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ABSTRACT 

 

INTERACTION AND SELF-ASSEMBLY OF NANOPARTICLES FOR 

BIOMEDICAL, NANODEVICE, AND MATERIAL APPLICATIONS 

 

by 

 

Jonghyun Park 

 

Chair: Wei Lu 

 

The goal of this thesis is to investigate the use of nanoparticles as a means of self-

assembly into target structures and as candidates for a variety of applications such as 

advanced materials, nanodevices, and drug delivery systems. In order to achieve and 

exploit the immense potential of the nanoparticles, the majority of the investigation 
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introduces an electrostatic field for controlling the behavior of nanoparticles. Materials 

with a well-organized distribution and an orientation provide superior properties that 

cannot be achieved by the current uniformly or randomly dispersed nanocomposites. An 

approach to rigorously calculate the driving force and to predict the behavior of the 

system may suggest a significant degree of the experimental control and contribute to 

materialization of the distinguished properties. This work focuses on the behavior of 

lossless and lossy core-shell nanoparticles, which makes the behavior more complicated 

but enhances its strength and improves the assembly. Taking into account the thermal 

motion of the particles, it is possible to investigate the stability, internal structure, and 

rheological properties of nanoparticle dispersions. Electrostatic interactions also 

demonstrate that organizing different nanoparticles systematically into ordered binary 

superlattices can lead to functional materials. The work presented here, through the 

theoretical and computational investigation, elucidates how parameters including 

permittivity, volume fraction, particle size, and the frequency of the field can be utilized 

to control the morphology of the superlattice structures. The study explores rich 

patterning dynamics and a wide range of superlattices from functional gradient columns 

to an alternating chain-network. Nanoparticles have also been used as agents of change in 

various phenomena. Poly (amidoamine) dendrimer nanoparticles have been employed 

extensively in biomedical applications such as gene and drug delivery systems. They 

disrupt cell membranes and allow the transportation of agent materials into cells. The 

results of a three dimensional phase field model, including elastic energy, demonstrate 

that an amine-terminated G7 dendrimer, which has positive charges on the surface, 

causes a hole in the membrane. The molecules removed from the membrane encircle the 



xiv 
 

dendrimer and form a dendrimer-filled membrane vesicle. This behavior is significantly 

reduced for a smaller dendrimer. An acetamide-terminated dendrimer, which has a 

different surface end-group with a neutral charge, does not induce a hole effectively. 

These results agree with the experimental observations. Relatively larger particles, such 

as liquid droplets, also have diverse applications such as ‘lab-on-a-chip’ systems for 

biomedical diagnostics. Practical application of those devices requires complex surfaces 

and morphologies of the droplet and electrodes. The dynamic aspect of the phenomenon 

is also an important factor for designing devices. Computational works may provide a 

useful tool for the design and extend the window of observation. A phase field model, 

combining the thermodynamics and hydrodynamics, predict the evolution of morphology 

of the droplet with or without an electric field. Furthermore, it predicts the instability 

occurrence at above-critical external field strength, which is observed from experiments. 

A parametric study, combined with a stability analysis, shows a tendency of the 

instability to depend on the surface energy and the strength of the applied field. 
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CHAPTER 1  

 

INTRODUCTION 

 

This research has its origin in the significant and growing interest in nanoscale 

science, engineering and technology. Fundamentally, nanotechnology is the science and 

technology of precisely constructing structures of matter at the nanoscale level and 

controlling the morphology of them, which brings inherent advantages, such as faster 

response time, lower power consumption, and greater density. That is why 

nanotechnology is widely viewed as the most significant technological frontier currently 

being explored. Nanostructures usually refer to those structures with a physical 

dimension smaller than 100 nanometers, ranging from clusters of atoms to dimensional 
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layers. Nanostructures exhibit unique properties, such as the quantum supercurrent 

transistor [1], single-electron tunneling [2], and charge transport/electron-hole recom-

bination phenomena [3], which have generated great interest in nanostructures for 

potential application in electronics, optics, and biomedical sciences. Generally, there are 

two approaches available for producing nanostructures. The first way is to start with a 

bulk material and then modify it into smaller pieces using mechanical, chemical or other 

forms of energy, which is referred to as the ‘top-down’ approach. Because the 

conventional optical or ultraviolet photolithography has difficulties shrinking the feature 

size of structures, other forms of lithography technologies such as UV, X-ray, ion beams, 

and electron beams continue to grow. An opposite approach is to synthesize the material 

from atomic/molecular species via chemical or physical reactions, allowing for the 

precursor particles to arrange themselves into a structure which induce a specific 

functionality into that material. This ‘bottom-up’ approach is motivated by self-assembly.  

Some recent progresses have demonstrated the potential of self-assembly tech-

nology by various periodic patterns on the nanoscale level. Li et al. [4] grew 

ferromagnetic iron films on the oxygen-striped copper substrate and Parker et al. [5] used 

the self-assembled pattern to form metallic nanowires. Furthermore, Bacteria [6], 

macromolecules [7], diblock copolymers [8], and nanoparticles [9] can also self-assemble 

into ordered structures with precision. Self-assembly of nanoparticles is regarded as one 

of the most promising approaches for generating nanostructures because the current 

synthetic technologies develop a wide variety of shapes and morphologies of nanoscale 

particles. In addition to rods, wires, and core-shell particles, the latest synthetic tech-

niques demonstrate the possibility of making diverse shapes of nanoparticles such as 
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rings, cubes, triangular prisms, and many other unique shapes. Moreover, the self-

assembly of nanoparticles provides advantages, compared to the top-down approach. 

First, the generated structures from the self-assembly may be thermodynamically stable. 

Second, a large number of nanoparticles can be arranged simultaneously. Here, we need 

to pose a question: How do we organize these nanoparticles into more complex structures? 

How do we control the morphology of those structures? Consequently, the present 

challenge of nanotechnology is to organize them in one-, two-, and three-dimensional 

structures and how to design them to have specific functions. In order to address this 

challenge, we introduce an electric field, which has recently raised great interest in 

controlling nanoscale features, to a number of material systems such as ellipsoidal 

nanoparticles which have core-shell structures and dielectric binary nanospheres.    

Nanoparticles are also seen as agents of changes of various phenomena and 

processes. For instance, nanoparticles have a large impact on the development of diverse 

biomedical applications due to their ease of preparation and comparable size to the bio-

logical organs, which brings less interference with the biological units. Also, in order to 

reduce possible side effects, the agents should have selective interfaces coupled with the 

target cells, for example, a tumor. The approaches used for this purpose include 

nanoparticles with a functionalized surface chemistry and a coating with monolayers of 

molecules. Several classes of polymer nanoparticles [10, 11] are employed for this 

purpose and play a similar role including cell penetrating peptides. However, the details 

of these actions are only partially understood. In this thesis, we focus on the poly 

(amidoamine) dendrimer nanoparticles, which are considered to be very promising 

candidates for biomedical applications.  



 

4 
 

In addition, many prototype devices, such as the nanoparticle logic gate [12], are 

related to nanoparticles. Also, due to the wide range of the UV-visible spectrum, 

nanoparticles are excellent candidates for photovoltaic devices [13]. Another application 

is related to miniaturization of the devices. The reduced size may bring inherent 

advantages, such as increased reaction speed, portability, and low power consumption. 

One prominent example includes “lab-on-a-chip” for applications [14, 15] such as DNA 

analysis and biomedical diagnostics which is increasingly receiving more attention. 

Those applications require manipulation of small droplet volumes within the range of 

nanoliters or less.  

This dissertation addresses the physics related to nanoparticles, focused on the 

self-assembly of nanoparticles and interactions with nanostructures. The topic includes an 

electric processing for nanoparticles, the self-assembly of nanoparticles, the interaction of 

a dendrimer nanoparticle with a lipid-layer, and the electrowetting phenomenon of a 

droplet particle.  

 

 

 

1.1 ELECTRIC FIELD PROCESSING OF CORE-SHELL NANOPARTICLES 

 

A suspension of nanoparticles in a dielectric fluid has great potentials for a wide 

spectrum of materials and device applications [16]. The functional properties of the 

suspension can be tuned by controlling the orientation of the particles with an applied 

electric field. An electric field has recently raised great interest in the application of 

controlling nanoscale features due to the strength and long range effect of the 
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electrostatic interactions. Studies showed that a particle with an anisotropic geometry can 

rotate preferentially with an applied electric field [17-21]. Spherical particles were shown 

lined up in a chain because of the attraction between induced dipole moments [22-24].  

These phenomena suggest the possibility of bringing about controlled changes in 

the nanoparticle arrangement to achieve desirable physical properties. Particle light 

valves [25] or suspended-particle devices [26] are examples that use these phenomena. 

These devices change light transmission properties in their response to an applied 

external field and thus control the amount of light allowed to pass through. A smart glass, 

which changes from transparent to opaque, partially blocks light while maintaining a 

clear view of what lies behind the window.  

Another application uses polymer cholesteric liquid crystal flakes [27], which 

exhibit selective reflection by causing light of specific wavelengthes and polarization to 

be reflected from the flake surface. Thus, a large visual effect is created if the flakes are 

viewed off-axis or if they are tipped with respect to normal direction of the incident light.  

In material science applications, reorientation of inclusions in the presence of an 

electric field can be used for local optimization of micro/nanostructures in a polymeric 

composite. In the process, nanoparticles are aligned in a fluidic polymeric precursor and 

then cured to a solid state. This field-aided micro-tailoring approach may produce 

composite materials with multifunctional properties [28].  Figure 1.1 shows a micro-

photograph of an epoxy-graphite composite processed in the electric field of two planar 

electrodes. Graphite particles arranged in chainlike structures are seen in area (1) of 

Figure 1.1(b). 
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                                                (a)                                                        (b) 

Figure 1.1 (a) Graphite-epoxy composite in the field of planar electrodes (b) enlarged 
area has chain-like structure of the graphite [28] 
 

 

   
(a)                                                         (b) 

Figure 1.2 (a) Schematics of a nanowire suspended in DI water set to rotation by 
quadruple electrodes, at which four phase-shifted ac voltages are simultaneously applied 
with a sequential phase shift of 90D . (b) Overlapped images at 1=30 sec interval of free 
(right) and one end fixed (left) rotating Au nanowires at 2.5 V, 80 kHz [29]. 
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A nanowire rotating with a high speed is another example. Novel devices at 

nanoscale level need to manipulate small objects, such as those rotating with high speeds. 

Small entities are usually suspended in a proper liquid to avoid adhering to the surface by 

the van der Waal forces. However, it is challenging to control the rotation of small 

objects because of the viscosity and Brownian motion from the liquid. Here, an electric 

field provided by patterned electrodes can accommodate this challenge. Fan et al. [29]    

demonstrated that a nanowire in suspension can be rotated at a specific rotation speed. 

Figure 1.2 shows a schematic of the device and rotating images of the nanowire. 

Despite the technical promise, colloidal nanoparticles demonstrate complicated 

behaviors in response to an applied field. Practical applications call for an extensive 

understanding of the physical mechanism and dynamic processes [30, 31]. Chapter 2 will 

explore the possibility of utilizing an electric field to control the rotational behavior of a 

core-shell nanoparticle. In this research, we developed an approach to rigorously 

calculate the induced torque of core-shell nanoparticles. We will also show that the 

Brownian motion of many nanoplates and nanofibers make it possible to investigate the 

rheological properties of nanoparticle dispersions. 
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1.2 SELF-ASSEMBLY OF NANOPARTICLES 

 

 Technology of precisely constructing and controlling structures in nanoscale may 

have a promising potential for generating functional materials and novel devices [32-34]. 

