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ABSTRACT

The Full Two-Body-Problem (F2BP) describes the dynamics of two unconstrained

rigid bodies in close proximity, having arbitrary spatial distribution of mass, charge,

or similar field quantity, and interacting through a mutual potential dependent on

that distribution. While the F2BP has applications in areas as wide ranging as

molecular dynamics to satellite formation flying, this dissertation focuses primarily

on the F2BP’s application to natural bodies in space with nontrivial mass distribution

interacting through mutual gravitational potential, i.e. binary asteroids. A significant

fraction (≈15±4%) of near-Earth objects (NEOs) and a small percentage of the main-

belt asteroids are such binary systems, whose study has potential to significantly

enhance understanding of solar system formation and evolution beyond the study of

solitary asteroid bodies.

This dissertation first describes further development and implementation of meth-

ods for accurate and efficient F2BP propagation based upon a flexible method for

computing the mutual potential between bodies modeled as homogenous polyhedra.

Derivation of the mutual potential gradients with respect to relative position and

relative attitude, incorporation of these into simulation code, progression to flexible

parallel implementations used on cluster computing platforms, and use of specialized

geometric integration algorithms with better numerical properties are all detailed,

demonstrating an overall numerical simulation performance gain of 4-5 orders of mag-

nitude.
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Next application of these numerical tools to the study of binary asteroid (66391)

1999 KW4 is summarized. This system typifies the largest class of NEO binaries,

which includes nearly half of them, and is characterized by a roughly oblate spheroid

primary rotating rapidly and roughly triaxial ellipsoid secondary remaining in (on-

average) synchronous rotation. Thus KW4’s dynamics generalize to any member of

that class. Using detailed radar-observation-derived polyhedral shape models and

system parameters, KW4’s behavior is explored over a range of parameter values

placing the system in more or less energetically excited configurations. Multiple

dynamic modes of motion are detailed, as is the discovery that the actual KW4

system exists not in the most energetically relaxed configuration, but is moderately

excited. Using the same models, the most likely excitation mechanism for this system,

solar tide during perihelion passage, is demonstrated.

Analytical formulae are developed which separately describe the effects of primary

oblateness and of secondary triaxial ellipsoid shape on frequencies of certain system

motions revealed through the F2BP simulation. These formulae are useful for esti-

mating inertia elements and highest-level internal mass distributions of bodies in any

similar system, simply from standoff observation of these motion frequencies.

Finally precise dynamical simulation and analysis of the motion of test particles

within the time-varying gravity field of the F2BP system is detailed. This Restricted

Full-detail Three-Body-Problem encompasses exploration of three types of particle

motion within a binary asteroid: 1) Orbital motion such as that for a spacecraft fly-

ing within the system about the primary, secondary, or system barycenter at large

distance; 2) Motion of ejecta particles originating from the body surfaces with sub-

stantial initial surface-relative velocity; 3) Motion of particles originating from the

primary surface near the equator, with no initial surface-relative velocity, but when

xvi



primary spin rate exceeds the “disruption spin rate” for which material on the sur-

face will be spun off. This latter regolith lofting motion is demonstrated to serve

as a mechanism for angular momentum transfer between binary system components

when the primary is spun up to its disruption rate by external torque such as the

Yarkovsky-O’Keefe-Radzievskii-Paddack (YORP) effect. This mechanism leads to

rapid orbit expansion over timescales comparable to or several times faster than stan-

dard orbital evolution due to solid body tides. Such dynamical evolution for binary

asteroids has many interesting implications within planetary science.
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CHAPTER I

Introduction

In the development of the field of astrodynamics, there has been a tendency toward

categorization of most of the natural and artificial systems studied as falling into one

of several major “problem types”, according to the dynamics governing the essential

behavior of those systems. Then one makes various modifications of, or perturbations

to, the usually relatively clean mathematical representation of the basic problem type

into which a system is categorized, in order to recover the true observed system’s more

complex behavior with greater accuracy.

The Full Two-Body-Problem (hereafter F2BP) is one of these principal problem

types. A very general formal definition for the F2BP is that it describes the dynamics

of two otherwise unconstrained rigid bodies in close proximity, having arbitrary spatial

distribution of mass, charge, or similar scalar field quantity, and interacting through

a mutual potential dependent upon that distribution. According to this definition,

the F2BP has very broad applicability in numerous engineering and scientific fields,

beyond just the field of astrodynamics.

The F2BP’s applications range from very small to very large spatial scale, from

natural systems to artificially engineered ones to hybrid systems that have one natural

body and one artificial body. At one extreme of scale lie basic problems in molecular
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dynamics, in which sets of atoms that are (to first approximation) rigidly linked to

form large molecules or parts of molecules have mass and charge distribution according

to their constituent atoms’ internal arrangement. They then interact through mutual

electrostatic (Coulomb) potential, mutual van der Waals potentials (e.g. the Lennard-

Jones potential), and so forth, which dominates over interaction through the also

present mutual gravitational potential. This is an area of ongoing research with

important implications for topics in the biosciences, such as protein formation and

folding.

Another interesting application at intermediate scale is the problem of relative

dynamics between pairs of spacecraft flying within a close satellite formation, when

the two spacecraft have a differential charge applied to portions of them. The tunable

charge distribution gives a mutual electrostatic potential that governs the relative

position and attitude dynamics of the satellite pair, allowing for control of those

dynamics through charge variation, to maintain the satellites in their formation. This

so-called “Coulomb formation flying” topic has been well studied in the literature [1,

2, 3, 4, 5].

The familiar gravity-gradient satellite configuration is another example of the

F2BP, with one of the bodies in the hybrid system being at a very much larger scale.

However it is a poor example because the mass distribution of the planet about which

the satellite orbits is usually very close to spherical and can be modelled as such,

producing a restricted special case of the F2BP. An example without this feature is

the more comparably scaled system of a solitary asteroid body and a spacecraft, large

or small in mass but with significantly large physical dimension relative to the asteroid

size and its own distance from the asteroid. The spacecraft in this hybrid system may

or may not be in a gravity gradient pose, and would potentially be constructed for

2



the the purpose of altering the trajectory of the combined asteroid-spacecraft system

within the solar system, to accomplish deflection of the asteroid from Earth impact.

This so called “gravity tractor” impact mitigation strategy would make use of the

virtual towline interaction between the asteroid and spacecraft that results from their

mutual gravitational potential due to their mass distributions, offset by continuous

low-thrust force upon the spacecraft produced by electric propulsion, solar sails, etc.

The dynamic features of this problem have also been examined recently (e.g. refer

to [6, 7]).

At the other extreme of scale lie large planet-moon or even binary star systems

with mass distributions within each body interacting through their mutual gravita-

tional potential. But again, parts of the definition of the F2BP above break down

once the bodies involved become large enough and spin slowly enough that their self

gravity gives them nearly spherical shapes. Their average distance of separation also

is likely large relative to the body sizes (at least for most systems stable enough to ex-

ist for timescales characteristic of planetary and stellar system lifetimes). The bodies

are no longer in close proximity and their mass distribution is no longer very arbi-

trary, but uniformly spherical. This is a limiting case for the F2BP, tending toward

the classical Keplerian Two-Body-Problem.

In contrast to the broad range of applications for the F2BP, this dissertation

focuses primarily on the F2BP’s application to pairs of two natural planetary bodies

in space of a smaller scale, with nontrivial mass distribution relative to their size,

interacting through mutual gravitational potential; in other words the dynamics of

binary asteroids. These systems generally preserve the key aspect of interest to us

in the F2BP, that distinguishes it from the Keplerian problem. This is the feature

of full coupling between the relative translational (orbital) dynamics and relative

3



rotational (body attitude) dynamics which is not weakened as in the limits of large

separation and spherical distribution of the field quantity (mass). Also examined

within this dissertation are the dynamics of test particles within the presence of the

time-evolving binary asteroids themselves, which for each particle is described by the

restricted but full-detail Three-Body-Problem (RF3BP) introduced later.

There are several motivations for studying the dynamics of binary asteroids in

particular. To begin with, there is the abundance of them within the solar system.

The possible existence of binary asteroids or satellites of a primary asteroid body

had been discussed for some time [8], but the first definitive discovery of a binary

asteroid system, the main-belt asteroid (MBA) designated 243 Ida, came in 1993

through the Galileo spacecraft mission [9]. Since the first discovery of a binary near-

Earth asteroid (NEA), which was 1994 AW1 in 1994 according to [10], there has

been a steady increase in the number of both MBA and NEA binaries discovered.

These have been found through the use of ground-based imaging with adaptive op-

tics [11, 12, 13], optical photometry [14], radar observation [15], and even Hubble

Space Telescope imaging. As of May 2007, Pravec and Harris tabulated in an online

database (at http://www.asu.cas.cz/∼asteroid/binastdata.htm) 82 discovered binary

asteroids including 29 binary NEAs, 16 of which are further profiled in [14]. Over

a similarly recent time frame, and using the same passive observation methods from

among those mentioned above, binaries have also been discovered among the Trojan

asteroids, Centaur objects, and Kuiper belt objects. In short, they have been found

within almost every population of small solar system bodies across the whole range

of distances from the sun.

The fraction of binarity has also been found to vary greatly between these small

body populations, and to be significantly large within the NEA population that is
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dynamically closest to Earth. The current best estimate for the binary fraction of

the NEA population is ≈15±4%. This estimate has developed over time (see for

example Bottke et. al. [16, 17], Margot et. al. [18], and Pravec et. al. [14]) and

is significantly higher than the current best estimate of a ≈2-3% binary fraction for

the MBA population [19]. In addition, it has recently been estimated that another

approximately 9% of the NEA population consists of “contact binaries”, bodies which

may have previously existed as a binary pair but have now joined through collapse

of their mutual orbit and low-speed collision [20]. The picture that emerges is that

an appreciable fraction of all NEAs have been, are, or will become binary systems, as

governed by complex dynamical evolution mechanisms. A key scientific question in

the exciting and rapidly developing field of asteroid science, and in planetary science

in general, is what gives rise to these differing rates of binarity between small body

populations. That is, understanding what the processes for binary formation and

destruction are, how each of those processes occur, and how frequently or how fast

they occur, across the populations. These processes are in turn governed by the

dynamics of the progenitor bodies and the binary systems produced.

A number of attempts to fully describe these processes of binary formation, evo-

lution, and destruction have been made. And to a lesser extent, a number of studies

of the dynamics of binaries independent of long-term evolution, at any given epoch,

have been made. Both are complicated by the fact that the system of two rotating

and co-orbiting irregularly shaped bodies, an example of the full two rigid bodies

problem, has fully coupled rotational and translational dynamics, and can possibly

exhibit exotic motions consistent with excited coupled dynamical configurations.

The originally favored model for binary formation was tidal disruption during

planetary flyby. Such tidal disruption of rubble-pile progenitor bodies has been sim-
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ulated using packed-sphere asteroid models [21, 22] and also treated indirectly by

Holsapple and Michel [23]. But recent results indicate planetary encounter tidal dis-

ruption alone cannot account for more than a 1-5% incidence of binaries among the

NEA population [24]. Put simply, this is because tidal encounters disrupt already

formed binaries just as or more easily than they create binaries in the first place

through pulling apart single progenitor bodies. Concurrent with this finding, the

Yarkovsky-O’Keefe-Radzievskii-Paddack (YORP) effect has come to be viewed as a

very important mechanism. It was originally brought to the attention of the asteroid

community by Rubincam [25], has been further studied by Vokrouhlický and Čapek

[26, 27] and Scheeres [28], and has recently been directly measured and confirmed to

be acting on NEAs [29, 30]. Studies of binary formation due to either sudden bifur-

cation or gradual mass shedding in response to spin-up under accumulated YORP

torque include Bottke et al [31], Scheeres et al [32, 33], and Walsh et al [34]. The

subsequent evolution of already separated binary systems under the effects of YORP,

or more properly under the net effective torque on the binary’s mutual orbit due to

solar flux absorption and re-radiation, has been discussed by Cuk et al [35, 36]. They

compute very short timescales for binary evolution under this net effect, which they

call BYORP (for “binary” YORP). This supports the conclusion that these effects

apparently overwhelm those of basic tidal dissipation evolution [37] within the NEA

population.

Aside from the abundances of binary asteroid systems and the associated scientific

questions about their formation, evolution, and destruction, another motivation for

studying their dynamics is the necessity of doing so in preparation for safely conduct-

ing mission operations within a binary system once it is visited by a spacecraft.

Visiting a binary asteroid with a spacecraft is in turn becoming more likely, in part
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because of the unique opportunity that a binary asteroid presents to obtain valuable

scientific information that cannot be obtained from visiting a solitary asteroid body

alone. Of course more information can be gleaned from a binary using an equivalent

(in size and budget) mission, the so-called “two bodies for the price of one” paradigm.

But also more particularly, a binary presents two bodies with different sizes and usu-

ally different spin rates, and possibly with different densities, porosities, and internal

structures too, yet subject to the same heliocentric orbit history and the same average

bulk composition (if produced from a single progenitor body). So it is an ideal nat-

ural laboratory for making comparative studies of the effects of size, spin, structure,

etc. on various phenomena, controlling for the other factors that would otherwise be

different between two solitary asteroids. One such phenomena is space weathering. If

the binary was formed through YORP torque spin-up, then depending on the fashion

in which that occurred, the resulting binary’s components may have had different

portions of their surfaces exposed for different time periods. This and different spin

rates and thermal loadings of the two components may produce observable differences

in space weathering effects, controlling for the same solar flux exposure history be-

cause of the the same heliocentric orbit conditions [38]. Other phenomena include the

fundamental geophysical response of asteroids to rotation, and the micro- vs. macro-

nature of porosity in asteroidal bodies plus dependence of macro-porosity on dynam-

ics (particularly the body spin rate and angular acceleration). Binary systems allow

for more in-depth exploration of these features, improving understanding of those

features for all asteroids and significantly enhancing understanding of solar system

formation and evolution. In addition, only binary systems may allow for interest-

ing active dynamical experiments involving liberation of surface material that then

would be size-sorted by solar radiation pressure, would possibly comprise temporary
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planetary debris ring structures evolving on very rapid timescales (compared to usual

planetary systems), and would be distributed throughout the system subject to both

bodies’ gravity.

There are a few additional pragmatic reasons for sending spacecraft to binary

asteroids in particular, and hence for prerequisite study of the dynamics of binary

asteroids. The frequency of binaries among the NEAs noted above is inherited by the

subset of NEAs that pose the greatest likelihood of impact with the Earth, designated

Potentially Hazardous Asteroids (PHAs, formally defined as NEAs whose Minimum

Orbit Intersection Distance (MOID) with the Earth’s orbit is less than 0.05 AU, or

about 4.6 million miles, and whose absolute magnitude is H ≤22.0 or brighter, mean-

ing the body diameter is larger than about 150 m given typical albedo). Earth has

suffered impacts by such bodies in the past, with significant effects on the develop-

ment and evolution of Earth’s biosphere from the highest energy impacts, and local

landform creation or significant localized destruction on the surface from respectively

lower energy impacts. In consideration of that, survey programs were initiated to

identify and determine high-precision orbits for 90% of the asteroids larger than 1 km

in diameter by the end of 2008. Further follow on surveys authorize doing the same

task for 90% of bodies larger than about 140 m in diameter. While these surveys have

not yet uncovered any immediate impact threat from any of the discovered asteroids

with probability larger than what most deem insignificant, on long enough timescales

impact is still inevitable without successful asteroid deflection mission capability. Hu-

manity must become prepared to successfully accomplish just such mitigation efforts,

which requires knowledge about how to interact with all types of NEAs. This includes

the binary PHA systems, whose frequency among PHAs means that for any mission

mounted to a small (less than roughly kilometer sized) deflection target with no prior
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indication of whether or not the target is a binary system, there is approximately a

1 in 7 chance that the target would be a binary system. In light of that, and of how

such a binary system’s complex dynamics pose special challenges and risks to the

success of impact mitigation missions, it may be wise to send a spacecraft to such a

system to develop how to interact with it and prove those methods beforehand.

In addition to the threat element, the NEAs are natural next stepping stones

and intermediate destinations between Earth’s moon and Mars for the progression of

manned spaceflight. Indeed they may be essential for obtaining the resources (par-

ticularly volatiles for propellant manufacture) required to enable human spaceflight

to Mars and setting up any permanent manned infrastructure in space. These are

eventual goals of multiple nations. The same argument as above applies for needing

to understand the dynamics, both for the binary asteroid systems themselves and

for spacecraft operating within them, in order to know how to safely interact with

any member of the significant binary fraction of NEAs to conduct in-situ resource

utilization missions there.

Previous work of relevance on the dynamics of binary asteroids, and the F2BP

in general, includes Maciejewski’s presentation of continuous equations of motion of

the F2BP in inertial and relative coordinates [39]. He also provides some discussion

of the existence of relative equilibria. A relative equilibrium can always exist for

the two arbitrary mass distributions (bodies) involved, in the absence of exogenous

disturbances, i.e. for just the system of two bodies considered in isolation. However

no binary system in nature, with its truly arbitrary mass distributions and rotational

and co-orbital states, actually occupies its relative equilibrium, so that a relative

equilibrium configuration isn’t found in nature. Even if a system were hypothetically

placed in one of its relative equilibrium configurations, that equilibrium is usually
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unstable for the true system unless it is the one with minimum energy. Scheeres

has derived a stability condition for the full two body problem [40], and also studied

the planar stability of an ellipsoid-sphere model which approximates the true sys-

tem [41]. Spacecraft motion about binary asteroids has also been discussed before

using the approximate restricted three body model (R3BP) [42, 43], and four body

model (R4BP) [44].

In this dissertation, the dynamics of binary asteroid systems, and of loose material

within them, are studied as a specific application of the F2BP and extensions of it.

The rest of this dissertation is structured as follows: First, the further development

and implementation of methods for accurate and efficient F2BP propagation, based

upon a flexible method for computing the mutual gravity potential between bodies

modeled as polyhedra, is presented in Chapter II. This encompasses derivation of the

mutual potential gradients with respect to absolute or relative position and absolute

or relative attitude, incorporation of these into simulation code using specific sets

of equations of motion and integration schemes, parallelization for use with cluster

computing, and validation of the resulting numerical simulation tools through several

test cases. Next application of these numerical tools to the study of binary asteroid

(66391) 1999 KW4 is summarized in Chapter III. This system typifies the largest class

of NEA binaries, which includes nearly half of them, so that its (KW4’s) dynamics

generalize to any member of that class. KW4’s behavior is explored over a range of

parameter values placing the system in more or less energetically excited configura-

tions. Multiple dynamic modes of motion are detailed, and the actual KW4 system

is found to not exist in the most energetically relaxed configuration, but rather be

moderately excited. Using the same system models, the most likely excitation mecha-

nism for this system, solar tide during perihelion passage, is also demonstrated. Next
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some analytical formulae, which separately describe the effects of primary oblateness

and of secondary triaxial ellipsoid shape on frequencies of certain system motions (as

revealed through the F2BP simulation) are given in Chapter IV. These formulae are

useful for estimating inertia elements and highest-level internal mass distributions of

bodies in any similar system, simply from standoff observation of the motion frequen-

cies. Finally precise dynamical simulation and analysis of the motion of test particles

within the time-varying gravity field of the F2BP system is detailed in Chapter V.

Three types of particle motion within a binary asteroid system are explored in Chap-

ter V in particular: 1) Orbital motion such as that for a spacecraft flying within

the system about the primary, secondary, or system barycenter at large distance; 2)

Motion of ejecta particles originating from the body surfaces with substantial initial

surface-relative velocity; 3) Motion of particles originating from the primary surface

near the equator, with no initial surface-relative velocity, but when primary spin rate

exceeds the “disruption spin rate” for which material on the surface will be spun

off. This latter regolith lofting motion is demonstrated to serve as a mechanism for

angular momentum transfer between binary system components, expanding binary

system orbits over timescales comparable to or several times faster than standard

orbital expansion evolution due to solid body tides. Finally Chapter VI contains

some concluding remarks about the study of binary asteroids herein and promising

directions for further investigation related to the work presented here.
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CHAPTER II

Development and Implementation of F2BP Simulation Methodology

As mentioned earlier, the dynamics of the F2BP focused on in this dissertation

are governed by the mutual gravitational potential between the two rigid extended

celestial bodies involved. This is distinct from, but associated with, the simpler

mutual gravitational potential between a single rigid extended body and an ideal point

mass, normalized by the mass of the point mass. For clarity, the latter may simply

be called the gravitational potential of a single body. For background, it is useful to

survey the various approaches commonly used to model this single body potential.

The most highly popular approach is to represent it with a set of coefficients for the

orthogonal basis of spherical harmonic functions up to a given degree and order (see

any common astrodynamics text, e.g. [45]). However, this method has a key limitation

when applied to small irregularly shaped bodies, namely that the spherical harmonic

expansion diverges for all points within the Brillouin sphere, which is the sphere that

circumscribes the body centered on the body’s center of mass (or centroid).

Another common representation for the single body gravitational potential comes

from filling the body’s volume with a set of N point masses rigidly fixed to one

another and with total mass equal to the body’s mass (the so-called rigid “packed

sphere” model) and then summing the potential contributions of each point mass and
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the one mass-normalized material point at the position where the potential value is

being calculated. Unlike the spherical harmonics method, this method is theoretically

convergent at all exterior locations for the material point, yet convergence is suspect

at the body surface, unless one takes the limit as N →∞ (see Werner and Scheeres

[46]). Like the spherical harmonics method, the packed sphere model never exactly

recovers the true gravity potential, only approximates it. Although in the limit as

N → ∞ one can approximate the true gravity potential very well, using so many

particles in the body carries great computational cost.

Another approach, which provides the intellectual foundation for most of the

methodology outlined in this chapter, is the method outlined by Werner and Scheeres

[46] in which the single body is modeled as a homogenous polyhedron. Then an

expression for the potential results which is exact to the geometry captured in the

polyhedron mesh, though that is itself an approximation to true body shape. For

context, this formulation for the force potential is, summarized from [46]:

Usingle = −G ρ

(
−1

2

∑
e∈edges in body

re · Ee · re Le +
1

2

∑
f∈faces in body

rf · Ff · rf ωf

)
(2.1)

Here G is the (possibly normalized) universal gravitational constant, and ρ is the (also

possibly normalized) constant scalar body density. All of the vector, dyad, and scalar

quantities within the summations over every face and every edge of the polyhedron

representing the body are as defined in [46]. One may refer to Section 5.1 for the

expressions for these quantities. It is important to note that the relative position

vector of the particle with respect to the body centroid, in the frame fixed to

the body, is required within the quantities re, rf , Le and ωf . Associated with this

formulation for the potential is the following simple expression for the Laplacian of
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that potential:

∇2Usingle = −G ρ
∑

f∈faces in body

ωf (2.2)

This expression always evaluates to zero at all points exterior to the polyhedron

and evaluates to −4π at particle positions interior to that polyhedron, which makes

it useful for detecting intersection of the material point at which the potential is

evaluated with the polyhedral mesh (i.e. detecting impact of a particle with the body).

Modeling the shape of the body as a polyhedron consisting of many triangular facets

is advantageous in that it provides great flexibility for capturing geometric features of

the body, even including fissures and hollow spaces, to whatever resolution in surface

geometry detail is required, desired, or available, and allows for that resolution to

vary over the surface.

Similar to the above, various approaches may be used to model the mutual grav-

itational potential of two rigid extended celestial bodies. This mutual potential has

been expressed using an adaptation of the above familiar spherical harmonics [47, 48].

But again, the harmonic expansion is not guaranteed to converge. Convergence has

been shown to be an unstable property of such spherical harmonic series [49]. This

means that an arbitrarily small change to the mass distribution may cause a pre-

viously convergent series to diverge. Another approach for evaluating the mutual

gravitational potential is to fill each rigid body’s volume with a distribution of point

masses, fixed with respect to one another, the sum of which equals the respective

body’s total mass [50, 51]. Then one pairwise sums the potential across every pairing

of a point mass in one body with a point mass in the other. Although the mutual

potential obtained for two rigid bodies using this approach converges to the true value

in the limit as the number of point masses becomes arbitrarily large, there are sig-

nificant numerical errors in the computation of gravitational forces from that mutual

14



potential when using very many point masses within this method [46].

Related to, yet separate from, the polyhedral formulation for single body gravity

potential, is a method outlined by Werner and Scheeres [52] to compute the mutual

potential when both bodies are modelled as polyhedra. This method for computing

the scalar mutual potential U is also stated below, for context. But first for some

notation. Observe that U is a function not only of the internal geometry of each

of the irregular bodies A and B but of the relative position vector between their

centroids and of the attitude of each body. This can be written as U(B−A, P, S)

or U(R, P, S). Here A and B are vectors from an inertial reference frame’s origin

to the centroid of body A and the centroid of body B, respectively. It follows that

R = B − A. Also, P and S in the above are attitude rotation matrices mapping

from the frame fixed in body A to the inertial reference frame and from the frame

fixed in body B to the inertial reference frame, respectively. Note that P, S ∈ SO(3).

2.1 Polyhedral Formulation for Mutual Potential

For each body in a binary, the coordinates with respect to the body centroid of

the three vertices of each triangular facet of the polyhedron can be generated. A

stretched and skewed tetrahedral simplex is formed by the centroid and these three

vertices. Let body A be divided into a set of such simplices indexed by a and body B

be divided into a set of simplices indexed by b. Evaluating a pair of iterated volume

integrals over A and B is equivalent to the double summation over all a and over all

b of the result of evaluating the pair of iterated volume integrals over each simplex

combination (a,b). This is shown by the following expression for the mutual potential

U , from [52]. Note that it is a Legendre-series expansion. Also note that at this

point begins the use of tensor notation and the Einstein convention of summation
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over repeated indices:

U = G
∑
a∈A

∑
b∈B

ρa Taρb Tb

{[
Q

R

]
+

[
−Qi w

i

R3

]
+

[
−Qijr

ij

2R3
+

3Qijw
iwj

2R5

]
+

[
3Qijkr

ijwk

2R5
− 5Qijkw

iwjwk

2R7

]
+ ...

}
(2.3)

Here the gravitational constant is G and it is through the densities ρa and ρb of

simplices a and b that density variation can be accommodated in the two angular

coordinates of a spherical coordinate system, i.e. latitude and longitude on the body.

It is through nesting of multiple closed polyhedra fixed to each other, within a single

body, that density variation in the radial coordinate can also be accommodated.

The scalars Ta and Tb are Jacobian determinants corresponding to simplex a and

simplex b in the respective bodies. These scalars are independent of both relative

position between centroids and relative attitude between the bodies. The Q’s in Eq.

(2.3) are tensors with rank equal to the number of indices affixed to them. They

are symmetric along every dimension and each element in them is a rational number.

Their form is illustrated in [52], in which they are written out explicitly up to the

third rank. These tensors are also independent of both relative position between the

centroids and relative attitude between the bodies. The R appearing in Eq. (2.3) is

the scalar magnitude of the previous relative position vector between centroids Rj,

and the vector wi and matrix rij are defined as

wi = Rjvi
j , rij = vi

pv
j
p.

In turn, vi
j is a 3 × 6 matrix defined for each simplex pair (a,b). Putting aside the

tensor notation for a moment, this is defined as

v =

[
−P

[
∆ra1, ∆ra2, ∆ra3

]
, S

[
∆rb1, ∆rb2, ∆rb3

] ]
. (2.4)
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Each ∆r(a,b)i is the column-representation of the vector to the i-th face vertex of the

simplex denoted by either a or b, from the centroid of the respective body. Each

∆r(a,b)i is expressed in coordinates of the frame fixed to the respective body. The

matrices P and S in Eq. (2.4) above ensure that v, and hence w and r, are all

expressed in inertial frame coordinates. Take special note that each w is a function

of both relative position and attitude and each r is a function of relative attitude only.

The series within the braces in Eq. (2.3) is infinite but sufficient accuracy seems to

be obtained with just the first several terms in square brackets, especially as the ratio

of body separation to characteristic body diameter grows.

2.2 Gradients of Polyhedral Formulation for Mutual Potential

In practice, computation of the mutual potential U between bodies A and B itself

is not as useful as computation of the gradients, or partial derivatives of U . These

determine the actual force and torque terms for equations of motion (EOM) that

describe the dynamics of the coupled system.

2.2.1 Computing force terms for EOM describing absolute motion in in-
ertial frame

The force vector acting on body A is computed by differentiating the mutual po-

tential with respect to each component of the centroid coordinates of A, as expressed

in an inertial reference frame. The same is done to compute the force vector acting

on body B. Resuming use of the tensor notation, this can also be stated as

FA
θ =

∂U

∂Aθ

, FB
θ =

∂U

∂Bθ

, (2.5)

where A and B refer to the bodies and θ is a tensor index. This requires differentiating

R and wi within each term in square brackets on the right hand side of Eq. (2.3) with

respect to Aθ or Bθ. Henceforth let all indices which will be eliminated by summation

17



be written with small roman letters, and all indices which will be preserved after

summation be written with small Greek letters. The following two relationships are

derived first as useful shortcuts:

∂R

∂Aθ

=
∂
(√

RjRj

)
∂Aθ

=
1

2
√

RjRj

∂ (RjRj)

∂Aθ

=
1

2R

(
∂Rj

∂Aθ

Rj + Rj ∂Rj

∂Aθ

)
=

=
1

2R

(
−2δj

θRj

)
= −Rθ

R
(2.6)

∂wi

∂Aθ

=
∂
(
Rjvi

j

)
∂Aθ

=
∂Rj

∂Aθ

vi
j = −δj

θv
i
j = −vi

θ (2.7)

Here δj
θ is the rank-2 tensor defined by the Kronecker delta function. Now one may

use these relationships when differentiating each of the terms in square brackets in

Eq. (2.3), denoted for convenience as Û0, Û1, Û2, and so on. It is found that for the

first such term,

∂Û0

∂Aθ

=
∂

∂Aθ

(
Q

R

)
= −Q

R2

∂R

∂Aθ

=
QRθ

R3
. (2.8)

For the second term, Û1,

∂Û1

∂Aθ

=
∂

∂Aθ

(
−Qi w

i

R3

)
=

3Qi

R4

∂R

∂Aθ

wi − Qi

R3

∂wi

∂Aθ

= −3QiRθw
i

R5
+

Qiv
i
θ

R3
.

(2.9)

The third term, Û2, is only slightly more complex:

∂Û2

∂Aθ

=
∂

∂Aθ

(
−Qijr

ij

2R3
+

3Qijw
iwj

2R5

)
=

3Qijr
ij

2R4

∂R

∂Aθ

− 15Qij

2R6

∂R

∂Aθ

wiwj +
3Qij

2R5

∂wi

∂Aθ

wj +
3Qij

2R5
wi ∂w

j

∂Aθ

= −3Qijr
ijRθ

2R5
+

15QijRθw
iwj

2R7
− 3Qijw

ivj
θ

R5
. (2.10)

Note the combination of terms at the far right, which is only possible given the

symmetry of the tensors Q along all of their dimensions. For the fourth bracketed
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term in Eq. (2.3), Û3, making use of similar combinations due to symmetry gives

∂Û3

∂Aθ

=
∂

∂Aθ

(
3Qijkr

ijwk

2R5
− 5Qijkw

iwjwk

2R7

)
=

−15Qijkr
ij

2R6

∂R

∂Aθ

wk +
3Qijkr

ij

2R5

∂wk

∂Aθ

+
35Qijk

2R8

∂R

∂Aθ

wiwjwk

− 15Qijk

2R7
wiwj ∂w

k

∂Aθ

=
15Qijkr

ijRθw
k

2R7
− 3Qijkr

ijvk
θ

2R5
− 35QijkRθw

iwjwk

2R9
+

15Qijkw
iwjvk

θ

2R7
,

(2.11)

and so on. All successive terms of higher order in the Legendre series are seen to each

be a linear combination of fractional sub-terms which have one of the three forms in

Eqs. (2.12), (2.13), and (2.14) below. The use of small roman letters i,j,k,... as indices

for the tensors which are eliminated by summation is now abandoned. Numbers are

used to identify these indices (not to represent the values assumed by those indices

nor to represent powers). This allows the small roman letters to be used to designate

the rules governing the sequence and arrangement of the indices.

Q123...n

RX

n/2∏
i=1

r2i−1,2i

 (2.12)

Q123...n

RX

(
n∏

i=1

wi

)
(2.13)

Q123...n

RX

(n−m)/2∏
i=1

r2i−1,2i

n∏
j=n−m+1

wj

 (2.14)

Here X is just the power of R in the denominator, and in Eq. (2.14) the m is the

number of wj factors. These three forms have the corresponding three derivatives

XQ123...n

R(X+2)

n/2∏
i=1

r2i−1,2i

Rθ, (2.15)
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XQ123...nRθ

R(X+2)

(
n∏

i=1

wi

)
− nQ123...n

RX

(
n−1∏
i=1

wi

)
vn

θ , (2.16)

XQ123...n

R(X+2)

(n−m)/2∏
i=1

r2i−1,2i

n∏
j=n−m+1

wj

Rθ

− mQ123...n

RX

(n−m)/2∏
i=1

r2i−1,2i

n−1∏
j=n−m+1

wj

vn
θ . (2.17)

According to Eqs. (2.3) and (2.5), the total force on body A is , with the previous

standard tensor notation:

FA
θ = G

∑
a∈A

∑
b∈B

ρa Ta ρb Tb

(
∂Û0

∂Aθ

+
∂Û1

∂Aθ

+
∂Û2

∂Aθ

+ ...

)
. (2.18)

Here the expression for each additional ∂Ûi / ∂Aθ is a linear combination of terms

patterned after Eqs. (2.15), (2.16), and (2.17). As expected, due to ∂Rj / ∂Bθ being

the negative of ∂Rj / ∂Aθ in all of the above, the force vector acting on body B is

the negative of that acting on body A.

2.2.2 Computing force terms for EOM describing relative motion in a
body-fixed frame

Suppose the dynamical equations of motion are instead written to describe relative

motion between the bodies with all kinematic and dynamic vectors expressed in the

frame fixed to body A, following the development by Maciejewski [39]. Suspend use

of the tensor notation at this point, and note that earlier, the vector R was expressed

in the coordinates of the inertial frame. Expressed in the frame fixed to body A, the

same vector is simply

R = P T (B−A) , (2.19)
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with B and A still expressed in the inertial frame. Then the force term to be used

in the new equations of motion as written by Maciejewski [39] is:

FREL =
∂U

∂R
(2.20)

Note from the form of Eq. (2.19) that any function written with the formulae above

to calculate ∂U / ∂B can be used without any modification to calculate ∂U / ∂R, by

passing it the argument of R rather than B.

2.2.3 Computing torque terms for EOM describing absolute motion in
inertial frame

Recall that P is a transformation matrix mapping from the frame of body A to the

inertial reference frame, and S is a transformation matrix mapping from the frame of

body B to the inertial reference frame. The representations in the inertial reference

frame of the torque vectors acting on each body, mA and mB respectively, are related

to the representations of those same torque vectors in the frame of each body by

mA = P MA , mB = SMB.

Now define the columns of P T and ST as

P T =

[
αP βP γP

]
, ST =

[
αS βS γS

]
.

The torque vector acting on body A, expressed in the frame of body A, is then given

by

MA = − αP × ∂U

∂αP

− βP × ∂U

∂βP

− γP × ∂U

∂γP

, (2.21)

and the torque vector acting on body B, expressed in the frame of body B, is

MB = − αS × ∂U

∂αS

− βS × ∂U

∂βS

− γS × ∂U

∂γS

. (2.22)
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Here the negative signs are due to the use of potential energy rather than force

potential in Maciejewski [39], from which these formulae are obtained. In Eq. (2.21),

one wants to find the cross product of 1) each column of the mapping from the inertial

reference frame to the frame of A with 2) the partial derivative of U with respect to

that same column. The result is also desired to be expressed entirely in the frame of A.

In Eq. (2.22), one wants to find the cross product of 1) each column of the mapping

from the inertial reference frame to the frame of B with 2) the partial derivative of

U with respect to the same column, and the result is to be expressed completely in

the frame of B.

In either case, a cleaner approach is to take the partial derivative of U not with

respect to each column of the relevant mapping (matrix), but with respect to that

entire matrix at once. Following the chain rule, this will ultimately come down to

taking the partial derivative of v with respect to the entire matrix at once, because the

matrix represents some attitude rotation and the attitude of either or both bodies

enters into the calculation of the mutual potential only through the intermediate

quantity v. The definition of this in Eq. (2.4) is repeated here for convenience:

v =

[
−P

[
∆ra1, ∆ra2, ∆ra3

]
, S

[
∆rb1, ∆rb2, ∆rb3

] ]
.

To have the result of the partial differentiation be expressed in any coordinate frame

other than the inertial reference frame, v must be modified from the above so that

it is expressed in that same coordinate frame, before the partial differentiation is

performed.

Consider first the case in which the result is desired in the frame fixed to body A.

Left multiplying v by the transpose of P , yields

v =

[
−
[

∆ra1, ∆ra2, ∆ra3

]
, P TS

[
∆rb1, ∆rb2, ∆rb3

] ]
.
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For this case, define a new rotation matrix T mapping from the frame fixed to body

B to the frame fixed to body A, such that T
4
= P TS. In the special case where S

is the identity, T is equivalent to P T , but in general the new coordinates matrix is

written as

v =

[
−
[

∆ra1, ∆ra2, ∆ra3

]
, T

[
∆rb1, ∆rb2, ∆rb3

] ]
. (2.23)

Differentiating this with respect to either T or P T forms a rank-4 tensor. The form of

this tensor will not depend on whether one differentiates with respect to the matrix

T as a whole or P T within T as a whole. This is because S can be grouped in with

the trio of ∆rbi vectors on the right half of v so that the form of the tensor resulting

from the differentiation of v is unchanged, even though the physical meaning of the

torque term that results in the end is very different, as will be seen later. To show the

form of the tensor, just differentiate with respect to T as a whole, writing it as Tjk or

Tφθ with a simple change of index labelling and using the tensor notation again. The

result of differentiating Eq. (2.23) with respect to Tφθ is

∂vi
j

∂Tφθ

=

[
0φ i

jθ ,
∂Tjk

∂Tφθ

∆rbi
k

]
=
[
0φi

jθ , δ
φ
j δ

k
θ∆rbi

k

]
=
[
0φi

jθ , δ
φ
j ∆rbi

θ

]
= Dφi

jθ. (2.24)

Here the index i varies 1. . . 6 altogether (it varies 1. . . 3 on the 0 tensor and 4. . . 6 on

the nonzero portion to the right). The three other indices which are not eliminated

(j, φ, and θ) vary 1. . . 3.

Consider next the other case in which the result is desired in the frame fixed to

body B. Left multiplying v by the transpose of S, yields

v =

[
−STP

[
∆ra1, ∆ra2, ∆ra3

]
,

[
∆rb1, ∆rb2, ∆rb3

] ]
.

