
Replication-based Cyber Foraging and Automated

Configuration Management

by

Ya-Yunn Su

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Computer Science and Engineering)

in The University of Michigan
2009

Doctoral Committee:
Associate Professor Jason N. Flinn, Chair
Professor Peter M. Chen
Assistant Professor Zhuoqing Mao
Assistant Professor Clayton D. Scott

c© Ya-Yunn Su 2009
All Rights Reserved

To my family.

ii

ACKNOWLEDGEMENTS

Graduate school is a long journey and I am very thankful to many people who

have helped me along the way. I would like to take this opportunity to express my

sincere gratitude towards each individual who has helped me one way or the other.

First, I would like to thank my advisor, Jason Flinn. Your passion and dedication

to research is a true inspiration for me. You have guided me to do research in a creative

and disciplined manner. You have taught me the art of building system software and

the skills to communicate precisely. Doing research is an endless learning process but

you have built the foundation for me.

I would like to thank my thesis committee, Dr. Peter Chen, Dr. Morley Mao, and

Dr. Clayton Scott. Your input and feedback were invaluable and have greatly helped

to improve the quality of this work. I would also like to thank my mentors, Dr. Leo

Luan and Danny Tan, for guiding me during my summer internship at IBM.

I would like to express my appreciation for my undergraduate advisor, Dr. Yeali

Sun, for encouraging me to pursue a Ph.D. in the United States. Without you, I

would not have been here.

Graduate school can be frustrating and stressful some times. I feel very lucky to

have my office mates who have made my graduate school life so much more enjoyable.

We had discussions on various subjects, ranging from technical issues, international

affairs, to the economy. These discussions have broadened my views in so many

different aspects in life. Many thanks to Manish Anand, Mona Attariyan, Brett

Higgins, Edmund Nightingale, Jon Oberheide, Daniel Peek, Sushant Sinha, Kaushik

Veeraraghavan, and Benjamin Wester.

Last, I would not be able to finish this thesis without the love and support from

iii

my family. My dad has always been the role model of a dedicated researcher since I

was little. My mom, my sister, and my brother for giving me the strength and comfort

when I most needed them. I am thankful to Katharine Chang, who is like a sister to

me. I have shared so many happy and sad times with you, and my graduate school

would have been so much harder if I did not have you. I would like to especially thank

David Liu. Your tremendous patience and support have helped me through the last

mile of this “thesis marathon”. Many thanks to my other friends from college and

graduate school, including, but not limited to: Galen Chen, Jessie Chou, Mike Chu,

Ashlesha Joshi, Jinyuan Li, Sing-Rong Li, Howard Tsai, Dreamfish Tsao, Pei-Chao

Weng, and Weiting Yen.

iv

TABLE OF CONTENTS

DEDICATION . ii

ACKNOWLEDGEMENTS . iii

LIST OF TABLES . viii

LIST OF FIGURES . ix

CHAPTERS

1 Introduction . 1
1.1 Improving performance for mobile computers through repli-

cated cyber foraging . 2
1.2 Improving software configurations through automated config-

uration management . 3
1.2.1 AutoBash: tools to automate configuration management 4
1.2.2 Inferring predicates and solutions from user traces . . 5

1.3 Thesis road map . 6

2 Improving Performance for Mobile Computers through Replicated Cy-
ber Foraging . 7

2.1 Introduction . 7
2.2 Design principles . 9

2.2.1 Location, location, location 9
2.2.2 Replicate rather than migrate 9
2.2.3 Ease of maintenance 11

2.3 Implementation . 12
2.3.1 Overview . 12
2.3.2 The home server . 15
2.3.3 Surrogates . 17
2.3.4 The client proxy . 19
2.3.5 Instantiating new replicas 20
2.3.6 Leveraging mobile storage 21

2.4 Slingshot applications . 23
2.4.1 Speech recognizer . 23

v

2.4.2 Remote desktop . 23
2.5 Evaluation . 25

2.5.1 Methodology . 25
2.5.2 Benefit of Slingshot 27
2.5.3 Stateless service replication 29
2.5.4 Instantiate another stateless service 31
2.5.5 Stateful service replication 32
2.5.6 Instantiate another stateful service 34

2.6 Discussion . 34
2.6.1 Design alternatives 35
2.6.2 Privacy concerns . 36

2.7 Summary . 36

3 Improving Software Configurations through Automated Configuration
Management . 38

3.1 Introduction . 38
3.2 Design . 41

3.2.1 Overview . 41
3.2.2 Usage scenario . 45

3.3 Implementation . 47
3.3.1 Speculator background 47
3.3.2 Tracking causality . 48
3.3.3 Observing user actions 52
3.3.4 Extracting state deltas 55
3.3.5 Finding a good solution 57
3.3.6 Validating system health 61

3.4 Limitations . 61
3.5 Evaluation . 62

3.5.1 Methodology . 64
3.5.2 Effectiveness of AutoBash 66
3.5.3 State delta . 71
3.5.4 Case study . 72

3.6 Discussion . 74
3.7 Summary . 75

4 Inferring Predicates and Solutions
from User Traces . 76

4.1 Introduction . 76
4.2 Overview of our approach . 78
4.3 User study methodology . 81

4.3.1 Experimental setup and procedure 81
4.3.2 Misconfiguration tasks 82
4.3.3 Participants . 83
4.3.4 Data collected . 85

4.4 Our first approach to inferring predicates 86

vi

4.5 Re-examine the predicate definition 86
4.6 Generating predicates and solutions from user traces 89

4.6.1 Base algorithm . 89
4.6.2 Determining the result for a predicate 93
4.6.3 Finding preconditions 93
4.6.4 Inferring solutions from user traces 96

4.7 Evaluation . 97
4.7.1 Methodology . 98
4.7.2 Quality of predicates generated 99
4.7.3 Solution ranking results 106

4.8 Discussion . 108
4.8.1 Alternative approaches to infer predicates 109
4.8.2 Using other output features for inferring predicates . . 109

4.9 Summary . 110

5 Related Work . 111
5.1 Slingshot: related work . 112
5.2 AutoBash: related work . 114
5.3 Inferring predicates and solutions from user traces: related work116

6 Conclusion . 118
6.1 Contributions . 118

6.1.1 Conceptual contributions 118
6.1.2 Artifacts . 119

6.2 Closing remarks . 119

APPENDIX . 121

BIBLIOGRAPHY . 139

vii

LIST OF TABLES

Table

2.1 Summary of response time results . 27

2.2 Summary of replication time results 27

3.1 Sample predicate database . 43

3.2 Description of injected configuration bugs 63

3.3 Description of predicates for each application 65

3.4 State delta for make menuconfig . 73

3.5 State delta for vi . 74

4.1 Participant summary . 84

4.2 Command taxonomy . 88

4.3 Summary of predicates generated for CVS traces 98

4.4 Summary of predicates generated for Apache traces 99

4.5 Predicates correctly generated for CVS problem 1 traces 100

4.6 Predicates correctly generated for CVS problem 2 traces 102

4.7 Predicates correctly generated for Apache problem 1 traces 103

4.8 Predicates correctly generated for Apache problem 2 traces 105

4.9 Solutions ranked for CVS problem 1 106

4.10 Solutions ranked for CVS problem 2 107

4.11 Solutions ranked for Apache problem 1 107

4.12 Solutions ranked for Apache problem 2 108

viii

LIST OF FIGURES

Figure

2.1 Slingshot architecture . 13

2.2 Reading a chunk from the service database 14

2.3 Instantiating a new replica . 20

2.4 Network topology used in evaluation 26

2.5 Benefit of using Slingshot . 28

2.6 Speech replication with warm cache 29

2.7 Speech replication with cold cache . 30

2.8 Speech: Moving to a new hotspot . 31

2.9 VNC replication with warm cache . 32

2.10 VNC replication with cold cache . 33

2.11 VNC: Moving to a new hotspot . 35

3.1 An input sets tracking example . 51

3.2 Sample causal explanation . 54

3.3 Sample causality analysis . 59

3.4 AutoBash performance for CVS benchmark 67

3.5 Number of predicates executed for CVS benchmark 68

3.6 AutoBash performance for GCC benchmark 69

3.7 Number of predicates executed for GCC benchmark 69

3.8 AutoBash performance for Apache benchmark 70

3.9 Number of predicates executed for Apache benchmark 71

4.1 The rationale behind the base algorithm 90

4.2 The reasoning behind the precondition heuristic 94

4.3 An example to demonstrate the precondition heuristic 95

4.4 An example to demonstrate when the precondition heuristic does not
work . 96

ix

CHAPTER 1

Introduction

This thesis addresses two research problems. The first problem is how to run de-

manding applications on mobile computers. Mobile computers, such as smart phones

and personal digital assistants (PDAs), have become more prevalent these days. How-

ever, the size of these computing devices constrain the computing resources, such as

processing power and memory, they can carry. This thesis explores using publicly

available compute servers to run demanding applications for mobile computers.

The second problem this thesis addresses is how to make configuration manage-

ment easier for users. Users enjoy the flexibility of customizing their software appli-

cations. However, software programs are not self-contained; they depend on shared

libraries, configuration data, and services. When a user makes configuration changes

that cause software to function incorrectly, it is often difficult to troubleshoot the

root cause of the configuration problem. In this thesis, we address this problem by

first building tools to automate many of the configuration management tasks, and

then developing heuristics to automatically generate test cases that can test if the

configuration of a system state.

1

1.1 Improving performance for mobile computers

through replicated cyber foraging

It is difficult to design demanding applications for mobile computers, such as smart

phones and PDAs. On one hand, these mobile computers are portable and can be

carried everywhere. On the other hand, their size and weight limits constrain their

computing resources, such as processor, battery, and memory. Limited computing

resources make it hard to run demanding applications, such as a language translator

or a speech recognizer, on these mobile computers. Unfortunately, the interactive

applications that are resource-intensive are often of highest value when used in mobile

settings. For example, when a user travels to a foreign country with her smart phone,

a language translator could help her ask for directions.

To provide portable mobile computers the ability to run demanding applications,

we designed and built a cyber foraging infrastructure. Cyber foraging is the concept

of dynamically augmenting the computing resources of a wireless mobile computer

by exploiting wired hardware infrastructure [73]. Our cyber foraging infrastructure,

Slingshot, replicates applications on both surrogate computers and the user’s own

home machine to improve performance for mobile computers. A surrogate computer

is a public compute server that provides computing resources similar to how free

wireless network access is provided. The replica running on a surrogate computer

co-located with the mobile computer is more likely to provide a better response time

than a replica running on user’s home machine. However, the replica on the home

machine provides a safe repository for application state when the surrogate computer

crashes or becomes unavailable.

Slingshot makes surrogate computers easy to manage by installing minimal soft-

ware programs and keeping application state only during the period a user is actively

using it. It encapsulates each application in a virtual machine so that surrogate com-

puter owners do not need to pre-install software packages required by an application.

Slingshot replicates user changes to the home machine so the user need not worry

about application state loss when surrogate computers become unavailable.

2

We demonstrated the usefulness of Slingshot by adapting two applications for

mobile computers, a speech recognizer and remote desktop software. In the evaluation

in Section 2.5, we show that with a typical workload in a wireless hotspot network

environment, Slingshot improves response time by 2.6 times when compared to remote

execution on the home machine.

1.2 Improving software configurations through au-

tomated configuration management

This thesis next examines the problem of making configuration management eas-

ier. Managing software configurations for general purpose computers is difficult be-

cause software programs are complex. Software programs depend on environment

resources, such as shared libraries and environment variables, and interact with other

software programs through many different types of channels. All of this complexity

means that whenever a user changes the system state, that change might affect a

software program in an unexpected way.

To make software programs easier to manage, we first built tools that can auto-

mate many configuration management tasks. Our tool, called AutoBash, can auto-

mate troubleshooting misconfigurations and test if the system is in a healthy state.

AutoBash uses predicates to automatically test the health of a system state. Predi-

cates are like test cases for software testing, and they return true when the system

is in a healthy state and false otherwise. When predicates do not exist, users have

to manually write them. Manually writing predicates is a burden on users because

writing predicates requires a lot of user effort and expert knowledge. To remove the

burden of manually writing predicates, we next developed heuristics to automatically

generate predicates by inferring them from traces of users fixing specific configuration

problems.

3

1.2.1 AutoBash: tools to automate configuration manage-

ment

Managing configuration is a task that all users with different system administra-

tion skills need to perform. To better meet these different needs, AutoBash has three

different modes: observation, replay, and health monitoring. AutoBash’s observation

mode is designed for system administrators or expert users who would like to manage

configurations for their computers themselves. It is a command-line interface that

records users’ input commands as they examine the system state and make state

changes. After a user types in a command, AutoBash automatically runs predicates

to test if the system is in a healthy state. AutoBash’s observation mode also provides

rollback capability for each command so that the user can safely explore different

ways of changing the system state.

AutoBash’s replay mode is designed for users who are not experienced in configur-

ing their computers. When the user needs to fix a configuration problem, AutoBash’s

replay mode first takes potential solutions and predicates as input and then tries to

find a solution that fixes a problem exemplified by the predicates. A solution is a set

of actions that transforms the system state from an unhealthy state in which one or

more predicates return false to a healthy state in which all predicates return true. As

AutoBash sees more misconfiguration instances, it has more solutions upon which to

draw. If AutoBash cannot automatically find a solution, the user must fall back to

AutoBash’s observation mode to fix the configuration problem manually.

Finally, AutoBash’s health monitoring mode periodically runs predicates to check

if the system is in a healthy state. If a configuration problem is detected, AutoBash’s

health monitoring mode can be set to invoke its replay mode to find a solution.

AutoBash uses OS-level speculative execution provided by Speculator [62] to spec-

ulatively try a solution or execute a predicate and to safely roll any state changes back

when a solution does not fix a configuration problem. As the number of applications

increases, AutoBash needs to execute more predicates to determine if a solution fixes

a configuration problem. This could significantly increase the time to find a solution.

4

AutoBash uses causality tracking to reduce the number of predicates that need to be

tested for each potential solution by only executing predicates on which a solution

has causal effects.

We evaluated three different applications with AutoBash’s replay mode: the Con-

current Versions System (CVS) [1], the GCC cross-compiler [2], and the Apache Web

server [7]. For each application, we identified ten common configuration problems

by searching through on-line forums, FAQs, and mailing lists. For each configuration

problem, we created a script that injected the problem and a solution script that fixed

the problem. We ran AutoBash’s replay mode to search for a solution. We compared

the time it takes AutoBash’s replay mode to find a solution for three different ver-

sions: the first version uses neither speculative execution nor causality tracking, the

second uses only speculative execution, and the last one uses both. The results show

that speculative execution adds overhead up to 3% but provides the safety of roll-

back. The version with both speculative execution and causal tracking outperforms

the version without either by an average of 35%.

1.2.2 Inferring predicates and solutions from user traces

Predicates play an important role in AutoBash because AutoBash cannot auto-

matically test a system state without them. When AutoBash was first developed, we

wrote all predicates manually. We found that manually writing predicates is tedious,

time consuming, and requires expert knowledge. Even if expert users spend the effort

writing standard predicates, these standard predicates might not be reusable by users

who heavily customize their software programs.

To reduce the burden of manually writing predicates, we explored the feasibility

of automatically generating predicates. Our solution to automatically generate pred-

icates is to observe users fixing a specific configuration problem and to extract sets of

commands that can be used as predicates. We developed a heuristic that searches for

repeated commands in a user trace that differ in two out of three output features: the

exit code, the error messages contained in the screen output, and the set of objects

5

causally affected by the command. Differences in these output features suggest that

the command was executed before and after the system state transitioned from an

unhealthy state to a healthy one. This heuristic also uses these output features to

determine when a predicate should return true and when it should return false.

To evaluate our heuristic, we conducted a user study to collect traces of commands

that real users used to fix several CVS and Apache Web server configuration problems.

We ran our heuristic on the traces collected from the user study and showed the

predicates generated by the heuristic. The results show that for both CVS and

Apache traces, our heuristic finds correct predicates for four to eight out of eleven

traces.

1.3 Thesis road map

This thesis is composed of six chapters and an appendix. Chapter 2 describes

how we enable mobile computers to run demanding software applications. To in-

crease computing capacity for mobile computers, we built Slingshot, a cyber foraging

infrastructure that allows mobile computers to leverage surrogate computers to run

resource-intensive applications.

Chapter 3 describes how we make it easier to manage configurations for flexible

software systems. We first designed and built AutoBash, which are a set of tools that

automate many tedious parts of managing software configurations.

Chapter 4 extends AutoBash by automating the process of predicate generation.

We first describe the user study we conducted to collect traces of users fixing config-

uration problems. Next, we describe our heuristic that can infer predicates from user

traces. We then evaluated the quality of predicates generated by the heuristic.

Chapter 5 describes the related work and Chapter 6 discusses my thesis contri-

butions and conclusions. Appendix A provides the documentation that was used in

the user study described in Chapter 4, which includes the informed consent and the

handout given to each participant.

6

CHAPTER 2

Improving Performance for Mobile Computers

through Replicated Cyber Foraging

This chapter addresses the problem of how to enable mobile computing devices

to run demanding applications. We describe Slingshot, an infrastructure that allows

mobile computers to leverage surrogate computers to run applications. Slingshot

replicates application state on surrogate computers and a user’s home machine. This

provides the advantage that the replica on the surrogate computer provides good

response time and the replica on the home machine provide data safety.

2.1 Introduction

Mobile handheld computing devices, such as smart phones and PDAs, have be-

come more popular over the years. However, creating applications that execute on

these small, mobile computers is challenging. On one hand, the size and weight

constraints of handheld and similar computers limit their processing power, battery

capacity, and memory size. On the other hand, user’s appetites are driven by the ap-

plications that run on desktops; these often require more resources than a handheld

provides. A solution to this challenge is remote execution using wireless networks to

access compute servers; this combines the mobility of handhelds and the processing

power of desktops.

Although Internet connectivity is increasingly ubiquitous due to widespread de-

7

ployment of wireless hotspots, the backhaul connections (the wireline access links)

between hotspots and the Internet backbone are communication bottlenecks [37].

The uplink bandwidth from a wireless hotspot can be quite limited (e.g., 1.5Mb/s

for a T1 line). Further, this bandwidth must be shared by all hotspot users. The

network round-trip time between a hotspot and a remote server may be large due to

the use of firewalls and other middleboxes, as well as the vagaries of Internet rout-

ing. For interactive applications such as speech recognition and remote desktops, the

combination of high latency and low bandwidth is prohibitive; mobile users cannot

achieve acceptable response times when communicating with remote servers.

In this chapter, we describe Slingshot, a new architecture for deploying mobile

services at wireless hotspots. Slingshot is an instance of cyber foraging [11] - utiliz-

ing compute resources available in the environment to augment the capabilities of

mobile devices. Slingshot replicates applications on surrogate computers [10] located

at hotspots. A first-class replica of each application executes on a remote server

owned by the mobile user. Slingshot instantiates second-class replicas on surrogates

at or near the hotspot where the user is located. A proxy running on a handheld

broadcasts each application request to all replicas; it returns the first response it re-

ceives to the application. Second-class replicas improve interactive response time since

they are reachable through low-latency, high-bandwidth connections (e.g., 54Mb/s

for 802.11g). At the same time, the first-class replica is a trusted repository for

application state that is not lost in the event of surrogate failure.

Slingshot also simplifies surrogate management. It uses virtual machine encapsula-

tion to eliminate the need to install application-specific code on surrogates. Further,

replication prevents the loss of application state when a surrogate crashes or even

permanently fails. The performance impact of surrogate failure is mitigated by other

replicas, which continue to service client requests.

We have implemented two Slingshot services: a speech recognizer and a remote

desktop. Our results show that instantiating a second-class replica on a surrogate

lets these applications run 2.6 times faster. Our results also show that replication

lets Slingshot move services between surrogates with little user-perceived latency and

8

recover gracefully from surrogate failure.

2.2 Design principles

We next describe the three design principles we followed in the design of Slingshot.

2.2.1 Location, location, location

Server location can be critical to the performance of remote execution. Consider

a handheld connected to the Internet at a wireless hotspot. If the handheld executes

code on a remote server, its network communication not only passes through the

wireless medium; it also traverses the hotspot’s backhaul connection and the wide-

area Internet link. In a typical hotspot, the backhaul connection is the bottleneck.

For instance, the nominal bandwidth of a 802.11g network (54Mb/s) is more than an

order of magnitude greater than that of a T1 connection (1.5Mb/s). If the handheld

could instead execute code on a server located at the hotspot, it could avoid the

communication delay associated with the bottleneck link. For interactive applications

that require sub-second response time, server location can make the difference between

acceptable and unacceptable performance.

Network latency is also a concern. A server that is nearby in physical distance can

often be quite distant in network topology due to the vagaries of Internet routing.

Firewalls, virtual private networks (VPNs), and network address translation (NAT)

middleboxes add additional latency when connections cross administrative bound-

aries. For mobile users, a journey of only a few hundred yards can dramatically

increase the round-trip time for communication with a remote server. In contrast, a

server located at the current hotspot is only a network hop away.

2.2.2 Replicate rather than migrate

The desire to locate services near mobile users implies that services need to move

over time. When a handheld user moves to a new location, a surrogate at the new

9

hotspot will often offer better response time than a surrogate at the previous hotspot.

What is the best method to move functionality? One option is migration: suspend

the application on the previous surrogate, transmit its state to the new surrogate,

and resume it there. This approach has a substantial drawback: the application is

unavailable while it is migrating. Slingshot uses an alternative strategy that instan-

tiates multiple replicas of each service. While a new replica is being instantiated,

existing replicas continue to serve the user.

Slingshot replication is a form of primary-backup fault tolerance; i.e., it tolerates

the failure of any number of surrogates. For each application, Slingshot creates a first-

class replica on a reliable server known to the mobile user—this server is referred to

as the home server. Slingshot ensures that all application state can be reconstructed

from information stored on the client and the home server. This allows all state

on a surrogate to be regarded as soft state. Even if all surrogates crash, Slingshot

continues to service requests using the first-class replica on the home server. In

contrast, a näıve approach that migrates applications between surrogates might lose

state when a surrogate fails.

We note that Slingshot handles both stateful and stateless applications. The re-

sult of a remote operation for a stateful application depends upon the operations

that have previously executed. Slingshot assumes that applications are mostly deter-

ministic; i.e., that given two replicas in the same initial state, an identical sequence

of operations sent to each replica will usually produce identical results. This means

that since a replica state on a surrogate will usually not diverge from the first-class

replica state on the home server, Slingshot can optimistically return the result from a

surrogate replica and verify the result after the main replica returns the result. As we

discuss in Section 2.4.2, Slingshot adopts an approach similar to that of Rodrigues’

BASE [71] in eliminating non-determinism with wrapper code.

Slingshot instantiates a new replica by checkpointing the first-class replica, ship-

ping its state to a surrogate, and replaying any operations that occurred after the

checkpoint. Instantiation of a new replica takes several minutes since the state must

travel through the bandwidth-constrained backhaul connection. However, existing

10

replicas mitigate the perceived performance impact. Until the new replica is instan-

tiated, existing replicas service application requests.

Each replica runs inside a virtual machine so a natural way to implement replay

would be adopting ReVirt [33] to manage replicas in Slingshot. We did not adopt

this approach as our main concern was the difficulty of capturing all non-determinants

and enforcing the same state transitions. This incurs additional latency and would

decrease performance improvement. Since we assume replica divergences due to non-

determinism are rare, we chose replay on the application level to improve performance

by allowing some non-determinism in correct replies. Another reason we chose appli-

cation level replay is that we would like surrogate computers to be as easy to manage

as possible. Requiring an additional replay mechanism on surrogate computers would

make management more complicated.

2.2.3 Ease of maintenance

We see the business case for deploying a surrogate as being similar to that of

deploying a wireless access point. Desktop computers (without monitors) cost only a

few hundred dollars today, not much more than an access point. Further, our results

show that surrogates can provide significant value-add to wireless customers in terms

of improved interactive performance.

However, surrogates must be easy to manage if they are to be widely deployed.

Since we envision surrogates at hotspots in airport lounges, coffee shops, and book-

stores, they must require little to no supervision. They should be appliances that

require little configuration; most problems should be fixable with a reboot.

To make surrogates easy to manage, Slingshot:

• minimizes the surrogate computing base. Each replica runs within its

own virtual machine, which encapsulates all-application specific state such

as a guest OS, shared libraries, executables, and data files. The surrogate

computing base consists of only the host operating system (Linux), the virtual

machine monitor (VMware Workstation), and Slingshot. No configuration or

11

setup is needed to enable a surrogate to run new applications—each VM is

self-contained.

• uses a heavyweight virtual machine. While para-virtualization and other

lightweight approaches to virtualization offer scalability and performance ben-

efits [16, 65, 83], they also restrict the type of applications that can run within

a VM. In contrast, by using a heavyweight VMM (VMware Workstation),

Slingshot runs the two applications described in Section 2.4 without modifying

source code, even though their guest OS (Windows XP) differs substantially

from the surrogate host OS (Linux).

• places no hard state on surrogates. Because surrogates have only soft

state, a reboot does not lead to incorrect application behavior or data loss. If

a surrogate crashes or is rebooted, the only impact a user sees is that perfor-

mance declines to the level that would have been available had the surrogate

never been present.

2.3 Implementation

This section discusses our Slingshot implementation. We first give an overview of

the implementation, then more details about each software component, and finally

the applications that we have modified to run on Slingshot.

2.3.1 Overview

Figure 2.1 shows an overview of Slingshot. For simplicity of exposition, this figure

assumes that the mobile client is executing a single application and that a single

surrogate is being used. In practice, we expect a Slingshot user to run only one or

two applications concurrently, with each service replicated two or three times.

Each Slingshot application is partitioned into a local component that runs on the

mobile client and a remote service that is replicated on the home server and surro-

gates. Ideally, we partition the application so that resource-intensive functionality

12

Service Database

Home Server

Remote Service

Client Proxy

Client

Local Component

Service Cache

Surrogate

Remote Service

Request
Request

High Latency

Figure 2.1: Slingshot architecture

executes as part of the remote service; the local component typically contains only

the user interface. This partitioning enables demanding applications to run on clients

such as handhelds that are highly portable but also resource-impoverished. The appli-

cations that we have studied so far (speech recognition and remote desktops) already

had client-server partitionings that fit this model. For some applications, the best

partitioning may not be immediately clear—in these cases, we could leverage prior

work [12, 13, 34, 45] to choose a partition that fits our model.

In Figure 2.1, a first-class replica executes on the home server and a second-class

replica executes on the surrogate. The home server, described in Section 2.3.2, is a

well-maintained server under the administrative control of the user, e.g., the user’s

desktop or a shared server maintained by the user’s IT department. In contrast,

surrogate computers, described in section 2.3.3, are co-located with wireless access

points. They are administered by third parties and are not assumed to be reliable.

Slingshot creates the first-class replica when the user starts the application—this

replica is required for execution of stateful services. As the application runs, Sling-

shot dynamically instantiates one or more second-class replicas on nearby surrogates.

These replicas improve interactive performance because they are located closer to the

user and respond faster than the first-class replica on the distant home server. If

13

Disk Blocks

Block # SHA-1

Chunk Table

Chunk

Database

SHA-1 offset

Hash Table

ref count

5

Figure 2.2: Reading a chunk from the service database

no second-class replicas are instantiated, Slingshot’s behavior is identical to that of

remote execution.

Each replica executes within its own virtual machine. Replica state consists of the

persistent state, or disk image of the virtual machine, and the volatile state, which

includes its memory image and registers. To handle persistent state, we use the

Fauxide and Vulpes modules developed by Intel Research’s Internet Suspend/Resume

(ISR) project [51]. These modules intercept VMware disk I/O requests. On the home

server, we redirect these requests to a service database that stores the disk blocks of

every remote service. On a surrogate, VMware reads are first directed to a service

cache—if the block is not found in the cache, it is fetched from the service database

on the home server.

The client proxy is responsible for locating surrogates, instantiating second-class

replicas, and managing communication with all replicas. It presents the local com-

ponent with the illusion that it is using a single remote service by broadcasting each

request to all replicas and forwarding the first reply it receives to the local compo-

nent. Later replies from other replicas are checked for consistency, as described in

Section 2.3.4.