Self-assembly of nanobuilding blocks into a specific structure is generally regarded as the 

most effective way to design and control nanoscale structures. Among diverse driving 

forces for self-assembly, such as chemical bonds [35], electromagnetic fields [36], fluidic 

forces [37], and capillary forces [38], the electrostatic interaction has raised great interest 

because of the long-range effects and simplicity of control. Examples include patterning 

molecules [39], promoting the exfoliation of nanoplates [40], and controlling the rotating 

of nanoparticles [41]. Figure 1.3 shows microwire assembly by dielectrophoresis from 

the suspension of metallic nanoparticles [24]. The gold nanoparticles are attracted to and 

aggregate on the metallic part of the wire tip, thereby forming a complex structure. 

Another important application is an eletrorheological (ER) fluid [42], which is composed 

of nanoparticles dispersed in a dielectric liquid. Monodispersed spherical particles 

acquire electric moments, then line up into a chain which is parallel to the applied field. 

In this phenomenon, a pair-wise dipolar interaction between particles plays an important 

role.  

Binary mixtures may provide a much richer class of nanocomposite materials. 

Solid mixtures of polymers at nanoscale can exhibit mechanical, optical, and electro-

optical properties that are not attainable with a single polymer. Binary nanoparticle 

superlattices enhance the possibility of combining the properties of individual 

components with new functionalities that arise from the interactions between different 
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nanoparticles. Examples include an enhancement of the energy product in the 

nanocomposite materials by exchange coupling between nanoparticles of magnetically 

soft and hard materials. Figure 1.4 shows one example of nanoparticle assemblies of 

Fe3O4 (12 nm) and Fe58Pt42 (4 nm) [43]. A large difference in sizes results in clear phase 

segregation with particles forming their own lattice arrays. 

The formation of nanostructures, through the use of electrostatically induced self-

assembly of nanoparticles, are investigated in Chapter 3. Brownian dynamics will be 

outlined, which allows for observation of the rich patterning dynamics and a number of 

superlattices from core-shell columns to well-dispersed alternating structures. In addition, 

it also presents how parameters such as relative permittivity, volume fraction and particle 

size can be utilized to tune the superlattice structures.  
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Figure 1.3 Composite wires: a thin fractal gold structure grown on the surface and 
surrounded by a half-shell of latex microspheres [24]. 
 
 
 
 

 

Figure 1.4 TEM images showing binary nanoparticle assemblies of Fe3O4 (12 nm)  and 
Fe58Pt42 (4 nm). The assembly contained Fe3O4 and FePt binary nanoparticles with a mass 
ratio of Fe3O4:FePt=1/10 and was formed by solvent evaporation of the mixed 
nanoparticle dispersions on amorphous carbon-coated TEM grids [43]. 
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1.3 INTERACTION OF POLY (AMIDOAMINE) DENDRIMERS WITH LIPID BILAYERS 

 

Dendrimers are a new class of branched, synthetic macromolecules with layered 

architectures that show potential for diverse biomedical applications such as gene therapy 

and targeted drug delivery [44, 45].  Dendrimers consist of a series of chemical shells, 

called generations, that are built on a small core molecule. Each shell consists of two 

chemicals which are always in the same order. Poly(amidoamine) (PAMAM) dendrimers, 

in particular, have been considered to be very promising nanoparticle candidates for 

biomedical applications because they have excellent monodispersity, well-defined mass 

and size, and surfaces that are chemically functionalized [46-48]. The success of 

PAMAM dendrimers, however, in biomedical applications poses a question regarding 

how dendrimers interact with cell membranes. In some cases, nanoparticles can result in 

cytotoxicity, which can be beneficial [49] or harmful [50]. Previous studies [51, 52] have 

addressed the biocompatibility of dendrimers by investigating the interaction with lipid 

visicles and cultured cells. It was found that dendrimers are able to cause a disruption of 

membranes and that the interaction became stronger for dendrimers of higher generations 

carrying positive charges. Using a atomic force microscopy (AFM), enzyme assays and a 

fluorescence microscopy , Hong et al. [53, 54] observed that amine-terminated generation 

7 (G7) PAMAM dendrimers caused holes to form in aqueous and supported lipid bilayers. 

Whereas acetylated dendrimers (G5) did not cause holes, but expanded holes at existing 

lipid bilayers. Those observations suggest that the surface end group plays an important 

role in the interactions between the dendrimers and the membranes. Mecke et al.[55, 56] 

investigated the interaction of DMPC-supported lipid bilayers by AFM. They observed 
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that the dendrimer size influences the interactions with lipid bilayers. As can be seen in 

Figure 1.5, high-generation dendrimers caused formation and growth of holes in the 

membranes, whereas the ability to remove lipids from bilayer was reduced for lower 

generation dendrimers. In addition, they also found an effect of surface chemistry on the 

propensity for hole formation, which is similar to the observation of Hong et al. [53, 54].  

Despite the experimental observations, the fundamental mechanism of the 

interaction is still not understood well. We have proposed a three-dimensional phase field 

model to account this interaction between a dendrimer particle and a membrane. 

Attention is focused on the hole-formation process on the membrane. We seek a way to 

elucidate formation of a hole in a membrane due to a dendrimer particle and to provide 

the physical understanding for the mechanism from the fundamental of thermodynamics. 

The details are described in Chapter 4. 

 

 

Figure 1.5 Supported DMPC bilayer imaged in water before (left images) and after (right 
images) adding G7 PAMAM dendrimers with amine capping group (injection method; 
estimated final dendrimer concentration 10–15 nM; time between the two images of each 
set is several minutes). Scale bars: 100 nm [55]. 
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1.4 ELECTROWETTING OF A DROPLET PARTICLE ON A DIELECTRIC 

 

Miniaturization has been a continuing trend in the production-technology because 

it may bring inherent advantages such as lower cost, higher speed, and greater density. 

The ‘lab-on-chip’ system for biomedical diagnostics [57, 58] is one example fueled by 

the above advantages. One significant result from the reduction in size is an increase in 

the surface-to-volume ratio, which makes the surface energy dominate the system. In 

order to experience the utmost potential, a small structure needs to control surface 

morphology [59] and morphological transitions [60]. Electrowetting, wherein the 

wettability of a droplet can be controlled by applying an electric field, has become an 

especially successful mechanism to control the surface morphology with controllable 

wettability.  

Electrowetting allows one to design an optical system [61-63], such as camera 

lens, with variable focal length that can be achieved by electricity. Hayes et al. [64] 

introduced a potential use of electrowetting in reflective display technology. Figure 1.6 

shows the principle; an oil film ruptures upon the applied voltage then contracts into one 

corner, as a result, the reflectivity can be increased. 

A fluidic motion also can be used for assembly of nanowire by using a droplet 

inside microchannels. The droplet motion creates flow patterns which are responsible for 

the nanowire’s alignment. A recent work [65] demonstrated that suspended rod-like 

particles in a shear flow spend most of their time aligned with the streamlines and rotate 

occasionally in closed orbits. Combining those results with the electrowetting effect may 

provide a more powerful control tool in the self-assembly of nanowires. 
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(a)                                                (b) 

Figure 1.6 Electrowetting display principle. a) No voltage applied, therefore a coloured 
homogeneous oil film is present. b) d.c. voltage applied, causing the oil film to contract. 
Top row, diagrams; bottom row, photographs. The photographs show typical oil motion 
obtained with a homogeneous pixel electrode [64]. 

 

 

 

 

 
Figure 1.7 Surface tension powered self-assembly. The variation of final angle with 
liquid volume [66]. 



 

15 
 

The surface tension is appropriate for carrying out reshaping and assembly in the 

microstructure size domain because of the low dimensional power of its force scaling law. 

Syms et al. [66] have devised methods for self-organization of randomly oriented parts 

and for their controllable attachment to the MEMS structures or circuitry. Figure 1.7 

shows the contact angle variations within the liquid volume. In addition, the surface 

tension may provide a liquid motor which has many advantages compared to ECF or the 

tilting motion of microplates. They proposed a liquid motor using electrowetting 

actuation. By electro-wetting, the liquid is deformed and the floating plate is rotated at 

180 rpm.  

While electrowetting has become one of the most widely used tools for 

manipulating small amounts of liquid droplets on surfaces, there are many practical 

limitations to this method. Those include the saturation of the contact angle and the 

instability of the contact line. Specifically, the instability phenomenon is still not well 

understood and may be an obstacle for the practical applications. Chapter 5 will provide a 

physical understanding for the instability phenomenon and a useful guide for the control 

of that phenomenon. In addition, the dynamic responses of the droplet and the effect of 

patterned electrodes, which are important for designing practical devices, will be also 

discussed. 
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CHAPTER 2  

 

ELECTRIC FIELD PROCESSING OF CORE-SHELL NANOPARTICLES 

 

Dispersion of functionalized nanoparticles with surface coatings in a dielectric 

medium has a wide spectrum of applications from advanced materials to nanodevices 

[16]. Morphology control is key to achieving the full potential. Materials with designed 

distribution and orientation of nanoparticles offer superior properties, unique 

functionalities and maximum flexibilities that cannot be achieved by the current 

uniformly/randomly dispersed nanocomposites. Recent studies have shown that 

nanoparticles with anisotropic geometries may rotate preferentially under applied electric 

fields [21, 29, 67], suggesting an approach to bring about controlled particle orientations 
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in a matrix. The observations pose interesting scientific problems and call for a 

quantitative understanding of the phenomena. The rotation of a micro or larger sized 

particle in an electric field has been investigated by many researchers. Several theories 

and experiments have been reported on micro or larger sized particles [21, 68-70]. 

Stratton calculated the potential energy of a lossless dielectric placed in an electric field 

and derived the torque from it [71]. Due to the anisotropic geometry of the particle, the 

potential energy of the system depends on the orientation with respect to the applied field. 

The direction corresponding to the minimum potential energy determines the stable 

orientation. It was shown that the magnitude of the torque depends on the permittivities 

of the particle and its medium. A particle will orient its longest axis parallel to the applied 

field. The behavior of a lossy dielectric particle in an alternating field is more 

complicated since it depends on both material properties and field frequency. Teixeira-

Pinto et al. observed the frequency-dependent orientation of conductive ellipsoids [72]. 

Schwarz et al. [73] and Saito et al. [74]  relied on the calculation of the potential energy 

of a lossy dielectric particle to find the stable orientation, which corresponds to the lowest 

potential state of the system. However, some researchers pointed out that the energy 

method is invalid in dissipative media [75, 76]. Gruzdev suggested that when the applied 

field is quite uniform (the wavelength of the spatial variation of the field is much larger 

than the particle size), a particle can be treated as an effective dipole to calculate the 

interaction [77]. Maxwell stress tensor method can be used to rigorously calculate the 

torque on a particle in arbitrary situations [78]. However, the approach requires the 

computation of surface integrals, which can be cumbersome for general geometric shapes. 
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Thus the effective dipole method has been frequently employed for the calculation of the 

torque of single micro-meter or larger sized particles.  