For this case, one instead defines the rotation matrix T as mapping from the frame

fixed to body A to the frame fixed to body B, such that T
4
= STP . Again, if P
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happens to be the identity, T is equivalent to ST , but in general the new coordinates

matrix is written as

v =

[
−T

[
∆ra1, ∆ra2, ∆ra3

]
,

[
∆rb1, ∆rb1, ∆rb1

] ]
. (2.25)

Differentiating this with respect to either T as a whole or with respect to ST within

T as a whole again does not change the form of the resulting rank-4 tensor. To obtain

the tensor’s form, just differentiate Eq. (2.25) with respect to Tφθ, giving

∂vi
j

∂Tφθ

=

[
−∂Tjk

∂Tφθ

∆rai
k , 0φ i

jθ

]
=
[
−δφ

j δ
k
θ∆rai

k , 0φi
jθ

]
=
[
−δφ

j ∆rai
θ , 0φi

jθ

]
= Dφi

jθ

(2.26)

Some further discussion of the rule used to get the tensors in Eqs. (2.24) and

(2.26), and an alternative approach, is provided in Appendix A. For now one can

postpone the choice of the frame in which one would like to obtain the result, and

hence the choice of definition for T , and hence the choice of which one of Eqs. (2.24)

and (2.26) to use. The following equations and notation are independent of these

choices. One proceeds to take the partial derivative, with respect to a ’generic’ relative

attitude rotation matrix T , of each of the scalar mutual potential terms Û0, Û1, Û2,

etc. in turn. Again a few shortcut relationships can be derived first as follows:

∂wi

∂Tφθ

=
∂
(
Rjvi

j

)
∂Tφθ

= Rj
∂vi

j

∂Tφθ

= RjDφi
jθ (2.27)

∂rij

∂Tφθ

=
∂
(
vi

p vj
p

)
∂Tφθ

=
∂vi

p

∂Tφθ

vj
p + vi

p

∂vj
p

∂Tφθ

= Dφi
pθv

j
p + vi

pD
φj
pθ = 2vi

pD
φj
pθ (2.28)

For the first mutual potential term, Û0, there is no attitude dependence whatsoever,

and for the second term

∂Û1

∂Tφθ

=
∂

∂Tφθ

(
−Qi w

i

R3

)
= −Qi

R3

∂wi

∂Tφθ

= −
QiR

jDφi
jθ

R3
. (2.29)
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For the third term Û2, one now has the presence of the matrix rij:

∂Û2

∂Tφθ

=
∂

∂Tφθ

(
−Qij rij

2R3
+

3Qij wi wj

2R5

)
= − Qij

2R3

∂rij

∂Tφθ

+
3Qij

2R5

∂ (wi wj)

∂Tφθ

= −
Qijv

i
pD

φj
pθ

R3
+

3Qij

2R5

(
∂wi

∂Tφθ

wj + wi ∂w
j

∂Tφθ

)
= −

Qijv
i
pD

φj
pθ

R3
+

3Qij

2R5

(
RpDφi

pθw
j + wiRpDφj

pθ

)
= −

Qijv
i
pD

φj
pθ

R3
+

3Qijw
iRpDφj

pθ

R5
. (2.30)

Consolidation of terms in the last line above is possible because of the symmetry of

the tensors Q on all dimensions. Using such combination again, for the fourth term,

Û3, yields:

∂Û3

∂Tφθ

=
∂

∂Tφθ

(
3 Qijk rijwk

2R5
− 5Qijk wi wj wk

2R7

)
=

3 Qijk

2R5

(
∂rij

∂Tφθ

wk + rij ∂w
k

∂Tφθ

)
− 5Qijk

2R7

(
∂wi

∂Tφθ

wj wk + wi ∂w
j

∂Tφθ

wk + wi wj ∂w
k

∂Tφθ

)
=

3 Qijk

2R5

(
2vi

pD
φj
pθw

k + rijRpDφk
pθ

)
− 5Qijk

2R7

(
RpDφi

pθw
jwk + wiRpDφj

pθw
k + wiwjRpDφk

pθ

)
=

3 Qijk

2R5

(
2vi

pD
φj
pθw

k + rijRpDφk
pθ

)
−

15Qijkw
iwjRpDφk

pθ

2R7
. (2.31)

All higher-order series terms consist of a linear combination of fractional sub-terms

conforming to one of Eqs. (2.12), (2.13), or (2.14). The derivatives of these three

forms with respect to Tφθ are seen to be, in order:

nQ123...n

RX

n/2−1∏
i=1

r2i−1,2i

 vn−1
n+1 Dφ n

n+1 θ, (2.32)

nQ123...n

RX

(
n−1∏
i=1

wi

)
Rn+1 Dφ n

n+1 θ, (2.33)
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(n−m)Q123...n

RX

(n−m)/2−1∏
i=1

r2i−1,2i

vn−m−1
n+1 Dφ n−m

n+1 θ

(
n∏

j=n−m+1

wj

)

+
mQ123...n

RX

(n−m)/2∏
i=1

r2i−1,2i

n−1∏
j=n−m+1

wj

 Rn+1 Dφ n
n+1 θ. (2.34)

Here too numbers are used to specify the different indices, and small roman letters

are used for the rules for the sequence and arrangement of those indices. Again, X is

the power of R in the denominator and m is the number of wj factors in the form of

Eq. (2.14).

One can now express the resulting partial derivative matrix as

Eφθ = G
∑
a∈A

∑
b∈B

ρa Ta ρb Tb

(
∂Û1

∂Tφθ

+
∂Û2

∂Tφθ

+
∂Û3

∂Tφθ

+ . . .

)
, (2.35)

into which one substitute the terms given by Eq. (2.29) and up. Laying aside the

tensor notation again, define the columns of this result as:

E =

[
Eα Eβ Eγ

]
. (2.36)

All torque terms of interest make use of this same formulation, incorporating

either Eq. (2.24) or Eq. (2.26) as the definition of D. In this section the interest

happens to be in mA and mB, the torque terms for equations of motion describing

absolute motion in the inertial reference frame. These are found with MA and MB

using the obvious attitude transformations.

For MA, the result is desired to be expressed in the frame fixed to body A, so one

chooses T to be the mapping from the frame of B to the frame of A and writes v as

in Eq. (2.23). Desiring a derivative with respect to P T (the inertial attitude of A)

one uses the form of D in Eq. (2.24) and then Eqs. (2.29-2.36) with P T instead of

T . Then following after Eq. (2.21) one has

MA = −αP × Eα − βP × Eβ − γP × Eγ. (2.37)
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For MB however, the result is desired to be expressed in the frame fixed to body

B, so one chooses T to be the mapping from the frame of A to that of B and writes

v as in Eq. (2.25). Desiring the derivative with respect to ST (the inertial attitude

of B) one uses the form of D in Eq. (2.26) and then Eqs. (2.29-2.36) with ST instead

of T . Then following after Eq. (2.22) one has

MB = −αS × Eα − βS × Eβ − γS × Eγ. (2.38)

2.2.4 Computing torque terms for EOM describing relative motion in a
body-fixed frame

If the dynamical equations of motion are instead written to describe relative mo-

tion between the bodies within the frame fixed to body A, as in [39], little changes

from the above. One chooses the T to be the mapping from the frame of B to that of

A, uses Eq. (2.24) for D and then Eqs. (2.29-2.36) without modification, and obtains

µA =
(
P T (B−A)

)
× (−FREL)− αT × Eα − βT × Eβ − γT × Eγ (2.39)

µB = M = αT × Eα + βT × Eβ + γT × Eγ, (2.40)

wherein αT , βT , and γT are the columns of T from left to right respectively. The

observed asymmetry of Eqs. (2.39) and (2.40), with the additional cross product ap-

pearing in the former, is necessary due to the fact that equations of motion describing

relative motion between the bodies are written with respect to the body frame of A

and describe the relative motion within the frame of A. Note in the above that B

and A are still expressed in the inertial frame.

2.3 Incorporation of Gradients into F2BP Equations of Motion

The above force and torque terms are suitable for use in differential equations of

motion that yield the F2BP system’s dynamics when integrated. There are several
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choices for the form of these EOM, in combination with an integration scheme to use

for their propagation. The EOM may describe inertial motion or relative motion,

and may be continuous but discretized through the integration scheme or already in

the form of a discrete map that forms the integration scheme itself. It is advisable to

choose to use relative EOM for simulation of the dynamics because of the reduced-size

state vector for them compared to inertial EOM. The inertial motions for both bodies

can then be recovered from the inertial motion of one body propagated by separate,

comparatively simple, equations.

First for the continuous relative EOM to be propagated with a standard integra-

tion algorithm, which are written with respect to the frame of body A as follows [39]:

Ṗ = P × ΩA + FREL, Ṙ = R × ΩA +
P

m
, (2.41)

Γ̇B = ΓB × ΩA + µB, Γ̇A = ΓA × ΩA + µA, (2.42)

Ṫ = T Ω̂B − Ω̂A T. (2.43)

Here T is the attitude rotation matrix mapping from the frame of body B directly

to the frame of body A, R is the relative position between centroids expressed in

the frame of body A, P is the relative momentum in the same frame, and m is a

combination of the mass of A and the mass of B,

m =
mA mB

mA + mB

. (2.44)

Also, Ω is angular velocity of the body indicated by the subscript, expressed in its own

frame, and Γ is angular momentum of the body indicated by the subscript, expressed

in the frame of body A in either case. The X̂ notation is the cross-product operator.

Along with the above, one has the relations [39]

ΩA = I−1
A ΓA, ΩB = I−1

B T T ΓB,
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in which IA and IB are the inertia tensors of each body expressed in its own frame.

A closed system of first-order differential equations is formed by Eqs. (2.41) through

(2.43), with 21 states. However, to recover the inertial behavior of the system, one

more equation,

Ṗ = P Ω̂A, (2.45)

must be added in and solved either simultaneously with the actual relative dynamics

or after the fact, i.e. after the angular velocity of A in its own frame has been

propagated.

A software package to perform dynamic simulation using the above EOM was

developed in the C/C++ programming language (see the next section). This package

makes use of the Runge-Kutta-Fehlberg 7(8) integration routine to propagate the

system, after a starting calculation of the time-invariant Q tensors. It is noted that

the EOM are evaluated 13 times within each time step, after which the state update

is performed only if the truncation error is within the tolerance specified. Time

step adjustment is performed with every step. With each state update the mutual

potential itself, while not required for the dynamics, is also evaluated to allow for

checking the total energy conservation. The forces and torques acting on each body

are also calculated again at the time of each state update in order to be output along

with the mutual potential and updated state itself.

A different dynamic simulation package was also developed, instead based upon

relative EOM that already form a discrete mapping, and thus comprise a specialized

geometric integration algorithm with better numerical properties than most general

integration algorithms. The reason why this specialized algorithm has better proper-

ties for the problem at hand has to do with the fact that the F2BP dynamics arise

from Lagrangian and Hamiltonian mechanics; they are characterized by symplectic,

29



momentum and energy preserving properties. These geometric features determine

the qualitative behavior of the F2BP dynamics. The configuration space of the those

dynamics have a Lie group structure referred to as the Euclidean group, SE(3). How-

ever, general numerical integration methods, including the widely used Runge-Kutta

schemes, neither preserve the Euclidean Lie group structure nor these geometric prop-

erties [53].

In contrast, the variational approach [54] and Lie group methods [55] provide sys-

tematic methods of constructing structure preserving numerical integrators. The idea

of the variational approach is to discretize Hamilton’s principle rather than the con-

tinuous equations of motion [54]. The numerical integrator obtained from the discrete

Hamilton’s principle exhibits excellent energy properties, conserves first integrals, and

preserves the symplectic structure. Lie group methods consist of numerical integra-

tors that preserve the geometry of the configuration space by automatically remaining

on the Lie group [55]. A Lie group method is explicitly adopted for the variational

integrator in references [56], [57], and [58]. This unified integrator, referred to as the

Lie Group Variational Integrator (or LGVI for short), is symplectic and momentum

preserving, and it exhibits good total energy behavior for exponentially long time

periods. It also preserves the Euclidian Lie group structure without the use of local

charts, re-projection, or constraints.

General integration methods are obtained by approximating continuous EOM by

directly discretizing them with respect to time. With each integration step, the up-

dates involve additive operations, so that the underlying Lie group structure is not

preserved as time progresses if it is not closed under addition. And the Euclidean Lie

group structure of the F2BP is not closed under addition. For example, if one uses

a Runge-Kutta method for numerical integration of 2.43, then the rotation matrices
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drift from the orthogonal rotation group, SO(3); the quantity T TT drifts from the

identity matrix. Then the attitudes of the rigid bodies cannot be determined accu-

rately, resulting in significant errors in the gravitational force and moment computa-

tions that depend upon the attitude, and consequently errors in the entire simulation.

It is often proposed to parameterize Eq. 2.43 by Euler angles or unit quaternions.

However, Euler angles are not global expressions of the attitude since they have asso-

ciated singularities. Unit quaternions do not exhibit singularities, but are constrained

to lie on the unit three-sphere S3, and general numerical integration methods do not

preserve the unit length constraint. Therefore, quaternions lead to the same numeri-

cal drift problem. Re-normalizing the quaternion vector at each step tends to break

the conservation properties. Furthermore, unit quaternions double cover SO(3), so

that there are inevitable ambiguities in expressing the attitude.

In contrast, the LGVI has better properties because it is obtained by first di-

rectly discretizing Hamilton’s principle; the velocity phase space of the continuous

Lagrangian is replaced by discrete variables, and a discrete Lagrangian is chosen such

that it approximates a segment of the action integral. Taking the variation of the re-

sulting action sum yields discrete EOM referred to as a variational integrator. Since

the discrete variables are updated by Lie group operations, the group structure is

preserved. The resulting discrete EOM are presented here as follows, with the second

subscript denoting the time steps; for the detailed development one can refer to [57].

Rn+1 = ΦT
An

(
Rn +

h

m
Pn −

h2

2m

∂Un

∂Rn

)
, (2.46)

h
̂(

ΓBn −
h

2
Mn

)
= Φn

(
TnIdBT

T
n

)
−
(
TnIdBT

T
n

)
ΦT

n
, (2.47)

h
̂(

ΓAn +
h

2
Rn ×

∂Un

∂Rn

+
h

2
Mn

)
= ΦAnIdA − IdAΦT

An
, (2.48)
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Tn+1 = ΦT
An

ΦnTn , (2.49)

Pn+1 = ΦT
An

(
Pn −

h

2

∂Un

∂Rn

)
− h

2

∂Un+1

∂Rn+1

, (2.50)

ΓBn+1 = ΦT
An

(
ΓBn −

h

2
Mn

)
− h

2
Mn+1 , (2.51)

ΓAn+1 = ΦT
An

(
ΓAn +

h

2
Rn ×

∂Un

∂Rn

+
h

2
Mn

)
+
h

2
Rn+1 ×

∂Un+1

∂Rn+1

+
h

2
Mn+1 . (2.52)

with the scalar step size h, m as defined before, and the non-standard inertia dyads

defined as

IdA =
1

2
tr[IA] I3×3 − IA , IdB =

1

2
tr[IB] I3×3 − IB (2.53)

where I3×3 is the 3× 3 identity matrix.

To propagate these equations, start with a set of initial states, (R0 ,P0 , T0 ,ΓA0 ,ΓB0),

and perform one initial evaluation of the mutual potential gradients, obtaining ∂U0/∂R0

with

∂U

∂Rθ

= − G
∑
a∈A

∑
b∈B

ρa Ta ρb Tb

(
∂Û0

∂Rθ

+
∂Û1

∂Rθ

+
∂Û2

∂Rθ

+ ...

)
, (2.54)

based upon Eq. 2.18, and obtaining M0 with Eq. 2.40. Next find R1 from Eq. 2.46.

Solving the implicit equations 2.47 and 2.48 yields the matrix-multiplication update

matrices Φ0 and ΦA0 for the attitude rotation matrices, and T1 follows from Eq. 2.49.

After that, one uses R1 and T1 in a new evaluation of the mutual potential gradients.

Then one computes P1 , ΓB1 , and ΓA1 from equations 2.50, 2.51 and 2.52, respectively.

This yields a discrete map (R0 ,P0 , T0 ,ΓB0 ,ΓA0) 7→ (R1 ,P1 , T1 ,ΓB1 ,ΓA1), and this

process can be repeated for each time step. Note that only one new evaluation of

the potential gradients is required per time step. The discrete trajectory in reduced

variables can be used to reconstruct the inertial motion of the bodies. Either concur-

rently with that propagation or later after completion of it, through storing values,
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one can use the gradient ∂U/∂R, the relative attitude T , and the update matrix ΦA

with these equations:

An+1 = An +
h

mA

PAn +
h2

2mA

Tn

∂Un

∂Rn

, (2.55)

PAn+1 = PAn +
h

2
Tn

∂Un

∂Rn

+
h

2
Tn+1

∂Un+1

∂Rn+1

, (2.56)

Pn+1 = PnΦAn . (2.57)

In the discrete map defined by the LGVI above, the only implicit parts are Eqs.

2.47 and 2.48. These two equations have the same structure, which suggests a specific

computational approach. Using Rodrigues’ formula, those equations are rewritten as

equivalent vector equations, and those are solved numerically using Newton’s itera-

tion. Numerical simulations show that two or three iterations are sufficient to achieve

a tolerance of ε = 10−15.

Since the LGVI is obtained by discretizing Hamilton’s principle, it is symplectic

and preserves the structure of the configuration space, SE(3), as well as the relevant

geometric features of the full two rigid body problem dynamics represented by the

conserved first integrals of total angular momentum and total energy. The total

energy oscillates around its initial value with small bounds on a comparatively short

timescale, but there is no tendency for the mean of the oscillation in the total energy

to drift (increase or decrease) from the initial value for exponentially long time. In

contrast, the total energy behavior with general numerical methods such as the Runge-

Kutta schemes tends to drift dramatically over exponentially long time.

The LGVI preserves the group structure. By using the given computational ap-

proach, the matrices Φn and ΦAn , representing the change in the relative attitude and

the inertial attitude of body A over a time step, are guaranteed to be rotation ma-

trices. The group operation of the Lie group SO(3) is matrix multiplication. Hence
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rotation matrices Tn and Pn are updated by the group operation in Eqs. 2.49 and

2.57, so that they evolve on SO(3) automatically without constraints or reprojection.

Therefore, the orthogonal structure of the rotation matrices is preserved, and the

attitude of each rigid body is determined accurately and globally without the need

to use local charts (parameterizations) such as Euler angles or quaternions.

This geometrically exact numerical integration method yields a highly efficient and

accurate computational algorithm, especially for the F2BP dynamics examined here.

In the F2BP there is a large burden in computing the mutual gravitational force and

moment for arbitrary bodies, so the number of force and moment evaluations should

be minimized. It is seen that the LGVI requires only one such evaluation per integra-

tion step, the minimum number of evaluations consistent with the presented LGVI

having second order accuracy (and that because it is a self-adjoint method). Within

the LGVI, two implicit equations must be solved at each time step to determine the

matrix-multiplication updates for T and P . However the LGVI is only weakly implicit

in the sense that the iteration for each implicit equation is independent of the much

more costly gravitational force and moment computation. The computational load to

solve each implicit equation is comparatively negligible; only two or three iterations

are required. Altogether, the entire method could be considered “almost explicit”.

Note that the LGVI is a fixed step size integrator, but all of the beneficial proper-

ties above are independent of the step size. Consequently, one can achieve the same

level of accuracy while choosing a larger step size as compared to other numerical

integrators of the same order.

More significant to computational performance is the fact that only one evaluation

of the modified discrete hamiltonian relative EOM, requiring only one call to the

mutual potential and gradients function, takes place per (major) time step, and there
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is no minor time step. The mutual potential and forces and moments are already

available at every (major) time step from that same function call. And in practice,

solving the implicit equation for the attitude update is much less costly than an

additional call to obtain the potential and gradients. Recall the 13 + 1 = 14 such

calls to obtain the potential and gradients that are needed per time step within the

RKF7(8), for the 13 minor steps plus the evaluation of forces and torques at the time

of the state update. Put together, all of these things mean a 14 to 1+δ reduction

in computation time per time step (with δ � 1), in switching to the LGVI from the

RKF7(8). Although the time step for the LGVI that must remain fixed throughout

the simulation is smaller than the mean time step selected by the RKF7(8) algorithm,

there is still an order of magnitude reduction in computation time using the LGVI.

2.4 Simulation Package Implementation with Parallelization

The relative EOM above have been implemented in C/C++, resulting in four

simulator versions: both a single processor version and a parallel computing version

built around each of the two integration schemes used, which were both a high-order

Runge-Kutta scheme applied to the continuous EOM of Eqs. 2.41-2.45 and the 2nd-

order LGVI of Eqs. 2.46-2.57.

Using the above methodology, most of the computation time is associated with

the evaluation of the mutual potential gradients ∂U/∂R and ∂U/∂T , which in turn

involves performing the same operations for all of the different pairwise simplex combi-

nations, followed by a global sum. This is well-suited for parallelization. The parallel

computing versions are flexible in that any number of nodes and processors can be

specified by the user. Then the process 0 assigns to each of the other processors the

task of calculating the portion of the mutual potential gradient double summations
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that arises from pairing a single simplex a in body A with all simplices in body B. If

the number of other processors available is less than the number of simplices in the

primary body model, this is done in rounds until the portion of the problem match-

ing with every a is obtained. All operations other than the mutual potential gradient

evaluations remain serial. The parallel versions were written with the addition of

MPI and have been used on Myrinet clusters at the Center for Advanced Computing

(CAC) at the University of Michigan and at the Supercomputing and Visualization

Facility (SVF) at NASA’s Jet Propulsion Laboratory, utilizing up to 256 processors

in some runs. Though compiler and user environment differences produced markedly

different capabilities in each cluster environment, eventually a further two-orders-of-

magnitude reduction in computation time over otherwise identical single-processor

runs was achieved with both integration schemes. This and the previously mentioned

order of magnitude speedup from using the LGVI integrator rather than the alterna-

tive schemes means the parallel LGVI version was used for most all numerical results

in the following chapters.

All simulator code versions have command line options for specifying the sizes of

the two component body models involved in a simulation, in number of faces (sim-

plices) and number of nodes. There is also a command line option to specify how

many terms beyond the two point mass approximation are to be used in the Leg-

endre series expansion behind the formulation for the mutual potential between the

components. Other command line options specify whether to actually run forward

with dynamic simulation or instead just evaluate and output the forces and moments

at the initial time (for diagnostic purposes only), and whether to include the per-

turbing effects of a third body on the relative motions of the binary’s components, in

anticipation of examining flyby scenarios. This latter option involves modifying the
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relative force term ∂U/∂R in the above EOM. One can assume that to first order the

effects of the third body are adequately captured through this additional force alone,

i.e. through the direct effect on the translational dynamics alone. This in turn will

transfer to effects on the rotational dynamics via the full coupling of the system. In

other words, assume no change is needed to the relative moment M itself, or no direct

effects on the rotational dynamics are needed to capture the third body perturbation.

Ultimately, one uses the replacement rule of

∂U

∂R
V

∂U

∂R
+

mB

mA + mB

CA − mA

mA + mB

CB (2.58)

within either set of EOM presented in the previous subsection. One has a choice as

to how to obtain the potential gradients denoted by C(A,B). One can use the partial

derivative, with respect to the position vector from the third body to the primary’s

centroid, of the polyhedron plus point mass potential formulation (refer to [46]) using

the full-detail shape model of the primary. And similarly for the secondary. Alter-

natively one can just use the partial derivative, with respect to the same position

vector, of the two point mass potential approximating both the binary component in

question and the perturbing third body as spheres. So if the command line option

for including third body perturbation effects is used, another command line option

exists to select whether to use the two point mass or single point mass plus single

polyhedron formulation after Eq. 2.1 for the gradients Ci in Eq. 2.58. There is

also an option for enabling or shutting off density variation between simplices within

each body model. The LGVI has additional options to specify which vector equation

is used with Newton’s method to solve the implicit functions involved in the LGVI:

the vector equation coming from the Cayley transformation parameterization of the

update rotation matrices mapping attitudes from one time step to the next, or the

vector equation coming from the Rodrigues’ formula parameterization of the same.
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MATLAB scripts are used to pre-process the body models and initial conditions

for each setup, producing files read in by the main simulator codes. The first two of

these files contain the properly ordered elements of the position vectors with respect

to the centroid for the vertices of the simplices in each body. If a third body is

included in the simulation, a file containing the six orbital elements to define the

path of the binary system relative to the third body is also read in. If, further, the

single point mass plus polyhedron method for the Ci’s is selected, another data file

containing some edge- and face-specific dyads, etc. is needed for each polyhedral

body model. The other three input files respectively contain the initial states, other

system physical data (such as body moments of inertia and body densities), and the

integration parameters (starting and stopping times and truncation error tolerance).

Other MATLAB scripts are used to postprocess the state output file and the po-

tential, forces, and torques output file produced when running the main executable

for all code versions. Plots of the raw relative motion states, all motion pulled back

to an inertial reference frame, and the total energy and total angular momentum

integrals of motion are generated. Other quantities such as linear and angular accel-

erations of the bodies, the effective angular velocity, the dynamic moment of inertia,

and orthonormality loss in the attitude rotation matrices T and P are also plotted

for error checking purposes. The latter orthonormality loss metrics are defined as

‖T TT − I‖ and ‖P TP − I‖ where I is the 3× 3 identity matrix. An option to create

animations of the motion is included in the post-processing script as well.

Apart from any parallelization (e.g. with the single-processor versions), the timing

results of various simulations show that total wall-clock time increases linearly with

an increase in the number of faces in either one of the body models, and increases

proportionally with the product of the number of simplices in the primary and the

38



number of simplices in the secondary. In this sense, the wall-clock time increases as

O(n2), where n is representative of the mean number of facets or resolution of the

models used. As mentioned before, the majority of computation time is spent evaluat-

ing the mutual potential gradients, and the time to compute those partial derivatives

once increases as O(6r), where r is the number of terms with increasing-rank tensors

used in the Legendre series expansion for each simplex pairing’s contribution. There-

fore the total wall-clock time also increases as O(6r). For satisfactory results, r will

need to be increased as the proximity of the bodies in the system is reduced, but r

of only four or five is sufficient for usual binary asteroid separation distances.

As for the reduction of run times through parallelization, Figure 2.1 shows normal-

ized wall clock time and speedup ratio vs. the number of processors used, for many

runs employing the parallel LGVI code version with different numbers of CPUs, both

with and without the third body included and with different models of the KW4 as-

teroid (see the next chapter concerning that binary asteroid system). For each run the

normalization of the wall-time is with respect to the product of the total number of

simulation time steps taken and the product of facet counts for the two body models

involved. The single-processor simulation time used for the speedup ratio calculation

was obtained by running the single-processor LGVI on a single node of the same clus-

ter environment used for all plotted runs. It can be seen that for the largest model

size (the high resolution models, or data series’ B and C in the plot) the speedup

does not level off within the full range of processor numbers used, so that from not

yet observing the limit of Amdahl’s law one may estimate a very small serial fraction

of operations (at least < 0.4%) for simulating this particular model. It is in fact seen

that in this range, the first-order fit to the speedup data points is steeper than the

theoretical best linear scaling law, likely due to efficiencies from optimization of the
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Figure 2.1: Normalized wall clock time and relative-to-single-processor speedup ratio
vs. number of processors used. Here data series A is for low resolution
models without 3rd body, series B is for high resolution models without
3rd body, and series C is for high resolution models with 3rd body incor-
porated. All three data series are used for the scaling curve fitted to the
data.

code portions running on processes other than process 0.

2.5 Simulation Package Validation, and Performance Gains

Several sets of results using the above detailed simulation packages are now pre-

sented for validation purposes. These results also provide points of reference to help

quantify the improvement in computational speed for similar error metric perfor-

mance, or alternatively the improvement in error metric performance for roughly the

same computational cost, across successive versions of the code as use of the LGVI

and parallelization was added. From the very earliest (purely MATLAB) implenta-
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Table 2.1: Properties of octahedral body models used in validation simulations.

Property body A body B
Surface area (m2) 8.839 2.002
Volume (m3) 1.800 0.1561
Equiv. radius (m) 0.7546 0.3340
Mass (kg) 4500 390.3
Density (kg/m3) 2500 2500
Ixx (kg-m2) 1377.0 9.24
Iyy (kg-m2) 814.5 42.99
Izz (kg-m2) 1462.5 44.32
Extents (m) min max min max
body frame X -1.0 1.0 -1.0 1.0
body frame Y -1.5 1.5 -1/exp(1) 1/exp(1)
body frame Z -0.9 0.9 -1/π 1/π

tions to the implementations in hand at the time of this writing, an overall numerical

simulation performance gain of 4-5 orders of magnitude has been observed.

2.5.1 Test cases with a pair of octahedral bodies

Simulation results for two octahedral rigid bodies with eight faces and eight sim-

plices each are given for a few scenarios. Octahedra are used rather than more complex

shapes because they are the simplest polyhedral shapes that manifest the coupled dy-

namics behavior desired in all of the scenarios. For greater simplicity, the octahedra

are made symmetric about all axes, although they are of different sizes. The extents

data defining the locations of the corners of each octahedron are given in Table 2.1,

as are various physical parameters of each octahedron including mass and moment of

inertia properties. Simulation results for three scenarios are presented here, and the

initial conditions for each scenario are given in Table 2.2.

Scenario 1 The first scenario presented here is that of short-duration simulation

of the two octahedra starting from initial conditions matching with a medium eccen-
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Table 2.2: Initial conditions for three validation scenarios using octahedral body
models.

Scenario Attitude∗ (deg) Body spin† (rad/s)
Orbital elements (m,deg)
OR state vector (m,m/s)

1
(100, 9.8, 175)
(160, -5, 165)

(0, 0, 5.0× 10−5)
(0, 0, 9.2× 10−5)

(a, e, i,Ω, ω, ν)=
(4m, 0.3, 5◦, 15◦, 60◦, 10◦)

2
(180, 0, 30)
(270, 0, 30)

(0, 0, 0.566)
(0, 0, -0.566)

X0 = [0, 6, 0]T ,
V0 = [−0.006, 0, 0]T

3
(-22.6, 5, 180)
(50.3, 5, -180)

(0, 0, 1.63× 10−4)
(0, 0, 1.55× 10−4)

(a, e, i,Ω, ω, ν)=
(52.9m, 0.942, 5◦, 0◦,

88.2◦, -107.1◦)

∗ 3-1-3 Euler sequence for body B (first line) and body A (second line).
† Components of angular velocity of each body expressed in its own body-fixed

frame for body B (first line) and body A (second line).

tricity elliptical mutual orbit. Both the RKF7(8) and LGVI integrators are used, with

the intent of making a direct comparison between the trajectories of the configuration

variables that result from using each integrator over a short simulation duration.

Figure 2.2 shows the difference between the output of the RKF7(8) and that of the

LGVI in components of reconstructed inertial position, inertial velocity, and body-

frame angular velocity vectors for A, plus the difference in body attitude parameters

for A. The corresponding output difference plots for body B look very similar. The

differences in vector components of Figure II.2(a) are normalized by the system’s semi-

major axis (a = 4.0 m). The differences in vector components of Figure II.2(b) are

normalized by the equivalent circular velocity (
√
µ/a = 2.856×10−4 m/s), and those

of Figure II.2(c) are normalized by the equivalent meanmotion (
√
µ/a3 = 7.141 ×

10−5 radians/s). To obtain the results compared here, the total number of mutual

potential derivatives evaluations and actual running time using the RKF7(8) routine

were 70014 and 494 seconds, respectively, while the number of such evaluations and

actual running time using the LGVI were 70001 and 539 seconds. Therefore the
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computational effort and resources used were roughly the same in each case. All

of these results show that the LGVI can be trusted to produce almost exactly the

same trajectory as a standard RKF7(8) integration routine over short time scales. As

the simulation duration increases the trajectories from the two integrators begin to

diverge. The behavior of integrals of motion and appropriate error metrics must then

be used to discern which trajectory is to be taken as the “truth”.

(a) Inertial position for body A (b) Inertial velocity for body A

(c) Angular velocity for body A (d) 3-1-3 Euler angles for body A

Figure 2.2: (Validation scenario 1) Difference between RKF7(8) and LGVI output.

Scenario 2 Another scenario is that of propagation from an initial condition with

the bodies aligned but possessing relatively large magnitude centroid velocity vectors

that are antiparallel and perpendicular to the initial line between centroids. This
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scenario is simulated both with the LGVI at different step sizes and with the variable

step size RKF7(8) at different error tolerances. This allows for a comparison between

the integrators of their performance, in terms of the total energy and total angular

momentum integrals and the attitude error metric growth vs. computational burden.

The results in Table 2.3 illustrate the general superiority of the LGVI approach over

Runge-Kutta-type approaches.

Table 2.3: (Validation scenario 2) Performance comparison between RKF7(8) and
LGVI.

Method h∗ N?
u t�W ε/ E[|∆TE|]†‡ E[‖∆πT ‖]†‡ E[

∥∥I −RTR
∥∥]†

RKF 0.236 2368912 23439 10−12 3.901× 10−12 1.493× 10−9 1.151× 10−7

RKF 0.421 1331414 9102 10−10 1.274× 10−10 2.630× 10−7 1.985× 10−5

RKF 0.749 747376 5252 10−8 2.284× 10−8 4.620× 10−5 3.173× 10−3

LGVI 0.0169 2370000 13511 - 1.698× 10−11 5.167× 10−10 2.525× 10−11

LGVI 0.04 1000000 9920 - 1.928× 10−11 1.189× 10−10 2.120× 10−11

LGVI 0.08 500000 5127 - 9.879× 10−11 4.139× 10−11 2.004× 10−12

LGVI 0.4 100000 983 - 2.234× 10−9 6.266× 10−12 3.386× 10−14

LGVI 0.8 50000 431 - 9.326× 10−9 1.279× 10−11 6.352× 10−14

LGVI 1.0 40000 335 - 1.512× 10−8 3.991× 10−12 4.786× 10−14

∗ h is integration step size, in seconds, fixed for LGVI but averaged over the run’s
duration for RKF7(8)

? Nu is the total number of calculations of the mutual potential derivatives made
within the run

� tW is the ”wall-clock” time to complete each simulation run, in seconds
/ ε is the error tolerance for the variable step size in RKF7(8)
‡ TE and πT are total energy and the total angular momentum, respectively, while

∆ refers to deviation from the initial value over simulation
† E[·] denotes mean

Here it is seen that for any pair of simulations, one using the LGVI and the other

using the RKF7(8) scheme, for which the total energy metric performs about the

same, the computation time needed to complete the simulation using the LGVI is a

fraction of that needed using the RKF7(8). Simultaneous with this improvement in

run time, the total angular momentum and attitude error metrics still perform better
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in the LGVI run than in the RKF7(8) run by multiple orders of magnitude. Going in

the other direction, as the step size for the LGVI is reduced so that the computational

burden using it begins to approach that for any chosen run using the RKF7(8), all

error metrics remain at the same level as or else orders of magnitude smaller than

those for the chosen RKF7(8) run. For the LGVI, the round-off error accumulates

when multiplying rotation matrices at 2.49. The rotation matrix error of the LGVI

is caused only by the floating-point arithmetic operation, and it is increased as the

number of integration steps is increased. A similar trend is observed in the total

angular momentum error for the LGVI, because determination of the total angular

momentum in the inertial frame from the states written to the output file makes use

of the rotation matrices.

Scenario 3 The next scenario illustrates the ability of the methods herein to

capture the interesting effects of coupling in a mutual orbit configuration that the

Keplerian two-body approximation incorrectly predicts as being perpetual. Simula-

tion with the LGVI yields the trajectory illustrated in Figure II.3(a), which transitions

from a highly elliptical orbit to a hyperbolic escape path. This is shown by the plots

in Figure II.3(b) of the semi-major axis and eccentricity change during the close en-

counter, which occurs roughly midway through the run duration of 60,000 seconds.

The initial conditions and body configurations are symmetric about the initial orbital

plane, and as such the motion of the centroids should be restricted to the initial orbital

plane. This is observed numerically, as the body centroids remain within 8.6×v10−14

meters of the initial orbital plane throughout the simulation.
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(a) Trajectory of binary octahedra system com-
ponents

(b) Eccentricity and semi major axis

Figure 2.3: (Validation scenario 3) Disruption of the binary octahedra system.

2.5.2 Test case using a pair of artificial asteroid mesh models of interme-
diate size

For this test case, it was intended to stress the simulation tools more by examining

a hypothetical interaction between two artificial asteroidal body models, both having

irregular shapes without any planes of symmetry. This interaction was intended to

involve a comparatively larger trade-off between the kinetic and potential forms of

energy in the system. Therefore the initial relative translational motion state for

this test case was defined as that matching a highly elliptical keplerian orbit with

eccentricity of 0.4, 20◦ inclination, Ω = 15◦ RAAN, ω = 30◦ argument of perigee,

and ν = 10◦ true anomaly. Body A for this test case is an asteroid model having 580

simplices, radially re-scaled to have the extents in its own body-fixed frame shown

in Table 2.4. Its density is set to 2,670 kg/m3. Body B is a different asteroid shape

modelled with 380 simplices, and having the extents in its own body-fixed frame also

shown in Table 2.4. Body B has density of 2,400 kg/m3, leading to choice of the

initial semi-major axis as an even 1,200 m. The initial spin of body A is twice the

mean motion of the orbit matching the initial relative translational motion states,

46



about the inertial-frame +z axis. This is equivalent to a period of about 20.52 hours.

The initial spin of body B is 3/2 the mean motion about the inertial-frame +z axis

and 1/2 the mean motion about the inertial-frame +y axis. This is equivalent to a

period of about 25.96 hours. The initial attitudes of the bodies are each given by

3-1-3 euler rotation sequences with the randomly generated φ, θ, ψ angles given in

Table 2.4. It should be noted that for this test case nondimensionalization was used

for better scaling of the state and internal variables, even though most results plots

shown herein have standard meter-kilogram-second units.

Table 2.4: Extents and initial attitude angles of asteroid models for intermediate-sized
artificial asteroid model test case.

Angle (deg) Body A Body B
φ 81.10 41.74
θ 116.17 6.21
ψ 71.55 -39.32

Extents (m) minimum maximum minimum maximum
body frame X -251.6 234.7 -100.0 98.7
body frame Y -129.0 137.1 -69.5 72.7
body frame Z -129.6 126.9 -51.5 55.6

A 3D plot of the trajectory in the inertial frame is shown in Figure 2.4. Because

the rotational motion of the bodies is not captured in this figure, the components

of the angular velocity vector in the inertial frame are also shown for each body in

Figure 2.5. The deviation of the motion from the initial orbit due to coupling is

perhaps best seen by examining some of the osculating orbital elements, calculated

from the motion states pulled back to the inertial frame. The semi-major axis and

the eccentricity are shown in Figure 2.6. The variations from initial values of the

kinetic energy of each body, total kinetic energy, potential energy, and total system

energy are shown together in Figure 2.7. The total energy variation from its initial

value is shown separately in Figure 2.8. Note the greatly expanded scale of this total

47



Figure 2.4: Three dimensional plot of trajectory, for intermediate-sized artificial as-
teroid model test case.

energy plot in Figure 2.8 in comparison to the scale of Figure 2.7. Similar variation

from initial value in the components of the total angular momentum vector is also

shown in Figure 2.8. Here too, the drift in each total angular momentum component

is at about 14 orders of magnitude smaller than the value of the respective vector

component itself. The attitude matrix errors are shown together in Figure 2.9.

48



Figure 2.5: Body angular velocity vectors in inertial frame, for intermediate-sized
artificial asteroid model test case. Body A is at top and B is at bottom.
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Figure 2.6: Co-orbital semi-major axis and eccentricity, for intermediate-sized artifi-
cial asteroid model test case. Semi-major axis is at top and eccentricity
is at bottom.
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Figure 2.7: Variation from initial value of body kinetic energies, total kinetic energy,
potential energy, and total system energy, for intermediate-sized artificial
asteroid model test case.

In this case too, gravitational coupling produces changes in the rotational dynam-

ics of the bodies, with the spin state of body B changing much more, and in a much

more irregular fashion, than that of the more massive body A. The changes in semi-

major axis and eccentricity are on the order of 20-25 percent over the approximately

5 periods covered in the duration of the run (which was again 30 nondimensionalized

time units, or about 7.055 × 105 seconds in this case). Again, the total energy vari-

ation is 12 orders of magnitude less than the energy exchanged between the kinetic

and potential forms, and the angular momentum variation is also about 14 orders of

magnitude less than the total angular momentum magnitude (which has a mean of

2.177× 1011 kg-m2/s for this case). The attitude matrix errors remain small, though

increasing irregularly. Interestingly, the relative attitude matrix T diverges from the

orthonormality condition faster than the body-A-to-inertial attitude matrix P .

This test case was performed using a relatively early single-processor code version,
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Figure 2.8: Expanded view of variation from initial value of total system energy and
total angular momentum vector components, for intermediate-sized arti-
ficial asteroid model test case.

after the switch to compiled C/C++ from the initial Matlab-only code but before the

further LGVI or parallelization improvements, on a 512 Mb RAM and ≈2.4GHz

Intel processor laptop. The integration tolerance, for time-step control, was kept at
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Figure 2.9: Attitude rotation matrix errors, for intermediate-sized artificial asteroid
model test case.