If a mobile computer has a high-capacity storage device, such as a flash card or a

microdrive, Slingshot reduces the time to instantiate replicas by storing checkpoints

on the mobile computer. As described in Section 2.3.6, the client logs all operations

that occur after the checkpoint and replays them to bring a new surrogate up-to-date.

14

2.3.2 The home server

A Slingshot user defines a single, well-known home server that stores and executes

the first-class replicas for all of her remote services. Each service is uniquely identified

by a serviceid string assigned by the user when the service is created. The service

database on the home server manages the persistent and volatile state associated with

each service. The director instantiates and terminates first-class replicas. We describe

these components in the next two sections. The home server also runs the VMware

virtual machine monitor. Each Slingshot service runs within a separate VM that is

dynamically instantiated when a user starts its associated application on the client.

2.3.2.1 The service database

The home server stores the state of every service under its purview in its service

database. Previous research in virtual machine migration by Sapuntzakis [72] and

Tolia [77] has shown that content-addressable storage is highly effective in reducing

the storage costs of virtual machine disk images. We adopt their approach by dividing

the disk image of each virtual machine into 4KB chunks and indexing each chunk by

its SHA-1 hash value. As shown in Figure 2.2, each service has a chunk table that

maps the chunks in its virtual disk image to the SHA-1 hash of the data stored at

each location.

The service database assumes that any two blocks that hash to the same value are

identical. It maintains a hash table of the SHA-1 values of all chunks that it currently

stores. When it receives a request to store a new chunk whose SHA-1 value matches

that of a chunk it already has stored, it increments a reference count on the existing

chunk. This method of eliminating duplicate storage has been shown to substantially

reduce disk usage [30, 61, 67] due to similarities between the disk state of different

computers. We expect such similarities to be common in our environment, since a

single user may create many remote services from a generic OS image. For example,

we created the speech recognizer and remote desktop services discussed in Section 2.4

from the same Windows XP image.

15

As shown in Figure 2.2, when a first-class replica reads a block from its virtual

disk, the Fauxide/Vulpes ISR modules intercept the request and pass the associated

logical block number to the service database. The database looks up the block number

in the service’s chunk table to determine the SHA-1 value of the chunk stored at that

location. It then looks up the SHA-1 value in the hash table to find the location of

the chunk in the database.

Requests that modify blocks follow a similar path. The database locates the chunk

in the service’s chunk table. It then indexes on the old SHA-1 value and decrements

the reference count associated with the chunk in its hash table. If the reference count

drops to zero, it deletes the chunk. The service database next looks up the new SHA-1

value of the modified block in its hash table. If the modified chunk is a duplicate of

an existing chunk, the service database increments the reference count of the existing

chunk. Otherwise, it stores the chunk and adds its SHA-1 value to its hash table.

Since the volatile state is likely unique to each service, content-addressable storage

offers little benefit. Thus, the service database stores the volatile state of each remote

service in a file named by its serviceid.

2.3.2.2 The home server director

When a mobile user starts a Slingshot application, the client proxy asks the di-

rector on the home server to instantiate the first-class replica. The director uses the

serviceid provided by the client proxy to retrieve the volatile state from the service

database. It starts a VMware process, resumes the virtual machine with the volatile

state, and replies to the client proxy. The persistent state is retrieved on demand

from the service database as the first-class replica executes.

When the user terminates the application, the client proxy tells the director to

halt the replica. The director suspends the virtual machine, which causes VMware

to write its volatile state to disk. It then terminates the virtual machine.

The volatile state is large (e.g., 128MB) because it contains the entire memory

image of the virtual machine. We use Waldspurger’s ballooning technique [79] to

reduce its size. When we create a new service, we place a script in the guest OS that

16

allocates a large amount of highly-compressible (almost entirely zeroed out) memory

pages. When VMware suspends the virtual machine, this script runs to force unused

memory pages to disk and replace them with more compressible pages. The director

compresses the volatile state with gzip before storing it in the service database—this

reduces storage and network costs.

2.3.3 Surrogates

The surrogate architecture is similar to that of the home server, except that we

replace the service database with the service cache described in Section 2.3.3.2. The

director also plays a slightly different role on a surrogate.

2.3.3.1 The surrogate director

The surrogate director currently accepts connections from any client that wishes

to instantiate a second-class replica. Potentially, the director could enforce access-

control policies similar to those enforced by access points today. The client proxy

passes to the director the IP address of its home server and the serviceid of the

remote service it wishes to instantiate. The director contacts the home server and

requests the volatile state and chunk table for the requested service.

Usually, the home server is already executing the first-class replica of the service

in question. For a stateful service, this means that Slingshot must generate a coherent

checkpoint that represents the current execution state of that replica. The home server

creates this checkpoint by suspending and resuming the virtual machine containing

the replica; this causes a new volatile state and chunk table to be written to the

service database.

The home servers ships copies of the volatile state and chunk table to the surrogate.

Even after compression, this information is quite large (e.g., 32MB for a remote

desktop service)—thus, it can take several minutes to transfer. Next, the director

starts a new virtual machine and resumes it using the volatile state. As the replica

executes, its disk I/O is intercepted by the ISR modules and redirected to the service

17

cache described below.

When the client disconnects from the surrogate, the director terminates the vir-

tual machine. Since surrogate replicas are second-class, the service state is logically

discarded at this point. However, persistent state chunks remain in the service cache

until they are evicted due to storage limitations. This improves response time if the

service is later restarted on the surrogate.

2.3.3.2 The service cache

The service cache is a content-addressable store of data chunks. As with the service

database, each chunk is indexed by its SHA-1 hash value, and storage of duplicate

chunks is eliminated. This lets users benefit from similarities among the disk images

of their replicas. For instance, two people using Windows-based services may have

similar disk images. Chunks cached by one user can be used by the other.

When the service cache receives a request to read a chunk, it first tries to service

it locally. If the chunk is not cached, it asks the service database associated with the

replica for the chunk.

A subtle problem occurs because Slingshot assumes determinism at the application

level. There is no guarantee that two different replicas will write the same data to the

same location on disk. A näıve implementation might ask the service database for an

uncached chunk, only to find that it had been over-written by a store performed by

the first-class replica. We therefore need to ensure that the service database keeps all

chunks that might potentially be requested by second-class replicas.

Slingshot uses a copy-on-write approach for both stateful and stateless services.

When a surrogate starts a second-class replica, the service database copies the ser-

vice’s chunk table—the new copy increments the reference count for each of its entries.

When the second-class replica is terminated, the service database deletes its chunk

table and decrements the reference count for each entry. Thus, even if the first-class

replica modifies or deletes a chunk, that chunk is not deleted until after the second-

class replica terminates.

A similar concern arises for chunks modified by the second-class replica. The

18

modified chunks may not be written to the service database by the first-class replica

due to non-determinism at the disk I/O level. The surrogate cache therefore pins

modified chunks for the duration of a replica’s execution—this ensures that they will

never need to be fetched from the service database.

The surrogate cache uses an LRU eviction algorithm that exempts chunks that are

currently pinned. Since chunks remain cached even after a service is terminated, it is

likely that the chunks of a frequent visitor to a hotspot will remain cached between

visits.

2.3.4 The client proxy

The client proxy is a stand-alone process responsible for surrogate discovery,

instantiating and destroying replicas, and coordinating communication with each

replica. It uses Universal Plug and Play (UPnP) [57] to discover new surrogates

in its surrounding network environment. Currently, the decision to instantiate a new

second-class replica is a made by the user. to add heuristics for monitoring network

On startup, the local component sends the client proxy its serviceid. The proxy

immediately instantiates a first-class replica on the home server. It subsequently

instantiates second-class replicas on nearby surrogates when requested by the user.

The client proxy maintains an event log of requests sent by the local application

component. The client proxy spawns a thread for each replica; the thread sends logged

events to the replica in the order they were received. Events may optionally have

application-specific preconditions that must be satisfied before they can be sent to a

replica. For instance, our Virtual Network Computing (VNC) application specifies a

precondition that ensures that the remote desktop is ready to accept each key stroke

and mouse click event before that event is sent. Services that must process events

sequentially to ensure determinism specify that the previous event must complete

before an event is sent.

The client proxy records the replies received from each replica in the event log.

When the first reply is received, it is returned to the local component. Later replies

19

Service Cache

Nearby Surrogate

Director Remote
Service

Service Cache

Distant Surrogate

Director Remote
Service

Service Database

Home Server

Client Proxy

Client

Local Component

4. Ship Service State

7. Terminate Service

6. Replay
Operations

Director Remote
Service

1. Instantiate

New Service

2. Request Service State

5. Service

Instantitated

3. Checkpoint

State and

Resume

Figure 2.3: Instantiating a new replica

are compared with the first reply to ensure that the replicas have equivalent outputs.

If the reply from a second-class replica differs significantly (as determined by an

application-specific function) from the reply from the first-class replica, the second-

class replica is terminated. Such divergence could be due to a bug in the application-

level equivalence function, or it could be the result of a faulty or malicious surrogate.

Note that the client proxy may already have received a reply that is later determined

to be faulty. In this case, the application is notified via an upcall so that corrective

action can be taken. This strategy is similar to those employed in the SUNDR file

system [52] and in Brown’s operator undo [20]. We could also adopt a strategy similar

to Nightingale et al.’s external synchrony [63] by buffering the output from the user

and allowing the local component to proceed. After receiving the reply from the home

server and verifying the buffered output, Slingshot releases the output to the user.

2.3.5 Instantiating new replicas

In Figure 2.3, we show how Slingshot responds to a user moving between hotspots,

assuming that a surrogate is located at each hotspot. The client proxy first asks the

nearby surrogate to instantiate a replica. The surrogate requests the service state

from the home server; the home server checkpoints the first-class replica and ships

20

the compressed chunk table and volatile state to the surrogate. Note that the distant

surrogate can process events for the client during checkpointing. This hides almost

all delay associated with suspending and resuming the VM on the home server. The

client proxy queues events for the first-class replica while it is being checkpointed and

sends them after the replica resumes execution.

The new surrogate uses the checkpoint to resume the service within a new virtual

machine. The client proxy brings the new replica up-to-date by replaying all events in

the event log that were sent by the application after the checkpoint was created. Once

the new replica is up-to-date, it improves interactive response time for the application

by responding swiftly to new events sent by the local component. At this point, the

client proxy terminates the replica at the previous hotspot.

The benefit of replication is that the user sees little foreground performance impact

due to the use of a new surrogate. After checkpointing, the first-class replica on the

home server services requests while the new second-class replica is instantiated and

brought up-to-date. In contrast, a näıve migration approach would leave the service

unavailable while state is being shipped—as we show in Section 2.5, application state

can take several minutes to ship over limited backhaul connections. Although the first-

class replica is unavailable while it is being checkpointed, that operation is relatively

short (approximately ten seconds). Even that cost can be masked if another second-

class replica exists.

Slingshot performs two optimizations if a service is marked as stateless. It skips

checkpointing the service on the home server (since its state is static). It also does

not replay events (since the replica is up-to-date).

2.3.6 Leveraging mobile storage

Migration can be time consuming due to the need to ship state from the home

server (step 4 in Figure 2.3). For a typical service, the size of the compressed volatile

state and chunk table is 30–40MB. If the home server is connected to the Internet

via a DSL link with 256Kb/s uplink bandwidth, it takes over 20 minutes to ship the

21

state.

Given sufficient storage capacity, Slingshot reduces the time to ship state by stor-

ing checkpoints on the mobile computer. We observed that the service-specific event

log can be used to roll forward replica state from any prior checkpoint, not just one

that is created at the beginning of replica instantiation. Thus, by storing a checkpoint

on a mobile computer and logging all events that occur after that checkpoint, Sling-

shot can instantiate a replica without shipping state from the home server. Instead,

it ships the state from the mobile computer over the high-bandwidth wireless network

at the hotspot. Most of this bandwidth should be unused since the capacity of the

wireless network is typically much greater than that of the backhaul connection, yet

most communication from computers located at the hotspot is with endpoints located

outside the hotspot (and thus limited by the backhaul bandwidth).

When a user returns to her home server, she can tell Slingshot to create new

checkpoints of her applications on a high-capacity storage device such as a micro-

drive. Each checkpoint contains the volatile and persistent state. The volatile state,

chunk table and hash table are stored in separate files; the chunks that comprise the

persistent state are stored in a content-addressable cache on the mobile computer.

The event log is empty when the user creates a new snapshot. As the application is

used on the road, Slingshot appends each request to the log. This enables Slingshot

to instantiate a new replica of a stateful service by first restoring the checkpoint rep-

resented by the volatile state, and then deterministically replaying the event log. For

stateless services, Slingshot neither records nor replays an event log.

When a new replica is instantiated on a nearby surrogate, the mobile computer

tries to find a checkpoint on its local storage device. If a checkpoint is found, the

mobile computer ships the volatile state, chunk table, and hash table for its local

chunk cache to the surrogate. One reason that we transmit the hash table to the

surrogate is that the surrogate can usually maintain this information in memory,

whereas a resource-constrained mobile computer cannot. When a disk I/O request

misses in the service cache, the surrogate fetches the chunk from the mobile computer

if it is available there; otherwise, the chunk is fetched from the home server.

22

As operations accumulate, so does the time to bring a new second-class replica

up-to-date. This means that there exists a break-even point where it takes less time to

create a new checkpoint from the first-class replica on the home server and download

it over the Internet than it takes to instantiate a replica from client storage.

2.4 Slingshot applications

We have adapted the IBM ViaVoice speech recognizer [84] and the VNC remote

desktop [4] to use Slingshot. Due to Slingshot’s use of virtual machine encapsulation,

we did not need to modify the source code of either application. All Slingshot-specific

functionality is performed within proxies that intercept and redirect network traffic.

2.4.1 Speech recognizer

We chose speech recognition as our first service because of its natural application

to handheld computers. We used IBM ViaVoice in our work. We created a server-

side proxy that accepts audio input from a remote client and passes it to ViaVoice

through that application’s API. ViaVoice returns a text string which the proxy sends

to the client. ViaVoice and our server run on a Windows XP guest OS executing

within a VMware virtual machine. The local component of this application displays

the speech recognition output.

We chose to implement speech recognition as a stateless service. One can certainly

make a reasonable argument that speech recognition should be a stateful service in

order to allow a user to train the recognizer. However, we wanted to explore the

optimizations that Slingshot could provide for stateless services.

2.4.2 Remote desktop

VNC allows users to view and interact with another computer from a mobile

device. In the case of Slingshot, the remote desktop is a Windows XP guest OS

executing within a VMware virtual machine. This allows users to remotely execute

23

any Windows application from their handhelds. This is clearly a stateful service; i.e.,

a user who edits a Word document expects the document to exist when the service

is next instantiated.

Adapting VNC to Slingshot presented interesting challenges. First, the VNC

server sends display updates to the client in a non-deterministic fashion. When pixels

on the screen change, it reports the new values to the client in a series of updates.

Two identical replicas may communicate the same change with a different sequence

of updates. The resulting screen image at the end of the updates is identical but

the intermediary states may not be equivalent. A second challenge is that some

applications are inherently non-deterministic. One annoying example is the Windows

system clock; two surrogates can send different updates because their clocks differ.

We noted that some non-determinism is unlikely to be relevant to the user (e.g.,

a slightly different clock value). Unfortunately, other non-determinism affects correct

execution. For example, a key stroke or mouse click is often dependent upon the

window state. If a user opens a text editor and enters some text, the key strokes

must be sent to each replica only after the editor has opened on that replica. If this is

not done, the key strokes will be sent to another application. To solve this problem,

we associate a precondition with each input event. When the user executes the event,

we log the state of the window on the client to which that event was delivered. When

replaying the event on a server, we require that the window be in an identical state

before the event is delivered. Since each event is associated with a screen coordinate,

we check state equality by comparing the surrounding pixel values of the original

execution and the background execution. In the above example, this strategy causes

Slingshot to wait until the editor is displayed before it delivers the text entry events.

A second issue with VNC is that its non-determinism prevents us from mixing

updates from different replicas. We designate the best-performing replica as the

foreground replica and the remainder as background replicas. Only events from the

foreground replica are delivered to the client. If performance changes, we quiesce

the replicas before choosing a new foreground replica. Two replicas are quiesced

by ensuring that the same events have been delivered to each, and by requesting a

24

full-screen update from the new foreground replica to eliminate transition artifacts.

New events are logged while quiescing replicas. Note that the foreground replica is

rarely the first-class replica since nearby surrogates provide better performance in the

common case.

We were encouraged that VNC can fit within the Slingshot model, since its behav-

ior is relatively non-deterministic. Based on this result, we suspect that application-

specific wrappers can be used to cover the non-determinism for many applications

and make divergences among replicas a rare event. For those applications where this

approach proves infeasible, we could use a VMM that enforces determinism at the

ISA level as is done in Hypervisor [19] and ReVirt [33].

2.5 Evaluation

Our evaluation answers the following questions:

• How much do surrogates improve interactive response time?

• What is the perceived performance impact of instantiating a new replica?

• How much does the use of mobile storage reduce replica instantiation time?

2.5.1 Methodology

The client platform in our evaluation is an iPAQ 3970 handheld running the Linux

2.4.19-rmk6 kernel. The handheld has an XScale-PXA250 400MHz processor, 64MB

of DRAM, and 48MB of flash. It uses a 11Mb/s Cisco 350 802.11b PCMCIA card

for network communication and a 4GB Hitachi microdrive for bulk storage. Unless

otherwise noted, the home server and surrogates are Dell Precision 350 desktops with

a 3.06GHz Pentium 4 processor running RedHat Enterprise Linux version 3.

We use a Cisco 350 802.11b wireless access point. We emulate the topology in

Figure 2.4 by connecting all computers and the access point to a Dell desktop run-

ning the NISTNet [22] network emulator. This topology emulates a scenario where

the handheld client is located at a wireless hotspot equipped with a surrogate com-

25

APAP

1.5

Mbps

1.5

Mbps

1.5

Mbps

1.5

Mbps
256

Kbps

1.5

Mbps

15 ms

latency
15 ms

latency

Internet

Distant

Surrogate

Nearby

Surrogate

Home Server

 Handheld

Figure 2.4: Network topology used in evaluation

puter. Hotspots are connected to the Internet through T1 connections with 1.5Mb/s

uplink and downlink bandwidth. A distant surrogate at another hotspot is accessi-

ble with latency of 15ms. The home server is connected through an emulated DSL

connection—the latency between the handheld’s hotspot and the home server is 30ms.

We execute the IBM ViaVoice speech recognizer as a stateless service and VNC as

a stateful service. For repeatability, the local component of each application executes

a fixed, periodic workload. For speech, each iteration of the workload recognizes a

phrase and pauses three seconds before beginning the next iteration. For VNC, each

iteration opens Microsoft Word, inserts text at the beginning of a document, saves

the document, closes Word, and pauses ten seconds before the next iteration begins.

The client uses the same heuristics described in Section 2.4.2 to wait until Word opens

before inserting text, and to wait until the window is fully closed before beginning

the ten-second pause between iterations.

Each service runs within a separate VM configured with 128MB of memory and

4GB of local storage. We create each service from a vanilla Windows XP installa-

tion. We install the ballooning script described in Section 2.3.2.2 and the application

comprising the remote service. We start the application so that it is ready to receive

incoming connections, then suspend the VM. We repeat each experiment three times

26

Service Remote Slingshot

Execution Steady-State Creating 1st Replica Creating 2nd Replica

Warm Cache Cold Cache Warm Cache Cold Cache

Speech 0.67 (0.67–0.67) 0.24 (0.24–0.24) 0.69 (0.68–0.70) 0.69 (0.67–0.73) 0.52 (0.51–0.52) 0.52 (0.51–0.52)

w/o MD

Speech 0.67 (0.67–0.67) 0.24 (0.24–0.24) 0.80 (0.79–0.81) 0.80 (0.79–0.81) 0.65 (0.65–0.65) 0.65 (0.63–0.68)

with MD

VNC 18.9 (18.9–19.0) 7.4 (7.2–7.5) 22.8 (21.5–23.6) 22.2 (19.9–23.6) 9.8 (9.7–9.9) 10.0 (9.9–10.0)

w/o MD

VNC 18.9 (18.9–19.0) 7.4 (7.2–7.5) 24.1 (23.9–24.3) 23.1 (21.6–24.4) 13.8 (13.0–14.4) 14.6 (14.4–14.8)

with MD

This table summarizes the average response time (in seconds) for all experiments. MD
stands for microdrive. Each entry shows the mean of three trials, with the low and high
trials given in parentheses. The second column shows response time for remote execution
on the home server. The third column shows steady-state performance for Slingshot with
a replica on the nearby surrogate. The remaining columns show response time while
instantiating a replica on the nearby surrogate with and without a replica running on the
distant surrogate.

Table 2.1: Summary of response time results

Service Creating 1st Replica Creating 2nd Replica

Warm Cache Cold Cache Warm Cache Cold Cache

Speech w/o microdrive 28:06 (27:50–28:27) 27:55 (27:50–28:04) 28:10 (28:05–28:11) 27:57 (27:57–27:58)

Speech with microdrive 3:35 (3:32–3:40) 3:27 (3:26–3:28) 3:39 (3:34–3:45) 3:33 (3:32–3:34)

VNC w/o microdrive 27:48 (27:07–28:28) 27:58 (27:12–28:45) 31:16 (30:57–31:31) 31:08 (31:00–31:25)

VNC with microdrive 6:37 (6:20–7:13) 7:29 (6:59–8:27) 8:59 (8:01–10:00) 8:20 (6:47–9:00)

This table summarizes the time (in minutes) to create a new replica on the nearby surrogate
for all experiments. Each entry shows the mean of three trials, with the low and high trials
given in parentheses. The second and third columns show the time to instantiate a replica
when no replica runs on the distant surrogate. The last two column show results with a
replica on the distant surrogate.

Table 2.2: Summary of replication time results

and report mean results over all iterations during the three trials. Tables 2.1 and 2.2

summarize all results described in this section.

2.5.2 Benefit of Slingshot

We first measured the benefit of using Slingshot for our two applications. The left

bar in each data set in Figure 2.5 shows the average time to perform an iteration of

27

SlingshotRemote
		 execution

0

200

400

600

800

T
im

e
(m

s)

Communication
Client processing
Server processing

SlingshotRemote
		execution

0

5

10

15

20

T
im

e
(S

ec
on

ds
)

Communication
Client processing
Server processing

(a) Speech (b) VNC

This graph compares the average time to execute the speech and VNC workloads when
using remote execution and when using Slingshot. Each bar shows mean response time—
the error bars are 90% confidence intervals.

Figure 2.5: Benefit of using Slingshot

the workload when the service is remotely executed on the home server. The right bar

shows the average time using Slingshot when a second-class replica executes on the

nearby surrogate. We let each application run for several iterations before measuring

performance; this eliminates startup transients and shows steady-state performance.

Both the stateless speech service and the stateful VNC service execute 2.6 times

faster with Slingshot than with remote execution. The shadings within each bar show

the time consumed by server processing, client processing, and communication. For

speech, Slingshot increases client processing time since it manages multiple network

connections and aggregates responses. For VNC, it also logs requests and responses

to local storage. Slingshot’s performance benefit comes from reducing the time the

application blocks on network communication.

Remote execution performance is affected by both high latency and limited band-

width. For speech, a back-of-the-envelope calculation shows that 229ms are required

to transfer the 44KB utterance through the bottleneck 1.5Mb/s T1 link at the

hotspot. Further, since communication is intermittent, TCP slow start causes several

60ms round-trip delays during transmission. Thus, the remote execution results in-

clude 511ms of network communication time. In contrast, Slingshot uses only 77ms

28

0 100 200 300 400 500 600
0

200

400

600

800

1000

1200

Iteration

T
im

e
(m

s)

without microdrive
with microdrive

This graph shows how response time changes during the instantiation of a speech replica
on the nearby surrogate. All chunks are in the service cache prior to each experiment.

Figure 2.6: Speech replication with warm cache

for network communication.

Latency impacts VNC performance more than bandwidth. Because the client

waits for remote actions such as button clicks and key presses to complete before

initiating the next action, there are many round-trip delays during the VNC workload.

In addition, client polling in VNC leads to more round-trip delays than are strictly

necessary. For this workload, remote execution on the home server requires 15.6

seconds for network communication, while Slingshot requires only 3.2 seconds.

2.5.3 Stateless service replication

We next examined the impact of instantiating stateless second-class replicas. In

this experiment, a user with a first-class replica running on the home server arrives

at the hotspot on the left in Figure 2.4 and decides to instantiate a replica on the

surrogate there. For repeatability, we do not measure the latency of UPnP service

discovery. We examine behavior when the service cache is cold (no chunks are initially

cached) and warm (all chunks are initially cached). The warm cache scenario is most

likely if the user has recently visited the hotspot; the cold cache scenario is the worst

cache state possible.

We first ran three trials without a microdrive attached to the iPAQ. Since the

handheld has limited storage, the service state must be loaded from the home server

29

0 100 200 300 400 500 600
0

200

400

600

800

1000

1200

Iteration

T
im

e
(m

s)

without microdrive
with microdrive

This graph shows how response time changes during the instantiation of a speech replica
on the nearby surrogate. No chunks are in the service cache prior to each experiment.

Figure 2.7: Speech replication with cold cache

as described in Section 2.3.5. We then ran three trials with the microdrive; in this case,

the state of the speech service is loaded from the iPAQ as described in Section 2.3.6.

Figures 2.6 and 2.7 show results for representative trials with a warm and cold cache,

respectively.

In Figure 2.6, the sharp drop in response time for both lines is a result of the

completion of replica instantiation. Before the replica is instantiated, speech requests

must be serviced by the distant home server; after instantiation, the new second-

class replica provides quicker response time. Without the microdrive, it takes 28:06

minutes to ship the service state from the home server. However, replica instantiation

exhibits only a minimal impact on application performance—average response time

during replication is only 2% greater than response time with remote execution on

the home server.

When the replica is instantiated from state stored on the client’s microdrive,

the new second-class replica is instantiated in only 3:35 minutes (7.8 times faster).

However, the performance impact of replica instantiation is more substantial: average

response time increases by 20% compared to remote execution. Shipping a large

amount of data over the wireless network causes queuing delays at the access point

and on the handheld that adversely affect application performance.

The cold cache scenario in Figure 2.7 exhibits a less clear difference in perfor-

30

0 100 200 300 400 500 600
0

200

400

600

800

1000

1200

Iteration

T
im

e
(m

s)

without microdrive
with microdrive

This graph shows how response time changes during the instantiation of a speech replica on
the nearby surrogate while another replica executes on the distant surrogate. All chunks
are in the the service caches prior to each experiment.

Figure 2.8: Speech: Moving to a new hotspot

mance before and after replication completes. After the new replica is instantiated,

it fetches chunks of its persistent state on demand from the home server or iPAQ;

this occasionally delays its responses. Note that the first-class replica on the home

server mitigates the performance impact—if the second-class replica is substantially

delayed by fetching state, the first-class replica responds faster.

2.5.4 Instantiate another stateless service

We next examined a scenario in which the user of the speech service moves from

one wireless hotspot to another. This experiment begins with the user located at the

middle hotspot in Figure 2.4. A second-class replica is running on the surrogate at

that hotspot and a first-class replica is running on the home server. At the beginning

of the experiment, the user moves to the left hotspot and decides to instantiate

another replica on the surrogate at that hotspot. While this new replica is being

created, both the second-class replica on the distant surrogate and the first-class

replica on the home server service application requests. As soon as the new replica is

instantiated, Slingshot terminates the replica on the distant surrogate. Since we did

not have three identical servers with which to run this experiment, the home server is

a slightly less-powerful Dell Optiplex 370 with 2.8GHz Pentium 4 processor running

RedHat 9.

31

0 50 100 150

Iteration

0

10

20

30

T
im

e
(s

ec
on

ds
)

without microdrive
with microdrive

This graph shows how response time changes during the instantiation of a VNC replica
on the nearby surrogate. All chunks are in the service cache prior to each experiment.

