)−→ Qnl F−1

−→ · · · (2.27)

That is, given a displacement vector from the previous iteration, the forces are solved in

the time domain, and then a new displacement vector is solved in the frequency domain.

The solution is considered to be converged when the difference between the displacement

vectors from consecutive iterations falls below a prescribed tolerance.

2.2.6 Comments on the stability of the steady-state solutions

In time-domain calculations, one may determine the stability of the solution of a non-

linear forced response using Floquet multipliers or Poincaré maps (see Ref. [43], for ex-

ample). However, these methods cannot be readily applied to the solution process of

frequency-domain-based techniques such as the one proposed in this chapter. For such

methods, by utilizing the fact that the solution is expanded with a truncated Fourier se-

ries, one may use a finite-dimensional approximation of Hill’s infinite determinant (see

Ref. [43], for example) to determine the stability of the steady-state solutions. Namely,

the stability of the solution obtained by such methods can be determined by examining the

eigenvalues of a resulting quadratic eigenvalue problem as shown in the Ref. [44], where

a non-positive real part of an eigenvalue indicates a stable solution and a negative real part

indicates an unstable solution.

2.3 Numerical Validation

For simple, discrete mass-spring-damper systems, it was shown by Poudou et al. [28]

that the solutions obtained by the HFT method agreed with the results obtained by time
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Figure 2.2: Schematic of the cracked beam model used for validation of the HFT method
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Figure 2.3: Finite element model of the beam

integration methods. However, the validation of the method for a representative FE model

of a cracked structure has not yet been provided. In this section, the FE model of a can-

tilevered cracked beam subject to harmonic excitation is used for validation purposes. The

nonlinear, steady state vibration response of the cracked beam is calculated using both the

time integration method and the HFT method, and the results are compared.

2.3.1 Cracked beam model

The schematic of the cracked beam model is shown as Fig. 2.2. The crack is located at

one-eighth of the length of the beam from the clamped end, and the depth of the crackHc is

56.3% of the height of the beam H . The forcing is harmonic excitation, F (t) = A cosωt,

where A = 1.0N. The forcing is applied in the y direction at the tip of the beam in order to
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excite the first x−y-plane bending mode. The damping of the beam is defined as C = βK

where β = 5.0× 10−4 s−1.

The finite element model and the cross sectional view of the crack surface are shown in

Fig. 2.3. The finite element model has 4608 eight-noded brick elements and 6570 nodes.

After applying fixed boundary conditions at one end, the total number of DOF is 9780.

There are a total of 40 nodes on the crack surfaces, or 20 contact pairs.

2.3.2 Time integration method

The time integration was performed using the commercial code ANSYS [40]. The

Newmark method was used for the time integration, and the augmented Lagrangian method

was used as the contact algorithm. The augmented Lagrangian method (see Ref. [45], for

example) is an algorithm for enforcing the impenetrability boundary conditions at the con-

tact points by iteratively calculating the Lagrange multipliers using the penalty functions

and the Lagrange multipliers of the previous iteration. In general, the method is known

to possess better characteristics than of the pure Lagrange multiplier method and the pure

penalty method, for static and time transient calculations. The maximum penetration al-

lowed for the contact nodes was set to 0.001 for all contact elements, which is the ratio of

the amount of maximum penetration to the element dimension in the normal direction of

contact.

2.3.3 Reduced-order model for the HFT method

The Craig-Bampton [26] CMS method was applied to the FE model, and the resulting

reduced-order model had 62 DOF, which includes 20 normal modes and 42 active DOF.

Of the active DOF, 1 DOF was kept for each of the 40 nodes on the crack surfaces so

that the relative motion of the nodes could be tracked along the gap direction during the

iteration of the HFT. In addition, 2 active DOF were kept for nodes at the tip of the beam
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Figure 2.4: Frequency response of the beam

in order to apply external forcing and to track the tip motion.

2.3.4 Results

The frequency response curves obtained by the time integration method and the HFT

method are shown in Fig. 2.4. The HFT method was applied with several values of param-

eters. As can be seen, the results calculated by the HFT method show an excellent agree-

ment with the results by the time integration method. Ideally, the solutions obtained by

the HFT method converge as the values of parameters of the HFT go toward infinity. Fur-

thermore, it was previously shown that the value of the penalty coefficient and the number

of harmonics are the dominant parameters determining the accuracy of the method [29].

For the calculations considered, increasing the parameters beyond k∗ = 1.0 × 1012N/m

and harmonics 0 though 9 did not yield a noticeable improvement in the accuracy of the

results.

The CPU time required to obtain the solution for a specified frequency using a Sun

Blade 1500 workstation (1.0 GHz) is summarized in Table 2.1. The selected values of the
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Table 2.1: Average CPU time per frequency
Method Harmonics k∗ [N/m] CPU Time [sec]
HFT 0–7 1.0× 109 9.8× 10−1

HFT 0–9 1.0× 1012 1.8× 102

ANSYS Newmark - - 1.5× 104

parameters greatly affect the CPU time of the HFT method. Nevertheless, for both sets of

parameters the HFT method is much more efficient than time integration.

With regard to the interpretation of the frequency response of the cracked beam, it

should be noted that presence of the crack causes a resonant frequency drop of 7.2%.

Furthermore, in this case, the resonant frequency of the cracked beam is independent of the

amplitude of vibration because of a characteristic of this type of piecewise linear system.

This will be discussed further in section 2.4.

2.4 Effects of Rotation on a Cracked Blade

In this section, the effects of rotation on the forced response of a cracked blade are

examined. The effects considered here are: (1) the amplitude dependence of the frequency

response, which does not exist for the response of the cracked beams under static condi-

tion; and (2) the resonant frequency shift due to the change in the crack length for both

static and rotating conditions.

2.4.1 Amplitude dependence of the response

Problem statement

The forced response of the cracked blade is considered under non-rotating and rotating

conditions. The finite element model of the blade is shown as Fig. 2.5a, and the deformed

configuration of the model rotating at 5000 RPM is shown as Fig. 2.5b. The axis of rotation

is parallel to the y-axis at a distance of 0.0833 m from the bottom of the blade. Under the

rotating condition, there exists a gap between the crack surfaces due to the inertial force.
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(a) (b)

x
yz

Figure 2.5:
(a) FE model of the cracked blade under static condition, (b) deformed equi-
librium under rotating condition

(a) (b) 

x 
y z 

Figure 2.6:
Mode shapes of the cracked blade obtained by neglecting the nonlinear bound-
ary condition: (a) sixth mode, (b) tenth mode. Thin lines show undeformed
shapes.
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The mode of interest is the tenth mode as shown in Fig. 2.6b, and the corresponding

natural frequency is 6952.2 Hz. The blade has chord length H = 0.0508 m, maximum

thickness t = 0.0015 m, and span length L = 0.128 m, and is made of an aluminum

alloy with Young’s modulus E = 72.4 GPa, density ρ = 2793.4 kg/m3, and Poisson’s

ratio ν = 0.33. The crack is located at a point 0.0386 m down from the blade tip, which

is 30.3% of the span length. The crack length is 0.0160 m, which is 31.6% of the chord

length. The finite element model has 28,037 nodes, and there are 104 nodes on the crack

surfaces, or 52 contact pairs. The nodes on the blade root are constrained in all three

directions, and the resulting finite element model has a total of 77,643 DOF.

After applying the Craig-Bampton method, the reduced-order model had 408 DOF:

312 DOF at the crack surfaces, 36 DOF at the tip of the blade (for convenience of tracking

the vibration response of the blade tip in physical coordinates), and 60 modal coordinates.

The modal damping factor ζr was set to 0.0005, and the damping matrix was defined as

C = βK, where β = 2ζr/ωr. Harmonic forcing was applied at the edge of the crack such

that the tenth mode was excited. For the HFT method, harmonics 0–9 were kept, and the

value of penalty coefficient was set to k∗ = 1.75× 108 N/m.

Results

Under the conditions stated above, forced response analysis for both static and rotating

conditions was performed for various values of the applied force b. The results are shown

in Fig. 2.7. For comparison, the forced response results for both the linear and nonlinear

systems are shown in the same graphs. The linear system here means that contact was not

enforced, i.e., the nonlinear forces defined in Eq. (2.13) were ignored. As can be seen,

the nonlinear systems have higher resonant frequencies than the linear systems for both

conditions. This indicates that the compliance of the linear system is greater than that



34

Linear 
Nonlinear 

6900 6950 7000 7050 
0 

0.2 

0.4 

0.6 

0.8 

1 

1.2 

1.4 

1.6 

x 10 
-3 

Frequency [Hz] 

A
m

pl
itu

de
 o

f v
ib

ra
tio

n 
[m

] 

(a)

Linear 
Nonlinear 

6900 6950 7000 7050 
0 

0.2 

0.4 

0.6 

0.8 

1 

1.2 

1.4 

1.6 

x 10 -3 

Frequency [Hz] 

A
m

pl
itu

de
 o

f v
ib

ra
tio

n 
[m

] 

(b)

Figure 2.7:
Frequency response under (a) static condition, (b) rotating condition at 5000
RPM for increasing values of ||b||=4.44, 6.67, 8.89, 13.3, 22.2, and 44.4 N



35

0 0.5 1 1.5

x 10 -3

6972

6974

6976

6978

6980

6982

6984

6986

Amplitude of vibration [m]

R
es

on
an

t f
re

qu
en

cy
 [H

z]

Figure 2.8: Resonant frequency under rotating condition versus amplitude of force

for the nonlinear systems, which makes sense because penetration of the crack surfaces is

allowed for the linear case.

A notable distinction between the static and the rotating cases is that the nonlinear

response for the static case is independent of the amplitude of the forcing, whereas the

frequency response curve for the rotating case becomes bent towards the higher frequency

region as the amplitude of the forcing increases. This difference results from the fact

that there was a gap between the crack surfaces. The systems considered here can be

regarded as piecewise linear systems having 2N domains with N switching hyperplanes

(see [46] for example) defined by ui
B + ui

A = gi for i ∈ Ccp, where N denotes the number

of contact pairs, or N = |Ccp|. The amplitude independence of the forced response is a

characteristic of periodically forced piecewise linear oscillators when there are no initial

gaps [31]. Namely, as discussed by Zuo and Curnier [47], in the absence of the gap,

i.e., if the switching hyperplane passes through the origin, the modal frequencies of the

piecewise linear systems are not dependent on the amplitude of vibration due to positive

homogeneity of the piecewise linear force. This corresponds to the static case for the

systems studied here. To be specific, it can be shown that the piecewise linear force defined
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in Eq. (2.13) is positively homogeneous of degree 1 if gi = 0, i.e., f i
A(λq) = λf i

A(q),

∀λ > 0, q ∈ Rnnm+na , i ∈ Ccp. Hence the natural frequencies are independent on the

amplitude of vibration, so are the resonant frequencies. For the cases with initial gaps

however, as discussed by Chen and Shaw [48], and Jiang et al. [46], the piecewise linear

forces may not possess positive homogeneity because the switching hyperplane does not

pass through the origin. This applies to the rotating cases for the systems studied here.

Furthermore, a significant feature of the rotating response curves is that the bending of

the resonance curves vanishes as the force amplitude increases. This is due to the fact that

the size of the gap shrinks relative to the response amplitude as the force becomes large,

and the results approach those of the limit case in which there is no gap.

In order to better understand the amplitude dependence of the response, the resonant

frequencies for rotating cases are plotted versus the amplitude of vibration in Fig. 2.8.

As can be seen in Fig. 2.8, the resonant frequency stays constant for small amplitude of

vibration, where the system response is still linear. The transition from the linear response

to the nonlinear response occurs where the amplitude of vibration is between 1.23×10−4

m and 1.30×10−4 m. It then rapidly increases and tends to converge to a certain value as

the amplitude of forcing increases. This trend in the resonant frequency can also be found

in the dependence of response frequency on the amplitude of vibration for a piecewise

linear system with initial gaps [46].

Jump phenomenon

For the rotating condition, the existence of multiple solutions has been observed for

some values of the forcing b. As an example, the response for ||b||=8.89N is shown as

Fig. 2.9. This force level resulted in the jump phenomenon in the frequency response:

as the excitation frequency was swept up through this region, the amplitude of vibration
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Figure 2.9: Frequency response for ||b|| = 8.89N

jumped down to the lower branch of the solutions at a certain frequency; and as the fre-

quency was swept down through this range, the amplitude jumped up to the upper branch

of the solutions at a different frequency. It is known that the jump phenomenon occurs

in many nonlinear systems (see Ref. [17], for example). For piecewise linear systems

with clearances in particular, it has been reported that the phenomenon occurs in many

systems such as simple mass-spring discrete systems [49], blades with nonlinear shroud

constraints [19], and piecewise linear vibration isolators [50]. For a piecewise linear vi-

bration isolator, the phenomenon was observed experimentally by Narimani et al. [51],

for example. The numerical results shown in Fig. 2.9 suggest that the jump phenomenon

might be observed in tests of rotating cracked blades as well, although the author is not

aware of any such experimental findings.

2.4.2 Resonant frequency shift

Problem statement

As discussed in previous sections, the resonant frequencies of cracked blades cannot

be predicted precisely from the natural frequency of the linear system. Moreover, if a

gap between the crack surfaces exists, the resonant frequency may be dependent on the
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forcing level. Thus, the nonlinear effects due to the crack surfaces as well as the rotation

effects can both play a key role in determining the resonant frequencies of the rotating

cracked blades. For example, suppose the resonant frequencies are used to identify the

information of the cracks (e.g., the length of the cracks), the natural frequency may not

predict it correctly. In other words, the crack length deduced from the natural frequencies

may be smaller than the one predicted from the actual resonant frequencies.

In this section, the effects of rotation on the crack-induced frequency shift for various

lengths of cracks are investigated. The same blade model as in the previous section is

used. The modes of interest are the tenth mode, which was discussed earlier, and the sixth

mode, which is the first edgewise bending mode shown in Fig. 2.6a The frequency shift

FS is defined as

FS =
fr − f0

f0

(2.28)

where fr is the resonant frequency of the cracked blade, and f0 is the natural frequency

of the non-cracked blade. The parameters for the HFT methods, such as the number of

harmonics and the value of penalty coefficient, are the same as those used in the previous

section. For both static and rotating cases, the value of the amplitude of the force is chosen

to be ||b|| = 6.67 N.

Results

The resonant frequency versus the crack length ratio for the tenth mode and the sixth

mode are shown in Figs. 2.10a and 2.11a. The frequency shift FS versus the crack length

ratio is plotted in Figs. 2.10b and 2.11b.

First, there is a clear distinction between the static and the rotating cases for both

modes as shown in both Fig. 2.10a and 2.11a. Specifically, the natural frequencies for the

rotating cases are greater than those of the static cases for a given crack length ratio. This
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Figure 2.10:
Frequency shift for the tenth mode: (a) resonant frequency versus crack
length, (b) resonant frequency shift versus crack length

is due to the change in the stiffness matrix of the FE model by the centrifugal loading,

which appears in Eq. (2.2). (Although only the stiffness matrix of the original FE model is

changed by the inertial effect, both mass and stiffness matrices of the reduced-order model

are changed.)

Second, the effect of nonlinearity becomes more significant as the crack length grows,

i.e., the difference between the resonant frequencies of the nonlinear cases and the lin-

ear cases for both static and rotating cases becomes more apparent. However, the effect

of rotation on the degree of nonlinearity (i.e., the qualitative change in the frequency re-
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Figure 2.11:
Frequency shift for the sixth mode: (a) resonant frequency versus crack
length, (b) resonant frequency shift versus crack length

sponse due to the existence of the gap between the crack surfaces discussed in the previous

section) is not evident in the resonant frequencies themselves.

On the other hand, if the frequency shift FS is considered, the distinction due to the

inertial effects nearly vanishes. Therefore, one can almost isolate the effects of nonlinear-

ity from the resonant frequencies. For the tenth mode, there is not a significant difference

between linear and nonlinear cases for both static and rotating conditions. This is because

the motion of the crack surfaces is almost perpendicular to the normal directions of these

surfaces at the moment of contact, as can be seen in Fig. 2.6b.
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For the sixth mode however, we can see a large difference between the linear and

nonlinear cases. This is because the motion of the crack surfaces is mostly along the

normal directions of these surfaces at the moment of contact. In this case, the contact

forces on the crack surfaces have a significant stiffening effect on the resonant vibration

frequency.

2.5 Conclusions

An efficient method was presented for reduced-order modeling and nonlinear vibra-

tion analysis of rotating cracked structures. This method accounts for the change in the

equilibrium configuration of the crack surfaces due to rotation and the attendant influence

on the forced vibration response due to the intermittent contact of the crack surfaces.

The individual and combined effects of rotation and intermittent contact on the forced

response were examined in detail for an example of a cracked blade. First, a validation

study was conducted by comparing the results obtained by the proposed method with those

obtained by time integration for a cracked beam. The proposed method produced results

that agree very well with those calculated by time integration while reducing computa-

tional costs by as much as five orders of magnitude. Second, the amplitude dependence of

the forced response of a cracked blade was investigated. It was found that the frequency

response is dependent on the forcing level only if the blade is rotating. This is due to the

existence of an initial gap between the crack surfaces for the rotating equilibrium position,

which causes a qualitative change in the frequency response. For some forcing levels, the

jump phenomenon was observed. Third, the crack-induced shifts in resonant frequencies

of the blade were investigated for various crack lengths. It was shown that the effect of

rotation on the resonant frequencies is significant in terms of: (1) the stiffening effect due

to the change in the system matrices, and (2) the qualitative change in the nonlinear sys-
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tem due to the initial gap. The influence of nonlinearity on the resonant frequency did not

appear to exceed that of the stiffening effect. On the other hand, the effect of nonlinearity

on the frequency shift is more significant than the effect from rotation.