1 × 10−14. The number of series terms used was only four terms, such that the last

term used contained fractional sub-terms proportional to 1/(R7), with R again being

the relative position vector magnitude. The total wall-clock time resulting with these

run parameters and before the speed-up improvements was 3 days plus 22:55:52 just

for this test case.

2.5.3 Test case using large-sized binary asteroid component models

Here it is sought to validate the methodology using a much more detailed model

patterned after an actual binary system but with one major modification in that the

smaller body, denoted body B, is rotated 180 deg about its own +Z axis from the

actual system. The high-fidelity polyhedral models of both the larger body A and

body B, suited for the simplex formulation, have the body-frame-axis extents shown

in Table 2.5 along with several other derived body properties.

Table 2.6 shows the definition of the initial conditions for the simulations with
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Table 2.5: Properties of high-fidelity polyhedral asteroid models.

Property A B
# Simplices 9168 2292
# Vertices 4586 1148
Surface area (km2) 5.742 0.6739
Volume (km3) 1.195 0.04803
Equiv. radius (m) 658.4 225.5
Mass (kg ×109) 2337 134.3
Density (kg/m3) 1955 2795
Ixx (kg-m2 × 1017) 3.850 0.02159
Iyy (kg-m2 × 1017) 4.032 0.03187
Izz (kg-m2 × 1017) 4.578 0.03758
Extents (m) min max min max
body frame X -750.3 779.2 -288.0 283.2
body frame Y -736.2 755.6 -235.7 227.4
body frame Z -688.4 659.1 -177.8 171.2

Table 2.6: Initial attitudes, spins, and orbital elements for high-fidelity polyhedral
asteroid models.

Quantity (units) A B
spin rate (deg/day) 3125 496
φ (deg) -83.93 0
θ (deg) 2.063 0
ψ (deg) -152.9511 0
a (m) 2540.5
e 0.0
i, Ω, ω, ν (deg.) 0.0

results shown below. At the initial time, the body spin rates are about each body

frame’s +Z axis, and are equivalent to a period of ≈2.76 hr for A and ≈17.4 hr for B.

An inertial reference frame is chosen with origin at the system center of mass and with

+Z axis parallel to the orbit normal and +X axis parallel to the line between body

centroids. Each body is oriented with respect to this frame by 3-2-3 Euler sequence

angles φ, θ, and ψ. Note that the orbital elements of the mutual orbit of the bodies

are time-varying due to the coupled rotational and translational dynamics. Since

numbers for the eccentricity e, inclination i, longitude of ascending node Ω, longitude
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of periapsis ω, and true anomaly ν at a specific epoch are very uncertain, one may

arbitrarily choose zero in each case. The initial orbit period and the initial semimajor

axis lead to a total system mass estimate of approximately 2.4713×1012 kg.

It is observed in the results of propagating this system from the given initial

conditions that all integrals of motion which should be conserved (both total energy

and the total angular momentum vector) are conserved very well for long time-span

propagations with the simulator, using both the RKF7-8 and LGVI integrators. All

results shown for this test case within this subsection were obtained with the LGVI

integrator. Very dynamic behavior in the system is observed, indicating that it is

in an excited state. The oscillations in the spin states, orbital elements, and various

other quantities occur on several different timescales roughly matching: 1) the period

of A body rotation, 2) the nominal orbit period (which the B body rotation period

is equal to initially) 3) an ≈ 103 hrs intermediate period, and 4) the ≈ 87 days

period for precession of the angular momenta of A and B and of the orbit plane. The

motions on the first two timescales are driven by the asymmetry of the shape models

(primarily A’s longitudinal asymmetry near its equator) and conservation of total

energy. The body B rotation rate varies about the orbital rate so that B librates

while remaining synchronous on average. The motion on the third timescale is linked

to the free precession of body B, excited by the motions on the first two timescales.

This involves a variation from zero to maximum and back in the magnitude of the

above mentioned libration of B. The motion on the fourth timescale is generally

independent of motions on the other three timescales, and is explained by a simple

conservation of total angular momentum. Table 2.7 shows the extents for oscillations

of the angular velocities and angular accelerations of the bodies (both magnitude

and inertial frame x,y,z components), and the extents for oscillations of the orbital
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Table 2.7: Quantities of interest for propagation of high-fidelity asteroid component
models. Duration covers two weeks of simulation time.

Quantity (units) min max periods
Body A

||ωA|| (rad/s) 6.313e-4 6.314e-4 1,2∗,4
ωAX

(rad/s) 1.073e-5 2.130e-5 1,2,4∗

ωAY
(rad/s) -1.314e-5 -2.964e-6 1,2,4∗

ωAZ
(rad/s) 6.309e-4 6.313e-4 1,2,4∗

||αA|| (rad/s2) 3.077e-13 4.496e-11 1,2,3,4∗

αAX
(rad/s2) -1.206e-11 1.024e-11 1,2,3∗,4

αAY
(rad/s2) -1.910e-11 2.116e-11 1,2,3∗,4

αAZ
(rad/s2) -4.220e-11 4.116e-11 1,2∗,3,4

Body B
||ωB|| (rad/s) 8.844e-5 1.165e-4 2,3∗,4
ωBX

(rad/s) -1.149e-7 6.232e-6 2,3,4∗

ωBY
(rad/s) -4.754e-6 1.8301e-6 2,3,4∗

ωBZ
(rad/s) 8.833e-5 1.164e-4 2,3∗

||αB|| (rad/s2) 0.0 1.331e-9 2,3∗,4
αBX

(rad/s2) -1.030e-10 9.627e-11 1,2,3∗

αBY
(rad/s2) -6.846e-11 6.629e-11 1,2,3∗

αBZ
(rad/s2) -1.323e-9 1.327e-9 2,3∗

a (m) 2535.4 2545.0 1,2,3∗

e 0.0 0.0239 1,2,3∗,4
i (deg) 0.0 3.195 1,2,4∗

Ω (deg) 30 150 1,2,4∗

ωperi (deg) secular increase 2∗

||aREL|| (m/s2) 2.569e-5 2.718e-5 1,2,3∗

aREL ‖ m/s2) 2.564e-5 2.713e-5 1,2,3∗

aREL ⊥ (m/s2) 1.58e-6 1.78e-6 1,2∗

elements and the relative acceleration (both magnitude and components parallel and

perpendicular to the instantaneous line between centers of mass). The last column of

Table 2.7 indicates which timescales, as numbered above, are influential on a quantity,

with an asterisk indicating the most dominant mode for that quantity.

Figures 2.10 and 2.11 show the shorter timescale behavior of the orbit shape

and size. Figure 2.12 shows the components lying in the inertial X-Y plane of the

(normalized to unit length) angular momentum vectors. It is seen that the angular
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Figure 2.10: Semi-major axis behavior, over 2 week duration.

Figure 2.11: Eccentricity behavior, over 2 week duration.

momentum vector of B has a direction that remains bounded near the direction of

the orbit angular momentum vector. This B angular momentum is also compara-

tively small in magnitude so the total angular momentum vector is effectively formed

by just the vector addition of the A and orbit angular momentum vectors. Their

projections in the X-Y plane trace out near-circular paths in it over time, and al-

ways lie in opposite directions from each other about the point in that plane which
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Figure 2.12: Normalized angular momentum vector projections in the inertial X-Y
plane, over one year duration.

is the projection of the total angular momentum vector. As this angular momentum

precession occurs, the offset between the spin pole of A and the orbit normal is in-

variant, because conservation of total angular momentum would be violated if it were

not. Actually, approximate models with only 100 facets each but the same total

Figure 2.13: Comparison of inclination response for approximate and high-fidelity
body models.
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mass that approximate the shape of the high-fidelity models are used for the results

in Figure 2.12. It is acceptable to use the approximate models like this to roughly

characterize the longest timescale behavior of the system more efficiently, as Figure

2.13 shows there is commensurability between the high-fidelity model results and the

approximate model results. All qualitative behavior is the same, although the longest

and intermediate timescale behaviors require an adjustment in their amplitudes and

periods in a consistent fashion, in order to quantitatively describe the true system

with the results of approximate model simulations.

In the next chapter, a more complete application of all of the methodology devel-

oped in this chapter is embarked upon, to accomplish much more detailed study of an

actual binary asteroid existing in nature for which shape models and relative motion

parameters data was made available from various active and passive astronomical

observations.
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CHAPTER III

Application of F2BP Simulation Methodology to Binary NEA (66391)

1999 KW4

The F2BP simulation methodology described in the previous chapter has been

used to perform a detailed study of an actual observed binary asteroid system, the

binary NEA (66391) 1999 KW4. A brief introduction to this fascinating pair is in

order. Discovered on May 20th, 1999 through the LINEAR program’s facility at So-

corro, New Mexico, this Aten-class 1 NEA is also designated a Potentially Hazardous

Asteroid (PHA) [59]. Its binary nature was discovered in 2001 with radar [60], al-

though the system had been photometrically observed earlier [61]. An extended cam-

paign of Goldstone X-band and Arecibo S-band radar observations was conducted

during this system’s May 2001 Earth flyby, and Arecibo radar observations were also

obtained during a more distant June 2002 Earth flyby. This entire set of radar data

along with available lightcurve data for 1999 KW4 (hereafter just KW4) was used to

obtain high resolution shape models of the binary’s components, estimate their mu-

tual orbit characteristics, and estimate the binary’s heliocentric orbit, all according

to the methods mentioned later. For context, the heliocentric orbital elements for

1Aten class refers to an orbital classification scheme that categorizes Near-Earth asteroid orbits
by similarity to that of 2062 Aten (semi major axis < 1.0 AU; aphelion > 0.983 AU) or that of 1862
Apollo (semi major axis > 1.0 AU; perihelion < 1.017 AU) or that of 1221 Amor (semi major axis
> 1.0 AU; 1.017 AU < perihelion < 1.3 AU).
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Table 3.1: Properties of Heliocentric Orbit of KW4. These are in the form of oscu-
lating orbit elements, with respect to the ICRF93/J2000 coordinate frame
of the DE-405 JPL planetary ephemeris.∗,†

Osculating Value Post-Fit
Element Std. Deviation

Eccentricity 0.6883867034 ± 0.0000000258
Perihelion distance (AU) 0.2001480484 ± 0.0000000164
Time of perihelion (JD) 2453676.5283086650 ± 0.0000142757
Time of perihelion (date) 2005-Nov-02.02831
Longitude of ascending node (deg.) 244.9330159090 ± 0.0000001442
Argument of perihelion (deg.) 192.5958593259 ± 0.0000018719
Inclination (deg.) 38.8905365946 ± 0.0000023616
Semi-major axis (AU) 0.6422962390 ± 0.0000000030
Orbit period (days) 188.01889472 ± 0.00000132
Orbit period (years) 0.514758659 ± ??

∗ All angular elements are referred to the ecliptic J2000 frame, unlike the
angular values and binary mutual orbit elements in the later Table 3.2.

†
All data in this table are from Table S2 of the online supplement to Ostro et
al [62] and are repeated here for context and easy reference.

this system were found to be as presented in Table 3.1. From the table, it is seen

that the system passes quite close to the sun every approximately half year, possibly

with significant dynamical implications.

Although KW4 was studied in detail as described in this chapter largely because

it just happened to be the system for which the observation data was made available

in the right time and circumstances, the KW4 system also typifies the largest class

of small binary NEAs. Thus studying it was not studying an exceptional case but an

easily generalized case. That is, the main results herein and comprehensive treatment

of the dynamics of KW4 herein should transfer well to any member of the majority

class of small binary NEAs to which KW4 belongs. This class encompasses much

of the binary asteroid population in the inner solar system, according to Pravec et

al [14] and Pravec and Harris [63] (in the latter reference all of groups A and B are

61



included). The small asteroid spin rate distributions in Pravec and Harris [64] are

also consistent with this. Members of this class have a small size (primary diameter

<10 km) and a secondary to primary size ratio usually between 0.18 and 0.5. For

any member the larger, roughly spherical or oblate spheroid primary is spinning quite

rapidly relative to the rate of the mutual orbit while the elongated, roughly triaxial

ellipsoid secondary has an on-average synchronous rotation with that mutual orbit.

The longest axis of the secondary is pointed toward the primary. The asynchronous

rotation of the primary has led this category of systems to be called that of “small

asynchronous binaries” by some. Others prefer to reserve that terminology for systems

in which both bodies have asynchronous rotation, or else to use “singly synchronous

binaries” or “singly asynchronous binaries” to be more specific. In any case, there

is no special importance to studying KW4 over all other possible binary asteroid

systems, yet the study of this particular system is very important because it has

broader applicability, by similarity to other systems.

It is worth noting that while the various elements of KW4’s whole system model

(shapes, mutual orbit, body properties, and heliocentric orbit) which were estimated

from the observation data were used in setting up and executing high-fidelity dynamic

simulations of the system, in reverse some outputs from such dynamic simulation

were also used to inform the interpretation of the observation data being put into

the system model estimation process. This kind of collaboration between observers

handling the estimation and those handling the simulations (the author) was key to

enabling a better overall understanding of the KW4 system and its behavior. The

approach taken for this study is to start by considering a nominal model for the

system that matches with the results of this collaborative estimation process.
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3.1 Nominal Model of KW4 System

First note that from this point onward, Alpha will be used to refer to the primary

and Beta will be used to refer to the secondary, for convenience. The observation

data mentioned previously was used to obtain polyhedral mesh shape models and

body physical and spin properties of KW4’s components through a least squares

estimation procedure. A separate least squares estimation of orbit elements for the

(originally assumed as Keplerian) mutual orbit followed by the centroids of these two

components, with their shapes and spins, was also carried out. As described in detail

in Ostro et al [62], these two estimation processes were performed in alternation to

refine both the shapes and orbit and arrive at what is hereafter called the nominal

model of the KW4 system. The final shape models arrived at have sufficiently high

spatial resolutions to capture the geometric detail contained in the raw data, i.e. 4586

vertices and 9108 faces for Alpha and 1148 vertices and 2292 faces for Beta. The

product of those facecounts, or over 21 million, gives the order of the number of sets

of tensor operations performed for each evaluation of the mutual potential, force, and

moment. To facilitate faster computation than is possible with these high resolution

models, and enable some more rapid exploratory simulations, low resolution models

of each body were created having 100 faces each and vertex locations fitted to the

shapes of the “true” high resolution models. Note that even for the high resolution

models the numbers of faces and vertices and the body sizes lead to an average edge

length for the triangular faces of 39 and 26 meters, for Alpha and Beta respectively.

Hence topography much smaller than this scale cannot be captured in the models,

but was also not resolved in the raw data to begin with.

For the high resolution body models, the rough dimensions, densities, and a few

general mass properties, plus body spin rates/periods, are indicated in Table 3.2. Note
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Table 3.2: Properties of the nominal model of KW4. All component shape- or mass-
related properties apply to the high resolution body models.∗,†,‡

Parameter (units) Alpha Beta
extents along X principle axis (km) 1.532±3% 0.571±6%
extents along Y principle axis (km) 1.495±3% 0.463±6%
extents along Z principle axis (km) 1.347±3% 0.349±6%
volume (km3) 1.195±9% 0.048±18%
mass (1012 kg) 2.353±0.100 0.135±0.024
density (kg m−3) 1970±240 2810(+820,-630)
Ix (km2) 0.1648±3% 0.01608±7%
Iy (km2) 0.1726±3% 0.02374±7%
Iz (km2) 0.1959±3% 0.02799±7%
Iz/Ix 1.189±5% 1.74±10%
Iy/Ix 1.047±5% 1.48±10%
rotation period (hr) 2.7645±0.0003 17.4223 assumed
rotation rate (deg day−1) 3125.34±0.34 495.916 assumed
total mass (1012 kg) 2.488 ±0.054
orbit period (hr) 17.4223 ±0.036
a, semi-major axis (m) 2548 ±15
e, eccentricity 0.0004 ±0.0019
i, inclination (deg) 156.1 ±2
Ω long. of ascend. node (deg) 105.4 ±3
ω arg. periapsis (deg) 319.7 ±182
MJD epoch 2055.4132 ±0.88

∗ The given body spins are assumed to be about each body’s +Z principle
axis, so that axis is the same as the body spin pole.

†
All angular values and binary mutual orbit elements are referred to the
equatorial J2000 reference frame.

‡
All data in this table except for the mass-normalized principle axis inertia
elements are from Tables 1 and 2 of Ostro et al [62] and are repeated here
for context and easy reference.

that some difficulty was encountered in trying to precisely resolve the spin period

of Beta, such that in [62], the source of the data in this table, this was assumed

equal to the mean mutual orbit period on average. The dynamic behavior of the

system may help explain the difficulty in obtaining a simple description of Beta’s

spin behavior from data taken during the observation windows. The nominal values

for Keplerian mutual orbit elements determined are also shown in Table 3.2. It
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should also be noted that the parametric mutual orbit elements appearing in it are

only descriptive in nature and without a dynamical basis, resulting from fitting the

observed system motion with a Keplerian orbit while allowing no precession of the

argument of periapsis, nor orbital plane motion, in response to perturbations. Their

different nature from that of the osculating orbit elements shown later as numerical

simulation output implies no comparison can be made with those results.

There are several additional features of the system’s model noteworthy in con-

nection to the simulation results below. The potential of gravity for Alpha, in the

geophysical context and as defined in Hofmann and Wellenhof [65], has its minimum

value on Alpha’s surface at the poles and maximum value near the equator, due to

Alpha’s fast rotation [66]. This is the same situation as for Earth (which is nearly

equipotential but not exactly so) and the opposite of the situation for most solitary

small solar system bodies studied to date in such detail. It means the deepest point

in the geopotential is at the equator and loose material on the surface should prefer-

entially flow toward the equator. The interesting raised equatorial band of Alpha has

its highest points only several meters below the altitude at which a free particle would

enter orbit, with the current rapid spin rate [66]. While Alpha has significant varia-

tion in gravitational slope across its surface, with the largest slope values at points on

the equatorial band, Beta has comparatively low gravitational slopes everywhere [66].

These gravitational slopes (or more properly the angular deviation of the net acceler-

ation vector from being antiparallel with the surface normal vector) are mapped over

both bodies in Figure 3.1. For the net acceleration vector in the slope calculations

shown in this figure, smooth rotation of each body about it’s +Z axis at the rotation

rate in Table 3.2 was included. The difference in the degree of gravitational slope

variation, and estimated density, between Beta and Alpha may also be attributable

65



to dynamic behavior of the system (if Beta is sufficiently shaken by angular acceler-

ations). Finally, note that out of the system’s total angular momentum, ≈75% is in

Alpha spin, ≈25% in the mutual orbit, and <0.1% in Beta spin [66].

(a) Northern hemisphere of Alpha (b) Northern hemisphere of Beta

(c) Southern hemisphere of Alpha (d) Southern hemisphere of Beta

Figure 3.1: Effective gravitational slope for both Alpha and Beta according to the
nominal model setup. For that, both Alpha and Beta are in rotation
about their +Z axis at the constant rotation rate listed in Table 3.2.
Gravitational slope is angular deviation of net acceleration vector at a
surface point from the vector antiparallel to surface normal at that point.
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3.2 Variations Relative to Nominal Model of KW4 to Explore System
Excitation

In addition to simulating and studying the nominal model of KW4, with nominal

values for the uncertain system parameters, one can also learn a great deal from

simulating and studying models of KW4 that are “close” to the nominal one, in that

they differ from it only by small changes in one or more of those parameters. Making

these small changes leads to many models of KW4 that have different levels of energy

excitation. Parametrically varying the osculating orbital elements (e, ν, etc.) and

the key pole offset angle (∆ = δ+ i) between Alpha’s spin pole and the orbit normal

at the initial simulation time is one method of exploring different cases of system

excitation. Here Alpha’s spin pole’s obliquity, δ, and orbit plane’s inclination, i, are

measured relative to the system’s total angular momentum direction. It was chosen

to examine variation of the initial osculating eccentricity between 0 and 0.0115, and

of the initial true anomaly of the system at 0◦ and 180◦. Meanwhile values for ∆

between 0 and 10 degrees were explored, the latter being close to the limit of what

may plausibly exist in the natural system. These unconstrained initial conditions

have formal uncertainty ranges, from observations of the system, of 0 ≤ e ≤ 0.0023,

0◦ ≤ ∆ ≤ 7.5◦ and ν ∈ [0, 2π] [62].

As an alternative to directly starting the system with a certain level of excitation

by adjusting the simulation initial conditions, one can instead propagate the simula-

tion through an excitation event. In particular, one can propagate the system through

an Earth flyby (which produces tidal forces on the binary components) or through

a perihelion passage of the binary’s orbit about the sun (which also causes a tidal

interaction with the Sun’s gravity). Given the current low perihelion distance of ap-

proximately 0.20 AU and the long-term Kozai resonance minimum possible perihelion
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distance of 0.12 AU, regular gravitational interaction with the Sun is hypothesized as

a primary mechanism for system excitation, so simulating that has more significance

than simulating a comparatively infrequent Earth flyby.

3.3 Possible Relaxed and Excited Dynamical Configurations for KW4
and Similar Systems

This section presents a sampling of results from simulations of both the high and

low resolution models of the KW4 system by itself (with no third-body influences),

with initial conditions varied from the nominal model as mentioned above. The initial

conditions for the limited selection of simulations summarized herein are presented

in Table 3.3. Therein the angles ψ, θ, and φ correspond to a 3-2-3 Euler rotation

sequence orienting each binary component relative to the initial orbital frame, in turn

defined as having +X axis from the system barycenter to the initial position of the

center of mass of Beta, +Z axis perpendicular to the initial orbital plane, and +Y

axis mutually orthogonal to these by the right hand rule. For all cases the tabulated

values of these angles refer to Alpha’s orientation, since for all cases Beta has fixed

initial values of ψ = 0◦, θ = 0◦, and φ = 180◦, i.e. Beta’s spin pole is initially aligned

with the orbit plane normal. For all cases, the initial spin rate of Alpha is 3125.4 deg

day−1, the initial semi-major axis is 2540.5 m, the initial spin rate of the orbit and

Beta is the mean motion in agreement with that semi-major axis, and both bodies’

initial spins are about their +Z principle axes. For all cases initially i = Ω = ω = 0,

because the inertial orientation of the entire system is irrelevant to internal motions,

given no external influences.

In general, the binary is seen to manifest motions in four “system modes” with

different periods, though the amplitude or aggressiveness of those motions varies

with the level of excitation for each simulation case. The first and fastest mode has a
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Table 3.3: Initial conditions and selected outputs for simulations of relaxed and ex-
cited KW4 configurations.

Initial conditions∗ Outputs†

For Alpha max. max.
♦ ψ θ φ ∆ e ν amp. δη E[TE] δKE

(deg) (deg) (deg) (deg) (deg) (deg) (J×1010) (J×108)
27.04 2.06 -83.93 2.06 0 0 5.874 7.660391 1.638

l 27.04 5.00 -83.93 5.00 0 0 6.164 7.660408 1.790
o 27.04 10.0 -83.93 10.0 0 0 6.700 7.660464 2.079
w 27.04 2.06 -83.93 2.06 .0085 0 1.399 7.660343 0.2828

27.04 2.06 -83.93 2.06 .010 180 11.149 7.660446 3.248
h 27.04 2.06 -83.93 2.06 0 0 8.279 8.711780 2.088
i 27.04 2.06 -83.93 2.06 .0085 0 2.960 8.711716 0.7129
g 27.04 10.0 -83.93 10.0 0.010 180 14.659 8.711961 3.843
h 27.04 0.00 -83.93 0.0 .01125 0 0.825 8.711685 0.3843

∗ Here the angles ψ, θ, and φ correspond to a 3-2-3 Euler rotation sequence orient-
ing Alpha relative to the orbital frame, ∆ is the angular offset between Alpha’s
spin pole and the orbit normal, and e and ν are the the mutual orbit eccentricity
and true anomaly, respectively, all at the initial simulation time.

†
For the output quantities, the first column is the maximum amplitude of vari-
ation of the libration angle, the second is the mean total energy, and the third
is the maximum variation of kinetic energy, hence the largest tradeoff of energy
between kinetic and potential forms during the simulation.

♦ This column indicates the resolution of the body models employed for the sim-
ulation.

period commensurate with Alpha’s spin period, and is driven by the ≈4% equatorial

ellipticity of Alpha (note the Iy/Ix value). The second mode has a period matching

the orbital period (the same as the on-average Beta rotation period). The attitude

of Beta relative to perfectly synchronous rotation, and oscillations of mutual orbital

elements coupled to that libration, show motion within this mode. The third mode

is an excitation of Beta’s free precession dynamics through the faster oscillations of

the previous modes, and has period of ≈188 hours. A “beating” of the amplitude

of Beta’s libration is the most noticeable manifestation of the oscillations in Beta

rotation and the mutual orbit comprising this mode. It is interesting to note that
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the period of the second mode is only slightly longer than the period of torque-free

precession of Alpha’s angular velocity vector in its own frame, while the period of the

third mode is only slightly shorter than four times the period of torque-free precession

of Beta’s angular velocity vector in its own frame.

Mostly decoupled from these three fastest system modes is a fourth one observed

to have a period of ≈90 days for the high resolution models. It is observed from the

numerical simulation results that there is an on-average constant offset angle between

orbit pole and the spin pole of Alpha, and matched precession at a roughly constant

rate of both those poles (i.e. both the Alpha and orbit angular momenta vectors)

about the total angular momentum vector’s invariant direction in inertial space. This

is illustrated in Figure 3.2, which shows the paths traced by quasi-projections (mean-

ing the small angle itself is used rather than its sine, as in a proper projection) of

the angular momenta direction vectors (angular momenta vectors normalized to unit

length) for orbit, Alpha, and Beta onto the X-Y plane of the inertial reference frame

having +Z axis aligned with the total angular momentum vector at the initial time.

The relative radii of each pair of circles matches the 75/25 ratio of Alpha angular

momentum magnitude to orbit angular momentum magnitude. All of this behavior

can be described as a Cassini state for the KW4 system, and follows directly from the

conservation of total angular momentum. In particular, the system is in what may be

classified as Cassini state 2, but of a non-standard kind in that the primary spin and

mutual orbit angular momenta are in matched precession rather than the secondary

spin and mutual orbit. The matching precession rates for this mode are some of the

main rates that the analysis of Chapter IV seeks to independently recover.

The first three low resolution runs in Table 3.3 were carried out to initially char-

acterize the nature of the longest period mode over very long simulation durations,
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Figure 3.2: Comparison, between simulated cases, of quasi-projections of the orbit,
Alpha, and Beta angular momenta direction vectors. These direction
vectors are the angular momenta vectors normalized to unit length, and
they are quasi-projected onto the X-Y plane of the inertial reference frame
having +Z axis aligned with the total angular momentum vector at the
initial time.

and the two runs appearing after those plus the first row run were for similar initial

exploration of the three faster modes. The rest of the runs in the table, using the high

resolution models, eventually end with the most energetically relaxed configuration

identified for the full system, in the last row. This has degeneracy of the Cassini state

with all three spin poles (of the two components and the orbit) parallel to each other.

In addition, Beta has very small libration or rotation away from the line between cen-

ters, and all other dynamic motions are small or modest. The initial-time osculating

eccentricity value of this most relaxed case is nonzero due to the non-spherical mass

distributions of the components, but the orbital path is still almost circular due to
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regular oscillation of the true anomaly while the argument of periapsis circulates.

In contrast, the most energetically excited case that a full simulation was carried

out for is given in the second to last row of Table 3.3. This excited configuration

has a large Cassini state pole offset at the limit of what might plausibly exist for

KW4. While this offset is maintained over time the dynamic variations in most all

other quantities are large. The oscillation in angular velocity of Beta has amplitude

varying from zero to ≈ 2 × 10−5, causing beta to librate by several degrees during

some orbits and barely librate at all during other orbits only a few days later. Such

motion of Beta corresponds to large angular accelerations on it, and such shaking

could lead to the estimated larger density for Beta than for Alpha through material

redistribution into a less porous structure. Such motion could also make estimation of

a single rotation rate variation or libration frequency from the raw data less accurate.

The uncertainty in the determined inertial directions of the estimated Alpha spin

pole and mutual orbit normal, along with the fact of the regularity of likely excitation

events, suggest that KW4 is not in the most relaxed configuration identified here,

with respect to the longest period mode. It is also unlikely to be in the most excited

configuration identified here either, and instead may inhabit an intermediate point

in the parameter space. With respect to the shorter period modes, sizeable observed

offsets of Beta’s long axis from the line between centers, varying in magnitude and

sign between different epochs in the observation periods, were seen (Steve Ostro,

personal communication). These deviations were not fully understood, and hence

not reported in Scheeres and Fahnestock et al [66], but they indicate that Beta has

libration motion inconsistent with the system being in the most relaxed configuration.

The density disparity between Alpha and Beta, and difficulty of estimating Beta’s

exact rotation state from raw data, also indirectly point to shorter period modes
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motion more consistent with the system being in a moderately excited configuration.

Also listed in Table 3.3 are the maximum amplitude of variation in Beta’s libration

angle (hereafter η) away from the line between centers, the mean total energy of

the system, and the maximum tradeoff between potential and kinetic energy over

the simulation duration (which is longer than the third mode’s period in all cases).

These numbers provide a fuller comparison of the most relaxed and most excited

configurations identified here, as bounds on what is possible for the real KW4 system.

An even more complete comparison is provided by Figures 3.3 through 3.6. Note in

Figure 3.3 the nearly constant but different inclinations between the two cases, and

the switch between circulation of true anomaly for the excited case and circulation of

periapsis for the relaxed case. The latter behavior along with nonzero mean osculating

eccentricity indicates mutual orbital motion that is very nearly circular but with a

“super-Keplerian” rate according to the system mass and semi-major axis numbers

estimated through the Keplerian orbit fitting that was performed with the observation

data. This simply indicates that naive reliance on Keplerian orbit fitting may not

yield extremely accurate masses for the full-detail system.

3.4 Demonstration of Perihelion Passage Excitation

As discussed earlier, an alternative to starting propagation of the system with

different levels of energy excitation is starting it in a relaxed configuration and simu-

lating an excitation event acting upon it. And as mentioned before, the most sensible

such excitation event to examine is the binary’s gravitational interaction with the sun

during one of the binary’s perihelion passages. To accomplish simulation of such solar

tide effects on the binary requires some modification of the earlier presented F2BP

propagation methodology to include the perturbing effects of a distant third body.
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(a) Semi-major axis behavior (b) Eccentricity behavior

(c) Inclination behavior (d) Longitude of ascending node behavior

(e) Argument of periapsis behavior (f) True anomaly behavior

Figure 3.3: Comparison of trajectories of standard osculating orbit elements between
the most relaxed and most excited configurations for KW4. The four
angular elements are measured relative to the inertial reference frame
aligned with the total angular momentum vector at the initial time. These
orbit elements are different in nature from the parametric orbit elements
fitted to observed system motion under Keplerian assumptions, so no
comparison can be made with those quantities.
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(a) (b)

Figure 3.4: Comparison between most relaxed and most excited configurations iden-
tified in text, of the components of angular velocity of Beta, in its own
frame, and of the magnitudes of angular acceleration acting upon Alpha
(α1) and upon Beta (α2).

(a) Vector components (b) Isometric view

Figure 3.5: Trajectory of center of mass of Alpha in the frame fixed to Beta.

This involves introducing a modification to the relative force term ∂U / ∂R within

the set of EOM from Section 2.3 that is applicable according to the choice of inte-

gration approach. It is assumed that to first order the effects of the third body are

adequately captured through additions to the relative force alone, i.e., through the

direct effect on the translational dynamics alone. This in turn will transfer into effects

on the rotational dynamics via the full coupling of the system. In other words, it is
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Figure 3.6: Comparison between most relaxed and most excited configurations of
Beta libration angle behavior.

assumed that no change is needed to the relative moment M in the EOM itself, or

no direct effects on the rotational dynamics are needed to capture the third body

perturbation. Ultimately, one may employ the replacement rule of

∂U

∂r
V

∂U

∂r
+

m1

m1 + m2

C2 −
m2

m1 + m2

C1 (3.1)

within either set of EOM presented earlier. One has a choice as to how to obtain the

potential gradients denoted by C(1,2). One can use the partial derivative, with respect

to the position vector from the third body to Alpha’s centroid, of the polyhedron plus

point mass potential formulation [46], using the full-detail shape model of Alpha, and

similarly for Beta. Alternatively one can just use the partial derivative, with respect

to the same position vector, of the two-point-mass potential approximating both the

binary component in question and the distant third body as spheres. It was found

that the former approach gives quite erroneous results, unlike the latter one, for

any scenario in which the distance from the binary barycenter to the third body is
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very large compared to the binary system’s length scale and the mass of the third

body is correspondingly large (e.g. perihelion distance and the mass of the sun). In

such a scenario, in the polyhedron plus point mass potential formulation, the true

contribution of each edge and each face becomes very small, tending towards zero.

Then the very small sum of these small contributions is multiplied by the normalized

gravity constant G, density of the binary component, and the very large third body

mass. Numerical issues aside, this would in theory still produce the correct number for

the Ci in question. But given very poor numerical scaling in such cases and round-

off error at machine precision, the computed contributions of each edge or face as

determined through the arctangent and natural log function calls of the formulation

(refer to [46] for the calculation of Le and ωf within Eq. 2.1) are too large in value,

leading to an obviously incorrect (impossibly large) final Ci value.

This is illustrated with a series of test cases propagating simple 8-face octahedra

with total mass and dimensions within a factor of about four of the total mass and

dimensions of the KW4 components, from initial conditions for a nearly circular

relative orbit with radius very close to the nominal semi-major axis within the KW4

system (see section 3.1). The starting distance of the third body from this test

binary’s barycenter was 100 km, and the starting mass of the third body was 0.1

times the total mass of the test binary system. Holding all other initial conditions

the same, this distance was successively increased by factors of 2, 5, or 10 and the

third body mass concurrently increased by the square of that same factor, so that the

attraction should in theory retain exactly the same magnitude. Figure 3.7 shows the

sum of all face contributions and sum of all edge contributions, within the expression

for C1, vs. increasing third body separation and increasing square root of third body

mass.
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(a) Sum of face contributions within C1 (b) Sum of edge contributions within C1

(c) C1poly
/ C1pointmass

Figure 3.7: Illustration of relative accuracy of polyhedron plus point mass and two-
point-mass formulations for mutual potential between a third body and
the Alpha component of an octohedral “test” binary system. The sum of
contributions of all faces and sum of contributions of all edges toward the
mutual potential gradient according to the former formulation is shown
at top. At bottom are individual ratios of the components of that gradi-
ent determined from the polyhedron plus point mass formulation to the
components of that gradient determined from the simple two-point-mass
formulation.

These sums are not yet multiplied by G, Alpha’s density, and the third body mass,

and they become relatively very small regardless of the normalization used. The ratios

of the C1 components calculated for the polyhedron plus point mass formulation to the

matching C1 components calculated for the two-point-mass formulation are plotted

vs. distance and root of third body mass in the same figure. In theory these ratios
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should continue converging toward unity, but it is seen that the breakdown in the

polyhedral method, as explained above, sets in at a separation distance between only

300 and 500 km. Beyond that range there is a switch to the polyhedral method

severely diverging from the two-point-mass approximation with increasing distance.

Note that each octahedral body in the test binary used here has comparatively few

face and edge contributions due to its mere 8 faces, and for realistic meshes the size

of each of the very many more contributions would be far smaller, making the results

even worse. Given these results, the two-point-mass approximation is employed for

the realistic scales of all plausible flyby scenarios examined for this work.

With the above modifications for including a perturbing third body in place, a

perihelion passage simulation was performed using the initial conditions as tabulated

in Table 3.4. The initial conditions for the relative motion and rotation of the binary

are seen to match those for the prior “most relaxed case”, with the initial binary orbit

pole and the initial spin pole of both components all being aligned. Their common

direction in inertial space is chosen consistent with the orientation results in Table 1 of

Ostro et al [62]. The initial conditions for the heliocentric orbit are taken from Table

S2 of the online supplement to the same source. The initial orientation and system

setup are illustrated with respect to the ecliptic J2000 reference frame in Figure 3.8.

The simulation covers a duration of approximately 37.05 days, centered on the

perihelion epoch, and sweeps out 120 degrees of the orbit on either side. The change

in total energy of the binary system across the perihelion passage due to the external

forces applied by the sun is clearly visible when total energy is plotted against time.

However, it is small in relative terms: there is only an increase of 0.0014 percent from

the total energy averaged over the first week of the simulation to that averaged over

the last week.
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Table 3.4: Initial conditions for simulation of perihelion passage by KW4 ∗.

Initial condition (units) Alpha Beta
ψ (deg) 27.05 0
θ (deg) 0 0
φ (deg) -83.93 180.0

ωx (deg day−1) 0 0
ωy (deg day−1) 0 0
ωz (deg day−1) 3125.4 496.4

a (m) 2540.5
e 0.01125

i (deg) 151.8
Ω (deg) 55.8
ω (deg) 0
ν (deg) 0
asun (AU) 0.6422962390

esun 0.6883867034
rperihel.(AU) 0.200148
isun (deg) 38.8905365946
Ωsun (deg) 244.9330159090
ωsun (deg) 192.5958593259
νsun (deg) -120.0

∗ As before the Euler angles ψ, θ, and φ orient
each binary component relative to the ini-
tial binary orbit frame. The angular velocity
components ωi are in each body-fixed frame.
All other angular values and orbit elements
are referred to the ecliptic J2000 reference
frame.

According to a number of other numerical simulations performed earlier, using

simple spheres in mutual orbit with masses equivalent to KW4’s components and all

propagated through perihelion passage at the current 0.2 AU perihelion distance, it

was expected to find shifts in the osculating eccentricity up to 0.002 and shifts in

the orbit pole up to 0.5◦ (Scheeres and Fahnestock et al [66]). Figure 3.9 shows the

current simulation’s output in eccentricity and in the quasi-projections of the orbit,

Alpha, and Beta angular momentum direction vectors onto the common inertial plane

perpendicular to the initial total angular momentum vector.
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(a) Isometric view (b) View from +Z

(c) View from -Y (d) View from +X

Figure 3.8: Initial system configuration for simulation of perihelion passage by KW4.
Is oriented in the ecliptic J2000 reference frame.

It is not possible to discern any net change in eccentricity over the perihelion

passage, in part because of the comparatively large noisy oscillation in eccentricity

existing before, after, and independent of the passage. This already has maximum

amplitude about 1.5 times the predicted limit for the shift in e. As to whether

the calculated mean of this oscillation changes, the number found for that is too
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small to be significant. The eccentricity clearly varies in the three fastest modes,

and the slowest of these is the one with period of ≈188 hr. Computing the mean

over averaging windows of twice this period, located at the beginning and end of the

simulation duration, gives a difference between the means of only about 1.49×10−5,

at least two orders of magnitude smaller than the predicted limit. It is concluded

that overall the interaction with the sun during this particular perihelion passage

simulation does not excite the 188 hr or shorter period modes very efficiently, for the

dynamics of the system.

(a) Osculating eccentricity (b) Orbit, Alpha, and Beta angular momentum
projections

Figure 3.9: Excitation (or lack thereof) of different period dynamic modes of system
across simulated perihelion passage. This starts from the most relaxed
configuration. The angular momentum direction vector quasi-projections
at right are onto the inertial plane normal to the initial total angular
momentum vector.

In contrast, the longest period mode is clearly excited in only one perihelion

passage, with a shift in the offset angle ∆ from nearly 0◦ to approximately 0.45◦. This

is seen in the second panel of Figure 3.9. Going into the passage, the quasi-projections
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of the angular momenta direction vectors are very close to the origin. Then during

a transient phase lasting through the passage itself they undergo a symmetric spiral

migration outward from the origin, as the total energy level of the system is raised.