Figure 2.9: VNC replication with warm cache

Figure 2.8 shows how the average time to perform an iteration of the speech

recognition workload varies during this experiment—we show only warm cache results

here. Compared to the previous experiment, the time to instantiate a new replica is

relatively unchanged. However, response time during replication is improved because

the existing second-class replica responds faster to requests than the replica on the

home server. Without the microdrive, application response time is reduced by 23%

compared to remote execution; with the microdrive, application response time is

reduced by 2%. These results show that a surrogate can still provide significant

benefit even when not located at the user’s current hotspot.

2.5.5 Stateful service replication

We next repeated the experiment in Section 2.5.3 for the stateful VNC service.

Prior to the experiment, we perform 30 iterations of the VNC workload. We then

begin the experiment by instantiating a replica on the nearby surrogate. Figures 2.9

and 2.10 show results from the warm and cold cache scenarios, respectively.

Without the microdrive and with a warm service cache, Slingshot takes 4 seconds

to checkpoint the VNC service—this is reflected in the higher response time for the

first iteration. Slingshot takes 22:42 minutes to ship the checkpoint to the surrogate

32

0 50 100 150

Iteration

0

10

20

30

T
im

e
(s

ec
on

ds
)

without microdrive
with microdrive

This graph shows how response time changes during the instantiation of a VNC replica
on the nearby surrogate. No chunks are in the surrogate cache prior to each experiment.

Figure 2.10: VNC replication with cold cache

and 5:02 minutes to replay the logged operations. During replication, average response

time is 20% higher than when using remote execution on the home server. This

increase is due to the background traffic associated with shipping state from the

home server interfering with the latency-sensitive foreground traffic of VNC.

In contrast to the prior results for the speech service, the VNC results show

little difference between the warm and cold cache scenarios. In particular, VNC

performance markedly improves in the cold cache scenario as soon as the client starts

using the second-class replica. Most of the chunks needed by the service are read

from the service database during the replay of logged operations.

When the handheld stores a VNC service checkpoint on its microdrive, Slingshot

takes 3:19 minutes to ship the state from the client, and 3:18 minutes to replay the

log. These two phases are clearly visible in the “with microdrive” line in Figure 2.9,

where response time degrades by 52% compared to remote execution while state is

being shipped, and by 9% while the log is replayed. Note that the log replay with

the microdrive includes the 30 iterations that occurred prior to the experiment. Since

the microdrive checkpoint is taken when the user leaves home, all logged operations

after that point must be replayed. However, since shipping state takes less time with

the microdrive, the user generates fewer logged operations during migration. Overall,

33

Slingshot instantiates the replica over 4 times faster when a checkpoint exists on the

microdrive.

On the other hand, the nature of the VNC service makes it more difficult to

switch between surrogates; the current foreground replica must be quiesced before

Slingshot designates another replica as the foreground one. Thus, in contrast to the

speech service, Slingshot can not take the fastest response from any surrogate for any

individual VNC request; instead it must take a more heavyweight action to switch

surrogates if the response time of the foreground surrogate consistently lags that of

a background surrogate.

2.5.6 Instantiate another stateful service

We also repeated the experiment in Section 2.5.4 for VNC. Prior to the experiment,

we create a second-class replica of the VNC service on the distant surrogate and a

first-class replica on the home server. We then execute 30 iterations of the VNC

workload. The experiment begins when we start to instantiate another second-class

replica on the nearby surrogate.

As shown in Figure 2.11, the presence of another second-class replica on the dis-

tant surrogate substantially improves performance during replication. Compared to

remote execution, Slingshot provides VNC response times during replication almost

twice as fast without the microdrive, and 70% faster when state is fetched from client

storage.

2.6 Discussion

Our design principles in Section 2.2 lead us to our final design in Slingshot. In

this section, we first examine the design space for cyber foraging infrastructures with

different design principles, such as fast instantiation and privacy. We next discuss

some privacy concerns in Slingshot and potential solutions to address these concerns.

34

0 50 100 150

Iteration

0

10

20

30

T
im

e
(s

ec
on

ds
)

without microdrive
with microdrive

This graph shows how response time changes during the instantiation of a VNC replica on
the nearby surrogate while another replica executes on the distant surrogate. All chunks
are in the the service caches prior to each experiment.

Figure 2.11: VNC: Moving to a new hotspot

2.6.1 Design alternatives

To make surrogates easy to maintain, we chose virtual machines to replicate ap-

plications in Slingshot. Using virtual machines has the advantages described in Sec-

tion 2.2 but also has some disadvantages. First, even though we only need to transfer

the memory image, it takes around twenty minutes to instantiate a new virtual ma-

chine. Recent work in fast virtual machine migration [28, 70] can be used to improve

service instantiation time but it still works best in local area network. Second, a

virtual machine created from a user’s home computer may include a user’s private

data on it, and such virtual machines could be a threat to user’s privacy.

Process migration [14, 25, 32] and process domain migration [65] are two ab-

stractions that could be used to replicate or migrate remote services in Slingshot.

Migrating at both process and process domain levels has the advantage that only

relevant state needs to be migrated. This can substantially reduce the amount of

data to be migrate and improves migration time. Since less data is migrated, it is

easier to verify that sensitive personal data is not transferred to a surrogate machine.

However, both migration schemes require all surrogate computers to support the same

migration infrastructure. Hence, users can only run remote services constructed to

run for that specific migration infrastructure.

35

2.6.2 Privacy concerns

We design surrogate computers to be easy to maintain so that surrogate comput-

ers can be like appliances that do not need system administrations. However, user

might worry that running applications on these public compute servers might disclose

their private data. We did not address privacy issues in this thesis but examine two

aspects that we can leverage existing security techniques to improve a user’s privacy

on Slingshot.

Users interact with surrogate computers through sending requests to remote ser-

vices and getting responses back from them. One aspect to improve privacy is to

reduce private data transferred to surrogate computers by partitioning an application

in a secure fashion. Chong et al. [26] demonstrated how Swift can automatically

partition web applications into a client and server program. Swift places confidential

information on the server and computation that requires responsiveness on the client.

Slingshot could deploy a similar technique to partition applications so that sensitive

data is placed on the client component and code that requires computation resources

is on the remote service.

We envision surrogate computers to be shared among users at the same wireless

hotspot, therefore, techniques that allow computer systems to isolate each user’s

application are desirable [38, 5]. These techniques all assume that tamper-resistance

hardware platforms exist [76].

2.7 Summary

In this chapter, we demonstrated how to improve performance for portable mo-

bile computers through replicated cyber foraging. Handhelds can improve interac-

tive response time by leveraging surrogate computers located at wireless hotspots.

Slingshot’s use of replication offers several improvements over a strategy that sim-

ply migrates remote services between computers. Replication provides good response

time for mobile users who move between wireless hotspots; while a new replica is

being instantiated, other replicas continue to service user requests. Replication also

36

lets Slingshot recover gracefully from surrogate failure, even when running stateful

services.

Slingshot minimizes the cost of operating surrogates. For surrogate computers

to be of maximum benefit, they must be located at wireless hotspots, rather than

in machine rooms that are under the supervision of trained operators. Slingshot

uses off-the-shelf virtual machine software to eliminate the need to install custom

operating systems, libraries, or applications to service mobile users. All application-

specific state associated with each service is encapsulated within its virtual machine.

Further, Slingshot’s replication strategy means that surrogates need not provide 24/7

availability. If a surrogate fails or is rebooted, no state is lost.

37

CHAPTER 3

Improving Software Configurations through

Automated Configuration Management

Software applications today provide a wide range of options that allow users to

customize them. However, software applications are often difficult to configure cor-

rectly due to their dependencies on shared libraries, configuration data, and environ-

ment variables. This chapter addresses this problem by introducing AutoBash, which

consists of a set of tools that can automate many configuration management tasks.

3.1 Introduction

Users spend too much time configuring their computers [43]. Currently, configu-

ration management is often an isolated process, in which each user discovers on her

own the particular incantations that are required to transform her particular com-

puter system from a misconfigured state to a correct one. Configuration management

can be especially frustrating because, in the process of trying to reach a more desir-

able system state, the user may take some action that leaves the system in a state

worse than the one that existed before.

While autonomic systems that can configure themselves are an admirable goal [48],

experience to date suggests that it is very hard to completely hide the complexity

of modern computer systems. Thus, a less ambitious goal may be in order. Rather

than try to eliminate configuration entirely, we adopt the more pragmatic approach

38

of providing users and system administrators with a set of interactive tools, which we

call AutoBash, that helps them perform configuration management tasks.

For instance, consider the actions of a typical user faced with a configuration

problem. She might search the Web and query colleagues to find others who have

encountered and solved a similar problem. She might then try the most likely solution

and test her system to see if the problem has been fixed. If the system still does not

operate correctly, she will carefully try to undo any changes that she has made and

then try the next possible solution. AutoBash can help this user by automating

many of the most tedious and frustrating steps in the above process. It uses causal

dependency tracking and analysis implemented within the operating system kernel

to speed the search for solutions to configuration problems, and it uses speculative

execution to transparently apply and test possible solutions while retaining the ability

to undo incorrect actions.

AutoBash has three modes: observation, replay, and health monitoring. In all

three modes, AutoBash expresses system health as the result of executing a set of

predicates. In observation mode, AutoBash records the actions of users as they adjust

their systems to fix a particular problem. AutoBash logs input and output as the user

probes the system, makes state changes, and tests the new state. In replay mode,

AutoBash tries to fix the same problem on different systems by applying actions that

fixed the problem previously. AutoBash lets users learn from each others’ experiences:

as AutoBash sees more correct solutions to a problem, it has a greater database of

potential solutions to draw upon. In health monitoring mode, AutoBash periodically

tests the correctness of a computer system in the background to diagnose configuration

bugs before they become critical.

AutoBash leverages causality support within the Linux kernel to understand the

outputs (causal effects) and inputs (causal dependencies) of executing configuration

actions. This leads to the following benefits:

• Causal tracking reduces the amount of testing that must be performed to de-

termine whether a particular action fixed a problem or caused a new problem.

AutoBash expresses system health as the result of executing a set of (deter-

39

ministic) predicates. When it performs a configuration action, it tracks the set

of entities modified as a result of the action. If none of the entities serves as an

input to a predicate, then the evaluation of that predicate will not change as

a result of the configuration action. Thus, the predicate need not be retested.

• Causal tracking provides a compact representation of interactive user activity.

When a user interacts with an editor or GUI application, AutoBash could

potentially record his actions by logging inputs (keystrokes and mouse events)

or outputs (system calls). Unfortunately, either approach often produces a

large amount of data that is difficult to understand or replay deterministically.

In contrast, AutoBash uses causal tracking to represent interactive activity as

a minimal set of changes made to persistent state during the activity.

• Causal tracking helps explain to users how a problem was fixed. When a user

fixes the problem interactively, AutoBash shows him which actions possibly

contributed to the solution and which did not contribute. Further, it shows the

changes to intermediate entities (e.g., diffs of configuration files) that possibly

led to the solution. When AutoBash autonomously searches for a solution to a

configuration problem, it shows a similar report to the user before committing

any solution it finds. This allows the user to understand and confirm any

change to configuration state suggested by AutoBash.

• AutoBash transparently recovers from incorrect actions by tracking all causal

effects of each action. We use Nightingale et al.’s Speculator [62] to roll back

all effects of incorrect actions. While tools exist for checkpoint and rollback of

persistent registry or file system state, such systems are incomplete unless they

also roll back transient state such as process memory. For instance, a corrupted

application can cause a problem to remain until the system is rebooted. Even

worse, a corrupted application may subsequently write incorrect data to the

file system, making the effects of an incorrect action durable.

• Causal tracking, when combined with speculative execution, provides isolation

for configuration activities. If a configuration action is found to be incorrect

40

and is rolled back, AutoBash guarantees that any other activity that observed

the incorrect state will also be rolled back. This strategy provides optimistic

concurrency for speculative configuration actions — an approach that lets

AutoBash perform potentially time-consuming configuration actions in the

background while the user continues to use the computer system for normal

activities.

Our current AutoBash prototype assists in solving configuration bugs that are

confined to a single computer system, such as a home computer, personal workstation,

or stand-alone server. Our results show that AutoBash dramatically decreases the

amount of user interaction required to fix configuration problems in the Concurrent

Versions System (CVS), the GNU Compiler Collection (GCC) cross compiler, and

the Apache HTTP server by automating many of the most tedious activities. Our

results also show that operating system causality analysis decreases the amount of

time needed by AutoBash to automatically find solutions by an average of 35% and

the time spent on predicate testing by an average of 70%.

3.2 Design

This section first discusses the design overview of AutoBash and then describes a

configuration problem we encountered that inspired AutoBash. Although we manu-

ally solved that configuration problem, it allowed us to envision how AutoBash could

be very useful for both novice users and system administrators when they troubleshoot

configuration problems.

3.2.1 Overview

The goal of AutoBash is to help its users find solutions to the configuration prob-

lems they are facing. AutoBash divides configuration activities into actions that

modify system state and predicates that test system correctness. We define a solution

to be a sequence of actions that transforms a system from an incorrect state, in which

41

one or more predicates evaluate to false, to a correct state, in which all predicates

evaluate to true.

Predicates are guaranteed to have no side effects; that is, they are not allowed

to visibly modify system state such as files and processes. AutoBash ensures the

absence of side effects by speculatively executing each predicate and rolling it back

on completion. Predicate execution, return codes, and causal inputs are visible to

AutoBash but not to any other process running on the system. (More precisely,

any entity that observes predicate execution is rolled back to its state prior to the

observation once the predicate completes, and external effects are not visible to the

user or other computers.) There are several ways we can obtain predicates. Predicates

are similar to test cases and may be provided as part of the software (similar to

Windows configuration wizards or test suites for program testing). Alternatively,

they may be created by a community of users. Users can also add predicates that

demonstrate symptoms that they would like to fix. Since a predicate is simply a Unix

process, the normal actions that users take to verify whether a solution is working

(e.g., loading a Web server test page) can be transformed into predicates with minimal

effort. A predicate can be written as a shell script or can be a binary executable with

a return value indicating true or false. Chapter 4 explores generating predicates by

inferring them from traces of users fixing actual configuration problems.

AutoBash maintains a predicate database that contains the tests associated with

all applications under its purview. Table 3.1 shows a sample predicate database. Au-

toBash organizes predicates with the following schema: name, application, predicate

file location, last execution result, the time the predicate was last executed, input

record file location, and average predicate execution time. The application field refers

to the application a predicate is designed to test. Input record file location is the loca-

tion of the file containing the inputs a predicate is dependent upon. AutoBash stores

the average execution time so that it can warn a user if predicate execution takes

much longer than usual. Based on our evaluation of three applications in Section 3.5,

five to ten predicates per application seem to cover most of the configuration bugs we

encountered.

42

Name App. File Last exe. Last exe. Input record Ave. execution

location result time file location time (seconds)

pred.cvs.0 CVS /AB/ Succeed 08-20-2007 /AB/input.pred.cvs.0 5.30

19:21:05

pred.cvs.1 CVS /AB/ Succeed 08-20-2007 /AB/input.pred.cvs.1 5.04

19:21:10

pred.cvs.2 CVS /AB/ Succeed 08-20-2007 /AB/input.pred.cvs.2 4.68

19:21:15

pred.gcc.0 Cross /AB/ Succeed 08-20-2007 /AB/input.pred.gcc.0 2.10

compiler 19:21:19

pred.gcc.1 Cross /AB/ Succeed 08-20-2007 /AB/input.pred.gcc.1 1.58

compiler 19:21:22

pred.apache.0 Apache /AB/ Succeed 08-20-2007 /AB/input.pred.apache.0 9.25

19:21:22

pred.apache.1 Apache /AB/ Succeed 08-20-2007 /AB/input.pred.apache.1 10.08

19:21:32

pred.apache.2 Apache /AB/ Succeed 08-20-2007 /AB/input.pred.apache.2 9.76

19:21:41

pred.apache.3 Apache /AB/ Succeed 08-20-2007 /AB/input.pred.apache.3 8.30

19:21:51

Table 3.1: Sample predicate database

AutoBash has three modes of operation: observation, replay, and health monitor-

ing. In its observation mode, AutoBash helps a user manually resolve a configuration

problem. The AutoBash shell is a version of the standard Linux bash shell that we

have modified to support speculative execution and causality tracking. Each com-

mand given to the shell is considered an action that may contribute to an eventual

solution. AutoBash executes each action speculatively, which allows its user to roll

back an action’s effects if the action later proves to be incorrect. AutoBash automati-

cally tests for system correctness by executing predicates after each action completes.

It also tracks causality to explain how a problem was fixed and what actions are

related once a solution is found. The solutions found during observation are canoni-

calized and saved so that they can be used later to fix similar configuration bugs.

In its replay mode, AutoBash automatically searches for solutions to a configu-

ration problem. Its search space is the set of solutions that were previously found

for similar problems. Similar to predicates, potential solutions can come from many

43

sources: the user’s prior experience, solutions developed by vendors or a community

of users. Chapter 4 describes how we can automatically infer solutions by observing

users trying to fix configuration problems. While AutoBash does not currently pro-

vide a distributed system for locating potential solutions, other projects, such as the

Friends Troubleshooting Network [44], have shared configuration information through

peer-to-peer networks. These projects have also addressed security and privacy con-

cerns related to sharing configuration information. AutoBash stores solutions and

their metadata in a local repository similar to how it stores predicates. For each

solution, AutoBash keeps track of the solution location and the application which the

solution is associated with.

AutoBash’s replay mode speculatively executes a solution followed by predicate

testing. If any predicate evaluates to false, AutoBash decides that the solution does

not fix the configuration bug and rolls back that solution. AutoBash then tries the

next solution in its solution database until all predicates evaluate to true. Speculative

execution isolates AutoBash’s replay activity from other non-configuration tasks — a

user may continue to use her computer while AutoBash searches for the solution in the

background without worrying that results will be corrupted by observing state that

is in the process of being reconfigured. After AutoBash finds a solution, it explains

the actions it took, their causal effects, and how they relate to the configuration

predicates. Its user can examine this information before committing the configuration

changes; if the user disagrees with AutoBash’s solution, AutoBash will roll back the

candidate solution and continue searching for another fix.

The predicate database is also consulted whenever an application-specific solution

is found during observation or replay mode. When a solution is found but before it is

committed, AutoBash verifies that all predicates that previously succeeded still do;

this checks for “solutions” that fix one problem but cause another. AutoBash tracks

causality to record and store the system state observed by each predicate. Thus, if a

solution does not affect the state observed by a predicate, AutoBash recognizes the

predicate need not be run. This limits the number of predicates that must be tested

for each solution.

44

In its health monitoring mode, AutoBash periodically tests all predicates in its

predicate database. If any predicate fails the check, AutoBash can be set to enter

replay mode to find and suggest a potential solution to the user.

3.2.2 Usage scenario

This section describes a sample misconfiguration we encountered, as well as how we

envision AutoBash to be useful for fixing such configuration problems. Our research

team set up a CVS repository to store our source code and publications. We created

a CVS group that owned the repository and added all team members to the CVS

group. When we used the CVS repository, we found that other team members would

get a “permission denied” error when they attempted to check out any project they

had not checked in.

We manually fixed this problem by first analyzing the error message and examining

the current system state. We then tried various actions to modify the system settings.

After each action, we tried to check out the project to test if the modification solved

the problem. After a few trials, we realized that the file permission error was due to

an incorrect file ownership – the default group for a user is his original user group and

hence any files added to the repository would be owned by the user and inaccessible to

other users despite the repository being accessible to all. We finally applied the correct

action: chmod the SGID bit of the CVS repository directory. This action causes CVS

to set the group id of a newly added file or directory in the CVS repository directory

to the same as the parent directory instead of the current process.

There are several disadvantages to this approach. First, any system state modifi-

cation might adversely affect CVS or other applications running on the machine. If

the modification is incorrect, we have to manually undo our changes — this could be

difficult as we often do not always know the effects of changing system state. Further,

if a system change solves the problem, we do not know if the solution breaks other

features of the application, or even other applications running on the system. Finally,

after we have solved a configuration problem, we often do not know what actions we

45

took contributed to the solution.

As an alternative, we can use AutoBash to diagnose and solve this problem. If

CVS is packaged with a set of standard solutions and predicates, we can run AutoBash

in replay mode to search for a solution. AutoBash first runs all predicates from the

standard predicate sets to determine which predicates exemplify the buggy scenario.

In the scenario above, any predicate that involves checking in a project as a user

and checking out as a different user is sufficient. AutoBash then goes through each

solution from the standard solution set and executes it speculatively. After executing

a potential solution, AutoBash first tests predicates that demonstrate the problem.

If any such predicate fails, AutoBash rolls back the solution and tries the next one. If

a solution causes all those predicates to succeed, AutoBash next tests the remaining

predicates for CVS and other applications. If a solution exists, AutoBash can identify

it and ensure that the solution does not break other existing configuration of CVS

and other applications. AutoBash’s replay mode is a useful tool for users who do not

participate much in system administration work.

If CVS does not have standard predicate and solution sets, the user can still run

AutoBash in observation mode to manually fix the configuration problem. First, the

user needs to specify one or more predicates that expose faulty application behavior.

The user can also write predicates to test basic functionality for CVS and other

applications. In our sample misconfiguration, a predicate that checks in a new file

as one user and checks out the same file as a different user can expose the faulty

behavior. Next, the user tries different actions in the AutoBash shell; AutoBash

executes each action speculatively and tests predicates after each action to determine

if the action and prior actions fix the problem. If all user-specified predicates succeed,

AutoBash tests against the remaining predicates to check that the fix does not break

the existing configuration for CVS and other applications. While running AutoBash

in observation mode, the user can roll back any prior action. If subsequent actions

observe the effects of a prior action, AutoBash informs the user of this dependency

and rolls back those actions too. Through this mechanism, AutoBash in observation

mode can be a useful tool for system administrators to try out different actions safely.

46

After the administrator fixes a problem, AutoBash also analyzes causal information

tracked by the kernel to explain which actions contribute to solving the problem and

how they relate to each other.

3.3 Implementation

This section describes the implementation of AutoBash. We first present a back-

ground review on Speculator, upon which we built AutoBash, and then we discuss

how we implemented AutoBash.

3.3.1 Speculator background

Speculator is a system within the kernel that supports speculative execution

through causal dependency tracking and lightweight checkpoint and rollback. A

process invokes Speculator to checkpoint its state and continues execution. Later,

if the speculation is found to be incorrect, Speculator rolls back the process execu-

tion and the process is restarted using the checkpoint state. If the speculation is

found to be correct, Speculator discards the checkpoint, marks the process as non-

speculative, and continues the process execution. Speculator supports speculative

execution throughout the operating system, tracking causal dependencies as a spec-

ulative process interacts with the kernel, file system, and other processes. Thus, a

speculative process can safely change system state; all modifications can later be

undone should the speculation prove wrong.

Speculator adds two new data structures to the kernel. A speculation object tracks

the set of kernel objects, such as processes and files, that depend on a speculative

operation. Each speculative kernel object has an undo log that tracks the state needed

to undo speculative modifications to that object. As speculative processes interact

with kernel objects by executing system calls, Speculator uses these data structures

to track causal dependencies. For example, if a speculative process writes to a file,

Speculator creates an entry in the file’s undo log that refers to the speculations on

which the writing process depends. If another process reads from the speculative

47

file, Speculator creates an undo log entry for the reading process that points to all

speculations on which the file depends.

Speculator ensures that speculative state is never externalized, i.e. made visible to

a user (terminal output) or any external device (network, disk, etc.). If a speculative

process attempts to externalize state, Speculator buffers its output in the kernel until

the outcome of the speculation it depends on is decided. If a speculative process

performs a system call that Speculator cannot handle by either propagating causal

dependencies or buffering output, Speculator blocks the process until it becomes non-

speculative.

3.3.2 Tracking causality

In designing AutoBash, we considered several possible methods of tracking causal-

ity. Our goal was to capture sufficient information to allow us to reason about the

causal effects of configuration actions and how they relate to predicates that test sys-

tem health, while also minimizing performance impact on foreground applications and

keeping the amount of causal state manageable. We want to track causal effects of

actions and causal dependencies of predicates so that we only re-run those predicates

affected by an action, reducing the time to find a solution.

We define causality in the operating system kernel in the following way. Pro-

cesses, files, directory entries, sockets, pipes, and signals are all considered first-class

entities. When a process interacts with other entities by executing system calls, we

use Speculator to track the causal relationships among the entities. Specifically, if a

process observes another entity (e.g., it reads a file or receives a signal), we say that

the process becomes causally dependent on the observed entity. If a process modifies

another entity, the modified entity becomes causally dependent on the modifying pro-

cess. If a process observes an entity while modifying it (for instance, when a process

writes to a file, it checks access permissions of a file before writing to it and therefore

becomes dependent on the file), the process and the modified entity become mutually

dependent.

48

We track causality for predicates and solutions at the point we start executing

them because we believe that most of the relevant interactions usually happen within

the execution interval. We only track causal effects and dependencies for entities that

are affected by the initial predicate or solution process. The process being tracked

marks the start and end of each tracking interval by making ioctls on a pseudo-

device. The first ioctl causes the OS to begin tracking causality. Subsequently, the

causal information (the set of recorded inputs or outputs) can be queried by issuing

another ioctl. Tracking is terminated by issuing a final ioctl that releases the data

structures used by the OS to maintain causal information. This interface allows user-

level AutoBash tools to ask specific questions about the causal events of processes

that they are tracking, while minimally affecting the performance of other processes

that are not being tracked. In this manner, we can obtain the most relevant causal

interactions, and the overhead of causality tracking is only paid during configuration

management and maintenance.

3.3.2.1 Tracking output sets

We use Speculator to track causal effects. When a user-level process asks that its

causal outputs be tracked, Speculator assigns a unique id to the request and creates an

output set that contains pointers to entities that depend on the subsequent execution

of the calling process. Initially, the only member of the output set is the process that

made the ioctl. As the process interacts with other entities by executing system

calls, we add to the output set new entities that come to depend on an entity already

in the output set (using the definition of “depends on” from Section 3.3.2). For

instance, when a process that is a member of the output set modifies a file, that file

is added to the output set. If another process reads the file, the reading process is

also added to the output set.

The implementation of output sets is minimal; each entity has a list of pointers to

the output sets on which it currently depends. Each output set created by Speculator

has a list of reverse pointers to the entities it contains. Thus, adding a new entity to

an output set requires only that Speculator add a pointer to two lists. Speculator can

49

track multiple output sets simultaneously to track dependencies for different ranges

within the same process or ranges that occur in different processes.

3.3.2.2 Tracking input sets

A user-level process may also ask that its causal inputs be tracked. We have

modified Speculator to create an input set that contains all processes, files (both

content and metadata) and directory entries that the tracked process comes to depend

on during the execution of subsequent system calls. For instance, if a process receives

a signal from another process, the sending process is added to its input set. Similarly,

if it reads a file, the file and the directory entries used to look up the file within the

file system are added to its input set. We handle inter-process communication (IPC)

entities (e.g. signals and sockets) like we handle other entities (e.g. processes and

files), but IPC entities are not reported in the final input sets because they are not

persistent entities within a computer system.

As defined so far, an input set contains only the causal inputs observed by a single

process. However, user-level tasks often do not map directly to individual processes;

for instance, a shell may fork a child to perform a specific task, which in turn will

fork other children or interact with other processes via IPC to perform subtasks. In

such situations, the input set should capture all the causal inputs of the collection of

processes that are cooperating to perform the task.

We calculate the input set for cooperating processes as follows. First, any member

of the output set of the tracked process is considered to potentially be cooperating

to perform a high-level user task — we create an individual input set for each such

entity. When an entity in the output set comes to depend on another entity in the

output set, its input set becomes the union of the input sets of the two entities. If an

entity that is not a member of the output set comes to depend on an entity that is a

member, it joins the output set and its input set becomes equal to that of the entity

on which it depends.