Although fairly simple beam and blade finite element models were used in this chapter,

the proposed method can be applied to more realistic, large-scale finite element models of

complex structures. In particular, the capability of efficiently predicting crack-induced

frequency shifts suggests that the proposed method may be applicable to structural health

monitoring of rotating structures, such as bladed disks in turbine engines.



CHAPTER III

Effects of a Cracked Blade on Mistuned Turbine Engine
Rotor Vibration

3.1 Introduction

In the typical design of each stage (bladed disk) of a turbine engine rotor, all blades

are intended to be identical. Thus, for the nominal design, the vibration analysis can be

greatly simplified by using cyclic symmetry solvers. However, the cyclic symmetry of a

bladed disk is destroyed if there are small differences in material properties or geomet-

ric characteristics among the blades, which is called mistuning. Although mistuning is

typically small in terms of individual blade properties (e.g., blade-alone natural frequency

variations on the order of 1%), it can have a drastic effect on the system response. In

particular, mistuning can cause localization of the vibration about a few blades, and the

attendant concentration of vibration energy can lead to sharp increases in maximum blade

amplitude and stress levels. Therefore, a large amount of research has been conducted for

analyzing the vibration of mistuned bladed disks, which has been summarized in several

survey papers [9–11].

In contrast, there have been relatively few papers published to date concerning local-

ization and other effects on the forced vibration response of bladed disks due to cracking

of blades. The studies by Kuang and Huang [12, 13] considered free and forced response

43
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analysis of rotating, shrouded bladed disks by modeling each blade as an Euler-Bernoulli

beam where the crack effect was treated as local disorder of the system. They showed

that the existence of the crack may change the vibration response of a bladed disk sig-

nificantly, and cause mode localization. In their recent work [14], they analyzed the sta-

bility of a rotating bladed disk using Euler-Bernoulli beam models in conjunction with

Galerkin’s method for formulating the equations of motion, which they solved with per-

turbation techniques. Fang et al. [15] investigated the vibration localization of bladed disks

due to cracks for various parameters—including internal coupling factor, crack severity,

engine order of excitation, and number of blades—using a model with blades being treated

as Euler-Bernoulli beams, and the crack being treated as a local stiffness loss based on a

fracture mechanics model. It was shown that even a small crack can cause vibration mode

and forced response localization. Hou [16] investigated crack-induced mistuning in an an-

alytical study based on a lumped-mass beam model, in which the local stiffness loss due to

cracking was expressed with a flexibility matrix method. McAdams et al. [52] examined

the effects of crack and manufacturing variations on the vibrational response of turbine en-

gine blades using finite difference and lumped parameter models of Euler Bernoulli beams

with the crack being modeled as a local decrease in Young’s modulus.

However, these previous studies used simplified models for cracked blades. Most im-

portantly, their models were linear. That is, the nonlinearity caused by the crack closing

effect was not taken into account, which may change the dynamic response of the cracked

blades significantly (see [3] for example). The crack closing effect is the displacement-

dependent nonlinearity caused by the repetitive opening and closing of crack surfaces

during each vibration cycle, which occurs especially when a fatigue-induced crack is con-

sidered. Therefore, the forced response analysis of beams or blades with closing cracks is

fundamentally nonlinear, and typically difficult to solve.
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In this chapter, an efficient nonlinear vibration analysis method for predicting the

forced response of a rotor with a cracked blade is presented and used to carry out nu-

merical investigations. The analysis technique is summarized as follows. Starting with a

finite element (FE) model of a representative bladed disk with one cracked blade, a hybrid-

interface method of component mode synthesis (CMS) is used to retain the FE degrees of

freedom (DOF) on the crack surfaces as active (physical) DOF for evaluation of nonlinear

boundary conditions while condensing the other DOF with modal analysis. This yields

an accurate and compact reduced-order model (ROM) that can be used for the nonlinear

forced response analysis. Then, the nonlinear steady-state response analysis is performed

using a Hybrid Frequency/Time (HFT) domain method, which is based on the application

of Harmonic Balance Method [17] in conjunction with the Fast Fourier Transform (FFT)

for the evaluation of nonlinear forces. Pioneering contributions for using this type of

technique include the Fast Galerkin method of Ling and Wu [24] and the Alternating Fre-

quency/Time domain method of Cameron and Griffin [23]. Since then, this approach has

been applied to analyze various types of forced vibration problems of nonlinear systems,

such as the recent studies on simplified cracked rotating shafts [53], torsional systems

with clearance nonlinearity [54], and friction dampers for bladed disks [55]. Poudou and

Pierre [29] applied the HFT method to the nonlinear forced response analysis of cracked

beams with closing cracks, which was followed by the extension of the method to the

analysis of rotating cracked blades [56].

There are three main contributions of this chapter. The first is to extend the analysis

framework previously developed by the authors for a single cracked blade [29, 56] to a

full blade assembly with a cracked blade, including accounting for both mistuning and

nonlinear crack closing effects. The second is to provide a better understanding of the

fundamental vibration response characteristics of such systems and to examine the impli-
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cations of various levels of approximation with respect to modeling the cracked blade. The

third is to consider potential applications of the proposed method and the new findings to

damage detection and structural health monitoring of turbomachinery rotors.

This chapter is organized as follows. In section 3.2, the mathematical formulations

of the reduced-order modeling approach and the HFT method are briefly reviewed. In

section 3.3, a numerical validation of the proposed reduced-order modeling approach is

performed by applying the hybrid CMS method to the nonlinear forced response problem

of a single-piece bladed disk (blisk) with a cracked blade. The results are then compared

with the results obtained with the ROM generated from the classical Craig-Bampton CMS

method [26]. In section 3.4, results of nonlinear forced response analyses for rotors with

a cracked blade are shown. In particular, the relationship between the analysis of a blade

alone and the full blisk, the effects of mistuning, and the effects of rotation are discussed

in detail. The conclusions from this chapter are stated in section 3.5.

3.2 Mathematical Formulation

3.2.1 Equations of Motion

Assuming a rotor with a cracked blade is modeled as a linear elastic structure and the

associated governing equation is spatially discretized by the finite element method, the

semi-discrete form of the governing equation is written as

Mü(t) + Cu̇(t) + Ku(t) = b(t) + f(u) (3.1)

where u,b, f ∈ Rn, M,C,K ∈ Rn×n, n is the number of DOF, u is a vector of nodal

displacements of all nodes, M, C, and K are mass, damping, and stiffness matrices, b is

the external force vector, and f(u) is the nonlinear force vector caused by the intermittent

contact at the crack. The external force acting on each blade is assumed to be a traveling

wave excitation whose frequency is related to the rotational speed of the rotor, which is
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called engine order excitation. The force on each blade is expressed here as:

bi(t) = β cos (ωt− φi) , i = 1, . . . , N (3.2)

where i is the blade number, N is the total number of blades, β is the forcing amplitude

vector, and ω is the angular frequency of excitation. The term φi is the interblade phase

angle, defined as φi = (i− 1)2πC/N , where C is the (integer) engine order of excitation.

3.2.2 Reduced-Order Modeling

Finite element models of rotors typically have a large number of DOF and hence

the computational cost of vibration analyses can be expensive. In chapter II, the Craig-

Bampton method [26] of CMS was used to reduce the model size before performing

nonlinear forced response analysis of a rotating cracked blade. In particular, the mo-

tion was represented by a linear combination of static constraint modes and a truncated

set of fixed-interface normal modes, and the associated ROM was obtained. The Craig-

Bampton method is a stable reduced-order modeling technique that enables one to retain

the crack surface DOF as physical coordinates while condensing the remaining DOF with

modal analysis. However, for studies of cracked structures, it suffers from slow modal

convergence because of the discrepancy between the boundary condition to calculate the

fixed-interface normal modes and that of the actual vibration problem of the cracked struc-

tures. Namely, the actual response shape of the cracked structure is dissimilar to the fixed-

interface normal modes, which are the modes of the structure with the crack surface DOF

held fixed.

In order to enhance the modal convergence characteristics of the ROM, a free-interface

or hybrid CMS technique can be employed. In this study, a hybrid CMS method is used.

The Ritz vectors used in the method are constraint modes Ψc, inertia relief attachment

modes Ψa (if rigid body motion exists), and a truncated set of free-interface normal modes
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Φk. The use of free-interface normal modes instead of fixed-interface normal modes as-

sures faster modal convergence of the ROM, as discussed in section 3.3. Let the displace-

ment vector u be partitioned into boundary DOF, ub, and interior DOF ui. By denoting

the inertia relief attachment coordinates, and a truncated set of free-interface modal coor-

dinates as pa and pk, the linear projection is represented as [57],

u = ΨHq, or

ub

ui

 =

 I 0 0

Ψic Ψ̂a Ψ̂k




ub

pa

pk

 (3.3)

where Ψ̂a = Ψia − ΨicΨba, Ψ̂k = Φik − ΨicΦbk, I is the identity matrix, Ψic is the

boundary partition of Ψc, Ψia and Ψba denote the interior and the boundary partitions of

Ψa, and Φik and Φbk denote the interior and the boundary partitions of Φk. It should be

noted that the size of q, defined here as nr, is typically much smaller than n, and thereby

the application of Eq. (3.3) to Eq. (3.1) yields a much smaller number of equations:

MH q̈ + CH q̇ + KHq = b + f(q) (3.4)

where MH = ΨT
HMΨH , CH = ΨT

HCΨH , KH = ΨT
HKΨH , b = ΨT

Hb, and f =

ΨT
Hf . In the following subsections, the subscript H as well as the bars are omitted for

convenience.

3.2.3 Intermittent Contact Problem for a Cracked Structure

Here the treatment of nonlinear boundary conditions at the crack surfaces is briefly

reviewed. The nonlinear force acting on a pair of nodes on both surfaces are calculated by

a method developed by Poudou et al. [28, 42]. Namely, suppose there is a pair of possibly

contacting nodes during the vibration, denoted by c, with initial gap gc along their normal,

and the relative displacement of those nodes along the normal direction of the surfaces is
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expressed as qc(t). Assuming frictionless contact, the contact force acting upon the contact

pair along the normal, fc, at a discrete time instant ti, is then expressed as the following

relationship [28]

fc(qc(ti)) = k∗(q∗c (ti)− qc(ti)) (3.5)

where 0 6 ti 6 2π/ω, i = 1, . . . , nt, nt is the number of sampling points for taking

the FFT, k∗ is a given penalty parameter, qc(ti) is the displacement of contacting DOF,

and q∗c (ti) is the reference displacement defined as q∗c (ti) = qc(ti) if qc(ti) 6 gc, and

q∗c (ti) = gc if qc(ti) > gc, which satisfies the boundary condition exactly and converges

toward qc(t) in the limit of k∗ →∞.

3.2.4 Hybrid Frequency/Time Domain Method

For steady-state response, it is assumed that q(t) can be approximated with a truncated

Fourier series:

q(t) =

nh∑
k=0

(Qc
k cos(kωt) + Qs

k sin(kωt)) (3.6)

where superscripts c and s denote cosine and sine components, and nh denotes the number

of non-zero harmonics. It is noted that only the super-harmonic components are considered

in this formulation, as the nonlinearity caused by the crack is assumed to be weak enough

in the sense that period-doubling bifurcation as well as the subsequent transition to chaotic

behavior do not occur, which entails sub-harmonic components in the response even if

the external forcing is single-harmonic excitation [58, 59]. Furthermore, a preliminary

study by the authors showed that the sub-harmonic components were not significant for

the nonlinear forced response of similar structures.

Assuming that b(t) and f(q) can also be expressed as truncated Fourier series that are

similar to Eq. (3.6), application of the method of Harmonic Balance [17] then yields a set
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of nonlinear algebraic equations:

ΛQ = B + F(Q) (3.7)

where Q, B, and F contain Fourier coefficients of q, b, and f , i.e.,

Q = [(Qc
0)T, (Qc

1)T, (Qs
1)T, . . . , (Qc

nh
)T, (Qs

nh
)T]T (3.8)

B = [(Bc
0)T, (Bc

1)T, (Bs
1)T, . . . , (Bc

nh
)T, (Bs

nh
)T]T (3.9)

F = [(Fc
0)T, (Fc

1)T, (Fs
1)T, . . . , (Fc

nh
)T, (Fs

nh
)T]T (3.10)

and Λ is a matrix with Λk on its diagonal blocks defined as

Λk =


K for k = 0−(kω)2M + K (kω)C

−(kω)C −(kω)2M + K

 for 1 6 k 6 nh

(3.11)

It is noted that the size of Eq. (3.7) is nr(2nh + 1) if all harmonics from k = 1 through nh

are used. The Fourier coefficients of the nonlinear force, F(Q), are evaluated by applying

the FFT to the time history of the nonlinear force, which is calculated by Eq. (3.5), for all

pairs of contacting DOF.

The size of the nonlinear algebraic equations is further reduced by applying a conden-

sation technique to the linear DOF [20, 29] of Eq. (3.7) as follows. The equations for the

kth harmonic number of Eq. (3.7) can be written in the following partitioned form:Λnl,nl
k Λnl,l

k

Λl,nl
k Λl,l

k


Qnl

k

Ql
k

 =

Bnl
k

Bl
k

+

Fnl
k

0

 (3.12)

where superscripts nl and l denote the partitions for nonlinear and linear DOF, respectively.

Namely, the nonlinear DOF are defined as the DOF where the contact force Eq. (3.5) is

applied, whereas all the other DOF are defined as the linear DOF. By solving the lower
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partition of the Eq. (3.12) for Ql
k, and substituting it to the upper partition of the equation,

the equation can now be written with Qnl
k only:

Λred
k Qnl

k = Bred
k + Fnl

k (Qnl) (3.13)

where Λred
k = Λnl,nl

k −Λnl,l
k (Λl,l

k )−1Λl,nl
k and Bred

k = Bnl
k −Λnl,l

k (Λl,l
k )−1Bl

k. Assembling

Eq. (3.13) for all k results in ncp(2nh + 1) nonlinear equations to be solved, where ncp

denotes the number of contact pairs:

ΛredQnl = Bred + Fnl(Qnl) (3.14)

where Λred is a pseudo-block diagonal matrix with Λred
k for all k along the diagonal, Qnl =

[(Qnl
0 )T, . . . , (Qnl

nh
)T]T, Bnl = [(Bnl

0 )T, . . . , (Bnl
nh

)T]T, and Fnl = [(Fnl
0 )T, . . . , (Fnl

nh
)T]T.

The nonlinear equations are then solved by the hybrid Powell method [27] in conjunction

with an iterative method that successively solves the equations with increasing penalty

parameter k∗ [28]. It is noted that at each iteration step, the nonlinear force Eq. (3.5) is

evaluated for a given trajectory of qc in the time domain, and an FFT is taken to convert

it to the frequency domain. The nonlinear equations are then solved, and the obtained

Fourier coefficients of Q are transformed back to the time domain again, in order to be

used to evaluate the nonlinear force Eq. (3.5). This process is repeated until the solution

converges.

3.3 Numerical Validation of Hybrid CMS Method

In this section, a numerical validation of the hybrid CMS method is carried out. Both

Craig-Bampton and hybrid CMS methods are applied to the FE model of a blisk with one

cracked blade, and the associated nonlinear forced response analyses are performed. It

is noted that the Craig-Bampton method used with HFT method was numerically vali-

dated with time integration method [56], and therefore the results with the Craig-Bampton



52

xy
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mode 1 mode 10

cracked blade

Figure 3.1:
Finite element model of the blisk with a 37.5% cracked blade, and healthy
blade modes of interest

method are used here as reference results.

The FE model used in this study was a representative academic blisk model with 20

blades, consisting of 19 identical, healthy blades and one cracked blade, as shown in

Fig. 3.1. The material was modeled as a Titanium alloy with Young’s modulus E =

114GPa, density ρ = 4420kg/m3, and Poisson’s ratio ν = 0.31. This model is used

throughout this chapter.

The modes of interest in this study are the blade-dominated modes—that is, modes for

which most of the vibration energy is concentrated in the blades. Such modes are typically

much more sensitive to the cracking of blades than the ones that are disk-dominated. For

some blade-dominated modes, both the system mode shapes and the natural frequencies

are greatly affected by the cracking. Therefore, modeling, simulating, and understanding

the effects of cracks on blade-dominated modes are investigated in this work, with the

underlying goal of providing the foundation for developing new crack detection methods

for turbine engine rotors.

The initial frequency region of interest corresponds to the first blade-dominated mode

family, whose natural frequencies lie in the range 382.3–388.9 Hz. The blade motion in
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this family of modes is characterized by the first flexural bending mode of a blade (mode

1 in Fig. 3.1).

The system was excited by applying harmonic forcing at the tip of each blade with

engine order 2 excitation. The nodes on the rims of the disk were constrained only along

the axial (z) direction, such that the disk could slide in the x − y plane. The resulting

number of DOF was 33,498. The damping model was Rayleigh damping without mass

matrix contribution, i.e., C = βK where β = 2ζr/ωr, and the modal damping ratio ζr was

assumed to be 0.001.

For the generation of the ROM, 20 nodes located at the blade tips (one node per blade)

and 12 nodes on the crack surfaces (6 contact pairs) were kept as active DOF. The number

of normal modes kept for each method was 100. This resulted in an ROM size of 196 DOF

for each method. For the generation of the ROMs by both methods, the commercial FE

software ANSYS [40] was used.