Nanoparticles possess several unique aspects that distinguish their behaviors from 

microscale counterparts. First, nanoparticles are often coated. This process is often 

necessary to prevent agglomeration. In addition, studies show that coating can increase 

the lifetime of a fiber under static fatigue, greatly delay the onset of the fatigue knee, and 

reduce the strength degradation due to zero stress aging [79]. Coated nanoparticles form a 

core-shell structure, which makes their rotational behaviors complicated. Secondly, the 

effect of Brownian motion and rotation becomes important due to the small particle size 

[80]. Thus simulations taking into account the thermal motion of the particles play an 

important role in investigating the stability, internal structure, and rheological properties 

of nanoparticle dispersions. 

In this chapter, we develop an approach to rigorously calculate the induced 

torque of core-shell nanoparticles with anisotropic geometries subjected to an applied 

electric field. The study shows that the shell of a nanoparticle has an important effect on 

the rotational behavior, even when the shell is thin and takes only a small portion of the 

total volume. For lossy dielectrics, we show that the permittivities and conductivities of 

both the shell and core of a particle determine the magnitude and direction of the 

induced torque. The core-shell structure is found to lead to frequency dependent 

behavior that is quite different from that of bare nanoparticles. The study also 

investigates the competition between the rotational alignment due to electric field and 

randomization due to Brownian rotation, which revealed the evolution of the orientation 

distribution function of many Brownian core-shell nanoparticles suspended in a fluid. 
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2.1 TORQUE ON A CORE-SHELL NANOPARTICLE 

 

The fundamental mechanism of nanoparticle rotation can be understood in the 

following. Imagine a dielectric nanoparticle in vacuum. An applied electric field will 

induce electric moments inside the particle. Generally speaking, when the particle has an 

anisotropic geometry, the direction of the total induced moments does not coincide with 

that of the applied field. Thus the moments interact with the field and cause the particle to 

rotate. The torque on the particle, T , can be obtained by considering the virtual rotation 

and the associated free energy change. The expression takes the form of

0 0( )dV dV= × + × ⋅∇∫ ∫T P E r P E  
[75]. Here, P  is dielectric polarization, 0E is the 

applied external field, and r is a position vector. The integration extends over the volume 

of the particle. In an almost uniform applied field, which may be regarded as constant 

over the dimensions of the particle, the second term can be neglected. When a particle is 

inside a dielectric medium, an applied electric field can induce polarization in both the 

particle and the medium. The polarizations interact with each other and change the field 

distribution. An effective dipole method has been developed for a lossless particle under 

a uniform external field [68], which is consistent to the result from the energy variational 

approach [71].  However, the effective dipole method does not apply to the situation 

where two dielectric bodies are very close, which requires the consideration of multi-

poles. To rigorously calculate the torque on a core-shell nanoparticle, we apply the 

Maxwell stress tensor approach. The Maxwell stress tensor, σ , is defined by 

( )20.5mε= −σ EE E I , where E  is the electric field, mε  is the permittivity of the 
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medium, and I is the identity tensor. The torque is obtained by an area integration over a 

closed surface which surrounds the particle, namely [78], 

 ( )
A

dA× ⋅∫T= r σ n  (2.1) 

where r  is a position vector and n  the unit normal vector of the closed surface. 

 

 
                                             (a)                                                  (b) 

Figure 2.1  (a) A confocal core-shell ellipsoid  (b) the rotation of a nanoparticle around its 

local x axis. 

 

Consider a confocal core-shell ellipsoid shown in Figure 2.1(a), which can 

represent a wide range of particle shapes from disks to rods. The principal semi-axes are 

ca , cb , cc  for the core surface and sa , sb , sc  for the outer shell surface. Any confocal 

ellipsoidal surface can be expressed by 2 2 2 2 2 2/( ) /( ) /( ) 1s s sx a u y b u z c u+ + + + + =  

( s s sa b c> > ). This equation, a cubic in u, has three real roots ξ , η , and ζ  that define 

the ellipsoidal coordinates. The coordinate ξ  is normal to the surface, i.e. each ellipsoidal 

surface is defined by a constantξ . Define 2 2 2 2 2 2
c s c s c s ca a b b c cξ ≡ − = − = − . Note that 0ξ =  
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on the outer shell surface. Thus the shell occupies the space of 0cξ ξ− ≤ ≤ . The electric 

field can be solved analytically using Laplace’s equation and ellipsoidal coordinates. 

Consider a uniform applied field 0E  along the x  direction. Theoretical analysis shows 

that the potentials cφ  in the core, sφ  in the shell, and mφ  in the medium can be expressed 

by  

 c cxC xφ = ,  2( )s sx sx
t s

dtC x D x
R a tξ

φ ∞
= +

+∫ , 2( )m mx mx
t s

dtC x D x
R a tξ

φ ∞
= +

+∫  (2.2) 

The subscripts c, s, and m denote physical quantities in the three regions of the core, of 

the shell, and of the medium, respectively. Here 2 2 2( )( )( )t s s sR a t b t c t= + + +  and the 

constants cxC , sxC , sxD , mxC , mxD  are determined by the continuity and boundary 

conditions, i.e. the electric potentials and normal components of the electric 

displacements are continuous at the core-shell interface and shell-medium interface; the 

potential gradient at infinity must be equal to the applied electric field. The continuality 

of the tangential electric field at the interfaces is satisfied automatically due to the form 

of Eq. (2.2). Similarly, we can solve the potential field when the applied field is in the y

or z  direction, and denote the constants with corresponding subscripts. Thus an applied 

field in an arbitrary direction relative to the particle axis can be treated by superposition. 

For an applied uniform field 0E , the electric field on the particle surface (i.e. 0ξ = ) is 

given by 

 0
8 )
3m mV
π

= − + ⋅E E AD n(n D  (2.3) 
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Here, V  is the particle volume (core plus shell), A  is a diagonal matrix in which the 

elements are 2
1 0 t sA dt R a t

∞
= +∫ , 2

2 0 t sA dt R b t
∞

= +∫ , and 2
3 0 t sA dt R c t

∞
= +∫ , and 

[ , , ]mx my mzD D D= T
mD . Note that the electric field inside the core is uniform. A disk or a 

fiber involves a degenerated coordinate system [75]. If s s sa b c= >  (disk), the ellipsoidal 

cubic equation becomes quadratic, 2 2 2 2/( ) /( ) 1s sa u z c uρ + + + = , where 2 2 2x yρ = + . 

This equation has two real roots ξ  and η  that define the degenerated ellipsoidal 

coordinates, which lie in the ranges of 2
scξ ≥ −  and 2 2

s sc aη− ≥ ≥ − . The coordinate ξ  is 

normal to the surface and has 0ξ =  on the outer shell surface. The relation between ρ , 

z  and ξ , η  is given by 2 2 2 2( )( ) /( )s s s sz c c c aξ η= ± + + − ,  

2 2 2 2( )( ) /( )s s s sa a a cρ ξ η= + + − . To calculate the surface integration in Eq. (2.1), we 

need to know the normal vector n  and area dA . Define cosx ρ φ=   and siny ρ φ= , 

where φ  is an angle in x y−  plane. By coordinate transformation we obtain the 

following results, 

 
2 2 2

2 2 2 2 2 2

1 cos , sin ,s s s
s s s

s s s s s s

a a cc c a
a c a c c a
η η ηφ φ

η

⎧ ⎫+ + +⎪ ⎪= ⎨ ⎬− − −− ⎪ ⎪⎩ ⎭

T

n  (2.4) 

 ( )( )
2

2 2 2

1
2

s

s s s

adA d d
a c c

η φ η
η

=
− +

 (2.5) 

In the case of a fiber, s s sa b c> = , the ellipsoidal cubic equation becomes 

2 2 2 2/( ) /( ) 1s sx a u b uρ+ + + = , 2 2 2y zρ = + . This equation has two real roots ξ  and ζ  

that define the degenerated ellipsoidal coordinates, which lie in the ranges of 2
sbξ ≥ −  and 
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2 2
s sb aζ− ≥ ≥ − . The relation between ρ , z  and ξ , ζ  is given by 

2 2 2 2( )( ) /( )s s s sx a a a bξ ζ= ± + + − , 2 2 2 2( )( ) /( )s s s sb b b aρ ξ ζ= + + − .  Define cosy ρ ϕ= , 

sinz ρ ϕ= , where ϕ  is an angle. The normal vector n  and dA  are given by 

 
2 2 2

2 2 2 2 2 2

1 , cos , sins s s
s s s

s s s s s s

a b bb a a
a b b a b a
ζ ζ ζϕ ϕ

ζ

⎧ ⎫+ + +⎪ ⎪= ⎨ ⎬− − −− ⎪ ⎪⎩ ⎭

T

n  (2.6) 

 ( )( )
2

2 2 2

1
2

s

s s s

bdA d d
b a a

ζ ϕ ζ
ζ

=
− +

 (2.7) 

The torque on a core-shell nanoparticle can then be calculated by Eq. (2.1) and Eq. (2.3). 

 

 

2.2 NUMERICAL RESULTS 

 

2.2.1 Torques  on the lossless particles 

 

First look at the rotation of a lossless dielectric nanoparticle about the x-axis when 

an electric field 0E  is applied along the fixed 0z  axis, as shown in Figure 2.1(b). The 

torque calculated from Eq. (2.1) depends on the shape of the particle and the permittivity 

ratios of the core/ medium, /c c mβ ε ε= , and shell/medium /s s mβ ε ε= . Figures 2.2 and 

2.3 show representative results for axially symmetric particles about the z  axis (i.e. 

c ca b= ) at 45θ = D . It can be observed from Eq. (2.1) that the torque is proportional to the 

particle volume V , the square of the applied electric field 2
0E , and the permittivity of the 
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medium. Superposition of 0E  along the local y and z directions shows that the torque 

takes the form of 2
0( ) sin cosmT V E Hε θ θ= , where H  is a shape function. Thus the 

normalized torque 2
0/( )mT E Vε  at 45θ = D  is essentially half of H . The thin shell is given 

by 2/ 0.001c caξ = , or / 1.0005s ca a = . In the case of c sβ β= , i.e. the shell and core have 

the same dielectric property, the particle is essentially a bare particle.  
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Figure 2.2 For a bare particle in a uniform external field, the effective dipole method and 
the Maxwell stress method give the same results. 

 

We have used both the Maxwell stress tensor method and the effective dipole 

method to calculate the torque in such situations. Figure 2.2 shows that the two methods 

give exactly the same results for bare particles. The comparison also serves as 

verification of our algorithm.  



 

25 
 

 

(a) 

 

 

 

(b) 
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         (c) 

Figure 2.3 (a) Normalized torque as a function of the aspect ratio /c cc a  and sβ  for the 
situations of 10cβ =  and 0.1cβ = . The thin shell is given by 2/ 0.001c caξ = , i.e. 

/ 1.0005s ca a = . (b) Dependence of torque on the aspect ratio for selected core and shell 
properties. (c) Dependence of torque on shell property sβ  for a particle with aspect ratio 
of / 0.2c cc a =  at selected core property cβ . 
 
 
 

Figure 2.3 reveals the effect of shell on induced torques. Figure 2.3(a) shows the 

normalized torque as a function of the aspect ratio /c cc a  and sβ  for the situations of 

10cβ =  (the surface extends from upper left to lower right) and 0.1cβ = (the surface 

extends from lower left to upper right). The ~ /c cT c a  curves at selected sβ  (V1, V2, V3, 

V4) and ~ sT β  curves at selected /c cc a  (H1, H2) are shown in Figure 2.3(b) and (c).  