When a query is issued, Speculator returns the individual input set of the calling

process. The set returned consists of not only the entities directly observed by the

50

Time: 0
PA

Output set

Input set AP =
AP{ }

AP{ }

Time: 1
PA

Output set

Input set AP = AP{ }

PB

BP =

Time: 2 Time: 3

PA

Output set

Input set AP =
AP{ , }

AP{ }

PB

BP

BP = AP{ , , F}
BP

F PA

Output set

Input set AP =

PB

F

signal

fork

read

AP{ , }BP

AP{ , }BP

AP{ , }BP

AP{ , , F}
BP

Figure 3.1: An input sets tracking example

querying process but also some entities observed by other processes. For instance, if

the tracked process forks a child process, the entities observed by the child become

part of the parent’s input set when the child exits and the parent receives its termina-

tion signal. On the other hand, if the child does not interact further with its parent

(e.g., it might be a command executed in the background), the entities it observed

are not part of its parent’s input set; this reflects the intuition that the parent cannot

depend on the child if it does not observe its execution in any way. Similarly, if a

tracked process makes a remote procedure call to a server, only the entities observed

by the server after it receives the request but before it replies to the tracked process

will be returned as part of the input set. A pipe, socket, or localhost packet transfers

input sets between the client and server but is not part of the input sets.

Figure 3.1 shows an example of how we calculate input sets for cooperating pro-

cesses. Processes are shown in ellipses and files are shown in rectangles.

• At time 0, process PA requests that its input and output sets be tracked. Both

the output set and PA’s input set contain only the process itself.

• At time 1, PA forks a child process PB. Since PB is dependent on PA, PB is

added to the output set and its input set is the union of PA’s input set and

itself.

51

• At time 2, PB reads file F and becomes dependent on F so F is added to PB’s

input set. Since F is not affected by any object in the output set, it is not

added to the output set.

• At time 3, PB exits and a signal is sent to its parent PA; therefore, PA is

now dependent on PB. Since PB is already in the output set, PA’s input set

becomes the union of PA’s and PB’s input sets.

Of course, this definition of the input set is a heuristic — a precise characterization

of the input set would require a semantic knowledge of application behavior that seems

quite difficult to achieve in an operating system kernel. Nevertheless, our results

show that this heuristic performs extremely well in practice for the configuration

management tasks in which we have employed it.

3.3.3 Observing user actions

In its observation mode, AutoBash assists its user in manually fixing a problem.

The user begins configuration management by launching the AutoBash shell. Next,

the user specifies which predicates are related to the problem he is attempting to fix.

These can be drawn from AutoBash’s predicate database by specifying the application

that is being configured. Alternatively, the user may use the AutoBash shell to specify

new predicates on the fly; this can be useful when the user is attempting to fix a rare

problem that he has never previously encountered. AutoBash verifies that at least

one of the specified predicates evaluates to false; if all evaluate to true, the user must

specify at least one more predicate that exemplifies the problem he is trying to solve.

The user then enters configuration actions using the AutoBash shell. The shell

records the command line input for each action. For simple actions, the command line

information is all that is needed to capture the action; for instance, the adduser and

chown utilities can be precisely characterized by the inputs entered on the command

line. However, for actions that start interactive applications, such as a text editor,

the command line information is woefully inadequate to characterize what the user is

doing. For such interactive applications, AutoBash extracts state deltas as described

52

in Section 3.3.4.

After each action completes, AutoBash automatically tests to see if the prior

actions have corrected the configuration problem. It first runs the predicates initially

specified by the user. AutoBash executes each predicate speculatively by forking a

child process and invoking Speculator to make the child speculative. After the child

exits, the AutoBash shell reads its return code and input set, then asks Speculator

to roll back the child’s speculation.

If the return codes of the initially specified predicates indicate success, AutoBash

next runs the remaining predicates in its database. This checks for solutions that fix

one configuration problem but cause another. The initially specified predicates are

run first to reduce testing time: since these predicates exemplify the configuration

problem the user is trying to fix, they are most likely to fail and eliminate the need

to test remaining predicates.

Since executing predicates is time consuming, AutoBash analyzes causality to

limit the number of predicates that are tested. During predicate execution, AutoBash

records the predicate’s input set. It also records the output set of each action. If an

action’s output set does not intersect the input set of a predicate, AutoBash does not

re-run the predicate because a predicate that depends on the same input set must

return the same answer as from the last execution.

Each action is run as a separate speculative execution. AutoBash forks a child

process to perform the action, then asks Speculator to execute the child speculatively

and track its output set. When the child exits, Speculator provides AutoBash with

the output sets of which the child is a member. If the child is a member of a prior

action’s output set, it has come to depend on that action by observing some entity

that depends on the prior action. From this information, AutoBash determines which

actions depend on which prior actions.

Using the AutoBash shell, the user can roll back any prior action. While actions

can be rolled back individually, the rollback of an earlier action requires that sub-

sequent actions that depend on that action also be rolled back (since they observed

incorrect output of that action). AutoBash can use the action interdependency infor-

53

wget

~USER/index.html

ls

/home/USER/

public_html/cgi-bin

grep

“public_html/cgi-bin”

httpd.conf

patch

httpd.conf

 dentry:

../conf/httpd.conf

 file:

../conf/httpd.conf

wget

~USER/cgi-bin/test.pl

wget

index.html

Action Kernel object Predicate
Legend

Figure 3.2: Sample causal explanation

mation it collects to inform the user which actions will be rolled back. Alternatively,

a user may simply choose to roll back all actions that occurred after a specified action.

We have often encountered users who have fixed a particularly nasty configuration

problem but are not quite sure of what actions they performed that contributed

to the solution. To help such users, AutoBash can provide a causal explanation

once a solution is found. Figure 3.2 shows an example explanation produced by

AutoBash after an Apache Web server configuration bug was fixed. The symptom

of the misconfiguration was that a user can wget her own home page but cannot

wget the results of a CGI script in her home directory. The problem was caused

by Apache’s configuration file not allowing users to execute CGI, and the fix was

to add the appropriate line to the configuration file. The explanation in Figure 3.2

lists actions (hexagons) that were performed and not rolled back. Each action might

affect kernel objects (ellipses) that causally depend (shown by directed arrows) on it.

Finally, the explanation lists predicates (rectangles) used to verify that the problem

is solved. In Figure 3.2, the three predicates, from left to right, are wget the default

home page, wget the result of the CGI script in the user’s directory and wget the

54

user’s home page. The grayed predicate evaluates to false before applying any action,

while the other predicates evaluate to true. By examining the explanation, we can

infer that certain actions (ls and grep) modify no kernel objects that these predicates

depend on; from this, we can conclude that they do not contribute to the solution.

Since patch is the only action that affects kernel objects that all predicates depend

on, we can also conclude that patching httpd.conf is what fixed the bug.

When a solution is found, AutoBash saves it in a form that can later be used by

the replay tool. The saved version contains only those actions that were executed

and not later rolled back. Like PeerPressure [80], AutoBash canonicalizes solutions

to replace specific identifiers such as userids, home directories, hostnames, and IP

addresses with generic variables.

By default, Speculator does not allow any output that depends on speculative

actions to be externalized. While theoretically correct, this policy does not work

well with an interactive debugging tool such as AutoBash. Therefore, we modified

Speculator to allow speculative output to the screen when the user runs AutoBash

in observation mode. However, predicate testing normally does not externalize any

output to the screen. We only use this capability on predicates when we are testing

and developing them.

3.3.4 Extracting state deltas

For non-interactive applications, the command line information recorded by Au-

toBash is sufficient to describe how the action can be replayed later to fix a similar

problem. However, for interactive applications such as editors and GUI configura-

tion tools, AutoBash must capture how the tool is used in order to perform similarly

during replay.

Potentially, AutoBash could record all inputs to an interactive application; e.g., it

could record key strokes, mouse movements, and button presses for a local application,

or network packets for a distributed one. Such an approach can lead to AutoBash

recording a large amount of information. More problematically, such low-level inputs

55

are not easily understandable by a user. Further, Section 2.4.2 showed that it can

be quite hard to deterministically replay graphical input since events such as button

presses must be timed to occur after widgets such as drop-down menus and screen

windows appear.

An alternative approach would be to record outputs such as all system calls made

by the interactive application. During replay, the recorded system calls could be

reissued to try to duplicate the observed behavior of the interactive application. Like

the technique of recording user inputs, this approach can generate a large amount of

data that is difficult to understand. Further work would be required to abstract away

non-deterministic OS variables such as process identifiers and file handles.

Instead of recording outputs directly, AutoBash captures a state delta, which is

the difference in the state of the system caused by the execution of the interactive

application. Note that state delta can be generated for the execution of any command

but here we only use them for interactive applications. When AutoBash shell receives

the signal from an exiting child process executing a configuration action, it queries

Speculator to determine if the process has received any input from an interactive

source (e.g., from a console, network interface, or similar external device). If no such

input has been received, the command line information is assumed to be sufficient to

characterize the action. If not, AutoBash generates a state delta.

First, AutoBash queries the output set for the action. This lists all entities that

causally depend on the execution of the action. Next, AutoBash computes a diff for

each entity. For files, it uses the standard Linux diff tool to generate a patch file,

and supplements the information with the changes made to the file attributes. For

directory entries, it records entries added to and deleted from the directory, as well

as the directory attributes. For processes, it records the sequence of causal inputs to

the process generated by the user action. For example, it records signals sent to the

process and data communicated via IPC mechanisms such as pipes.

AutoBash uses several optimizations to reduce the size of state deltas. First, it

eliminates temporary entities that are created and destroyed during the action such

as temporary files and processes that are forked and terminate. Next, it eliminates

56

all events that precede a deletion. For example, not all input sent to a process that

terminates is saved — only the final termination event is retained. Finally, events

that cancel each other are eliminated; e.g., two chown operations that change a file’s

attributes to a new value and then back to the original value. This process is like log

optimization in the Coda file system [58], except that we apply such optimizations to

OS kernel entities rather than just file system objects.

After optimization, the state delta gives a terse representation of the causal effects

of an action. For instance, using a GUI tool to change the settings of a server might

produce a state delta that contains only a diff showing changes made to a configuration

file and a signal sent to the server to cause it to re-read the configuration file.

3.3.5 Finding a good solution

AutoBash’s replay mode searches through a database of potential solutions to find

one that fixes a problem being encountered on a user’s computer. Such solutions may

come from peers who have encountered similar problems, from software developers

who are supporting their product, or from the user previously fixing the same problem.

Since solutions can be scripts or binaries, AutoBash handles a wide variety of replay

inputs.

AutoBash’s replay mode is designed to execute in the background; the user can

still use her computer while AutoBash reconfigures. Speculative execution of pred-

icates and potential solutions provides isolation: if any process observes the causal

effects of executing a predicate or configuration action, that process is transparently

rolled back to the point before the observation and re-executed. Since Speculator

does not externalize speculative state, if a foreground application comes to depend

on AutoBash’s background task and tries to externalize output, Speculator buffers the

foreground task’s output until the outcome of the speculation is decided. Thus, the

effects of speculative execution are not visible to non-AutoBash processes, the user,

other computers, or any entity external to AutoBash and the kernel. Of course, spec-

ulative execution consumes resources on the computer and some work performed by

57

other processes may need to be rolled back, so the performance of non-configuration

tasks will be impacted by a background AutoBash execution. The performance im-

pact will depend on how resource-intensive the background task is.

When using AutoBash in replay mode, the user first specifies the predicates that

exhibit faulty application behavior. As described in Section 3.3.3, these predicates can

be drawn from those used to test the application in the computer’s existing predicate

database, or they can be new predicates specified by the user. AutoBash first runs

all user-specified predicates and records whether each succeeds or fails. Speculator

is used to roll back each predicate after execution and to report the input set for

each predicate. If no predicates fail, AutoBash asks the user to specify an additional

predicate that exemplifies the problem being debugged. We call this process initial

predicate testing.

AutoBash next iterates through the solutions in the solution database to find one

that makes all specified predicates succeed. AutoBash speculatively executes a poten-

tial solution by forking a child process and invoking Speculator to make it speculative.

It then waits for the child process and queries Speculator for the solution’s output

set. If the output set of the solution and the input set of a predicate do not intersect,

AutoBash does not re-run the predicate. Assuming that the predicate depends on

the same input set, its behavior will not change as a result of executing the solution.

Thus, if there is no intersection between the output set of the solution and the input

set of a failed predicate, AutoBash immediately considers the solution unsuccessful

(it did not fix at least one predicate).

After applying a solution, AutoBash first tests the predicates that failed in the

initial predicate testing, and then it tests the rest of the predicates in the database.

AutoBash only re-runs those predicates whose input sets intersect with the solution’s

output set. If all such predicates succeed, AutoBash declares the solution successful.

If any predicate fails, AutoBash declares the solution a failure, rolls back that solution,

and tries the next solution. AutoBash currently applies only one solution at a time

in replay mode, though it could potentially execute combinations of solutions. plan

to explore the effectiveness of this idea and

58

chmod o+x

/home/USER
ls

/home/USER/public_html

 metadata:

/home/USER

metadata:

/home/USER/public_html

chmod o+x

/home/USER/public_html

Action Kernel object Predicate
Legend

wget

index.html

wget

~USER/cgi-bin/test.pl
wget

~USER/index.html

This figure shows how AutoBash leverages causality analysis to determine which predicates
to run after applying a potential solution to an Apache configuration bug.

Figure 3.3: Sample causality analysis

Once a solution is found, AutoBash outputs the solution to the user as a potential

fix. AutoBash provides a causal explanation similar to the one in Figure 3.2 that

shows the actions executed and all predicates affected. After viewing this informa-

tion, the user can confirm the fix, in which case AutoBash commits the speculation

and exits, or decline the fix, in which case AutoBash rolls back the speculation and

continues searching for a solution.

Figure 3.3 shows how AutoBash determines what predicates to run after applying

a potential solution for an Apache Web server configuration bug. The symptom of the

misconfiguration is that a user cannot wget her own home page nor the result of a CGI

script in her home directory. The configuration problem is that the Apache Web server

process does not have search permission to access the user’s home directory where

the user’s home page and CGI script are located. The action to fix this configuration

problem is to give search permission to others for this user’s home directory. The no-

tions used in this figure are the same as in Figure 3.2. The grayed predicates failed in

59

the initial predicate testing, while the predicate shown in white succeeded. Figure 3.3

illustrates that the action chmod o+x /home/USER/public html is dependent on the

action chmod o+x /home/USER. Also, both chmod actions have causal effects on the

kernel objects which the grayed predicates depend on. From this causality analysis,

AutoBash infers that it only needs to re-run the last two predicates.

We expect that many applications will have a set of standard predicates that can

be used to validate application configuration. As part of initial predicate testing,

AutoBash records whether each standard predicate succeeds or fails. The results of

the initial predicate testing are aggregated across multiple runs and packaged with

each solution.

AutoBash uses its knowledge of which standard predicates succeed and fail to

order the solutions it tries. If the user does not specify any predicates to test and

hence does not hint at which application might be failing, the first step in AutoBash’s

replay mode is to run the standard predicate sets for all applications. AutoBash

executes all standard predicates, {P0, P1, ..., Pn}, and aggregates their results as a

binary result vector Rcurrent = {1, 0, ..., 1} (1 = succeed, 0 = fail). AutoBash also

maintains a set of solutions Si from {S0, S1, ..., Sm} from prior replays with their own

standard predicate results Ri. Next, AutoBash compares the current result vector

Rcurrent to the result vectors from prior replays, Ri, and computes their Hamming

distance. AutoBash uses this Hamming distance to order the set of solutions it tries,

starting with the solution that has an Ri closest to Rcurrent. The intuition behind this

approach is that solutions that fix a particular problem tend to repair the same set

of failing predicates; thus, by observing the results of standard predicate execution,

AutoBash can guess which solutions are most likely to succeed.

More sophisticated heuristics could potentially be applied. For instance, Attariyan

and Flinn [9] record and compare input sets for each standard predicate to generate

signatures for misconfigurations. Their intuition is that similar configuration bugs

will cause predicates to fail in similar ways. Thus, there is substantial similarity

between the set of kernel objects observed by each predicate on computer systems

that are exhibiting the same buggy behavior.

60

3.3.6 Validating system health

Much like a check-up with a family physician, AutoBash’s final mode of opera-

tion validates that a properly configured system is continuing to behave correctly.

AutoBash periodically (as a daily cron job) runs all the predicates in a computer’s

database. If any of these predicates fail, it produces a report that alerts the com-

puter’s administrator about the problem.

The AutoBash cron job can be configured to run at night, so as to minimally

perturb the performance of foreground applications running on the computer. Spec-

ulative predicate execution assures that there is no causal impact of periodically

running predicates on the rest of the computer system.

The input set and result of each predicate is collected after a predicate is run.

This information is used during replay mode to determine which predicates previously

failed prior to attempting a solution, and also to determine which predicates need not

be re-run while testing a potential fix.

3.4 Limitations

We assume that a predicate is written to evaluate certain desired properties of

the system correctly; that is, the predicate should deterministically evaluate to true

if those properties hold and false otherwise. If a predicate does not return the correct

answer, AutoBash may miss a correct solution or falsely identify an incorrect solu-

tion. Also, AutoBash currently does not support debugging non-deterministic errors.

Combining AutoBash with a system such as Rx [66] might help tease out such non-

determinism. Potentially, one could intentionally vary non-deterministic inputs such

as thread scheduling and the time of day to help explain errors to an administrator

or user.

AutoBash is intended to debug user-level configuration errors on a single computer.

Since AutoBash uses a layer-below approach implemented inside the operating system

to track causality and roll back modifications, it cannot track causal effects for or

undo kernel-level actions such as the insertion of a kernel module. Potentially, a

61

multi-level approach to rollback, for instance, by using a virtual machine monitor

to checkpoint and roll back kernel state [82], could allow AutoBash to handle such

scenarios. AutoBash also does not support configuration of distributed applications

that span more than one computer. However, if Speculator could be extended so

that the operating systems of multiple computers could share speculative state as

in systems such as Time Warp [46], AutoBash could tackle distributed configuration

management.

AutoBash is currently only targeting “functional” problems associated with mis-

configuration and does not handle performance problems. To correctly diagnose per-

formance problems, we need accurate accounting of shared resources (CPU, memory,

etc.) within the system. Since AutoBash also consumes these resources for specula-

tion and roll back, it would interfere with performance debugging.

Finally, AutoBash assumes that all configuration actions happen under its purview.

One can imagine, for instance, a delayed configuration action such as a process that

reads a configuration file once every 24 hours. AutoBash would not observe this inter-

action since it limits causality tracking to the time period when the AutoBash tools

are being employed to fix a problem. While one could track all causal interactions

in the system to capture such activities as discussed in Section 3.3.2, it would be

quite difficult to separate out configuration activity from other causal interactions

that have no effect on the problem being debugged.

3.5 Evaluation

Our evaluation answers the following questions:

• How well can AutoBash identify solutions to configuration problems?

• How effective is causal dependency analysis in reducing predicate testing?

• Does tracking state delta make it easier to understand the effects of interactive

applications?

62

Bug CVS configuration problem description

1 Repository not properly initialized

2 User not added to CVS group

3 CVS performs unwanted keywords substitution

4 Setgid bit not set on repository, so group for new files is incorrect

5 $TMPDIR environment variable set incorrectly

6 $CVSROOT misconfigured for a CVS user

7 $CVSROOT not set for a different CVS user

8 $CVSROOT variable set but not exported correctly

9 Repository permissions allow global access

10 Repository created using wrong group

Bug GCC cross compiler problem description

1 Cross compiler tools not in the default path

2 Cross compiler setup overwrites default path instead of appending

3 Dangling libcrypt.so symlink does not point to correct library

4 Archive tool (ar) not in the default location

5 Kernel header module.h contains wrong content

6 Compiler cannot invoke linker due to bad location

7 Cross compiler specs file does not contain xscale architecture definitions

8 Cross compiler not configured to accept -pthread option

9 C compiler configured correctly, but C++ compiler is not

10 Cross compiler specs file does not contain version flag information

Bug Apache Web server problem description

1 Apache cannot search a user’s home directory due to incorrect permissions

2 Apache cannot read CGI scripts due to incorrect permissions

3 Symlink used to point to CGI scripts in a user’s home directory, but Apache is not con-

figured to follow symlinks

4 Apache configuration does not allow CGI execution in user home directories

5 Misconfiguration treats CGI scripts as regular Web pages

6 Apache not configured to load PHP module

7 Handler not set for PHP pages

8 Apache not configured to use index.php as default

9 User has insufficient permission to use .htaccess authorization

10 File .htaccess configured incorrectly

Table 3.2: Description of injected configuration bugs

63

• Can AutoBash identify solutions to configuration problems involving multiple

applications?

3.5.1 Methodology

All of our experiments were run on a Dell Precision 370 desktop computer with

a 3.00GHz Pentium 4 processor and 2GB of memory. The computer runs a Red

Hat Enterprise 3 Linux kernel version 2.4.21. All trials using AutoBash run with a

modified version of the kernel that includes Speculator — all other trials run with

the default 2.4.21 kernel.

To validate AutoBash, we injected configuration bugs into our computer system

for three applications: the CVS version control system, the GCC arm-linux cross

compiler, and the Apache Web server. We identified 10 common configuration bugs

for each application by searching through FAQs, manuals, and trouble reports on the

Web. Table 3.2 contains a short description of each bug we used. We also created

5–8 predicates that test the configuration of each application — these predicates are

shown in Table 3.3. These predicates are sufficient to cover all the configuration bugs

in Table 3.2; that is, each bug causes at least one (and often several) predicates to

fail.

For each bug, we created a script that injected the bug, as well as a solution script

that fixed the problem. In these experiments, we do not assume that there exists a

set of standard predicates for the application as described in Section 3.3.5 and hence

AutoBash does not have standard predicate results for potential solutions. Therefore,

AutoBash uses the following heuristic to order the solution search space. As AutoBash

has no hint about which application is misconfigured, it runs all predicates from

Table 3.3 in the initial predicate testing. Based on the results of this initial predicate

testing, AutoBash tries solutions from the application with the most failed predicates.

When verifying the correctness of a solution, AutoBash runs the failed predicates first

and only re-runs those predicates whose input sets intersect with a solution’s output

set.

64

Predicate CVS predicate description

1 a user checks in a project and checks it out again

2 a user checks in a project, and a different user checks it out

3 same as predicate 1, but assumes a default repository is defined

4 unauthorized users cannot access repository

5 checks if CVS performs unwanted keyword substitutions

Predicate GCC cross compiler predicate description

Note: For all predicates, we check that the compilation succeeds and the compiled

executable is the right file format

1 take a “hello world” .c file, compile it with explicit path names

2 take a “hello world” .c file, compile it using default paths

3 take a kernel module .c file, compile it

4 take a .c file, compile it, link it to a shared cryptography library

5 take several .c files, compile them into object files, archive the object files into a

static library, compile a program that links in the static library

6 take a .cc file, compile it with a c++ cross compiler

7 take a .c file, compile it, statically link in a math library, check if the compilation

succeeds and the compiled executable is statically linked to the math library

8 take a multi-threaded .c file, compile it for the XScale architecture

Predicate Apache Web server predicate description

1 wget Apache’s default home page

2 wget a user’s default home page

3 wget the result of a CGI script from Apache’s default root directory and diff the

output with the expected output

4 wget the result of a CGI script from a user’s home directory and diff the output

with the expected output

5 wget the result of a PHP test page

6 wget a PHP test page that is set to be the default page

Table 3.3: Description of predicates for each application

65

We evaluated the correctness of AutoBash by injecting each configuration bug

from Table 3.2 into our test computer system and using AutoBash in replay mode to

fix the bug. In every case, AutoBash was able to find a solution that corrected the

misconfiguration.

3.5.2 Effectiveness of AutoBash

We evaluated the performance impact of speculative execution and the benefit

gained by causality analysis as compared to a baseline AutoBash implementation.

We created three versions of AutoBash’s replay mode:

• No speculative execution: This version uses neither speculative execution

nor causality analysis. We manually created scripts to undo each solution and

predicate. Without speculative execution, we found it can sometimes be quite

hard to undo the effects of predicate testing because some applications do not

provide an interface to undo actions. For example, to undo the effects of a CVS

predicate testing, our undo script removes the directory added in predicate

testing from the CVS repository and removes lines from CVS’s history file.

• No causal analysis: This version uses speculative execution but not causality

analysis.

• AutoBash: This version uses both speculative execution and causality analysis.

The trouble we had in developing manual undo scripts for the “No speculative

execution” version demonstrated to us the importance of speculative execution; with

AutoBash, the operating system tracks the causal effects of a predicate and undoes

them after testing the predicate.

We evaluated these three versions as follows. For each bug in Table 3.2, we

compare the total search time to find the solution. Our results for each version are

shown by the three bars for each bug in Figures 3.4, 3.6, and 3.8. For each bar,

we break the total search time into three parts: initial predicate testing (before any

66

Bug 1 Bug 2 Bug 3 Bug 4 Bug 5 Bug 6 Bug 7 Bug 8 Bug 9 Bug 10
0

20

40

60

80

T
im

e
(s

ec
on

ds
)

Predicate testing
Solution execution
Initial predicate testing

N
o

sp
ec

ul
at

iv
e

ex
ec

ut
io

n

N
o

ca
us

al
 a

na
ly

si
s

A
ut

oB
as

h

This figure shows the time to find a solution for the 10 CVS bugs in Table 3.2. The left
bar in each data set shows the time to find a solution without speculative execution or
causality analysis, the middle bar shows the time with only speculative execution, and the
right bar shows the time with both. Each result is the mean of five trials — the error bars
show 95% confidence intervals.

Figure 3.4: AutoBash performance for CVS benchmark

solution is tried), solution execution and undo, and predicate testing (to verify a

potential solution).

Comparing the execution time of the first and second bars in each dataset gives

the performance overhead of speculative execution. Comparing the execution time of

the second and third bars in each dataset shows the amount of time saved by tracking

output sets of solutions and input sets of predicates.

We also show the number of predicates run in initial predicate testing and solution

searching in Figures 3.5, 3.7, and 3.9. We coalesce the first two versions into “No

causal analysis” because they run the same number of predicates.

3.5.2.1 CVS

Figure 3.4 shows the time needed to solve the ten CVS configuration bugs de-

scribed in Table 3.2. Comparing the first two bars in each dataset shows that specu-

lative execution adds minimal overhead for this benchmark – the maximum overhead

of speculation is 2.7% for bug 9. The initial predicate testing time is unavoidable

because we assume that AutoBash receives no hints from the user and hence runs

through all predicates. We found that solution execution time is negligible. Hence,

67

Bug 1 Bug 2 Bug 3 Bug 4 Bug 5 Bug 6 Bug 7 Bug 8 Bug 9 Bug 10
0

20

40

60
N

um
be

r
of

 P
re

di
ca

te
s

E
xe

cu
te

d
Predicate testing
Initial predicate testing

N
o

ca
us

al
 a

na
ly

si
s

A
ut

oB
as

h

This figure shows the number of predicates executed by AutoBash while finding a solution
for the 10 CVS bugs in Table 3.2. Five trials were run for each bug; however, the number
of predicates executed was identical in each trial.

Figure 3.5: Number of predicates executed for CVS benchmark

the only component of our replay mode that can be improved is predicate testing.

This observation led us to focus on using causality analysis to reduce the number of

predicates that need to be tested.

Without causality analysis, the number of predicates that must be tested tends

to increase roughly in proportion to the number of solutions tried. Since AutoBash

tries the solution from the application with the most failed predicates in the initial

predicate testing, AutoBash is able to find the right solution in an average of 4.5

trials. Also, AutoBash tests the failed predicates first after trying a solution so it is

able to quickly determine if the solution is incorrect.

An interesting observation from our evaluation is that the subtlety of the bug

impacts execution time — for instance, bug 9 allows unauthorized access to the

repository; therefore, even though AutoBash only needs to re-run one predicate to

determine a solution does not work, it takes longer for that predicate to detect a

problem. However, bugs 1 and 5 are catastrophic; since all CVS actions fail, any

predicate fails immediately.