After the arresting of this migration at the end of the transient period, the quasi-

projections settle into tracing out opposing arcs with a steady precession. This goes

on for the rest of the simulation duration and continues until the next perihelion

passage. The new distance between the quasi-projections (i.e. new offset angle) is

about 0.45◦ in this case, and a random walk is expected in the offset angle over many

passages to move the system to its actual intermediate excitation level. Therefore it

is demonstrated that at least for the longest period dynamical mode, and possibly in

a cumulative fashion for the faster ones as well, gravitational perturbation by the sun

is a major excitation source.
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CHAPTER IV

Analytical Formulae Describing F2BP Motion of KW4-Like Systems and

Estimation of Their Characteristics

This chapter takes somewhat of a departure from the “numerical experiment”

focus of the last chapter, in order to develop and present the simplest possible non-

trivial analytical theory that can properly describe the motion of a binary asteroid

system similar to KW4. Here “properly describing the motion” means that with a

straightforward analytical calculation the theory recovers key quantities or param-

eters for the various dynamical modes profiled earlier, such as periods, rates, and

amplitudes, which match the best fits for those quantities or parameters to the full-

detail numerical simulation results. Also, here a binary system “similar to KW4”

means any member of the class of small asynchronous binaries, as introduced in the

motivation at the start of the previous chapter.

The simple analytical theory is developed here in two parts, by pursuing two

independent approaches. In the first approach the effects of Alpha’s oblateness are

examined while ignoring the effects of Beta’s triaxiality by assuming Beta remains

“locked” into its gravity gradient orientation and perfectly synchronous rotation.

Thus Beta’s angular momentum is neglected, having no component independent of or

not included with the orbit’s angular momentum. Note that with the neglect of Beta’s
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angular momentum, the angular momentum vectors of Alpha and the orbit must

precess at equal rates due to conservation of angular momentum, and the subsequent

derivation separately identifies what the Alpha spin pole and orbit normal precession

rates are and independently establishes their equality. This first approach allows for

remote estimation of some mass properties of Alpha before entering the very limited

gravitational sphere of influence of the system.

In the second approach the effects of Beta’s triaxiality are examined while ignoring

all abberation of Alpha’s shape from that of a perfect sphere. Similarly, with neglect of

Alpha’s shape, conservation of angular momentum again implies a coupling between

Beta’s orbital and rotational motion, which is also characterized as an output of

this part of the theory. This second approach allows for some remote estimation of

mass properties of Beta, also before entering the gravitational influence of the binary

system itself.

Before embarking on either approach, however, it is necessary to lay the foundation

for the analysis by defining a simple representation for the mutual potential between

the binary components that approximates the true mutual potential well enough to

still describe all of the major dynamical phenomena to be studied.

4.1 Representation for Mutual Potential to Second Degree and Order

Before proceeding, first note that the mathematical notation used in this chapter

is entirely distinct from that used in the prior chapters. Also note that in this chap-

ter, the subscript 1 generally refers to the primary body Alpha, while the subscript 2

generally refers to the secondary, Beta. The mutual potential representation started

with is developed in the context of the simple standard two-body problem equation

m r̈ = ∂U/∂r, wherein the mass parameter is m = (m1 m2) / (m1 + m2) and r is
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the relative position vector between the body centers of mass (centroids), specifically

the vector from Alpha’s centroid to Beta’s centroid. Also U is the the mutual poten-

tial. Let dm1 and dm2 be differential mass elements within the body volumes β1 and

β2, located at positions ρ1 and ρ2 relative to the respective body center of mass:

U =

∫
β1

∫
β2

G

||r + ρ2 − ρ1||
dm1 dm2 (4.1)

Defining vector ∆ρ = ρ1 − ρ2 and its norm ∆ρ, this mutual potential can then be

expressed as

U =

∫
β1

∫
β2

G

r
(
1 − 2 rT ∆ρ

r2 + ∆ρ2

r2

) 1
2

dm1 dm2. (4.2)

Defining the two scalars α = ∆ρ/r and q =
(
rT ∆ρ

)
/ (r∆ρ) this potential can be

expressed in Legendre series form:

U =

∫
β1

∫
β2

G

r

[
Po + P1 α + P2 α

2 + . . .
]
dm1 dm2 (4.3)

where Pi are the Legendre polynomials in q. Assume that it is acceptable to retain

the series terms only out to second order in α. Next, substituting α and q back into

the first three Legendre polynomials in q and distributing the double integrals gives

U =
G

r

[∫
β1

∫
β2

dm1 dm2 +
rT

r2

∫
β1

∫
β2

(ρ1 − ρ2) dm1 dm2

+
3 rT

2 r2

∫
β1

∫
β2

(ρ1 − ρ2) (ρ1 − ρ2)
T dm1dm2

r

r2

− 1

2 r2

∫
β1

∫
β2

(ρ1 − ρ2)
T (ρ1 − ρ2) dm1dm2

]
. (4.4)

Using the mass properties of the bodies to partially evaluate the double integrals

leads to

U =
G

r

[
m1m2 +

3

2 r4
rT

{
m2

∫
β1

ρ1 ρT
1 dm1 + m1

∫
β2

ρ2 ρT
2 dm2

}
r

− 1

2 r2

{
m2

∫
β1

ρT
1 ρ1 dm1 + m1

∫
β2

ρT
2 ρ2 dm2

}]
. (4.5)
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Next recalling the definition of the standard moment of inertia dyads Ii (with units of

kg-m2), and using the fact that tr[Ii] = 2
∫

βi
ρT

i ρi dmi, one can incorporate both of

the inertia dyads into the mutual potential expression (producing a kind of “mutual”

extension of MacCullagh’s formula):

U =
G

r

[
m1m2 +

3

2 r4
rT
(m2

2
tr[I1] U−m2I1 +

m1

2
tr[I2] U−m1I2

)
r

− m2

4 r2
tr[I1]−

m1

4 r2
tr[I2]

]
(4.6)

Here U is the identity dyad. Normalizing the inertia dyad of each body by its own

mass, or in other words using Ĩi = Ii/mi, and defining the unit vector r̂ = r/r, one

can obtain a form similar to that presented in Maciejewski [39]:

U =
Gm1m2

r
+
Gm1m2

2 r3

[
tr
[
Ĩ1

]
+ tr

[
Ĩ2

]
− 3 r̂T

(
Ĩ1 + Ĩ2

)
r̂
]

(4.7)

Then, dividing the system mass parameter out of both sides of the simple two-body

problem equation, one gets

r̈ =
∂Uo

∂r
+
∂R

∂r
,

in which can be identified

Uo =
µ

r
, R =

µ

2 r3

[
tr
[
Ĩ1

]
+ tr

[
Ĩ2

]
− 3 r̂T

(
Ĩ1 + Ĩ2

)
r̂
]

(4.8)

where µ = G (m1 + m2). With the correct alignment of the frame in which the

mass-normalized moment of inertia dyad Ĩi is expressed to the respective body’s

principal axes, that dyad has only diagonal elements of Iix , Iiy , Iiz . The above is a

simple representation for the mutual potential between the binary components only

up to second degree and order, yet it proves sufficient for the analysis below.

4.2 Effect of Primary Oblateness on Mutual Orbit Elements

For the first analytical approach, approximate Alpha as an oblate body with

rotational symmetry about the +Z axis of its own body-fixed frame, hence I1x =
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I1y = Ieq < I1z . With this, the perturbation part of the simplified mutual potential

representation becomes

R =
µ

2 r3

[
2 Ieq + I1z + I2x + I2y + I2z − 3 r̂T Ĩ1 r̂ − 3 r̂T Ĩ2 r̂

]
. (4.9)

How to model the rightmost part of this expression becomes the next issue. Consider

either one of the bodies. Its body frame could be assumed to be aligned with the

coordinate frame (r̂ , r̂T , ĥ), composed of the previously defined unit vector r̂

pointing from the center of mass of body 1 to the center of mass of body 2, the

unit vector ĥ normal to the orbital plane, and unit vector r̂T orthogonal to both of

the other unit vectors. Or one can assume instead that the body’s frame is aligned

with the same (r̂ , r̂T , ĥ) coordinate frame but then rotated by some additional

angle φ about the ĥ unit vector of that frame. Or one can assume the more general

case of three unit vectors x̂, ŷ, and ẑ forming the body’s frame expressed in inertial

coordinates, (x̂ , ŷ , ẑ). Or one can assume this plus a similar additional rotation

by φ about the ẑ axis. Which of these four different cases for alignment of the body

makes the most sense to use and leads to the cleanest formulation that captures the

relevant characteristics of the problem may vary for each body. In the first case, given

that the the vector r̂ is also expressed in inertial frame coordinates just like the dyad

Ĩi, then it is easy to see that r̂T Ĩi r̂ = Iix . The same result is obtained for the second

alignment case as for the first when 1) the body considered is Alpha under the oblate

spheroid assumption and φ is any value or 2) the body considered is Beta and φ is

some multiple of π. There is no simple expression coming from the third or fourth

alignment cases above without additional assumptions. However, here too the fourth

case gives the same (complicated) result as the third when 1) the body considered

is oblate Alpha and φ is any value or 2) the body considered is Beta and φ is some

integer multiple of π.
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For later convenience, define the components of r̂ expressed in the inertial frame

as functions of the orbital elements (a, e, i,Ω, ω, ν) according to the following:

r̂ =


α1

α2

α3

 =


c(Ω) c(ν + ω) − s(Ω) s(ν + ω) c(i)

s(Ω) c(ν + ω) + c(Ω) s(ν + ω) c(i)

s(ν + ω) s(i)

 (4.10)

This introduces the shorthand notation cos(·) = c(·) and sin(·) = s(·). The above

expressions can be obtained from the geometry of the instantaneous orbit frame

(r̂ , r̂T , ĥ) oriented relative to the inertial frame as illustrated in the left panel

of Figure 4.1.

(a) Orientation of mutual orbit frame and rela-
tive position vector

(b) Orientation of Alpha spin frame

Figure 4.1: Illustration of angles orienting frames involved in analytical formulation
for effects of Alpha oblateness.

With this background, one may specify an actual alignment for the bodies for

this first analytical approach. Let the larger oblate body 1, Alpha, have a constantly

changing angle φ as it rotates about its own spin axis, and use the fourth alignment

case above with the (x̂ , ŷ , ẑ) frame chosen so that the spin axis ẑ is tilted away from

the total angular momentum vector by obliquity angle δ and has a projection in the
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inertial frame’s X-Y plane located by clock angle Ψ. This geometry is illustrated in

the right panel of Figure 4.1. Next assume the smaller triaxial body 2, Beta, remains

aligned with the orbit frame but then rotated by φ = 180◦, the second alignment case

above. This is the assumption of locked synchronous rotation of Beta, which allows

one to ignore Beta’s triaxiality, because it means that r̂T Ĩ2 r̂ = I2x . Meanwhile the

alignment of Alpha means the unit vector r̂ expressed in the frame of body 1 can be

written as

r̂ =


k1 c(ω + ν) + k2 s(ω + ν)

k3 c(ω + ν) + k4 s(ω + ν)

k5 c(ω + ν) + k6 s(ω + ν)


wherein the k1 . . . k6 terms, that do not depend on the angles to be averaged over

below, are

k1 = c(Ψ− Ω) , k2 = s(Ψ− Ω)c(i),

k3 = − s(Ψ− Ω)c(δ) , k4 = c(Ψ− Ω)c(δ)c(i)− s(δ)s(i),

k5 = − s(Ψ− Ω)s(δ) , k6 = c(Ψ− Ω)s(δ)c(i) + c(δ)s(i).

This allows for writing the perturbation potential for this setup as

R =
µ

2r3

[
2Ieq + I1z + I2y + I2z − 2I2x − 3

([(
k2

1 + k2
3

)
Ieq + k2

5I1z

]
c2(ω + ν)

+ [(2k1k2 + 2k3k4) Ieq + 2k5k6I1z ] c(ω + ν)s(ω + ν)

+
[(
k2

2 + k2
4

)
Ieq + k2

6I1z

]
s2(ω + ν)

)]
. (4.11)

Next, one performs a “standard” averaging of this perturbation potential over one

orbit, or over the interval [0, 2π] in mean anomaly M . This involves averaging four

collections of quantities which vary going around the orbit, that is four quantities

which are powers and products of the sign and cosine of the longitude angle ω + ν
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divided by the cube of the relative position vector’s magnitude. It is fairly simple to

show that the results of averaging these quantities are

1

2π

∫ 2 π

o

1

r3
dM =

1

a3 (1− e2)
3
2

(4.12)

1

2π

∫ 2 π

o

c2(ω + ν)

r3
dM =

1

2 a3 (1− e2)
3
2

, (4.13)

1

2π

∫ 2 π

o

s2(ω + ν)

r3
dM =

1

2 a3 (1− e2)
3
2

, (4.14)

1

2π

∫ 2 π

o

c(ω + ν) s(ω + ν)

r3
dM = 0. (4.15)

It is seen that Eq. 4.11 can be factored such that

R = D1

(
1

2π

∫ 2π

o

1

r3
dM

)
+D2

(
1

2π

∫ 2π

o

c2(ω + ν)

r3
dM

)
+D3

(
1

2π

∫ 2π

o

s2(ω + ν)

r3
dM

)
+D4

(
1

2π

∫ 2π

o

c(ω + ν)s(ω + ν)

r3
dM

)
(4.16)

where

D1 =
µ

2

(
2Ieq + I1z + I2y + I2z − 2I2x

)
(4.17)

D2 = −3µ

2

[{
k2

1 + k2
3

}
Ieq + k2

5I1z

]
(4.18)

D3 = −3µ

2

[{
k2

2 + k2
4

}
Ieq + k2

6I1z

]
(4.19)

and it is not necessary to be concerned with what D4 is, because as Eq. 4.15 indicates,

its contribution to the averaged R will be zero. One should plug back into D2 and

D3 the full expressions for k1 . . . k6 and expand to see where the orbital elements are

within the whole R for this case, before going on to finding partial derivatives of that

R with respect to those orbital elements, for use in the Lagrange Planetary Equations

(LPEs). Doing this for D2 first yields, after much simplification:

D2 = −3µ

2

[
Ieq + (I1z − Ieq) s

2(Ψ− Ω)s2(δ)
]

(4.20)
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And similarly for D3:

D3 = −3µ

2

[
Ieq + (I1z − Ieq)

{
s2(δ)c2(i)c2(Ψ− Ω)

+ 2c(δ)s(δ)c(i)s(i)c(Ψ− Ω) + c2(δ)s2(i)
}]

(4.21)

Substitution then leads to the averaged perturbation potential in this case being

R =
2D1 +D2 +D3

2a3(1− e2)
3
2

R =
µ

2a3(1− e2)
3
2

[
(I1z − Ieq)

(
1− 3

2

{
s2(Ψ− Ω)s2(δ) + s2(δ)c2(i)c2(Ψ− Ω)

+ 2c(δ)s(δ)c(i)s(i)c(Ψ− Ω) + c2(δ)s2(i)
})

+ I2y + I2z − 2I2x

]
. (4.22)

It is desired to use averaged perturbation potential within the Lagrange Planetary

Equations (LPEs) for averaged time variation of the orbital elements (a, e, i,Ω, ω,M)

in terms of the perturbing potential. Here the mean motion of the system is n =√
µ/a3, and the LPEs are:

da

dt
=

2

n a

(
∂R

∂M

)
de

dt
=

1− e2

n a2 e

(
∂R

∂M

)
−
√

1− e2

n a2 e

(
∂R

∂ω

)
di

dt
=

1

n a2
√

1− e2

[
cot(i)

(
∂R

∂ω

)
− 1

s(i)

(
∂R

∂Ω

)]
dΩ

dt
=

1

n a2
√

1− e2

[
1

s(i)

(
∂R

∂i

)]
dω

dt
=

√
1− e2

n a2 e

(
∂R

∂e

)
− cot(i)

n a2
√

1− e2

(
∂R

∂i

)
dM

dt
= n − 1− e2

n a2 e

(
∂R

∂e

)
− 2

n a

(
∂R

∂a

)
Using R within these instead of R should give the desired averaged, or mean, rates

of change for the orbital elements. As an intermediate step, first write the partial
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derivatives of the R of Eq. 4.22 with respect to the orbital elements:

∂R

∂a
=

−3µ

2a4(1− e2)
3
2

[
(I1z − Ieq)

(
1− 3

2

{
s2(Ψ− Ω)s2(δ) + s2(δ)c2(i)c2(Ψ− Ω)

+ 2c(δ)s(δ)c(i)s(i)c(Ψ− Ω) + c2(δ)s2(i)
})

+ I2y + I2z − 2I2x

]
(4.23)

∂R

∂e
=

3µe

2a3(1− e2)
5
2

[
(I1z − Ieq)

(
1− 3

2

{
s2(Ψ− Ω)s2(δ) + s2(δ)c2(i)c2(Ψ− Ω)

+ 2c(δ)s(δ)c(i)s(i)c(Ψ− Ω) + c2(δ)s2(i)
})

+ I2y + I2z − 2I2x

]
(4.24)

∂R

∂i
=

−3µ

4 a3 (1− e2)
3
2

(I1z − Ieq) {c(2δ)s(2i) + s(2δ)c(2i)c(Ψ− Ω)

+ s2(δ)s(2i)s2(Ψ− Ω)
}

(4.25)

∂R

∂Ω
=

−3µ

4 a3 (1− e2)
3
2

(I1z − Ieq) {2s(δ)s(i)s(Ψ− Ω) [c(δ)c(i)− s(i)s(δ)c(Ψ− Ω)]}

(4.26)

∂R

∂ω
=

∂R

∂M
= 0 (4.27)

It is also interesting to write the partials of R with respect to δ and Ψ:

∂R

∂δ
=

−3µ

4 a3 (1− e2)
3
2

(I1z + Ieq) {c(2i)s(2δ) + s(2i)c(2δ)c(Ψ− Ω)

+ s2(i)s(2δ)s2(Ψ− Ω)
}

(4.28)

∂R

∂Ψ
=

−3 µ

4 a3 (1− e2)
3
2

(I1z − Ieq) {2s(δ)s(i)s(Ψ− Ω) [−c(δ)c(i) + s(i)s(δ)c(Ψ− Ω)]}

= − ∂R

∂Ω
(4.29)

Considering Eq. 4.28, one sees that it is the same as the expression for ∂R/∂i but

with each instance of δ replaced by i and each instance of i replaced by δ. Whether

this fact, and the fact that ∂R/∂Ψ is the negative of ∂R/∂Ω, convert respectively

into having the rate in δ and the rate in i being the same except for an opposing sign

and having the rate in Ψ and the rate in Ω be identically the same isn’t yet obvious

by itself. The rate in δ and the rate in i would be equal and opposite if the total

offset between orbit normal and body 1 spin pole, ∆ = i + δ, is actually constant.
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Putting aside the numerical results presented earlier, this has not yet been suggested

by the analysis. In any case, plugging Eqs. 4.23−4.27 into the actual LPEs makes

the desired mean rates for the orbital elements come out to be:

da

dt
=

de

dt
= 0 (4.30)

di

dt
=

3
√
µ

2a
7
2 (1− e2)2

(I1z − Ieq) {s(δ)s(Ψ− Ω) [c(δ)c(i)− s(i)s(δ)c(Ψ− Ω)]}

(4.31)

dΩ

dt
=

−3
√
µ

2a
7
2 (1− e2)2

(I1z − Ieq) {c(2δ)c(i)

+s(2δ)
c(2i)

2s(i)
c(Ψ− Ω) + s2(δ)c(i)s2(Ψ− Ω)

}
(4.32)

dω

dt
=

3
√
µ

2a
7
2 (1− e2)2

[
(I1z − Ieq)

{
1− 3

2
s2(δ)s2(Ψ− Ω)

− 3

2
[s(δ)c(i)c(Ψ− Ω) + c(δ)s(i)] + s2(δ)c2(i)s2(Ψ− Ω)

+s(2δ)c(i)c(Ψ− Ω)

(
1

2s(i)
− s(i)

)
+ c(2δ)c2(i)

}
+ I2y + I2z − 2I2x

]
(4.33)

dM

dt
=

√
µ

a3
+

3
√
µ

2a
7
2 (1− e2)

3
2

[
(I1z − Ieq)

(
1− 3

2

{
s2(Ψ− Ω)s2(δ)

+ s2(δ)c2(i)c2(Ψ− Ω) + 2c(δ)s(δ)c(i)s(i)c(Ψ− Ω)

+c2(δ)s2(i)
})

+ I2y + I2z − 2I2x

]
(4.34)

The mean rate in M is not equal to just n, which implies the need to define a modified

“effective” semimajor axis a using the mean rates in M and ω averaged over one orbit

as above, rather than using osculating a itself at any epoch. So one can evaluate the

last two of the above equations, then replace a in the right hand sides of all of the

above equations with
a = a

(
1

Ṁ/n+ ω̇/n

) 2
3

, (4.35)

and then evaluate all of those equations again. Note that in the special case of nearly

94



circular mutual orbit motion (e ≈ 0) and also the constraints ∆ = i+ δ and Ψ = Ω,

the denominator in the above simplifies to

1 +
3 (I1z − Ieq)

4a2

(
2c2(i)c2(δ) + 1 + c2(δ) + s2(i) + 2c(2∆)

−3s(∆) + s(2δ)
c3(i)

s(i)

)
+

3

a2

(
I2y + I2z − 2I2x

)
. (4.36)

The results obtained by this method agree with the average rates of change Ω̇, ω̇, and

Ṁ fitted to plotted numerical data, for each case having numerical simulation results

covering long time periods. This is shown in Figures 4.2 and 4.3, which show the

(a) Right ascension of mutual orbit (b) Clock angle of Alpha spin pole

(c) Inclination of mutual orbit (d) Obliquity of Alpha spin pole

Figure 4.2: Comparison between numerical F2BP simulation output and mean rates
of change computed by analytical formulae, most relaxed case. Here we
use both the simple and more involved methods detailed at the end of
sections 4.2 and 4.3, for case with (∆0 =2.06 deg, e0 =0.0085, ν0 =0 deg).
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numerical results for time evolution of inclination and right ascension of ascending

node of the orbit with linear curves superimposed that have slopes matching the rates

calculated by the above formulae. The two different cases for the two figures vary in

the level of energy excitation of the system (i.e. they are for initial conditions sets of

{∆0 =2.06 deg, e0 =0.0085, ν0 =0 deg} and {∆0 =10.0 deg, e0 =0.01, ν0 =180 deg}

respectively).

(a) Right ascension of mutual orbit (b) Clock angle of Alpha spin pole

(c) Inclination of mutual orbit (d) Obliquity of Alpha spin pole

Figure 4.3: Comparison between numerical F2BP simulation output and mean rates
of change computed by analytical formulae, most excited case. Here we
use both the simple and more involved methods detailed at the end of
sections 4.2 and 4.3, for case with (∆0 =10.0 deg, e0 =0.01, ν0 =180 deg).
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4.3 Effect of Primary Oblateness on Primary Spin Axis Orientation

Next turn to the analogous calculation of mean rates of change for the angles δ and

Ψ defining the orientation of the spin axis of Alpha. The rate Ψ̇ will represent a pre-

cession of Alpha’s spin pole, and it is assumed at first that this is entirely independent

of any precession of the orbit pole, notwithstanding the numerical results observed

earlier and a general understanding of Cassini states. Thus any agreement that might

eventually be obtained between the analytical formulae for the two precession rates

will be an independent result.

The most basic equation to start with here is Ḣ1 = M1 with H1 being the

angular momentum vector of body 1, and M1 being the moment acting on body 1.

Which frame this equation is written out with respect to makes a difference in the

complexity of the result. If the inertial frame is used, then M1 = [MX MY MZ ]T . If

the frame used is the frame fixed to body 1, then M1 = [Mx My Mz]
T . If the frame

used is the precessing “spin” frame about whose third axis the body 1 spins with rate

φ̇, then M1 = [Mx′ My′ Mz′ ]
T . The left hand side is simplest with the latter, for

which

I1ω̇1 +

(
ω1 −

[
0 0 φ̇

]T
)
× (I1ω1) = M1. (4.37)

Here

ω1 =


−δ̇

−Ψ̇s(δ)

φ̇+ Ψ̇c(δ)

 ,

(
ω1 −

[
0 0 φ̇

]T
)

=


−δ̇

−Ψ̇s(δ)

Ψ̇c(δ)


are the angular velocity vector of body 1 relative to the inertial frame expressed in

the spin frame and the angular velocity of the spin frame relative to the inertial

frame expressed in the spin frame, respectively. (This is not to be confused with
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the argument of periapsis ω). Recall that I1 = m1Ĩ1 is the same in both the spin

frame and body 1 frame due to the principal axes and oblate Alpha assumptions.

Expanded, equation 4.37 is:

Ieq

(
−δ̈
)
− (I1z − Ieq) Ψ̇2c(δ)s(δ)− I1z φ̇Ψ̇s(δ) =

Mx′

m1

Ieq

(
−Ψ̈s(δ)− δ̇Ψ̇c(δ)

)
+ (I1z − Ieq) δ̇Ψ̇c(δ) + I1z δ̇φ̇ =

My′

m1

(4.38)

I1z

(
Ψ̈c(δ)− δ̇Ψ̇s(δ) + φ̈

)
=

Mz′

m1

If needed, one can use for the right hand side of the above either of
Mx′
m1

My′

m1

Mz′
m1

 =


Mx

m1
c(φ)− My

m1
s(φ)

Mx

m1
s(φ) + My

m1
c(φ)

Mz

m1

 ,


Mx′
m1

My′

m1

Mz′
m1

 =


MX

m1
c(Ψ) + MY

m1
s(Ψ)

−MX

m1
c(δ)s(Ψ) + MY

m1
c(δ)c(Ψ)− MZ

m1
s(δ)

−MX

m1
s(δ)s(Ψ) + MY

m1
s(δ)c(Ψ) + MZ

m1
c(δ)

 .
(4.39)

Now one has a choice about which frame to find and express the moment on body

1 with respect to and how to find that moment. Trying to obtain it, in analytically

closed form, from the gradient of the second degree and order mutual potential as in

Eq. 2.39 is not feasible especially once introducing the full expressions for the relative

attitude matrix T’s elements in terms of the angles involved in the geometric setup.

Likewise infeasible is trying to obtain the moment on body 1 from time differentiation

of both sides of the equation for total angular momentum of the system as expressed

in the inertial frame. The latter produces moment expressions involving second time

derivatives of the orbit angular motion variable λ = ω + ν, which makes the full

equations obtained by substitution of the moment expressions through 4.39 into 4.38
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not amenable to the usual method of averaging over λ.

A different approach is to go directly back to Ḣ1 = M1 and to start over

with a coordinate-independent formulation instead, recognizing that the derivative

of the angular momentum vector of body 1 can be resolved into three orthogonal

components. These components have magnitudes equal to the magnitude change

of the angular momentum vector and the scaled Ψ̇ and δ̇ rates being sought after,

respectively. Also, at the beginning one may make the approximation of including

in the analytical model herein only the portion of M1 due to gradients of mutual

potential with respect to relative position, and not any portion of M1 due to gradients

of mutual potential with respect to relative attitude. Thus one ignores the relative

moment M of Eq. 2.40 and then according to Eq. 2.39 (accounting for the change of

notation) µA ⇔ M1 truncates to just
M1 = −r× ∂U

∂r
. (4.40)

So far in this chapter, expressions for the derivative of the mutual potential with

respect to relative position, up to 2nd degree and order consistent with earlier as-

sumptions of this analytical development, have not actually been directly written

out. To do that, one starts with the mutual potential from Eq. 4.7,

U =
Gm1m2

r
+
Gm1m2

2 r3

[
tr
[
Ĩ1

]
+ tr

[
Ĩ2

]
− 3 r̂T

(
Ĩ1 + Ĩ2

)
r̂
]

=
Gm1m2

r
+
Gm1m2

2 r3
J2(r). (4.41)

This leads to

M1 = r×− ∂

∂r

(
Gm1m2

r
+
Gm1m2

2 r3
J2

)
= −r×

(
−Gm1m2

r3
r− 3Gm1m2

2 r5
r J2(r) +

Gm1m2

2 r3

∂J2(r)

∂r

)
=

−Gm1m2

2 r3

(
r× ∂J2(r)

∂r

)
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=
−Gm1m2

2 r3

(
r× ∂

∂r

[
tr
[
Ĩ1

]
+ tr

[
Ĩ2

]
− 3 r̂T

(
Ĩ1 + Ĩ2

)
r̂
])

=
3Gm1m2

2 r3

(
r r̂× 1

r

∂

∂r̂

(
r̂T
(
Ĩ1 + Ĩ2

)
r̂
))

=
3Gm1m2

r3

(
r̂×

(
Ĩ1 + Ĩ2

)
r̂
)
. (4.42)

For the left side of Ḣ1 = M1, note that the derivative of the angular momentum

vector of body 1 can be resolved as:

Ḣ1 = Ḣ1 Ĥ1 +H1
˙̂
H1 = Ḣ1 Ĥ1 +H1 s(δ) Ψ̇X +H1 δ̇Y. (4.43)

Herein the unit vectors Ĥ1, X, and Y are all mutually orthogonal, and one can dot

product both sides of Ḣ1 = M1 with each one of these unit vectors to obtain

Ḣ1 = Ĥ1 ·M1 , Ψ̇ =
1

s(δ)H1

X ·M1 , δ̇ =
1

H1

Y ·M1. (4.44)

So far this has all been coordinate free or frame independent. Now when one must

choose a frame to work in, it is simplest at the highest level to express the unit vectors

with respect to the inertial frame, hence

Ĥ1 =


−s(δ)s(Ψ)

s(δ)c(Ψ)

c(δ)

 , X =


−c(Ψ)

−s(Ψ)

0

 , Y =


−c(δ)s(Ψ)

c(δ)c(Ψ)

−s(δ)

 . (4.45)

This can be seen graphically from the leftmost illustration in Figure 4.4. One must

also express M1 in the inertial frame, so recalling all of the body alignment assump-

tions, from Eq. 4.42 one has

M1 =
3Gm1m2

r3


α1

α2

α3

×



c(Ψ) −c(δ)s(Ψ) −s(δ)s(Ψ)

s(Ψ) c(δ)c(Ψ) s(δ)c(Ψ)

0 −s(δ) c(δ)




Ieq 0 0

0 Ieq 0

0 0 I1z
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·


c(Ψ) s(Ψ) 0

−c(δ)s(Ψ) c(δ)c(Ψ) −s(δ)

−s(δ)s(Ψ) s(δ)c(Ψ) c(δ)




α1

α2

α3



+

[
−r̂ −r̂T ĥ

]

I2x 0 0

0 I2y 0

0 0 I2z




−r̂T

−r̂T
T

ĥT

 r̂


,

M1 =
3Gm1m2

r3


α1

α2

α3

×



c(Ψ) −c(δ)s(Ψ) −s(δ)s(Ψ)

s(Ψ) c(δ)c(Ψ) s(δ)c(Ψ)

0 −s(δ) c(δ)



·


Ieq (α1c(Ψ) + α2s(Ψ))

Ieq (−α1c(δ)s(Ψ) + α2c(δ)c(Ψ)− α3s(δ))

I1z (−α1s(δ)s(Ψ) + α2s(δ)c(Ψ) + α3c(δ))

+


α1

α2

α3

 I2x


,

M1 =
3Gm1m2

r3
α1

α2

α3

×


(Ieq−I1z ) {α1c2(Ψ)+α1c2(δ)s2(Ψ)+α2s2(δ)c(Ψ)s(Ψ)+α3c(δ)s(δ)s(Ψ)}+I1z α1

(Ieq−I1z ) {α2s2(Ψ)+α2c2(δ)c2(Ψ)+α1s2(δ)c(Ψ)s(Ψ)−α3c(δ)s(δ)c(Ψ)}+I1z α2

(Ieq−I1z ) {α3s2(δ)+α1c(δ)s(δ)s(Ψ)−α2c(δ)s(δ)c(Ψ)}+I1z α3

 ,

M1 =
3Gm1m2 (Ieq − I1z)

r3
(α2

3−α2
2)c(δ)s(δ)c(Ψ)−α1α3s2(δ)c(Ψ)s(Ψ)+α1α2c(δ)s(δ)s(Ψ)+α2α3(s2(δ)c2(Ψ)−c2(δ))

(α2
3−α2

1)c(δ)s(δ)s(Ψ)+α1α3(c2(δ)−s2(δ)s2(Ψ))+α1α2c(δ)s(δ)c(Ψ)+α2α3s2(δ)c(Ψ)s(Ψ)

1
2(α2

1−α2
2)s2(δ)s(2Ψ)−α1α2s2(δ)c(2Ψ)−α1α3c(δ)s(δ)c(Ψ)−α2α3c(δ)s(δ)s(Ψ)

 . (4.46)
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Substituting this and the unit vector definitions of 4.45 into equations 4.44 yields

a consistent set of equations Ẇ = f (W,Q), with “states” vector W = [ H1, Ψ, δ]

and “parameters” vector Q = [ m1, m2, I1z , Ieq, r, α1, α2, α3 ]. It is the last four

of these parameters that are expressions of the orbit elements.

(a) Unit vectors and components of time rate of
change of Alpha angular momentum vector H1

(b) Special alignment at one time instant for sim-
ple approach

Figure 4.4: Illustration of geometric setups for obtaining mean rates of the angles
orienting Alpha’s spin axis.

Just as in the last section, one can perform a standard averaging of these consistent

equations over one orbital period of the system’s motion. At the deepest level, this

comes down to averaging the squares and products of the αi’s (components of r̂)

divided by the cube of relative position magnitude, since that is the only part of these

equations where the orbit elements appear. Recalling Eq. 4.10 and Eqs. 4.12−4.15,

the results of this averaging process are:

1

2π

∫ 2 π

0

α2
1

r3
dM =

c2(Ω) + c2(i)s2(Ω)

2 a3 (1− e2)
3
2

(4.47)

1

2π

∫ 2 π

0

α2
2

r3
dM =

s2(Ω) + c2(i)c2(Ω)

2 a3 (1− e2)
3
2

(4.48)
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1

2π

∫ 2 π

0

α2
3

r3
dM =

s2(i)

2 a3 (1− e2)
3
2

(4.49)

1

2π

∫ 2 π

0

α1α2

r3
dM =

s2(i)c(Ω)s(Ω)

2 a3 (1− e2)
3
2

(4.50)

1

2π

∫ 2 π

0

α1α3

r3
dM =

−c(i)s(i)s(Ω)

2 a3 (1− e2)
3
2

(4.51)

1

2π

∫ 2 π

0

α2α3

r3
dM =

c(i)s(i)c(Ω)

2 a3 (1− e2)
3
2

(4.52)

Substitution of these into equation 4.46 and use of that with 4.45 in the first of

equations 4.44 yields, after significant simplification:

Ḣ1 = 0 =⇒ H1 = constant (4.53)

Then from the second two of Eqs. 4.44, treating the Alpha angular momentum

magnitude as a constant,

Ψ̇ =
3Gm1m2 (Ieq − I1z)

2 a3 (1− e2)
3
2 H1

{
c(δ)

[
c2(i)− s2(i)c2(Ω)

]
+ c(δ)s(Ψ)s2(i)s(Ψ− 2Ω) + c(2δ)c(i)s(i)c(Ψ− Ω)/s(δ)

}
, (4.54)

δ̇ =
3Gm1m2 (Ieq − I1z)

2 a3 (1− e2)
3
2 H1

{
−s(δ)s2(i)c(Ψ− Ω)s(Ψ− Ω) + c(δ)c(i)s(i)s(Ψ− Ω)

}
.

(4.55)

These two already averaged equations can then be solved together once nominal values

for all orbital elements, angles, Alpha inertia dyad diagonal elements, and other mass

properties are inserted. In particular, one can use an iterative method leveraging the

contraction mapping principle. First take initial guesses for what δ̇ and Ψ̇ are and

use those to get an initial guess value for the constant scalar H1 using the expression

for that within the body 1 frame:

H1 =
(
HT

1 H1

) 1
2 =

(
m2

1I
2
eq δ̇

2 +m2
1I

2
eqΨ̇

2s2(δ) +m2
1I

2
1z

[
φ̇2 + 2 φ̇Ψ̇c(δ) + Ψ̇2c2(δ)

]) 1
2

(4.56)

103



Then one evaluates Eqs. 4.54, 4.55 again and repeats with the new δ̇ and Ψ̇, and so

on until the mean angular rates stop changing from iteration to iteration.

Doing this for each case having numerical simulation results covering long time

periods, and comparing the results against the average rates of change δ̇ and Ψ̇

fitted to the plotted numerical data, one can see that the formulation of this section,

together with the final equations of section 4.2, finally produces most of the expected

agreements. That is, the inclination and δ (alpha obliquity angle) mean rates are both

nearly zero or five to six orders of magnitude less than any other rates, within both

the numerical and analytical results. And the mean rates in Ω and Ψ are just about

equal, within the numerical results, within the analytical results, and also between

the analytical and numerical results.

As a much simpler alternative to the above, one can make an adaptation to the

previous method by examining the system just at one particular instant in time, at

which a special alignment occurs, but without any loss of generality for the results.

Stated more formally, one can assume that the mean rates of all orbit elements and of

the body 1 spin pole orientation angles at this one time are the same mean rates that

hold at all other times. The instant in question is the moment when both the line

between the centers of mass for the two bodies (the line of syzygy) and the tilted orbit

normal vector lie in the X-Z plane of the inertial reference frame having its +Z axis

parallel to the total angular momentum. NO restriction of the angular momentum

vector of body 1 (or Alpha’s spin pole) to also lie in the X-Z plane, tilted opposite the

orbit normal, is being made yet. Instead, this is just evaluating the “r crossed with

force term” expression for M1 on the right hand side of the Ḣ1 = M1 equation at

this particular instant in time, and that is acceptable because there are no dynamics

in that force evaluation. At this instant, Ω = π/2 and ω + ν = −π/2, and one can
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obtain from Eq. 4.10 (or observe directly from the geometry shown in the rightmost

illustration in Figure 4.4) that r̂ = [α1 , α2 , α3]
T = [c(i) , 0 , − s(i)]T , so with

this the un-averaged equation 4.46 simplifies to

M1 =
3Gm1m2 (Ieq − I1z)

r3


s(i)2c(δ)s(δ)c(Ψ)+c(i)s(i)s2(δ)c(Ψ)s(Ψ)

(s(i)2−c(i)2)c(δ)s(δ)s(Ψ)−c(i)s(i)(c2(δ)−s2(δ)s2(Ψ))

c(i)2s2(δ)c(Ψ)s(Ψ)+c(i)s(i)c(δ)s(δ)c(Ψ)

 (4.57)

Now assume that at this time instant, it is also true that the angle Ψ = π/2.

This means that the orbit normal and body 1 spin axis are coplanar with the total

angular momentum vector, but just at this one instant (no results of dynamics are

incorporated into this yet). The above then simplifies to

M1 =
3Gm1m2 (I1z − Ieq)

r3


0

c(δ + i)s(δ + i)

0

 (4.58)

and it seems that there is only a Y-component (in the inertial reference frame) for

this moment on Alpha. With the current special alignment at just this one instant

in time, the unit vectors are

Ĥ1 =


−s(δ)

0

c(δ)

 , X =


0

−1

0

 , Y =


−c(δ)

0

−s(δ)

 (4.59)

and taking the dot products of these with the above moment on body 1 as in Eqs.

4.44, and then doing the averaging over the orbital period gives

Ḣ1 = 0, δ̇ = 0, Ψ̇ =
− 3Gm1m2 (I1z − Ieq) c(δ + i)s(δ + i)

2 a3 (1− e2)
3
2 H1 s(δ)

. (4.60)

According to the earlier stipulations that angle Ψ = π/2, and that the orbit normal

and spin vector are tilted in opposite directions from the inertial +Z-axis, in the same
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plane, at just that particular moment in time, one has that

H1 s(δ) = m
√
µ p s(i)

H1 =
m
√
µa

1
2 (1− e2)

1
2 s(i)

s(δ)
(4.61)

such that

Ψ̇ = −
3
√
µ

2 a
7
2 (1− e2)2

(I1z − Ieq)
c(δ + i)s(δ + i)

s(i)
(4.62)

It is seen that this matches up perfectly with the final equation for dΩ / dt at the end

of section 4.2, after the same alignment stipulation of Ψ = Ω is taken into account

within that. The interpretation of all of this is that if one happens to have the

alignment specified here in this section, with coplanar momenta vectors and relative

position vector, at some initial time, then that alignment of coplanar momenta vectors

is preserved over all times due to the identical angular mean rates. Likewise if there

is a poles offset at the initial time, ∆, this remains the same for all times thereafter.