Figure 2.3(a) shows that in all situations the torque is positive for a disk ( / 1c cc a < ) and 

negative for a fiber ( / 1c cc a > ). This feature is consistent with that of a bare particle, 

which suggests that a particle tends to align its longest axis to the direction of the applied 
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field. As observed in Figure 2.3(a) and (b), the magnitude of the torque decreases (for 

disk) or increases (for fiber) with the aspect ratio. This feature is also consistent with that 

of a bare particle. However, the effect of shell on the magnitude of the torque 

demonstrates interesting behavior and strong dependence on the material properties. Our 

computations suggest that when both the permittivities of the core and shell are larger 

than that of the medium ( 1cβ >  and 1sβ > ) , a larger shell permittivity helps to increase 

the torque. In contrast, when both permittivities are smaller than that of the medium 

( 1cβ <  and 1sβ < ), a smaller shell permittivity helps to increase the torque. The curves 

of 10cβ =  (right half, 1sβ > ) and 0.1cβ =  (left half, 1sβ < ) in Figure 2.3(c) clearly 

demonstrate the trend. If the core has larger and the shell has smaller permittivity than 

that of the medium ( 1cβ > , 1sβ < ), or vice versa ( 1cβ < , 1sβ > ), the trend will depend 

on particle geometry. This behavior can be seen in Figure 2.3(a) by comparing the 

torques of disk ( / 1c cc a < ) and fiber ( / 1c cc a > ). Figure 2.3(c) shows an example for a 

disk. The curve of 10cβ =  reaches maximum at a certain sβ  when 1sβ < , suggesting a 

competition of the core and shell contribution to the torque. Note that point A ( 10cβ = , 

10sβ = ) and point B ( 0.1cβ =  , 0.1sβ = ) correspond to bare particles. Take point A and 

the 10cβ =  curve as an example. When the shell permittivity is a little less than that of 

the core, i.e. a point to the left of A, the torque reduces. However, the torque eventually 

increases when the shell permittivity is much smaller, even less than of the medium. 

Analogical behavior exists for point B and the 0.1cβ =  curve. Both curves suggest that 

the shell dominates the torque when its permittivity is much different from that of the 

medium.  
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2.2.2 Torques on the lossy particles 

 

In general, nanoparticles and the surrounding medium are not ideal dielectrics. In 

this case we must take into account the effect of electric conductivity. The response of a 

lossy dielectric to an external field depends on the field frequency. This frequency 

dependence reflects the fact that a material's polarization does not respond 

instantaneously to the applied field. For this reason, the permittivity is often treated as a 

complex function of the frequency. Define complex dielectric properties 

* ( ) /m m miε ω ε σ ω= − , *( ) /s s siε ω ε σ ω= −  and *( ) /c c ciε ω ε σ ω= − , where ω  is the 

frequency of the applied electric field, mσ , sσ , and cσ  are the electric conductivities of 

the medium, shell, and core, respectively. The time-averaged Maxell stress tensor is 

given by 20.25Re{ }(mε= + −* *σ EE E E E I) [78]. While the torque is still calculated by 

Eq. (2.1), the results are more complicated; the frequency-dependent torque now 

combines the relaxation phenomena of the core and shell.  

Normalize the permittivity and conductivity of the core and shell by those of the 

medium. Define /c c mεβ ε ε= , /c c mσβ σ σ=  for the core and /s s mεβ ε ε= , /s s mσβ σ σ=  

for the shell. Equations (2.1) and (2.2) show that the torque becomes frequency-

independent in the special case of c cε σβ β=  and s sε σβ β= . To demonstrate the 

frequency effect, Figure 2.4 shows an example of a core-shell disk with / 0.1c cc a = . The 

thin shell is given by 20.001c caξ = . In Figure 2.4(a) the material parameters are 1.5cεβ = , 

0.8cσβ = , 0.5sεβ = . The frequency is normalized by /m m mω σ ε= . Note that at high 

frequencies the complex permittivity converges to real permittivity. Thus a particle 
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behaves more dielectric at high frequencies. In contrast, conductivity dominates the 

behavior at low frequencies. Figure 2.4(a) clearly demonstrates the trend. The surface is 

almost flat at high frequency, where the shell conductivity has little effect on the torque. 

At high frequency the shell conductivity can significantly affect the torque, even though 

the shell only takes a very small percentage of the total particle volume. Figure 2.4(b) 

shows the results of gold-coated SiO2 and TiO2 nanoparticles suspended in water. In the 

simulation, we took 080mε ε=  and 0.05mσ = S/m for water, 03.8cε ε=  and 1810cσ
−=  

S/m for SiO2, and 06.9sε ε= , 74.3 10sσ = ×  S/m for the gold coating. Here, 

12
0 8.85 10ε −= ×  F/m is the permittivity in vacuum. We took 090cε ε=  and 300cσ =  S/m 

for TiO2. The particles represent two situations where the permittivity and conductivity of 

the core is larger or smaller than that of the medium. Bare particles are considered by 

assigning the core permittivity and conductivity to the shell. In this way the bare particles 

and coated particles have exactly the same volume.  

The torque on a bare SiO2 particle demonstrates frequency dependence. However, 

after the highly insulating SiO2 particle is coated with highly conductive gold, the torque 

becomes almost frequency independent in the shown frequency range. The magnitude of 

the torque is also much larger. The torque is essentially dominated by the shell due to its 

high conductivity. This behavior is reflected even at relative high frequencies. Similar 

effect can also be observed in the case of coated TiO2 particle. 
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(b) 

Figure 2.4 (a) Normalized torque on a lossy dielectric core-shell disk-like ( / 0.1c cc a = ) 
particle as a function of the electric field frequency and shell conductivity. 1.5cεβ = , 

0.8cσβ = , 0.5sεβ = . The thin shell is given by 20.001c caξ = . (b) Torques on gold-coated 
SiO2 and TiO2 nanoparticles suspended in water. In the simulation we took 080mε ε=  
and 0.05mσ = S/m for water, 03.8cε ε=  and 1810cσ

−=  S/m for SiO2, and 06.9sε ε= , 
74.3 10sσ = ×  S/m for the gold coating. Here 12

0 8.85 10ε −= ×  F/m is the permittivity in 
vacuum. We took 090cε ε=  and 300cσ =  S/m for TiO2. 
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Note that the bare TiO2 particle demonstrates a frequency window, where the 

torque becomes negative. In this case the particle will rotate so that its longest axis is 

orthogonal to the applied field direction. At certain frequency the torque becomes zero so 

that a particle will stay at the current orientation. This phenomenon suggests the 

possibility to combine material properties and field frequency to control the torque and 

the rotation of a particle.  Similar phenomenon also occurs in a core-shell particle, as 

shown in Figure 2.4(a). In fact, choosing appropriate coating property offers more 

flexibility to tune the frequency window. 

 

 

 

2.3 ROTATIONAL BEHAVIOR OF BROWNIAN NANOPARTICLES 

 

 

 

Figure 2.5 A schematic diagram for many nanoplates dispersed in a fluid. The particles 
are subjected to a uniform electric field 
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Consider lossless disk or fiber like nanoparticles dispersed in a dielectric fluid, 

shown in Figure 2.5, and subjected to a uniform electric field. The induced torque will 

drive them to rotate. Their rotation will be resisted by the viscosity of the fluid. In 

addition, they undergo incessant collisions with liquid molecules. These collisions cause 

a random torque. Consequently, the total torque acting on a nanoparticle consists of three 

major contributions: ET  due to the electric field, VT  due to the viscosity of the medium, 

and BT  due to the rotational Brownian motion. The torque ET  is given by Eq. (2.1). 

Superposition of 0E  along the local y and z directions show that the torque takes the 

form of  

 2
0( ) ( , ) sin cosE m E s c xV E Hε β β θ θ=T e  (2.8) 

where ( , )E s cH β β is a shape function and xe  is a unit vector along the local x axis (Figure 

2.1). The torque due to viscous resistance, VT  can be expressed by [81], 

 V V xV Hη= − ΩT e  (2.9) 

Here ( ) ( )2 2 2 2
2 32 /V s s s sH b c b A c A= − + + is another shape function relevant to viscous 

resistance, η  the viscosity of the fluid, Ω  the angular velocity, 2 202 ( )
s s s

s t

a b c dtA
t b R

∞
=

+∫ , 

and 3 202 ( )
s s s

s t

a b c dtA
t c R

∞
=

+∫ . The time scale of Brownian motion is much shorter 

comparing to the time characterizing the motion of nanoparticles driven by external fields. 

Thus we can analyze the motion by a stochastic approach. Using an Orientation 

Distribution Function (ODF), Ψ , which represents the probability of the particle being 
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found in a specific orientation, we can express the torque due to the Brownian motion 

[82], 

 (ln )
B Bk T ∂ Ψ
= − ×

∂
T u

u
 (2.10) 

where Bk is Boltzmann’s constant, T the absolute temperature of the fluid, and u  the unit 

orientational vector of the particle (a unit vector along the local z axis in Figure 2.1(b)). 

The moment of inertia can be negligible since the small particle size leads to small 

Reynolds number. The angular velocity can be obtained from the balance of moment, 

0E V B+ + =T T T , which gives  

 ln( )sin 2 xC Dθ ∂ Ψ
= − ×

∂
Ω e u

u
 (2.11) 

Here we have ( ) ( )2
0 / 2m E VC H E Hε η=  and ( ) ( )/B VD k T V Hη= . Now consider the 

rotation of many particles and the corresponding evolution of ODF. The orientation 

distribution function has to satisfy the equation of continuity[83],  

 ( ) 0
t

∂Ψ ∂
+ ⋅ × Ψ =

∂ ∂
Ω u

u
 (2.12) 

Equations (2.11) and (2.12) lead to 

 
2

2( sin 2 ) 0C D
t

θ
θ θ

∂Ψ ∂ ∂ Ψ
+ Ψ − =

∂ ∂ ∂
 (2.13) 

We solve Eq. (2.13) by the Fourier spectral method. Denote the Fourier transform of 

( , )tθΨ  by ˆ ( , )k tΨ , where k  is the coordinate in reciprocal space. Taking the Fourier 

transform on both sides of Eq. (2.13), we obtain  

 { } 2
ˆ ˆ ˆ ˆ( 2) ( 2) ( )

2
kC k k Dk k

t
∂Ψ

= Ψ + −Ψ − − Ψ
∂

 (2.14) 
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(a) 

 

 

 

(b) 

Figure 2.6 The evolution of orientation distribution function of disk-like particles (a) 

/ 5.5D C =   (b) / 0.39D C =  
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Figure 2.6 shows the evolution of ODF for disks with / 0.1s sc a = . Two competing 

effects, the alignment due to the applied electric field and randomization due to the 

rotational Brownian motion, determine the time evolution of Ψ . The system eventually 

reaches an equilibrium Ψ  distribution. Define normalized time by *t t C= . In terms of 

the normalized time *t , Equation (2.14) becomes a partial differential equation that 

depends on the ratio of /D C . A lager ratio means stronger diffusional effect versus 

alignment. Figure 2.6(a) shows the result for / 5.5D C = . Initially many particles are 

oriented close to θ =90o. Due to the relative weak electric torque, Ψ  spreads and 

distributes more uniformly on θ  over the time. In Figure 2.6(b), we increase the electric 

field strength so that / 0.39D C = . In this case the stronger electric torque drives more 

particles to orient close to θ =90o. Note that Ψ  almost stops evolution after a certain time, 

which means that an equilibrium state has been reached. Rotational Brownian motion 

makes it impossible to align all the particles in the same direction. 