Comparing the second and third bar in each dataset shows the performance ben-

efit of causality analysis. For most bugs, causality analysis reduces the time to find

a solution by 31–51% and predicate testing time by 67–82%. Figure 3.5 clarifies this

68

Bug 1 Bug 2 Bug 3 Bug 4 Bug 5 Bug 6 Bug 7 Bug 8 Bug 9 Bug 10
0

20

40

60

80

100

T
im

e
(s

ec
on

ds
)

Predicate testing
Solution execution
Initial predicate testing

N
o

sp
ec

ul
at

iv
e

ex
ec

ut
io

n

N
o

ca
us

al
 a

na
ly

si
s

A
ut

oB
as

h

This figure shows the time to find a solution for the 10 GCC bugs in Table 3.2. The left
bar in each data set shows the time to find a solution without speculative execution or
causality tracking, the middle bar shows the time with only speculative execution, and the
right bar shows the time with both. Each result is the mean of five trials — the error bars
show 95% confidence intervals.

Figure 3.6: AutoBash performance for GCC benchmark

Bug 1 Bug 2 Bug 3 Bug 4 Bug 5 Bug 6 Bug 7 Bug 8 Bug 9 Bug 10
0

20

40

60

80

N
um

be
r

of
 P

re
di

ca
te

s
E

xe
cu

te
d Predicate testing

Initial predicate testing

N
o

ca
us

al
 a

na
ly

si
s

A
ut

oB
as

h

This figure shows the number of predicates executed by AutoBash while finding a solution
for the 10 GCC bugs in Table 3.2. Five trials were run for each bug; however, the number
of predicates executed was identical in each trial.

Figure 3.7: Number of predicates executed for GCC benchmark

benefit by comparing the number of predicates run with and without causality analy-

sis. With causality support, AutoBash runs fewer predicates. Thus, the performance

of AutoBash tends to degrade much more slowly with the number of solutions tried.

69

Bug 1 Bug 2 Bug 3 Bug 4 Bug 5 Bug 6 Bug 7 Bug 8 Bug 9 Bug 10
0

20

40

60

80

100

T
im

e
(s

ec
on

ds
)

Predicate testing
Solution execution
Initial predicate testing

N
o

sp
ec

ul
at

iv
e

ex
ec

ut
io

n

N
o

ca
us

al
 a

na
ly

si
s

A
ut

oB
as

h

This figure shows the time to find a solution for the 10 Apache bugs in Table 3.2. The
left bar in each data set shows the time to find a solution without speculative execution
or causality tracking, the middle bar shows the time with only speculative execution, and
the right bar shows the time with both. Each result is the mean of five trials — the error
bars show 95% confidence intervals.

Figure 3.8: AutoBash performance for Apache benchmark

3.5.2.2 GCC cross compilation

Figures 3.6 and 3.7 show results for the ten GCC cross compiler bugs in Table 3.2.

The performance impact of speculative execution, as shown by the difference between

the first two bars in each dataset in Figure 3.6, is within experimental error for all

bugs. For bug 2, which overwrites the default path environment variable, AutoBash

is able to identify that the bug affects CVS and re-runs CVS predicates. As with

the CVS experiments, without causality support, the number of predicates that need

to be tested to find a solution tends to increase with the number of solutions tried,

and the total execution time is affected by the subtlety of the injected bug. For most

bugs, causality analysis improves solution search time by 34–49%.

An interesting observation highlighted by our cross-compilation evaluation is that

predicate testing time for different applications can vary greatly. For instance, the

cross-compilation predicates run much faster than Apache’s. With causality analysis

we improve predicate testing time by 67–99% because AutoBash did not re-run any

Apache predicates as they were not causally dependent on any of the cross-compilation

solutions.

70

Bug 1 Bug 2 Bug 3 Bug 4 Bug 5 Bug 6 Bug 7 Bug 8 Bug 9 Bug 10
0

20

40

60
N

um
be

r
of

 P
re

di
ca

te
s

E
xe

cu
te

d
Predicate testing
Initial predicate testing

N
o

ca
us

al
 a

na
ly

si
s

A
ut

oB
as

h

This figure shows the number of predicates executed by AutoBash while finding a solution
for the 10 Apache bugs in Table 3.2. Five trials were run for each bug; however, the
number of predicates executed was identical in each trial.

Figure 3.9: Number of predicates executed for Apache benchmark

3.5.2.3 Apache Web server

Figures 3.8 and 3.9 show results for the ten Apache bugs in Table 3.2. The time

to find a solution without causality tracking scales roughly linearly with the number

of bugs because Apache has a large amount of configuration state. Thus, the bugs we

injected are mostly subtle; a misconfiguration often affects only a single predicate or

two. The solution for bug 1 changes the permission of /home/USER, where all our

predicates are located. Therefore, the output set of the solution for bug 1 intersects

with the input sets of all 19 predicates. So, bug 1 does not benefit from causality

analysis as all 19 predicates need to be run. However, bug 10 shows the largest benefit

— its total execution time decreases by 58% and predicate testing decreased by 95%

because causality analysis reveals that only one predicate needs to be re-run.

3.5.3 State delta

We ran two interactive applications to see how well AutoBash understands the

state delta. For each task, AutoBash requests Speculator to track the application’s

output set and queries Speculator for the output set. AutoBash then performs the

same optimization described in Section 3.3.4 to generate a state delta. For each

71

application, we present the task we performed, its state delta, and the numbers of

system call using strace to perform the same task.

3.5.3.1 Configuration menu: make menuconfig

The first task is to configure a Linux kernel source using make menuconfig. We

ran make menuconfig in a Linux kernel source tree, changed a kernel compilation

option and saved the changes. Table 3.4 lists the state delta for this task. From

the state delta captured by AutoBash, we can conclude that “make menuconfig”

created several object files, modified a header file according to the configuration file

and changed the configuration file itself. There are a total of 16 directory entry

modifications, 1 directory created, and 13 files modified.

We performed the same task and ran strace to capture the system calls made.

There are around 16,065 system calls made. Some system calls change the system

state during the task but do not make permanent system state changes. The number

of system calls made is much larger than the state delta, thus it is much harder to

reason about the changes made to system state.

3.5.3.2 Editor: vi

The second task is to create and edit a new file using vi editor. We used vi to

open a new file and edited the file. Table 3.5 shows the state delta. Similarly, we ran

strace for the same task, and 481 system calls were made. The number of system

calls is dependent on the duration vi is opened as the vi process repeatedly executes

the select system call to read input from the standard input.

3.5.4 Case study

Configuration problems involving multiple applications can be more difficult to

solve. We investigate the effectiveness of AutoBash in solving such problems by

developing a misconfiguration scenario involving both CVS and the Apache Web

server. In our scenario, the user sets up a CVS repository to manage the source tree

72

Number Directory entry modifications

1 /home/yysu/src/autobash/linux-2.4.21-15.EL/include/asm added

2 /home/yysu/src/autobash/linux-2.4.21-15.EL/include/linux/.tmpconfig.h added

3 /home/yysu/src/autobash/linux-2.4.21-15.EL/include/linux/modules added

4 /home/yysu/src/autobash/linux-2.4.21-15.EL/scripts/lxdialog/checklist.o added

5 /home/yysu/src/autobash/linux-2.4.21-15.EL/scripts/lxdialog/inputbox.o added

6 /home/yysu/src/autobash/linux-2.4.21-15.EL/scripts/lxdialog/lxdialog added

7 /home/yysu/src/autobash/linux-2.4.21-15.EL/scripts/lxdialog/lxdialog.o added

8 /home/yysu/src/autobash/linux-2.4.21-15.EL/scripts/lxdialog/menubox.o added

9 /home/yysu/src/autobash/linux-2.4.21-15.EL/scripts/lxdialog/msgbox.o added

10 /home/yysu/src/autobash/linux-2.4.21-15.EL/scripts/lxdialog/textbox.o added

11 /home/yysu/src/autobash/linux-2.4.21-15.EL/scripts/lxdialog/util.o added

12 /home/yysu/src/autobash/linux-2.4.21-15.EL/scripts/lxdialog/yesno.o added

13 /home/yysu/src/autobash/linux-2.4.21-15.EL/.config.old deleted

14 /home/yysu/src/autobash/linux-2.4.21-15.EL/.tmpconfig added

15 /home/yysu/src/autobash/linux-2.4.21-15.EL/.tmpconfig.h added

16 /home/yysu/src/autobash/linux-2.4.21-15.EL/autoconf.h deleted

Number Directory modifications

1 /home/yysu/src/autobash/linux-2.4.21-15.EL/include/linux/modules created

Number File modifications

1 /home/yysu/src/autobash/linux-2.4.21-15.EL/include/asm created

2 /home/yysu/src/autobash/linux-2.4.21-15.EL/scripts/lxdialog/checklist.o created

3 /home/yysu/src/autobash/linux-2.4.21-15.EL/scripts/lxdialog/menubox.o created

4 /home/yysu/src/autobash/linux-2.4.21-15.EL/scripts/lxdialog/textbox.o created

5 /home/yysu/src/autobash/linux-2.4.21-15.EL/scripts/lxdialog/yesno.o created

6 /home/yysu/src/autobash/linux-2.4.21-15.EL/scripts/lxdialog/inputbox.o created

7 /home/yysu/src/autobash/linux-2.4.21-15.EL/scripts/lxdialog/util.o created

8 /home/yysu/src/autobash/linux-2.4.21-15.EL/scripts/lxdialog/lxdialog.o created

9 /home/yysu/src/autobash/linux-2.4.21-15.EL/scripts/lxdialog/msgbox.o created

10 /home/yysu/src/autobash/linux-2.4.21-15.EL/scripts/lxdialog/lxdialog created

11 /boot/kernel.h modified

12 /home/yysu/src/autobash/linux-2.4.21-15.EL/.config created

13 /home/yysu/src/autobash/linux-2.4.21-15.EL/include/linux/autoconf.h created

Table 3.4: State delta for make menuconfig

73

Number Directory entry modifications

1 /test/autobash/autobash/group added

2 /test/autobash/autobash/group˜ deleted

Number File modification

1 /test/autobash/autobash/group created

2 216285 deleted

Table 3.5: State delta for vi

for a website. The configuration bug is that the user did not turn off CVS’s keyword

substitution feature so that whenever a developer checks in a CGI Perl script, CVS

automatically substitutes keywords such as Id in the script with the username of

the user who checks in the file. Later, when the user checks out the website and

executes the CGI Perl script, he will encounter an incorrectly formatted HTML page.

This bug can be resolved by running AutoBash in replay mode. We hypothesize

an existing predicate in a standard predicate set shipped with Apache that works as

follows: an Apache user checks in a Perl script to a CVS repository on the machine.

The predicate, which runs as root, checks out the Perl script into a CGI scripts

directory, wgets the results of executing that CGI Perl script, and diffs the output

with the expected output.

We ran AutoBash in replay mode with the solutions for bugs described in Ta-

ble 3.2 and predicates in Table 3.3. During initial testing, AutoBash finds that CVS

predicate 5 fails and the remaining predicates succeed. Therefore, AutoBash tries so-

lutions associated with CVS first and finds the solution that fixed CVS’s bug 3 solves

the problem. Even though the misconfiguration manifests as an Apache problem,

AutoBash is able to identify that it is actually due to a misconfiguration in CVS.

3.6 Discussion

One important design chose we made is to leverage operating system level check-

point/rollback to try potential solutions and execute predicates to test. Virtual ma-

74

chines can also provide checkpoint and rollback capability for both transient state

(memory) and persistent state. The advantage of choosing virtual machines is that

AutoBash can be deployed to different operating systems without kernel modifica-

tions. Since a virtual machine is a layer below the operating system, it also enables

us to debug kernel-related configuration problems similar to Chronus. The disad-

vantages of using virtual machines is the “semantic gap.” Virtual machine rollback

restores transient state, including all running processes, to a prior state. This means

that users would lose other useful work that does not have a causal relationship with

configuration activities. OS-level checkpoint and rollback tracks the information flow

among processes and can rollback only processes that have observed or been affected

by configuration activities. Also, due to the semantic gap between the virtual machine

monitor and its host operating system, introspection techniques [47] are required to

understand the causal relationships between the executions of solutions and predi-

cates.

3.7 Summary

In this chapter, we demonstrate how we can make flexible software systems eas-

ier to manage through automated configuration management. AutoBash is a set of

tools that leverage operating system support for speculative execution and causality

tracking to automate many of the time-consuming tasks that occur when users deal

with the complexity of modern computer systems. Our results show that OS support

can reduce both the time and user effort needed to fix configuration errors.

75

CHAPTER 4

Inferring Predicates and Solutions

from User Traces

The previous chapter showed that AutoBash makes configuration management

easier if AutoBash has a set of predicates to test system correctness and a set of

solutions that modify system state. When predicates and solutions do not exist,

users need to spend a lot of effort to manually generate them. This chapter addresses

that problem by automatically generating predicates and solutions.

4.1 Introduction

In the previous chapter, we manually wrote predicates for three applications to

evaluate AutoBash’s ability to find solutions for them. We found the process of

manually writing predicates tedious and time consuming. Writing predicates requires

domain knowledge about the application and is more likely to be done by expert

users. Also, predicates created by experts might not be applicable to systems that

are heavily customized. This chapter tries to reduce the time and effort spent on

manually writing predicates by answering the following question: Can predicates be

automatically generated?

Test cases check if certain requirements are satisfied in a program and can be

used as predicates in AutoBash. If given the source code or specification of a soft-

ware program, we could adopt automated test generation systems to generate predi-

76

cates [18, 27, 31, 42, 54, 64, 74]. However, source code is not always available for every

application and specifications are even less likely to be available to the end users. In

this work, we assume that source code or specifications are not available and treat a

software program as a black-box.

We take a different approach by generating predicates from user observation. Users

often need to troubleshoot misconfigurations. Consider the typical actions a user takes

to fix a configuration problem: the user would examine the system state, search on

the Internet or query colleagues for potential solutions, then apply the most likely

solution, and test if the solution works. Our observation is that users often test

whether the problem is solved during the troubleshooting process. If we can isolate

the actions invoked by the user for testing, we can use them as predicates.

Identifying suitable actions as predicates is only the first step. AutoBash relies

on a predicate to return true (or evaluate to true) when the system it is testing is

correct, and otherwise returns false. Therefore, after generating predicates from user

actions, we then need to determine if a predicate should return true or false.

Before we describe our solution to automatically generate predicates, we list the

assumptions we make about user actions. Broadly speaking, user actions can be either

commands typed in a shell or events entered in a window system, such as mouse clicks

and keystrokes. In this work, we limit actions to only commands the user types in

a shell because predicates composed of commands are easier to understand than

predicates composed of window events.

To find commands that can be used as predicates, we observed two properties of

these commands that test system state. First, users test the system state multiple

times while fixing a configuration problem. Troubleshooting misconfiguration is an

iterative process and the user often has to try many solutions to fix the problem.

In order to test whether a solution has succeeded in fixing a problem, users reuse

the same set of commands. Therefore, commands that are repeatedly executed can

indicate a predicate. Second, users often rely on output from testing commands to

determine if a solution works. The output we examine includes exit codes, screen

output, and the output set for a command as defined in Section 3.3.2.1. For example,

77

if a user tests whether a local Web server is serving data correctly by using wget to

retrieve a specific Web page, one observable output the user relies on is the screen

output. If wget displays the progress of downloading the page, the user knows that

the Web server is up and running. If wget displays HTTP error messages, the user

knows that the Web server is not working correctly. Commands such as these with

observable output are good candidates for predicates.

To evaluate the effectiveness of the above approach, we first conducted a user

study to collect traces of users fixing configuration problems for CVS and the Apache

Web server. We then employed the above approach to generate predicates from traces

collected during the user study. The results showed that we were able to generate

correct predicates for at least half of the traces for both CVS and Apache traces.

We also show that we can identify solutions by aggregating traces that fixed the

configuration problems.

We first describe an overview of our approach to generate predicates in Section 4.2

and present a user study in Section 4.3. We discuss our first approach to inferring

predicates in Section 4.4 and describe why that approach did not work. We then

present how we reached our final approach in Section 4.5 and provide details of our

final approach in Section 4.6. Finally, we present our evaluation results in Section 4.7.

4.2 Overview of our approach

Our goal is to infer predicates from user traces so they can be used by AutoBash.

We first discuss the user traces we used in this work and then describe details of our

approach to generate predicates. Finally, we present a summary of our evaluation

results.

We decided to collect our own traces of users fixing specific software configuration

problems, as we did not find any existing traces that suited our needs. We divided user

trace collection into two phases. The first phase was to record the series of commands

a user typed when fixing a configuration problem, and the second phase was to use

Speculator [62] to collect causal information for them. The reason behind this two-

78

phase process is that user studies are very time consuming to conduct, and simplifying

them as much as possible while still achieving the same goal is recommended. The

most essential input we need from the participants is how they troubleshoot and fix

misconfigurations, such as what files they examine and how they test if the problem is

solved. Causal information can be collected by re-running the commands a participant

has typed after the study, and, hence, does not need to be collected during the study.

In the second phase, we replayed the commands each participant typed using

AutoBash’s observation mode to collect the causal input and output sets (defined in

Section 3.3.2) for each command. The causal input set is the set of kernel objects

a command comes to depend on during its execution. The causal output set is the

set of kernel object a command has causal effects on during its execution. We also

modified AutoBash’s observation mode to collect the exit code and screen output

(including both standard output and error) for each command.

To find commands that can be used as predicates from user traces, we implemented

a base algorithm that searches for repeated commands with different observable out-

put. To be more specific, the base algorithm uses three output features to represent

the observable output for a command: the exit code, the error messages contained

in the screen output, and the output set. The base algorithm marks repeated com-

mands that differ in at least two output features as predicates. Differences in these

output features suggest that the command was executed before and after the system

state transitioned from an unhealthy state to a healthy one. To determine if a pred-

icate should return true or false, the base algorithm assumes the last execution of a

predicate to return true. For each execution of the same predicate, if it has at least

two different output features from the last execution, that predicate returns false.

Otherwise, the predicate returns true.

To verify the effectiveness of the base algorithm, we ran the base algorithm on

the user traces we collected. We noticed that the base algorithm is very effective in

finding predicates that contain a single command. However, some predicates require

preconditions to be executed first. Preconditions are a set of commands that need

to be executed to change the system state before a predicate can be used. For

79

example, if a predicate contains a cvs checkout test module to demonstrate a CVS

configuration problem, it is not usable unless the previous successful cvs import

test module is included as a precondition. This is because the predicate would

always fail if the cvs import test module is not executed first.

We solved the problem of finding preconditions for a predicate using causal in-

formation between commands. We call our solution the precondition heuristic. The

precondition heuristic searches for commands that have causal effects on all execu-

tions of a predicate. It uses two rules to determine if a command is a precondition for

the predicate or a solution. First, the heuristic marks commands that affect both suc-

cessful and failed predicates as preconditions. Second, the heuristic marks commands

that have causal effects only on successful predicates but that occur chronologically

after all failed predicates as solutions. The insight is that solutions are the actions

that cause a predicate to return a different value.

To see how well the precondition heuristic can find solutions, we ran the precondi-

tion heuristic on the user traces. We noticed that when the base algorithm generates

predicates that do not test the specific configuration problem, the solution found by

the precondition heuristic is not a correct solution. To better find the solution for

a specific problem, we developed a solution-ranking heuristic. The solution-ranking

heuristic aggregates solutions found across multiple successful user traces and ranks

each solution according to its popularity. A solution that occurs in more successful

traces is more popular and therefore ranked higher.

Finally, to evaluate the effectiveness of our approach, we combined the base al-

gorithm and the precondition heuristic to generate predicates from the user traces

collected in the user study. We were able to generate correct predicates for four

out of ten traces of users fixing CVS configuration problems and six to eight correct

predicates out of eleven traces of users fixing Apache configuration problems. Our

approach works better for Apache configuration problems because single-command

predicates are sufficient to test the Apache Web server. The evaluation results also

show that the correct solution is ranked the highest for all configuration problems.

80

4.3 User study methodology

In this section, we describe the user study we conducted to collect user traces. We

describe the user study setup and procedure, the tasks given to the participants, and

the participants in our study. Finally, we describe the data we collected.

4.3.1 Experimental setup and procedure

We conducted our user study on a Dell Precision 370 desktop computer with

a 3.00GHz Pentium 4 processor and 2GB of memory. The computer runs a Red

Hat Enterprise 3 Linux kernel version 2.4.21. We ran VMware Workstation 6.2 to

instantiate virtual machines for each experiment. We used Freecorder Toolbar [8] to

record users’ audio during each experiment.

This user study consisted of twelve participants. Each participant was given six

tasks. Each task lasted up to fifteen minutes and required a participant to fix a

configuration problem. We broke these six tasks into two sessions, each with three

tasks. In each session, one task was used for training participants and the other two

tasks were used for the study.

Each task ran in a virtual machine. We first created a base virtual machine image

with RedHat Enterprise 3 Linux kernel version 2.4.21 installed. We then installed all

default software packages included in the installation CDs to the base virtual machine

image and created necessary users and groups. We disabled external network access

for each virtual machine, as Speculator only allows network access within the same

machine. Since no network access was available for a virtual machine, we provided

participants with a laptop computer to browse the Internet for information. We

created a virtual machine image for each task from the base VM image and injected

each with a configuration problem. For each task, each participant was provided with

a machine running a copy of the VM image with the injected problem.

Participants interacted with the virtual machine through our modified autobash

shell. This is a modified bash shell similar to AutoBash’s observation mode, described

in Section 3.3.3, but does not invoke Speculator to record causal information or exe-

81

cute any predicates. It records user-typed commands, screen output, and commands

to a file. The exact procedure, documentation, and survey used for this study are

shown in Appendix A.

4.3.1.1 Training process

Upon arrival, each participant was given a consent form and a brief introduction

to the user study. Each participant was asked to fill out a survey assessing their

experience in configuration management and given a handout that described the

scenario in the study. The scenario was as follows: the user is a new hire in an

IT department and is given several configuration problems to solve. Their goal was

to fix these configuration problems so that the configuration met the requirements

described in the handout.

During the training process, the root cause of the misconfiguration was given to

the user and the user only needed to determine and apply a solution to the problem.

After fixing each problem, the participant was asked to label each command into one

of the three categories: fixing, testing, or other.

4.3.1.2 Testing process

During the testing process, each participant was given two configuration problems.

No information was provided about the configuration problem itself. Participants

were allowed to use any software packages available in the virtual machine and fix

the configuration problem as they saw fit. Participants were given a time limit of

fifteen minutes for each task. Similar to the training process, participants were asked

to label each command after finishing a task.

4.3.2 Misconfiguration tasks

We chose the CVS version control system and the Apache Web server for our

study and selected two configuration problems from Table 3.2 in Chapter 3. We

selected configuration problems 1 and 2 for the CVS version control system and

82

problems 1 and 2 for the Apache Web server. We did not quantify the difficulty

level for configuration problems in Table 3.2, but we consider these four problems

to be the easiest. We deliberately chose more straightforward problems because our

participants possessed a wide variety of experience levels. We hoped to have some

traces of participants successfully fixing problems. In our first design of the user

study, we selected more subtle configuration problems and invited a few volunteers

to try to solve them. Our volunteers commented that these problems were so subtle

that even the most experienced users we could find might not be able to fix them.

Therefore, we selected more straightforward configuration problems for our final user

study.

We used configuration problems not listed in Table 3.2 for the training process.

For the CVS training task, we created a script that added an unauthorized user to

the CVS group for the training task in the CVS session. For the Apache training

task, we manually commented out a line in the configuration that instructs Apache

to permit CGI execution. These two problems are straightforward to fix.

4.3.3 Participants

Users with differing experience levels in system administration all face configu-

ration management tasks. We modeled this by recruiting participants that ranged

from system administrators for on-campus IT departments and research groups to

graduate students with basic Unix and shell knowledge.

A total of twelve users with varying skills participated in our study: ten graduate

students and two operations staff members, all from the University of Michigan.

To understand the experiences in the participant pool, we used the self-assessment

survey to divide participants into three categories: novice, intermediate, and expert.

Table 4.1 is a summary of our participants. This categorization was also used in the

study conducted by Nagaraja et al. [60]. A user is considered novice if he knows how

to use that application, an intermediate if he has configured that application before,

and an expert if he has diagnosed and fixed misconfigurations several times for that

83

CVS version control Apache Web server

User Experience level Prob 1 Prob 2 Experience level Prob 1 Prob 2

Fixed? Fixed? Fixed? Fixed?

A Expert N/A Y Expert Y Y

B Novice Y Y Intermediate N Y

C Intermediate Y Y Novice Y Y

D Expert Y Y Expert Y Y

E Beginner N N Expert Y N

F Intermediate Y Y Expert Y Y

G Novice Y N/A Beginner N N

H Intermediate Y Y Expert Y Y

I Intermediate Y Y Expert Y Y

J Novice Y Y Expert Y Y

K Expert Y N Intermediate N Y

L Intermediate Y Y Novice N Y

Total fixed 10 9 8 10

This table shows the summary of the distribution of the level of user experience and the
number of problems solved. We categorize users into novice, intermediate, and expert
levels.

Table 4.1: Participant summary

application. User E’s experience in CVS and user G’s experience in Apache Web

server did not meet the novice definition and were therefore labeled as “Beginner” in

Table 4.1. We excluded user E’s CVS traces and User G’s Apache traces from the

evaluation in Section 4.7.

Table 4.1 shows that almost all experienced users fixed both configuration prob-

lems with two exceptions: user E did not fix Apache Web server configuration problem

2 and user K did not fix CVS configuration problem 2. Both were due to users not

reading the handout carefully: User E tried to fix a configuration problem not spec-

ified as a requirement in the handout, while user K did not see that two authorized

84

users should be in the CVS group and only tested for one. Two cases are noted as not

applicable (user A’s CVS configuration problem 1 and user G’s CVS configuration

problem 2) because we we had copied a wrong virtual machine image for one, and

the user declined to do it for the other.

Overall, we were satisfied with the number of traces we captured that fixed the

problem. We had expected that some participants would not fix all problems and

had five traces (one CVS problem 2 trace and four Apache problem traces) that did

not solve the problem presented.

4.3.4 Data collected

We collected four different kinds of data for each trace so that we would have

sufficient information to replay user traces after the study. The data we collected

were:

• Commands: We collected commands that participants typed, including the

executable and the arguments. This information is similar to output displayed

by history in bash shell.

• Virtual machine recording: We turned on VMware’s Record/Replay to record

and to capture the complete execution behavior. When we later manually

re-typed commands that a user has typed in to collect causal information, we

could first use VMware’s recording to replay the exact and complete execution

behavior of the user’s trace. This allows us to see what a user entered into an

interactive application, such as an editor.

• User-specified labels: At the end of each task, we asked users to specify for

each command if it was used for testing, fixing, or other purposes. We collected

these user-specified labels for each trace. We did not use this data in our final

solution but had considered using it when we started our study.

• Self-assessment surveys: We collected the surveys completed by participants

to categorize the experience level of each participant.

85

4.4 Our first approach to inferring predicates

When we first started, we unsuccessfully took an approach that tried to estimate

the commands each participant stated they used for testing. Our failed approach

was to develop heuristics that could identify all commands labeled as “testing” by

participants. Our belief was that these user-specified labels were the most accurate

predicates because users knew best how they tested the system. One example of

a heuristic we used was to search for repeated commands that have screen output

but an empty output set. This heuristic can find commands a participant used to

examine system state, for example, ls -l the CVS repository to examine its user,

group, and file permissions. Another example heuristic was to search for repeated

commands that had different input sets or one that had its input set affected by

another command. This heuristic tried to use these repeated commands that might

have different output as predicates.

The main problem with this approach was that for many predicates, we did not

know whether they should return true or false. For example, we did not know how to

determine if a ls command that examines the CVS repository should return true or

false. Predicates for which we could not determine an appropriate return value would

not be useful to AutoBash. Also, user labels are often inconsistent.

4.5 Re-examine the predicate definition

After realizing this approach would not work, we first re-examined the predicate

definition to understand why the approach failed. In Chapter 3, we defined predicates

as configuration activities that test system correctness and a predicate should deter-

ministically evaluate to true if the system is correct and false otherwise. Predicates

include both a set of commands that can test system state and a return value, true

or false, that indicates if the system state is correct or not. The main lesson learned

from the failed approach is that many commands can be used for testing, but success

or failure is not always easily determined. For example, it is difficult to determine if

86

ls -l should evaluate to true or false without semantic knowledge of the directory

being listed.