With these ROMs, the nonlinear forced response was calculated with the HFT method

with nh = 9, and with 6 contact pairs this yielded 114 unknown variables in Eq. (3.7). The

results are shown in Fig. 3.2 where only the envelope of displacement norms at the tips of

all blades are shown. As can be seen, the response calculated with the hybrid ROM agrees

very well with that calculated with Craig-Bampton ROM. It should be noted at this point

that there are two peaks in the response: the peak at higher frequency contributed from

the responses of healthy (non-cracked) blades, and the other one solely from the cracked

blade. A detailed discussion about this is given in later sections.

In order to examine the mode participation from each normal mode, the averaged mode

participation factor over the frequency range was defined as

Q , (1/nf )

nf∑
k=1

Q(ωk)/||Q(ωk)||2 (3.15)
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where nf is the number of sampling points over the frequency range and ωk is the fre-

quency at the kth sampling point. As plotted in Fig. 3.3a, there are approximately 100

contributing modes from a wide range of frequencies when the system was modeled with

the CB method. This indicates that a large number of normal modes must be retained in

the ROM to achieve high accuracy, which could become a major problem as the number

of DOF or the number of blades increases. On the other hand, as can be seen in Fig. 3.3b,

there are only 23 significantly responding modes for the model employing the hybrid CMS

method, which are in the frequency range of the first blade-dominated mode family. This

indicates that, for the calculation of nonlinear forced response of the blisk with a cracked

blade, only a relatively small number of modes need to be retained to form the ROM if the

hybrid method used. As such, a new ROM was generated with these 23 modes, and the

same nonlinear forced response calculation was performed. These results are also shown

in Fig. 3.2, and it is seen that the ROM with 23 modes produced an accurate solution with

relative error of less than 0.051% over the frequency range of interest. Thus, the hybrid-

interface CMS method has an advantage over the fixed-interface Craig-Bampton CMS

method for producing a compact yet accurate ROM that can be used for the nonlinear

forced response analysis of a rotor with a cracked blade.

3.4 Analysis of the Blisk with a Cracked Blade

In this section, the forced response analysis of a blisk with a cracked blade is investi-

gated with the proposed analysis framework. In addition, the applicability of this analysis

framework to structural health monitoring is discussed.

3.4.1 Linear Cracked Blade Model Versus Nonlinear Cracked Blade Model

If one creates an FE model with a crack and performs forced response analysis or

modal analysis without considering the crack-closing effect, then the response is linear.
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Figure 3.2:
Nonlinear frequency response of the blisk with a cracked blade subjected to
engine order 2 excitation

This modeling approach does not preserve cyclic symmetry in the geometry of the tuned

system, but it does yield a linear system. This approach is referred to as linear cracked

blade model in this chapter. The nonlinear cracked blade model is the cracked blade

model where the intermittent contact of the crack surfaces during the vibration is fully

considered.

In Fig. 3.4a and c, the forced response in the frequency ranges of the first and tenth

blade-dominated mode families are shown for the blisk with the nonlinear cracked blade

model.

The harmonics used for the results in Figs. 3.4a and 3.4c were 0–9, and the value of

the penalty coefficient was k∗ = 1.0×106N/mm. These values are used for the subsequent

analyses in this chapter. It is noted that a convergence study showed that the resonant fre-

quencies of cracked-blade-dominated modes shown in Fig. 3.4a and c have at most 0.01%

relative error with respect to the results calculated with two orders of magnitude greater

penalty coefficient. As can be seen, the frequency response function predicted by the linear

cracked blade does not match that predicted by the nonlinear cracked blade model. The

most notable distinction between the results from the linear model and the nonlinear model
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Figure 3.3: Averaged mode participation factor versus mode number

is that the resonant frequencies of the cracked-blade-dominated response shift significantly

toward higher frequencies for the nonlinear case. This effect is due to the intermittent con-

tact at crack surfaces, the so-called closing or breathing crack effect. Namely, the stiffness

of the cracked blade is underestimated by the linear model that neglect contact, and so are

the resonant frequencies. In summary, the behavior of the nonlinear model cannot be pre-

cisely captured by a linear model in terms of predicting vibration amplitudes and resonant

frequency shifts. However, the shifts in resonant frequencies can be estimated from the

analysis of a single cracked blade [56].

3.4.2 Relevance of the Analysis of a Blade Alone

As briefly mentioned in the previous subsection, the cracked-blade-localized modes

are isolated from the other modes in the mode family for the cases shown in Fig. 3.4a and

c. Furthermore, it appears that the effect of crack-induced nonlinearity on the other modes

in the family is much smaller than the influence on the resonances of the cracked blade
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Figure 3.4:
Frequency response of the bladed disk model with a cracked blade, and the
blade-alone models
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itself. With this observation, the corresponding cracked blade is analyzed in isolation,

with a cantilevered boundary condition at the disk-blade interface, and its relationship to

the blisk with a cracked blade is discussed.

The blade-alone modes of interest are the first and tenth modes (see Fig. 3.1), which

correspond to the dominant blade motion in the families of blisk modes analyzed in the

previous section. The corresponding FE model of the cracked blade was the same compo-

nent of the original FE model of the blisk. The reduced-order model consisted of 39 active

DOF and 100 modal coordinates. The harmonics used in the HFT method were 0–9 for the

calculation of the first and tenth mode. Following the same analysis framework as before,

the forced response calculations of the cantilevered blade were performed. The results for

the frequency ranges of the first and tenth blade modes are shown in Figs. 3.4b and 3.4d.

Clearly, these results show that the response of the blade alone qualitatively agrees with

the response of a corresponding blisk with a cracked blade shown in Figs. 3.4a and 3.4c.

That is, the resonances for linear cracked, nonlinear cracked, and uncracked models of the

cantilevered blade are in agreement with their blisk counterparts. This indicates that for

these particular modes with this crack length, the vibration behavior of a blisk could be

qualitatively captured by the blade-alone analysis. Indeed, although the absolute values of

the resonant frequencies do not coincide, if one compares the ratio of frequency shifts for

both the blisk with a cracked blade and blade-alone cases, they are in good agreement with

approximately 0.1% absolute error as shown in Table 3.1.

From a structural health monitoring perspective, this may indicate that the results of a

blade-alone analysis could be used in combination with frequency response data measured

for the full rotor to detect a crack in a blade and estimate its severity. Note, however, that

the effects of blade mistuning have not been taken into account yet. The combined effects

of a crack and mistuning are investigated in the next subsection.
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Table 3.1: Comparison of Frequency Shifts (FS)
Mode FS with blade alone [%] FS with blisk [%]
First -0.7167 -0.6085
Tenth -2.050 -1.980

3.4.3 Effects of Mistuning

For the analyses in the previous sections, the blisks were assumed to be tuned except

for the existence of a crack. However, for real systems, small mistuning effects exist

due to various factors such as manufacturing tolerances and in-service wear. Thus, it is

desirable to consider the small mistuning effects in the analysis to simulate the realistic

conditions. In this chapter, the small mistuning effect is assumed to have a negligible

effect on the blade-alone mode shapes and only alter the blade-alone natural frequencies

or modal stiffnesses. In particular, it is introduced simply by altering the Young’s modulus

of the ith blade by the following relationship

Ei = (1 + δi)E0 (3.16)

where E0 is the nominal Young’s modulus, and δi is a mistuning value that is sampled

from a uniform distribution with mean value 0 and standard deviation σ.

First, in order to observe the significance of the effects of small mistuning combined

with the effects of a cracked blade on the vibration response, the blisk model with a lin-

ear cracked blade model as well as with the stiffness mistuning defined by Eq. (3.16) was

examined. Modal analysis for the first mode family and the tenth mode family was per-

formed and the results for the first mode family are shown in Fig. 3.5 where Fig. 3.5a

shows a mode localized about the cracked and Fig. 3.5b shows a mode localized about

a healthy blade. The results for the tenth blade-dominated mode family are shown in

Fig. 3.6, where Figs. 3.6a and 3.6b show modes localized about the cracked blade and

Figs. 3.6c and 3.6d show modes localized about two different healthy blades. These re-
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(a) Cracked-blade localized, 383.1 Hz (b) Healthy-blade localized, 387.7 Hz

Figure 3.5: Strongly localized modes in the first blade-dominated mode family, σ=0.01

sults illustrate that the cracking leads to at least one mode that is localized about the same

cracked blade for different mode families. Moreover, they show that the mistuning can

also lead to strong localization, but the localization may occur about different blades for

different mode families. Next, the nonlinear forced response analyses are considered.

The analysis framework is the same as before, i.e., after the application of Eq. (3.16) to

the Young’s moduli of blades, the ROM is calculated using the hybrid CMS method. The

HFT method is then applied. The calculation results for the first and tenth modes with σ

=0.01 and 0.04 are shown in Figs. 3.7 and 3.8. The envelope of the responses from all the

blades as well as the response of the cracked blade for each linear and nonlinear cracked

blade model are shown in each plot. For the first blade-dominated mode family, the effect

of the crack appears almost only on the resonant peak associated with the cracked-blade-

localized mode shown in Fig. 3.7a. However, the peak is not isolated from the cluster of

the other resonant peaks. This is because the frequency shift induced by the crack lies in

the range of the frequency shifts caused by the small mistuning, even for σ=0.01. This

result indicates that, for this crack length and mode, the effect of nonlinearity due to the
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(a) Cracked-blade localized, 10.97 kHz (b) Cracked-blade localized, 11.05 kHz

(c) Healthy-blade localized, 11.40 kHz (d) Healthy-blade localized, 11.44 kHz

Figure 3.6: Strongly localized modes in the tenth blade-dominated mode family, σ=0.01

crack on the frequency response is very localized to the cracked blade. Hence, it might

be predicted by the blade-alone analysis, as was discussed in section 3.4.2. However, the

effect may not be distinct from the effects of small, random mistuning. That is, the effect

of cracking may not be observable in the frequency response data.

In contrast, as can be seen in Fig. 3.8, the resonant peaks associated with the cracked

blade are still isolated from the other modes in the family for the tenth blade-dominated

mode family even for σ=0.04, in terms of both the amplitude of vibration and the peak
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(b) σ=0.04

Figure 3.7: Forced response for the first blade-dominated mode family

frequency. This suggests that the resonant peak associated with the cracked blade is dis-

tinguishable from the other scattered peaks due to mistuning. That is, for this mode family,

the effect of cracking is strong enough that it may be observable in the frequency response

data even for a relatively large mistuning level.

It is noted that the localization patterns for the forced response shapes with a nonlin-

ear cracked blade were observed to be similar to the linear forced response counterparts.

Hence, the mode shapes shown in Figs. 3.5 and 3.6 are representative of the localization

seen in the nonlinear forced response results.
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Figure 3.8: Forced response for the tenth blade-dominated mode family

3.4.4 Effects of Rotation

In previous sections, the effects of rotation on the vibration response were not consid-

ered. In this section, the geometric change in the quasi-static equilibrium position under

rotation, and the change in the system matrices of the ROM due to the geometric change,

are included in the analysis.

First, the geometric change in the equilibrium position leads to an initial gap between

the crack surfaces, such as illustrated in Fig. 3.9. This effect should not be ignored, be-
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Figure 3.9: Crack opening due to rotation
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Figure 3.10: Campbell diagram plot for the first blade-dominated mode family

cause it is known that the existence of initial gap can strongly influence the characteristics

of resulting piecewise linear systems. In particular, it can lead to amplitude-dependent

response. In the proposed method, the initial gap at the crack is calculated separately by

solving the quasi-static problem due to the rotation.

Second, the effect on the system matrices appears as the rotational-speed-dependent

natural frequencies, which is typically seen as a stiffening effect. In Fig. 3.10, the natural

frequencies of the blisk with rotating and static assumptions are shown. As can be seen, the

natural frequencies increase as rotational speed increases under the rotating assumption,

whereas they do not with the static assumption. This means that the ROM should also de-

pend on the rotational speed. However, in the proposed approach, the ROM is calculated at

a single rotational speed, and the matrices are assumed to be constant within the frequency
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(a) Engine order 7
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Figure 3.11:
Frequency response of the rotating, tuned blisk with a cracked blade for forc-
ing amplitudes of 0.1 N and 0.5 N

range of interest during the frequency response analysis. The rotational speed where the

ROM is calculated is estimated by obtaining the intersections of the natural frequencies

and the order line of the engine order of interest in the Campbell diagram, as shown in

Fig. 3.10. The order lines can be drawn by using the fact that the excitation frequency of

forcing f is expressed as f = CΩ/60, where C is the engine order of excitation and Ω is

the rotational speed in revolutions per minute.

With these assumptions, forced response simulations were performed for the frequency

range of the first blade-dominated mode family, using various values of the forcing ampli-

tude. The results shown in Fig. 3.11 are shown for the tuned blisk subject to engine order



66

395 400 405 410 415 420 425 430 435
0

1

2

3

4

5

M
ax

. b
la

de
 ti

p 
di

sp
la

ce
m

en
t [

m
m

]
Frequency [Hz]

Linear
Nonlinear

(a) Engine order 7

Linear
Nonlinear

380 390 400 410 420
0

1

2

3

4

5

M
ax

. b
la

de
 ti

p 
di

sp
la

ce
m

en
t [

m
m

]

Frequency [Hz]

(b) Engine order 10

Figure 3.12:
Frequency response of the rotating, mistuned (σ=0.04) blisk with a cracked
blade for forcing amplitudes of 0.1 N and 0.5 N

7 and 10 excitations. It can clearly be seen that for small forcing levels, the nonlinear

response is identical to the linear responses. However, for increasing values of forcing

level, it is seen that the peak corresponding to the cracked blade bends toward a higher

frequency. The forcing level at which the nonlinear response starts to differ from the lin-

ear response is dependent on the rotational speed, because the amount of initial gap is

dependent on the rotational speed. Also, the amount of bending in the frequency response

curve is dependent on the engine order of excitation, because it determines the rotational

speed at which the ROM and the initial gap are calculated. As before, the influence of the

nonlinearity appears mostly in the peak associated with the cracked blade only.
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(a) Tuned blisk with a cracked blade
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(b) Mistuned blisk with a cracked blade

Figure 3.13:
Frequency response of the rotating, mistuned (σ=0.04) blisk with a cracked
blade for forcing amplitudes of 2.0 N and 10.0 N with engine order 64

Forced response simulations with mistuning of standard deviation σ=0.04 were also

performed, and the results are shown in Fig. 3.12. As predicted with the static assump-

tion in section 3.4.3, the nonlinear effect is very localized to the response of the cracked

blade for both engine order 7 and 10 excitation cases. However, the effects may not be

distinguishable from the other scattered modes due to mistuning.

Moreover, the forced response calculations were performed for the frequency range of

the tenth blade-dominated mode family for various values of the forcing amplitude, and

representative results are shown in Fig. 3.13, where the blisk is subject to engine order 64
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excitation. The results shown in Fig. 3.13a are for the tuned blisk with a cracked blade, and

those shown in Fig. 3.13b are for the blisk with a cracked blade and mistuning of standard

deviation σ = 0.04. As can be seen in Fig. 3.13a, the response shows a localized peak

that corresponds to the cracked-blade-dominated mode for each forcing level. However

the linear and nonlinear response are identical for these forcing levels, as the amplitude of

vibration of the nodes on the crack surfaces does not exceed the size of initial gap at the

crack due to the quasi-static deformation. On the other hand, for the case with mistuning,

a strongly localized and nonlinear response can be seen in Fig. 3.13b. Namely, due to the

mistuning effect, the cracked-blade-dominated peak is not isolated from the other peaks

anymore. However as the forcing level increases, the nonlinearity emerges as the bending

of the frequency response curve, only on the peak corresponding to the cracked-blade-

dominated mode. Furthermore, the nonlinearity leads to the jump phenomenon that implies

the existence of multiple solutions, which is one of the characteristics of the frequency

response of cracked structures with gaps [56]. Again, this phenomenon is localized to

the cracked blade and occurs around the resonant frequency corresponding to the cracked-

blade-dominated mode.

It was noted that in chapter II, even though the absolute values of the resonant frequen-

cies differ for the static and rotating cases, the corresponding frequency shifts predicted

for the cracked blade may be in good agreement [56]. Combining this with the discussion

in section 3.4.2, this indicates that it may be possible to use static analysis to predict the

frequency shifts for rotating conditions, considering that the nonlinearity appears almost

only in the response of the cracked blade.
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3.5 Conclusions

In this chapter, a modeling and analysis framework for the nonlinear forced response

of a rotor with a cracked blade was presented. The basic approach was to employ a com-

bination of a hybrid-interface CMS modeling method, a contact detection algorithm, and

the HFT nonlinear vibration analysis method. In section 3.3, the advantage of the hybrid

CMS method over the Craig-Bampton method was discussed, and the ROM generated by

the hybrid method was validated numerically. In section 3.4, the vibration of a bladed disk

with a cracked blade was investigated. In section 3.4.2, it was shown that the results of

the blade-alone analysis may be used to predict the frequency shifts of the full bladed disk

with one cracked blade. In section 3.4.3, the behavior of the system with small mistuning

was studied. The forced response results revealed that, for certain mode families, the res-

onance associated with a cracked-blade-dominated mode could be distinguished from the

many other resonant peaks due to small mistuning. In section 3.4.4, the effects of rotation

on the response were examined. It was shown that the nonlinearity depends on the rota-

tional speed as well as the forcing level. Moreover, the nonlinear effect is localized to the

response of the cracked blade only, even with mistuning.

Although the FE model presented in this chapter is a simple and relatively small aca-

demic model, the proposed analysis framework can be readily applied to the analysis

of other bladed disk models and cracks with different geometries. The extension of the

method to the case of multiple cracks can also be handled by the method. More compre-

hensive parametric studies considering additional crack lengths, crack locations, numbers

of cracks, mistuning levels, modes of interest, etc., have not yet been carried out.