Figure 2.7 shows evolution of ODF for fibers with / 10s sc a = . In this case C  is 

negative and / 0.45D C = − .  Initially most fibers are distributed close to θ =90o. Over 

time more fibers orient to follow the applied field (i.e. θ =0o or θ =180o). Both Figure 2.6 

and Figure 2.7 demonstrate the dynamic rotation of many particles to orient their longest 

axis close to the applied field direction. 
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Figure 2.7 The evolution of orientation distribution function of fiber particles, 

/ 0.45D C = − . Here, the negative sign indicates the fiber particles. 

 

 

2.3 NANOPARTICLE ROTATION CONCLUSIONS 

 

Nanoparticles are often coated to prevent agglomeration or to achieve functional 

properties such as increased fatigue strength. This thesis studies the rotational behavior of 

core-shell nanoparticles suspended in a fluid and under an applied electric field. We 

calculated the electric field-induced torque rigorously by a Maxwell stress tensor method. 

The study showed that the shell of a nanoparticle has an important effect, even when the 

shell is thin and takes only a small portion of the total volume. For instance, a thin layer 

coating of highly conductive materials can dramatically change the induced torque on a 

nanoparticle. In this case the shell can shield the core and thus its property dominates the 

magnitude of the torque. For lossy dielectrics, the core-shell structure demonstrated 
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frequency dependent behavior. The preferential orientation of a particle can be changed 

at a frequency window. This window is important since appropriate design of frequency 

and material parameters may control a particle to orient in any directions. 

To describe the dynamic rotation and distribution of many particles, we 

considered torques induced by the electric field, the viscosity of the fluid, and the 

rotational Brownian motion. A partial deferential equation was obtained to describe the 

time evolution of ODF. The equation was solved in Fourier space. The simulations 

suggest that two competing effects, the alignment due to the applied electric field and 

randomization due to the rotational Brownian motion, determine the evolution of ODF. A 

strong electric field leads to more preferred orientations for both disk and fiber like 

particles. The particle orientation distributes more randomly when the applied field is 

weak. 
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CHAPTER 3  

 

SELF-ASSEMBLY OF BINARY NANOPARTICLES IN AN ELECTRIC FIELD 

 

Self-assembly of nanoparticles into superlattice structures is a promising approach 

to construct functional materials or novel devices [32-34]. Among a variety of driving 

forces for self-assembly, electrostatic interaction plays an important role due to its long-

range nature and simplicity of control [39]. Electric field can cause organized 

nanostructures in an electroreological (ER) fluid which is composed of nanoparticles 

dispersed in a nonconducting liquid. The monodispersed spherical particles tend to line 

up and form a chain parallel to the applied field [42]. Such a behavior can be attributed to 

the electric polarization interaction, a pair-wised dipolar interaction, between particles. 

The potential energy of the system depends on the orientation of the superlattice with 

respect to the applied field, the arrangement of the particles, and the distance between the 

particles. Tao et al. [84] 
 
suggested that under a strong field the ground state of the 

superlattice has a body-centered-tetragonal (BCT) structure, which has been observed in 

simulations [85]
 
and experiments [86]. The phase diagram for dipolar hard spheres 
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obtained from Monte Carlo simulations shows the possibility of multiple phases 

including fluidic, face-centered-cubic, hexagonal-close-packed, and BCT phases [87].  

The superlattice structures of binary nanoparticles can lead to a wide class of 

nanocomposite materials with properties not attainable by a single particle component. 

The behavior of binary nanoparticles in an electric field is still not well understood. The 

goal of this paper is to elucidate how parameters such as relative permittivity, volume 

fraction and particle size can be utilized to tune the superlattice structures.  

 

 

3.1 MODELS 

 

3.1.1 Brownian dynamics 

 

 

Figure 3.1 A schematic diagram of binary nanoparticles under an electric field. Initially, 
the particles are in random distribution. 
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For nanocrystals suspended in a solvent shown in Figrue 3.1, diffusive motions 

are typically observed in quiescent state. To model nanoparticle interactions in that state, 

the Brownian dynamics method [88] is used without explicitly considering the solvent 

particles. The solvent influences the behavior of the nanoparticles through random 

collisions and through imposing a frictional drag force on the motion of the nanoparticles. 

The trajectories of the nanoparticles are governed by the Langevin equation, 

( ) ( )D R E
i i i i im t t= + +r F F F�� . Here im  and ir  denote the mass and position of particle i . The 

inertia term can be neglected for nanoparticles due to the small size and corresponding 

low Reynolds numbers. The force iF , which acts on the particle, includes drag force, 

random force, and electrostatic force expressed by superscript D, R, and E, respectively. 

Stoke’s law gives ( ) 3 ( )D
i i it d tπη= −F V , where η  is the viscosity of the medium, id  is the 

diameter, and ( )i tV  is the velocity of particle i . The random force  ( )R
i tF  has a Gaussian 

distribution and obeys the fluctuation dissipation theorem[88], yielding 

( ) ( ) 6 ( )R R
i j i Bt t d k T t tπη δ′ ′⋅ = −F F , where t  and t′  are time, Bk  is Boltzmann’s constant, 

and T  is the temperature. The dipolar interaction energy between two dipoles, i  at ir  and 

j  at jr , is given by 

 
3

( ) [ 3( )( )] /(4 )ij ij i j i j m i jU πε= ⋅ − ⋅ ⋅ −r p p n p n p r r  (3.1) 

where 3( / 2)i i m idπ ε α=p E  is the induced dipole in particle i  under an applied electric 

field E . Here, ( ) /( 2 )i i m i mα ε ε ε ε= − +  while iε  and mε  represent the dielectric 

permittivity of particle i  and the medium, and n  is a unit vector in the direction of i j−r r . 

The dipoles in the nanoparticles near the electrodes redistribute the charge configuration 
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in the electrode, as a result, they disturb the uniform electric field. To consider this effect, 

we employed the image-method. The image charges are placed systematically so that the 

isopotential condition on the electrodes can be satisfied. A dipole pi  in the particle at 

position ( , , )i i i ix y z=r  produces an finite number of image-dipoles at positions 

( , , )i i ix y z−  and ( , , 2 )i i ix y kL z± , where 1, 2,k = ± ± … is a non-zero integer. The induced 

images also interact with the dipole itself and other dipoles in-between the electrodes. We 

shall assume the particles and the electrodes are “hard”, so a short-range repulsive force 

is introduced between a particle and an electrode as well as between two particles. In 

order to reduce computational cost, a combination of Verlet list and cell lists method[89], 

with a cut-off length, is adopted. In the simulations, the periodic boundary conditions are 

used in x, y directions. The simulations are performed on the dimensionless parameter. 

We use a subscript ‘1’ to denote a reference particle, where its diameter 1d  defines the 

length scale. The competition between electrostatic force and the drag force defines a 

time scale, ( )2
1 1/( )m Eτ η ε α= . Here, 1Eα  can be treated as an effective electric field. 

The electrostatic force versus the random force defines a dimensionless number, 

4
1 /m Bd E k Tα εΛ = , which determines the behaviors of the nanoparticles. A larger 

electric field or particle diameter reduces the relative contribution from Brownian motion. 

However, Brownian motion can shake the nanoparticles to avoid trapping them into a 

local minimum. Nevertheless, a system may lose its order when Λ is too small due to the 

random movement of the particle, so an appropriate Λ  could be helpful to form a more 

ordered structure.  
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3.1.2 Interactions 

 

Next, let us define the permittivity ratios of the particles ‘1’ and ‘2’ to that of the 

medium by 1 1 / mβ ε ε=  and 2 2 / mβ ε ε= . Equation (3.1) suggests that the direction of an 

induced dipole is aligned with the applied field ( 1 1β > ) or opposite to the applied field 

( 1 1β < ). Also, the interactive energy between two dipoles is proportional to 

2
1 2 (1 3cos )p p θ− , where θ  is the angle between the unit vector in the direction of two 

dipoles and the applied field. For a monodispersed system, the energy will always be 

minimized when the two particles line up along the direction of the electric field so that 

0θ =  or θ π= , no matter whether they are more polarizable than the medium or not. As 

a result, the nanoparticles form chains spanning the electrodes. For a binary nanoparticle 

system, however, the chain formation is strongly dependent on the ability of polarization 

of the nanoparticles compared with that of the surrounding medium, which can be 

summarized into two cases: 1) Both of the particles are more polarizable ( 1 2, 1β β > ) or 

less polarizable ( 1 2, 1β β < ) than the medium; 2) One particle is more polarizable than the 

medium ( 1 1β > ) while the other is less polarizable ( 2 1β < ) 

In the first case, the interactive energy is minimized when two particles line up 

along the electric field, which is similar to the case of the monodispersed system. As a 

result, the nanoparticles tend to form a chain along the direction of the field. Eventually, 

the chain can span the electrodes if there are enough particles. In this way, multiple 

chains form simultaneously. Consider two chains, each of them is composed of two 

particles. There are just two possible arrangements; either each chain is composed of 
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same particle, or both of the chains are composed of two different particles. Comparing 

the system energy from Eq. (3.1) can verify that the formation of pure chains, each of 

them is composed of single kind of particles, is energetically favorable. When two chains 

are close, the interaction depends on their relative position; it could be attractive or 

repulsive. From Eq. (3.1), the interaction is attractive when 54.7θ < D  or 125.3θ > D , and 

repulsive when 54.7 125.3θ< <D D . Thus, this attraction may drive chains to assemble into 

columns. Furthermore, as Halsey suggested, thermal fluctuations may lead to the 

coarsening process via a long-range, power-law interaction between chains spanning the 

electrodes. 

In the second case, however, the opposite direction of the polarization leads to an 

interactive energy scales as 2
1 2 (1 3cos )p p θ− − . Thus the energy is lower when 90θ = D ; 

Two particles would prefer to be in a plane perpendicular to the applied field and attract 

each other. As a result, chains of alternating particles of both kinds are formed, oriented 

across the field. For the interactions between the same nanoparticles, the situations are 

the same as the case of pure single nanoparticle, so chains are formed along the applied 

field direction. 
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3.2 SIMULATION RESULTS 

 

3.2.1 Lossless nanoparticles 

 

Representative results are shown in Figure 3.2, which shows three-dimensional 

views (left column) and top views (right column) of the structures. The systems were 

allowed to evolve for a long time until no significant changes in the potential energy 

could be observed. The two kinds of particles are denoted by red (subscript 1) and blue 

(subscript 2) colors. They have the same diameter and are both more polarizable than the 

medium with 1 50β =  and 2 5β =  (Figure 3.2(a), (b)). The spacing between the electrodes 

is 114L d=  and the box size is 1 1 127 27 14d d d× × . The system has 2000N =  particles 

(Figure 3.2(a)) and 6000N =  particles (Figure 3.2(b)). Thus the volume fractions of the 

particles are 10.3% and 30.8%, respectively. Under these situations, the particles 

assemble into isolated columns with a core-shell configuration. The core is composed of 

the more polarizable red particles, while the shell is composed of the blue ones. From an 

energetic point of view, the attraction between two red particle chains is stronger than the 

interaction between a red particle chain and a blue particle chain. As a result, the red 

chains aggregate to form columns. The blue chains tend to get close to the red columns as 

much as possible, leading to the formation of shells. It is important to note that this self-

organized functionally gradient structure offers a gradual transition of the permittivity 

from the core to that of the medium. This approach could be potentially very useful to 

construct functional gradient nanocomposites using a bottom up methodology. Figure 
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3.2(b) shows the results for the higher volume fraction of particles. The system evolves 

into a continuous structure with isolated holes in between. The blue particles enclose the 

red particles, and form the peripheral regions around the holes. We have observed from 

the simulation that the particle columns demonstrate local BCTs and sheet-like structures 

which were already observed from experiments[90]. Figure 3.1(c) demonstrates the case, 

where the red particle is more polarizable than the medium while the blue particle is less 

polarizable. The parameters are the same as those in Figure 3.2(a) except for 1 2.8β =  and 

2 0.28β = . The particles also form pure chains along the field direction with each chain 

composed of single kind of particles. A distinct feature in Figure 3.2(c) is that the red and 

blue chains are highly dispersed and form an alternating network. This morphology is in 

contrast to that in Figure 3.2(a), where the same color chains aggregate.  
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(a) 

 

 
(b) 

 

 
(c) 

 

Figure 3.2 Fig. 1 The 3D views (left column) and top views (right column) of structures 
by red (subscript 1) and blue (subscript 2) particles. (a) 1 50β = , 2 5β = , 175Λ = , 

2000N =  (b) 1 50β = , 2 5β = , 2 5β = , 175Λ = , 6000N =  (c) 1 2.8β = , 2 0.28β = , 
175Λ = , 2000N =  
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As mentioned before, the opposite dipole directions cause the red and blue 

particles to stay in a plane perpendicular to the field direction, which minimizes the 

interactive energy with 0θ = . In the plane the same kind of particles repel each other 

while different kind particles attract each other. As a result, particles appear more 

dispersed.  