Looking at all average rates of change as fitted to the plotted numerical data for

each case having numerical simulation results covering a long enough time-span, it

is seen that the much simpler method here, as opposed to the prior iterative solu-

tion scheme, also gives us most of the expected agreements together with the final

equations of section 4.2. That is, the inclination and δ (alpha obliquity angle) mean

rates are again nearly zero or several orders of magnitude less than any other rates

within both the numerical and analytical results. And the mean rates in Ω and Ψ

are approximately equal in the numerical results, also matching each way with the

identically equal analytical result for those mean rates. This agreement is also shown,

for using both the complex and simpler analytical methods of this section, in Figures

4.2 and 4.3 for relaxed and excited cases, respectively. These show numerical results

for time evolution of obliquity and Alpha spin pole clock angle (Ψ) with linear curves
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superimposed that have slopes matching the rates calculated by the above formulae,

using both of the methods. These plots demonstrate that the analytical formulae

developed in this and the last section recover accurately the longest period mode of

motion for this general class of binary asteroid systems, as it was revealed through

the detailed F2BP simulation.

As a few final notes here, the results of this and the last section analytically verify

the existence of, and analytically give the co-precession rate for, the numerically

observed generalized Cassini state 2 occupied by the real system. This Cassini state 2

is different from that considered in most all previously published treatments of Cassini

states in that it involves co-precession of the larger primary’s spin and the mutual

orbit rather than co-precession of the smaller satellite’s spin and that satellite’s orbit

about the primary. Also unlike other treatments, in the development above one does

not eliminate at the start the shape effects of the body whose spin is not involved in

the Cassini state being examined (here this is Beta, in other treatments Alpha) by

dropping out the matching half of the original mutual potential expression of Eq. 4.6.

Instead Beta is simply locked to alignment with the mutual orbit, and that results

in elimination of any Beta inertia elements through the steps to reach Eq. 4.46. In

this sense, the treatment herein can be considered more general. Looking at the final

precession rate result, it is seen that it can be rewritten as

Ω̇ = Ψ̇ = −3

2

n2 (I1z − Ieq) c(∆)s(∆)

n p2 s(i)
(4.63)

where p here is the semi-latus rectum of the orbit. Note that this rate is essentially a

torque proportional to the inertia difference (I1z − Ieq), which captures the primary

oblateness, divided by n p2 s(i), which is the projection of the orbit’s angular momen-

tum onto the invariant plane normal to the total angular momentum vector, and can

be viewed as resistance to that torque. Almost all other treatments treat the Cassini
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state (involving the satellite and orbit instead) as a similar torque proportional to the

inertia difference representing satellite oblateness, divided by the projection of the

satellite’s spin-axis angular momentum component onto the same invariant plane.

Thus the other treatments’ rate expressions involve (I2z − I2 eq) /I2z instead. It is

clear from balancing of angular momentum projections in the invariant plane that

in the present ideal case φ̇ I1zsin(δ) ≈ n p2 s(i), and by substitution into Eq. 4.63

the other treatments can be reconciled with ours, allowing for the fact that herein

Alpha’s and not Beta’s spin is in co-precession with the orbit. Alternatively writing

Eq. 4.63 as

Ω̇ = Ψ̇ = −γ c(∆)s(∆)

s(i)
with γ =

3

2

( √
µ

a
7
2 (1− e2)2

)
(I1z − Ieq) , (4.64)

it is seen that collection γ would be a constant precession factor of the familiar sort

only if the orbit is constant. The period for the precession motion, which is in turn

the longest period evident in the system’s different dynamical modes, is extremely

short compared to the tidal evolution timescale, so that one could neglect all changes

to the orbit due to tidal evolution. However, in general the orbit is not constant. As

a final note, it is found that at least for the KW4 system the parameter |Ω̇|/γ has

a value sufficiently high that, by comparison with a treatment such as Gladman et

al [67], the variant of the Cassini state 2 that the system is currently in is expected

to be stable under long-term tidal evolution. However, a rigorous analysis of this has

yet to be performed.

4.4 Effect of Secondary Triaxiality on Librational Dynamics of the Sec-
ondary

For the second major analytical approach of this chapter, the effects of Beta’s

triaxiality on the shorter period modes of motion for the binary system are exam-
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ined, while ignoring Alpha’s aspherical shape. One starts by considering a co-orbiting

relative equilibrium corresponding to an idealized case with all shape information of

Alpha suppressed and perfect synchronous rotation of Beta, itself exhibiting shape

and mass concentration symmetry about at least two Beta principle axis planes. This

relative equilibrium is a much more relaxed configuration than any possible configu-

ration still consistent with the true system’s full shape detail. But about this relative

equilibrium, one can use variations to obtain an approximate linear time-invariant

perturbation dynamics system with nine states (deviations in relative position, rela-

tive velocity, and Beta angular velocity vectors). Next one allows Beta to not have

perfect synchronous rotation and deviate from this aligned equilibrium such that its

triaxial shape does have an effect, but assumes such divergence is small so that the

dynamics of the ensuing motion are adequately described by the linear perturbation

dynamics system. The dimension of this system can be reduced by one through ap-

plication of the conservation of total angular momentum, and for the eight states left,

there are four oscillatory modes of motion manifested by the system, with frequencies

denoted ωi, i ∈ {a, b, c, d}. It is desired to develop analytic expressions for these mode

frequencies.

For a first cut analysis, one can use the simplest model which may still include

the pertinent features that need to be exploited, i.e. one can merely model Alpha

as a sphere and Beta with a second degree-and-order gravity field. Hence, from the

earlier mutual potential expression of Eq. 4.7, assuming I1x = I1y = I1z = Isph:

U =
Gm1m2

r
+
Gm1m2

2 r3

[
tr
[
Ĩ2

]
− 3 r̂T Ĩ2 r̂

]
(4.65)

Due to the symmetry of the Beta model here it is found that, with virtually no modi-

fication, one can apply the formulation presented in Fahnestock and Scheeres [68] and

refined in Fahnestock and Scheeres [6] for the case of a large spacecraft secondary and
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an asteroidal primary in a hybrid natural/artificial binary system. This formulation

starts from equations of motion for the relative position, relative velocity, and Beta

angular velocity vectors that are written in the frame of Beta, i.e.

r′′ + ω′
2 × r + 2ω2 × r′ + ω2 × ω2 × r = ∂u/∂r (4.66)

Ĩ2ω
′
2 + ω2 × Ĩ2ω2 = ζr× (−∂u/∂r) , (4.67)

in which the relative position vector r with direction r̂ and magnitude r is henceforth

switched to being from the centroid of Beta to the centroid of Alpha. These equations

are fully normalized, using the length scale Ro and the time scale
√
G(m1 +m2)/R3

o,

so that ′ denotes differentiation in the new time scale and the normalized potential u

in the above is, for the case being addressed here,

u =
1

r
+

1

2 r3

[
I2x + I2y + I2z − 3 r̂T Ĩ2 r̂

]
(4.68)

The previous values for the I2i
inertia elements have been divided by R2

o to get the new

values for the I2i
’s used in Eq. 4.68 and hereafter. Let the unit vectors (̂i, ĵ, k̂) form

the Beta-fixed frame so that î points from Beta’s centroid in the outward direction

along the Beta principle axis closest to parallel with the instantaneous orbital radius

vector. Due to the symmetry of Beta, in this frame and at the relative equilibrium the

vectors r and ∂u/∂r both have components only in the î direction, denoted x and ux

respectively. Likewise, due to the assumed symmetry of Beta about the X-Y and X-Z

planes, at the relative equilibrium currently being addressed the matrix ∂2u/∂r2 has

nonzero elements only on its diagonal, denoted uxx, uyy, and uzz respectively. Further,

ω2 becomes the constant rate of orbital mean motion about k̂, equal to unity with

proper choice of Ro for the normalization. Thus the five scalars needed along with

the inertia elements and the mass fraction ζ = m1/(m1 +m2) to completely describe
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the perturbation dynamics system are

x = −1 , ux = 1− 3I2x +
3

2
I2y +

3

2
I2z , uxx = 2− 12I2x + 6I2y + 6I2z

(4.69)

uyy = −1 +
3

2

[
4I2x − 3I2y − I2z

]
, uzz = −1 +

3

2

[
4I2x − I2y − 3I2z

]
.

(4.70)

The plant matrix of that linear system is itself [68, 6]:

03×3 U3×3 03×3

1 + uxx 0 0 0 2 0 0 0 2x

0 1 + uyy − ζ x
I2z

(ux − x uyy) 0 −2 0 0 0 0 0

0 0 uzz − ζ x
I2y

(ux − x uzz) 0 0 0 −x+ x(I2z−I2x )
I2y

0 0

0 0 0 0
(I2y−I2z)

I2x
0

0 0 − ζ
I2y

(ux − x uzz) 03×3
(I2z−I2x )

I2y
0 0

0 ζ
I2z

(ux − x uyy) 0 0 0 0


(4.71)

in which ω2 = 1k̂ has already been used. Here U3×3 and 03×3 are the identity

dyad and zeros matrix, respectively. This plant matrix has one zero eigenvalue for

the state to be eliminated, and for the eight eigenvalues of the eight remaining states,

the frequencies of the four pure oscillatory modes are given by:

ω2
a, ω

2
b = −1

2

[
2− uxx − uyy +

ζ x

I2z

(ux − x uyy)

]
± 1

2

{[
2− uxx − uyy +

ζ x

I2z

(ux − x uyy)

]2

−4

[
4ζx

I2z

(ux − x uyy) +

(
1 + uyy −

ζx

I2z

(ux − x uyy)

)
(1 + uxx)

]} 1
2

,

(4.72)
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ω2
c , ω

2
d = −1

2

[
−
(
I2y − I2z

)
(I2z − I2x)

I2x I2y

− uzz +
ζ x

I2y

(ux − x uzz)

]

±1

2


[
−
(
I2y − I2z

)
(I2z − I2x)

I2x I2y

− uzz +
ζ x

I2y

(ux − x uzz)

]2

−4

[(
I2y − I2z

)
(I2z − I2x)

I2x I2y

(
uzz −

ζ x

I2y

(ux − x uzz)

)

−
(
I2y − I2z + I2x

) (
I2y − I2z

)
ζ x

I2
2y
I2x

(ux − x uzz)

]} 1
2

. (4.73)

Next one can define three constants for the system as three rational combinations of

the inertia dyad elements related to one another through a nice permutation relation-

ship, as follows:

κ1 =
I2x − I2z

I2y

, κ2 =
I2y − I2x

I2z

, κ3 =
I2z − I2y

I2x

(4.74)

Then after working through the algebra following substitution of 4.69-4.70 into Eq.

4.72 and 4.73, the four mode frequencies are for this current scenario:

ω2
a, ω

2
b =

[
−12I2x + 3I2y + 9I2z

4
− 1

2
− 3

2
ζκ2

]
±

[
9

4

(
12I2x − 7I2y − 5I2z

2
− ζκ2

)2

+
3

4

(
−20I2x + 17I2y + 3I2z

)
− 3

2
ζκ2 +

1

4

] 1
2

(4.75)

ω2
c , ω

2
d =

[
12I2x − 3I2y − 9I2z

4
− 1

2
+
κ1κ2

2
+

3

2
ζκ1

]

∓

[(
−12I2x + 3I2y + 9I2z

4
+

1

2
+
κ1κ3

2
− 3

2
ζκ1

)2

+ 3ζ(1 + κ1)κ1κ3

] 1
2

(4.76)

For validation purposes one may substitute into these expressions the inertia dyad

elements and mass fraction corresponding to the high resolution shape models of

KW4. It is helpful to normalize everything using the component centroids separation,

averaged over one of the high resolution simulations presented in the last chapter,
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as the normalizing length scale. Along with that one should normalize everything

using the matching mean motion. This yields, for that particular high resolution

simulation example case, periods of 2π/ωa = 20.80, 2π/ωb = 16.38, 2π/ωc = 36.67,

and 2π/ωd = 11.16, all in hours. There are many factors working against good

agreement between these periods and those extracted from the power spectral density

plots of quantities from the high resolution simulation output for the same case.

First is the major approximation in the above formulation of ignoring all true shape

information for Alpha. But note that two of the periods above (those from ωd , ωb) are

quite close to four and six times the spin period of Alpha. In general, inclusion of the

equatorial ellipticity and other Alpha shape information as in the full-detail system

may amount to excitation and slight frequency shifting of these modes through a

driving frequency (the spin frequency of Alpha) approaching higher-order resonances

with them. Further, the oscillations of the real system may be large enough to go

beyond the region of the phase space where the linear perturbation dynamics system

is valid in the first place, and into a nonlinear regime. In light of these considerations,

when the position and velocity of Alpha’s centroid in the frame fixed to Beta and

Beta’s angular velocity in its own frame are resolved from the raw simulation output,

those quantities show periods with excellent agreement with the analytical results

(20.4 hr, 16.0-16.8 hr, 36.3 hr, 11.2 hr). Other dominant periods observed in the time

responses of different quantities such as Beta’s libration angle and the mutual orbit

elements do not agree as well, being more commensurate with the 17.268 hr Alpha

spin free precession period and the true orbital period adjusted to match the average

centroid separation (in turn usually reduced from average semimajor axis due to small

average eccentricity with circulating periapsis and librating true anomaly). The same

picture as above in periods comparison also holds for the other simulation cases.
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4.5 Utility of Analytical Formulae for Mass Property Measurement

Remote observation, primarily from Earth’s vicinity and particularly with plane-

tary radar, can already yield various items of information for a binary asteroid, which

are unavailable for a solitary asteroid body. These include accurate estimation of the

total system mass m1 + m2 from measurement of a binary system’s orbital period.

In addition, one can estimate the mass fraction ζ from measurement of the motion of

each component relative to the system barycenter’s apparent position, as best fitted

to the binary system’s heliocentric orbit (see, for example, [62]). Together with the

total system mass and body shapes/volumes, this mass fraction yields the component

densities as well. However, with the above analytical theory describing the effects of

Alpha oblateness and Beta triaxiality, one can go beyond obtaining these pieces of

information, using further high quality remote observation data.

Particularly in the context of a spacecraft on a rendezvous mission to a binary

system that is still at a large distance from its target (though in the far term ex-

tremely advanced space telescope facilities in Earth’s proximity may provide similar

imaging capability), the long term precession and coupled Beta libration and orbit

motion can be captured in imaging of the binary. From the time history of images

the precession period can be measured, and with that one can use the concurrent

solution of Eqs. 4.54 and 4.55, or simply use Eq. 4.62, to estimate I1z − Ieq. This

excess of Alpha’s moment of inertia about its spin axis above its average moment of

inertia about a transverse axis is essentially the J2 term for Alpha. In addition, after

the observed motion of the coupled Beta libration and orbit dynamics is processed

into the quantities serving as states of the linearized system about the hypothetical

relative equilibrium of the last section, the frequencies or corresponding periods for

those quantities can be extracted. Since these frequencies are expressed in Eqs. 4.75
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and 4.76 as a function of the elements of the inertia dyad of Beta, that relation-

ship can be inverted. Note that only two of the κ parameters are independent, the

third being determined from the other two according to the constraint relationship

κ1 κ2 κ3 + κ1 + κ2 + κ3 = 0. One can also turn all groupings of inertia elements

themselves appearing in the frequency expressions of Eqs. 4.75 and 4.76 into linear

combinations of the differences
(
I2y − I2x

)
and (I2z − I2x). Then these two differences

plus any two of the three κi’s are four values that can be solved for from the four

frequencies obtained from observation. The unknown inertia elements I2x , I2y , I2z

can themselves be determined from those four values, completing estimation of Beta’s

mass parameters from measurements of system motion. As imaging data that is good

enough to allow for measuring the above system motion will also be good enough for

detailed shape model determination, it is likely that such body shapes will also be

available. Then an independent calculation of inertia can be made from the shapes,

assuming homogenous density. A comparison of the two sets of inertia numbers, from

the shape and from the inversion of the observed behavior using the above analytical

formulae, will reveal the degree of error in the homogeneity assumption and yield

a first-cut quantification of density variation inside the bodies. This in turn can

constrain understanding of the macro-porosity and internal structure of the bodies.

Since all observation data mentioned here can be taken from afar through standoff

observation by the spacecraft, the methods outlined in this chapter provide a mech-

anism for remotely analyzing the preliminary mass distribution properties before the

spacecraft enters the sphere of influence of the system itself. In addition to being sci-

entifically interesting in all the ways mentioned above, this may be extremely useful

for reducing risk and improving chances for success for future rendezvous missions to

binary asteroids.
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CHAPTER V

Simulation and Analysis of Particle Motion within Binary Asteroids

Here a different approach is taken to studying the same general class of small

asynchronous binaries for which the formulae in the last chapter were derived. In

particular, that prior analysis centered on the relationship between the mass distri-

bution properties of the binary components and observable binary motions consistent

with the system’s dynamic modes (having varying timescales or periods). But is

also of interest to explore what happens with such systems over very long timescales.

Here “long timescales” means on the order of 104 years up to the average dynamical

lifetime of a typical NEA (the average duration for which it exists in the inner solar

system before solar or planetary impact or ejection from that region, ≈ 107 years

per [69]). These are long enough timescales that the previously detailed periods for

the angular momenta precession, libration, and other dynamic modes of the system

can be viewed as transpiring nearly instantaneously.

To understand various processes that may govern the long timescale behavior and

evolution of binary asteroid systems of this class from their formation through their

current configuration to their final fates, it turns out to be useful to study the cu-

mulative effects of particle motion within these systems. Here particle motion means

the propagated motion of pieces of material that are nearly massless in comparison
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to the binary components, but not necessarily small or low in mass in absolute terms.

In other words, the particles herein may range from pebbles to large boulders or

spacecraft, and are not of microscopic size.

In the process of completing the research work for this dissertation, however,

exploration of such particle motion was not begun solely with the aim of studying

the cumulative effect of that motion as it relates to long timescale evolution of binary

asteroids. It was also (first) desired to study the behavior of ejecta from the surfaces of

both components of a binary, after the fashion of previous ejecta studies for a solitary

asteroidal body (e.g. Scheeres et al [70],[71]). It was also desired to characterize

important features of trajectories that spacecraft or debris in a debris ring may evolve

along within a binary system. To some extent, studying all of these problems of

interest has utilized a common approach, presented below first. Then each of the

major problem types are addressed in turn.

5.1 Methodology for Precise Dynamic Simulation of Test Particles within
F2BP

The motion of particles within the complex time-varying gravity field of the full-

detail system, itself evolving according to the F2BP dynamics, may be assumed not

to impact those F2BP dynamics at all, if each particle is truly a test particle (i.e. is

assumed to be comparatively nearly massless). This defines what will henceforth be

called the Restricted but Full Three-Body-Problem (RF3BP): “restricted” because

of the assumption of neglecting the particle mass yet “full” in detail because of no

simplifications for the underlying F2BP. This is another principal problem type for

astrodynamics which actually is the emphasis for this chapter. Of course this RF3BP

is only an approximation, and the particles that evolve according to the equations of

motion (EOM) for it must be given mass later on, to accurately represent the flows
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of mass and linear and angular momentum that occur with such particle motion, as

relevant for the binary’s dynamical evolution.

Below are presented the EOM that give the motion of particles themselves ac-

cording to the RF3BP. The notation here follows after that in the previous chapter.

Generally denote ρ (no subscript) as the position vector of a particle. One can write

the particle’s EOM with respect to, and coordinate ρ within, any one of several

coordinate frames. In order to match with the usual formulation of the standard

restricted three body problem (hereafter R3BP) in which both Alpha and Beta are

approximated as point masses in circular orbits about the barycenter, it is helpful

to define an “osculating orbit frame” with origin at the system barycenter, i.e. a

rotating barycentric frame. At every instant in time this frame has its +X axis fixed

to the line of syzygy connecting the component centers of mass, and pointing from

Alpha toward Beta. The frame’s +Z axis remains aligned to the pole of the binary

mutual orbit, and its +Y axis is given by the right hand rule from the +X and +Z

axes. Note that when not treating the R3BP system or a similar approximation to

the real system, for which the dynamics have no explicit dependence on time, the

+Z axis of the rotating barycentric frame and its angular velocity ωorb are no longer

inertially fixed and constant, respectively.

Assume a normalization of the EOM using a characteristic length scale, mass, and

time scale. For the characteristic length scale L one may choose the initial semi-major

axis (or for 1999 KW4, roughly 2540.5 meters), for the characteristic mass one may

choose the total system mass mT = m1 +m2 (or for 1999 KW4, about 2.47×1012 kg),

and for the characteristic time scale one may use the mean motion from the above

two numbers, i.e.
√
G(m1 +m2)/L3. Then the fully normalized EOM for a particle
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in the binary, written with respect to the rotating barycentric frame, are:

ρ̈ + ˜̇ωorbρ + 2ω̃orbρ̇ + ω̃orbω̃orbρ =
∂U1,2

∂ρ
(5.1)

Here the notation ã is introduced, which represents the skew-symmetric matrix result

of the cross product operator acting on vector a, i.e. (̃·) : <3 7→ so(3) is an isomor-

phism between <3 and skew-symmetric matrices defined such that x̃y = x × y for

any x,y ∈ <3. The normalized EOM instead written with respect to the Alpha-fixed

frame (as may be useful for treating close orbits about Alpha) are:

ρ̈ + ˜̇ω1ρ + 2ω̃1ρ̇ + ω̃1ω̃1ρ + r̈l =
∂U1,2

∂ρ
(5.2)

And similarly, for completeness, the normalized EOM written with respect to the

Beta-fixed frame are:

ρ̈ + ˜̇ω2ρ + 2ω̃2ρ̇ + ω̃2ω̃2ρ + r̈2 =
∂U1,2

∂ρ
(5.3)

Here the r̈1 denotes the inertial acceleration of the centroid of Alpha and similarly

for Beta. Finally, and most simply, there are the normalized EOM in the inertial

barycentric frame:

ρ̈ =
∂U1,2

∂ρ
(5.4)

In each case, the position vector ρ is coordinated in the appropriate frame of the

EOM.

Throughout the above equations, U1,2 is the total normalized force potential at a

field point due to the mass distributions of both Alpha and Beta. Depending on the

model of the system used, U1,2 may become simpler or more complicated, just as it

does with the choice of different frames and hence different EOM. The forms of U1,2

are presented here only for those cases of greatest relevance. For the R3BP case (in
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which both Alpha and Beta are approximated as perfect spheres), this force potential

for the rotating barycentric frame EOM is

U1,2 = (1− ν)
1√

(x+ ν)2 + y2 + z2
+ ν

1√
(x− (1− ν))2 + y2 + z2

. (5.5)

where ν = m2/(m1 + m2) ≤ 0.5. Of course {x, y, z} are the components of ρ in

the rotating barycentric frame. If Alpha is approximated as a sphere but Beta is

instead approximated as a triaxial ellipsoid with longest semi-axis locked to the line

of syzygy at all times, so that Beta’s rotation is synchronous with the mutual orbit,

then one has what may be called the RSE3BP (restricted sphere+ellipsoid three body

problem). In this case, the force potential for the rotating barycentric frame EOM is

U1,2 = (1− ν)
1√

(x+ ν)2 + y2 + z2
+ ν Uellip(x− (1− ν), y, z) (5.6)

where Uellip is the standard ellipsoid potential result, calculated in the fashion indi-

cated in equations 11-13 of Bellerose and Scheeres [72], but with the normalization

length scale of L rather than of the largest semi-axis, and hence the normalized largest

semi-axis no longer equal to one. These expressions are, assuming normalized ellip-

soid semi-axes of a > b > c and the +X axis of the Beta-fixed frame aligned with

the largest semi-axis a:

Uellip =
3

4

∫ ∞

λ

(
1− (x− 1 + ν)2

a2 + p
− y2

b2 + p
− z2

c2 + p

)
dp

∆(p)
(5.7)

Here p is just the constant of integration for the elliptic integrals, and

∆(p)
4
=
√

(a2 + p) (b2 + p) (c2 + p), (5.8)

and similarly for ∆(λ). The bound λ for the integration is given by the single positive

root of

Φ(λ)
4
=

(x− 1 + ν)2

a2 + λ
+

y2

b2 + λ
+

z2

c2 + λ
− 1 = 0. (5.9)
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Finally, if instead each binary component is represented as a full polyhedral mesh

with almost arbitrary shape, one has the proper RF3BP and for any set of EOM, as

written above, the force potential is:

U1,2 = −G ρ1

(
−1

2

∑
e∈Alpha edges

re1 · Ee1 · re1 Le1 +
1

2

∑
f∈Alpha faces

rf1 · Ff1 · rf1 ωf1

)

−G ρ2

(
−1

2

∑
e∈Beta edges

re2 · Ee2 · re2 Le2 +
1

2

∑
f∈Beta faces

rf2 · Ff2 · rf2 ωf2

)
(5.10)

Here G is the normalized gravity constant (and for this current problem’s normaliza-

tion, unity), and likewise the assumed constant scalar body densities ρ1 and ρ2 are also

normalized. The edge- and face-specific dyads are given respectively by (from [46])

Ee = ni(n
i
e)

T + nj(n
j
e)

T , Ff = nf (nf )
T (5.11)

where nf is the unit vector normal to the face indexed by f , and the face indices i

and j here refer to the faces on each side of the edge indexed by e, and also n
{i,j}
e is

the outward-pointing unit vector normal to both the edge indexed by e and the unit

vector normal to the face indexed by {i, j}. Neither of these dyads depend on the

relative position vector of the particle, but that comes into the vector rf from the

field point at which the potential is being evaluated to any fixed point in the plane of

the face denoted by f , and the vector re from the same field point to any point along

the edge denoted by e. It also comes into the vectors rk, rl, rm from that field point

to the vertices denoted k, l,m at the corners of a given face or at the endpoints of a

given edge. And those vectors or their lengths rk = ‖rk‖ , rl = ‖rl‖ , rm = ‖rm‖ are

in turn used to calculate the scalar quantities (also from [46]):

Le = log
rk + rl + ‖e‖
rk + rl − ‖e‖

(5.12)

ωf = 2 arctan
rk · (r̃lrm)

rk rl rm + rk (rl · rm) + rl (rm · rk) + rm (rk · rl)
(5.13)
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Here ‖e‖ is the length of the edge in question. It is important to note that the relative

position vector required within the quantities re, rf , Le and ωfof the particle must

be expressed in the frame fixed to the respective body. Hence one must use

the transpose of attitude rotation matrices R1 and R2, which map from the frame of

Alpha to the frame of the EOM and from the frame of Beta to the frame of the EOM,

respectively, to convert the position vector ρ within the EOM into each body frame.

These rotation matrices then show up in the partial derivatives of the potential with

respect to ρ. For the force on the particle, the first partial is:

∂U1,2

∂ρ
= −G ρ1 R1

( ∑
e∈Alpha edges

Ee1 · re1 Le1 −
∑

f∈Alpha faces

Ff1 · rf1 ωf1

)

−G ρ2 R2

( ∑
e∈Beta edges

Ee2 · re2 Le2 −
∑

f∈Beta faces

Ff2 · rf2 ωf2

)
(5.14)

And for the gravity gradient matrix, or the second partial:

∂2U1,2

∂ρ2
= −G ρ1 R1

( ∑
e∈Alpha edges

Ee1 Le1 −
∑

f∈Alpha faces

Ff1 ωf1

)
RT

1

−G ρ2 R2

( ∑
e∈Beta edges

Ee2 Le2 −
∑

f∈Beta faces

Ff2 ωf2

)
RT

2 (5.15)

Also, it should be noted again that the Laplacian of the potential from each body

individually is given by

∇2Ui = −G ρi

∑
f∈faces in body i

ωfi
, i ∈ (1, 2) (5.16)

and switches value from zero at particle positions outside the body polyhedron to

−4π at particle positions interior to that polyhedron.

The general simulation package implemented for particle propagation makes use

of the RF3BP formulation, while the R3BP and RSE3BP formulations limited to

just the rotating barycentric frame EOM are useful for some analytical purposes (see

below). It was originally intended for the single-processor C++ implementation of
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the RF3BP formulation to be flexible enough to propagate any of the four sets of

particle EOM for the four frames. However, only the barycentric inertial frame EOM

were propagated for the results herein. It was also intended to have options in the

code for driving the motions of Alpha and Beta in several ways: 1) by interpolating

the raw state data files output from prior full-detail F2BP simulation of KW4; 2) by

moving the components according to periodic functions tuned to the frequencies of the

four dynamic modes, as measured from looking at prior full-detail F2BP simulation

of KW4; 3) by propagating concurrently with the particle EOM other equations of

motion for the binary itself using approximate (but fast to compute) 2nd-degree-and-

order gravity representations of each component. Only the first of these methods

(having the highest fidelity) is used for the particle motion results herein. Finally, it

should be noted that impact detection is implemented using the Laplacian for each

body.

5.2 Analysis of RF3BP Particle Trajectory Results

The trajectory results of any particles propagated with the above may be sorted

according to the final outcome or disposition of the trajectories (from among the

four possibilities of impact onto Alpha, impact onto Beta, escape from the system, or

lingering in “orbit” at the maximum simulation duration). Those particles with each

disposition may be further sorted according to whether that outcome matches the

expected outcome based on the initial energy of the particle’s trajectory. The Jacobi

energy function J for a trajectory is time-varying in the full system. However for the

earlier-mentioned R3BP and RSE3BP approximate systems, the potential through

which a particle moves is time-invariant in the uniformly rotating barycentric frame,

and hence the Jacobi function for a trajectory becomes a Jacobi integral. One can
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compute the integral’s value at the L1 point for the R3BP, or at the analogue to

the L1 point for the RSE3BP found in the rotating barycentric frame at the location

y = z = 0 and x equal to the root of

0 = x− 1− ν

(x+ ν)2
− ν (x− (1− ν))

3

2

∫ ∞

λ

dp

(p + a2)∆(p)
. (5.17)

Here ν = m1/(m1 +m2) again, and λ = (x− (1− ν))2 − a2 with a being the longest

semi-axis of the Beta triaxial ellipsoid, and ∆ is as defined for this standard elliptic

integral by Eq. 5.8. Specifically, the Jacobi integral value for the RSE3BP when

stationary at this RSE3BP L1-analogue point is

JRSE3BPL1
= −1

2
x2

L1 −
1− ν

|xL1 + ν|
− ν

3

4

∫ ∞

λ

(
1

∆(p)
− (x− (1− ν))2

(p+ a2)∆(p)

)
dp. (5.18)

For each regolith particle propagated one may compute from its initial conditions the

initial RF3BP Jacobi function value using the following equation, with all variables

with respect to the rotating barycentric frame:

JRF3BPo =
1

2
ρ̇ · ρ̇− 1

2

[
ω̃orbρ

]
·
[
ω̃orbρ

]
− U1,2 (5.19)

Herein the U1,2 is evaluated with Eq. 5.10. Comparison between the JRF3BPo value

and the JR3BPL1
or JRSE3BPL1

value for the approximate model equilibrium points

gives an expected trajectory outcome. In particular, if the value of JRF3BPo is smaller

than the value of JR3BPL1
or JRSE3BPL1

, then a return impact back onto the body

from which the particle originated is expected (though not guaranteed for the full

system). If that inequality is reversed but JRF3BPo is less than zero, then return

impact or transfer impact or lingering in orbit are all outcomes with no expectation

either way. Instead only the escape outcome is not expected (though not strictly

excluded for the full system). If JRF3BPo is greater than zero, then one might expect

the escape outcome, although strictly speaking many trajectories such as retrograde
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ones may have a positive JRF3BPo value and never come close to escaping. One can

compare the actual propagated outcome against the expected ones to then do further

sorting, which characterizes the degree to which the time-varying nature of the full

system’s potential in the rotating barycentric frame (what sets the full system apart

from the R3BP or RSE3BP approximations) is important.

5.3 Investigation of Ejecta from Binary Components

This section presents the results of using the prior approach in studying the motion

of ejecta particles originating from both binary component surfaces with substantial

initial surface-relative velocity. The specific system for which this is studied is again

the 1999 KW4 system, as it typifies the small asynchronous binaries class and is

likely the best characterized member of that class at the time of this writing, from

the studies in previous chapters.

Specifically, the F2BP motion results set for KW4 used as underlying binary

motion for dynamic simulation of ejecta particles here is that matching the lowest

excitation level identified for the KW4 system. This gives the cleanest picture of the

dispersion of the ejecta particle batches possible. In this configuration the initial spin-

orbit pole offset angle for the system’s Cassini state is 0◦ and the initial osculating

eccentricity and mean anomaly are 0.01125 and 0◦ (see section 3.3). The state of

the binary system itself is interpolated from this “most-relaxed” case’s binary system

propagation output files, whenever required for computation of the net force acting

on each test particle. That net force is determined as the sum of the forces due to

the gravitational interaction of each polyhedral body model with the test particle.
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5.3.1 Setup for simulating batches of ejecta particles

Batches of ejecta particles are propagated from several locations on the compo-

nent surfaces. Particularly, it is desired to explore the behavior of ejecta launched

approximately in several discrete directions in the X-Y plane of the rotating barycen-

tric frame for the system. The directions from Beta are along the +X and -X axes

of the on-average synchronously locked Beta (i.e. toward Alpha and opposite Alpha,

respectively), and also along the +Y and -Y axes of the synchronous Beta (opposite

the direction of Beta’s orbital travel and with Beta’s orbital travel, respectively). In

addition, the discrete directions from Alpha are along the line of syzygy from Alpha’s

center of mass toward Beta’s center of mass, and then rotated by a phase angle φ about

the (north) spin pole of Alpha in 45◦ increments, hence φ ∈ {0◦, 45◦, 90◦, 135◦, 180◦}.

The approach taken is to pick the facet that has a normal vector as close to each de-

sired discrete direction vector as possible, both in orientation and in the proximity

of the normal vector’s base to where the direction vector intersects the body mesh.

Then a batch of particles is propagated from a point just slightly displaced outward

(by only 0.001% of the applicable mean body radius) above the center of each of

those chosen launch facets. For Alpha, only one such launch facet is selected, for the

φ = 0◦ direction towards Beta and using the initial attitude of Alpha in the prior

most-relaxed scenario. Then for the other directions from Alpha, the starting time

for the particle propagation (from the same launch facet) is adjusted later within the

underlying F2BP output’s time span, in order to match that time when the relative

phase of the launch facet with respect to the plane of syzygy has reached the nonzero

value of φ desired.

For each of these nine body and facet or body and relative attitude phase angle

combinations, the initial velocity vector, relative to the body-fixed frame and to the
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body’s surface, that is given to each particle in the batch of particles simulated is

determined by a fixed magnitude vo, and random direction. The direction is specified

with a random variable clock angle ψ from the direction of the edge connecting the

first and second vertices for the launch facet (using uniform distribution between 0

and 2π) and a random variable cone angle ϑ away from the face normal vector (using

gaussian distribution centered on zero mean with σ = 0.75 radians). To prevent the

surface-relative initial velocity vector from ever pointing down into the surface, any

random draw value of ϑ larger than π/2 − 0.00001 is rotated back to ϑ = 0.00001

while keeping the same clock angle.

The magnitude of the surface-relative launch velocity, vo, remains fixed within

each batch of particles propagated, but is varied with discrete values between differ-

ent batches. These values are in turn chosen just higher and lower than the so-called

“guaranteed return speed”, vreturn, just higher and lower than the so-called “guaran-

teed escape speed”, vescape, and near the average of the guaranteed return speed and

guaranteed escape speed, all for two different assumptions about the direction of the

velocity vector in the calculation of those speeds. Therefore there are five discrete

velocity values chosen for each assumption, for ten velocity values in all.

The “guaranteed return speed” here is defined as the minimum, across the full time

history of F2BP propagation states captured, of the launch velocity that gives the

particle an RF3BP Jacobi value at launch at that time, JRF3BPt
, equal to the value

of JRSE3BPL1
computed according to Eq. 5.18. This of course is not an upper bound

on launch velocity which truly guarantees return of a particle to its source body within

the full-detail system, but only an approximation to that. Hence “guaranteed return

speed” is only a label for the quantity. Also, because computational limits preclude

calculation of the launch velocity required to make JRF3BPt
= JRSE3BPL1

at every
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instant in the time history of F2BP states, only a finite set τ of times within that

output history are used. For notation, here let a first-level right subscript indicate the

body or the point that a quantity applies to, a second-level right subscript indicate a

step or instant in time, a left subscript indicate the frame a quantity is coordinated or

expressed in, and a left superscript denote the frame the quantity (such as velocity) is

relative to. Any of these are omitted when not relevant or when the relationship holds

independent of frame, etc. Also I indicates the inertial barycentric frame, B indicates

the rotating barycentric frame, 1 indicates the Alpha-fixed frame or the Alpha body

itself, 2 indicates the Beta-fixed frame or the Beta body itself, and f refers to the

chosen launch facet, or more particularly the center point of that chosen launch facet.

If the assumption about the direction of the launch velocity vector is that it is aligned

with the normal to the launch face, then the following equations give this guaranteed

return speed for a particle launched from Alpha:

vreturn = min
t∈τ

(
−Bt +

√
B2

t
− 4At Ct

2At

)
, (5.20)

where

At = Iκt · Iκt , Bt = 2Iκt · Iχt , Ct = Iχt · Iχt − B
I ρ̇ft · B

I ρ̇ft ,

(5.21)

Iκt = IR1t 1nf , Iχt = I
Iv1t + IR1t 1̃ω1t 1ρf − IRBt B̃ωorbt Bρft ,

(5.22)

Bρ̇ft · Bρ̇ft = 2

[
JRF3BPt

+
1

2

[
ω̃orbt

ρft

]
·
[
ω̃orbt

ρft

]
+ U1,2t

]
.

(5.23)

For a particle launched from Beta rather than Alpha, the same equations above apply

with 1 replaced by 2 throughout. An alternate assumption about the direction of the

launch velocity vector is that it is pointed in whatever direction makes the greatest
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addition to the squared magnitude of the velocity, relative to the rotating barycentric

frame, of the launched particle. This is most likely to increase the Jacobi function’s

value, so it is the preferred assumption. With it, one should redefine Iκt as

Iκt =
Iχt

‖Iχt‖
. (5.24)

This alignment of Iκt and Iχt is the most likely to increase the Jacobi function

(tending to make it less negative) so that vreturn must be smaller to bring the Jacobi

function down to the desired sphere plus ellipsoid system’s L1 equivalent point Jacobi

integral value. The smaller upper bound which results is more conservative.

The “guaranteed escape speed” is instead the maximum, across the full time

history of F2BP propagation states, of the launch velocity that gives the particle an

RF3BP Jacobi value at launch at that time, JRF3BPt
, equal to zero. This of course is

not a lower bound on launch velocity that actually guarantees the escape of a particle

subject to the dynamics of the full-detail system, but rather an approximation to

such a lower bound. Yet as before, “guaranteed escape speed” makes a useful label

for this value. The same set of Eqs. 5.20-5.23 apply for calculation of this guaranteed

escape speed using the first assumption of face-normal-aligned launch direction, with

the simple modifications of a) “max” instead of “min” used and b) JRF3BPt
replaced

by 0. With the other assumption of the launch velocity vector being pointed in

the optimal direction, i.e. in whatever direction makes the greatest subtraction to

the squared magnitude of the launched particle’s initial velocity with respect to the

rotating barycentric frame, the sign on the right hand side of Eq. 5.24 must be

reversed. This anti-alignment is the most likely to reduce the Jacobi function (tending

to make it more negative) so that vescape must be larger to bring the Jacobi function

up to zero. The larger lower bound which results is more conservative.

Note that all of these calculations to determine the guaranteed return and escape
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speeds are performed independently for each chosen launch facet, to use in deter-

mining the discrete values of vo used for generation of the initial velocity vectors

for particles launched from that facet. Doing the same calculations (under the first

assumption of a facet normal launch direction) for not just these chosen facets but

every facet on each body model yields the interesting maps of expected return and

escape velocity bounds at all latitudes and longitudes, presented as a side note in

Appendix B.

In addition to post-processing the batches of ejecta particles for each particle’s

final disposition (return impact, transfer impact, escape, or lingering in “orbit”) and

the expectation regarding that disposition, the particle-mass-specific changes to the

angular momenta of the system caused by each particle moving along its trajectory is

calculated. These are accumulated across all particles in a batch, and further averaged

over all batches launched from a given location (body and facet or body and relative

attitude phase angle φ combination). The angular momenta changed are those of

Alpha, of Beta, of the mutual orbit, and of Beta and the mutual orbit together. The

method for calculation of such changes are dealt with in section 5.4 in more detail.