However, based on this initial investigation, some key observations with respect to

damage detection are summarized as follows:



70

1. Both mistuning and cracks can lead to strong localization of the forced response

2. Mistuning can lead to localization about different blades for different mode families

3. A crack tends to lead to localization about the same (cracked) blade for all mode

families

4. For certain mode families, the effect of the crack will be relatively strong compared

to that of mistuning, such that the cracked-blade-dominated response may appear at

a significantly lower frequency and may also include unique characteristics such as

a double resonance peak

5. The relative strength of the effects of a crack on the system response for differ-

ent mode families, and thus the observability of the cracked-blade-dominated res-

onance, can be estimated to some extent with a nonlinear vibration analysis of a

single blade

It should be noted that a detailed sensitivity analysis in terms of crack length and depth, as

well as an experimental study, will eventually be needed for validating the applicability of

the technique to practical damage identification of turbomachinery rotors. However, these

topics are beyond the scope of this chapter.

Finally, it is noted that the analysis results and findings shown in this chapter are well

suited for use in interpreting data acquired with existing vibration measurement techniques

for rotor blades, such as tip timing (e.g., [60]). Tip timing uses a non-contacting method

with optical probes, and it is widely used for turbomachinery applications. The advan-

tage of the tip timing technique is that the vibration displacement of every blade can be

measured without interference, and thus the resonant frequencies associated with forced

response patterns featuring strong localization about individual blades can be identified.
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Therefore, the authors believe that the analysis results and findings reported in this chapter

could be used for designing algorithms for onboard damage detection and health monitor-

ing systems for turbine engine rotors.



CHAPTER IV

Estimation and Veering Analysis of Nonlinear Resonant
Frequencies of Cracked Plates

4.1 Introduction

It is well known that the natural frequencies of cracked elastic structures differ from

their healthy counterparts. A comprehensive literature survey of research activities re-

garding the vibration problems of various structures with cracks is found in the work by

Dimarogonas [35]. In this chapter, linear and nonlinear vibration of a cantilevered rectan-

gular plate with a crack is investigated. The primary focus of this study is the vibration

response near the eigenvalue loci veerings and crossings that occur as the crack length or

location is varied. This work was motivated by an observation of closely-spaced nonlinear

resonant frequencies with similar mode shapes, in the nonlinear frequency response of a

turbine engine rotor with a cracked blade [61].

Eigenvalue loci veerings, also known as avoided crossings, or eigenvalue avoidance,

are observed in plots of eigenvalues versus a system parameter. In particular, a veering

refers to a region in which two eigenvalue loci approach each other and almost cross as the

system parameter is changed, but instead of crossing they appear to veer away from each

other, with each locus then following the previous path of the other [62]. Although this

phenomenon was initially regarded as an “aberration” caused by approximation methods

72
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applied to the original infinite-dimensional eigenvalue problems [63], it was shown by

Perkins and Mote [64] that the phenomenon can be observed for continuous systems. Since

then, several researchers have noted and investigated the relation between veerings and

mode localization phenomena [65–67]. In conjunction with the localization, it is known

that the veerings are associated with coupling between the modes, which is typically seen

as the mixed mode shapes near the veering regions. There can also be a mixing between

modes in different physical domains, such as electrical and mechanical domains [68].

These phenomena have also been investigated for the damaged structures, such as two-

span weakened column [69], and cables with damage [70].

For vibration problems of cracked rectangular plates, variations in natural frequencies

and mode shapes due to crack length variations have been known for a long time. The

initial contribution to the study of vibration problems of cracked rectangular plates was

made by Lynn and Kumbasar [71], who calculated the vibration frequency drop of plates

due to cracking by numerically solving the Fredholm integral equation of the first kind.

Petyt [72] also investigated the variation of frequency of fundamental mode due to crack

length by experiments and a finite element method. Those contributions were followed

by a number of investigations based on plate vibration theory, including those by Stahl

and Keer [73], Hirano and Okazaki [74], Solecki [75], and Yuan and Dickinson [76].

Although the trajectories of frequencies versus crack length appear in these articles, the

veering regions and associated dynamics of the cracked plates near those regions were not

highlighted. Liew et al. [77] applied a domain decomposition method to obtain the out-

of-plane vibration frequencies of cracked plates, and they not only confirmed the results

found by Stahl and Keer [73] and Hirano and Okazaki [74] but also considered a wider

range of crack length ratio. It is noted that they examined a plate with a centrally-located

internal crack and reported frequency crossings instead of veerings. In other words, for this



74

case they observed that two approaching eigenvalue loci would intersect as crack length

increased, which is also known as crossover. More recently, Ma and Huang [78] also

reported variations in natural frequencies and associated mode shapes due to changes in

crack length for a square plate with an edge crack, based on experiments and finite element

analysis. As was mentioned by many others, Ma and Huang stated that the nonlinearity

due to the crack closing effect has to be considered for the in-plane bending case, but

crack closing was neglected in their study because their work focused on the out-of-plane

bending vibration.

In the studies of cracked rectangular plate vibrations reviewed above, the in-plane

bending vibration was not considered and thus the crack closing effect was not examined.

In contrast, the issue of crack closing effect naturally arose in the studies of vibration prob-

lems of cracked beams, for which in-plane bending vibration is typically of primary re-

search interest. For the study of cracked Bernoulli-Euler beams, a pioneering contribution

was made by Christides and Barr in their application of the Hu-Washizu-Barr variational

principle to the cracked beam problem [79]. Further extension was made by Shen and

Pierre for Bernoulli-Euler beams with symmetric cracks [1] and single-edge cracks [2]. A

generalization to the theory was made by Chondros et al. [80]. However, in these stud-

ies, the nonlinear effect was not considered. Gudmundson [3] pointed out that measured

natural frequencies of a beam with a fatigue crack differ from those calculated without

considering the crack closing effect. He also addressed the significance of the crack clos-

ing effect for accurately predicting the frequency shifts due to cracking. The crack closing

effect is also known to cause phenomena that appear only in nonlinear response cases,

such as superharmonic and subharmonic resonances [6, 7] and period doubling bifurca-

tions [34, 58].

One of the methods to estimate the (primary) resonant frequencies of the cracked
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beams is the application of the bilinear frequency approximation. This was initially in-

troduced for calculating the effective resonant frequencies of piecewise linear oscillators

(e.g., Shaw and Holmes [31]), and it has been used for approximating the effective vi-

bration frequency of multi-DOF piecewise linear systems (e.g., Butcher [32]). It has also

been used for estimating the natural frequency of cracked beams [4,5,34]. Chati et al. [33]

extended the concept of the bilinear frequency to study the vibration of a cracked beam us-

ing a multi-DOF oscillator model. They assumed that if the crack is sufficiently shallow,

the actual and bilinear mode shapes are close to each other, and thus the frequency can

be approximated by the bilinear frequency. Most of the methods reviewed above assume

that the crack has only two states—closed or open. This assumption is accurate when the

relative motion of the crack surfaces is simple, such as the in-plane bending vibration of

cantilevered beams. However, in general, the motion of crack surfaces is more compli-

cated, and there may be more than two states. For example, crack closing may proceed

gradually and/or occur at different regions on the crack surfaces at different times.

The closing crack was also modeled by equivalent linear model by Kisa and Bran-

don [81], with the assumption that the stiffness change due to a crack can be expressed as

a linear combination of the stiffness matrix of uncracked beam and that due to cracking

and contact. An emerging approach for dealing with this issue is the application of Nonlin-

ear Normal Modes [46–48]. However, the applicability of this approach is still limited to

simple structures or simplified vibration problems, due mostly to its computational costs

for constructing the nonlinear normal modes.

With regard to the veering phenomena for nonlinear structural systems, very little is

known about how the nonlinearities influence the response near the veering regions. Lacar-

bonara et al. [82] investigated nonlinear modal interactions of an imperfect beam near

veering regions, the nonlinearities of which are quadratic and cubic nonlinearities due to
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large-amplitude vibration, through perturbation and bifurcation analyses. They observed

distinguishing features in the response, such as mode localization due to nonlinear cou-

pling and frequency-island generation, which illustrates the richness of the dynamics in

veering regions for nonlinear structural systems.

In this chapter, the vibration of cracked cantilevered plates in frequency veering regions

is investigated. As reviewed above, veering phenomena have not been studied thoroughly

for cracked structures, in either the linear or nonlinear dynamics regime. Regarding the

vibration of cantilevered cracked plates, the research reviewed above focused only on the

out-of-plane vibration, and crack closing effects were intentionally neglected. On the other

hand, studies of cracked beams have focused on in-plane bending in most cases. Thus, the

crack closing effect on the vibration response has been investigated in many studies of

cracked beams. However, veering and modal interaction phenomena between in-plane

and out-of-plane vibration modes have not been studied in this context. Moreover, in

general, the veering phenomena in nonlinear structural systems have not been studied well.

Therefore, in this chapter, first the eigenvalue loci veering due to cracking is examined

using a cracked cantilevered plate example without considering the crack closing effect.

The crack closing effect is then included and associated nonlinear resonant frequencies are

identified. A novel method for accurately estimating the nonlinear resonant frequencies

is then introduced, by generalizing the concept of bilinear frequency approximation that

utilizes the results of linear eigenvalue analyses of the system. The method is validated

by comparing the results with those calculated by the nonlinear forced response analysis.

Furthermore, the applicability of the method near the veering regions is discussed, and the

effects of the crack closing on the resonant frequencies are discussed in detail for some

specific veering regions.

This chapter is organized as follows. In section 4.2, the cracked plate vibration prob-
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lem and the finite element model are introduced. In section 4.3, the linear free response

of a cracked plate is considered using a finite element model of a three-dimensional can-

tilevered plate with a planar surface-breaking crack that runs parallel to the cantilevered

edge, and the associated frequency veering and crossing phenomena are shown. In sec-

tion 4.4, a solution technique for the nonlinear forced response analysis, called the hybrid

frequency/time (HFT) method, is briefly reviewed. The nonlinear forced response calcula-

tion is then carried out and the effects of nonlinearity to the response in the neighborhood

of representative veering regions are discussed in detail. In section 4.5, the method for es-

timating the nonlinear resonant frequency is introduced as a generalization to the bilinear

frequency approximation. Finally, conclusions are summarized in section 4.6.

4.2 Cracked Plate Model

In this chapter, the vibration of a cantilevered rectangular plate comprised of linear

isotropic elastic material is considered. The plate is discretized with a standard finite

element method (FEM), and the deformation is assumed to be infinitesimally small. In this

study, nonlinearities other than the one due to intermittent contact at the crack surfaces are

not considered. Namely, the governing equation of the cracked plate is

Mü(t) + Cu̇(t) + Ku(t) = b(t) + f(u); M,C,K ∈ Rn×n,u,b, f ∈ Rn (4.1)

where u is the displacement vector, M, C and K denote the mass, damping, and stiffness

matrices, b(t) denotes the time-dependent external force, and f(u) denotes the nonlinear

force caused by the intermittent contact at the crack.

A finite element (FE) model of a cantilevered plate with a transverse crack is shown in

Fig. 4.1, where h = 1.5× 10−1m, l = 6.0× 10−2m, t = 3.0× 10−3m. The material model

is steel with Young’s modulus E = 200GPa, density ρ = 7800kg/m3, and Poisson’s ratio

ν = 0.3. The FE model is composed of 6,750 brick linear elements and has approximately
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Figure 4.1: Finite element model of the cracked plate

28,000 DOF. This FE model is used for all the numerical results in this chapter, and the

generation of the FE model as well as component mode synthesis were performed with the

commercial code ANSYS [40].

4.3 Linear Free Response Analysis

4.3.1 Natural frequency variation due to variations in crack location and length

For the FE model shown in Fig. 4.1, eigenvalue analysis was performed for various val-

ues of lc/l and hc/h, and the results for the first 15 natural frequencies for two representa-

tive cases are shown in Fig. 4.2. First, Fig. 4.2(a) shows the results where the crack length

was fixed at lc/l = 40%, and the crack location was varied as 1.33 6 hc/h 6 97.3%.

As can be seen, the changes in the natural frequencies due to the variation in hc/h are

quite complicated, and multiple loci veerings and crossings are observed. For example

in Fig. 4.2(a), starting around hc/h = 15%, modes 10 and 11 approach each other, but

rather than crossing they veer away near hc/h = 19% with high curvature. Second, the

crack location was fixed at hc/h = 50%, and the crack length was varied, the results of
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Figure 4.2:
First 15 natural frequencies versus (a) crack location ratio hc/h for lc/l = 0.40
, (b) crack length ratio lc/l for hc/h = 0.50
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Figure 4.3:
Magnified veeering/crossing regions and associated mode shapes: (a) 10th and
11th modes for lc/l = 0.40; (b) fifth and sixth modes for hc/h = 0.50.

which are shown in Fig. 4.2(b). The most notable distinction from the case in Fig. 4.2(a)

is that the natural frequency variation due to crack length change is monotonic, i.e., as lc/l

increases, all natural frequencies tend to decrease. Although the amount of frequency drop

is dependent on the mode of interest, this is due to the fact that the stiffness of the plate

decreases monotonically for all modes as the crack length increases.

4.3.2 Mode shape variation due to variations in crack location and length

In order to see the veering regions more closely, and to see the variations in the mode

shapes, representative cases are shown in Figs. 4.3 and 4.4. Figure 4.3(a) shows the veer-
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Figure 4.4: Magnified veering between modes seven and eight for hc/h = 0.63

ing between the modes 10 and 11 for lc/l = 40%, where 1.33 6 hc/h 6 40%. An

important characteristic of the loci veering is the mode shapes associated with the natural

frequencies on each locus before veering are interchanged during the veering in a continu-

ous manner [64]. This is illustrated in Fig. 4.3(a), which shows that mode shapes 10 and 11

become mixed and then appear to begin switching as the crack location ratio is increased

through the veering region. On the other hand in Fig. 4.3(b), the region for the mode shape

switching between modes five and six is narrow, and it appears to be a loci crossing. This

can be explained by considering that mode five (before switching) corresponds to the sec-

ond out-of-plane bending mode whereas mode six (before switching) corresponds to the

first in-plane bending mode, and there is little or no coupling between these modes due to

their geometric dissimilarity. Fig. 4.4 shows another veering region due to crack length

variation, for modes seven and eight with crack location hc/h = 0.63. For this case, both

mode mixing and switching can be observed in a more continuous manner than the cases

observed in Fig. 4.3.
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Figure 4.5: Plate divided into two substructures

4.4 Nonlinear Forced Response Analysis

In the previous section, the interchanging of modes as well as mode coupling were

observed in frequency veering and crossing regions. However, only natural frequencies of

the linear system were considered. The nonlinearity due to contact of the crack surfaces

was neglected. In this section, a method to calculate the nonlinear resonant frequencies of

the cracked plate is described. The method is then applied to the calculation of nonlinear

resonant frequencies in veering/crossing regions, and their characteristics are discussed.

4.4.1 Component Mode Synthesis

In order to generate a reduced-order model, the plate is separated into two components

(substructures) Ω1 and Ω2 along the crack path, as shown in Fig. 4.5, and a hybrid-interface

method of component mode synthesis (CMS) [57, 83] is employed. The CMS methods

have been widely used for the vibration analysis of systems such as friction-damped sys-

tems [22, 42, 84], build-up structures [85], and cracked structures [56, 81]. This process

is advantageous over the direct application of FE analysis because it provides improved

computational efficiency while maintaining direct access to the dynamics of the crack-

surface DOF. Furthermore, it has good accuracy relative to the original FE model over the

frequency range of interest. The accessibility to the nodes on the crack surfaces is essential
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to the proper calculation of the boundary condition at the crack surfaces, which is modeled

as contact/impact forces in the formulation described in 4.4.2. Namely, the dynamics of

the FE degrees of freedom are projected onto constraint modes Ψc, inertia relief attach-

ment modes Ψa (if rigid-body motion exists), and a truncated set of free-interface normal

modes Φk. Interested readers may consult, e.g., Craig [86], for the detailed formulation of

each mode set.

Let the displacement vector u be partitioned into boundary DOF, ub, and interior

DOF ui. By denoting the inertia relief attachment coordinates and a truncated set of free-

interface modal coordinates as qa and qk, the linear projection is expressed as,

ub

ui

 =

 I 0 0

Ψic Ψ̂a Ψ̂k




ub

qa

qk

 (4.2)

where Ψ̂a = Ψia − ΨicΨba, Ψ̂k = Φik − ΨicΦbk, I is the identity matrix, Ψic is the

boundary partition of Ψc, Ψia and Ψba denote the interior and the boundary partitions of

Ψa, and Φik and Φbk denote the interior and the boundary partitions of Φk. Denoting

Eq. (4.2) with a compact notation, u = Ψq, the application of Eq. (4.2) to Eq. (4.1) yields

a smaller number of equations, i.e.,

M′q̈ + C′q̇ + K′q = b′ + f ′(q) (4.3)

where M′ = ΨTMΨ, C′ = ΨTCΨ, K′ = ΨTKΨ, b′ = ΨTb, and f ′ = ΨTf . The

superscript “′” is omitted for convenience in the subsequent formulations.

4.4.2 Hybrid frequency/time domain method

For the calculation of steady-state response to harmonic excitation, an extension to

the alternating frequency/time-domain method [23], which is based on the concept of the
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method of harmonic balance [17], is employed in this study. Because of its computational

efficiency and accuracy, this type of method has been developed and applied to forced

response problems for various nonlinear systems, such as friction damped systems [18,22,

84, 87] and cracked shafts [88]. In particular, the hybrid frequency/time-domain method

developed by Poudou et al. [28, 29, 42] and the authors [56] is applied in this chapter.