To find an approach whose results are easy to determine, we first examined how

users fixed configuration problems. Based on our observation during the user study,

users often took an action-based approach, a state-based approach, or a combination

of both to troubleshoot a configuration problem. An action-based approach means

that the user interacts with the misconfigured application to learn the behavior of

the application. For example, when troubleshooting a CVS problem, the user would

cvs import a new module or cvs checkout a module. The user learned about the

misconfiguration by examining the error messages and progress-reporting messages

displayed on the screen by CVS. A state-based approach means that the user pas-

sively examines the relevant state the application depends on. For example, when

troubleshooting the same CVS problem, the user would see if the CVS repository

directory exists, what the CVS repository file permissions are, the user and group

information, etc.

Commands used in both action-based and state-based approaches can be used

for testing. We observe that if we use commands used in an action-based approach

to be predicates, it is often easier to determine what their return value should be.

When the system state is incorrect, processes that execute these commands often have

different return values or display error messages. On the other hand, commands used

in a state-based approach are often more difficult to evaluate because determining

correctness requires semantic information or knowledge about the problem itself to

explain about observable output.

To better explain why it is easier to determine the return values of commands

used in an action-based approach, we classified commands according to two axes:

• Can it be used as a predicate? Users often use many commands in the

process of fixing a configuration problem. Broadly speaking, commands are

used for three different purposes: testing the system state, fixing a problem,

and facilitating the troubleshooting process. Commands that are used to test

the system state can be used as predicates. Both commands used in state-

87

Easy to determine result Difficult to determine result

Used as predicates wget1 ls2

cvs1 groups2

Not used as predicates chmod a file’s permission edit configuration files

usermod a user’s group clear the terminal screen
1 The wget and cvs commands return different exit values indicating success or failure.

2 The ls and groups commands print different screen output that reflect the current state,

but they return the same exit codes and both have an empty output set.

This table shows examples of various commands that fall into one of the four possible
combinations. This thesis focuses on finding commands that are both used for testing
and can easily determine the result without application-specific semantic information (the
shaded cell).

Table 4.2: Command taxonomy

based and action-based approach fall into this category and can be used as

predicates. Commands that are used to fix the configuration problem cannot

be used as predicates. If these commands are used as predicates, the system

state would always be correct because in the process of testing system state, the

predicates fix the configuration problem. Commands that are not used for fixing

or testing are used for facilitating. Examples of facilitating commands include

clear, which clears the terminal screen, and man, which displays manual pages

for commands. These commands cannot be used as predicates because they do

not give relevant information about the system state.

• Is it easy to determine if a predicate returns true or false? Commands

used in an action-based approach often have some good indicators and produce

output that make it easy to determine their results. For example, if a command

returns a zero exit code on success and non-zero exit code on failure, the exit

code is a good indicator that different return values exist for this command. It

is often difficult to determine the returning result of commands used in a state-

based approach because they often display unstructured screen output and do

not have good indicators, such as exit codes. One example is the command

88

groups, which prints the groups the user is in. When a user executes groups

to test if a user is in the right group, the user knows what the expected output

should be. If the user executes groups once before applying a solution and once

after to test if the user is in the right group, classifying the screen output is

difficult without semantic knowledge. Another example is the command ls. If

the user executes ls to examine the permission of a specific file, it is very difficult

to know which file the user is looking for and what the expected permission for

that file is.

Table 4.2 shows the four possible combinations of these two classifications along

with examples of commands that satisfy each combination. Our goal is to identify

commands that fall into the shaded cell, and these commands are mostly used in an

action-based approach.

4.6 Generating predicates and solutions from user

traces

This section describes the algorithm and heuristics we implemented to generate

predicates with results that are easy to determine. We first describe the base algo-

rithm, then give details of the heuristics we used to improve the base algorithm.

4.6.1 Base algorithm

We started out by assuming a predicate contains only one command. Our base

algorithm searches for repeated commands within a trace that differ in at least two

out of three output features: exit code, error messages contained in the screen output,

and the output set. The rationale is that if a repeated command has different output

features, as shown in Figure 4.1, one of them could return true and the other could

return false. Therefore, repeated commands with different output features are good

predicate candidates. This is similar to how Chronus [82] used probes to search for

the time when the system state transitions from a working to a non-working state.

89

System was not working System was working

Time

Command C

Command C0 = False Command C1 = True

This figure shows a command C executed twice; the first time is shown as C0, and the
second is shown as C1. If C0 and C1 have different output features, C0 would return false
and C1 would return true. C is a good predicate for AutoBash as it has different output
features as evidence that it is executed in a non-working and a working state.

Figure 4.1: The rationale behind the base algorithm

We used the repeated commands as our probes and the different output features as

evidence that the system state transitions from a non-working to a working one.

The base algorithm uses the following three output features:

• Exit code is zero or non-zero. When a shell creates a process to execute a

command, the return value of the process when it exits is returned to the shell

and is often called the exit code. Conventionally, a command returns a non-zero

exit code to indicate failure and zero to indicate success. Mickens et al. [56]

used exit codes to mark user traces as “good” or “bad” traces and discovered

that application developers do not always follow this convention.

• If the screen output contains an error message. Human beings are good

at understanding screen output that gives feedback on the progress or result of

executing a command. However, the screen output may contain unstructured

text that is difficult for computers to analyze. Our hypothesis is that we only

need to search for certain positive or negative keywords on the screen output to

determine if a repeated command has different output. Searching for specific

words is much simpler than trying to understand arbitrary screen output from

the application, and it is often sufficient to know whether the two executions of

90

a repeated command are different.

To search for keywords, we first need to intercept screen output displayed to

the user. We modified AutoBash’s observation mode to make a typescript of

the terminal session into a log file. We implemented this using Unix’s pseudo-

terminal interface, and this implementation is transparent to the user. When

AutoBash’s observation mode (a modified bash shell) is in the initialization

phase, it first finds an available pseudo terminal and forks a child process. The

parent process provides the input and output interface with which the user

interacts while the child process handles executing commands the user types.

The pseudo terminal is a pair of character devices (master and slave) that

provides a bi-directional communication channel. Any terminal input entered

into the master end is automatically provided to the slave end. Any terminal

output written to the slave end can be read by the process connected to the

master end. We modified the parent process to read from standard input and

write to a log file. The child process redirects its standard input, output, and

error to the slave end of the pseudo terminal. This implementation is very

similar to script.

For each command, the base algorithm reads from the log file for the screen

output and searches for any error messages. Currently, the base algorithm

searches for the system error messages (from errno.h) and the word “error.”

Two commands are considered to have different error message features if one

contains an error message in its screen output and the other does not. We did

not search for “positive” words as we did not find any viable candidates for such

a word.

• If the output sets are the same. We collect the output set for each command

in the same way as AutoBash’s observation mode. We provide a brief description

here for completeness. For each command, the AutoBash shell process first forks

a child process and invokes Speculator to execute the command speculatively

and track its output set. Speculator keeps track of the output set, which contains

91

kernel objects that come to depend on the process executing the command.

When AutoBash finishes executing a command, it queries Speculator for the

command’s output set. For each execution of a repeated command, the base

algorithm compares if the output set of one execution is the same as the output

set of the last execution of the command.

When comparing commands, we noticed that strict string comparison may not

be the best way to compare. Strict string comparison has two problems: the first is

it does not know who is executing the command. User identity is important when

managing configurations because a command executed as different user identities

may return different results. We solved this problem by keeping track of a subset

of environment variables, including the current working directory and user. Most

shell programs, including bash, already keep track of environment variables, so we

duplicated this functionality. When comparing commands, we first checked their user

identities and considered them as not repeated if their user identities differed.

The second problem with using strict string comparison is that it does not take into

account environment variables on which a process depends. The working directory

in which a process is executed determines if the process has permission to create a

file in that directory or list a directory. For example, the execution of ls depends

on whether the process has permission to read the current working directory. Also,

a process might depend on an environment variable specified by the user to find the

default location of shared libraries or a configuration file. For example, cvs depends

on the environment variable CVSROOT to point to the CVS repository and CVS RSH

to specify the protocol to log in to a remote CVS server.

We solved the second problem in a manner similar to the first problem. When com-

paring two commands, we also compare the working directory and the user-specified

environment variables. Comparing the working directory might sometimes be too

conservative. For example, creating a file in a user’s home directory and in /tmp are

both permitted. We chose to be conservative when comparing environment variables,

as we prefer missing a few correct predicates over generating incorrect predicates. We

do not have sufficient experience to know which environment variables should be com-

92

pared, but based on our evaluation in Section 4.7, comparing user identities, working

directory, and user-specified environment variables generated correct predicates for

at least 40% of the total traces we evaluated.

4.6.2 Determining the result for a predicate

After the base algorithm generates predicates, we then need to solve the problem of

determining if a predicate should return true or false. We developed a result-assigning

heuristic that takes as input the output features of all executions of a predicate and

compares them. The result-assigning heuristic assumes that the last execution of a

predicate always returns true. The reason we use this heuristic is that a predicate

that returns a non-zero exit code and generates an error message should sometimes

return true. Consider a configuration problem in which an unauthorized user is given

too many permissions. The predicate that uses the excess permission to access data

that should be unauthorized to access should return false when its exit code is zero.

For each predicate, the result-assigning heuristic starts by assigning success to

the last execution and compares the last execution with each previous execution of

the predicate. If at least two out of three output features are the same as the last

execution, the heuristic assigns true as its return result. Otherwise, it assigns false.

4.6.3 Finding preconditions

The base algorithm is very effective in identifying single-command predicates that

test the system state. However, we noticed that in some cases a single-command

predicate relies on some prior commands to change the system state before they

can work correctly. We call these prior commands on which a predicate depends

preconditions. A single-command predicate that relies on preconditions cannot be

used by AutoBash because it would always return the same result. For example, if a

user fixed a CVS problem starting from an empty repository and the base algorithm

identified cvs checkout to be a predicate, this predicate would work only if the

command cvs import had first been executed. The cvs import is a precondition

93

Command P Command F

Time

Command C

Command C0 = False Command C1 = True

This figure demonstrates how the precondition heuristic works. Assume that the base
algorithm determines that C0 returns false and C1 returns true. If both a command P and
a command F have causal effects on C1 only, the precondition heuristic determines that
the command P is the precondition for command C and the command F is the solution,
as command F might be the solution that causes the state transitioning that causes C0

and C1 to return different results.

Figure 4.2: The reasoning behind the precondition heuristic

for that predicate because, without it, the predicate will always return false.

To find preconditions, we first search for commands that have causal effects on

a predicate. In addition to including prior commands that have causal effects on

predicates, we also include prior commands that add or remove environment vari-

ables. Since the base algorithm compares environment variables when comparing

commands, adding or removing environment variables is considered to have an effect

on commands. For example, export CVSROOT=/home/cvsroot is considered to have

a causal effect on all later commands. This is more conservative than strictly needed,

as environment variables could be added but not read by some or all later commands

executed in the same shell.

Not all prior commands with causal effects on predicates are preconditions. If the

user has successfully fixed the configuration problem, the solution command should

have a causal effect on the last execution of the predicate. Including a solution as a

precondition would cause a predicate to always return true, rendering the predicate

ineffective.

To correctly identify preconditions, we developed a precondition heuristic that can

differentiate between preconditions and solutions. The precondition heuristic first

94

cvs co as
user2

succeeds

cvs co as
user2 fails

File:
/etc/group

File :
test_project

Time

cvs import
as user1

Add user2 to
CVS group

Figure 4.3: An example to demonstrate the precondition heuristic

finds all commands that causally affect all executions of a predicate. Within these

commands, the heuristic uses two rules to determine if a command is a precondition

or a solution. First, a command that has causal effects on both successful and failed

predicates is a precondition. Second, a command that only has causal effects on

successful predicates and is executed chronologically after all failed predicates is a

solution.

Figure 4.2 shows the reasoning that allows the second rule to distinguish between

a solution and a precondition. The reasoning is that users will usually first verify

preconditions happen before finding out the root cause of a misconfiguration. Com-

mands that occurred after failed predicates and before successful ones are solutions

that cause predicates to have different output features.

If a precondition is executed after failed predicates, it has the same causal effect

as a solution from the point of view of our heuristic. Thus, it is difficult to whether

it is a precondition or a solution without information about the command semantics.

Consider an example in which both user1 and user2 are authorized to access a CVS

repository, but only user 1 is in the CVS group. Figure 4.3 shows the four commands

the user executes and the causal relationship between commands. First, the base

algorithm would determine that “cvs checkout as user2“ is a predicate. The first

predicate execution is considered to return false and the second one is considered to

return true. Both “cvs import as user1” and “add user2 to CVS group” commands

have causal effects on the second predicate execution. The precondition uses the

95

cvs co as
user2

succeeds

cvs import
as user1

File:
/etc/group

File :
test_project

Time

Add user2 to
CVS group

cvs co as
user2 fails

Figure 4.4: An example to demonstrate when the precondition heuristic does not

work

chronological order to determine that “cvs import as user1” is a precondition and

“add user2 to CVS group” is a solution.

However, consider the same example but the order of “cvs import as user1”and

“cvs checkout as user2” are reversed as shown in Figure 4.4. Both “cvs import as

user1” and “add user2 to CVS group” have causal effects on the successful predicate

and were executed after the failed predicate. Without semantic information, such as

cvs ordering constrains, the precondition heuristic would mark them both as part of

the solution. We note that this is less likely to happen if the user already knows that

the CVS repository is empty.

4.6.4 Inferring solutions from user traces

Solutions found by the precondition heuristic are not always the correct solution

for the specific configuration problem the user is trying to solve. When predicates are

not correctly identified by the base algorithm, the resulting solution found often does

not fix the problem the user is trying to solve. To better identify the correct solution

for a specific problem, we developed a solution-ranking heuristic that aggregates solu-

tions found from multiple traces. In this heuristic, we assume that we have multiple

traces of users successfully fixing similar configuration problems. This heuristic ranks

each solution based on its popularity. A solution is more popular if more users apply

96

it to successfully fix the configuration problems.

One way to measure popularity of a solution is by the number of traces in which

a solution occurs. However, a strict string comparison does not yield accurate results

because many variants of a command can be used to successfully solve a problem.

For example, when solving the Apache configuration problem caused by the Web

server process not having search permission (the execution bit) on a user’s home

directory /home/testuser, solutions executed in the user study included chmod 755

/home/testuser, chmod 755 testuser/, and chmod og+rx testuser. These solu-

tions all give the directory /home/testuser search permission, but they are different

commands.

To better measure the popularity of a solution, we compare solutions by their state

deltas. The state delta was first introduced in Section 3.3.4 to capture the difference

in the state of the system caused by the execution of a command. For example,

the state delta for command chmod a+r test.pl includes only the file permissions

for test.pl changing from its original permission to a new permission. The solution-

ranking heuristic first groups solutions based on state deltas so that all solutions

having the same state delta are in the same group. It then sorts these groups by the

size. The group with most solutions mapped to that state delta is ranked highest.

Here is an example of how the solution-ranking heuristic ranks the three solutions:

chmod 755 /home/testuser, chmod 755 testuser/, and chmod -R 777 testuser/.

The heuristic groups the first two commands into one group because they both have

the same state delta, changing the permission of the directory /home/testuser to 755.

It puts the third solution into a separate group. Thus, the solution with the same

state delta as chmod 755 /home/testuser has group size two and is ranked higher

than the other group with only chmod -R 777 testuser/.

4.7 Evaluation

Our evaluation answers the following questions:

• How well can we automatically generate predicates from user traces?

97

CVS problem 1 CVS problem 2

CVS repository not initialized Authorized user not in CVS group

User # of Correct? Total # of # of Correct? Total # of

Pred commands Pred commands

A — — — 1 correct 44

B 1 correct 105 1 correct 44

C 0 SBA 57 0 NRC 46

D 0 SBA 49 0 SBA 26

F 1 correct 22 1 correct 30

G 0 NRC 61 — — —

H 0 NRC 58 0 NRC 74

I 0 NRC 18 1 correct 18

J 0 NRC 65 0 SBA 72

K 1 correct 55 0 DNF 24

L 1 correct 40 0 SBA 24

There are three major reasons for no predicate identified: (1) NRC means that the user did
not use a repeated command to test the configuration problem. (2) DNF means that the
user did not fix the configuration problem. (3) SBA means that the user used a state-based
approach to fix the problem.

Table 4.3: Summary of predicates generated for CVS traces

• How well does the solution-ranking heuristic rank the solutions?

4.7.1 Methodology

We implemented the base algorithm and heuristics described in Section 4.6 using

python and ran them on the traces collected from our user study. We generated

predicates using both the base algorithm and the precondition heuristic.

We then took the solutions inferred by the precondition heuristic from successful

traces and used the solution ranking heuristic to rank them. Table 4.9, Table 4.10,

Table 4.11, and Table 4.12 show the solution ranking results.

98

Apache problem 1 Apache problem 2

Insufficient permission for user’s home Insufficient permission for CGI script

User # of Correct? Total # of # of Correct? Total # of

Pred commands Pred commands

A 1 correct 45 1 correct 45

B 0 DNF 39 0 NRC 39

C 2 correct 41 1 correct 41

correct

D 1 correct 68 1 correct 68

E 0 NRC 35 1 wrong: NOF 35

F 0 NRC 33 1 correct 33

H 1 correct 32 1 correct 32

I 1 correct 22 1 correct 22

J 0 NRC 40 1 correct 40

K 1 wrong: NOF 67 1 correct 67

L 0 DNF 55 0 NRC 55

There are two reasons for no predicate identified: (1) NRC means that the user did not
use a repeated command to test the configuration problem. (2) DNF means that the user
did not fix the configuration problem. NOF means that an incorrect predicate due to noise
in output features, such as the file showed on the screen contained an error message.

Table 4.4: Summary of predicates generated for Apache traces

4.7.2 Quality of predicates generated

Table 4.3 and Table 4.4 show a summary for each predicate generated from each

trace. For each trace, we list the number of predicates generated, the correctness of

each predicate, and the total number of commands entered. We use an acronym that

describes the reason why no predicate is generated or why a predicate is incorrect.

For both CVS problems, we generated correct predicates for four out of ten traces.

We generated six correct predicates out of eleven traces (however, only nine traces

actually fixed the problem) for Apache problem 1 and eight of out eleven traces

for Apache problem 2. Overall, our predicate results for Apache problems are better

99

User Predicate

B Precondition export CVSROOT="/home/cvsroot" as testuser

Predicate cvs import -m "Msg" yoyo/test project yoyo start

as testuser

Solution cvs -d /home/cvsroot init as cvsroot

F Precondition export CVSROOT=/home/cvsroot as testuser

Predicate cvs import test project as testuser

Solution cvs -d /home/cvsroot init as cvsroot

K Predicate cvs -d /home/cvsroot import cvsroot as testuser

Solution cvs -d /home/cvsroot init as cvsroot

L Predicate cvs -d "/home/cvsroot" import test project as root

Solution cvs -d /home/cvsroot init as root

This table lists the predicates correctly identified from traces for CVS problem 1 (CVS
repository not initialized). Each predicate contains one or more steps, and the last step is
a repeated command. The first step of a predicate is listed as Precondition, and the last
step is listed as Predicate.

Table 4.5: Predicates correctly generated for CVS problem 1 traces

because the predicates for Apache are mostly single-command ones. We next examine

the predicate generated for each trace and explain in detail about when no predicates

are generated or why some predicates are incorrect.

4.7.2.1 Predicates generated from CVS problem 1 traces

CVS problem 1 is due to the CVS repository not being properly initialized, and

the solution is to initialize it using cvs init. The initial state included an empty

directory, /home/cvsroot, intended to be the CVS repository. The initial state also

included two authorized users, testuser and cvsuser, who have permission to access the

CVS repository and one unauthorized user, noncvsuser, who does not have permission

to access the repository. A test project directory was created in the testuser’s home

directory.

Table 4.5 lists the predicates correctly generated for each trace and the solution

100

identified by the precondition heuristic. We break each predicate into two parts:

Predicate, the repeated command identified by the base algorithm and the command

that determines if this predicate returns true or false, and Precondition, the set of

commands that must be executed before the predicate. We also list the solution found

by the precondition heuristic. All correct predicates involve the user importing a

module into the CVS repository. The base algorithm can find these predicates because

they have different output features when executed before and after the solution is

applied.

No predicate was found for six traces becauses users either used a state-based

approach (users C and D) or did not use repeated commands (users G, H, I, and

J). Both users C and D discovered that the CVS repository was not initialized by

examining the repository directory. Users G, H, I, and J used slightly different com-

mands to test the system state before and after fixing the configuration problem. For

example, user H’s two cvs import commands have different CVS import comments.

This could be solved if we were to incorporate semantic information about the cvs

command.

4.7.2.2 Predicates generated from CVS problem 2 traces

In CVS configuration problem 2, both testuser and cvsuser are authorized to

access the CVS repository but only testuser is in the CVS group. The solution to

this problem is to add cvsuser to the CVS group so that the user can access the CVS

repository. The initial state included an empty CVS repository and a test project

directory created for testuser.

Table 4.6 shows the predicates correctly generated for CVS problem 2 traces and

the solution identified by the precondition heuristic. All correct predicates involve

cvsuser trying to check out a module from the CVS repository and need the pre-

condition heuristic to find the first cvs import. Even though each user might use

a different module name, the base algorithm and precondition heuristic can find the

commands that import and check out the module.

No predicate was generated for six traces. We found three main reasons for this.

101

User Predicate

A Preconditions cvs import test project head start as testuser

cvs co test project as testuser

export CVSROOT=/home/cvsroot as cvsuser

Predicate cvs co test project as cvsuser

Solution vi /etc/group as root

B Precondition cvs -d /home/cvsroot import yoyo/test project

as testuser

Predicate cvs -d /home/cvsroot checkout yoyo/test project

as cvsuser

Solution usermod -G cvsgroup cvsuser as root

F Preconditions cvs import test project as testuser

cvs co test project as testuser

export CVSROOT=/home/cvsroot as cvsuser

Predicate cvs co test project as cvsuser

Solution vim group as root

I Precondition cvs -d /home/cvsroot import test project as testuser

Predicate cvs -d /home/cvsroot co test project as cvsuser

Solution vi /etc/group

This table lists the predicates correctly identified for CVS problem 2 traces (an authorized
user, cvsuser, not added to CVS group). Each predicate contains one or more steps and
the last step is a repeated command. The last step of a predicate is listed as Predicate
and the first step is listed as Precondition.

Table 4.6: Predicates correctly generated for CVS problem 2 traces

The first reason is that the user did not use repeated commands to test (users C and

H). User C used a cvs co as cvsuser to test if cvsuser had permission to access the

CVS repository. The differences between the two uses of this command was that one

specified /home/cvsroot as the repository and the other specified /home/cvsroot/.

User H used the same command line but with different environment variables spec-

ified. The base algorithm is more conservative and compares all user-specified envi-

ronment variables. Second, no predicate was found for traces in which the user did

102

User Predicate

A Preconditions wget http://localhost as root

chmod 777 index.html as root

chmod 777 public html/ as root

Predicate wget http://localhost/~testuser/index.html as root

Solution chmod 777 testuser as root

C-1 Predicate wget http://localhost/~testuser/ as root

Solution chmod o+rx /home/testuser as root

C-2 Predicate apachectl stop as root

Solution vim /etc/httpd/conf/httpd.conf as root

chmod o+rx /home/testuser as root

D Preconditions wget localhost as testuser

chmod -R 777 public html/ as testuser

Predicate wget localhost/~testuser as testuser

Solution chmod -R 777 testuser/ as testuser

H Preconditions mkdir scratch as root

wget http://localhost as root

rm index.html as root

Predicate wget http://localhost/~testuser as root

Solution chmod 755 /home/testuser/ as root

I Precondition wget http://localhost as root

Predicate wget http://localhost/~testuser as root

Solution chmod 755 /home/testuser/ as root

Table 4.7: Predicates correctly generated for Apache problem 1 traces

not fix the problem (user K). Since the user did not fix the problem, the repeated

command does not have different output features. Finally, no predicate was found for

user D’s and L’s traces because these users both used a state-based approach to fix

the problem. User D executed groups and User L examined /etc/group to discover

that cvsuser was not in the CVS group.

103

4.7.2.3 Predicates generated from Apache problem 1 traces

The Apache configuration problem 1 is caused by the Apache Web process not

having search permission to testuser’s home directory, and the solution is to give

search permission (set the world execution bit) of testuser’s home directory. The

initial state included a public html directory in testuser’s home directory.

Table 4.7 shows the correct predicate identified for each trace. Almost all pred-

icates are downloading the testuser’s home page. Most preconditions found by the

precondition heuristic are not required for the predicate to work but also do not affect

the correctness of the predicates. Predicate C-2, apachectl stop, did not seem to be

a predicate at first sight, so we examined why it was generated. We found that pred-

icate C-2 successfully detected an error in the Apache configuration file introduced

by the user. apachectl is a script that controls the Apache process and it does not

stop the Apache process if an error is detected in the configuration file.

No predicate was generated for five traces for similar reasons seen in CVS traces.

Users B and L did not fix the problem and hence no predicate was identified for their

traces. Users E and F executed a command in different directories, so the base algo-

rithm considered that command as not repeated. User F executed a wget command

as root in /root and /home directory. The base algorithm is too conservative as the

current directory does not affect the wget command.

One incorrect predicate was generated for user K’s trace. User K did not fix the

problem, so we first expected no predicate to be generated; however, the base algo-

rithm generated one predicate that was incorrect due to noise in the output features.

The predicate edits the Apache configuration file using emacs and is identified by the

base algorithm because one execution of this command has a different error message

feature and output set feature. The error message output heuristic was triggered

because the word “error” was contained in one part of the configuration file and

was sometimes displayed. The output sets varied between executions depending on

whether the user edited the configuration file. We label this “noise in output feature.”

104

User Predicate

A Predicate wget http://localhost/cgi-bin/test.pl as root

Solution chmod 755 test.pl as root

C Predicate wget http://localhost/cgi-bin/test.pl as root

Solution chmod go+r test.pl as root

D Preconditions wget localhost/cgi-bin/test.pl as testuser

vi /var/www/cgi-bin/test.pl as root

Predicate wget localhost/cgi-bin/test.pl as root

Solution vi /var/www/cgi-bin/test.pl as root

chmod 777 /var/www/cgi-bin/test.pl as root

F Predicate wget http://localhost/cgi-bin/test.pl as root

Solution chmod 755 test.pl as root

H Precondition mkdir scratch as root

Predicate wget http://localhost/cgi-bin/test.pl as root

Solution chmod 755 /var/www/cgi-bin/test.pl as root

I Predicate wget http://localhost/cgi-bin/test.pl as root

Solution chmod 755 /var/www/cgi-bin/test.pl as root

J Predicate wget 127.0.0.1/cgi-bin/test.pl as root

Solution chmod +r test.pl as root

K Predicate wget http://localhost/cgi-bin/test.pl as root

Solution chmod a+r test.pl as root

Table 4.8: Predicates correctly generated for Apache problem 2 traces

4.7.2.4 Predicates generated from Apache problem 2 traces

Apache problem 2 is due to the Apache Web process not having read permission

for the CGI Perl script and therefore not being able to execute it. The solution is

to give it read permission for that CGI script. The initial state included a CGI Perl

script at Apache’s default CGI directory, /var/www/cgi-bin.

Eight correct predicates were generated out of eleven successful traces. Table 4.8

shows these correct predicates. All correct predicates involve retrieving the CGI

105

Solution Number of traces

cvs -d /home/cvsroot init as cvsroot 3

cvs -d /home/cvsroot init as root 1

CVS problem 1 is that the repository is not initialized and the correct solution is to
initialize the repository using cvs init. Solutions are ranked by the number of traces
that use it.

Table 4.9: Solutions ranked for CVS problem 1

script. Some traces include preconditions that are not technically required, but these

preconditions do not affect the correctness of the predicates.