5.3.2 Ejecta particle dispositions and binary component angular momen-
tum changes

The disposition results for the ≈45,000 total ejecta particles simulated are shown

in Figure 5.1 for the 50 batches of 500 particles each originating from Alpha, and in

Figure 5.2 for the 40 batches of 500 particles each originating from Beta. Each panel

in the figures shows results for launching from a different body and facet or body

and relative attitude phase angle combination, and in each panel the dispositions for

the ten batches specific to that combination are plotted against the full range of the

ten velocity values used, on the horizontal axis. In these plots, green shows particles
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(a) φ = 0◦ (b) φ = 45◦ (c) φ = 90◦

(d) φ = 135◦ (e) φ = 180◦ (f) LEGEND

Figure 5.1: Disposition results for ejecta particles launched from equatorial region of
Alpha, at differing phase angle φ counterclockwise from plane of syzygy
on the side facing Beta.

for which the outcome indicated was expected according to comparison of their own

particle-specific initial-time Jacobi values with the JRSE3BPL1
value of -0.1119978

(with dimensions m2/s2) or zero. Red or magenta shows “rogue” particles for which

the outcome indicated was not expected according to such comparison. Gray shows

particles for which the outcome indicated was neither expected nor unexpected by

such comparison. Note the distinction between magenta and red: magenta means

the outcome was unexpected because the particle’s initial Jacobi value was too low

(it should have return impacted instead), while red in this panel means the outcome
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(a) Launch in Beta +Y Direction (b) Launch in Beta -X Direction

(c) Launch in Beta -Y Direction (d) Launch in Beta +X Direction

Figure 5.2: Disposition results for ejecta particles launched from equatorial region of
Beta, in directions approximately aligned with the positive and negative X
and Y principal axes of Beta. This is assuming Beta is in a synchronously
locked orientation.
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was unexpected because the initial Jacobi value was too high (it should have escaped

instead).

Only the Z-axis components, in the inertial barycentric frame, of the averaged

particle-mass-specific changes to system angular momenta are summarized in Table

5.1 for particles originating from Alpha and Table 5.2 for particles originating from

Beta. All such changes to the system angular momenta are vector quantities, but the

largest or dominant component of those is this Z-axis component. Again, for every

number in these tables, averaging was performed over all of the batches launched

from a given location with different launch velocity magnitudes. Each column can

be viewed as representing the net effect on the system angular momenta of exca-

vating a fountain of debris having a spectrum of ejection velocities. Note here it is

NOT expected that the numbers for the change in Z-component of Alpha’s angular

momentum and the change in Z-component of the combined Beta and orbit angular

momentum balance each other. Note also that these are mass-specific results: the

absolute angular momenta changes are given by multiplying these numbers with the

Table 5.1: Velocity-averaged particle-mass-specific changes to angular momenta of
binary system components, as a result of the ejecta particle motion, for
ejection from Alpha’s surface. The inertial barycentric angular momenta
changes of all ejecta particles reaching each outcome (taken together as a
set) are also given here.

φ = φ = φ = φ = φ =
∆Hz of item (m2/s) 0◦ 45◦ 90◦ 135◦ 180◦

1© return particles 9.4314 38.6310 57.5020 43.7641 13.9257
2© transfer particles -119.3020 -146.7850 -87.3798 -78.2972 -31.9719
3© orbiting particles 42.3234 61.8396 73.7058 56.0223 46.2943
4© escaping particles -12.9736 27.3207 41.3934 32.7812 11.2132
5© mutual orbit 368.2942 244.3661 151.4244 70.1776 39.4412
6© Alpha spin state -667.0662 -560.3487 -535.9336 -453.5003 -508.2617
7© Beta spin state -15.3761 -10.7878 -0.9460 4.5388 -1.3406
8© sum of 5© and 7© 352.9182 233.5783 150.4784 74.7165 38.1006
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Table 5.2: Velocity-averaged particle-mass-specific changes to angular momenta of
binary system components, as a result of the ejecta particle motion, for
ejection from Beta’s surface. The inertial barycentric angular momenta
changes of all ejecta particles reaching each outcome (taken together as a
set) are also given here.

∆Hz +Y axis -X axis -Y axis +X axis
m2/s launch launch launch launch

1© return particles 219.7794 21.8366 -219.2214 -16.5369
2© transfer particles 186.6390 19.5891 -220.3012 1.3410
3© orbiting particles 284.2133 89.9026 -140.3660 75.0153
4© escaping particles 290.9639 -3.4489 -133.2158 48.5031
5© mutual orbit -601.6618 -1368.9069 -2064.9165 -931.5915
6© Alpha spin state 20.5225 83.8435 155.5261 195.8350
7© Beta spin state -50.5025 36.9662 35.4229 -27.9189
8© sum of 5© and 7© -652.1643 -1331.9407 -2029.4935 -959.5103

amount (mass) of ejected material, which like the ejection velocities in turn depends

on the energy level of the impact or explosion which releases that material. In this

work no attempt is made at quantifying these details of impact or explosion mechanics

and cratering.

In the case of launch from Alpha with φ = 0◦, at the highest launch speeds

everything escapes except for what smacks into Beta (mainly along the leading face

of Beta in the sense of its orbital motion) plus a few strange cases of return to Alpha

almost immediately, at points extremely close to the launch point. The latter cases are

best explained in terms of very fast ejecta traveling almost horizontally with respect

to the launch facet and then hitting adjacent facets as they rotate into the flight

path, before the Alpha body can rotate further “out of the way”. In the same launch

from Alpha case with φ = 0◦, at the very lowest launch speeds everything returns to

Alpha (without even a single rogue particle) and the smear of return landing points

tends to be strongly skewed toward negative longitudes, with little latitude spread.

For this same launch from Alpha case there appears to be a trend of having particles
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transfer impact or remain in orbit when they should escape more than having particles

transfer impact or remain in orbit when they should have return impacted. However,

this appears to have more to do with the geometry and obstruction of flight paths

by Beta and local surface topography on Alpha, as opposed to being a genuine bias.

Finally for the same case and all other cases of launch from Alpha, there seems to

be a clearly larger depression of angular momentum of Alpha than boost to angular

momentum of the mutual orbit.

For the launch of ejecta from Alpha with φ = 45◦ phase of the launch location

from the sub-Beta point at the time of launch, as the launch speed increases, transfer

particle outcomes suddenly become more frequent, but then just as rapidly become

very small in number. This “peak” in transferring particles seems to match with

the velocity magnitude that will move the launched particles out to the approximate

distance of Beta’s orbit in the same amount of time that it takes Beta to progress

around its orbit and pass into the cone of ejecta. At lower launch speeds than that

of this peak, the particles fly through Beta’s mean orbital radius in a flyby of Beta

behind it, while at higher launch speeds the particles pass through that radius in a

flyby of Beta in front of it, as opposed to colliding with Beta while outbound. At

the very highest launch speed, only very few of the 500 particles get caught into

Alpha’s rotating surface (having been launched nearly horizontally) and everything

else except one transferring particle (which likely went far out, then came back in and

struck Beta on approach to periapsis) escapes the system.

For the case of launch from Alpha with φ = 90◦ phase of the launch location

from the initial sub-Beta point at the time of launch, as the launch speed increases,

having everything impact as expected with a definite smear of return landing points

in the direction of negative longitude and very little latitude spread gives way to
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a few transfers and an even smear of the return landing points all the way around

Alpha, but still little latitude spread. Then the latitude spread of return impact

points grows, and an increasing fraction of particles go to escaping as expected. At

the very highest launch speed, only a bunch of very fast nearly horizontal particles get

caught into Alpha’s rotating surface as before, and all else escapes as expected. This

same progression is observed in the cases of launch from Alpha with φ = 135◦ and

φ = 180◦ as well. But moving from the φ = 45◦ to φ = 90◦ to φ = 135◦ to φ = 180◦

cases, the peak in particle transfers broadens and becomes lower, and also moves to

the left (to lower launch velocities). This makes sense for the timing for collision with

Beta while moving toward apoapsis, or while just moving in an outbound direction.

One last notable feature particular to the φ = 135◦ case only is a sudden plummet in

the number of return impacting particles, and corresponding spike in the number of

escaping particles at a launch velocity of ≈0.3 m/s, which remains difficult to explain.

Next for launch from Beta in Beta’s +Y direction (from facet 1056 of the Beta

mesh in this setup), which points away from the trailing face in the context of Beta’s

orbit. As the launch speed increases more and more of the particles make the transfer

onto Alpha, and the vast majority of the transferring particles are at first biased

toward higher amounts of angular momentum transported to Alpha (i.e. there are

only a few outlying particles that impart much less angular momentum to Alpha

than the rest of the transferring particles). However the latter bias/outlier effect

goes away once the launch speed is raised even further. Most curiously, with further

increasing launch speed the growing number of transfers then gives way to a surge

of return impactors at the very highest launch speeds and corresponding reduction

of the number of transfers at those speeds. The explanation for this strange change

seems to be that because launch is from the +Y face, particles are being launched
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backward against the orbit of Beta. So as launch speed increases, these particles

go from still orbiting mostly along with Beta, to moving slowly at apoapsis of new

orbits around Alpha that carry the particles down into Alpha’s surface at periapsis, to

moving slowly in such plunging orbits in the retrograde direction, to moving in larger

semi-major axis orbits in the retrograde direction (meaning fewer particles plunge in

far enough to hit Alpha and more stay out in orbits that may collide with Beta moving

in the direction opposed to Beta’s orbital motion). The final scenario is flagged as a

return impact despite its high energy launch condition.

For launch from Beta in Beta’s -X direction (from facet 1086 of the Beta mesh),

which points away from Alpha along line of syzygy, the following is observed as launch

speed increases: At the very lowest speed, all of the particles come right back without

moving around Beta’s surface much in either latitude or longitude. But then with

increasing launch speed the spread over Beta of return impact locations grows, and a

growing fraction of particles transfer, that then being replaced by a growing fraction

of particles escaping. This looks similar to the case of launch in Beta’s -Y direction

(from facet 1116 of the Beta mesh), which points out from the leading face in the

context of Beta’s orbital motion. As launch speed goes up, at first everything returns

close to the point of origin with a few outlying particles losing much more angular

momentum than most all the rest, and then there is a spread in landing locations

around Beta skewed a bit more toward the side away from Alpha. And there is

eventual transition to most all escaping particles, with most of the escapees being

uncertain at one launch speed, then suddenly transitioning to being expected at the

very highest launch speed.

Lastly, for the case of launch from Beta’s +X face (facet 1146 in particular), in

the direction pointing toward Alpha along the line of syzygy. Progressively raising
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the launch speed shows that particles begin reaching Alpha and such transferring

and orbiting particles (mainly comprised, as a category, of the former) build up

in number before escaping particles also accumulate. At the very highest launch

speeds the fraction of rogues in each of the non-return-impacting dispositions remains

nonexistant for the escapees and goes way up (in the too high Jacobi function value

type of rogue) for the transfers and orbiters. In fact at the highest launch speed, all

transfers and orbiters are this type of rogue result. Simply put, Alpha is just in the

way of the fountain of fast-moving ejecta coming off of Beta towards it. Most all of the

behavior for this and each of the above cases makes sense in keeping with the relative

orientation of the launched distribution of ejecta, Alpha and Beta’s placement, and

the sense of the system’s orbital motion.

5.4 Investigation of Primary Equator Regolith Lofting and Hypothesized
Binary Evolution Mechanism

In contrast with the last section’s examination of motion of particles originating

from both body surfaces at high initial surface-relative velocity, here the motion of

particles from only one component (Alpha) and only one region of its surface (that

near the equator) is examined with zero initial surface-relative velocity. The only

way in which motion of particles still results without such relative velocity is through

making the dynamical state of the binary include a primary rotation rate which ex-

ceeds the “disruption spin rate” for which loose material at some point on the primary

surface will be spun off. In other words, through setting the initial condition for pri-

mary spin fast enough that the surface-normal component of centrifugal acceleration

felt by loose material somewhere on the surface is slightly larger in magnitude than

the surface-normal component of gravitational acceleration felt by that material, so

that the net acceleration in the surface normal direction is outward and the material
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cannot be maintained on the surface.

This is not merely a hypothetical setup, but is suggested by the earlier mentioned

fact that the highest points on the raised equatorial band of KW4 Alpha are only

several meters below the altitude above the spin axis at which, with the same currently

measured rapid spin rate, this outward net acceleration and levitation of material

would arise. Note that this several meters is within the vertical uncertainty, or vertical

resolution, in the detailed radar-derived primary shape model for that KW4 system,

which is on the order of a few times less than the mean edge length for that mesh

model [Lance Benner, personal communication], about 39 meters for KW4’s case. So

KW4 may actually have points at an altitude sufficient for current spin rate material

levitation. Furthermore, this feature is not unique to KW4. Observational results for

several binary primaries show them to be to be spinning at or near their individual

“disruption spin rates” (see for example [73, 74, 75, 76, 77]). Pravec et al also

find in their photometric survey of binary NEAs [14], and in their survey of binary

asteroid angular momentum content [63], that this feature is not uncommon but

frequent enough to possibly be considered a defining characteristic of the class of

small asynchronous binaries being primarily focused on in this dissertation. Given the

frequency with which binary asteroid primaries are found at or near their disruption

spin rates, it is natural to consider what dynamical implications there are for material

being levitated from their equatorial regions , hereafter referred to as regolith lofting.

In particular, it is interesting to consider whether the regolith lofting persists over

time, and if so whether it is episodic or continuously occurring. Further, as every

regolith particle has mass it will carry linear and angular momentum with it, and

may transfer some of that linear or angular momentum between the binary system’s

components and the binary’s mutual orbit. This suggests in turn that the regolith
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lofting, if persistent over time, may have a role to play in the long timescale evolution

of binary asteroid systems.

Mechanisms for such evolution have been studied previously. The usual solid-body

tides driven evolution should be present, though the key parameters for it are highly

uncertain for rubble-pile bodies like the primary and secondary probably are. The

proposal and study of the BYORP mechanism by Cuk et al [35, 36], a process in-

volving a net effective torque on the binary’s mutual orbit due to solar flux reflection,

absorption and re-radiation acting on the secondary body, was previously mentioned

in the introduction. Here a different mechanism is described for similar binary orbit

growth, that of continued YORP spin-up of the primary leading directly to orbit

expansion by transfer of angular momentum through persistent regolith lofting mo-

tion. Note the BYORP theory does not include detailed modelling of particle motion

or angular momentum transfer between parts of the system. Note for comparison

that the mechanism described here, which fits well with the available observational

results, also predicts orbit expansion times several times faster than those predicted

by tidal dissipation effects alone, yet much slower than the orbit expansion claimed

to be produced by BYORP.

The hypothesized mechanism is simple: Continued YORP angular acceleration

of the primary can cause it to spin at rates where loose material on the equator

can lift off into orbit. The presence of the secondary, or more properly gravitational

interaction between the particles and the secondary, causes these particles to lose

angular momentum and then re-impact onto the surface of the primary, in this way

transferring angular momentum through the gravitational interaction into the binary

orbit and causing it to grow. On average, it is expected that all angular momentum

deposited by YORP into the primary’s spin state which pushes the primary surface
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beyond the surface disruption limit will eventually be transferred into the orbit. Thus,

in a steady-state approximation, the orbit angular momentum will grow at a rate equal

to the rate that YORP causes the primary’s angular momentum to grow. This effect

should act as a rotational speed limit on the primary, keeping it rotating at or near

its surface disruption limit, as observational evidence supports.

While the hypothesis is simple, there are many assumptions implicit in it that must

be verified. This section presents work to flesh out the details of this mechanism and

to confirm, with rigorous simulations, that the mechanism works as proposed. For

carrying out this confirmation, the specific example binary system of 1999 KW4 from

before is used again, as it typifies the small asynchronous binaries class and is at the

time of writing the best characterized member of it.

5.4.1 Precise dynamic simulation results

Several F2BP motion results sets for KW4 specifically are used as underlying

binary motion for dynamic simulation of lofted particles through the system. These

results sets match with 0.0◦, 2.5◦, and 5.0◦ of initial pole offset angle and with 0◦ and

180◦ of initial phase of the chosen lofting facet (see below) w.r.t. the syzygy plane (the

plane formed by the Alpha spin pole and line of syzygy), measured counterclockwise

from the Beta side of Alpha. While all of these results sets are generated using an

initial Alpha spin rate of 0.000651444 rad/s, the set for 2.5◦ pole offset and 180◦

phase (for lofting from the side opposite Beta) is also generated a second time with

the initial Alpha spin rate of 0.000641444 rad/s, while that for 2.5◦ offset but 0◦ phase

(for lofting from the same side as Beta) is also regenerated with the initial Alpha spin

rate of 0.000640444 rad/s.

An explanation is in order for this choice of parameters and for why the initial Al-

pha angular velocity, aligned to the Alpha +Z axis, is given these magnitudes, rather
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than the best estimated observation-derived spin rate for KW4 Alpha (0.000631343

rad/s, per [62]). The parameters come from an effort to identify the exact location

on Alpha’s surface and exact binary system conditions at which lofting would most

likely first occur under YORP-driven primary spin-up. Here “binary system condi-

tions” includes Alpha spin rate, mutual orbit elements, Alpha spin and orbit pole

offset angle, Beta libration angle, and initial relative pose (in phase angle from the

syzygy plane) of the above lofting location on Alpha’s surface, and so forth.

First looking at the uniformly spinning Alpha model by itself, one may calculate

for every face the angular velocity at which lofting will first occur (as angular velocity

is slowly increased) at any point on that face, and the angular velocity at which

lofting should first be guaranteed to occur at every point on that face. This is

plotted in Figure 5.3, for most all facets not lying at extreme latitudes (i.e. near the

north pole, and thus having very low face ID #’s, or near the south pole, and thus

having very high face ID #’s approaching the total Alpha face count of 9168). As

seen in the zoomed in panel, near equatorial face # 4113 had the lowest guaranteed-

everywhere-lofting spin rate, equal to 0.000651444 rad/s (about 3.18% higher than the

observation-derived spin rate). Simultaneously, the same face # 4113’s first-lofting

spin rate is almost exactly the observation-derived spin rate. Thus this face is

adopted as the chosen lofting facet, and it is determined that suitable threshold rates

at which lofting might be considered to “turn on” there, for purposes of the model

of the next subsection, should be chosen about halfway between the first-lofting and

guaranteed-everywhere-lofting spin rates for this face, or about 0.000641444 rad/s.

Next, one proceeds from the model of uniformly spinning Alpha by itself to a toy

model for the full binary system, having both full-detail body meshes but keeping both

centroids locked to an assumed perfect circular Keplerian orbit and keeping Beta’s
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(a) Across large range of lattitudes

(b) Zoomed in on facets near the equator

Figure 5.3: Spin rates computed for lofting on each facet vs. facet ID # on KW4
Alpha. This is computed for the uniformly spinning Alpha body mesh
by itself, balancing surface-normal components of centripetal acceleration
and gravitational acceleration.
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(a)

(b)

Figure 5.4: Spin rate computed to guarantee lofting everywhere on a facet vs. initial
facet phase and vs. pole offset angle ∆. (The facet considered is # 4166,
very near the selected lofting facet.)
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longest axis locked to the line of syzygy. This gives a static setup in which to test

the guaranteed-everywhere-lofting spin rate on the chosen face # 4113 or some other

very nearby face, at different phases of that face from the syzygy plane. As expected

from intuition about the radial component of tidal acceleration, two minima in this

spin rate occur at 0◦ and 180◦ of phase. Refer to Figure 5.4, panel (a). The minima

are separated by about 1 × 10−6 rad/s in value, the 0◦ phase number being lower.

This is as expected, given the asymmetry of tidal acceleration in such a system for

which the ratio of mean primary radius to orbit size is not � 1. Hence the threshold

for same side lofting is chosen to be 1× 10−6 rad/s lower than the 0.000641444 rad/s

threshold chosen by the last paragraph for opposite side lofting. Fixing 0◦ phase,

the guaranteed-everywhere-lofting spin rate on face # 4113 or some other nearby

face is also found to have a minimum at ≈2-3◦ along the pole offset angle coordinate

of parameter space (see Figure 5.4, panel (b)). Varying Beta libration angle and

slightly varying the in-plane orbit elements both have minimal effect on first-lofting

or guaranteed-everywhere-lofting spin rates.

All of this information is used to guide the choice of initial configuration con-

ditions for simulation of the F2BP binary motion, and corresponding simulation of

particle trajectories within the binary (as the binary follows that motion) starting

from Alpha’s surface, on the chosen lofting facet. For the latter simulation by the

methods of section 5.1, at the initial time particles are placed in a triangular grid

over the triangular facet, with zero velocity relative to the moving surface below.

The particles are displaced by a very small distance (≈0.25 m) outward along the

face normal direction, to avoid intersection with the body polyhedral mesh and er-

roneous immediate detection of a collision at the initial time. The particles are not

given any physical size, and while a very small normalized mass is assigned to them
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within the RF3BP code, they essentially act as massless test particles as intended.

The results of batches of regolith particles thus propagated are sorted according to

their final dispositions, and further sorted by the expectation about those dispositions

if applicable. Lofted particles are observed going to the outcomes of transfer impact

onto Beta, “orbit”, and escape in small numbers only for the cases with the higher

initial Alpha spin rate of 0.000651444 rad/s, so such sorting is only relevant to those

cases. When some particles go to dispositions other than return impact onto Alpha

like this, it causes a problem with eventual draining of particles from the surface

of Alpha in the probability-based simulation of the next subsection. It would also

imply continuous erosion of material from the primary in the real binary system,

which doesn’t seem realistic at this stage in the system’s evolution. Thus the next

subsection’s methodology is employed only with inputs derived from the results sets,

for dynamic simulation of lofting particles on top of F2BP motion, matching the two

cases with initial Alpha spin rate at the threshold spin rate values.

These inputs, passed to the probability-based propagation, are two key probability

matrices (one for lofting from each side) and the means and standard deviations for

velocities accompanying non-zero elements of those matrices. The X−Y plane (orbit

plane) of the barycentric rotating frame is divided into 36 angular sectors, each 10◦

wide, converging at the location in that frame of the centroid of Alpha. These are

numbered 1-36 counterclockwise, starting with the centerline of sector 1 lying on the

line of syzygy opposite from Beta. The same type of “bins” in longitude relative to the

rotating barycentric frame, aligned the same way but centered on Beta’s centroid, are

also created and similarly numbered 37-72. In post-processing the output trajectories

for a large ensemble of particles propagated using precise dynamic simulation, the

longitude in the rotating barycentric frame of the plane projection of the impact
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point of each particle trajectory is found. Which longitude bin that impact longitude

falls within, for the appropriate body impacted, is then determined. The total time

of flight, t
E
− t

S
, for each trajectory is also used to obtain a time bin designation for

that particle as
b 18 (‖ω1‖ − ‖ωorb‖) (t

E
− t

S
) /π c+ 1 . (5.25)

For each particle, given its impact longitude bin and time bin designations, the el-

ement of the probability matrix in the row matching the longitude bin number and

column matching the time bin number is incremented by one. All particles impacting

neither body, but instead escaping or orbiting at the maximum duration, are con-

sidered released to those final dispositions instantly. So these cases are all similarly

counted up in the first column, in the last rows (with zeros to their right). The entire

matrix is divided by the ensemble’s size to give probabilities of reaching each loca-

tion in space and time, or for each discretized possible outcome. For each impacting

particle the velocity with respect to, and coordinated in, a local “bin-fixed” frame

with +X pointing outward along the bin of impact’s centerline, +Z aligned to the

barycentric rotating frame’s +Z axis, and origin at the point of impact is also found.

All such impacting velocity vectors for particles reaching a given bin are accumu-

lated, and the mean and standard deviation is stored along with the matrix for use

in the algorithm described below. If applicable, for each escaping/orbiting particle

the mass-specific change to the particle’s barycentric angular momentum between

endpoints of its flight is computed, averaged over all particles escaping/orbiting, and

passed on as well.

5.4.2 Novel probabilistic mapping approach

The preceding subsection’s precise dynamic simulation of test particles treats those

particles as not exerting any influence on the translational or rotational motion of
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the binary components themselves, nor exerting any influence on each other’s motion.

This is justified by the fact that particles of realistic size and mass will generate forces

and torques on the binary components that are so small compared to the forces and

torques exerted by the binary components on each other as to be indistinguishable

from numerical noise if included in the dynamic simulation. In other words the

relative scaling of the effects of the particles on the components and the effects of

the components on each other advocates against the approach of directly including

the former effects in the precise dynamic simulation. In addition, the accumulation

of the binary components’ responses to individual particle motions takes very long

times to build up to observable changes, and simulation of the F2BP dynamics for

such long times is prohibitively computationally expensive. Even if such computation

were free, and despite the excellent symplectic and mean-error-reducing properties of

the integration algorithm used, dynamic propagation to such long durations would

entail eventual accumulation of numerical error which could confuse or overwhelm

the accumulating particle motion effects on the binary itself.

So in order to detail the hypothesized mechanism for slow time evolution of the

binary system in response to the shed particles, rather than the fast particle trajec-

tories themselves, a probability-based method is developed here for propagating a

simplified model of the binary system plus a collection of primary regolith particles.

This model can be run forward for very long durations and much larger particle popu-

lations at a comparatively very low computational cost. Yet, as it uses the probability

matrices and accompanying random variable parameters derived as above from the

output of precise dynamic simulation, this probability-based propagation is grounded

in the true full-detail dynamics of the system while computationally independent from

them.
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First, one defines a particle state vector x to have one element for each particle,

the integer value of which indicates, along with some appropriate buffer variables,

the particle’s location in space and/or time or else that particle’s final disposition

reached. Admissible values for elements of x and their meanings are detailed in Table

5.3. At the initial time, x is set to uniformly distributed random integers in the

range of 1-36, effectively spreading the equal-mass particles evenly around Alpha’s

equatorial longitude.

Table 5.3: Meaning of values for particle state vector (x) elements
Integer value Meaning

1 - 36 Particle is lying on surface of Alpha, in 10◦-wide sector of lon-
gitude on Alpha w.r.t. rotating barycentric frame denoted by
value. Such sectors are numbered counterclockwise viewed from
north pole of Alpha, 1 being centered on line of syzygy on op-
posite side from Beta.

37 - 72 Particle has previously or just impacted onto Beta, in 10◦-wide
sector of longitude on Beta w.r.t. rotating barycentric frame
denoted by value. Such sectors are numbered counterclockwise
viewed from north pole of Beta, 1 being centered on line of
syzygy on the same side as Alpha.

73 Particle has begun a trajectory that will carry it to escape from
the system.

74 Particle has begun a trajectory that will leave it still lingering
in “orbit” after very long time.

100 - 9999 Particle will later impact into a sector of longitude on Alpha or
on Beta, as defined above and given by buffered value, but is
currently in flight, with 10000−n time intervals past the current
time left until impact occurs (n being the current value).

10000 Particle is impacting at this current time step, at sector of lon-
gitude given by buffered value.

Note that here the same notation conventions as before (vectors in bold, dyads

and matrices in uppercase roman, (̃·) for the cross product matrix form) are used

again. But also, a first-level right subscript indicates the body the quantity applies

to, a second-level right subscript indicates a step or instant in time, a left subscript
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indicates the frame a quantity is coordinated in, and a left superscript denotes the

frame the quantity (such as velocity) is relative to. Any of these are omitted when not

relevant or when the relationship holds independent of frame, etc. Also I indicates

the inertial barycentric frame, B indicates the rotating barycentric frame, 1 indicates

the Alpha-fixed frame or the Alpha body itself, 2 indicates the Beta-fixed frame or

the Beta body itself, and i indicates the i’th particle.

Aside from the particle states, a set of binary states describing the system at

any given time is set to initial values matching the binary models simulated in the

previous subsection. This set of states consists of the following: the mass of each

component, m1t and m2t , the inertia dyad of each component, 1I1t and 2I2t , the

angular velocity vector of each component, 1ω1t and 2ω2t , the attitude rotation matrix

mapping from the frame of each component to the inertial frame, IR1t and IR2t , and

the barycentric position and velocity of each component center of mass, i.e. Ir1t ,
I
Iv1t ,

Ir2t , and I
Iv2t . In addition, the mean equatorial radius of Alpha, d1t , is made variable

to account for mass loss/addition from/to Alpha’s equatorial region making Alpha

slightly smaller/larger in size. The time since the propagation’s start at discrete time

step t is denoted as tt . The interval between discrete time steps is determined as the

time needed for a point stationary on Alpha’s surface to advance from one sector of

longitude relative to the rotating barycentric frame, or one “longitude bin”, to the

next, that is

tt+1 − tt =
π

18
(
‖ω1t‖ − ‖Ĩrt

I
Ivt‖ / ‖Irt‖

2) , Irt =I r2t −I r1t ,
I
Ivt =I

I v2t −I
I v1t .

(5.26)

This can be calculated at any time step, and likewise the angular momenta of the

150



system components can be found at any step from the binary states:

IH1t = IR1t 1I1t 1ω1t , IH2t = IR2t 2I2t 2ω2t

IHorbt
= m1t Ĩr1t

I
Iv1t +m2t Ĩr2t

I
Iv2t , IH2+orbt

= IH2t + IHorbt
(5.27)

Before discussing the algorithm logic used to propagate from one time step to the

next, the changes to the binary states caused by lofting, gravitational interaction dur-

ing flight, and then impact of a single particle of mass mi by itself are detailed. First

for lofting: Since the particle is released with no initial velocity relative to Alpha’s

surface, no reaction between the particle and that surface takes place. The rotational

state of Alpha (both attitude matrix and angular velocity vector) is preserved from

just before lofting (“instant −”) to just after lofting (“instant +”). However, Alpha’s

total mass is reduced by mi and the inertia dyad of Alpha is also changed, not only

directly but by the re-shifting of the Alpha center of mass to account for the new body

mass distribution. That centroid shift also slightly adjusts the barycentric position

and velocity of the centroid. The following relations result:

1ω1+ = 1ω1− (5.28)

IR1+ = IR1− (5.29)

m1+ = m1− −mi (5.30)

1I1+ = 1I1− +

(
m1− mi

m1− −mi

)
1̃ρi− 1̃ρi− (5.31)

Ir1+ = Ir1− −
(

mi

m1− −mi

)
IR1− 1ρi− (5.32)

I
Iv1+ = I

Iv1− −
(

mi

m1− −mi

)
IR1− 1̃ω1− 1ρi− (5.33)

Here the quantity 1ρi− is the relative position vector from the centroid of Alpha to

the position of the particle i at the instant before lofting, expressed in the Alpha

frame at the instant before lofting, prior to the centroid shift involved. The location
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on Alpha’s equator where the lofting is determined to occur gives this vector. In the

present model, this equatorial location is chosen to be either the center of the rotating-

barycentric-frame-relative longitude bin 1 (i.e. on the line of syzygy opposite from

Beta, or at the anti-Beta point on Alpha) or else the center of the similar longitude

bin 19 (on the line of syzygy on the same side as Beta, or at the sub-Beta point on

Alpha). Note, for later use in defining the starting point of the trajectory followed

by each lofted particle,

Iri+ = Ir1− + IR1− 1ρi− (5.34)

I
Ivi+ = I

Iv1− + IR1− 1̃ω1− 1ρi− . (5.35)

Next for the set of changes in the binary states that occur from just before to just

after impact of the single particle onto either body. Here the relations are shown for

a return impact back onto Alpha rather than a transfer impact onto Beta. However,

all of the relations are identical in the latter case except for replacing the subscripts

1 with 2, and using the new quantities thus denoted for Beta. Upon particle impact,

the particle mass is added onto the target body with an accompanying direct change

to the body inertia dyad plus an indirect change to the same due to body centroid

re-shifting. Again, such a centroid shift adjusts the barycentric position and velocity

of the centroid. The instantaneous attitude of the body may be assumed unchanged

across the impact, but because the incoming particle has velocity relative to the

surface just before impact, the body reacts to that with a change in angular velocity

(and an extra additive change in inertial barycentric velocity of the body centroid

too). Assume for now that the other, final endpoint of the trajectory followed by

each lofted but then impacting particle is well-defined as Iri− and I
Ivi− . Then

1ρi− = IR
T
1−

(
Iri− − Ir1−

)
(5.36)
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Then the following relations for the binary state changes across an impact result:

IR1+ = IR1− (5.37)

m1+ = m1− +mi (5.38)

1I1+ = 1I1− −
(

m1− mi

m1− +mi

)
1̃ρi− 1̃ρi− (5.39)

Ir1+ = Ir1− +

(
mi

m1− +mi

)
IR1− 1ρi− (5.40)

I
Iv1+ =

(
m1−

m1− +mi

)
I
Iv1− +

(
mi

m1− +mi

)
I
Ivi− (5.41)

1ω1+ =

[
1I1− −

(
m1− mi

m1− +mi

)
1̃ρi− 1̃ρi−

]−1

·(
1I1− 1ω1− +

(
m1− mi

m1− +mi

)
IR

T
1−

˜[
Iri− − Ir1−

] [
I
Ivi− − I

Iv1−

])
(5.42)

There are also small changes to the binary states that stem from the binary sys-

tem’s reaction opposite the modification of each particle’s inertial barycentric angular

momentum while it is in flight. This angular momentum change for the particle occurs

due to gravitational interaction between the particle and the full mass distributions

of the binary components. Again let the particle’s trajectory be defined, with starting

point denoted here as
{

IriS ,
I
IviS

}
and ending point denoted here as

{
IriE , I

IviE

}
.

Then across the bit of interaction during each of the p discrete time intervals (assumed

roughly equal in length) covered by the particle’s trajectory, one has that

IHorb−
=

(
m1 m2

m1 +m2

)
Ĩr−

I
Iv− , Ir− =I r2− −I r1− , I

Iv− =I
I v2− −I

I v1− (5.43)

IHorb+
= IHorb−

− mi

p

(
ĨriE

I
IviE − ĨriS

I
IviS

)
(5.44)

e =
(

˜
IHorb− IHorb+

)
/
∥∥∥ ˜

IHorb− IHorb+

∥∥∥ (5.45)

θ = acos

 IHorb−∥∥∥ IHorb−

∥∥∥ ·
IHorb+∥∥∥ IHorb+

∥∥∥
 (5.46)

R = expm [ẽ θ] (5.47)

k =

[
0 0 1

]T

·
IHorb+

R IHorb−
+ δ

(5.48)
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Ir1+ =

(
−m2

m1 +m2

)
k2R Ir− Ir2+ =

(
m1

m1 +m2

)
k2R Ir− (5.49)

Iv1+ =

(
−m2

m1 +m2

)
1

k
R I

Iv− Iv2+ =

(
m1

m1 +m2

)
1

k
R I

Iv− (5.50)

Herein δ is a very small constant close to machine precision to prevent singularity,

expm [ · ] is the matrix exponential operation, and there are no time subscripts on

the component masses because they do not change across this time-step’s bit of the

interaction. Note that large p for longer flight times can be problematic in that very

large p spreads out the change across many time steps until the change improperly

numerically disappears given an override needed to avoid numerical error. When the

orbit angular momentum change of Eq. 5.44 is segmented into many equal portions

applied during each of the time steps for which the particle is in the “in-flight” state,

each portion may be too small, such that IHorb−
and IHorb+

are so close in direction

that the dot product inside of the acos in Eq. 5.46 is nearly unity. In fact, numerical

error may result in the dot product being slightly greater than unity, producing

imaginary numbers which break the propagation. Therefore an override is introduced

to force the dot product to be ≤1, and thus θ = 0, in such rare cases.

As for the determination of the final endpoint of a particle’s trajectory, and how

much later in time that comes than the initial endpoint of the trajectory, that in-

formation is derived from the probability matrices from the earlier post-processing

of the particle precise dynamic simulation output. Recall that each matrix has rows

corresponding to the particle state values 1-74, i.e. corresponding to bins of longitude

on Alpha, then bins of longitude on Beta, then the escaping and lingering in orbit

final dispositions (see Table 5.3). Also recall the columns correspond to the number of

intervals in time covered by the trajectory. The location in time, body reached, and

equatorial position on that body (centerlines of longitude bins are used) of a trajec-
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tory’s final endpoint is randomly selected in roulette wheel fashion using the nonzero

probabilities in the probability matrix. This gives the needed inertial position vector

IrE = Iri− (the latter with respect to the impact equations), computed at point

where it must be used given then-current binary state values. Then the particle’s

velocity in the bin-fixed frame attached to the longitude bin reached by the particle

is generated from a normal random variable draw, using the mean and standard de-

viation corresponding to that bin, as read in along with the matrices. This velocity

is converted into the needed inertial particle velocity I
IviE = I

Ivi− (the latter with

respect to the impact equations). The conversion is made at the point of use for the

inertial velocity, given then-current binary state values.

Finally note that the progression of time from one step to the next itself also

requires an update of the binary states. Since the mutual orbit is nearly circular, one

can approximate the update for the orbit states with a simple rotation about the orbit

normal. The updates for the body attitudes may also be approximated with simple

rotations about each body’s instantaneous angular velocity direction. For Alpha,

this simple rotation must also account for any small, constant angular acceleration

of Alpha, α1, included in the model to represent YORP or torque from any source

external to the binary itself. Assuming alignment between the angular acceleration

and the spin vector in the Alpha-fixed frame gives

IR1t+1 = IR1t expm

[
1̃ω1t

‖α1‖
(
tt+1 − tt

)2
2 ‖ω1t‖

+ 1̃ω1t

(
tt+1 − tt

)]T

(5.51)

IR2t+1 = IR2t expm
[
2̃ω2t

(
tt+1 − tt

)]T
(5.52)

1ω1t+1 = 1ω1t

(
1 +

‖11‖
‖ω1t‖

(
tt+1 − tt

) )
(5.53)

R orb = expm

[
˜̃
Irt

I
Ivt

‖Ĩrt
I
Ivt‖

√
G(m1t +m2t)/ ‖Irt‖

3 (tt+1 − tt
)]

(5.54)
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Ir1t+1 = R orb Ir1t , Ir2t+1 = R orb Ir2t , (5.55)

I
Iv1t+1 = R orb

I
Iv1t ,

I
Iv2t+1 = R orb

I
Iv2t (5.56)

Having detailed all of the building blocks for the algorithm, the algorithm logic

used to propagate from one time step to the next is as follows. Recall that initially

all particle states xi have values between 1 and 36 representing the particle lying

on Alpha’s surface in the corresponding longitude bin. First the binary states at a

new time step t+1 are set equal to those at the previous step t . Then all particles

are looped through to determine any motion/changes for each particle, one by one,

and the accompanying changes to the new time step’s binary states based on what

happens to that particle.

If 1 < xit < 19 or 19 < xit < 37 then the particle was not previously at a lofting

location on Alpha’s surface, and remains on the surface but is carried around to

the next longitude bin (going counterclockwise) by Alpha’s rotation relative to the

rotating barycentric frame. So xit+1 = xit+1, or in the case of xit = 36, the state value

wraps back to xit+1 = 1. If however xit = {1, 19} then the particle was previously

at a lofting location and so ‖ω1t‖ is compared with the appropriate threshold rate

below which lofting on the opposite or same side from Beta turns off, and the value of

d1t is compared with the threshold mean Alpha radius below which lofting turns off

everywhere. If either quantity is too small, xi is again incremented by 1 to represent

remaining on the rotating surface, but if both quantities are sufficiently large the

particle lofts. In the latter case the corresponding probability matrix is used to

randomly assign the particle to go to a bin in the “space” of longitude vs. flight-time.

If the column designation y of the bin in longitude vs. flight-time space is 1, the

particle is considered to go to the specified impact location immediately or start it’s
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escape or orbiting path immediately, so xit+1 is assigned the value of the row of the

bin in longitude vs. flight-time space. If this value is between 1 and 36 inclusive,

then changes to the current (indexed by t+1) binary system states are made matching

lofting (Eqs. 5.28-5.33), flight which covers only one time interval (Eqs. 5.43-5.50 with

p = 1), and return impact onto Alpha (Eqs. 5.36-5.42). If the value is between 37 and

72 inclusive, then changes to the current binary states are made matching lofting, one

time interval of flight, and impact onto Beta (using the same equations, respectively).