Namely, the method assumes that the steady-state vibration response of q in Eq. (4.3),

as well as the external force b and the nonlinear force due to intermittent contact f are

approximated as truncated Fourier series, i.e.,

q = Re

(
nh∑

k=0

(Qc
k − jQs

k)ejkωt

)
(4.4)

b = Re

(
nh∑

k=0

(Bc
k − jBs

k) ejkωt

)
(4.5)

f = Re

(
nh∑

k=0

(Fc
k − jFs

k) ejkωt

)
(4.6)

where 2π/ω is the fundamental frequency, nh is the number of non-zero harmonics and

j =
√
−1. Note that Qc

k and−Qs
k are the vectors of real and imaginary parts of kth Fourier

coefficients of q, where superscripts c and s denote cosine and sine components of the vi-

bration respectively. The same notation is applied to Bc
k, Bs

k, Fc
k, and Fs

k. Substituting

Eqs. (4.4) through (4.6) into Eq. (4.3) and considering the orthogonality of harmonic func-

tions, it results in a nonlinear algebraic equation with respect to the Fourier coefficients

for kth harmonic number, i.e.,

ΛkQk = Bk + Fk(Q) (4.7)

where Q0 = Qc
0, B0 = Bc

0, F0 = Fc
0, Λ0 = K, Qk = [(Qc

k)T, (Qs
k)T]T, Bk =

[(Bc
k)T, (Bs

k)T]T, Fk = [(Fc
k)T, (Fs

k)T]T, and

Λk =

−(kω)2M + K (kω)C

−(kω)C −(kω)2M + K

 (4.8)
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for k = 1, . . . , nh. Assembling Eq. (4.8) for all k = 0, 1, . . . , nh,

ΛQ = B + F(Q) (4.9)

where Λ is a pseudo-block diagonal matrix with Λk on its diagonal blocks for k =

0, . . . nh, Q = [QT
0 , . . . ,Q

T
nh

]T, B = [BT
0 , . . . ,B

T
nh

]T, and F = [FT
0 , . . . ,F

T
nh

]T. Eq. (4.9)

can then be solved with nonlinear algebraic equation solvers. For the numerical examples

shown in this chapter, the Hybrid Powell method [27] was employed.

4.4.3 Results of forced response analysis

In this subsection, the result of nonlinear forced response analysis for the cantilevered

cracked plate is presented, with the methods described in 4.4.1 and 4.4.2. The damping

was chosen to be C = αM + βK where α = 1.22 and β = 8.16 × 10−9, which result in

damping that is approximately equivalent to modal (structural) damping ratio ζ = 1.00×

10−4 (γ = 2.00 × 10−4) within the frequency range of 1900 6 f 6 2000Hz. Vectors of

harmonic forcing, the resultant of which is equal to 1N, is applied to the nodes on the tip

face of the plate to excite the modes of interest. The number of harmonics was chosen

as nh = 9, which showed convergence in the frequency response. Representative results

are shown in Fig. 4.6 where hc/h = 0.5, lc/l = 0.167 for Fig. 4.6(a), and lc/l = 0.2

for Fig. 4.6(b). Fig. 4.6(a) shows the resonant peaks corresponding to modes five and six,

which correspond to the third out-of-plane bending and the first in-plane bending modes,

respectively, whereas the order of the modes is interchanged in Fig. 4.6(b).
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Figure 4.6:
Results of nonlinear harmonic response analysis for hc/h = 0.5 : (a) lc/l =
0.167, ——, fifth mode (out-of-plane bending), -----, sixth mode (in-plane
bending); (b) lc/l = 0.200, -----, fifth mode (in-plane bending), ——, sixth
mode (out-of-plane bending).
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(a) (b)

Figure 4.7:
Constraints for bilinear frequency calculation: (a) Open (no constraints); (b)
Closed (sliding).

4.5 Bilinear Frequency Approximation

4.5.1 Formulation

As an alternative way of predicting the nonlinear vibration frequencies, the bilinear fre-

quency approximation is generalized for the analysis of three-dimensional cracked struc-

tures, and an analysis framework based on reduced-order modeling as well as prediction of

mode switching during the veering regions is proposed in this section. The resonant peaks

predicted by the forced response to harmonic excitation is then compared with those cal-

culated by the bilinear frequency approximations.

The bilinear frequency was originally introduced as the effective vibration frequency

of a piecewise linear, single-DOF system and defined as (e.g., Ref. [31]),

ωb =
2ω1ω2

ω1 + ω2

(4.10)

where ωb is the bilinear frequency, ω1 is the natural frequency of one of the linear systems

associated with the piecewise linear system, and ω2 is that of the other linear system of

the piecewise linear system. This expression is the exact solution, for the frequency of

free oscillation of the piecewise linear single-DOF oscillator with vanishing clearance/gap
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at the equilibrium. The application of Eq. (4.10) to a multi-DOF piecewise linear system

is rather straightforward if there is only one pair of linear systems. However in the cases

of cracked plates formulated with multiple DOF on crack surfaces, it involves multiple

piecewise linear systems, or a conewise linear systems [47]. Hence an assumption has to

be made such that the cracked system has only two linear systems corresponding to two

states, i.e., the crack is open or closed. These are designated as states 1 and 2, respectively,

in the following formulation. The definition of the states 1 and 2 is a natural extension to

that proposed by Chati et al. [33], which was applied to the analysis of in-plane bending

vibrations of a cracked beam. Namely, with the assumption of the open state, there is no

connection between the nodes on one crack surface and the nodes on the other surface

(Fig. 4.7(a)), allowing the inter-penetration of the crack surfaces. On the other hand with

the closed state, the relative DOF along the direction that is perpendicular to the crack

surfaces are fixed to be zero, whereas the other two DOF of each node are allowed to move

freely in the plane tangent to the constrained direction (Fig. 4.7(b)). In other words, the

crack surfaces are allowed to slide with respect to each other, which is consistent with the

assumption employed in the formulation in 4.4.2. Associated mathematical formulation is

given as follows.

For a given crack length, eigenvalues of Eq. (4.1) for undamped case with open crack

assumption are obtained as

Kφ = ω2
1Mφ (4.11)

where φ is the eigenvector and ω2
1 is the associated eigenvalue. On the other hand, the

eigenvalues and eigenvectors for the other case, namely the case with allowing sliding of

crack surfaces, are obtained by imposing appropriate constraints on Eq. (4.11) as follows.

Let A and B denote the crack surfaces facing each other, by assuming that the amplitude

of vibration is much smaller than the finite element mesh size on the crack surfaces, it is
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possible to identify the finite element nodes that may be in contact during the vibration

cycle. Hence such pairs of nodes are numbered and a set Ccp is defined where all numbers

that denote the contact pairs are included. Defining gn as the gap between the nodes on

the surfaces A and B for the nth contact pair, the constraints to be imposed on the nodes

of nth contact pair are expressed as

gn = (un)A − (un)B = 0, n ∈ Ccp (4.12)

where (un)A and (un)B denote the displacements of the nodes on the surfaceA andB, pro-

jected onto the normal direction pointing outward from the surface A or B. It is noted that

appropriate coordinate transformation must be applied to the displacement vector based

on the normal vector at each node, in order to correctly calculate gn. It should also be

noted that the motion of the nodes in tangential plane that is perpendicular to the nor-

mal direction, is not constrained at all by Eq. (4.12), i.e., the nodes are free to slide with

each other on the tangential plane. This also indicates that the crack surfaces are as-

sumed to be frictionless, which is widely-employed assumption for the vibration problem

of cracked beams and plates. Applying the constraints Eq. (4.12) to the eigenvalue prob-

lem Eq. (4.11), a constrained eigenvalue problem is obtained asK NT

N 0


φ

λ

 = ω2
2

M 0

0 0


φ

λ

 (4.13)

where N is the matrix of coefficients that are associated with Eq. (4.12) and the appro-

priate transformation matrix, and λ is the vector of Lagrange multipliers of size |Ccp|.

One method to solve this indefinite eigenvalue problem is to use an eigenvalue solver for

indefinite systems. Another method is to first eliminate the redundant equations due to

the constraint equations Eq. (4.12), and the resulting positive definite eigenvalue problem

is then solved by an eigenvalue solver for definite systems. It should be noted that this
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methodology can easily be incorporated with the reduced-order modeling framework de-

scribed in 4.4.1 as the motion of the nodes on the crack surfaces in the three-dimensional

space can be captured with the reduced-order model.

With the eigenvalue problems Eqs. (4.12) and (4.13), the ith bilinear resonant fre-

quency ωbi of the cracked plate is approximated based on Eq. (4.10):

ωbi =
2ω1iω2i

ω1i + ω2i

(4.14)

where ω1i and ω2i denote the frequencies of the ith mode of the states 1 and 2. It is em-

phasized that the index i does not denote the index of eigenvalues, but it denotes the index

of the eigenvectors of the non-cracked plate. Namely, the eigenvectors of the non-cracked

plate are indexed based on their natural frequencies, i.e., for non-cracked plate, the eigen-

values are ordered as ω1 6 ω2 6 · · · 6 ωN−1 6 ωN whereN is the size of the non-cracked

plate model, and corresponding eigenvectors are labeled as [φ1,φ2, . . . ,φN−1,φN ]. The

reason for introducing this ordering will become apparent shortly. The bilinear frequency

ωbi for a given crack length is calculated by using the natural frequencies of the corre-

sponding ith mode of the states 1 and 2.

The advantage of this method is that the frequency of the nonlinear response is ob-

tained without calculating the associated response shapes, thus it only involves eigenvalue

extraction of two linear systems. However, as mentioned, this method is known to be ac-

curate for systems with a relatively short crack. In addition, a drawback of this method is

that the choice of proper pairs of ω1i and ω2i is not apparent with the presence of a veer-

ing or crossing, because the mode shapes associated with the natural frequencies switch

their orders. A way to overcome the latter problem is to track each mode by observing

the correlation between the modes during the variation of crack length or crack location.

In this chapter, the modal assurance criterion [89] (MAC) is employed as the measure of
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correlation.

Denoting the crack length as p (= lc), it is noted that N and λ are dependent on p. That

is, N = N(p) and λ = λ(p). The eigenvector is also dependent on p, or φ = φ(p), and

the correlation between the ith mode shape of the system with p = p0 and the jth mode

shape with the perturbed crack length p = p0 + ∆p can be characterized by

MACk
ij =

|φk
i (p0)Tφk

j (p0 + ∆p)|2

||φk
i (p0)||2||φk

j (p0 + ∆p)||2
, k = 1, 2 (4.15)

where φ is the eigenvector of the system defined by Eq. (4.13), the subscripts i and j

denote the indices for modes, the superscript k indicates the state, and MACk
ij takes the

value between 0 and 1, which respectively correspond to no correlation, and consistent

correlation between φi(p0) and φj(p0 + ∆p). Namely, the ith eigenvector is tracked based

on the value of MAC throughout the variation of the crack length (p), such that the correct

natural frequencies for the ith eigenvector in Eq. (4.14) can be calculated.

In order to better clarify the behavior of the natural frequencies of the system with open

and sliding boundary conditions, as well as the bilinear frequencies, the above mentioned

analysis framework was applied to the reduced-order model of the cracked plate with

hc/h = 0.50. As an example, the veering region between the fifth and sixth modes are

shown in Fig. 4.8. As was shown in 4.3.2, the modes of interest are the in-plane and

out-of-plane bending modes. In Fig. 4.8, two significant insights into the behavior of

the frequencies are shown. The first is that the existence and location vary between the

cases with open and sliding boundary conditions, and bilinear frequency. For the case

with sliding boundary condition, the veering between fifth and sixth modes does not exist.

On the other hand for the open boundary condition case, the loci of fifth and sixth modes

approach and veer away where 10 6 lc/l 6 15%. Therefore the bilinear frequency also has

the veering region due to that for the open boundary condition, but slightly shifted toward
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Figure 4.8:
Comparison between natural frequencies with open and sliding B.C.’s., and
bilinear frequencies for the system with hc/h = 0.50: (a) The fifth and sixth
natural frequencies of the system with sliding and open B.C.s, and bilinear
frequencies: ---�---, sixth mode with sliding B.C.; ---×---, fifth mode with
sliding B.C.; – – � – –, sixth natural frequency with open B.C.; – – × – –, fifth
natural frequency with open B.C.; —�—, sixth bilinear frequency; —×—,
fifth bilinear frequency.; (b) Close-up view of the veering region for natural
frequencies with open B.C. and bilinear frequencies: – – � – –, sixth natural
frequency with open B.C.; – – × – –, fifth natural frequency with open B.C.;
—�—, sixth bilinear frequency; —×—, fifth bilinear frequency.
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larger crack length ratio because of the absence of the veering for the sliding boundary

condition case (Fig. 4.8(b)). The second is that the bilinear frequency is always bounded

by the frequencies corresponding to the cases with sliding and open boundary conditions,

which are respectively the upper and lower bounds (Fig. 4.8(a)). This can also be easily

verified from Eq. (4.14), i.e., if ω1i 6 ω2i, then ω1i 6 ωbi and ωbi 6 ω2i. Furthermore, it

is noted that the width between the upper and lower bounds indicates the strength of the

effect of contact nonlinearity on the resonant frequency. For instance, for the fifth bilinear

frequency that corresponds to the in-plane bending mode, the width between the bounds

is much larger than that for the sixth bilinear frequency, which corresponds to the out-of-

plane bending mode. This is due to the fact that the motion of the in-plane bending mode

is greatly influenced by the existence of the contact force at the crack surfaces, whereas

the out-of-plane bending modes is not so much affected by the contact force considering

that the motion of the crack surfaces is almost perpendicular to the crack surfaces.

4.5.2 Comparison with the results of forced response analysis

Using the bilinear frequency approximation described above, the nonlinear vibration

frequencies of the cracked plate are calculated, and they are compared with those obtained

by the HFT method. It is noted that the comparison between the resonant frequencies

obtained by forced response analysis, and the bilinear frequencies, namely the vibration

frequencies of unforced system, has been made based on the assumption that the resonant

frequencies reside in the vicinity of the frequencies associated with the nonlinear normal

modes [90]. Furthermore, the resonant frequencies are assumed to be independent of

the amplitude of forcing, based on the fact that the resonant frequencies of piecewise

linear systems with the vanishing gap at the equilibrium are not dependent on vibration

amplitude [31, 56].
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Figure 4.9:
Comparison between bilinear frequency assumption and HFT method, and
corresponding mode shapes with open B.C. : (a) hc/h = 0.50, −◦−, bilin-
ear frequency, ‘×’, HFT method; (b) hc/h = 0.60,−◦−, bilinear frequency, ‘×’,
HFT method.
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Figure 4.10:
Comparison between bilinear frequency assumption and HFT method, and
corresponding mode shapes with open B.C. : hc/h = 0.63, −◦−, bilinear
frequency, ‘×’, HFT method.

Three representative veering regions are considered, which are the cases where (a)

the interaction between the loci is weak and the corresponding modes are: (1) in-plane

and out-of-plane bending modes, and (2) both out-of-plane bending modes, and (b) the

interaction between the loci is strong and veering occurs in a continuous way and the

associated modes are both out-of-plane bending modes.

First, the veering between an in-plane bending mode and an out-of-plane bending mode

is considered, using the modes five and six, for hc/h = 0.50, as shown in Fig. 4.3(b). The

results of forced response analysis as well as the calculation based on bilinear frequency

assumption are shown in Fig. 4.9(a). As can be seen, the order-switching of modes can

be observed even for this nonlinear system. The most notable distinction from the lin-

ear assumption, i.e., Fig. 4.3(b), is that the veering occurs with longer crack length, i.e.,

around 20% whereas it occurs around 10% in Fig. 4.3(b). This is due to the stiffening effect

because of the contact/impact of crack surfaces during the vibration cycle, which repre-

sents the dynamics of the cracked plates appropriately. Regarding the bilinear frequency
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approximation, a notable result has been observed: the bilinear frequency assumption pre-

dicts the resonant frequency calculated by HFT method quite well even for relatively large

crack length ratio (lc/l 6 40%).

Second, the veering between two out-of-plane bending modes is considered, using the

modes nine and ten for hc/h = 0.60, and the calculation results are shown in Fig. 4.9(b).

This result also shows that bilinear frequency approximates the resonant frequencies quite

well for the case of veering between out-of-plane bending modes, with relatively large

crack length. Even though the effect of nonlinearity on the vibration frequency is smaller

than that on the in-plane bending modes, as it does not involve much contact/impact be-

tween crack surfaces, this clearly indicates that the bilinear frequency approximation can

also be used for the prediction of nonlinear vibration frequencies of out-of-plane bending

modes.

Third, the veering between the torsion and out-of-plane bending modes are examined,

using the modes seven and eight for hc/h = 0.63 and results are shown in Fig. 4.10.

This veering region features a switching of modes in a continuous way, or in other words,

the mode shapes gradually change as the crack length is varied. This result shows that

the bilinear frequency approximation predicts the nonlinear vibration frequency quite well

even for the modes that exhibit complicated geometry due to coupling between modes.

Moreover, the results show that the approximation is accurate even for large cracks.