 

 

3.2.2 Annealing process 

 

One obstacle in generating a well-organized superlattice, composed of binary 

particles, is that two particles interact with each other simultaneously. We have found 

that an annealing process can promote the structure order. Figure 3.3(a) shows the mean 

square displacement of the binary system. The average square displacement of the 

nanoparticles is proportional to the translational diffusion coefficient, tD , and time. At a 

specific value of Λ , the ‘A’ particles which have larger permittivity become solidified 

and well-ordered,  and the ‘B’ particles, which have less permittivity, remain in a liquid 

state because the interaction between ‘B’ particles is weak. As a result, the ‘A’ particles 

form crystal structures first. Then, through the quenching of the system, ‘B’ particles also 

form similarly well-organized superlattices. Quenching the system can be accomplished 

by decreasing the temperature or by increasing the electric field. Figure 3.3(b) shows the 

structure formed by an annealing process. As can be seen in the figures, the structures in 

Figure 3.3(b) are more isolated than those in Figure 3.2(a), and the red particles occupy 

the center of each isolated structure more than in the case of Figure 3.2(a). 



 

48 
 

 

 
                                              (a)                                                            (b) 

Figure 3.3 An annealing process (a) The mean square displacement of each particle (A, B) 
and total particles (A&B), 1 50β = , 2 5β = , 100Λ = , 2000N = ,  (b) Top view of the 
final structure after quenching ( 500Λ = ), 1 50β = , 2 5β = , 2000N =  

 

 

3.2.3 Single layer 

 

Assembling a single layer of nanoparticles on a substrate has many potential 

applications. Relevant simulations are shown in Figure 3.4(a) and (b) for a layer of two 

kinds of particles. The parameters are the same as those in Figure 3.2(a) except that the 

diameter of the red particle becomes three times as large, and the system is much more 

dilute with 16 red particles among 200. Equation (3.1) suggests that the interaction 

increases quickly as the particle diameter also increases. Thus stronger interactions 

between red particles are expected. Initially, we put the red and blue particles randomly 

between the electrodes which are located vertically (Figure 3.4(a)) and horizontally 
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(Figure 3.4(b)). When the electrodes are located vertically, as time goes on, the repulsion 

between the red particles leads them to form a nicely ordered triangular lattice. The 

attraction between the blue and red particles causes the formation of blue rings 

surrounding the red cores. When the electrodes are located horizontally (Figure 3.4(b)), 

the red particles connect vertically first, then blue particles form chains and attach to the 

red particle chains. 

 

 

 
                                            (a)                                                   (b) 

Figure 3.4 Top view of structures in a single layer 1 50β = , 2 5β = , 50Λ = , 200N =  (a) 
The electrodes are in vertical direction (b) The electrodes are in horizontal direction 
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3.2.4 Frequency effects 

 

In general, nanoparticles and the surrounding medium are not ideal dielectrics. In 

this case, we must take into account the electric conductivity. The response of a lossy 

dielectric to an external field depends on the frequency since the material’s polarization 

does not respond instantaneously to the applied field. This property provides one with 

more powerful tools to control the morphologies of the nanostructures. Although the 

system is intrinsically dissipative, there is an effective potential energy for the particle 

interaction. The complex effective dipole moment can be expressed as 

3( / 2) Re[ ]i i m idπ ε α=p E� � , where ( ) /( 2 )i i m i mα ε ε ε ε= − +� � � � � , /i i i jε ε σ ω= +� , 

/m m m jε ε σ ω= +� , ω  is the frequency of the field, 1j = − , and iσ  and mσ  are the 

conductivity of particle i  and the medium. The time average of the energy can be 

evaluated as 1/ 2 Re[ ]ij i jU ∗= − ⋅p E . Here i
∗p  denotes complex conjugate of ip . The 

induced field, jE , due to the dipole jp  is ( ) ( )3( ) 3 ( ) / 4 Re[ ]j j j mπ ε= ⋅ −E r n p n p r [91]. 

Consequently, we have a similar expression as the Eq. (3.1) for the effective dipolar 

interaction between lossy particles, 

 ( ) 3* 2 2( ) Re[ ] 1 3cos /(4 Re[ ] )ij ij i j m i j rmsU Eα α θ π ε= − −r r r� �  (3.2) 

where rmsE  indicates the root mean square of E . Here, one important feature to note is 

that the factor, *Re[ ]i jα α� � , can be positive, negative, or zero depending on the frequency. 

In Figure 3.5(a), *Re[ ]i jα α� �  is plotted for a strontinum-titanate nanoparticle (‘A’) and a 

zeolite nanoparticle (‘B’).  A negative value of *Re[ ]i jα α� �  means that the energy is lower 



 

51 
 

when 90θ = D , which is similar to the case of Figure 3.2(c). Two different particles would 

prefer to be in a plane perpendicular to the applied field and attract each other. In a 

specific frequency range, which is shown in Figure 3.5(a) with a shaded box area in the 

region II, the interaction between two different particles is very weak. At those 

frequencies, the two different nanoparticles form chains independently. The structures in 

Figure 3.5(b) are the result of shifting the frequency from range II to range III. Initially 

they grow and form columns independently, then, those different kinds of columns attract 

each other after shifting the frequency. These structures are different from those of Figure 

3.2(c). The thick columns are alternating in Figure 3.5(b), while single chains are 

alternating in Figure 3.2(c).  

 

 

 
                                                   (a)                                                       (b) 

Figure 3.5 The frequency effect (a) *Re[ ]i jα α� �  for strontinum-titanate nanoparticle (‘A’) 
and zeolite nanoparticle (‘B’) (b) Top view of the final structure after shifting the 
frequency from region II to region III , 1 294β = , 5

1 / 2 10mσ σ = × , 2 23.7β = , 
8

1 / 1.5 10mσ σ = × , 50Λ = , 2000N =     
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3.3 SELF-ASSEMBLY OF NANOPARTICLES CONCLUSIONS 

 

In summary, our model shows several essential features of the structures formed 

by binary nanoparticle system under an electric field. Those structures may have different 

physical properties, for instance, electric conductivities and optical properties. 

Consequently, organizing different nanoparticles systematically into ordered binary 

superlattices can lead to functional materials. The predicted structures may provide some 

critical insight into designing materials indispensible for making such engineered 

structures feasible. 
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CHAPTER 4  

 

 

INTERACTION OF POLY (AMIDOAMINE) DENDRIMERS WITH LIPID BILAYERS 

 

 

Poly (amidoamine) dendrimer nanoparticles are used extensively in diverse areas 

of biology and medicine such as gene and drug delivery to disrupt cell membranes and 

allow the transport of material into cells. The size and surface chemistry of the 

nanoparticle have a strong influence on the interaction between a dendrimer and a 

membrane. Theoretical models and computer simulations have provided useful tools to 

elucidate these interactions between dendrimers and membranes. Atomistic molecular 
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dynamics [92, 93] have revealed maximum details but are restricted to small length and 

time scale. To overcome those limitations, Lee et al. [94] employed a coarse-grained (CG) 

model for the interactions between G3 and G5 PAMAM dendrimers and lipid bilayers. 

However, the simulation time is only 0.5 μs, which is still not enough to cover the 

experimental observation time ranges of a few minutes. Furthermore, the calculation for a 

larger system including G7 dendrimer and explicit water solvation is currently too 

computationally demanding. Our objective in the present work is to elucidate the 

interactions between dendrimers and a membrane with less of a limitation on the length 

and time scale. We also seek a way to provide the physical understanding for the 

mechanism from the fundamental principles of thermodynamics. For this purpose, we 

adopt the phase-field approach, which has recently emerged as a powerful computational 

approach to modeling and predicting nanoscale morphological and microstructure 

evolution in materials [95, 96] and biology [97]. The system evolution takes place to 

reduce the total free energy that may include the chemical bulk energy, interfacial energy, 

and elastic strain energy. The dendrimer nanoparticles presented in this research include 

the G7-dendrimer and G5-dendrimer, which have two types of end-groups: one is an 

amine-terminated (R-NH2) dendrimer which has positive charges at the surface, and 

another is an acetamide-terminated (R-NHC(O)CH3) dendrimer which has a neutral 

surface.  
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4.1  MODELING 

 

In this section we propose a three-dimensional phase field model for the 

interaction between a dendrimer and a membrane. This interaction can be ascribed to 

minimizing the free energy in the system. The total free energy of the system depends on 

the phase configurations. Here, we incorporated the energy of phase separation, 

interfacial energy, and elastic energy such as bending energy and stretching energy. We 

denote the volume fraction of dendrimer and membrane in the water by 1c  and 2c  

respectively. Consequently, the water site is 1 21 c c− − . Here, 1c  and 2c  are spatially 

continuous and time dependent functions, namely, 1 1( , )c c t= x  and 2 2 ( , )c c t= x , where x  

is a position vector. Note that 1 ( , ) 1c t =x  and 2 ( , ) 0c t =x  for the dendrimer, 1 ( , ) 0c t =x  

and 2 ( , ) 1c t =x  for the membrane. The total free energy of the system is the sum of the 

four types of energy which comprise the system, 

 che gra bd stG G G G G= + + +  (4.1) 

where cheG  is the chemical bulk energy, graG is the phase interfacial (gradient) energy, 

bdG is the elastic bending energy, and stG is the elastic stretching energy. The chemical 

bulk energy, cheG , is given by 

 1 2( , )cheG f c c d
Ω

= Ω∫  (4.2) 

where Ω  represents the whole domain of the system. This energy drives the separation of 

each phase. For the ternary material system, we adopt Muggianu’s equation[98] given by, 

 1 2 1 2(1 )d m wf c f c f c c f f= + + − − +  (4.3) 
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where  { 0 1
0 1 1 2 2 1 2 1 2 1 2 12 12 1 2ln ln (1 ) ln(1 ) ( )f f c c c c c c c c c c c c⎡ ⎤= + + − − − − + Ω +Ω −⎣ ⎦  

                 }0 1 0 1
2 1 2 23 23 1 2 1 1 2 13 13 1 2(1 ) ( 2 1) (1 ) (2 1)c c c c c c c c c c⎡ ⎤ ⎡ ⎤+ − − Ω +Ω + − + − − Ω +Ω + −⎣ ⎦ ⎣ ⎦   

Here, df , mf , and wf  represent the excess energy when the system is composed of only 

the dendrimer, the membrane, or the medium. The average concentration is constant due 

to the mass conservation; hence the linear term of excess energy does not affect diffusion 

and can be neglected. In the equation, Bk  is Boltzmann’s constant and T is the absolute 

temperature. The interface energy, graG , among the dendrimer, the membrane, and the 

medium can be established through gradient terms of 1c  and 2c . 