If the value is 73 for escape or 74 for orbiting, changes to current binary states are

made just for lofting (Eqs. 5.28-5.33) and for the entire escape or orbiting path at

once (Eqs. 5.43-5.50 but replacing Eq. 5.44 with IHorb+
= IHorb−

−mi I∆Hi where

I∆Hi is the average mass-specific angular momentum change to an escaping/orbiting

particle, from the precise dynamic simulation).

If the column designation y of the bin in longitude vs. flight-time space that the

particle is assigned to after lofting is instead > 1, then xit+1 = 10000 − y + 1. Thus

this particle state is set to be 10000 minus the number of time intervals of flight-time

left to be passed beyond step t+1 before the particle ends up at the specified impact

location matching the row of the bin in the longitude vs. flight-time space. The row

designation x of the bin is placed in a buffer variable for retrieval later when the

impact time arrives, and y is also so buffered. In the present time step, changes are

made to the current t+1 binary states for lofting (Eqs. 5.28-5.33) and for just the

first segmented portion of the interaction along the trajectory (Eqs. 5.43-5.50 with p

equal to the buffered y).

At the previous higher level of testing the particle state’s previous value xit , if

74 < xit < 10000 then the particle was previously lofted and was awaiting impact as

of step t . To move the particle toward impact in time, xit+1 = xit + 1 is used, and
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changes to the binary states are made for another segmented portion of the particle’s

interaction along the trajectory (Eqs. 5.43-5.50 with p equal to the y buffered for this

particle). If after so incrementing xi it becomes true that xit+1 = 10000, then the

particle has moved to impact in covering the current time interval to reach step t+1 .

Thus the reassignment xit+1 = x is made (x having been buffered for this particle)

to indicate where the particle impacts, and additionally the changes to binary states

matching the impact are made (Eqs. 5.36-5.42).

If 36 < xit < 75 then the the particle state value is kept the same, i.e. xit+1 = xit ,

because no further details of motion are included in the present modelling of the

system for particles that have already transfer impacted onto Beta or have already

embarked upon escaping or orbiting paths.

Once completing the loop through all particle states to determine changes to

particle disposition and matching binary state changes, the time t is increased by

one interval to get tt+1 and the regular updates to the current binary states for time

evolution of the binary by itself are applied (Eqs. 5.51-5.56, reconsidering the binary

states before use of these equations as if being for the previous time index t). Also,

d1t+1 is found anew from m1t+1 . Then all of the above may be iterated for the next

time step.

Before doing so, however, a few additional tasks are optionally performed for

better fidelity and improved running time. First, because the spin rate of Alpha may

have changed over the last time step in response to accumulated effects of particles

return impacting onto Alpha, and because the mutual orbit rate will have changed

as well, the length of a time interval according to the definition of Eq. 5.26 may

have increased or decreased. This time interval re-scaling may require shifting of the

value of any particle state with value, at this point in the algorithm, in the range of
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100 < xi < 9999. This shift may be either higher (for increasing interval length) or

lower (for decreasing interval length). Recall that 10000 − xi, for xi in this range,

represents the number of time intervals past the current time yet to pass before the

particle will impact. Multiplying the ratio of the old interval length to the new one

by this 10000 − xi and taking the fractional remainder thereof gives a value for a

uniform random draw in the interval 0, 1 to be compared with to determine any

incrementing/decrementing of xi.

Finally, it is found that lofting, flight, and return impact often occur in rapid

succession in short transient lofting episodes, separated by long time spans during

which the primary is slowly spun back up by the small YORP angular acceleration

applied to it. Eventually the lower of the lofting spin rate thresholds is encountered

again, and the cycle is repeated. Progressing through natural time steps by all of the

above algorithm during the long spin-up periods would be computationally wasteful,

as it would explode simulation run time for long durations without revealing further

dynamically interesting behavior. Thus, at the point just before looping back to go

through all operations for the next natural time step, if a detection buffer indicates

that for the last ten natural time steps there was both no lofting activity and no

particle state values indicating a particle was aloft, an extra time step to skip most

of the spin-up period is added in. This skip-over step has length ∆t equal to 95%

of the difference between the norm of 1ω1t and the lower spin rate threshold value,

divided by the norm of the constant angular acceleration 1α1. Since nothing is aloft,

no particle state adjustment as in the last paragraph is needed with this jump in

time. Instead, all particle states in the range 1 ≤ xit ≤ 36 are moved to account

for the rotation of Alpha during the skip-over step, i.e. the number of bins to move
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through, q, and new particle state values are given by

q = round

{
18

π

(
1

2
‖α1‖∆t2 + ‖ω1t‖∆t−

√
G(m1t +m2t)/ ‖rt‖

3 ∆t

)}
,

xit+1 = q − 36 b q/36c (5.57)

Before updating the system’s binary states across the skip-over time step, the reason-

able assumption is made that damping of non-principal-axis rotation in the primary

occurs on a much faster timescale than the primary’s spin-up by YORP, and thus a

scaling and realignment to rotation about the body principal axis frame’s Z-axis is

made. This frame is recomputed for Alpha’s current mass distribution, with corre-

sponding shifts made to 1I1t and IR1t , and then

1ω1t =

[
0 , 0 ,

‖ IR1t 1I1t 1ω1t‖
1I1t (3,3)

]T

(5.58)

The binary states are then updated using Eqs. 5.51-5.56 with tt+1 − tt now replaced

by ∆t, and the time t is increased by ∆t to get tt+1 . Then the regular time interval

length is recomputed to account for the changes to the Alpha spin and mutual orbit

rates, and system angular momenta are found again from current binary states before

resetting the gradual spin-up period detection buffer and proceeding with the next

natural time step. As mentioned before, the probabilistic propagation approach sum-

marized here can cover very long durations and large particle populations with low

computational cost while, most importantly, modeling the effects of the particle mo-

tion on the binary states themselves with accuracy inherited from earlier full-detail

RF3BP simulations. The application of these methods to the scenarios defined in

5.4.1 yields some interesting results with important implications for binary asteroid

studies.
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5.4.3 Results and implications

For several batches of RF3BP particle dynamic simulation output, the final dis-

positions resolved for the particles are broken down as shown in Table 5.4. As can be

seen, only for cases with the higher initial Alpha spin rate of 0.000651444 rad/s are

lofted particles observed going to outcomes of transfer impact, still lingering in “orbit”

(at a two-week cutoff duration), or escape. For all such particles the expected outcome

by comparison of the initial Jacobi function value with the L1-analogue equilibrium

point Jacobi function value is instead return impact, which would happen without

including detailed modelling of the time-varying dynamics for this system. However,

dropping the initial Alpha spin rate by only 0.10− 0.11× 10−5 rad/s produces total

return impact probability of unity, for the cases of both same-side lofting position

and opposite-side lofting position with 2.5◦ offset angle between the orbit normal and

Alpha’s spin pole.

For these latter two cases, with initial Alpha spin rate at the threshold spin rate

values, the probability matrices generated are used with the best estimate for KW4

Alpha’s YORP acceleration ( 3 × 10−11 rad/s/year, or ≈ 9.5129 × 10−19 rad/s2, per

Scheeres et al [66]) to obtain results for a “nominal” probability-based simulation. The

total mass of regolith or surface material free to move or be lofted is an uncertain

physical parameter of the system’s primary, so this is nominally set to 10 million

metric tons, only about 0.43% of Alpha’s total estimated mass. How this is discretized

into particles with specific masses is also a free parameter. Nominally, 5000 particles

of equal mass are used, though different choices for all of these parameters are explored

below. The results of a nominal model simulation, extending to a duration of about

2792 years, are shown in Figure 5.5.

As previously mentioned, it is seen that lofting from the same side of Alpha as
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Table 5.4: Qualitative trajectory outcomes for RF3BP particle simulation output
batches. These are classified by expected outcome based upon the tra-
jectory’s initial Jacobi energy level. The table entries are percentages of
the total number of particles in each batch (528) reaching the indicated
outcome, or the percentage of that number of particles reaching the indi-
cated outcome with the indicated expectation.

‖ 1ω1‖o 6.51444 6.40444 6.41444
(rad/s) ×10−4 ×10−4 ×10−4

Pole offset, ∆ 0.0◦ 2.5◦ 5.0◦ 2.5◦

Lofting side∗ same opp. same opp. same opp. same opp.

Return impact 96.40 91.48 95.83 92.80 95.27 91.66 100 100
Expected 100 100 100 100 100 100 100 100
Uncertain 0 0 0 0 0 0 0 0
Rogue (high J) 0 0 0 0 0 0 0 0

Escape 0.57 0.19 1.33 0.38 0.57 0.19 0 0
Expected 0 0 0 0 0 0 – –
Uncertain 0 0 0 0 0 0 – –
Rogue (low J) 100 100 100 100 100 100 – –

Transfer impact 1.89 4.92 2.08 5.30 2.65 3.98 0 0
“Orbiting” 1.14 3.41 0.76 1.52 1.52 4.17 0 0

Expected 0 0 0 0 0 0 – –
Rogue (low J) 100 100 100 100 100 100 – –
Rogue (high J) 0 0 0 0 0 0 – –

Beta, flight, and return impact occur quickly within short transient lofting episodes,

separated by long time spans during which the primary is slowly spun back up by the

YORP angular acceleration applied to it. Eventually the lower of the lofting spin rate

thresholds is encountered again, and the cycle is repeated. The greater the depression

of the Alpha spin rate during any single lofting episode, the longer the time needed

for spin-up to lofting again and the longer the following separation time until the

next lofting episode becomes. This separation time is seen to follow an exponential

distribution, with mean of about 16.6 years for the nominal model given its applied

angular acceleration on Alpha.
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(a) Alpha angular momentum change (b) Beta angular momentum change

(c) Combined orbit and Beta angular momentum
change

(d) Alpha mass relative to initial value

(e) Change in Alpha inertia dyad elements (f) Change in Alpha angular velocity vector

Figure 5.5: Output of probability based simulation of particles in nominal case. For
that case we have total regolith mass = 1.0 × 1010 kg, 5000 equal-mass
particles, and applied acceleration = 9.5129× 10−19 rad/s2.

163



With the time axis scaled as it is in Figure 5.5, the transient episodes show up

as “spikes” in the plotted quantities. Note the vertical scale in panel (b) of Figure

5.5 in comparison to the vertical scales on panels (a) and (c) mean that the angular

momentum of Beta experiences only minuscule changes in the fashion of a random

walk, and only in the X- and Y-components. Therefore panel (c) really shows exclu-

sively change to the orbit angular momentum, in the form of a steady increase in the

main Z-component. The random walk changes in the X- and Y- components for Al-

pha and the orbit-plus-Beta mirror each other according to total angular momentum

conservation for the system in those components. The external angular momentum

injected to the system through the angular acceleration applied to Alpha is visibly

transferred into expansion of the orbit, as was predicted by the hypothesis.

In addition to the mean separation time between lofting, there are other metrics

for the level of particle lofting activity in the system. The duration covered by a

simulation given a fixed number of time steps taken is one of these, as more time

steps are used in propagating through lofting episodes than to cover even very long

spin-up periods, so a shorter duration represents greater activity. In addition, taking

the time-integral average of the mass lost from Alpha (as shown in panel (d) of

Figure 5.5) gives an average amount of mass aloft, reflecting not only the frequency

but individual length of lofting episodes. The total accumulated amount of mass

lofted during a simulation divided by the total duration also gives an average mass

lofting rate. However, the episodic nature of particle motion, when at low applied

Alpha angular acceleration, means these activity metrics should not be misinterpreted

to mean certain amounts of material are always hovering above the surface near the

equator, or to mean material is continuously being levitated there.

However, it is of interest to examine what happens when the qualification above

164



of very low (i.e. actual YORP-level) angular acceleration no longer applies. This

is the hypothetical case that may come about with a similarly-proportioned system

of extremely small body sizes and extremely varied primary surface Albedo, or for

a more reasonably sized typical asynchronous binary whose primary is artificially

spun up using attached propulsive devices for some reason. Similarly, it is interesting

to explore various values for the other model parameters of particle mass, number

of particles, and their product, total mass available to loft. Table 5.5 shows the

degree and frequency of lofting activity within the system, represented by the metrics

discussed above, versus the applied angular acceleration and these three material

parameters for the material available to loft. The total number of particles and thus

total regolith mass is varied while holding particle size constant, then the particle size

and number of particles are varied inversely while holding total regolith mass constant,

and then particle size and thus total regolith mass is varied while holding the number

of particles constant. Some of the trends within the table are also summarized in

Figures 5.6–5.9.

It is seen that for the same number of particles but increasing total regolith mass,

because the same number of particles come around to loft on the Beta-facing side when

the threshold rate is encountered, but each one of those particles is more massive,

the depression of Alpha spin rate during the lofting episode is greater, increasing

the mean time between episodes and increasing the duration reached. However the

time-averaged amount of material aloft and mass lofting rate hold roughly constant,

meaning larger mass motion occurring less frequently is the same as smaller mass

motion occurring more frequently. The exception comes with moving to the largest

total regolith mass case, also the nominal simulation case with output shown in Figure

5.5.
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(a) Average mass aloft metric (b) Average mass lofting rate

Figure 5.6: Trends in the lofting activity metrics versus magnitude of external angular
acceleration applied to system primary. The k1, k2 quantities are ratios
of the metric to the angular acceleration magnitude.

(a) Average mass aloft metric (b) Average mass lofting rate

Figure 5.7: Trends in the lofting activity metrics versus variation in the number of
available particles. Meanwhile particle mass (and thus size) is held con-
stant. Total regolith mass varies proportionally with the particle count.
The angular acceleration is held constant at the 9.5129 × 10−19 rad/s2

actual YORP level for KW4.
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(a) Average mass aloft metric (b) Average mass lofting rate

Figure 5.8: Trends in the lofting activity metrics with inverse variation in the number
of available particles and particle mass. Meanwhile total regolith mass
is held constant, and the angular acceleration is held constant at the
9.5129× 10−19 rad/s2 actual YORP level.

(a) Average mass aloft metric (b) Average mass lofting rate

Figure 5.9: Trends in the lofting activity metrics versus variation in particle mass.
Meanwhile the total number of particles is held constant. Total regolith
mass varies proportionally with the particle size. The angular acceleration
is held constant at the 9.5129× 10−19 rad/s2 actual YORP level.
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The reason for this sharp increase is unclear, as the nature of the angular momenta

behavior remains the same for these other cases, as shown in the plots. Holding the

total regolith mass constant, fewer but larger particles or pieces to loft also tends to

increase the time between lofting episodes and the total duration, though less strongly.

This is especially true for the lowest particle counts, with which the coarsest mass

discretization and most uneven initial mass distribution around Alpha’s equator exist.

Since increasing the number of particles each having a fixed mass seems to extend

the episode separation times and the duration, overall the effect of having more mass

available to launch overpowers the effects of coarser mass discretization. Regardless,

the time-averaged mass aloft and mass lofting rate hold roughly constant across all

parameter changes for the available material. That is not the case for varying the

applied angular acceleration. With low values for this, characteristic of YORP torque

on actual binary system primaries in nature, the average mass aloft and average mass

lofting rate smoothly vary proportionally with the applied angular acceleration.

Interestingly, for the currently examined KW4 system’s body properties, that

proportionality goes away once applied angular acceleration increases above ‖α1‖ ≈

10−14 rad/s2 (see Figure 5.6). Above this value the angular acceleration is large

enough to overwhelm the damping effect of same-side particle lofting on the Alpha

spin rate after a certain amount of time has passed. Then a major shift occurs

to non-episodic nearly continuous lofting with sustained mass loss from Alpha and

sustained changes to it’s moments of inertia. As the continuous lofting from the same

side as Beta actually balances the applied acceleration less effectively than the prior

intermittent lofting, the Alpha spin rate eventually increases through the 1 × 10−6

rad/s separation to the threshold for lofting from the side opposite Beta. Once that

particle motion also occurs, the now very large amount of replenishing material aloft
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(see Table 5.5) should begin to truly represent a sustained low-lying debris cloud or

surface-grazing ring of debris around the equator. A second major shift in the system

behavior also occurs at this point in time, beyond another large reduction in Alpha’s

mass and polar moment of inertia as the lofting region on the opposite side also

becomes bare of material. That is, gravitational interaction of particles lofted from

the opposite side with both binary components tends to drive the angular momentum

transfer in the opposite direction as gravitational interaction of particles lofted from

the same side with both binary components, and the former effect overpowers the

latter in magnitude. An intuitive explanation for this lies with an understanding of

how the usually very low altitude trajectories followed by lofted particles approximate

familiar tidal bulges with a lag angle offset from the line of syzygy. Until the lofting

on the opposite side begins as well, only the “virtual bulge” on the Beta-facing side

exists. But then after the opposite side lofting begins the other “virtual bulge” is

also present and may, despite its greater average distance from Beta, exert more of a

retarding torque against the mutual orbit than the Beta-facing side “virtual bulge”

exerts an accelerating torque on that mutual orbit. Hence the spin rate of Alpha

and the Alpha angular momentum rapidly increase while the orbit rapidly decays,

after this second major shift occurs. All of this behavior is shown in Figure 5.10 for

the most extreme acceleration case in Table 5.5 having ‖α1‖ = 1.5 × 10−13 rad/s2.

Note the two major shifts discussed above occurring at approximately 1.0× 106 and

1.31× 106 seconds for this case.

Eventually, the Alpha spin rate would increase to a point where the probability

matrices derived from the previous full-detail precise dynamical simulation of particles

in the binary according to the RF3BP no longer apply. After which the output can

no longer be trusted. Instead the probability matrices and matching impact velocity
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(a) Alpha angular momentum change (b) Beta angular momentum change

(c) Combined orbit and Beta angular momentum
change

(d) Alpha mass relative to initial value

(e) Change in Alpha inertia dyad elements (f) Change in Alpha angular velocity vector

Figure 5.10: Output of probability based simulation of particles for large angular
acceleration (1.5 × 10−13 rad/s2) case. Again this is with total regolith
mass = 1.0×10 kg and 5000 equal-mass particles. Note the transitions
at approximately 1.0× 106 and 1.31× 106 seconds. See text for analysis.
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information should be replaced with new versions obtained from such RF3BP dynamic

simulation starting at higher initial Alpha spin rates. One may infer from Table 5.4

that using the probability matrices for such higher Alpha spin rate cases will produce

steady bleeding away of lofted material from the vicinity of Alpha to the “sinks”

of impact with Beta and escape from the system. While this is an interesting new

regime of behavior to study, it is not explored further here by repeatedly shifting to

new matrices and new data grounded in new full dynamic simulation of particles. The

reader is reminded that all of this applies only for hypothetical very large externally

applied steady torque on the primary, not found naturally in binary asteroid systems.

For both the nominal case, with angular momentum behavior as shown in the first

three panels of Figure 5.5, and all other cases also having ‖α1‖ � 10−14 rad/s2 and

hence having similar-looking plots of angular momentum changes, the slope of the

linear fit to the combined orbit plus Beta angular momentum matches that expected.

That is, the slope of the linear fit to the numerical output for this quantity, divided by

the primary’s initial or time-averaged moment of inertia about the Z-axis, recovers

the angular acceleration applied to the primary about the Z-axis to within a few

percent. Therefore the angular momentum injected to the system is seen to be fully

transferred to the orbit, to which Beta is also synchronously locked on-average. The

results imply that for any given time, it is true that
∥∥∥Ḣ2+orb

∥∥∥ = 1I1ZZ
‖α1‖. Here

the 1I1ZZ
is the Z- principal axis moment of inertia component of the inertia dyad for

the primary expressed in its own frame. This relation can be used within a simple

equation for the rate of change in the mutual orbit semi-major axis, a, as a function

of the YORP angular acceleration acting on the primary body:

ȧ =
2 1I1ZZ

‖α1‖(
m1m2

m1+m2
− 3 2I2ZZ

/a2
)√

G (m1 + m2)
a

(5.59)
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The denominator accounts for the presence of the synchronous secondary. For the

nominal results case, the slope fit to the orbit plus Beta angular momentum output

is 0.4459 kg m2/s2, and when used with the KW4 system parameters in the above

this translates to a current 0.882 m/kyr rate of semi-major axis growth for the KW4

system. This orbit expansion is due to the surface particle motion angular momentum

transfer mechanism alone and is several times faster than the orbit expansion result-

ing from the usual solid-body tidal evolution also present in the system. Within this

dissertation any accumulated orbit evolution effects of asymmetric thermal absorp-

tion and re-radiation to/from the secondary body, or so-called “BYORP”, are not

addressed. It may also be present in addition to the above two sources of orbit evo-

lution, in which case it may win in the competition for which mechanism dominates

in terms of driving the outward evolution of the binary asteroid the fastest.

Integrating Eq. 5.59, one can obtain an expression for the time period required

to increase the orbit size by some ratio ζ over an initial orbit size ao, given just

the system evolution effect from angular momentum transfer due to lofting particle

motion, assuming that dominates:

Tao 7→ ζao =

[√
ζ − 1− 2I2ZZ

ma2
o

+
2I2ZZ

mζ
3
2 a2

o

]
m
√
G (m1 +m2) ao

1I1ZZ
‖α1‖

(5.60)

For the general KW4 model as presented in Ostro et al [62] and Scheeres et al [66],

this gives the time since the system was at half it’s present orbit size, time to double

orbit size over the present, and time to double the orbit size again after that, as

1.721±0.471 Myr, 2.487±0.665 Myr, and 3.535±0.939 Myr, respectively. Taking the

distance covered by each such stage of orbit growth and dividing it by the time

required gives average rates during those stages of 0.740 m/kyr , 1.025 m/kyr, and

1.441 m/kyr, respectively.

From this and simply by looking at Eq. 5.59 it is seen that the expansion rate
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increases with larger orbit size, so that the orbit growth is actually accelerating. This

likely continues until component separation is large enough that the gravitational

interaction of lofted particles with the secondary weakens to the point that the mech-

anism for angular momentum transfer demonstrated herein must shut down. Once

having reached very large separation the likelihood of the secondary being stripped

away from the primary by perturbations due to solar gravity interaction and planetary

flyby also greatly increases, however. Once such separation occurs, the end state for

the system’s evolution is then a pair of asteroids with similar heliocentric orbits that

may be considered a “divorced” binary pair. Recently, observational evidence for such

pairs among NEOs and main-belt asteroids has been obtained from new and archived

heliocentric asteroid orbit data, presented by Vokrouhlický and Nesvorný [78].

Meanwhile, as the system is separating, one can safely assume the same YORP

angular acceleration continues to act on the primary (though perhaps resurfacing

and figure regularization due to the lofting of material from it’s surface may gradu-

ally change the YORP coefficient and reduce YORP-driven angular acceleration). In

this case the primary will continue to spin up but with eventual loss of the regulating

effect against further spin-up from the surface material motion, when at large sepa-

ration. Thus a transition similar to the first seen in the very high applied angular

acceleration case output shown above may occur. From the close ring of debris then

levitated around the equator and particles thrown off to successively higher altitudes,

it is conceivable that enough material may eventually be shed to accumulate and form

into another distinct body well interior to the orbit of the departing secondary in the

(prior) binary system. Just this process has been modeled through the recent work

by Walsh et al [34]. If this in fact occurs before the older secondary has been stripped

away, a triple system with a very much closer and smaller younger tertiary body
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exists for a certain time. Once the outer satellite body is stripped, the inner satellite

body becomes the new secondary, and the new system repeats a similar overall evo-

lution cycle. The body size ratios and relative orbit sizes obtained from recent radar

imaging of the first discovered triple NEA system (153591) 2001 SN 263 [79] may

indicate just such a scenario is in the process of occurring for that system. Similar

conclusions to those stated here regarding the end state for the system’s evolution and

the possibility of a new secondary’s creation are also discussed in Harris, Fahnestock,

and Pravec [80]. If the overall evolutionary path for binary asteroids is as described

above, new campaigns to find systems at each stage along that path, and characterize

where they are along it, become considerably more interesting.

5.5 Investigation of Spacecraft and Debris Trajectory Stability within
Binaries

In this section, a third major type of particle motion within a binary asteroid

system is examined, which differs from the two types of motion in the previous two

sections in that the particle trajectories no longer originate from the surface of either

binary component. Rather, the trajectories start from states which match with the

particles already initially following orbits through the system, however stable or un-

stable those orbits may be. Just as the last section shed light on the long timescale

dynamical evolution of the components forming a binary system, this section includes

results applicable to the very short timescale, rapid dynamical evolution of a plane-

tary debris ring structure that may appear, or be created, within a binary system.

However, the primary focus below is on a different application, to the case of an arti-

ficial spacecraft flying within the system. This is directly applicable to the execution

of future binary NEA in-situ exploration missions that are becoming more likely, for

reasons explained in Chapter I.
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Flying a spacecraft within a binary entails great challenges in navigating and

controlling the spacecraft, while subject to the gravity field that is significantly time-

varying in any chosen system frame, and subject to the force environment character-

ized by large perturbations. However, these perturbations are also the prime source

of information about the interior structure of the system components themselves.

A key question is how to design a mission flying within a binary system to obtain

the most such information, and to maximize the science return considered as a whole.

The answer to this entails a trade-off between that which helps get information about

the density distribution of the components, and helps increase angular coverage of the

components’ surfaces by cameras and other instruments, vs. that which helps keep the

spacecraft safe and functional for a longer total flight time (i.e. a longer observation

time). For the former, it is preferable to allow the spacecraft to propagate with no

trajectory actuation (yet have it go through many positions within the binary system,

e.g. reach higher latitudes by a path with greater inclination and execute very low

altitude passes). Whereas to increase spacecraft safety and mission lifetime, it is

preferable to do as many thruster firings as needed to ensure the spacecraft doesn’t

impact anywhere, while keeping the number of such firings as small as possible to

minimize cumulative maneuver ∆V. For this, it may instead be desirable to keep the

spacecraft to low inclinations with respect to the binary mutual orbit, neglecting solar

radiation pressure considerations. Several other engineering constraints must also be

satisfied: maintaining line of sight to Earth, remaining in sunlight for the correct

fraction of the time and with correct attitude, etc. The optimal design in the trade-

offs involved depends critically on how easily and over what duration a spacecraft

initially on an orbit of a certain type enclosed within a comparatively safe region in

the binary will be removed from that region.

176



Thus, in this section, characterization of the stability of orbital trajectories about

and within a binary asteroid system, trajectories that are relevant to the execution of

scientific missions like that described above, is the emphasized goal. This objective is

achieved for the specific example binary system of 1999 KW4 from before, used again

because it typifies the small asynchronous binaries class.

5.5.1 System setup and parameter space to be explored

The underlying or “substrate” full two body problem motion results set used

for later RF3BP propagation of the massless test particles is one with the highest

plausible excitation level identified for the KW4 example system, that being the

“most interesting” and most severely perturbing to the test particle motion. In this

configuration the initial spin-orbit pole offset angle for the system’s Cassini state is

10◦ and the initial eccentricity and mean anomaly are 0.01 and 180◦ (see section 3.3).

The state of the binary system itself is interpolated from this “most-excited” case’s

binary system propagation output files, whenever required for computation of the net

force acting on each test particle. That net force is determined as the sum of the

forces due to the gravitational interaction of each polyhedral body model with the

test particle.

Nominal orbital trajectories are started in six regions of the position and velocity

phase space for this system: both prograde and retrograde close orbits about Alpha,

prograde and retrograde close orbits about Beta, and prograde and retrograde far-

field orbits about the system barycenter. Within each such combination of orbit

region and type, nominal trajectory initial states are chosen to sample both radius

and inclination, the latter with values of {0◦, 10◦, 20◦, 30◦, 40◦}. In all cases the initial

position is placed along the extended line of syzygy (the line between the two body

centroids), measuring the radius value from the base point (centroid or barycenter,
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as appropriate) out along the direction of a vector pointing from Alpha toward Beta.

For the radius value, lower bounds of 110% of the maximum radius of any vertex

point on the mesh of the body are used, and upper bounds of 80% of the distance

from the body centroid to the usual restricted three body problem L1 point, along

the line of syzygy, are used. Alternatively, for just the far-field barycentric orbits the

lower and upper bounds of 2.0 and 3.0 times the initial centroids separation distance

are used. Therefore the normalized radius values sampled for each of the region and

type combinations are as indicated in Table 5.6. Here the normalization is by the

baseline length of the initial centroids separation. The initial velocity magnitude

is chosen as the circular speed using the mass of the body being orbited about or

mass of the whole system, as appropriate. The velocity vector with this magnitude

is perpendicular to the line of syzygy and simply inclined with respect to the plane

of the initial binary mutual orbit by the inclination value.

A nominal trajectory is found by propagating a single test particle from the initial

condition of each region-type-radius-inclination case (with 180 cases in all). The states

are propagated in an inertial barycentric frame, using a Runge-Kutta Fehlberg 7(8)

integrator. (Since the particle’s inertial EOM dynamics evolve on a linear space closed

Table 5.6: Normalized (1 = 2540.5 m) initial orbital radius values sampled, for
each region and type of orbital trajectory examined.

Alpha-centric, Beta-centric, Barycentric,
prograde and retrograde prograde and retrograde prograde and retrograde

0.3397 0.1415 2.02
0.39443 0.12821 2.2222
0.44916 0.15479 2.424
0.50389 0.16808 2.626
0.55862 0.18136 2.828
0.61335 0.19465 3.03
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under the additive update operation, this choice of integrator is acceptable.) The

forces on the particle due to each binary component’s mass distribution are computed

in the respective body-fixed frame and then transformed back to the integration

frame. About each such nominal trajectory a small (N ≈20) Monte-Carlo batch of

particles with initial conditions deviated in Gaussian random fashion from the initial

condition of the nominal trajectory is also propagated. The perturbations are scaled

to approximately the same size as rule-of-thumb spacecraft state uncertainty in an

operational scenario (1σ =10 m in position, 1 cm/s in velocity).

The particle trajectory outcomes within the simulation duration window (impact,

escape, still in flight) are tracked and compared against the expectation for them

based on the initial time-varying Jacobi function value compared with the RSE3BP

threshold values. Those are in turn the JRSE3BPL1
value from eq. 5.18, and zero.

However, the main result of interest here, for stability and lifetime in orbit, is instead

a computation of the finite-time Lyapunov Characteristic Exponent (LCE) for every

particle. Along with each nominal or perturbed trajectory x, an extremely close

shadow trajectory xs is propagated, initially offset from x by a deviation δx of one

millimeter in initial position and nothing in velocity. Both trajectories are used in

the following to get the LCE at a finite time t:

ξt =
1

t
ln

(
‖xs(t; xo + δx, to)− x(t; xo, to)‖

‖δx‖

)
(5.61)

Larger positive values indicate greater instability. The LCE vs. time curves (or

the value of the peak, time-integral average, or final value, by order of increasing

importance, for these curves) can be compared within a batch of perturbed particles.

The nominal trajectory’s LCE vs. time curve, or the combined such curve for all

nominal and perturbed particles found by averaging at every plotted time, or just the

average of the LCE values for all nominal and perturbed particles at one given cutoff
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Figure 5.11: Nominal and perturbed trajectories for Alpha-centric, prograde,
Ro =0.50389, 0◦ inclination case. Trajectories are plotted in barycen-
tric inertial space.

time, can all be compared between batches. This yields comparison across initial

radius and inclination conditions and regions and types of orbits, to globally map the

degree of instability throughout the system, fulfilling this section’s primary objective.

In theory, one can also map the representative final LCE value for each perturbed

particle onto the planes in phase space in which the initial state perturbations from

the nominal trajectory are taken. This should allow for ascertaining the gradients in

stability characteristics along each dimension of phase space, in the extreme locality of

each case in the parameter space. However, the number of perturbed particles needs

to be far higher than the ≈20 used herein, in order for this gradient information to

be sufficiently revealed.
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5.5.2 Global stability characterization results

As an example of the unprocessed output of the particle propagations, the nominal

and perturbed particle trajectories are plotted in the barycentric inertial frame for

one case – the Alpha-centric prograde orbit at 0.50389 normalized radius and 0◦

inclination – within Figure 5.11. These trajectories have their corresponding LCE vs.

time curves shown in the fourth (center right) panel of Figure 5.12. What this Figure

5.12 reveals is the difference in spacecraft or particle lifetime and behavior across

cases in the same region (about Alpha) and with the same orbit type (prograde) and

same inclination ( 0◦ ) but varying the initial radius parameter from small to large. In

addition to the nominal trajectory’s LCE being plotted with a thick black solid line,

the thin black dashed lines give the extent of the previous (one-step smaller in radius)

LCE vs. time curves. Here extent means the region bounded at right by the longest

particle flight duration and bounded from below by the minimum particle LCE value

(obviously excepting the very initial period). For each case, 25% less than the longest

particle flight duration is arbitrarily selected as a cutoff time at which to evaluate

the dispositions of the particles, and at which to interpolate and average the LCE

values for those particles still having the “lingering in orbit” disposition at that cutoff

time. The cutoff time is indicated in Figure 5.12 by the thick black dotted line in

each panel. The average of the LCE values for the still in orbit particles at the cutoff

time is shown on the thick black dotted line by a circle marker. This average LCE

value information is accumulated across many cases in Table 5.7 and in Figure 5.13,

in the log10(avg. LCE) column and in the height of the bars/pillars, respectively. The

cutoff times are also listed in the appropriate column and used for the color coding

of the bar/pillars in the plot.
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(a) Ro =0.3397 (b) Ro =0.39443

(c) Ro =0.44916 (d) Ro =0.50389

(e) Ro =0.55862 (f) Ro =0.61335

Figure 5.12: Values of the LCE plotted against simulation time, for all Alpha-centric,
prograde, 0◦ inclination cases. Note Ro increases from top left panel. In
each case, the nominal trajectory is shown with a thick black solid line,
perturbed trajectories are shown with the thin colored solid lines, the
bounds on the previous panel’s curves (if applicable) are shown with the
thin black dashed lines.
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Table 5.7: Simulated particle dispositions and LCE values for Alpha-centric,
prograde cases.

cutoff time α∗ β∗ Esc.∗ Flight∗ log10(avg.
Ro(DU) io (◦) (d:hh:mm:ss) (%) (%) (%) (%) LCE)
0.3397 0 0:03:59:31 7 (35) 0 (0) 0 (0) 13 (65) -3.5075
0.3397 10 0:05:21:25 17 (85) 0 (0) 0 (0) 3 (15) -3.5927
0.3397 20 0:07:11:07 18 (90) 0 (0) 0 (0) 2 (10) -3.7151
0.3397 30 1:09:45:56 18 (90) 0 (0) 0 (0) 2 (10) -4.1239
0.3397 40 1:07:37:21 19 (95) 0 (0) 0 (0) 1 (5) -4.0465

0.39443 0 3:05:14:49 18 (90) 0 (0) 0 (0) 2 (10) -4.3169
0.39443 10 2:02: 7:55 15 (75) 2 (10) 0 (0) 3 (15) -4.115
0.39443 20 5:20:43:55 16 (80) 2 (10) 0 (0) 2 (10) -4.6408
0.39443 30 4:17:40:39 18 (90) 0 (0) 0 (0) 2 (10) -4.4241
0.39443 40 10:12:25:25 16 (80) 3 (15) 0 (0) 1 (5) -5.0003
0.44916 0 3:12:27:26 12 (60) 2 (10) 0 (0) 6 (30) -4.4166
0.44916 10 5:05:41:06 14 (70) 4 (20) 0 (0) 2 (10) -4.486
0.44916 20 6:20:22:58 13 (65) 5 (25) 0 (0) 2 (10) -4.6629
0.44916 30 6:11:52:53 12 (60) 3 (15) 0 (0) 5 (25) -4.6318
0.44916 40 10:12:25:25 18 (90) 1 (5) 0 (0) 1 (5) -4.7834
0.50389 0 7:01:51:41 15 (75) 4 (20) 0 (0) 1 (5) -4.5954
0.50389 10 6:20:27:07 12 (60) 6 (30) 0 (0) 2 (10) -4.5795
0.50389 20 10:12:25:25 10 (50) 7 (35) 2 (10) 1 (5) -4.806
0.50389 30 10:12:25:25 13 (65) 5 (25) 0 (0) 2 (10) -4.7888
0.50389 40 10:12:25:25 8 (40) 0 (0) 0 (0) 12 (60) -4.9291
0.55862 0 10:12:25:25 13 (65) 6 (30) 0 (0) 1 (5) -4.9692
0.55862 10 9:23:32:09 14 (70) 5 (25) 0 (0) 1 (5) -4.848
0.55862 20 10:12:25:25 14 (70) 5 (25) 1 (5) 0 (0) -4.7876
0.55862 30 10:12:25:25 12 (60) 3 (15) 0 (0) 5 (25) -4.7731
0.55862 40 10:12:25:25 9 (45) 1 (5) 0 (0) 10 (50) -4.8722
0.61335 0 6:05:37:24 12 (60) 7 (35) 0 (0) 1 (5) -4.5952
0.61335 10 10:12:25:25 9 (45) 9 (45) 1 (5) 1 (5) -4.8668
0.61335 20 10:12:25:25 14 (70) 4 (20) 2 (10) 0 (0) -4.8524
0.61335 30 10:12:25:25 14 (70) 4 (20) 0 (0) 2 (10) -4.7727
0.61335 40 10:12:25:25 11 (55) 4 (20) 0 (0) 5 (25) -4.7696

∗ Refers to the number (and percentage) of particles reaching this outcome
before the duration indicated by the “cutoff time” column has passed. The
outcomes are impact onto Alpha, impact onto Beta, escape from the system
as a whole, and remaining in flight, from left to right and considered as of
the cutoff time.
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Figure 5.13: Graphical illustration of cutoff duration and average LCE value at that
duration for Alpha-centric, prograde cases.

Similar information is captured for the retrograde orbits about Alpha within Ta-

ble 5.8 and in Figure 5.14. Note the color scale in Figure 5.14 actually indicates

that that all of these cases have the same value for cutoff duration, yet the colors

are differentiated between the initial radii to improve the clarity of the figure. The

uniform cutoff time is consistent with having at least one particle reach the maxi-

mum possible duration, which is limited to the length of the underlying full two body

problem propagation, for every retrograde initial orbital condition about Alpha. In

other words, all of the retrograde orbital paths artificially saturate at a maximum

duration given the methodology used here. Also note that the vertical scales are an

order of magnitude different between Figures 5.13 and 5.14, which reveals how much

comparatively less unstable the retrograde Alpha-centric orbits are.

From these results, it is concluded that in general, among the Alpha-centric orbits,
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Figure 5.14: Graphical illustration of cutoff duration and average LCE value at that
duration for Alpha-centric, retrograde cases.

retrograde orbital paths are more robust to the gravity perturbations of the binary

system and enjoy longer lifetimes and lower cutoff LCE values than prograde orbital

paths. This is sensible, as the more rapid relative rotation rate of the spacecraft with

respect to Alpha’s surface accomplishes a better averaging of the non-axisymmetric

components of Alpha’s gravity field. The same principle applies for effectively better

averaging out of the gravitational perturbation from Beta. The retrograde paths also

conveniently improve the rate of angular coverage for imaging or similar mapping

observations of Alpha’s surface.