4.6 Conclusions

In this chapter, the linear and nonlinear vibration response of a cracked cantilevered

rectangular plate have been investigated. In particular, the veering phenomena for the natu-

ral frequencies of the cracked plate were investigated. It was observed that veerings appear

in plots of natural frequencies versus crack length or crack location ratio. It was shown
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that a wider veering region entails continuous interchanging between the modes, whereas

a smaller veering (or crossing) region shows fast mode switching. Then, the nonlinear

vibration response of the cracked plate due to contact of the crack surfaces was consid-

ered. A hybrid frequency/time-domain (HFT) method was applied to the calculation of

nonlinear resonant frequencies in representative veering/crossing regions. It was shown

that the characteristics of veerings/crossings are affected to some extent by the nonlinear-

ity induced by the crack closing effect, although in general they are similar to those of

the linear counterparts. Furthermore, an alternative method for estimating the nonlinear

resonant frequencies was proposed by generalizing the bilinear frequency approximation.

The results of the proposed method were validated with the resonant frequencies obtained

by the nonlinear forced response analysis for three typical veering scenarios. Moreover, it

was shown that the method works even for relatively large crack length ratio.



CHAPTER V

An Efficient Reduced Order Modeling Technique for
Nonlinear Vibration Analysis of Structures with

Intermittent Contact

5.1 Introduction

Vibration problems of structures with intermittent contact have been studied exten-

sively for several decades. These problems have practical importance and feature theoret-

ical complexity due to their nonlinear nature. A numerical modeling procedure of such

problems based on the finite element (FE) method is presented in this chapter. This work

is motivated by a need for developing a model-based crack detection algorithm of elastic

structures based on their spectral properties, such as resonant frequencies and response

shapes. In order to properly predict the resonant frequencies of such structures, one has to

consider the nonlinearity caused by intermittent contact at the cracks, the so-called closing

crack or breathing crack effect. This has hindered analysts from accurately calculating

the resonant frequencies of cracked structures, because they cannot be calculated from

classical linear modal analysis. As some sophisticated contact algorithms have been de-

veloped, such as the penalty method [30] and the augmented Lagrangian method [45], the

accuracy of the results of time transient simulation with FE models involving intermittent

contact has been improved. Furthermore, studying vibration problems of such structures

98
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with an FE model with a realistic complexity is becoming feasible with the aid of high-

performance computers. However, in turn, due to the advancement of these technologies,

analysts tend to create models with a large number of degrees of freedom (DOF). This is

based on the expectation that, as the model becomes more realistic and the results become

more accurate, the problem can still be solved in a reasonable amount of time. However,

at some point the number of DOF will overwhelm even the most advanced hardware and

software. In fact, as the model complexity increases, the cost of solving contact problems

increases dramatically, even when the potential contact areas are known a priori. This

occurs even if one uses reduced order modeling techniques, such as the Craig-Bampton

method [26]. For forced response vibration problems of such structures, one can use accu-

rate and efficient semi-analytical methods such as the ones based on the harmonic balance

method (e.g., Ref. [17]), by representing the steady-state dynamic response of the model

with a truncated Fourier series. However, such methods still suffer from the increase of

computational cost as it requires a fair number of harmonics to be included for the Fourier

transform, in order to obtain an accurate result. Therefore, the goal of this chapter is to

propose an efficient reduced order modeling framework for vibration problems of elastic

structures involving intermittent contact, with particular attention to modeling nonlinear

vibration of cracked structures. The focus is placed upon reducing the number of DOF

involved in the contact regions, in an automatic manner.

This chapter is organized as follows. In section 5.2, a literature survey over the related

fields is provided. In section 5.3, the proposed modeling framework is presented, including

the reduced order modeling approach and contact DOF selection method. As applications

of the method, a case study is shown in section 5.4, using an FE model of a cantilevered

cracked plate.Conclusions of the chapter are then given in section 5.5.
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5.2 Background

The issues of reducing and selecting DOF of FE models have been extensively studied

by various methods and perspectives, such as the reduction of the interface DOF between

substructures, selection of master DOF for Guyan reduction [91], optimal sensor place-

ment, and optimal constraint locations. However, many of the available methods share to

some extent similar goals and related to each other as described later.

Firstly, the issue of reducing the number of interface DOF between the components

has been studied by several researchers. Brahmi et al. [92] proposed a method for re-

ducing the number of interface DOF before the assembly of substructures, where basis

vectors are chosen based on the combination of secondary modal analysis of the interface

DOF partitions of the matrices, and the truncation of modes based on the singular value

decomposition. Balmés [93] introduced the framework for generalizing interface DOF

such as constraint modes, by considering the new basis representing the actual interface

displacements. Castanier et al. [94] also proposed a technique for reducing the number of

interface DOF by applying the modal analysis and mode truncation to the constraint mode

partition of the matrices produced by the Component Mode Synthesis (CMS) [26], the

resulting modes of which are called the characteristic constraint modes after being trans-

formed back into the finite element coordinates. All of these methods achieve the order

reduction of the DOF at the interface. However, they do not provide any criteria as to how

the interface DOF need be selected for accurately enforcing the boundary conditions.

Secondly, the selection of master DOF has been a crucial factor for determining the

spectral property of the reduced order model for Guyan reduction-based reduction tech-

niques, and many algorithms for the selection of the master DOF have been developed.

As it shall be discussed later, this class of methods produces the results that tend to solve
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the optimization problem for the problems studied in this study, thus it is very relevant to

our objective. An automatic master DOF selection algorithm was first proposed by Hen-

shell and Ong [95], in which the master DOF are chosen where the inertia is high and

the stiffness is low, whereas the slave DOF are chosen where the inertia is low and the

stiffness is high. This process can be automated by examining the radian frequency ωs

defined by fixing all DOF except the DOF i, i.e., ωs =
√
kss/mss, for s = 1, . . . , n where

kij and mij are the entries at the ith row and jth column in FE stiffness and mass matrices

of size n, and eliminating the largest ωs at each iteration step, which means that a degree

of freedom whose inertia is low and stiffness is high is selected, and eliminated. This

process can be repeated until the number of master DOF reaches the desired number. An

approach similar to this algorithm was proposed by Shah and Raymund [96] based on the

discussion of Kidder and Flax [97–99], where the number of master DOF is controlled by

iteratively eliminating the DOF whose ωs is larger than the pre-defined cut-off frequency

ωc that is chosen to be approximately three times the highest significant frequency in the

frequency range of interest. Independently from the work by Henshell and Ong, Grinenko

and Mokeev developed an order reduction technique named frequency-dynamic condensa-

tion [100], which also proposed a criterion to select master degrees of freedom. Although

their criterion was legitimate, the implementation of the selection algorithm still suffers

from tedious exhaustive-search calculation for selecting the DOF. The selection method

proposed by Matta [101] also uses the ratio kss/mss with the similar criterion to that pro-

posed by Henshell and Ong [95]. It was addressed that the method can be applied not only

to the Guyan reduction but also to the CMS, where both static and vibration modes are

used as basis vectors, onto which the system dynamics are projected. A method proposed

by Bouhaddi and Fillod [102] used a different concept where if a DOF a is a node of an

eigenmode, then fixing the DOF a results in λ̂i = λi where λi is the ith eigenvalue of the
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non-fixed system, and λ̂i is the eigenvalue of the system with DOF a being fixed. This

concept may be understood using a vibration problem of a string with both ends fixed.

That is, the lowest natural frequency of the string with a single support becomes the high-

est, if the support is placed at the node of the second mode of vibration [103]. This is

because the first mode with the constraint then becomes identical to the second mode of

the unconstrained string, which has the eigenvalue as the feasible upper bound of the first

eigenvalue with a single constraint. It is noteworthy that Bouhaddi and Fillod explicitly

aimed for maximizing the minimum eigenvalue of the system where all the master DOF

fixed. This concept will be revisited in 5.3.3. The methods for the node selection reviewed

so far are based on Henshell and Ong method to some extent. Another class of methods is

that based on the concept of modal energy. The method proposed by Kim and Choi [104]

uses the energy distribution among the DOF for each mode, and by taking the partial sum

over the rows of what they call energy distribution matrix, primary DOF set can be cho-

sen. On the other hand the method proposed by Cho and Kim [105] utilizes the energy

estimation in element-level by the Rayleigh quotient value of each element. Kim and Cho

then proposed a selection method consisting of two steps [106]; model order reduction

by Improved Reduced System (IRS) [107] using the master DOF selected via a method

based on energy estimation of each element [105], and subsequent sequential elimination

method [95] with an iterative IRS. Another automatic DOF selection method named modal

energy selection method proposed by Li [108] uses metric called index of classification,

based on the approximate modal energy associated with each DOF. The method was suc-

cessfully applied to an FE model of a cantilever beam problem. Oh and Park [109] also

proposed a criterion for selecting the master DOF based on singular values of the modal

matrix, however, it suffers from the computational cost due to exhaustive search over the

possible master DOF sets, and depends on engineer’s knowledge and intuition.
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Thirdly, a similar but slightly different issue is the selection of measurement locations

for vibration testing. For example, one may need to measure vibration displacements of a

structure to determine vibration modes, typically with a limited number of sensors or the

locations where the sensors can be placed. Thus, one may like to maximize the informa-

tion one can obtain as much as possible, with the limited number of sensors or locations.

However the question arises as to how the sensors need to be located, since the optimal

configuration of sensors for such objective cannot be easily determined. There have been

many methods developed to date for achieving this goal with various approaches. In par-

ticular, one of the successful approaches are based on information theory, which determine

the sensor locations by optimizing a norm of the Fisher information matrix [110]. Among

them, one of the most widely used techniques is the effective independence vector method,

or the EIDV [111] method developed by Kammer [112]. The method determines the

placement of sensors within the candidate locations while maintaining as much indepen-

dent information as possible, i.e., maintaining the measured mode shapes as independent

as possible. Therefore, it is natural to hypothesize that the application of the nonlinear

boundary conditions to the optimum sensor locations would also well represent the real

boundary conditions where the boundary conditions are applied to all locations in the re-

gion. This method is hereby considered in this study and the formulation is discussed in

detail in 5.3.3.

Lastly, the issue of finding the optimal constraint locations to maximize the fundamen-

tal natural frequency of a structure is considered. This issue has an important relationship

with the optimal master DOF selection. For instance, suppose there is a structure that can

vibrate, and one may want to increase the lowest natural frequency as much as possible, by

allocating a finite number of supports or kinematical constraints to the structure. However,

the problem of finding the optimal number and the locations of such supports is not as
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easy as it appears. Therefore, it may be necessary to apply mathematically expensive opti-

mization algorithms to obtain such support locations, such as done in the work by Zhu and

Zhang [113]. On the other hand, Åkesson and Olhoff [114] studied the problem by apply-

ing the Courant’s maximum-minimum principle. Namely if there is a discrete dynamical

system of size n and there are r (< n) kinematical constraints applied to the system, all

the eigenvalues of the structure increase, and the increased eigenvalues are bounded by the

following formula:

λ0
i 6 λi 6 λ0

i+r, i ∈ {1, 2, . . . , n} (5.1)

where λ0
i and λ0

i+r denote the ith and (i + r)th eigenvalues of the structure without the

constraints, and λi is the ith eigenvalue of the constrained structure. Also based on the

same principle and the findings of Ref. [115], Won and Park [116] applied minimization

method to obtain the optimal support location to achieve the maximum fundamental nat-

ural frequency of a cantilevered plate. They showed that the optimal support locations

should be on the nodal lines of the (r + 1)th mode of the unconstrained structure. It is

noted that this result conforms to the vibration problem of a fixed string mentioned above.

This method was successfully applied to their specific examples, but the method can be

applied only to special cases if the potentially-constrained region is the entire region of

the structure, where the points on the nodal lines can be selected. Namely, if the regions

to which the constraints are applied are limited to some specific regions of the structure,

then the nodal lines may not exist in such regions, and the minimization problem becomes

more complicated.

It is interesting to note that the idea of constraining the nodal lines was used to opti-

mally select the master DOF for Guyan reduction by Bouhaddi and Fillod [102], but they

were not aware of the applicability of their method to optimally select the support posi-

tions, while Won and Park were not aware of the applicability of their method to optimally
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Figure 5.1: An elastic structure with potentially contacting boundaries

select the master DOF locations for Guyan reduction. In this chapter, we take advantage of

this similarity between the optimal master DOF selections and the constraint locations, in

order to achieve the optimal selection of the DOF where the nonlinear boundary conditions

are applied.

5.3 Mathematical Formulation

Consider small vibration problems of an elastic structure represented as Ω with a fixed

boundary Γd, where the structure may or may not involve intermittent contact at ΓA and

ΓB during the vibration cycles, such as shown in Fig. 5.1. Namely the boundaries open and

close, thus the vibration problem is nonlinear because the condition for the the boundaries

to be in contact is dependent on the displacement field itself. That is, the boundary condi-

tions at ΓA and ΓB are nonlinear. Here a crack is assumed to consist of such boundaries as

ΓA and ΓB. It is well known that the system eigenvectors and eigen-frequencies are differ-

ent from the actual response shapes and resonant frequencies of this nonlinear problem. In

this chapter, they are respectively referred to as the nonlinear normal modes (NNMs) and

NNM frequencies.
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Now, if the structure is discretized with a method such as finite element method, the

nonlinearity associated with the contact is localized, in the sense that the nonlinearity is

caused only by a small portion of the entire structure. In the following formulations, a

set of indices of DOF in such region is denoted as B (boundary), whereas a set of indices

of the DOF in the rest of the regions is denoted as I (internal), and partitions of vectors

and matrices associated with these sets are designated with subscripts of the associated

lower-case italic letters, i.e., b and i. The sizes of the sets are denoted as |B| = nB and

|I| = nI . All the other DOF sets defined hereinafter follow the same notation.

If the finite element mass and stiffness matrices are denoted as M ∈ Rn×n and K ∈

Rn×n and the nodal displacement vector is given as x ∈ Rn, the governing equations of

the vibration problem with the absence of external forcing and damping may be written in

a partitioned matrix-vector form as follows:Mbb Mbi

Mib Mii


ẍb

ẍi

+

Kbb Kbi

Kib Kii


xb

xi

 =

fb(xb)

0

 (5.2)

where a dot ( ˙ ) denotes a time derivative, and fb ∈ RnB denotes the nonlinear force

associated with the intermittent contact. When dealing with this type of nonlinear vibra-

tion problems, one can apply linear reduced order modeling techniques, such as Guyan

reduction [91], system equivalent reduction expansion process (SEREP) [117], iterated

improved reduced system (IIRS) [118, 119], or Component mode synthesis (CMS) [26].

With such methods, one can obtain smaller system matrices by reducing the size of xi

by means of Rayleigh-Ritz coordinate transformation comprising of various basis vectors

such as static deformations and vibration modes, yet keeping the accessibility to the phys-

ical coordinates of xb. For instance, with the help of CMS, one can obtain a system with

desired spectral properties and accessibility to xb, the size of which is as small as nB DOF

plus the number of linear normal modes whose frequencies lie in the frequency ranges
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of interest. The use of such linear reduced order modeling methods greatly helps ones to

analyze the dynamic response of systems with localized nonlinearities, such as transient

dynamic analysis [120], and nonlinear harmonic response analysis [56]. However, even

with these reduced order modeling methods, if the number of DOF involved in the b parti-

tion becomes large, especially the cases with very fine mesh in the contacting regions, one

cannot take advantage of the linear reduced order modeling techniques, as the computa-

tional cost associated with the nonlinear dynamic analysis typically grows as the number

of DOF in the b partition increases. Furthermore, if one simply attempts to eliminate some

of the DOF in the b partition, it results in inaccurate, or even wrong results, in comparison

to the results obtained with a full set of DOF in the b partition. Therefore, in order to ob-

tain accurate computational results, such as those of nonlinear forced response, one needs

to keep as many boundary DOF as possible, which could easily result in prohibitively

costly calculations. Typically as a “workaround” to avoid the inaccurate results due to the

lack of sufficient DOF considered and at the same time to obtain efficient computational

model, one has to select the DOF in a heuristic way, which greatly depends on the system

characteristics and analyst’s experience and intuition. Moreover, if the model is developed

in such ways, the error contained in the following analysis results cannot be estimated a

priori. Our aim here is to develop an automatic way to select the DOF in B for a desired

number of DOF to be selected.

5.3.1 Primary Model Reduction

In order to reduce the number of DOF included in I to make the subsequent develop-

ment more efficient, first a model reduction is applied to Eq. (5.2). Namely, I is further

divided into two sets, i.e., I = O∪D whereO is a set of DOF indices associated with the

nodes to be used in the following analysis, such as observing the behavior of the system or
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applying external loading, andD is the rest of DOF indices in I, which is to be apparently

deleted from the system by the reduction methods. In addition, a set of DOF indices to be

used as the master DOF is defined as active DOF, designated as A, and A = B ∪O. Now

consider an eigenvalue problem of the system Eq. (5.2), where the eigenvalue λ and the

corresponding eigenvector φ must satisfy the following:Kaa Kad

Koa Kdd


φa

φd

 = λ

Maa Mad

Mda Mdd


φa

φd

 (5.3)

where φ = [φT
a ,φ

T
d ]T. In this study, a mixed-boundary CMS of Hintz-Herting [57, 83]

is chosen for the primary model reduction. Namely, without the presence of rigid body

modes, the coordinate transformation is defined asxa

xd

 = Hy =

(
Ψ Φ̂

)ya

ym

 (5.4)

where xa = ya, ym is a vector of modal coordinates, Ψ and Φ̂ are so-called constraint

modes and truncated free-interface normal modes in a modified form, which are respec-

tively defined as

Ψ =

 I

−K−1
dd Kda

 (5.5)

Φ̂ =

 0

Φd + K−1
dd KdaΦa

 (5.6)

and Φ = [φ(1),φ(2), . . . ,φ(k)], k < n, each subscript in parentheses denoting the cor-

responding mode number. Using the transformation defined as Eq. (5.4), the projected

eigenvalue problem is obtained as

KHy = µMHy (5.7)



109

Figure 5.2: Schematic of the node sampling: •, selected node (N )

where MH = HTMH and KH = HTKH. It should be noted that the projected eigen-

value problem Eq. (5.7) possesses at least the same eigenvalues of the original systems,

i.e., λ(1), λ(2), . . . λ(k) (the indices may be different from the ones for the projected system.)