 ( )2 2
int 11 1 12 1 2 22 2( ) ( )G h c h c c h c d

Ω
= ∇ + ∇ ⋅∇ + ∇ Ω∫  (4.4) 

where 11h , 12h , and 22h  are the material constant. The elastic bending energy is given by 

Helfrich [99], 20.5 (2 )bd BS
G K H dA= ∫ , where S  represents the surface of each phase and 

BK  are elastic constant for bending, and H is the mean curvature. The elastic stretching 

energy is given by Helfirich [99], ( )2
00.5 /st SS

G K S S dA= Δ∫ , where SK  is stretching 

elasticity modulus and 0/S SΔ  represents the excess area.  

The phase field variable ( , )c tx  can be expressed as a functional of a signed-

distance function, ( )di x , satisfying ( ) 0di =x  for ∈Γx , and ( )di x  is negative distance 

for inside domain and is positive distance for outside domain. Here Γ  represents the 

surface of the domain. Also, when the interfacial thickness is very small, the functional is 

approaching to a ‘tanh’ function form[97],  
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 1 ( ) ( )( ) tanh 1
2 2 2

di dic g
τ τ

⎛ ⎞⎡ ⎤ ⎛ ⎞= + =⎜ ⎟ ⎜ ⎟⎢ ⎥⎣ ⎦ ⎝ ⎠⎝ ⎠

x xx  (4.5) 

where τ denotes the thickness of an interface. From the relationship
2tanh ( ) 1 tanh ( )x x′ = − , ( )2tanh ( ) 2 tanh( ) 1 tanh ( )x x x′′ = − × − ,  

 
21 1( ) 1 4 ( )

2 2
g x g x

⎡ ⎤⎛ ⎞′ = − −⎢ ⎥⎜ ⎟
⎝ ⎠⎢ ⎥⎣ ⎦

, 
21 1( ) 2 ( ) 1 4 ( )

2 2
g x g x g x

⎡ ⎤⎛ ⎞ ⎛ ⎞′′ = − − − −⎢ ⎥⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦

 (A.6) 

 Also, from Eq. (4.5) 

 ( )2 2
2

2

( )( ) ( )( ) , ( )
22 2
didi dic g c g g
ττ τ

∇∇ ∇′ ′′ ′∇ = ∇ = +
xx xx x  (4.7) 

The normal vector n  is express as ( )di= ∇n x , which yields 2( ( )) 1di∇ = ⋅ =x n n . From 

Eq. (4.7), 

 2 2
2

2( ) ( )
2
gdi c

g
τ

τ
′′⎛ ⎞∇ = ∇ −⎜ ⎟′ ⎝ ⎠

x x  (4.8) 

The mean curvature H  can be written in terms of the phase field variable ( )c x  as 

2 2 2 2
2 2

2

1( )1 2 2 12( ) ( ) 1 4( )12 2 2 21 4( )
2

cgH di c c c
g c

τ τ
τ τ

⎡ ⎤−⎢ ⎥′′⎡ ⎤ ⎛ ⎞= ∇ = ∇ − = ∇ + − −⎢ ⎥⎜ ⎟⎢ ⎥′ ⎣ ⎦ ⎝ ⎠⎢ ⎥− −
⎣ ⎦

x x  (4.9) 

The bending energy is 

 2(2 )
2

B
bd

KG H dA
Γ

= ∫  (4.10) 

Using the relationship 
2

2 4 21 tanh
32

x dx τ
τ

+∞

−∞

⎡ ⎤⎛ ⎞− =⎢ ⎥⎜ ⎟
⎝ ⎠⎣ ⎦

∫ , 

 
2

2 23 1 tanh (2 )
24 2 2

B
bd

KxG dx H dA
τ τ

+∞

−∞ Γ

⎡ ⎤⎛ ⎞= −⎢ ⎥⎜ ⎟
⎝ ⎠⎣ ⎦

∫ ∫  (4.11) 
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From the lemma [100], 

 ( )
2

2 2
2

3 ( 1/ 2) 1 4( 1/ 2)
2bd B

cG K c c dτ
τΩ

−⎡ ⎤= ∇ + − − Ω⎢ ⎥⎣ ⎦∫  (4.12) 

Similarly, the stretching energy can be obtained with the following steps. From Eq. (4.7), 

 
( )2

2 2( )
1 4 1/ 2

di c
c

τ
∇ = ∇

⎡ ⎤− −⎣ ⎦
x  (4.13) 

The excess area, 0/S SΔ , can be written as 

 ( )
( )

( )
2

2 2
22

0

1 4( )
2 1 4 1/ 2

S di c
S c

τΔ
= ∇ = ∇

⎡ ⎤− −⎣ ⎦

x  (4.14) 

The stretching energy is 

 
2

0

1
2st s

SG K dA
SΓ

⎛ ⎞Δ
= ⎜ ⎟

⎝ ⎠
∫  (4.15) 

 
( )( ) ( )

2
2

2

2

3 4
8 2 1 4 1/ 2

bd sG K c d
c
τ

τ Ω

⎡ ⎤
⎢ ⎥= ∇ Ω
⎢ ⎥− −⎢ ⎥⎣ ⎦

∫  (4.16) 

Again, from the relations di= ∇n  and 1⋅ =n n , 

 ( ) ( )
22 221 4 1/ 2 8c cτ⎡ ⎤− − = ∇⎣ ⎦  (4.17) 

From Eq. (4.16) we can rewrite the stretching energy,  

 ( )23
4 2st sG K c dτ

Ω
= ∇ Ω∫  (4.18) 

Consequently, 

 ( )
2

2 2
, , 2

( 1/ 2)3 1 4( 1/ 2)
2

i
bd i B i i i

cG K c c dτ
τΩ

−⎡ ⎤= ∇ + − − Ω⎢ ⎥⎣ ⎦∫  (4.19) 
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 ( )2
, ,

3
4 2st i s i iG K c dτ

Ω
= ∇ Ω∫  (4.20) 

where the subscript i  indicates the phase  i (1 or 2). Here ,1BK  and ,2BK  are bending 

modulus, and ,1SK  and ,2SK  are stretching modulus for the dendrimer and the membrane, 

respectively. The phase field model constitutes sets of kinematics and kinetics. The mass 

conservation requires that the time rate of the concentration ic  compensates the 

divergence of the flux vector, ( , )i tJ x , namely,   

 ( , ) ( , )i
i

c t t
t

∂
= −∇ ⋅

∂
x J x  (4.21) 

Following Cahn and Hilliard [101], we assume that the atomic flux is linearly 

proportional to the driving force, iF . The corresponding driving force is i iμ= −∇F , 

where iμ  is the chemical potential for each phase. Diffusion flux from the mass transport 

is given by i i iM=J F  where iM  is the mobility of species i . This relationship combined 

with the mass conservation yields the diffusion equations, 

 ( )1
1 1

c M
t

μ∂
= ∇ ∇

∂
 (4.22) 

 ( )2
2 2

c M
t

μ∂
= ∇ ∇

∂
 (4.23) 

Here, the chemical potential for each phase can be calculated from the definition, 

1 1/G cμ δ δ=  and 2 2/G cμ δ δ= , 

 2 2 2 2
1 1 11 1 12 2 ,1 1,1 ,1 1,2 ,1 1

32
2 2B B Sf h c h c K g K g K cμ τ= − ∇ − ∇ + + ∇ − ∇  (4.24) 

 2 2 2 2
2 2 22 2 12 1 ,2 2,1 ,2 2,2 ,2 2

32
2 2B B Sf h c h c K g K g K cμ τ= − ∇ − ∇ + + ∇ − ∇  (4.25) 
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)0 1 2 0 1 2 0
1 0 1 1 2 12 2 12 1 2 2 23 2 23 1 2 2 2 13 1 2ln( /(1 )) (2 ) ( 2 3 2 ) (1 2 )f f c c c c c c c c c c c c c c⎡= − − +Ω +Ω − −Ω +Ω − − + +Ω − −⎣

        1 2 2
13 1 1 2 1 2 2(1 6 6 2 6 )c c c c c c ⎤+Ω − + − + + ⎦  

0 1 2 0
2 0 2 1 2 12 1 12 1 1 2 23 1 2ln( /(1 )) ( 2 ) (1 2 )f f c c c c c c c c c⎡= − − +Ω +Ω − +Ω − −⎣  

        1 2 2 0 1 2
23 1 1 2 1 2 2 13 1 13 1 1 2 1( 1 2 6 6 6 ) (3 2 2 )c c c c c c c c c c c ⎤+Ω − + − + − − −Ω +Ω + − ⎦  

( )( )2 2 3 2 2 3
1,1 1 1 1 1 1 16 2 1 6 6 2 6 4 /g c c c c c cτ τ= − + − + − ∇  

( )( )2 2 3 2 2 3
2,1 2 2 2 2 2 26 2 1 6 6 2 6 4 /g c c c c c cτ τ= − + − + − ∇  

( )2 3 2 2
1,2 1 1 1 13 2 2 6 4 /g c c c cτ τ= − + − + ∇ , ( )2 3 2 2

2,2 2 2 2 23 2 2 6 4 /g c c c cτ τ= − + − + ∇  

 

 

4.2 NUMERICAL PROCEDURES 

 

We normalize the Eq. (4.22), (4.23), (4.24) and (4.25) with a characteristic length 

cL  and time ct . We select the characteristic length as the interface thickness, τ , in Eq. 

(4.5). A time scale is defined by 2
1 0/( )c ct L M f= , where 1M  is the mobility of the 

dendrimer. The mobility of the dendrimer and the membrane are also normalized by that 

of the dendrimer. Dropping the index for normalization gives, 

 1
1 1( )c M

t
μ∂

= ∇ ⋅ ∇
∂

 (4.26) 

 2
2 2( )c M

t
μ∂

= ∇ ⋅ ∇
∂

 (4.27) 



 

61 
 

 2 2 2 2 2 2
1 1 ,11 1 ,12 2 1 1,1 1 1,2 1 1

32
2 2h hp C c C c q q cμ κ κ λ= − ∇ − ∇ + + ∇ − ∇  (4.28) 

 2 2 2 2 2 2
2 2 ,22 2 ,12 1 2 2,1 2 2,2 2 2

32
2 2h hp C c C c q q cμ κ κ λ= − ∇ − ∇ + + ∇ − ∇  (4.29) 

where 1 1 0/ ,p f f=  2 2 0/ ,p f f=  ( )( )2 2 3 2
1,1 1 1 1 1 1 16 2 1 6 6 2 6 4 ,q c c c c c c= − + − + −∇

( )2 3 2
1,2 1 1 1 13 2 2 6 4 ,q c c c c= − + − +∇

 ( )( )2 2 3 2
2,1 2 2 2 2 2 26 2 1 6 6 2 6 4 ,q c c c c c c= − + − + −∇

( )2 3 2
2,2 2 2 2 23 2 2 6 4q c c c c= − + − +∇ , ,11 11 0/ / ,hC h f τ=  ,12 12 0/ / ,hC h f τ=

,22 22 0/ / ,hC h f τ=  ( )3
1 ,1 0/ ,BK fκ τ= ( )3

2 ,2 0/ ,BK fκ τ=  ( )1 ,1 0/ ,SK fλ τ= ( )2 ,2 0/SK fλ τ= .  