No predicates was generated for user B’s and user L’s traces because they executed

wget commands in different directories. The working directory did not affect the

correctness in these two cases but could cause wget to behave incorrectly when the

process executing wget does not have sufficient permissions on the working directory.

Only user E’s predicate was incorrect. User E did not fix the problem, but the

base algorithm generated one predicate. User E used links [3] to connect to the

Apache Web server. links generates files with random names, so each invocation of

links has a different output set. We consider this noise in the output set because

output sets are always different.

4.7.3 Solution ranking results

We took the solutions found by the precondition heuristic from all successful traces

and used the solution-ranking heuristic to rank them. Almost all predicates generated

by the base algorithm can be used to test the specific configuration problem, so most

solutions were correct ones.

4.7.3.1 Solutions ranked for CVS problems

Table 4.9 shows the solution ranking results for CVS problem 1. Four solutions

were generated, and all of them were correct solutions, initializing the CVS repository

with a cvs command. The solution ranking heuristic ranked the cvs init as cvsroot

106

Solution Number of traces

vi /etc/group as root 3

usermod -G cvsgroup cvsuser as root 1

CVS problem 2 is caused by an authorized user, cvsuser, not in the CVS group, and the
correct solution is to add cvsuser into the CVS group. Each solution is ranked by the
number of traces that apply the solution.

Table 4.10: Solutions ranked for CVS problem 2

Solution Number of traces

commands with the same state delta a 2

chmod 755 /home/testuser as root

chmod 777 testuser as root 1

chmod o+rx /home/testuser as root 1

chmod -R 777 testuser/ as testuser 1

vim /etc/httpd/conf/httpd.conf as root 1

This problem is caused by the Apache Web process not having enough permission to
search for /home/testuser, and the solution is to give /home/directory search permission
(execution bit) for others. Each solution is ranked by the number of traces that applies
the solution.

Table 4.11: Solutions ranked for Apache problem 1

higher than as root because more users applied it to fix the problem.

Table 4.10 shows the solution ranking results for CVS problem 2. The correct

solution, adding cvsuser to CVS group, can be done by either editing the /etc/group

file or using usermod to modify a user’s group information. These two solutions

have different output sets as vi writes to a log file to record the user’s actions. The

solution ranking heuristic ranked the editing group file higher than usermod because

it occurred in more traces that fixed the problem.

4.7.3.2 Solutions ranked for Apache problems

Table 4.11 shows the solutions ranked by the solution ranking heuristic for Apache

problem 1. The problem is that the Apache process does not have search permission

107

Solution Number of traces

commands with the same state delta as 6

chmod 755 /var/www/cgi-bin/test.pl as root

chmod 777 /var/www/cgi-bin/test.pl as root 1

chmod +r test.pl as root 1

vi /var/www/cgi-bin/test.pl as root 1

This problem is caused by the Apache Web process not having read permission for the
CGI script, and the solution is to give read permission to the CGI script. Each solution
is ranked by the number of traces that uses the solution.

Table 4.12: Solutions ranked for Apache problem 2

(the execution bit) for the /home/testuser directory, and the solution is to give that

directory global search permission. The solution vim /etc/httpd/conf/httpd.conf

that solved a user-introduced error in the configuration file was ranked the lowest as

only that user fixes his own configuration error with this command.

Table 4.12 shows the solution ranking results for Apache problem 2. This config-

uration problem was due to the Apache process not having read permission for the

CGI script, test.pl, and the solution is to give read permission to that file. Most users

fixed the configuration problem by giving read permission, and this solution is also

ranked the highest.

4.8 Discussion

When designing solutions to automatically generate predicates, our main goal is

to minimize user involvement and generate high-quality predicates. We examined

three alternative approaches before we decided on our final one. These approaches

may produce more accurate predicates but would require more user-effort.

108

4.8.1 Alternative approaches to infer predicates

The first approach we considered was to have the user explicitly turn on and off

recording when she started and finished testing the system. This required users only

to keep a mental note of turning the recording on and off. If the user forgot to turn

on or off the recording, she had to examine the user trace to determine where the

recording tool should have been turned off.

The second approach we considered was to have AutoBash observation mode

record all user interactions with the system and write them to a file. The user then

would be given the file and be required to identify which commands were used as

predicates. This approach could have recorded the most complete information as we

would not have to worry the user forgetting to turn recording on and off. It might

have been the most accurate as the user knew best what she had used for testing.

However, we used this approach in our user study and found that this approach is

very tedious for the user. Users often do not remember exactly what they were doing

when presented with a static display of commands and screen output.

The last approach we considered was to ask user-specified rules to determine

when commands were to be used as predicates. For example, a rule can specify which

executable is used only as predicates. The main problem for this approach was that

writing correct rules are time-consuming and difficult. Also, not all executable had a

distinct role of either predicate or solution.

4.8.2 Using other output features for inferring predicates

In our approach, we used three output features (exit code, error message displayed

on screen, and output set) to determine if two executions of a command should

indicate different testing results. We chose these three output features because they

are easy to collect and have shown to be effective. Some other potential useful output

features include writing to an error log or applying more sophisticated techniques to

understand screen output. Using output to an error log can be an effective output

feature as many applications only writing to an error log when an error occurs. Tan

109

et al. [75] applied natural language processing to understand when source code and

comments are inconsistent. In our approach, we only used standard error messages

but could apply natural language processing to analyze screen output and understand

application-specific error messages. As the purpose of error messages is to give users a

hint about what problem an application occurs, it may be possible to write a template

that can model error messages.

4.9 Summary

Predicates play an important role for automated configuration management tools,

such as AutoBash and Chronus. However, writing predicates by hand is tedious,

time-consuming, and requires expert knowledge. This work solves the problem of

manually writing predicates by automatically inferring predicates and solutions from

traces of users fixing configuration problems.

Our heuristics find repeated commands with different output features to identify

predicates and used output features to determine if a predicate should return true or

false. To evaluate the effectiveness of our heuristics, we conducted a user study and

collected traces from real users fixing configuration problems. In the evaluation, we

ran our heuristics to automatically generate predicates and solutions from the traces

collected in the user study. Our heuristics can generate correct predicates for four

out of ten CVS traces and for more than half of the Apache traces.

110

CHAPTER 5

Related Work

This thesis describes two research problems. The first problem we addressed

is running demanding applications on mobile computing devices. To the best of

our knowledge, our solution, Slingshot, is the first system to dynamically instantiate

replicas of stateful applications in order to improve the performance of small, resource-

poor mobile computers. Our work draws upon several areas of prior work, including

virtual machine, and process migration, cyber foraging, fault-tolerant computing, and

remote execution.

The second problem we addressed is how to make managing software configura-

tions easier. We first built AutoBash, a set of tools that automate many parts of

managing configurations. To the best of our knowledge, AutoBash is the first project

to leverage operating-system-level causality tracking and speculative execution to im-

prove configuration management.

AutoBash depends on predicates to test system state and the current approach

is to rely on expert users to hand craft predicates that can test specific problems.

Manually writing predicates is tedious, time-consuming, and not scalable with the

number of applications. This thesis addresses this problem by automatically inferring

predicates and solutions from user traces.

111

5.1 Slingshot: related work

Cyber foraging, the opportunistic use of surrogates to augment the capabilities of

mobile computers, has been proposed [10] to solve the same usability problem of run-

ning demanding applications on mobile computing devices we discussed in this thesis.

Slingshot is an instance of cyber foraging. Previous work in Spectra [34] examined

how a cyber foraging system could locate the best server and application partitioning

to use given dynamic resource constraints. In contrast, Slingshot takes this selection

as a given and provides a mechanism for utilizing surrogate resources. Balan [13] and

Goyal [39] have also proposed cyber foraging infrastructure. Compared to these sys-

tems, the major capability added by Slingshot is the ability to execute stateful services

on surrogate computers. Data staging [35] and fluid replication [49] use surrogates

to improve the performance of distributed file systems. They share common goals

with Slingshot such as minimization of latency and ease of management—however,

Slingshot applies these principles to computation rather than storage.

Slingshot’s replication strategy is a form of primary-backup fault tolerance in that

the replica on the home server allows the system to tolerate a fail-stop failure (halt

on failure) of any number of second-class replicas. Our approach is most reminis-

cent of Hypervisor [19], which used deterministic replay to provide fault tolerance

between virtual machines. In contrast to systems such as Hypervisor and ReVirt [33]

which enforce determinism at the instruction level, Slingshot enforces determinism

at the application level. This choice was driven by our desire to use a robust com-

mercial virtual machine (VMware) without modification. Our approach to enforcing

determinism was inspired by Rodrigues’ BASE [71], which provides Byzantine fault

tolerance by wrapping non-deterministic software with a layer that enforces deter-

ministic behavior. A similar approach was used in Brown’s operator undo [20].

After Chen and Noble [24] first suggested that virtual machine migration could

be an effective mechanism for process migration, several research groups have built

working prototypes. Our research focus is not on the migration mechanism itself,

but rather on how it can be used to service the needs of small, mobile clients. We

112

use the Fauxide and Vulpes components from Intel’s Internet Suspend/Resume [51]

to intercept disk I/O requests made by virtual machines. The difference between

ISR and Slingshot is that ISR executes a user’s computing environment on a single

terminal at a time. In contrast, Slingshot decomposes a user’s environment into

distinct services and replicates services on multiple computers. Slingshot hides the

perceived latency of migration and surrogate failures, while letting a user execute

applications anywhere a wireless connection exists.

Sapuntzakis [72] uses virtual machine migration, but focuses on users who com-

pute at fixed locations, rather than the mobile users that Slingshot targets. Slingshot

uses several of the optimizations suggested by Sapuntzakis, including ballooning and

content-addressable storage. These optimizations have also been suggested by Wald-

spurger [79] and Tolia [78], respectively.

The applications we have investigated so far have been easy to partition because

they were designed for client-server computing. Potentially, Slingshot could use one

of several methods that automatically partition applications. For instance, Coign [45]

partitions DCOM applications into client and server components. Globus [36], Con-

dor [17], and Legion [40] dynamically place functionality, but target grid rather than

mobile computing. Balan [12] has also provided a solution to quickly retarget appli-

cations to run on cyber foraging infrastructures. Chong et al. [26] proposed a way

to automatically divide Web applications into client and server parts that can both

secure sensitive data and minimize network communication.

Baratto’s MobiDesk [15] is similar to our VNC application in that it virtualizes a

remote desktop for mobile clients. However, MobiDesk migrates its desktop service

between well-connected machines in a cluster in order to minimize downtime during

server maintenance or upgrades. Slingshot uses replication rather than migration,

and utilizes the computational resources of surrogates located at wireless hotspots. A

MobiDesk-like cluster could serve as the ideal home server for Slingshot applications.

Conversely, although Baratto shows considerable improvement over VNC in remote

display performance, his results indicate that network latency still degrades interac-

tive performance. Thus, surrogates could improve MobiDesk performance for mobile

113

clients.

5.2 AutoBash: related work

Chronus [82] also looked at the use of checkpoint and rollback for configuration

management. Chronus uses a virtual machine monitor to implement rollback at the

granularity of the entire computer system. The VM implementation allows Chronus

to diagnose kernel bugs, but would also make it much harder to extract the causal

information used by AutoBash to guide its search. Like AutoBash, Chronus uses

user-defined predicates to test the behavior of the system. Chronus attacks a more

limited problem: finding the point in time where a previously-working system ceased

to operate correctly. AutoBash tries more generally to allow one system to learn

from others by speculatively applying and testing fixes that have worked elsewhere

for similar problems. Chronus shares our use of rollback to eliminate predicate effects,

as does the work of Joshi et al. [47] in the IntroVirt project.

We have used Speculator [62] to implement checkpoint and rollback. Rx [66]

and Pulse [53] apply operating system speculation to different domains: transparent

recovery from non-deterministic application failure and deadlock detection, respec-

tively.

Brown and Patterson’s Operator Undo [21] uses a form of checkpoint and roll-

back to allow administrators to fix mail configuration errors. However, their ap-

proach requires application modification, whereas AutoBash functionality requires

no application-level support.

PeerPressure [80] and its predecessor, Strider [81], share the same overarching

goal as AutoBash: making configuration management easier. However, AutoBash

takes a fundamentally different approach than PeerPressure or Strider; AutoBash

reasons about actions rather than state. AutoBash therefore uses causal tracking and

analysis to understand how user actions affect predicates that test system correctness,

while Strider and PeerPressure apply statistical methods to reason about similarities

between configuration state on different machines. The AutoBash approach works

114

well in environments such as Linux where configuration state may be hard to find

because it is scattered throughout the file system, rather than coalesced in a central

registry. Like AutoBash, Strider and PeerPressure observe causality to determine the

system state that causally affects buggy applications. However, unlike AutoBash,

these tools do not follow causal links across processes. So, if one process observes

state and causally affects another process that exhibits a bug, PeerPressure cannot

trace the appropriate causal chain back to the misconfigured state. Ultimately, the

problem of configuration management seems complex enough that it may be best

to combine multiple approaches such as AutoBash causal analysis and PeerPressure

state analysis.

Many prior systems reason about causal interactions. For instance, King’s Back-

Tracker [50] traces causal interactions to determine what state has been changed

during an intrusion. Aguilera et al. [6] use causal tracing of RPCs to debug perfor-

mance problems. Causeway [23] allows applications to inject metadata that follows

causal paths for distributed applications. PASS [59] uses causality to annotate files

with provenance that describes their causal inputs: our input sets try to capture

similar information, but limit the scope of information collected to specific periods of

time.

Clarify [41] improves error reporting by monitoring software execution to generate

a behavior profile when an error occurs. It then applies a classifier to match the bug

profile to erroneous execution reports previously submitted by other users. One can

regard Clarify as focusing on causality within process execution, whereas AutoBash

monitors causal interactions external to a process. AutoBash may benefit from using

similar classification and machine learning techniques to those employed by Clarify.

AutoBash’s replay mode currently uses a simple approach, Hamming distance

calculated over a vector of predicate results, to determine which solutions to try first.

Other approaches, drawing from machine learning and information retrieval, could

potentially do a better job of identifying bugs and their corresponding solutions. For

example, Cohen et al. [29] showed that an approach that uses statistical methods to

capture relationships between low-level performance metrics and high-level behaviors

115

outperformed an approach that used only the low-level metrics in tasks such as root-

cause analysis and behavioral clustering. Attariyan and Flinn [9] aggregates the input

sets for standard predicates to rank solutions and showed that correct solutions were

ranked highest even when predicates were not written to test specific configuration

problems.

5.3 Inferring predicates and solutions from user

traces: related work

Nagaraja et al. [60] observed that operator mistakes are an important factor in the

unavailability of online services and conducted experiments with human operators.

Their experiments asked human operators to perform maintenance tasks and trou-

bleshoot misconfigurations for their three-tiered Internet service. Their experiments

are similar to our user study but since they used a three-tiered Internet service and

we focus on configuration management for desktops and stand-alone servers we did

not re-use their traces.

The software testing research community faces the same problem — manually

writing test cases for software testing is tedious and time-consuming. Test automa-

tion, including automatic test generation and test oracles, is most related to this work.

Automatic test case generation often requires a specification [18, 27, 31, 42, 54, 64]

for the program being tested. Unit test cases can be generated by symbolic execution

combined with concrete execution [74]. We did not use this technique to automati-

cally generate predicates because writing a specification requires detailed knowledge

of the program, and our solution does not require one. Many types of specification-

based tests can generate test cases that have a thorough coverage but our approach

can only infer predicates that a user executed. Our approach can improve its cov-

erage by observing many users solving different configuration problems for the same

software program.

The second part of test automation is a test oracle [69] that determines whether

116

a system behaves correctly during test execution. Most specification-based testing

requires the specification to also describe what the expected output of a test case.

Researchers also have shown approaches to automate test oracles for reactive sys-

tems from specifications [69, 68] and for GUI applications using formal models [55].

Our work did not require specifications or formal models but assumed that the last

execution of a predicate is the expected result and used that as our oracle.

Strider [81] compares the registry of a misconfigured machine to a prior healthy

snapshot to find bad registry entries and queries a database of known misconfiguration

for the correct content. To eliminate the step of manually identifing a healthy state,

PeerPressure [80] compares the registry of a misconfigured machine with those from a

set of sample machines and applies statistical methods to rank a set of suspects. Both

systems find solutions by using the content of a reference computer (a past healthy

state or the most popular value from the sample machines) while we find solutions

using causal dependency information and rank them by popularity among successful

traces.

Snitch [56] collected configuration traces using an always-on tracing environment

and used an outcome marker to explicitly identify faulty application runs. They used

exit codes as the outcome marker, while we used exit codes, error messages on the

screen, and output sets to identify if two executions of a repeated command exhibit

distinctive execution behavior.

117

CHAPTER 6

Conclusion

This chapter concludes this thesis and includes the contributions this thesis makes

as well as a summary.

6.1 Contributions

This thesis makes contributions in two major areas. The first is its conceptual

contributions which include the novel ideas generated by this work. The second area

is its two artifacts: Slingshot and AutoBash.

6.1.1 Conceptual contributions

After the idea of cyber foraging was proposed by the mobile computing commu-

nity, researchers have worked on improving different aspects of cyber foraging. The

first key novel idea of this thesis is exploring replication-based cyber foraging. Repli-

cating applications has the advantage of improving both application response time

and reliability when surrogate computers fail.

OS-level speculative execution has been used to improve performance for dis-

tributed systems and security checks. This thesis is the first to explore using OS-

level speculative execution to automate managing configurations. Causal information

tracking has been applied to intrusion detection, deadlock detection, and performance

debugging. This thesis is the first to explore causal information between solutions

118

and predicates to improve one key component of configuration management.

Automatically generating test cases to automate software testing has been an

active research problem in the software engineering community. Instead of having

developers write specifications or models, this thesis explores automatically generating

predicates from user input. This thesis used traces from users fixing configuration

problems and applied heuristics to infer predicates.

6.1.2 Artifacts

To validate this thesis, I have developed two artifacts: Slingshot and AutoBash.

Slingshot is the first cyber-foraging infrastructure that replicates applications on mul-

tiple computers to improve response time and data safety. Slingshot also uses virtual

machines to encapsulate application-specific state to make replicating application to

different physical machines easy. To manage replicas on surrogate computers and the

home machines, Slingshot uses the checkpoint-and-replay technique often seen in the

fault tolerance literature.

AutoBash is the first automated configuration management tools to use OS-level

speculative execution to find solutions for configuration problems. AutoBash’s obser-

vation mode is a modified bash shell that automatically runs predicates to test system

state after each command and provides rollback capability. AutoBash’s replay mode

is a tool that speculatively executes solutions until it finds a solution that all pred-

icates would return true. The replay mode also tracks causal information between

predicates and solutions to reduce the time for regression testing.

6.2 Closing remarks

This thesis addresses two research problems. The first problem is how to run

demanding applications on mobile computers. To solve this problem, we designed

and built Slingshot, a replicated cyber foraging infrastructure. Slingshot replicates

demanding applications of a mobile computer to run on both nearby surrogate com-

puters and a home computer that the user owns; the surrogate computer can provide

119

swift response time and the home computer can be a safe repository.

The second problem this thesis examined is how to make configuration manage-

ment for software systems easier. We designed and built AutoBash that makes it eas-

ier to manage software systems. AutoBash leverages OS-level speculative execution

to automatically test system state and find solutions to fix configuration problems.

AutoBash also uses causality tracking to improve the time to find a solution. We also

extend AutoBash by developing heuristics that can infer predicates from user fixing

configuration problems.

120

APPENDIX

121

APPENDIX A

User study document

A.1 Informed consent

Study name Inferring Software Configuration Predicates from User Traces

Contact person The primary investigator for this project – to whom questions

and problems should be directed – is Ya-Yunn Su, email: yysu@umich.edu. The

faculty advisor is Jason Flinn, email: jflinn@umich.edu

Description of research A common problem facing a computer user is trou-

bleshooting software misconfigurations. Previously, we built a tool that can automat-

ically search for solutions for misconfigurations if the user provides us with potential

solutions and a set of predicates that can check if the misconfiguration is resolved.

In this study, we would like to record users fixing configuration problems and apply

different algorithms to the traces after wards to infer what predicates the user applied.

Description of human subject involvement You will be asked to solve six

configuration problems and all your keyboard strokes will be recorded. We ask you to

complete a short background survey at the beginning and end of the study. Also, we

would like to interview you at the end of the study to understand your experiences

in troubleshooting misconfigurations.

Length of human subject participation We ask that you come in to our

laboratory in the Computer Science and Engineering building on North campus. We

estimate that the total time commitment for this study is 1–2 hours.

122

Risks There are no foreseeable physical, psychological or social risks to you with

this study. Since our study will be conducted on our laboratory machine, no personal

information on your computer is disclosed. We use an existing commercial product to

record your interactions (keystrokes) on our machine but you can turn the recording

off at any time.

Expected benefits to subjects or to others Although you may not receive

direct benefit from your participation, others may ultimately benefit from the knowl-

edge obtained in this study.

Costs to subject resulting from participation in the study There are no

monetary costs to you.

Payments to subject for participation in the study You will be compensated

with a $20 Amazon.com gift certificate for participation in this study. You will

receive $10 Amazon.com gift certificate if you stay at least one hour but do not

successfully complete the study. Payment amounts for other situations will be at the

sole discretion of the Principal Investigator. You will need to fill out a payment form

to receive the payment.

Confidentiality You will not be identified in any reports on this study. Records

will be kept confidential to the extent provided by federal, state, and local law. How-

ever, the Institutional Review Board, the sponsor of the study (i.e. NIH, FDA, etc.),

or university and government officials responsible for monitoring this study may in-

spect these records.

Contact information Should you have any questions regarding this study, please

contact Ya-Yunn Su at yysu@umich.edu or (734)763-5107 or Jason Flinn at

jflinn@umich.edu or (734)936-5983.

IRB contact information Should you have questions regarding your rights as

a research participant, please contact the Institutional Review Board, 540 E. Liberty

Street, Suite 202, Ann Arbor, MI 48104-2210, (734) 936-0933, email:

irbhsbs@umich.edu.

Your participation in this project is voluntary. Even after you sign the informed

123

consent document, you may decide to leave the study at any time without penalty or

loss of benefits to which you may otherwise be entitled.

You may skip or refuse to answer any survey question without affecting your study

compensation or academic standing/record.

One copy of this document will be kept together with the research records of this

study. Also, you will be given a copy to keep.

I have read of the information given above. The investigator has offered to answer

any questions I may have concerning the study. I hereby consent to participate in the

study.

Printed Name Consenting signature

Audio recording of subjects

As part of this study, we wish to interview you and ask questions about your

experience and would like to audiotape this interview. Please sign below if you are

willing to have this interview recorded. You may still participate in this study if you

are not willing to have the interview recorded.

Signature Date

A.2 User study hand out

A.2.1 General Instructions

You are new to an IT group in a small software company and are asked to assist

your colleague to troubleshoot two misconfigurations for two applications: a version

control system and a Web server. For each application, there will be more detailed

instructions on what the requirements for that application are. You will troubleshoot

124

each misconfiguration in a separate virtual machine, and each virtual machine will

not have network access. A laptop computer will be available to you to look up

information on the Internet.

Here is the procedure you will take to troubleshoot a misconfiguration.

1. Before you start troubleshooting a misconfiguration for an application, read the

instructions associated with that application.

2. The investigator will start VMware Workstation in console mode.

3. Start troubleshooting:

• You will be given 15 minutes for each troubleshooting task. This time limit

is to ensure the progress of this study.

• Enter all commands into the virtual machine the investigator just started.

• Think aloud during each task. For example, state what you are looking for,

what you are testing, etc. The investigator will play a passive observer role,

transcribe what you say, and also record audio to ensure the completeness

of the information captured.

4. Enter exit when you complete the troubleshooting task.

5. Open the file /test/tmp/commands which contains all the commands you typed

and their screen output. Specify the category (more details about category

below) to which each command belongs.

A.2.2 Command Categories

We divide commands in the troubleshooting process into three categories: the

first category is “Testing (T) if the configuration problem is solved.” Commands in

this category are any commands the user applies to test if the system is working.

Examples of testing commands are pinging localhost, checking if a user has the right

file permission to a file, etc. Based on the results of testing, the user determines the

125

root cause of the misconfiguration and takes action to remove the root cause. These

actions are in the second category: “Fixing (F) the configuration problem.” These

are the commands that change the computer state, such as editing a configuration

file or setting a environment variable, that can remove the root cause. The last

category is “Others (O),” which include commands that cannot be easily categorized

into “Testing or Fixing.” Commands in this category can be commands that are

typed wrong, or looking up manual pages, etc.

A.2.3 Pre-usage Survey

A.2.3.1 Familiarity with CVS version control

How would you describe your familiarity with the CVS version control system.

Please select all that apply.

• I have basic knowledge of CVS version control system. � Yes � No.

• I use CVS regularly. � Yes � No.

• If the answer to the previous question is “Yes,” please answer how often you

use CVS.

� Once a week � Once a month � Once every three months � Other. Please

specify:

• I have set up a CVS repository before. � Yes � No.

• If the answer to the previous question is “Yes,” please specify the number of

times you have set up a CVS repository in the past year.

• I have troubleshot CVS repository configuration problems before. � Yes � No.

126

• If the answer to the previous question is “Yes,” please specify the details of the

configuration problems that you solved.

A.2.3.2 Familiarity with Apache Web server configuration

How would you describe your familiarity with the Apache Web server. Please

select all that apply.

• I have set up an Apache Web server before. � Yes � No.

• If your answer to the previous question is “Yes,” please specify what features

you have set up.

The Apache Web server I set up can � display a user’s homepages. � execute

CGI scripts. � handle secure communication. � handle PHP scripts. � handle

virtual hosts. � Other, please specify

• I have troubleshot Apache Web server configuration problems before. � Yes �

No.

• If your answer to the previous question is “Yes,” please specify the details of

the configuration problems that you solved.

• I understand how the Apache Web server executes CGI scripts. � Yes � No

127

A.2.3.3 General questions

What was the most challenging/difficult configuration task you have ever per-

formed? The term “configuration task” includes but is not limited to OS and software

installation, (re)configuration, troubleshooting misconfiguration, and upgrade.

Why do you consider that task challenging/difficult?

A.2.4 TASK: Troubleshooting CVS Version Control Miscon-

figurations

A.2.4.1 Instruction

You just join an IT department in a small software company and your manager

asks the IT department to set up a source version control system to manage source

code.

Your manager does not know much about setting up and configuring a version

control system but knows what he would like the system to achieve. He would like

the version control system to be able to:

• Allow each software developer to check in and out projects he or other users in

the group have previously checked in.

• Restrict file access of the repository to only users in the development team.

Your colleague decided to use CVS version control system and has done some

work in setting up a repository. He gives you the task of testing the CVS repository

locally (that is, on the same machine and not via a network) and troubleshooting any

misconfigurations you come along.

128

Here is the work your colleague has done

1. Read the CVS user manual.

2. Created a new user cvsroot, which has cvsgroup as its login group and

/home/cvsroot as its home directory.

3. Initialized /home/cvsroot to be the CVS repository by executing

cvs -d /home/cvsroot init.

4. Obtained a list of software developers who can have access to the CVS repository

(cvsuser and yourself, testuser) and a list of other users who should not have

access (noncvsuser).

5. Created a test directory at /home/testuser/test project and a file

/home/testuser/test project/testfile.

Your colleague has not imported any project (or modules) into the CVS repository,

therefore, there are no projects (or modules) in the CVS repository.

A.2.4.2 Cheat Sheet

Here is some useful information for you to finish your task.

• The CVS user manual is located at http://ximbiot.com/cvs/manual/stable.

The “Overview,” “The Repository,” and “Starting a project with CVS” sections

are especially useful.

• The CVS command manual is located at

http://ximbiot.com/cvs/manual/stable’s Section “Guide to CVS commands”

and “Quick reference to CVS commands.”

A.2.4.3 Useful information

Since you are limited to console mode, here is some useful information.

129

• You are logged in as testuser (password is testuser) and the password for root

account is also testuser.

• You may start by creating test cases that demonstrate the configuration problem

and use them to guide your troubleshooting process.