This is because the subspace spanned by the columns of (Ψ, Φ̂) contains the eigenvectors

of Eq. (5.3), i.e., φ(j) ∈ span(Ψ, Φ̂) for j = 1, . . . k, as span(Ψ, Φ̂) = span(Ψ,Φ), and

hence the projected eigenvalue problem has the same eigenvalues as the original ones. It

means that, the eigenvalues of the projected system Eq. (5.7) does not contain any error

in the eigenvalues and eigenvectors, with respect to those of the original eigenvalue prob-

lem of the finite element. Although this advantage comes with the expense of calculating

the eigenvalues and eigenvectors of the finite element model, it is not a major drawback

considering that the computational cost involved in the nonlinear computations with the

original finite element would be more prohibitively expensive, than calculating a few nor-

mal modes of the finite element model.

5.3.2 Nonlinear DOF sampling

With the reduced order model obtained in 5.3.1, the next step is to select the DOF in B

such that the nonlinear characteristics of the system can be well approximated by applying

the nonlinear boundary conditions only on the selected DOF.

As mentioned, accurately calculating the NNM frequencies is of primary interest of

this study. The NNM frequencies of the system can be obtained in several ways, such
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as time integration of Eq. (5.2) for harmonic loading, or harmonic-balance-based fre-

quency/time domain analysis [20, 56]. It was shown by the authors that the NNM fre-

quencies for cracked plates obtained by the nonlinear harmonic response analysis can be

well approximated by the application of bilinear frequency approximation even when the

crack surfaces involve multiple DOF [121]. Therefore, as a measure to evaluate the results

obtained with the selected DOF, bilinear frequency is used in the following development.

Namely, the ith NNM frequency ωni can be approximated by a bilinear frequency ωbi

defined as

ωbi =
2ωoωs

ωo + ωs

(5.8)

where ωo and ωs are the natural frequencies of the corresponding linear systems, which

can be respectively obtained by solving the following eigenvalue problems:

KHy = (ω2
o)MHy, subject to open B.C.’s (5.9)

KHy = (ω2
s)MHy, subject to sliding B.C.’s (5.10)

The open B.C. is a boundary condition where no constraint is imposed on the nodes on ΓA

and ΓB, or the DOF in B. Thus in fact Eq. (5.9) is identical to Eq. (5.7). On the other hand

for the sliding B.C., it is assumed that ΓA can freely slide with respect to ΓB but cannot

separate along the normal directions, as described as follows.

Here a contact pair is defined as a pair of nodes on ΓA and ΓB, which may or may not

be in contact during the vibration, and a set of numbers denoting all the contact pairs is

defined as Ccp. For the jth contact pair in Ccp, three mutually perpendicular normal vectors

at a node on ΓA are defined as nj
1, nj

2, and nj
3 where nj

1 is the normal vector pointing

outward from the surface, nj
2 and nj

3 are unit vectors that are tangent to the surface and

perpendicular to each other. Using these vectors, a coordinate transformation matrix Pj
A =

(nj
1,n

j
2,n

j
3) is defined for each contact pair, with the assumption that a nodal displacement
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vector contains only translational DOF, such that the x1 component of the displacement

vector of the node is aligned with ni
1, and pointing outward from the surface. For the other

node of the jth contact pair on ΓB, the corresponding coordinate transformation matrix

that aligns the x1 component of the nodal displacement vector with the normal vector

is defined as Pj
B = −Pj

A. Now assembling Pj
A and Pj

B for all j ∈ Ccp, a coordinate

transformation is defined as

P =


Pb 0 0

0 Io 0

0 0 Im

 , where Pb =

nCcp

A
j=1

(Pj
A,P

j
B) (5.11)

and A is an assembly operator, Pb ∈ RnB×nB , Io ∈ RnO×nO , and Im ∈ RnM×nM . Next,

for the jth contact pair, the x1 components of the nodal displacement vectors, which are

denoted as uj
A and uj

B, are transformed to a relative displacement uj , (uj
A +uj

B)/
√

2 and

a displacement vj , (uj
A − u

j
B)/
√

2. Namely, denoting the set of DOF corresponding to

uj
A and uj

B for all jth contact pair,uj

vj

 =
1√
2

1 1

1 −1


uj

A

uj
B

 (5.12)

Now defining sets X , Y , and Z (X ∪ Y ∪ Z = B and nX = nY = nZ = nCcp) that

respectively contain sets of indices of the DOF corresponding to x1, x2, and x3 for all

j ∈ Ccp, and denoting the coefficient matrix in the Eq. (5.12) as Rj , one can define a

transformation matrix R by assembling Rj for j ∈ Ccp as follows

R =

Rx 0

0 I

 , where Rx =

nCcp

A
j=1

(Rj) (5.13)

and Rx ∈ RnX×nX . Considering that P−1 = PT and R−1 = RT, the eigenvalue problem

Eq. (5.7) can be transformed to

Kz = (ω2
o)Mz (5.14)
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where y = PRz,M = (PR)TMHPR, and K = (PR)TKHPR. Now noting that z can

be partitioned into z = [zr, zg] where zr is the vector of relative DOF, or uj,∀j ∈ Ccp, and

zg is the generalized internal DOF containing vj,∀j ∈ Ccp, x2 and x3 components of the

nodal displacement vectors of the nodes of the contact pairs, displacement vectors of the

observer nodes, and modal coordinates. That is, Eq. (5.14) can be written asKrr Krg

Kgr Kgg


zr

zg

 = (ω2
o)

Mrr Mrg

Mgr Mgg


zr

zg

 (5.15)

whereR ⊂ X and G = (A\R) ∪M.

The best approximation to the NNM frequency can be obtained when the sliding

boundary conditions are imposed on all of the nodes on the surface ΓA and ΓB. Namely

the associated eigenvalue problem with the sliding boundary conditions can be obtained

by constraining all the relative DOF, or zr = 0, i.e.,

Kggzg = (ω2
s)Mggzg (5.16)

Now, we assume that we do not like to consider all nodes in R for the subsequent forced

response analysis due to the large number of DOF involved inR. In other words, the nodes

where the nonlinear boundary conditions are applied should be sampled such as illustrated

in Fig. 5.2. The selected DOF is designated as nonlinear DOF, and a set of indices of the

nonlinear DOF is denoted as N , where N ⊂ R. The rest of DOF in R is designated as

linear DOF, and associated set is denoted as L where N ∪ L = R. Therefore, the bilinear

frequency should be calculated with ωs such that the sliding B.C. is applied only on the

DOF in N , or zn = 0, i.e.,Kll Klg

Kgl Kgg


zl

zg

 = (ω2
s)

Mll Mlg

Mgl Mgg


zl

zg

 (5.17)

Considering that the value of the natural frequency of the system with the open boundary

conditions, ωo, is independent on neither the number nor the pattern of the selected DOF
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(recalling that span(Ψc, Φ̂) contains the chosen eigenvectors), one can see from Eq. (5.8)

that ωbi is dependent only on ωs for a fixed ωo. Now considering the Rayleigh’s theorem

of constraints defined by Eq. (5.1), it is known that all the system’s eigenvalues increase

if a single constraint is imposed on a system. Therefore, as the number of constraints on

Eq. (5.7) to calculate ωs increases, ωs increases. Furthermore, considering that ωbi is a

monotonically increasing function of ωs for a fixed ωo, or ∂ωbi/∂ωs = 2ω2
o/(ωo + ωs)

2 >

0, one can state that the best approximation of ωbi for a given number of nN can be obtained

when the maximum ωs is achieved. Thus a corresponding maximization problem is stated

as follows:

max
N⊂R

ωs(N )

subject to |N | = nN

(5.18)

This maximization problem may be solved by mathematical programming methods, such

as integer programming or topology optimization methods as was done in Ref. [113]. As

it shall be discussed next, this maximization problem can in fact be treated in a more

efficient way by the use of Guyan reduction and some methods to choose the master DOF

for reduced order modeling techniques.

5.3.3 Automatic master DOF selection

The methods for automatically selecting the master DOF for the Guyan reduction have

been previously developed, such as in Refs. [95, 96, 102]. In particular, the method pro-

posed by Henshell and Ong [95] appears to be the most successful approach. Although it

has been known to be computationally expensive due to the nature of eliminating a single

DOF per iteration and successive application of Guyan reduction, this can be alleviated by

the application of the primary model reduction by the CMS as developed in 5.3.1. As was

mentioned by Bouhaddi and Fillod [102], and Shah and Raymund [96], the master DOF

of Guyan reduction should be chosen such that the valid eigenvalue range of the reduced
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order model is maximized. In general, it has been known that the eigenvalue range of va-

lidity is “bounded” by the lowest eigenvalue of the system with all the master DOF fixed.

Here this concept is applied to the problem of finding the optimalN that solves Eq. (5.18).

Namely, the corresponding eigenvalue problem is Eq. (5.17) by regarding zn as the master

DOF. As was discussed in the Ref. [122], the error bounds in the ith eigenvalue of the

reduced model produced by the Guyan reduction can be obtained a priori by the following

relationship

0 6 εi 6
λi

λs,min − λi

(5.19)

where εi , (λi − λi)/λi is the relative error in the ith eigenvalue, λi is the ith eigenvalue

of the reduced order model, λi is the ith eigenvalue of the original finite element model,

and λs,min is the smallest eigenvalue of the system with all the master DOF fixed. For

λi/λs,min � 1, the upper bound asymptotically converges to the following value [123],

0 6 εi 6 λi/λs,min (5.20)

Therefore, it is apparent that maximizing λs,min results in minimizing the upper bound of

the error for all the eigenvalues of the reduced order model. Hence this gives us a guideline

for selecting the master DOF for Guyan reduction such that the errors in the eigenvalues

of the resulting reduced order model are minimized.

By observing this fact from another point of view, one may see that if a certain set of

master DOF can achieve the maximum λs,min, we can obtain not only an accurate reduced

order model that can well approximate the first few lowest eigenvalues of the original

system, but also as a “byproduct”, a good estimate on the optimal constraint locations that

maximize the fundamental frequency. Recasting this to our original problem of selecting

the optimal set N , the error bounds Eq. (5.20) associated with the eigenvalue problem
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Eq. (5.17) are written as

0 6 εi 6
(ω2

o)i

(ω2
s)1 − (ω2

o)i

(5.21)

where εi , [(ω̄2
o)i − (ω2

o)i]/(ω
2
o)i, (ω̄2

o)i is the ith eigenvalue of a reduced order model,

(ωs)1 is the lowest natural frequency of Eq. (5.17). The corresponding maximization prob-

lem is Eq. (5.18), and by solving this problem for the lowest eigenvalue, (ωs)1, one can

expect that the chosen nodes pattern is at least sub-optimal.

According to Refs. [123, 124], the sequential elimination method by Henshell and

Ong [95] tends to keep λs,min high, as it eliminates the DOF associated with the high-

est constrained frequency at each iteration as the slave DOF. Namely after the elimination

procedure, if the chosen master DOF are all fixed, the system is left with the DOF that were

chosen as the slave DOF that were identified to have the highest constrained frequency at

each elimination process. Thus the resulting system with all the master DOF fixed tends

to have a larger λs,min than that calculated with systems with other possible combinations

of master DOF fixed. The Henshell and Ong’s method that is adapted specifically for this

problem is shown in Fig. 5.3. First, at each iteration, the ratios of the diagonal terms of the

stiffness matrix kjj to the diagonal terms of the mass matrixmjj are calculated for ∀j ∈ R,

and the index q1 that gives the maximum ratio among j ∈ R is obtained. Next, the set L is

updated such that it contains q1, and all the other DOF that are associated with the contact

pair k ∈ Ccp to which the q1th DOF belongs, e.g., the DOF that are perpendicular to the

normal direction. The set N is then updated such that it excludes the selected DOF of L

from R, and the set R is re-defined as N . A constraint mode is calculated by solving a

problem where a unit displacement is applied to a DOF in N whereas all the other DOF

in N being fixed. This is repeated for all DOF in N , resulting in the following matrix:

Ψ =

 I

− (Kll)
−1
Kln

 (5.22)
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1: for i = 1 to i = nR − nN do
2: Calculate

√
kjj/mjj for j ∈ R

3: Find q1 such that
√
kq1q1/mq1q1 = max

j∈R

√
kjj/mjj

4: L ← {q1, . . . , qnk
} where q’s are the DOF associated with the kth contact pair

(k ∈ Ccp) and nk is the number of DOF in kth contact pair
5: N ← R\L
6: R ← N
7: Calculate constraint modes Eq. (5.22)
8: Apply Guyan reduction to the system matrices: M← ΨTMΨ, K← ΨTKΨ
9: end for

Figure 5.3: DOF selection based on Henshell and Ong method

1: Calculate Φk

2: for i = 1 to i = nR − nN do
3: A← ΦT

k Φk

4: E← ΦkA
−1ΦT

k

5: Find q1 such that eq1q1 = min
j∈R

ejj

6: L ← {q1, . . . , qnk
} where q’s are the DOF associated with the kth contact pair

(k ∈ Ccp) and nk is the number of DOF in kth contact pair
7: N ← R\L
8: R ← N
9: Delete rows of Φk corresponding to the DOF in L

10: end for

Figure 5.4: DOF selection based on EIDV method

where Ψ is the matrix of constraint modes for all DOF in N . The Guyan reduction is

then applied to the mass and stiffness matrices. The iteration continues until the number

of DOF in N reaches the specified value of nN using Ψ.

In order to clarify the appropriateness of the algorithm in Fig. 5.3 to this problem, an-

other algorithm for selecting DOF is shown here for comparison. The method of effective

independence vector, or the EIDV method developed by Kammer [112], is a method to

choose the sensor placement locations for the vibration measurement of large scale struc-

tures. The method aims to make the measured eigenvectors as linearly independent as

possible. According to Penny et al. [111], many of the criteria for choosing the master

DOF for model order reduction have similar criteria for choosing measurement locations
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in a way such that the lower frequency modes can be captured accurately. In fact, as

examined by Penny et al., both the Henshell and Ong method and the EIDV method pro-

duce acceptable selections in most cases, in a sub-optimal manner. The DOF selection

algorithm based on the EIDV method is shown as Algorithm 5.4. First, the eigenvalue

problem Eq. (5.16) is solved for the first k modes, and the associated modal matrix is des-

ignated as Φk = (φ1,φ2, . . . ,φk), or KΦk = MΦkΛk where Λk = diagj=1,...,k ((ω2
o)j).

The Fisher information matrix A is then calculated as A = ΦT
k Φk, and an idempotent ma-

trix E is computed as E = ΦkA
−1ΦT

k , the diagonal of which is called the independence

distribution vector (see Ref. [112] for detailed formulations.) The least contributing DOF

to the independence of the modes among the ones in R is identified as the one with the

smallest diagonal element in E. The associated DOF are also identified and stored in L,

and both N and R are updated as in the Henshell and Ong method. Finally the rows of

Ψk corresponding to the DOF in L are deleted. The iteration continues until the size ofN

reaches the desired number nN .

Although the EIDV method shares similar objective for choosing DOF with the Hen-

shell and Ong method, the objective of the EIDV method is not exactly the maximization

problem of Eq. (5.18). Therefore it is expected that the Henshell and Ong method returns

better solutions to the given maximization problem than the EIDV method, as it is shown

in the next section.

5.4 Case study

In section 5.3, the method to select the nonlinear DOF has been introduced. In this

section, the validity and applicability of the method are discussed by applying the algo-

rithm to an example problem. With the case study, the validity of the proposed method is

discussed in terms of the bilinear frequencies and forced response. Furthermore a metric
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(a) (b)

Figure 5.5: Cantilevered cracked plate model: (a) FE model, (b) Magnified crack surface

to assess their accuracy is introduced and examined.

5.4.1 Simple cracked plate model

Problem description

A cantilevered cracked plate model was constructed with Young’s modulus E = 2.0×

1011 Pa, Poisson’s ratio ν = 0.3, and density ρ = 7800 kg/m3, and its geometry is shown

as Fig. 5.5(a) where w = 6.0 × 10−3m, l = 6.0 × 10−2m, h = 1.5 × 10−1m, lc/l =

0.625, and hc/h = 0.475. The model was discretized with 5,120 linear solid elements

and resulted in mass and stiffness matrices with 18,630 DOF. On the crack surfaces as

shown in Fig. 5.5(b), there are 180 nodes, or 90 contact pairs on the surfaces hence the

number of the associated DOF is 540. The CMS method shown in the section 5.3.1 was

then applied to the FE model, and it resulted in the 681 DOF (3.6% of the original size)
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(a) nN = 4 (2 pairs) (b) nN = 8 (4 pairs)

(c) nN = 16 (8 pairs) (d) nN = 32 (16 pairs)

(e) nN = 64 (32 pairs) (f) nN = 128 (64 pairs)

Figure 5.6: Selected nodes by an intuitive approach (left edge open)

(a) nN = 4 (2 pairs) (b) nN = 8 (4 pairs)

(c) nN = 16 (8 pairs) (d) nN = 32 (16 pairs)

(e) nN = 64 (32 pairs) (f) nN = 128 (64 pairs)

Figure 5.7: Selected nodes by EIDV method (left edge open)

system consisting of 621 physical DOF and 60 modal coordinates corresponding to the

free-interface normal modes. With this reduced order model, both algorithms in Figs. 5.3

and 5.4 were applied for nN =4, 8, 16, 32, 64, and 128. For the EIDV method, the first

four modes were considered.