It is also seen that higher inclination tends to promote longer lifetime in each

case, especially for the prograde orbits. This is somewhat surprising, as one might

expect that Alpha’s oblateness and the gravitational interaction with Beta would

more rapidly grow the eccentricity of more highly inclined orbits, producing impact
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Table 5.8: Simulated particle dispositions and LCE values for Alpha-centric, ret-
rograde cases.

cutoff time α∗ β∗ Esc.∗ Flight∗ log10(avg.
Ro(DU) io (◦) (d:hh:mm:ss) (%) (%) (%) (%) LCE)

0.3397 0 10:12:25:25 19 (90) 0 (0) 0 (0) 2 (10) -5.0379
0.3397 10 10:12:25:25 20 (95) 0 (0) 0 (0) 1 (5) -4.9982
0.3397 20 10:12:25:25 17 (81) 0 (0) 0 (0) 4 (19) -5.1163
0.3397 30 10:12:25:25 12 (57) 0 (0) 0 (0) 9 (43) -5.1047
0.3397 40 10:12:25:25 12 (57) 0 (0) 0 (0) 9 (43) -5.092

0.39443 0 10:12:25:25 15 (94) 0 (0) 0 (0) 1 (6) -5.0237
0.39443 10 10:12:25:25 13 (93) 0 (0) 0 (0) 1 (7) -5.0561
0.39443 20 10:12:25:25 12 (92) 0 (0) 0 (0) 1 (8) -5.0079
0.39443 30 10:12:25:25 11 (92) 0 (0) 0 (0) 1 (8) -5.0759
0.39443 40 10:12:25:25 10 (91) 0 (0) 0 (0) 1 (9) -4.9704
0.44916 0 10:12:25:25 8 (73) 2 (18) 0 (0) 1 (9) -5.0471
0.44916 10 10:12:25:25 6 (55) 4 (36) 0 (0) 1 (9) -5.0521
0.44916 20 10:12:25:25 9 (82) 1 (9) 0 (0) 1 (9) -5.0472
0.44916 30 10:12:25:25 9 (82) 1 (9) 0 (0) 1 (9) -5.0343
0.44916 40 10:12:25:25 11 (92) 0 (0) 0 (0) 1 (8) -5.0277
0.50389 0 10:12:25:25 0 (0) 0 (0) 0 (0) 21 (100) -5.0673
0.50389 10 10:12:25:25 6 (55) 4 (36) 0 (0) 1 (9) -5.1993
0.50389 20 10:12:25:25 5 (45) 5 (45) 0 (0) 1 (9) -5.1582
0.50389 30 10:12:25:25 7 (64) 3 (27) 0 (0) 1 (9) -5.1041
0.50389 40 10:12:25:25 8 (73) 2 (18) 0 (0) 1 (9) -5.0292
0.55862 0 10:12:25:25 0 (0) 0 (0) 0 (0) 21 (100) -5.0852
0.55862 10 10:12:25:25 0 (0) 0 (0) 0 (0) 21 (100) -5.0882
0.55862 20 10:12:25:25 0 (0) 0 (0) 0 (0) 21 (100) -5.0944
0.55862 30 10:12:25:25 0 (0) 0 (0) 0 (0) 21 (100) -5.0996
0.55862 40 10:12:25:25 1 (5) 0 (0) 0 (0) 20 (95) -5.0795
0.61335 0 10:12:25:25 0 (0) 0 (0) 0 (0) 21 (100) -5.1038
0.61335 10 10:12:25:25 0 (0) 0 (0) 0 (0) 21 (100) -5.1118
0.61335 20 10:12:25:25 0 (0) 0 (0) 0 (0) 21 (100) -5.108
0.61335 30 10:12:25:25 0 (0) 0 (0) 0 (0) 21 (100) -5.1671
0.61335 40 10:12:25:25 0 (0) 0 (0) 0 (0) 21 (100) -5.1113

∗ See note on Table 5.7.

with Alpha sooner rather than later. A richer set of analysis already exists for three

body problem paths staying roughly in the plane of the binary’s mutual orbit, but the

results observed here indicate a need to also incorporate the ±Z direction. A higher

inclination orbit about Alpha is likewise conveniently beneficial for angular coverage
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and mapping of not only Alpha, but the polar regions of Beta as well.

Finally, it is observed that in each Alpha-centric case there is also a middle range

in the initial radius value sampled that produces the least instability. This is most

apparent from Figure 5.12, where for the largest initial radius value the LCE vs. time

curves do not drop below the minimum for those curves reached in the previous case

with smaller radius. In fact, it appears that the optimal radius is close to or just

outside of the radius to produce a 3:1 period resonance between the particle and the

binary system orbit.

Now for the trajectories starting from initial conditions for orbit about Beta, in

both the prograde and retrograde directions, similar information to that shown before

appears in Table 5.9 and in Figure 5.15, for only the smallest radius trajectories (those

passing closest to Beta’s surface). Beta-centric orbits in general appear to be more

easily disrupted than orbits about Alpha, and almost always degrade comparatively

Table 5.9: Simulated particle dispositions and LCE values for Beta-centric, pro-
grade and retrograde cases

PROGRADE

cutoff time α∗ β∗ Esc.∗ Flight∗ log10(avg.
Ro(DU) io (◦) (d:hh:mm:ss) (%) (%) (%) (%) LCE)

0.1415 0 0:01:30:45 0 (0) 20 (95) 0 (0) 1 (5) -3.1878
0.1415 10 0:04:44:21 0 (0) 19 (90) 0 (0) 2 (10) -3.5681
0.1415 20 10:12:25:25 0 (0) 20 (95) 0 (0) 1 (5) -4.8562
0.1415 30 0:01:30:02 0 (0) 15 (71) 0 (0) 6 (29) -3.1124
0.1415 40 0:09:02:14 0 (0) 20 (95) 0 (0) 1 (5) -3.8013

RETROGRADE

0.1415 0 0:01:28:09 0 (0) 19 (90) 0 (0) 2 (10) -3.1201
0.1415 10 10:06:53:10 0 (0) 20 (95) 0 (0) 1 (5) -4.8336
0.1415 20 0:10:14:17 0 (0) 20 (95) 0 (0) 1 (5) -3.8927
0.1415 30 5:04:38:59 0 (0) 20 (95) 0 (0) 1 (5) -4.6748
0.1415 40 0:09:32:57 0 (0) 20 (95) 0 (0) 1 (5) -3.8062

∗ See note on Table 5.7.
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Figure 5.15: Graphical illustration of cutoff duration and average LCE value at that
duration for Beta-centric orbits, both prograde and retrograde, passing
closest to Beta’s surface.

rapidly, at least when started with the sampled radius values used herein and assuming

matching circular speed for the initial velocity. This likely means that a significantly

different initial velocity condition needs to be selected within the context of the three

body problem. Note that in this current example system, or in any other member

of the general class of small asynchronous binary NEAs formed by spin-up to fission,

Beta is not rotating as rapidly as Alpha nor rotating at all (rather, merely librating)

with respect to the usual three body problem frame. This may contribute to the

quicker trajectory degradation about Beta. Note that for prograde Beta-centric orbits

at a fixed radius the performance improves dramatically with increasing inclination,

then drops, and then improves again. However, retrograde Beta-centric paths at the
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same fixed radius seem to follow a trend in stability performance vs. inclination going

in the opposite sense of the trend for prograde paths.

At the opposite extreme in terms of separation from all binary component bodies,

the far-field orbits about the binary barycenter at the maximum radius value sampled

have cutoff times, and average LCE values at the cutoff times, as shown in Table 5.10

and represented in Figure 5.16. These far-field orbits about the system barycenter

unsurprisingly exhibit much greater stability than either the Alpha-centric or Beta-

centric paths within the system. However in this case it is seen that there is little

change with increasing inclination and also little difference between the retrograde

and prograde orbit types. Perhaps differences in duration of the particle trajectories

prior to impact or escape would become apparent between orbit types and various

inclinations if the duration of propagation for the test particles were not limited to

the length of the underlying full two body problem propagation - only a little over

Table 5.10: Simulated particle dispositions and LCE values for barycentric,
prograde and retrograde cases

PROGRADE

cutoff time α∗ β∗ Esc.∗ Flight∗ log10(avg.
Ro(DU) io (◦) (d:hh:mm:ss) (%) (%) (%) (%) LCE)

3.03 0 10:12:25:25 0 (0) 0 (0) 0 (0) 21 (100) -5.3689
3.03 10 10:12:25:25 0 (0) 0 (0) 0 (0) 21 (100) -5.3594
3.03 20 10:12:25:25 0 (0) 0 (0) 0 (0) 21 (100) -5.3516
3.03 30 10:12:25:25 0 (0) 0 (0) 0 (0) 21 (100) -5.3648
3.03 40 10:12:25:25 0 (0) 0 (0) 0 (0) 21 (100) -5.3492

RETROGRADE

3.03 0 10:12:25:25 0 (0) 0 (0) 0 (0) 21 (100) -5.3604
3.03 10 10:12:25:25 0 (0) 0 (0) 0 (0) 21 (100) -5.3546
3.03 20 10:12:25:25 0 (0) 0 (0) 0 (0) 21 (100) -5.3641
3.03 30 10:12:25:25 0 (0) 0 (0) 0 (0) 21 (100) -5.3562
3.03 40 10:12:25:25 0 (0) 0 (0) 0 (0) 21 (100) -5.3613

∗ See note on Table 5.7.
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Figure 5.16: Graphical illustration of cutoff duration and average LCE value at that
duration for barycentric orbits, both prograde and retrograde, at farthest
average distance from the binary barycenter.

two weeks. In this sense, the flight time for the test particles in these far-field orbits

seems to be saturated at an artificial limit.

5.5.3 Technique for improvement of local stability characterization

It is desirable to find a way to improve the stability characteristics of the nominal

trajectory in each case from the parameter space examined above, by choosing an

initial condition which generates a nominal trajectory that is closer to periodic, i.e.

closer to repeating the same location in the Poincaré section formed by the plane of

syzygy. (This is the plane formed by the instantaneous line of syzygy and binary’s

instantaneous mutual orbit normal.) The simplest approach to begin with is to refine

the initial condition velocity while keeping the initial condition position fixed. This
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Figure 5.17: Performance in converging to exact time of syzygy plane crossing, for
accurate formulation of cost functional.

refinement is done starting from the prior guess, which was velocity direction per-

pendicular to the initial radial position vector from the orbit center, with the given

inclination, and with the velocity magnitude matching circular orbit speed (for which

the orbit center is just considered an idealized point mass for each body, or the total

system mass all at the system barycenter). The approach taken here is to first vary

the velocity magnitude but not the direction, and to first change that magnitude with

a linear sweep covering ±9% of the nominal value in 1% increments.

For the propagation of this sweep of trajectories, and other trajectories mentioned

below, a switch is implemented in the RF3BP propagation code to detect crossing

of the syzygy plane (the Poincaré section) and stop integration at such a crossing.

Prior to the update portion of the RKF7(8) integration algorithm, a virtual update is

performed instead. Then a check is made using what the particle state would become

after that virtual update, and also what the new binary state would become after it,

at the end of the current time step. That is, unit vectors of the instantaneous plane of
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syzygy frame matching these virtually updated particle and binary states are found.

Then the particle position and velocity vectors are decomposed into components in

that frame. If the +Y component of position in this frame (the component in the

direction of the mutual orbit normal crossed into the line from Alpha to Beta) changes

sign relative to its previous value, upon this virtual update, then the actual update

is rejected and the usual RKF7(8) step size adjustment is overridden by a halving of

the current step size. The computations for the new time step of smaller size and

then all of the above checking is repeated again. And so on for as many times as

necessary until the actual update portion of the algorithm is allowed to execute. The

whole integration is stopped once the step size is reduced below the minimum step size

value specified. Figure 5.17 shows first, at top, the simulation time left until the exact

time of reaching the syzygy plane (as defined by the plane crossing time eventually

converged to) before each update that was not adopted because an overshoot of the

plane was detected. At the bottom in the same figure is shown the +Y component

of position in this frame, both before (blue) and after (red) each update that was not

adopted because an overshoot of the plane was detected. The count of such skipped

updates forms the independent variable axis in these plots. Figure 5.17 demonstrates

accurate determination of the instant and particle conditions at plane crossing, and

demonstrates propagation right up to that instant through the step size being reduced

to the minimum step size, stopping the integration.

For a given particle trajectory, all components of the position and velocity ex-

pressed in the syzygy frame at the time of next plane crossing, when the propagation

stops, can be differenced with the position and velocity expressed in the syzygy frame

at the initial time. This gives the position and velocity deviations δd and δv for use
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in the cost functional

J =
1

2
(δd · δd) +

1

2
(δv · δv) (5.62)

From the sweep of initial velocity magnitudes, the velocity magnitude value resulting

in the lowest J is adopted to define a new particle initial state serving as the starting

point for iterative refinement. For the iteration, the simple algorithm must first be

initialized by propagating to the next syzygy plane crossing new trajectories having

initial velocity magnitude 5%, 10%, and 0% above the iteration starting point. Once

these three trajectories and their end states and corresponding costs are in hand, one

can use the following to perform the actual iteration:
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(5.63)

With each iteration, i is incremented and the newest cost Ji for the end state of the

last propagation, in turn started using ‖v‖i, is incorporated.

From all of the iterated values used for initial velocity magnitude, again the value

resulting in the lowest J is adopted to define the initial state for an improved nominal

trajectory. This is propagated for the full duration with no syzygy plane crossing

detection enabled, with the intent of being able to directly compare the duration

reached and long-term LCE value reached between the improved nominal trajectory

and the old nominal trajectory, within the same region-type-radius-inclination case.

All of the steps outlined in this section are applied only to a small subset of the full

set of cases. In particular, these steps are performed for the Alpha-centric prograde

orbits at the lowest radius, highest radius, and radius from the original parameter
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space sampling which is nearest to that for the (possibly least unstable) 3:1 period

resonance between the particle and binary system orbits. For these three radii, all

inclination values are explored.

5.5.4 Local stability characterization results

Comparing the best results obtained with the linear sweep and subsequent itera-

tion in the scalar parameter ‖v‖ against the original results obtained, for the nominal

trajectories in the subset of cases of particular interest as outlined above, gives Fig-

ures 5.18–5.20. These figures show this comparison in the LCE vs. time curves from

the propagated trajectories, with the dotted lines being for the “improved” nominal

trajectories and solid lines being for the original ones.

Figure 5.18: Comparison, between original and improved nominal trajectories, of the
LCE plotted against simulation time, all for the Alpha-centric, prograde,
Ro =0.3397 cases. The nominal trajectories are solid lines and the “im-
proved” nominal trajectories produced with sampling and iteration in
the initial velocity magnitude parameter are dotted lines.
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Figure 5.19: Comparison, between original and improved nominal trajectories, of the
LCE plotted against simulation time, for the Alpha-centric, prograde,
Ro =0.50389 cases. The nominal trajectories are solid lines and the
“improved” nominal trajectories produced with sampling and iteration
in the initial velocity magnitude parameter are dotted lines.

It is seen that while the winner of this comparison varies considerably between

cases, with the newer nominal trajectory sometimes performing better and sometimes

performing worse, in general there is no net improvement in stability metric perfor-

mance resulting from the computational effort of the ‖v‖ parameter exploration. Over

the short (less than about 6 hours) lifetimes for the trajectories starting closest to

Alpha’s surface, almost no change is observable. Average lifetimes are still about the

same for the trajectories starting at the larger radii too. Again, the same 40◦ inclined

trajectory persists longest (and is separated in duration by only a few days in favor of

the original initial condition for the case nearest the hypothesized stable resonance).

Remedies for this failure to achieve performance improvement may include varying a

larger number of initial state components or parameters, to work with more degrees

195



Figure 5.20: Comparison, between original and improved nominal trajectories, of the
LCE plotted against simulation time, for the Alpha-centric, prograde,
Ro =0.61335 cases. The nominal trajectories are solid lines and the
“improved” nominal trajectories produced with sampling and iteration
in the initial velocity magnitude parameter are dotted lines.

of freedom. Also, it may help to use a more sophisticated gradient-based optimiza-

tion for the cost functional rather than the simple iterative scheme proposed above

(which assumes that the cost is approximately locally quadratic in the single varied

parameter of initial velocity magnitude). Of course another explanation for the lack

of improvement is that the stability properties of this dynamical system simply do

not change strongly with location in phase space, in which case the choice of approach

used would have little impact.

5.5.5 Findings applicable to design of future space missions to binary
asteroids

The study overviewed in this section is merely the first step towards global char-

acterization of the degree of instability of trajectories within and about any member
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of the class of small asynchronous binaries. The simulation of test particles in the

RF3BP, for the KW4 example system which typifies that class, has explored only a

limited parameter space governing the choice of trajectory initial conditions. Above,

trajectories have been explored about both components and about the system as a

whole, in both directions with respect to the three body problem frame’s mean rota-

tion, with varying scaled proximity to either component plus varying initial departure

from the instantaneous plane of the binary mutual orbit. While the impact vs. escape

outcomes have been tracked for all test particles, for the main focus herein the finite-

time LCE’s of their trajectories has been determined as the metric for how unstable

those trajectories are. Direct sampling and then an iterative scheme to attempt to

refine a single initial condition parameter (initial velocity magnitude) to improve tra-

jectory duration and performance, according to that metric, has produced minimal

overall benefit. Further pursuing the orbit refinement path is advisable only with

improvements in the methods used for such refinement.

Several insights into the best trajectories within a binary system to use as part of

a future scientific mission to such a pair can still be gained from this limited study,

however. Orbiting at a distance from the barycenter a few times larger than the

separation between the binary component mass centers is the most natural starting

point. The low LCE values for such orbits indicate that this choice is good for the

goal of flight safety and long observation time at a larger distance, up to at least a few

weeks. However, this supposes that the binary as a whole is large enough or dense

enough that it’s net gravitational force on the spacecraft at this distance is at least

an order of magnitude larger than the force on the spacecraft from solar radiation

pressure (SRP), which was not incorporated into any of the RF3BP propagations

above. The observed insensitivity of stability performance with respect to inclination
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from the binary’s mutual orbit plane means a higher inclination, up to 40◦, can and

should be chosen. This serves the goal of bettering the angular coverage in latitude on

both bodies, for imaging, spectroscopy, or point-ranging measurement mapping of the

surfaces. Further, bearing in mind the actual presence of SRP, this higher inclination

should be narrowed to that which places the spacecraft’s orbit as close to within the

terminator plane perpendicular to the direction of the sun as possible. The direction

of the spacecraft orbit should also be retrograde to accommodate transfer into the

best choice for close proximity flight within the system, to accomplish detailed gravity

mapping and the highest resolution surface observations. This best choice for close

proximity flight would be a retrograde orbit that is significantly inclined (helpful for

SRP and for Alpha mapping, as well as observing of high latitudes on Beta) and with

an orbital radius from Alpha’s center of mass about 1/2 the separation between the

component mass centers. To obtain the most information about the gravity field and

density distribution of the components it seems desirable to persist in these orbits

(though they are the safest rather than the most strongly influenced paths) for as

long as possible without any trajectory correction thruster actuation. These general

guidelines, supported by the results of this section, should be useful for the future

design of binary asteroid missions.
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CHAPTER VI

Conclusions and Future Research Directions

This dissertation contributes to the general state of understanding about the dy-

namics, characteristics, and evolution of binary asteroid systems in several ways. The

results apply to many discovered objects, and address both the current dynamical

“snapshot” for them, the longer term history for them, and how to more effectively

explore them in-situ.

6.1 Summary of Research Contributions and Results

Chapter II presents the development of a general methodology for accurate and

efficient propagation of the Full Two-Body-Problem, whether applied to a binary

asteroid system or any other pair of extended bodies interacting under their mutual

potential arising from their distributions of mass, charge, etc. The gradients of the

mutual gravity potential involved here, with respect to relative position and attitude

between the bodies, are given based upon a prior-published highly flexible formulation

for that mutual gravity potential when both bodies are modeled as arbitrary closed

polyhedra with triangular facets. The derivation of these gradients using succinct

tensor expressions is a new contribution of this work, as is their incorporation into

simulation code using both traditional continuous equations of motion with a standard

integration scheme and the discrete equations of motion comprising the novel LGVI
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integration scheme. This dissertation also presents the unique serial and parallel

implementation of the methodology, profiles the accompanying dramatic performance

improvements since the beginning of this work, and provides validation of these tools

for interesting test cases, with varying complexity.

Next, this dissertation presents the first-of-its-kind application of these tools to a

specific example binary asteroid system observed in nature, that of (66391) 1999 KW4.

This first end-to-end dynamical study has broader applicability due to KW4 being

representative of the majority class (containing nearly half of the systems) within

the already significant in size NEA population: the class of “small asynchronous

binaries” as introduced near the start of Chapter III. The main conclusions drawn

from the simulation of KW4’s behavior, in configurations spanning various levels of

energetic excitation but all plausibly consistent with observations, should be readily

transferable to other systems in this class of binaries. Particularly the existence of

a variant of the type 2 Cassini-state as a long-period dynamic mode of the coupled

motion, and the existence and period relationships for at least three shorter-period

dynamic modes of co-orbital and librational motion within the approximate plane of

the mutual orbit, may be readily generalized. As with KW4, most systems of this

class are likely currently found to be occupying a moderately energetically excited

configuration between their most relaxed and plausibly most excited configurations.

The long-period mode excitation mechanism of solar tide during perihelion passage,

also effectively demonstrated herein for KW4, likely applies only to Aten NEAs with

similarly low perihelion distance. However, very infrequent distant flybys of Earth

and Mars should have a similar effect. Along with the continuous processes like

YORP, events like these and rare impact events upon either component drive shifts

in the system excitation level over time. The analytical formulae presented in this
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dissertation in Chapter IV relate the frequencies for the modes of motion for any

system in this class of small asynchronous binaries to the primary’s oblateness and the

secondary’s triaxial ellipsoid shape. These frequencies are for the long term mutual

precession of the primary spin pole and orbit normal, and for the faster coupled Beta

libration and orbit dynamics, both as revealed in the output of the F2BP simulation.

For the latter, the motion may be properly reduced into the quantities of relative

position of Alpha’s centroid, relative velocity of Alpha’s centroid, and angular velocity

of Beta, all represented in the frame fixed to Beta, for the frequencies to be directly

manifest. Especially relevant to the conduct of future binary NEA observations and

spacecraft missions to such pairs is the fact that these frequencies are able to be

captured through a time history of imaging of the binary from a location outside of the

binary’s own gravitational sphere of influence. The inertia elements of the bodies are

in turn related to the frequencies through the formulae, so that the inertia elements

can be determined from the motion just as from the shape models. Comparison

of these inertias provides a rough first estimation of internal mass distribution and

inhomogeneity within the bodies. The ability to obtain this information from standoff

observation before entry into the system is significant and useful.

Finally, the consideration herein of the motion of test particles within the time-

varying gravity field of the F2BP system (according to the RF3BP), is likewise ap-

plicable to any system in this class of small asynchronous binaries, and contributes

further understanding of the dynamical environment present within such systems. It

highlights the relative effects that may accompany infrequent impact events creat-

ing ejecta, in terms of surface material redistribution and mass-normalized angular

momentum changes to the system components and mutual orbit. More significantly,

examination of lofting motion of surface material on the primary near its equator,
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not performed in such detailed fashion prior to the work for this dissertation, pro-

vides verification of a long timescale binary evolution mechanism hypothesized herein.

This operates in addition to tidal evolution and any effects of BYORP. The pieces

of surface material undergo such lofting motion after the primary spin rate exceeds

the local “disruption spin rate” due to gradual spin-up of the primary under YORP

torque, even if those pieces of material have no initial surface-relative velocity. The

gravitational interaction of these particles with both components while in flight causes

them to gently re-impact with Alpha with a nonzero surface-relative velocity. It is the

difference in the surface-relative motion states between the time of lofting and time

of re-impact that causes, in reaction to that re-impact, a reduction in the spin rate

of Alpha. The same interaction also transfers angular momentum through the lofted

particles into the mutual orbit. All of this is found to occur episodically, with the

reduction in Alpha spin rate during each lofting episode being slowly undone by the

gradual YORP torque ramping back up the spin rate, until the next episode is trig-

gered. The demonstrated evolution mechanism’s strength and metrics for that (such

as time-averaged mass aloft) are found to be insensitive to changes in the amount

of material available for such motion or that material’s discretization (number and

size of “particles”), but sensitive to the YORP torque’s magnitude. As a whole, all

of the angular momentum externally injected into Alpha spin is transported into the

mutual orbit, which grows over timescales comparable to or several times faster than

standard orbital expansion evolution due to solid body tides alone. The orbit growth

rate theoretically would increase with the expansion but in reality may produce other

significant changes to the system. These changes and the eventual end-state for such

systems may be related to recent observations of the first NEA triple system and

divorced binaries in the inner main belt, respectively. Together with such observa-
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tions, the work summarized herein provides additional valuable pieces of the puzzle

for binary system evolution and life cycle that were not available before.

Also, in Chapter V this dissertation presents a simple but novel direct study of

the (in)stability of trajectories approximating spacecraft orbital motion about each

of the components, and the system barycenter at large distance, for any member

of the small asynchronous binaries class. It is found that among the Alpha-centric

trajectories, retrograde orbital paths are more robust to the gravity perturbations of

the binary system and enjoy longer lifetimes and a lesser degree of instability than

prograde orbital paths. For these Alpha-centric trajectories, it is also seen that,

somewhat surprisingly, higher inclination relative to mutual orbit tends to promote

longer lifetime, especially for the prograde paths, and a middle range in the initial

radius value exists that produces the least instability. Beta-centric trajectories are

much more easily disrupted and decay comparatively quickly, while far-field barycen-

tric trajectories exhibit much better performance all around than Alpha-centric ones,

insensitive to prograde/retrograde direction and inclination. Practically useful rules

of thumb for any spacecraft mission to a binary follow from this work. First the craft

should orbit at a distance from the barycenter a few times larger than the separation

between the binary component centroids, with a higher inclination chosen as close as

possible to that which places the spacecraft’s orbit within the terminator plane. The

orbit should be retrograde and transfer to a close significantly inclined retrograde

orbit about Alpha with a nominal radius from Alpha’s center of mass about 1/2 the

centroids separation. These guidelines should be valuable for the future design of

binary NEA missions.
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6.2 Topics for Future Study

Of course the work presented here is by no means complete. In addition to the

possibility of addressing some of this work’s remaining limitations, many promising

directions for further related investigation exist. The limitations most often stem

from a lack of computing resources (requiring restriction or coarser sampling of the

parameter spaces for the F2BP KW4 studies of Chapter III or the RF3BP stud-

ies of Chapter V, for example, or restriction of the particle population sizes within

the latter). Otherwise a prime limitation is in the applicability of many results and

conclusions herein only to those binary systems satisfying the main conditions and

assumptions of small body size and intermediate component size ratio, close sepa-

ration, on-average synchronous elongated Beta and super-synchronous oblate Alpha

rotating near its spin limit. In other words, the choice to narrow the systems studied

to those within the small asynchronous binaries class of interest, which bear the sig-

natures of a formation by fission or mass shedding due to slow spin-up. Other major

types of binaries exist within the NEA and MBA populations having very different

size ratios or angular momentum content (hence different likely origins). Particularly

large asteroidal bodies with very small satellites (likely generated by mutual capture

of catastrophic disruption products or material separation by impact), a few widely

separated small binaries, and a few large double asteroids with roughly equal sized

components both in synchronous rotation, per Pravec et al. [63]. Most of the results

herein are of limited applicability to these other system types.

One of the specific avenues for further investigation, related to the F2BP simu-

lation methodology developed early on, would be comprehensive examination of and

direct comparison between other solitary-body and mutual gravitational potential

representations in addition to the polyhedral-based representations used above. The
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comparison desired is between final simulation performance, in both computational

cost and error accumulation, using the different mutual potential gradient computa-

tions matching these representations, within the same EOM and integration scheme,

with full parallelization. Any adjustments tailored to each’s structure (like tree-code

methods for the N point masses packed sphere model + N point masses packed sphere

model representation) may also be incorporated. In the present work, based on the

reasoning at the start of Chapter II, these other methods are not developed to the

same degree and directly compared in performance.

Another area for further investigation would be direct simulation over very long

timescales of the effects of the sun’s perturbing forces on the KW4 binary’s behavior,

particularly its Cassini state excitation level, through many successive perihelion pas-

sages rather than single perihelion passages in isolation. The purpose of this would

be to reveal the true random-walk accumulation of Alpha spin and orbit pole offset

angle changes over many perihelion passages, as in the KW4 system in nature, and

to find the average offset angle value for that random walk for comparison with the

value the system likely occupies as presented earlier. It would be ideal to perform

this simulation spanning many successive heliocentric orbits for at least several trials

randomized over the observation-derived uncertainty in absolute orientation for the

system relative to its heliocentric orbit plane, to get a better statistical result. The

perturbations of all other planets may be included in similar fashion to the sun’s,

without much additional computational effort aside from propagating the planets’

heliocentric orbits too, simply by adding additional C(1,2) terms of the two point

mass type for each planet into Eq. 2.58. Alternatively, if an analytical model can be

developed for the effects of the perihelion passage, with the same or higher order than

that presented for changes to a solitary body’s spin state during flybys in Scheeres at
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al [81],[82], then that may be used for many successive passages without the cost of

such extensive duration simulation including many long aphelion arcs.

With respect to the examination of primary surface material lofting herein, a few

additional directions may be pursued. First, it is recognized that although a thorough

attempt was made to identify the system parameters and location for which particle

lofting motion is most likely to begin, the choice of threshold spin rates following from

that, at which such motion is said to “activate”, is rather arbitrary. Second, instantly

activating such motion precisely when this fixed threshold is crossed is itself unre-

alistic. So it is of interest to better characterize the conditions under which motion

begins for surface material in the identified lofting regions on the primary, accounting

for actual physical particle size distribution and contact and friction between the par-

ticles and the surface. For example, some level of cohesion between material at the

surface and material lying below it, closer to the centroid, may allow for no motion by

any of the material until well above the critical spin rate (as locally computed for that

location simply by considering the surface-normal component of total acceleration).

Then the entire mass will suddenly give way well above the critical spin rate, result-

ing in different particle trajectories reaching higher altitudes with respect to Alpha.

Stochastic modelling of lofting onset, particle-by-particle, within the precise dynami-

cal simulation, may be an important improvement. In addition, it may be significant

to include collisional and gravitational interactions between particles of material after

they have lofted. This would become a detailed N -body problem in the presence of

the binary components. Inclusion of surface charging and electrostatic forces between

particles and between the surface and the particles may be a worthwhile addition on

top of that inter-particle gravitation and collision.

In the probability-based simulation method, just as for the precise dynamic simu-
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lation above, there are more open ended issues awaiting resolution. Over time, regu-

larization of the equatorial figure of Alpha may occur, which may cause the magnitude

of the YORP torque on Alpha to change slightly, so that it should not be kept a fixed

constant but slowly varied. No realistic shape is included in the probability-based

simulation, and by construction of the algorithm “evening out” of material around

the equator cannot be directly modeled but only indirectly modeled through more

or less mass being allocated into the different rotating barycentric frame longitude

bins as the time intervals are discretely mapped forward. Further, those longitude

bins are uncoupled from actual longitude on the surface of the asynchronous Alpha.

Slowly accumulating (in magnitude) changes to the X- and Y- principle axis compo-

nents of the Alpha inertia dyad are observed as roughly symmetric and opposite each

other, indicating the longitudinal shifts in material within the frame fixed to Alpha.

Note that no latitude shift of material in that frame is possible, by construction of

the algorithm, which is also not realistic. The open issue is that none of this has

been firmly linked back to whether enduring body figure changes are occurring which

actually impact the rate of external angular momentum input by YORP.

However, even if all of these potential improvements in the model fidelity for both

simulation types are pursued, the basic mechanism for small asynchronous binary

evolution supported by this work is not likely to be altered. Though additional

energy dissipation would be present with the collision and friction, all of the inter-

particle and particle-to-binary-component interactions will not reduce total system

angular momentum. They may only transfer angular momentum to the orbit less

effectively, by returning a greater portion of angular momentum carried with the

particles back to Alpha. In which case the spin rate of Alpha will not be depressed

as much over the whole lofting episode, and those episodes will occur more frequently
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for the same net effect on the system evolution. All that is adjusted with decreasing

angular momentum transfer is increasing lofting activity, until in the limit it would

become almost continuous.

It is also observed that there is some drift over time in the X- and Y- components

(and especially importantly the norm of those two components) for the Alpha and

orbit angular momenta. Further, the drift in that norm is in opposite directions for

Alpha and the orbit. This brings up the possibility of spin and orbit pole angular

separation being altered through the action of YORP on the primary and transfer of

the angular momentum added into the orbit. This would be excitation/damping of

the system’s Cassini state by such means, in addition to the orbit expansion evolution,

and is a phenomena which has yet to be fully addressed.

Another future research direction is to step back and attempt a comprehensive

combined modeling of all of the different proposed mechanisms for binary evolution

toward separation acting concurrently, with significant adjustments to the approx-

imate probabilistic simulation approach used herein. The aim of this should be to

directly see which of these effects dominates the quantitative timescales for such orbit

migration.

Finally, it may be valuable to more fully explore the parameter space for the

orbital paths about both binary components and the system as a whole. Also, for all

points explored in that space, it may be helpful to use the methodology for iterative

trajectory initial condition optimization after including more states and parameters,

and utilizing a proper gradient-based optimization of the cost functional that does

not assume locally quadratic behavior in the cost about the best parameter values.

Exploring some of these topics for further study, together with the anticipated

availability and incorporation of significantly more observational data on multiple
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asteroid systems in coming years, promises to continue the dramatic progress seen

in the past decade, in understanding the dynamics and morphology of such natural

examples of the Full Two-Body-Problem.
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APPENDIX A

Further remarks on the rule used to obtain the gradient of an attitude

matrix with respect to another attitude matrix, for Eqs. (2.24–2.26)

One may resume using the tensor notation of Chapter II and write the rules used

to obtain Eqs. (2.24) and (2.26) as follows:

∂Tj k

∂Tφθ

= δφ
j δ

k
θ ,

∂T T
i k

∂Tφθ

= δφ
k δ

i
θ. (A.1)

This is just the most general and intuitive approach for differentiation of an arbitrary

matrix with respect to itself, or its transpose. Given that in the application addressed

by this document Ti k is in SO(3), it is more proper to use different rules, namely

∂Tj k

∂Tφθ

= δφ
j δ

k
θ − TφkTjθ ,

∂T T
i k

∂Tφθ

= δφ
k δ

i
θ − TφiTkθ. (A.2)

With the latter one must also modify Eq. (2.35) to be

Eφθ = G
∑
a∈A

∑
b∈B

ρa Ta ρb Tb
1

2

(
∂Û1

∂Tφθ

+
∂Û2

∂Tφθ

+
∂Û3

∂Tφθ

+ . . .

)
.

Unlike as stated in Fahnestock and Scheeres [83], both of these approaches are correct

and give equivalent results. Note that within Tj i ∈ SO(3), the rows are orthogonal

to one another and so are the columns, which leads to six constraints that must

be satisfied. These constraints can be succinctly summarized with the fact that
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T−1
j i = T T

j i, which leads to

T−1
j i Ti k = T T

j i Ti k = δk
j . (A.3)

Differentiating the left hand side of Eq. (A.3) with respect to the attitude matrix

gives

∂
(
T T

j i Ti k

)
∂Tφθ

=
∂T T

j i

∂Tφθ

Ti k + T T
j i

∂Ti k

∂Tφθ

. (A.4)

Substituting Eqs. (A.1) into this, and using the fact that δφ
i = δi

φ yields

∂
(
T T

j i Ti k

)
∂Tφθ

=
(
δφ
i δ

j
θ

)
Ti k + T T

j i

(
δφ
i δ

k
θ

)
= δj

θ δ
i
φ Ti k + δk

θ δ
i
φ T

T
j i

= δj
θ δ

i
φ Ti k + δk

θ δ
i
φ Ti j

= δj
θ Tφk + δk

θ Tφj (A.5)

It has been manually verified by the author that no skew symmetry about the two

dimensions referenced by indices j and k exists, so that the last line above is not

equal to zero in general, which is inconsistent with the fact that the partial derivative

of the right hand side of Eq. (A.3) is zero. Therefore the rules of Eqs. (A.1) do not

respect the constraints of Tj i being in SO(3). Instead substituting Eqs. (A.2) into

Eq. (A.4) gives

∂
(
T T

j i Ti k

)
∂Tφθ

=
(
δφ
i δ

j
θ − TφjTiθ

)
Ti k + T T

j i

(
δφ
i δ

k
θ − TφkTiθ

)
= δj

θ δ
i
φ Ti k − TφjTiθ Ti k + δk

θ δ
i
φ T

T
j i − T T

j iTφkTiθ

= δj
θ δ

i
φ Ti k − Tφj

(
T T

θi Ti k

)
+ δk

θ δ
i
φ Ti j −

(
T T

j iTiθ

)
Tφk

= δj
θ Tφ k − Tφj

(
T T

θi Ti k

)
+ δk

θ Tφ j −
(
T T

j iTiθ

)
Tφk

Then substituting the identity in Eq. (A.3) back in where apparent and rearranging
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produces

∂
(
T T

j i Ti k

)
∂Tφθ

= δj
θ Tφ k − Tφj δ

k
θ + δk

θ Tφ j − δθ
jTφk

= δj
θ Tφ k − δj

θ Tφk − δk
θ Tφj + δk

θ Tφ j

= 0

This is clearly consistent with the partial derivative of the right hand side of Eq.

(A.3) being zero. Therefore the rules of Eqs. (A.2) do satisfy the orthonormality

identity constraints on Tj i, which is why it is stated that they are more proper to

use. In practice, due to the slightly lower number of operations involved, the rules of

Eqs. (A.1) are used in our codes to obtain the F2BP propagation results presented

in Chapter II and thereafter.
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APPENDIX B

Mapping of velocity bounds for expected return and expected escape

over the full surfaces of KW4 Alpha and Beta

Earlier in section 5.3.1, a method was presented for calculating a conservative

upper bound up to which the magnitude of the surface-relative velocity vector for

particles launching from the center point of a given facet on a binary component’s

body mesh could grow, while still expecting return impact of those particles onto the

source body. Similarly, small adjustments to that method’s equations allow calcula-

tion of a conservative lower bound down to which the magnitude of the surface-relative

velocity vector for particles launching from such points may be lowered, while still

expecting those particles to escape from the binary asteroid system. Here these cal-

culations are performed for the center points of every facet in the body meshes for

Alpha and Beta of (66391) 1999 KW4, the main example small asynchronous binary

asteroid treated in the research for this dissertation. The assumption for the launch

relative velocity vector’s direction used in these calculations here is alignment with

the face normal vector. Also the calculations make use of the F2BP motion out-

put from the “most-excited” scenario within Table 3.3 in section 3.3. What results

are interesting maps of the velocity bounds over the surfaces of Alpha and Beta for

this system, presented in latitude-longitude projection in Figures B.1 and B.2 and
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in isometric view in Figures B.3 and B.4. Note that a total of 260 roughly evenly

spaced instances in time spread out over 35.88 hours, equivalent to ≈2.0615 times

orbital period or ≈13.00 times the shortest (Alpha spin) period were used in this

computation, so that the results represent a fairly complete coverage of the modes

of motion characterizing the dynamical evolution of the full system. On Alpha, the

highest surface normal launch speed bounds for return and escape are observed in a

few regions at intermediate lattitude, and the lowest such bounds are observed at the

equator. On Beta, there is a significant discrepancy between the leading and trailing

faces, in the sense of the Beta’s orbital motion, with the leading face having lower

velocity bound values accounting for the nominal synchronous orientation of Beta in

the system.
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(a) Guaranteed return speed, matching JRSE3BPL1
= −0.1119978

(b) Guaranteed escape speed, matching JRSE3BPL1
= 0

Figure B.1: Mapping of surface-normal launch velocity bounds over surface of KW4
Alpha, lat.-long. projection. Velocity units are m/s.
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(a) Guaranteed return speed, matching JRSE3BPL1
= −0.1119978

(b) Guaranteed escape speed, matching JRSE3BPL1
= 0

Figure B.2: Mapping of surface-normal launch velocity bounds over surface of KW4
Beta, lat.-long. projection. Velocity units are m/s.
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(a) Guaranteed return speed, JRSE3BPL1
=

−0.1119978
(b) Guaranteed escape speed, JRSE3BPL1

= 0

Figure B.3: Mapping of surface-normal launch velocity bounds over surface of KW4
Alpha, isometric view. The numbers on the color scale correspond to
the velocity bins in the legend of the matching lat.-long. projection map
shown earlier.

(a) Guaranteed return speed, JRSE3BPL1
=

−0.1119978
(b) Guaranteed escape speed, JRSE3BPL1

= 0

Figure B.4: Mapping of surface-normal launch velocity bounds over surface of KW4
Beta, isometric view. The numbers on the color scale correspond to the
velocity bins in the legend of the matching lat.-long. projection map
shown earlier.
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