• Read the requirements for each application as your goal is to troubleshoot each

application so that it meets the requirements.

• Use su to switch between two different users. For example, type su and enter

the root password (testuser) to become root. Type exit to become testuser

again. Since you do not have other users’ passwords, you can first become root

and become that user.

• Use chmod to change directory or file permissions.

• Use chown to change the owner of a file or directory.

A.2.4.4 TASK: Training Session for CVS

In this training session, you are given a sample CVS version control system miscon-

figuration to troubleshoot and will become familiarized with basic CVS commands.

Remember that your goal is to make sure the CVS repository is configured in a way

that meets your manager’s requirements:

• Allow each software developer to check in and out projects he or other users in

the group have previously checked in.

• Restrict file access of the repository to only users in the development team.

The configuration problem here is that the CVS repository is not initialized: your

colleague did not execute cvs -d /home/cvsroot init.

1. The investigator starts a virtual machine.

2. Start troubleshooting:

130

• Think aloud during each task. For example, state what you are looking

for, what you are testing, etc.

• Enter all commands into the virtual machine the investigator just started.

• Enter exit when you complete the troubleshooting task.

3. After you finish troubleshooting this configuration problem, open the file

/test/tmp/commands, which numbers all commands you have typed and their

screen output. For each command, specify the category of that command:

• F: Fixing the problem.

• UF: Undoing a prior command used for fixing.

• T: Testing if the problem is solved. Also specify ’S’ if the screen output

indicates the testing succeeds and ’F’ if the screen output indicates that

the testing fails.

• UT: Undoing a prior command used for testing.

• O: Others, any command that you cannot easily categorize into any of the

above.

A.2.4.5 TASK: Troubleshooting Session for CVS

Now we will begin the real troubleshooting sessions for CVS. You will follow the

same steps as in the training session and have the same goal as in the training session.

However, the investigator will not tell you what the misconfiguration is and there will

be only one configuration problem for each virtual machine.

Configuration Problem 1

1. The investigator starts a virtual machine.

2. Start troubleshooting:

• Think aloud during each task. For example, state what you are looking

for, what you are testing, etc.

131

• Enter all commands into the virtual machine the investigator just started.

• Enter exit when you complete the troubleshooting task.

3. After you finish troubleshooting this configuration problem, open the file

/test/tmp/commands, which numbers all commands you have typed and their

screen output. For each command, specify the category of that command:

• F: Fixing the problem.

• UF: Undoing a prior command used for fixing.

• T: Testing if the problem is solved. Also specify ’S’ if the screen output

indicates the testing succeeds and ’F’ if the screen output indicates that

the testing fails.

• UT: Undoing a prior command used for testing.

• O: Others, any command that you cannot easily categorize into any of the

above.

Configuration Problem 2

1. The investigator starts a virtual machine.

2. Start troubleshooting:

• Think aloud during each task. For example, state what you are looking

for, what you are testing, etc.

• Enter all commands into the virtual machine the investigator just started.

• Enter exit when you complete the troubleshooting task.

3. After you finish troubleshooting this configuration problem, open the file

/test/tmp/commands, which numbers all commands you have typed and their

screen output. For each command, specify the category of that command:

• F: Fixing the problem.

• UF: Undoing a prior command used for fixing.

132

• T: Testing if the problem is solved. Also specify ’S’ if the screen output

indicates the testing succeeds and ’F’ if the screen output indicates that

the testing fails.

• UT: Undoing a prior command used for testing.

• O: Others, any command that you cannot easily categorize into any of the

above.

A.2.5 TASK: Troubleshooting Apache Web Server Miscon-

figurations

You are new to an IT department in a small software company and your manager

asked the IT group to set up a Web server for the company.

Your manager does not know much about setting up or configuring a Web server

but knows what he would like the Web server to achieve. He would like the Web

server to be able to:

• Display the company Web page.

• Display each user’s home page.

• Generate dynamic content for the company.

Your colleague decided to choose the Apache Web server for the company’s Web

server. He breaks the Apache Web server setup into three stages and has done some

work in each stage. He told you to test the Apache Web server locally and troubleshoot

any configuration problems you come along.

Stage 1

Set up the Apache Web server to display the company Web page.

Your colleague planned to use the Apache Web server’s default page as “the com-

pany’s Web page” for testing. Here is the work your colleague has done.

1. Downloaded the Apache Web server version 2.0.50 rpm package from

http://www.apache.org.

133

2. Installed the rpm package using Linux package management tool.

3. Tested by starting the Apache Web server and retrieving the Apache Web server

default Web page from http://localhost.

Stage 2 Configured the Apache Web server to display each user’s home page.

Your colleague planned to use your (testuser) home page to test. Here is the

work he has done to display each user’s home page:

1. Referred to http://httpd.apache.org/docs/2.0/urlmapping.html.

2. Created a /home/testuser/public html directory and an index.html.

Stage 3

Configured the Apache Web server to generate dynamic content.

Your colleague chose CGI (common gateway interface) to generate dynamic con-

tent and planned to use a test.pl Perl script to test. Here is the work that he has

done.

1. Referred to http://httpd.apache.org/docs/2.0/howto/cgi.html on how to

generate dynamic content with CGI.

2. Created a sample CGI script test.pl and put that script at /var/www/cgi-bin.

The expected output of executing this CGI script is returning the environment

variables.

3. Edited httpd.conf to specify the directory /var/www/cgi-bin contains only

CGI scripts.

A.2.5.1 Cheat Sheet

Here is some useful information for you to finish your task.

• The Apache Web server manual is located at

http://httpd.apache.org/docs/2.0/.

134

• Run apachectl start to start the Apache Web server.

Run apachectl stop to cleanly shut down the Apache Web server.

• The Apache Web server’s access and error logs are located at /etc/httpd/logs/.

• The Apache Web server’s default configuration file httpd.conf is located at

/etc/httpd/conf/

• The Apache Web server’s default document root is located at /var/www/htdocs

• The Apache Web server’s default CGI script directory is located at

/var/www/cgi-bin

A.2.5.2 Useful information:

Since you are limited to console mode, here is some useful information.

• You are logged in as testuser (password is testuser) and the password for root

account is also testuser.

• You may start by creating test cases that demonstrate the configuration problem

and use them to guide your troubleshooting process.

• Read the requirements for each application as your goal is to troubleshoot each

application so that it meets the requirements.

• Use su to switch between two different users. For example, type su and enter

the root password (testuser) to become root. Type exit to become testuser

again.

• Use wget to retrieve a Web page from a Web server.

• Use chmod to change directory or file permissions.

• Use chown to change the owner of a file or directory.

135

A.2.5.3 TASK: Training Session for Apache Web Server

In this training session, you are given a sample Apache Web server misconfigu-

ration to troubleshoot and become familiarized with basic Apache Web server com-

mands. The configuration problem here is that the default CGI directory

(/usr/local/apache2/cgi-bin) not configured in the Apache Web server’s configu-

ration file and CGI scripts in that directory cannot be executed.

1. The investigator starts a virtual machine.

2. Start troubleshooting:

• Think aloud during each task. For example, state what you are looking

for, what you are testing, etc.

• Enter all commands into the virtual machine the investigator just started.

• Enter exit when you complete the troubleshooting task.

3. After you finish troubleshooting this configuration problem, open the file

/test/tmp/commands, which numbers all commands you have typed and their

screen output. For each command, specify the category of that command:

• F: Fixing the problem.

• UF: Undoing a prior command used for fixing.

• T: Testing if the problem is solved. Also specify ’S’ if the screen output

indicates the testing succeeds and ’F’ if the screen output indicates that

the testing fails.

• UT: Undoing a prior command used for testing.

• O: Others, any command that you cannot easily categorize into any of the

above.

A.2.5.4 TASK: Troubleshooting Session for Apache Web Server

Now we begin the real troubleshooting sessions for the Apache Web server. You

will follow the same steps as in the training session but the investigator will not tell

136

you what the misconfiguration is. There will be only one configuration problem for

each virtual machine.

Configuration Problem 1

1. The investigator starts a virtual machine.

2. Start troubleshooting:

• Think aloud during each task. For example, state what you are looking

for, what you are testing, etc.

• Enter all commands into the virtual machine the investigator just started.

• Enter exit when you complete the troubleshooting task.

3. After you finish troubleshooting this configuration problem, open the file

/test/tmp/commands, which numbers all commands you have typed and their

screen output. For each command, specify the category of that command:

• F: Fixing the problem.

• UF: Undoing a prior command used for fixing.

• T: Testing if the problem is solved. Also specify ’S’ if the screen output

indicates the testing succeeds and ’F’ if the screen output indicates that

the testing fails.

• UT: Undoing a prior command used for testing.

• O: Others, any command that you cannot easily categorize into any of the

above.

Configuration Problem 2

1. The investigator starts a virtual machine.

2. Start troubleshooting:

• Think aloud during each task. For example, state what you are looking

for, what you are testing, etc.

137

• Enter all commands into the virtual machine the investigator just started.

• Enter exit when you complete the troubleshooting task.

3. After you finish troubleshooting this configuration problem, open the file

/test/tmp/commands, which numbers all commands you have typed and their

screen output. For each command, specify the category of that command:

• F: Fixing the problem.

• UF: Undoing a prior command used for fixing.

• T: Testing if the problem is solved. Also specify ’S’ if the screen output

indicates the testing succeeds and ’F’ if the screen output indicates that

the testing fails.

• UT: Undoing a prior command used for testing.

• O: Others, any command that you cannot easily categorize into any of the

above.

138

BIBLIOGRAPHY

139

BIBLIOGRAPHY

[1] CVS - Concurrent Versions System. http://cvs.nongnu.org/.

[2] GCC, the GNU Compiler Collection. http://gcc.gnu.org/.

[3] Links home page. http://www.jikos.cz/˜mikulas/links/.

[4] RealVNC. http://www.realvnc.com/.

[5] Microsoftw next-generation secure computing base - technical faq. Tech. rep.,
Microsoft Corporate, 2003.

[6] Aguilera, M. K., Mogul, J. C., Wiener, J. L., Reynolds, P., and

Muthitacharoen, A. Performance debugging for distributed systems of black
boxes. In Proceedings of the 19th ACM Symposium on Operating Systems Prin-
ciples (Bolton Landing, NY, October 2003), pp. 74–89.

[7] The Apache Software Foundation. Apache HTTP Server Project.
http://httpd.apache.org/.

[8] Applian Technologies Inc. Freecorder Toolbar - Free Sound Recorder.
http://applian.com/sound-recorder/.

[9] Attariyan, M., and Flinn, J. Using causality to diagnose configuration bugs.
In Proceedings of the 2008 USENIX Annual Technical Conference (USENIX ’08)
(Boston, MA, June 2008).

[10] Balan, R., Flinn, J., Satyanarayanan, M., Sinnamohideen, S., and

Yang, H.-I. The case for cyber foraging. In the 10th ACM SIGOPS European
Workshop (Saint-Emilion, France, September 2002).

[11] Balan, R. K. Simplifying Cyber Foraging. PhD thesis, School of Computer
Science, Carnegie Mellon University, 2006.

[12] Balan, R. K., Gergle, D., Satyanarayanan, M., and Herbsleb, J.

Simplifying cyber foraging fro mobile devices. In Proceedings of the 5th Inter-
national Conference on Mobile Systems, Applications and Services (San Juan,
Puerto Rico, June 2007), pp. 272–285.

140

[13] Balan, R. K., Satyanarayanan, M., Park, S., and Okoshi, T. Tactics-
based remote execution for mobile computing. In Proceedings of the 1st Interna-
tional Conference on Mobile Systems, Applications and Services (San Francisco,
CA, May 2003), pp. 273–286.

[14] Barak, A., and Wheeler, R. Mosix: An integrated multiprocessor unix. In
Proceedings of the 1989 USENIX Annual Technical Conference (San Diego, CA,
January 1989), pp. 101–112.

[15] Baratto, R. A., Potter, S., Su, G., and Nieh, J. MobiDesk: Mobile
virtual desktop computing. In Proceedings of the 10th Annual Conference on
Mobile Computing and Networking (Philadelphia, PA, Sept/Oct 2004), pp. 1–
16.

[16] Barham, P., Dragovic, B., Fraser, K., Hand, S., and Harris, T. Xen
and the art of virtualization. In Proceedings of the 19th ACM Symposium on
Operating Systems Principles (Bolton Landing, NY, October 2003), pp. 164–
177.

[17] Basney, J., and Livny, M. Improving goodput by co-scheduling CPU and
network capacity. International Journal of High Performance Computing Appli-
cations 13, 3 (Fall 1999).

[18] Boyapati, C., Khurshid, S., and Marinov, D. Korat: Automated testing
based on java predicates, 2002.

[19] Bressoud, T. C., and Schneider, F. B. Hypervisor-based fault-tolerance.
In Proceedings of the 15th ACM Symposium on Operating Systems Principles
(Copper Mountain, CO, December 1995), pp. 1–11.

[20] Brown, A. B., and Patterson, D. A. Rewind, repair, replay: Three R’s
to dependability. In the 10th ACM SIGOPS European Workshop (St. Emilion,
France, September 2002).

[21] Brown, A. B., and Patterson, D. A. Undo for operators: Building an
undoable e-mail store. In Proceedings of the 2003 USENIX Technical Conference
(San Antonio, TX, June 2003).

[22] Carson, M. Adaptation and Protocol Testing thorugh Network Emulation.
NIST, http://snad.ncsl.nist.gov/itg/nistnet/slides/index.htm.

[23] Chanda, A., Elmeleegy, K., Cox, A. L., and Zwaenepoel, W. Cause-
way: Operating system support for controlling and analyzing the execution of
distributed programs. In Proceedings of the 10th Workshop on Hot Topics in
Operating Systems (HotOS-X) (Santa Fe, NM, June 2005).

[24] Chen, P., and Noble, B. When Virtual is Better Than Real. In Proceedings
of the 8th IEEE Workshop on Hot Topics in Operating Systems (Schloss Elmau,
Germany, May 2001).

141

[25] Cheriton, D. The v distributed system. Communications of ACM 31, 3 (March
1988), 314 – 333.

[26] Chong, S., Liu, J., Myers, A. C., Qi, X., Vikram, K., Zheng, L., and

Zheng, X. Secure web applications via automatic partitioning. In SOSP07
(Stevenson, WA, October 2007).

[27] Chow, T. S. Testing software design modeled by finite-state machines. IEEE
Transactions on Software Engineering 4, 3 (1978), 178–187.

[28] Clark, C., Fraser, K., Hand, S., Hansen, J. G., Jul, E., Limpach, C.,

Pratt, I., and Warfield, A. In The Proceedings of the 2nd Symposium on
Networked Systems Design and Implementation (NSDI ’05) (Boston, MA, May
2005).

[29] Cohen, I., Zhang, S., Goldszmidt, M., Symons, J., Kelly, T., and

Fox, A. Capturing, indexing, clustering, and retrieving system history. In
Proceedings of the 20th ACM Symposium on Operating Systems Principles
(Brighton, United Kingdom, October 2005), pp. 105–118.

[30] Cox, L. P., Murray, C. D., and Noble, B. D. Pastiche: Making backup
cheap and easy. In Proceedings of the 5th Symposium on Operating Systems
Design and Implementation (Boston, MA, December 2002), pp. 285–298.

[31] Dalal, S. R., Jain, A., Karunanithi, N., Leaton, J. M., Lott, C. M.,

Patton, G. C., and Horowitz, B. M. Model-based testing in practice, May
1999.

[32] Douglis, F., and Ousterhout, J. Transparent process migration: Design
alternatives and the sprite implementation. Software Practice and Experience
21, 7 (August 1991).

[33] Dunlap, G. W., King, S. T., Cinar, S., Basrai, M. A., and Chen,

P. M. ReVirt: Enabling intrusion analysis through virtual-machine logging and
replay. In Proceedings of the 5th Symposium on Operating Systems Design and
Implementation (Boston, MA, December 2002), pp. 211–224.

[34] Flinn, J., Narayanan, D., and Satyanarayanan, M. Self-tuned re-
mote execution for pervasive computing. In Proceedings of the 8th Workshop
on Hot Topics in Operating Systems (HotOS-VIII) (Schloss Elmau, Germany,
May 2001), pp. 61–66.

[35] Flinn, J., Sinnamohideen, S., Tolia, N., and Satyanarayanan, M.

Data staging for untrusted surrogates. In Proceedings of the 2nd USENIX Con-
ference on File and Storage Technology (San Francisco, CA, March/April 2003),
pp. 15–28.

[36] Foster, I., Kesselman, C., Nick, J., and Tuecke, S. Grid services for
distributed system integration. Computer 35, 6 (2002).

142

[37] Gambiroza, V., Sadeghi, B., and Knightly, E. W. End-to-end perfor-
mance and fairness in multihop wireless backhaul networks. In Proceedings of the
10th International Conference on Mobile Computing and Networking (Philadel-
phia, PA, 2004), pp. 287–301.

[38] Garfinkel, T., Pfaff, B., Chow, J., Rosenblum, M., and Boneh, D.

Terra: A virtual machine-based platform for trusted computing. In Proceedings
of the 19th ACM Symposium on Operating Systems Principles (Bolton Landing,
NY, October 2003), pp. 193–206.

[39] Goyal, S., and Carter, J. A lightweight secure cyber foraging infrastruc-
ture for resource-constrained devices. In Proceedings of the 6th IEEE Workshop
on Mobile Computing Systems and Applications (Lake Windermere, England,
December 2004).

[40] Grimshaw, A. S., and Wulf, W. A. Legion: Flexible support for wide-area
computing. In Proceedings of the 7th ACM SIGOPS European Workshop (1996).

[41] Ha, J., Rossbach, C. J., Davis, J. V., Roy, I., Ramadan, H. E., Porter,

D. E., Chen, D. L., and Witchel, E. Improved error reporting for software
that uses black-box components. In Proceedings of the Conference on Program-
ming Language Design and Implementation 2007 (San Diego, CA, 2007).

[42] Harel, D. Statecharts: A visual formalism for complex systems. Science of
Computer Programming 8, 3, 231–274.

[43] Holland, D. A., Josephson, W., Magoutis, K., Seltzer, M., Stein,

C., and Lim, A. Research issues in no-futz computing. In Proceedings of the 8th
Workshop on Hot Topics in Operating Systems (HotOS-VIII) (Schloss Elmau,
Germany, May 2001), pp. 106–110.

[44] Huang, Q., Wang, H. J., and Borisov, N. Privacy-preserving friends
troubleshooting network. In Proceedings of the 12th Network and Distributed
System Security Symposium (San Diego, CA, February 2005), pp. 245–257.

[45] Hunt, G. C., and Scott, M. L. The Coign automatic distributed partitioning
system. In Proceedings of the 3rd Symposium on Operating Systems Design and
Implementation (New Orleans, LA, February 1999), pp. 187–200.

[46] Jefferson, D., Beckman, B., Wieland, F., Blume, L., DiLoreto, M.,

P.Hontalas, Laroche, P., Sturdevant, K., Tupman, J., Warren, V.,

Weidel, J., Younger, H., and Bellenot, S. Time Warp operating system.
In Proceedings of the 11th ACM Symposium on Operating Systems Principles
(Austin, TX, November 1987), pp. 77–93.

[47] Joshi, A., King, S. T., Dunlap, G. W., and Chen, P. M. Detecting past
and present intrusions through vulnerability-specific predicates. In Proceedings
of the 20th ACM Symposium on Operating Systems Principles (Brighton, United
Kingdom, October 2005), pp. 91–104.

143

[48] Kephart, J., and Chess, D. M. The vision of autonomic computing. Com-
puter 36, 1 (2003), 45–52.

[49] Kim, M., Cox, L. P., and Noble, B. D. Safety, visibility, and performance
in a wide-area file system. In Proceedings of the 1st USENIX Conference on File
and Storage Technologies (January 2002).

[50] King, S. T., and Chen, P. M. Backtracking intrusions. In Proceedings of the
19th ACM Symposium on Operating Systems Principles (Bolton Landing, NY,
October 2003), pp. 223–236.

[51] Kozuch, M., and Satyanarayanan, M. Internet Suspend/Resume. In
Proceedings of the 4th IEEE Workshop on Mobile Computing Systems and Ap-
plications (Callicoon, NY, June 2002).

[52] Li, J., Krohn, M., Mazières, D., and Shasha, D. Secure untrusted data
repository (SUNDR). In Proceedings of the 6th Symposium on Operating Systems
Design and Implementation (San Francisco, CA, December 2004), pp. 121–136.

[53] Li, T., Ellis, C. S., Lebeck, A. R., and Sorin, D. J. Pulse: A dynamic
deadlock detection mechanism using speculative execution. In Proceedings of the
2005 USENIX Annual Technical Conference (31–44, April 2005).

[54] Marinov, D., and Khurshid, S. Testera: A novel framework for automated
testing of java programs. In Proceedings of the 16th IEEE International Con-
ference on Automated Software Engineering (ASE) (San Diego, CA, November
2001).

[55] Memon, A. M., Pollack, M. E., and Soffa, M. L. Automated test oracles
for guis. In Proceedings of the 8th ACM SIGSOFT International Symposium on
Foundations of Software Engineering.

[56] Mickens, J., Szummer, M., and Narayanan, D. Snitch: Interactive deci-
sion trees for troubleshooting misconfigurations. In In Proceedings of the 2007
Workshop on Tackling Computer Systems Problems with Machine Learning Tech-
niques (Cambridge, MA, April 2007).

[57] Microsoft Corporation. Universal Plug and Play Forum, June 1999.
http://www.upnp.org.

[58] Mummert, L., Ebling, M., and Satyanarayanan, M. Exploiting weak
connectivity in mobile file access. In Proceedings of the 15th ACM Symposium
on Operating Systems Principles (Copper Mountain, CO, Dec. 1995).

[59] Muniswamy-Reddy, K.-K., Holland, D. A., Braun, U., and Seltzer,

M. Provenance-aware storage systems. In Proceedings of the 2006 USENIX
Annual Technical Conference (Boston, MA, May/June 2006), pp. 43–56.

144

[60] Nagaraja, K., Oliveria, F., Bianchini, R., Martin, R., and Nguyen,

T. Understanding and dealing with operator mistakes in internet services. In
Proceedings of the 6th Symposium on Operating Systems Design and Implemen-
tation (San Francisco, CA, December 2004), pp. 61–76.

[61] Nath, P., Kozuch, M., O’Hallaron, D., Harkes, J., Satyanarayanan,

M., Tolia, N., and Toups, M. Design tradeoffs in applying content address-
able storage to enterprise-scale systems based on virtual machines. In Proceedings
of the 2006 USENIX Annual Technical Conference (USENIX ’06) (Boston, MA,
June 2006).

[62] Nightingale, E. B., Chen, P. M., and Flinn, J. Speculative execution in a
distributed file system. In Proceedings of the 20th ACM Symposium on Operating
Systems Principles (Brighton, United Kingdom, October 2005), pp. 191–205.

[63] Nightingale, E. B., Veeraraghavan, K., Chen, P. M., and Flinn, J.

Rethink the sync. In Proceedings of the 7th Symposium on Operating Systems
Design and Implementation (Seattle, WA, October 2006), pp. 1–14.

[64] Offutt, J., and Abdurazik, A. Generating tests from uml specifications.
In Second International Conference on the Unified Modeling Language (UML99)
(Ocrober 1999).

[65] Osman, S., Subhraveti, D., Su, G., and Nieh, J. The design and imple-
mentation of Zap: A system for migrating computing environments. In Proceed-
ings of the 5th Symposium on Operating Systems Design and Implementation
(Boston, MA, December 2002), pp. 361–376.

[66] Qin, F., Tucek, J., Sundaresan, J., and Zhou, Y. Rx: Treating bugs as
allergies—a safe method to survive software failures. In Proceedings of the 20th
ACM Symposium on Operating Systems Principles (Brighton, United Kingdom,
October 2005), pp. 235–248.

[67] Quinlan, S., and Dorward, S. Venti: a new approach to archival storag.
In Proceedings of the 1st USENIX Conference on File and Storage Technologies
(Monterey, CA, January 2002), pp. 89–102.

[68] Richardson, D. J. TAOS: Testing with analysis and oracle support. In Pro-
ceedings of the 1994 International Symposium on Software Testing and Analysis
(ISSTA) (Seattle, WA), pp. 138–153.

[69] Richardson, D. J., Aha, S. L., and O’Malley, T. O. Specification-based
test oracles for reactive systems.

[70] Robert Bradford, Evangelos Kotsovinos, A. F. H. S. Live wide-area
migration of virtual machines including local persistent state. In Proceedings of
the 2007 ACM SIGPLAN/SIGOPS International Conference on Virtual Execu-
tion Environments (VEE) (San Diego, CA, June 2007), pp. 169–179.

145

[71] Rodrigues, R., Castro, M., and Liskov, B. BASE: Using abstraction to
improve fault tolerance. In Proceedings of the 18th ACM Symposium on Operating
Systems Principles (Banff, Canada, October 2001), pp. 15–28.

[72] Sapuntzakis, C. P., Chandra, R., Pfaff, B., Chow, J., Lam, M. S.,

and Rosenblum, M. Optimizing the migration of virtual computers. In Pro-
ceedings of the 5th Symposium on Operating Systems Design and Implementation
(Boston, MA, December 2002), pp. 377–390.

[73] Satyanarayanan, M. Pervasive computing: vision and challenges. IEEE
Personal Communications 8, 4 (August 2001).

[74] Sen, K., Marinov, D., and Agha, G. CUTE: A concolic unit testing engine
for C. In 5th joint meeting of the European Software Engineering Conference
and ACM SIGSOFT Symposium on the Foundations of Software Engineering
(ESEC/FSE’05) (2005), pp. 263–272.

[75] Tan, L., Yuan, D., Krishna, G., and Zhou, Y. /* iComment: Bugs or
bad comments? */. In Proceedings of the 21st ACM Symposium on Operating
Systems Principles (Stevenson, WA, October 2007).

[76] TCG TPM Specification Version 1.2 Revision 94. Tech. rep., Trusted Computing
Group, March 2006.

[77] Tolia, N., Harkes, J., Kozuch, M., and Satyanarayanan, M. Integrat-
ing portable and distributed storage. In Proceedings of the 3rd Annual USENIX
Conference on File and Storage Technologies (San Francisco, CA, March/April
2004).

[78] Tolia, N., Kozuch, M., Satyanarayanan, M., Karp, B., Bressoud,

T., and Perrig, A. Opportunistic use of content addressable storage for
distributed file systems. In Proceedings of the 2003 USENIX Annual Technical
Conference (May 2003), pp. 127–140.

[79] Waldspurger, C. A. Memory resource management in VMware ESX server.
In Proceedings of the 5th Symposium on Operating Systems Design and Imple-
mentation (Boston, MA, December 2002), pp. 181–194.

[80] Wang, H. J., Platt, J. C., Chen, Y., Zhang, R., and Wang, Y.-M.

Automatic misconfiguration troubleshooting with PeerPressure. In Proceedings
of the 6th Symposium on Operating Systems Design and Implementation (San
Francisco, CA, December 2004), pp. 245–257.

[81] Wang, Y.-M., Verbowski, C., Dunagan, J., Chen, Y., Wang, H. J.,

Yuan, C., and Zhang, Z. STRIDER: A black-box, state-based approach to
change and configuration management and support. In Proceedings of Usenix
Large Installation Systems Administration Conference (October 2003), pp. 159–
172.

146

[82] Whitaker, A., Cox, R. S., and Gribble, S. D. Configuration debugging as
search: Finding the needle in the haystack. In Proceedings of the 6th Symposium
on Operating Systems Design and Implementation (San Francisco, CA, December
2004), pp. 77–90.

[83] Whitaker, A., Shaw, M., and Gribble, S. D. Scale and performance in
the Denali isolation kernel. In Proceedings of the 5th Symposium on Operating
Systems Design and Implementation (Boston, MA, December 2002), pp. 195–
209.

[84] Wizzard Software Corporate. IBM ViaVoice Speech Recognition SDK.
http://www.wizzardsoftware.com/ibm viavoice sdk.php.

147