In order to compare these results with an “intuitive” selection method, a selection

criteria was also employed, where the nonlinear DOF were chosen based on the amount

of penetration between the nodes in a contact pair for the modes of interest, which in this

case is the fourth mode. Namely, it was hoped that penalizing the inter-penetration of the
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(a) nN = 4 (2 pairs) (b) nN = 8 (4 pairs)

(c) nN = 16 (8 pairs) (d) nN = 32 (16 pairs)

(e) nN = 64 (32 pairs) (f) nN = 128 (64 pairs)

Figure 5.8: Selected nodes by the modified Henshell and Ong method (left edge open)

most penetrating contact pairs would produce the “stiffest” system response. The selected

node pattern with such criterion is shown as Fig. 5.6, and the results of the EIDV method

and the Henshell and Ong method are shown as Figs. 5.7 and 5.8. As can be seen in

Fig. 5.6, if the nodes are chosen based on the amount of penetration, the selection starts

from the nodes near the crack edge (open side) for nN = 4, and it then proceeds toward

the tip of the crack (closed side) as nN increases. It makes sense because the motion of

the crack surfaces is significant near the open edge than that near the closed edge. On the

other hand with the EIDV method, the method also starts to select the nodes near the crack

edge, but it tends to choose more nodes on the crack rims than the nodes near the crack

edge as shown in Fig. 5.7. Finally with the Henshell and Ong method, it also select the

nodes near the crack edge first, for nN = 4, but it then tends to select the nodes over the

crack surface in a more distributed manner as can be seen in Fig. 5.8.

Forced Response Analysis

Next, in order to see the influence of the application of the nonlinear B.C. onto the

selected nodes on an NNM frequency, forced response analysis was carried out by ap-

plying an external harmonic loading to the cracked plate. As one might notice, when the
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(a) Henshell and Ong method (linear)
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(b) Henshell and Ong method (nonlin-
ear)
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(c) EIDV method (nonlinear)
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(d) Intuitive approach (nonlinear)

Figure 5.9: Results of forced response analysis of the cracked plate

forced response of this structure with a crack is considered, the repetitive opening and

closing of the crack faces must be treated appropriately with contact algorithms. As a

result, the vibration is nonlinear and the steady-state response of the displacement may

not be expressed as a harmonic function even if the external force is a harmonic func-

tion. Therefore in this study, the steady-state response was obtained by assuming that the

displacement can be expressed as a truncated Fourier series, and the nonlinear boundary

condition can be enforced by the penalty method [30]. The method is called the hybrid
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frequency-time domain method [20, 56], which is based on the concept of harmonic bal-

ance method [17]. Detailed formulation of the method is described in previous chapters.

It is noted that the system matrices were further reduced by the application of Eq. (5.4) to

the reduced-order model before the forced response calculation, by keeping the selected

node pairs as the active DOF and condensing out the other DOF including physical and

modal coordinates. For example, with nN = 64 (32 pairs), the system size was reduced

down to 155 DOF, which is 0.83% of the original system size.

A harmonic forcing of magnitude 3 N was then applied at the tip of the plate, in order to

excite the first vibration mode, which corresponds to the first out-of-plance bending mode.

The forced response was calculated for both linear case, i.e., with the open B.C., and

nonlinear case with the nonlinear boundary conditions imposed on N with the selections

by the Henshell and Ong method. The results are shown in Figs. 5.9(a) and 5.9(b). As can

be seen in Fig 5.9(a), the selection pattern does not alter the linear forced response. This

is because the selection of the active DOF does not alter the eigenvalues of the reduced

order model, and it was assumed that the system was completely linear when the forced

response was calculated. On the other hand, the number of contact pairs greatly affects

the results of nonlinear forced response as shown in Fig. 5.9(b). One may observe that

the response with 64 contact pairs is almost identical to that with the full set of 90 contact

pairs, which implies that for accurately calculating the nonlinear resonant frequencies, it

may not be necessary to enforce nonlinear boundary conditions for all the contact pairs

on the crack faces. The same forced response calculations were carried out with the node

patterns selected by the EIDV method and the method based on the amount of penetration,

and they are respectively shown in Figs. 5.9(c) and 5.9(d). As can be seen in Fig. 5.9(c),

the results with the patterns chosen by the EIDV method are comparable with the ones

produced by the Henshell and Ong method. On the other hand as can be seen in Fig. 5.9(d),
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the forced response with the node patterns chosen by the “intuitive” approach produced

worse results than the other two methods, i.e., for a given number of nN , the predicted

resonant frequency by the approach is lower than that calculated by the other methods.

This is the most visible in the results for nN = 64, for which both the Henshell and Ong

method and the EIDV methods produced results that are almost identical to the results for

nN = 90.

Bilinear Frequency Approximation

Finally, the influence of the selected node pattern on the bilinear frequencies is dis-

cussed. The first four bilinear frequencies were calculated for the model with the selected

node patterns with the three methods, and the results are shown in Fig. 5.10. The first

four modes correspond to the first out-of-plane bending, the first torsion, the second out-

of-plane bending, and the first in-plane bending modes respectively. The plots in Fig. 5.10

show the percentage errors in the bilinear frequency versus the number of contact pairs,

where the error is defined as the ratio of the difference between the bilinear frequency with

the sampled contact pairs and that with the full set of contact pairs, to that with the full set

of contact pairs. As can be seen, the Henshell and Ong method consistently provides the

best results among all the methods for the first four modes. Moreover, it shows the best

convergence rate in terms of the number of contact pairs.

A posteriori accuracy assessment

As seen above, even though the intuitive approach chooses the contact pairs that show

the most penetration, application of the nonlinear boundary conditions to these nodes does

not result in the “stiffest” vibration response. To be specific, the Henshell and Ong method

and the EIDV method produced the node patterns that yield the closer results to the refer-

ence results in terms of forced response and bilinear frequencies, than the patterns chosen
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by the intuitive approach. In particular, the Henshell and Ong method iteratively aims to

solve the maximization problem Eq. (5.18) in a sub-optimal manner. Therefore the bi-

linear frequencies as well as the resonant frequencies were well approximated with the

nodes chosen by the Henshell and Ong method. In order to better understand the govern-

ing factor for the accuracy of the results, a more physical interpretation of the results is

provided here. Namely, the key effect for achieving the good approximation of the NNM

frequency is to ensure, as much as possible, the non-penetrability condition on the con-

tact pairs where the nonlinear B.C.s’ are not applied. The penetration should be evaluated

during a vibration cycle, thus both the depth and the duration of the penetration should

be taken into account. These quantities vary in space, and depend on the frequency of

vibration. Hence as a metric to characterize not only the amount but also the duration of

penetration over the entire crack surfaces for a given vibration frequency, the following

quantity is introduced:

F̂ =

∫ T

0

(∫
ΓA(ΓB)

keup(r, t)dΓ

)
dt (5.23)

where F̂ is a quantity with the dimension of impulse named “virtual impulse”, ke is an

equivalent spring constant per unit length determined by the ratio between the Young’s

modulus multiplied by the characteristic area and the characteristic length, up is the amount

of penetration along the surface normals, and T is the period of vibration associated with

the NNM frequency. The quantity F̂ is calculated based on the calculated time trajectory

of displacements of the nodes on the crack surfaces, and can be thought of as an impulse

that does not contribute to the system response, as this impulse is not applied to the system

when the response is calculated. In other words, the smaller the value of F̂ is, the stricter

the boundary conditions are imposed on the nodes over the entire crack surfaces.

First, the forced response analysis was carried out, and the corresponding time history

of up over the entire crack surface was recovered from the vibration response. The integrals
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in the Eq. (5.23) were then evaluated by a simple quadrature rule both in space and time.

The metric was calculated for the first and the fourth modes for 8 and 32 pairs chosen by

the methods, and the results are shown in Figs. 5.11 and 5.12. As can be seen in Figs. 5.11

and 5.12, the virtual impulse varies over the frequency range. In particular, when the

frequency of excitation is close to the resonant frequency, or the NNM frequency, then

the amount of penetration increases as well. However for all cases, the Henshell and Ong

method consistently results in the smallest impulse over the frequency range among the

three methods considered. It means that the nonlinear B.C. on the crack faces is the most

strictly enforced by the node patterns chosen by the Henshell and Ong method.

5.5 Conclusion

In this chapter, a novel reduced order modeling framework for the nonlinear vibra-

tion analysis of elastic structures with intermittent contact was proposed. In section 5.3,

the modeling framework was developed based on a method of component mode synthesis.

The master DOF selection scheme for Guyan reduction was formulated by considering the

close relationship between the optimal master DOF selection and the optimal constraint

locations for maximizing the fundamental frequency. The method is a combination of the

sequential elimination method proposed by Henshell and Ong, and appropriate coordinate

transformations to the reduced order model. Another method for choosing the nodes was

also introduced for the sake of comparative study, which is based on a method to optimally

choose the measurement locations such that the measured mode becomes as linearly in-

dependent as possible. The method was then applied to a representative finite element

model in section 5.4. In 5.4.1, the methods were applied to a cracked plate model. Using

the selected node patterns, forced response analysis was carried out to see the effects of

the selection patterns on the frequency response. Furthermore the resonant frequencies
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were calculated by the application of bilinear frequency approximation. It was confirmed

that the selected DOF resulted in accurate prediction of nonlinear resonant frequencies

in comparison to the benchmark case of using all DOF on the crack surfaces. Moreover,

a posteriori accuracy assessment procedure was introduced by examining the amount of

penetration on the crack surfaces during a vibration cycle. The results showed that the

selected node patterns by the proposed method consistently shows the best results among

the methods compared in the other methods.
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Figure 5.10:
Errors in the first four bilinear frequencies:(a) NNM 1, (b) NNM 2, (c) NNM
3, (d) NNM 4



128

200 205 210 215
0

5

10

15

20

25

Frequency [Hz]

Im
pu

ls
e 

[N
s]

 

Penetration
EIDV
Henshell Ong

(a) nN = 16 (8 pair)

200 205 210 215
0

5

10

15

20

25

Frequency [Hz]

Im
pu

ls
e 

[N
s]

 

Penetration
EIDV
Henshell Ong

(b) nN = 64 (32 pair)

Figure 5.11: Virtual impulse for a period of vibration for NNM 1
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(b) nN = 64 (32 pair)

Figure 5.12: Virtual impulse for a period of vibration for NNM 4



CHAPTER VI

Conclusion

The fundamental difficulty of the vibration problems of cracked structures is that the

problems are nonlinear, which is caused by the repetitive opening and closing of the crack

faces. Due to this difficulty, traditional analysis tools can no longer be applied for the

prediction of the vibration characteristics of the cracked systems, such as resonant fre-

quencies and mode shapes. Therefore, one may have to use very time consuming com-

putational methods to obtain these quantities, or to use approximation methods that are

not accurate. As a consequence, even fundamental characteristics of the dynamics of such

structures have not been fully investigated to date. The results obtained in this dissertation

demonstrate that the proposed analysis framework can be used to examine various aspects

of cracked structures accurately and efficiently.

6.1 Contributions

The original contributions of this dissertation are described as follows:

• In Chapter II, an efficient method was presented for reduced-order modeling and

nonlinear vibration analysis of rotating cracked structures. This method accounts

for the change in the equilibrium configuration of the crack surfaces due to rotation

and the attendant influence on the forced vibration response due to the intermittent

129
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contact of the crack surfaces. The individual and combined effects of rotation and

intermittent contact on the forced response were examined in detail for an example

of a cracked blade.

• In Chapter III, a modeling and analysis framework for the nonlinear forced response

of a rotor with a cracked blade was presented. The basic approach is to employ a

combination of a hybrid-interface CMS modeling method, a contact detection algo-

rithm, and the HFT nonlinear vibration analysis method. It was observed that both

mistuning and cracks can lead to strong localization of the forced response, and the

mistuning can lead to localization about different blades for different mode families.

Furtheremore, a crack tends to lead to localization about the same (cracked) blade

for all mode families. For certain mode families, the effect of the crack will be rela-

tively strong compared to that of mistuning, such that the cracked-blade-dominated

response may appear at a significantly lower frequency and may also include unique

characteristics such as a double resonance peak. The relative strength of the effects

of a crack on the system response for different mode families, and thus the observ-

ability of the cracked-blade-dominated resonance, can be estimated to some extent

with a nonlinear vibration analysis of a single blade

• In Chapter IV, the linear and nonlinear vibration response of a cracked cantilevered

rectangular plate near eigenvalue loci veerings have been investigated. It was ob-

served that veerings appear in plots of natural frequencies versus crack length or

crack location ratio. It was shown that a wider veering region entails continu-

ous interchanging between the modes, whereas a smaller veering (or crossing) re-

gion shows fast mode switching. It was shown that the characteristics of veer-

ings/crossings are affected to some extent by the nonlinearity induced by the crack
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closing effect, although in general they are similar to those of the linear counterparts.

Furthermore, an alternative method for estimating the nonlinear resonant frequen-

cies was proposed by generalizing the bilinear frequency approximation. The results

of the proposed method were validated with the resonant frequencies obtained by the

nonlinear forced response analysis for three typical veering scenarios. Moreover, it

was shown that the method works even for relatively large crack length ratio.

• In Chapter V, a reduced order modeling framework for the nonlinear vibration anal-

ysis of elastic structures with intermittent contact was proposed, with special em-

phasis on an optimal node selection method on the crack faces. The method was

developed based on a master DOF selection scheme for Guyan reduction that max-

imize the fundamental natural frequency. The method was then applied to repre-

sentative finite element models, and nonlinear forced response analysis as well as

the bilinear frequency approximation have been employed. It was confirmed that

the selected DOF resulted in accurate prediction of nonlinear resonant frequencies

compared with the benchmark case of using all DOF on the crack surfaces.

6.2 Future research

Below are some ideas for future research that may further expand the research topics

presented in this dissertation.

• Development of efficient nonlinear vibration analysis framework for mistuned

rotors, and applications to structural health monitoring

The implementation of blade mistuning in a model of a bladed disk with a cracked

blade was done at the finite element level in the approach provided in chapter III.

However, this approach is not suitable for parametric studies of randomly mistuned
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bladed disks with a cracked blade, due to the high computational cost associated

with repeatedly changing the FEM for each mistuning pattern and then performing

the finite element analysis needed to generate the corresponding ROM. A much

more efficient approach is to model the blade mistuning directly in the ROM.

There have been a substantial number of studies on efficient mistuning modeling

approaches, such as the Subset of Nominal Modes (SNM) method [125], the Fre-

quency Response Function (FRF) matrix method [126], and the Component Mode

Mistuning (CMM) method [127]. In particular, the CMM method utilizes the mis-

tuning projection method of Bladh et al. [128], which accomplishes the practical

implementation of mistuning in the reduced-order subspace. However, the method

was developed for linear vibration analysis of a rotor for which all blades are iden-

tical in the tuned case, and thus it is not readily applicable to cracked structures.

The major computational challenge of this problem is that cyclic symmetry is broken

by both mistuning and the crack in one blade. Therefore, the highly efficient cyclic

symmetry analysis routines that are applied to obtain normal modes of tuned bladed

disks cannot be used if there is a crack in one blade. Moreover, the accessibility

to physical degrees of freedom from the reduced order subspace must be ensured,

so that the nonlinear contact force due to crack surface interaction can properly be

evaluated within the alternating frequency/time-domain framework.

Thus, a new mistuning modeling approach needs to be considered for handling

bladed disks with cracked blades.

• Enhancement of the Hybrid Frequency/Time domain method

When the HFT method is applied to solving the nonlinear ordinary differential equa-

tions for vibration problems of rotating cracked structures, there are two major chal-
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lenges: (1) numerical instability as well as high computational cost caused from the

large penalty parameter, and (2) the existence of multiple solutions due to initial

gaps at the crack interfaces.

The first issue is intrinsic to the penalty method, because the penalty parameter

must be chosen as large as possible to ensure the satisfaction of the nonlinear

boundary condition at the crack surfaces, yet small enough to avoid numerical ill-

conditioning [129]. In particular, the penalty parameter, or the inter-penetration of

the crack nodes, has been shown to influence the resonant frequency of a cracked

beam [29]. One of the possible solutions to this may be the application of the dy-

namic Lagrangian mixed frequency-time domain method (DLFT) [84], which is

essentially the extension of the the augmented Lagrangian method [45] from the

time-domain analysis to frequency-domain analysis. It could achieve accurate solu-

tions with relatively small penalty coefficient, and hence the stabilization and faster

convergence of the algorithm.

The latter problem may happen for the cases with initial gaps, which result from the

rotation of the structures. It typically results in a jump phenomenon in the frequency

response. The problem is that in the neighborhood of the point at which the jump

occurs, or the bifurcation point, the algorithm of solving the nonlinear equations

could fail due to the lack of good initial guess. In order to circumvent this type

of difficulty, the numerical continuation methods [130] are typically employed for

solving algebraic equations of various types of nonlinear systems. The continua-

tion methods have been applied to many algorithms for solving nonlinear algebraic

equations that arise from Harmonic Balance type methods, such as the Multi-term

Harmonic Balance Method for rotor/stator contact problems [44], structures with

three-dimensional frictional constraints [131], or a polynomial-based method [132].
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Application of continuation methods could improve the algorithm in terms of the sta-

bility near the bifurcation point, and the feasibility to investigate the unstable branch

of the multiple solutions.
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