In order to track the evolution of Equations (4.26) and (4.27), we conduct a 

numerical simulation. The explicit forward-Euler method for the time variables in the 

equations requires a very small time step to maintain its stability. Instead, we adopt the 

semi-implicit scheme proposed by Chen et al. [102]. The key idea of this scheme is to 

treat the linear term implicitly and the nonlinear term explicitly to allow for larger time 

steps without losing numerical stability. The right hand side of Equations (4.26) and (4.27) 

can be rewritten as 

 2
1 1 1 1( ) lrM A s μμ μ∇ ⋅ ∇ = ∇ +  (4.30) 

 2
2 2 2 2( ) lrM A s μμ μ∇ ⋅ ∇ = ∇ +  (4.31) 

where A is a constant, 1lrμ and 2lrμ  are linear components of 1μ  and 2μ  respectively, and 

2
1 1 1 1( ) lrs M Aμ μ μ= ∇ ⋅ ∇ − ∇  , 2

2 2 2 2( ) lrs M Aμ μ μ= ∇ ⋅ ∇ − ∇ . Here, the linear terms  

2
1lrA μ∇ and 2

2lrA μ∇  are treated implicitly, and the terms 1s μ  and 2s μ  are treated explicitly. 

We have obtained numerical stability in the simulation by taking 2 2
1 1 11 1lr hc C cμ = − ∇  , 
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2 2
2 2 22 2lr hc C cμ = − ∇  among different choices[103] and 1A = . Note that the stability is 

achieved in conjunction with the extrapolated gear (SBDF) scheme [104] for time 

integration. SBDF has the strongest high modal decay among the second order multi-step 

methods. This provides the required damping for the very high frequencies in the 

diffusion equation without a severe time-step constraint. Applying the semi-implicit 

method and the SBDF time integration scheme, we obtain the following discrete form for 

Equations (4.26), (4.27), (4.30), and (4.31),  

 ( )1 1 2 1 2 4 1 1
1 1 1 1 11 1 1 1

3 12 2
2 2

n n n n n n n
hc c c A t A c C c Q Q+ − + + −− + = Δ ∇ ⋅ ∇ − ∇ + −  (4.32) 

 ( )1 1 2 1 2 4 1 1
2 2 2 2 22 2 2 2

3 12 2
2 2

n n n n n n n
hc c c A t A c C c Q Q+ − + + −− + = Δ ∇ ⋅ ∇ − ∇ + −  (4.33) 

where 

 ( )2 2 4
1 1 1 11 1 ,n n n n

hQ t M A c AC cμ= Δ ∇⋅ ∇ − ∇ + ∇ ( )2 2 4
2 2 2 22 2
n n n n

hQ t M A c AC cμ= Δ ∇⋅ ∇ − ∇ + ∇ . 

These equations can be solved with high spatial resolution efficiently in Fourier space. 

Applying a Fourier transform to the equations, we obtain 

 
1 1

1 1 1 1 1
1 2 2 4

11

ˆ ˆˆ ˆ4 4 2ˆ
3 (2 )( )

n n n n
n

h

c c Q Qc
A t k C k

− −
+ − + −
=

+ Δ +
 (4.34) 

 
1 1

1 2 2 2 2
2 2 2 4

22

ˆ ˆˆ ˆ4 4 2ˆ
3 (2 )( )

n n n n
n

h

c c Q Qc
A t k C k

− −
+ − + −
=

+ Δ +
 (4.35) 

where  

( ){ } 2 4 2
1 1 1 1 11 1

ˆ ˆ ˆ ˆ1 1n n n n
hr k

Q t M Ak c Ak C cμ⎡ ⎤= Δ − ⋅ − + +⎢ ⎥⎣ ⎦
k k , 
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( ){ } 2 4 2
2 2 2 2 22 2

ˆ ˆ ˆ ˆ1 1n n n n
hr k

Q t M Ak c Ak C cμ⎡ ⎤= Δ − ⋅ − + +⎢ ⎥⎣ ⎦
k k . Here the caret ^  and subscript 

k  denote a Fourier transform, and the subscript r denotes an inverse Fourier transform. 

The vector k  denotes the wave vector in Fourier space with 2 2 2 2
1 2 3k k k k= + +  .  

 

 

4.3  SIMULATIONS AND RESULTS 

 

4.3.1 Simulation parameters  

 

All the simulations are performed on a domain of 64 64 32× ×  grids with a grid 

space of cL . First, a simulation with only a lipid layer is conducted, then a dendrimer is 

added to final configuration from the first simulation. Initially, the dendrimer touches the 

lipid bilayer. The diameter of the dendrimer is 8 nm  and 5 nm , which represent a G7-

dendrimer and a G5-dendrimer respectively. The thickness of lipid layer is about 5 nm , 

which is consistent with the dimyristorylphospatidylchonline (DMPC) membrane. The 

dimensionless numbers for the chemical bulk energy are set as 0 0 0
12 23 31 3.5Ω =Ω =Ω =  and

1 1 1
12 23 31 1.0Ω = Ω = Ω = . These parameters represent a function with three wells shown in 

Figure 4.1, which derives the phase separation.  
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Figure 4.1 The chemical bulk energy function with three wells. It derives the phase 

separation.  

 

The interface thickness, δ , in terms of the model parameters can be obtained as 

/h Wδ ∼  [105], where h  represent the constant in the gradient energy term. Here, W

represent the height of the barrier between wells in the free energy density, f . In our 

model, 00.18W f∼ . Then the surface energy can be obtained from a simplified interface 

profile. From Eq. (4.5) with an assumption of a flat interface, the surface energy, DMσ , 

can be calculated from 

 
2

00.43DM
c hh dx hf
x

σ
δ

∞

−∞

∂⎛ ⎞= ⎜ ⎟∂⎝ ⎠∫ ∼ ∼  (4.36) 

The surface energy for the dendrimer [106] and the membrane [107] are approximately 

2 27.3 10 /dend J mσ −×∼  and DMPC lipid layer 2 24.2 10 /memb J mσ −×∼ .  In this model, we 

select an average value of the interface thickness for the dendrimer and the membrane to 
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be 1 .nm We estimate the parameters to be, 11
11 9.15 10 /h J m−×∼ , 11

22 3.03 10 /h J m−×∼ , 

8 3
0 3.15 10 /f J m×∼ , and 1 ,nmτ =  which give 11Ch 0.54=  and 22Ch 0.31= . For the 

dendrimer [97], 19
,1 8 10BK J−= ×  and 1 2

,1 2.6 10 /SK J m−= × , which yield 1 2.5κ = , 

1 0.83.λ =  For a DMPC lipid layer [108], 20
,2 5.6 10BK J−= × and 1 2

,2 1.45 10 /SK J m−= × , 

which give 2 0.2κ =  and 2 0.46λ = .  

Depending on the surface termination, the dendrimer can carry charges. The 

PAMAM dendrimer with amine- terminated (R-NH2) branches carries a positive charge 

because its surface primary amines are protonated at pH <7 [109, 110], while an 

acetamide- terminated (R-NHC(O)CH3) dendrimer has a neutral surface charge. The lipid 

bilayer in this research is dimyristoylphosphatidylcholine (DMPC). This particular lipid 

is zwitterionic, which means it has both a positive and negative charge, yielding a net 

neutral charge on its head. The negative charge of the head-group dipole is linked to the 

lipid chains that are firmly anchored in the hydrocarbon core of the lipid layer. Hence, 

this charge can be considered immobile as compared to the positively charged end of the 

head-group dipole which can move according to the conformational freedom of the 

headgroup [111]. Consequently, the dendrimer and membrane attract each other due to 

the attraction between the positive charge at the surface of the dendrimer and the negative 

charge at the membrane. The elastic stiffness of the membrane is smaller than that of 

dendrimer. As a result, the membrane near the dendrimer wants to encircle the dendrimer 

to reduce the electrostatic energy. This may be considered as minimizing the surface 

energy between the dendrimer and membrane. From this point of view, in this work, we 

vary the parameters, 12hC , to mimic the role of the dendrimers surface charge instead of 
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solving the electric field directly. We vary it from 0.9 (amine-terminated) to 1.7 

(acetamide-terminated). This variation is expected to mimic experiments involved amine-

terminated dendrimers carrying positive charges.  

 

 

4.3.2 Simulation results 

 

Representative results of the G7-amine PAMMA dendrimer are shown in Figure 

4.2. From experiments, adding G7-amine PAMAM dendrimers to the lipid bilayer caused 

the formation of small, isolated holes. In our simulations, shown in Figure 4.2, the 

formation of a small hole is observed. As the dendrimer and the lipid layer interact, the 

strong attraction between the surface of the dendrimer and the lipid layer causes for the 

lipid layer to move to the dendrimer, then start to enclose the dendrimer. During this 

process, the elastic energy increases due to the bending and stretching of the membrane. 

Over the limit of the elastic (or plastic) deformation, the bonding between the membrane 

molecules is broken, then a large number of membrane molecules are pulled away from 

the original membrane. As a result, a hole is generated. This result is similar to a 

proposed model by Mecke et al. [56]. They argued that dendrimers pull lipid molecules 

off the substrate, leading to formation of dendrimer-filled vesicles. In the experiment, the 

particles are no longer attached to the substrate, so cannot be imaged by an AFM tip. 

From our simulation, we verify that the lipid layer forms stabilizing bonds with the 

dendrimer functional group. Consequently, the dendrimers-filled vesicle is able to self-

assemble. A G7-acetamide PAMAM dendrimer, which is neutrally charged, similarly 
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caused a hole formation but resulted in a lower density of holes than for G7-amine from 

the experiments. This is also verified from the simulation. The hole generated from the 

G7-acetamide (Figure 4.3) is smaller than that from the G7-amine (Figure 4.2). Even 

thought there is no strong interaction such as the charge interaction, if the size of the 

dendrimer is large enough, the adhesive force from the van der Waals interaction can 

defeat the elastic energy and the cohesive forces, then pull the molecules off of the 

membrane. However, the number of the pulled-off molecules is smaller than in the case 

of the G7 amine-terminated dendrimer. 

Next, from the experiment, the size of the dendrimer is also an important factor in 

the interaction between dendrimers and lipid bilayers. A lower generation G5-amine 

dendrimer had a greatly reduced ability to remove lipid molecules from the surface. 

Although G5-amine dendrimer removed the lipid layer, it did so more slowly and mostly 

from the edges of existing bilayer defects. Our simulation results also show these 

tendencies. As can be seen in Figure 4.4, the hole formation for the G5-dendrimer starts 

later than the case of the G7-dendrimer. Also, the size is much smaller than that of the 

G7-dendrimer. In order to form enough stabilizing bonds between the end-group of the 

dendrimer and the lipid molecules, the average number of lipid head groups per 

dendrimer end-group should be small[56]. It means that the number of lipid head group 

for one dendrimer end-group to pull off should be small. For a G7 PAMAM dendrimer, 

from the reference[56], this value is between 1 and 3; however, it reaches 6 for the G5 

PAMAM dendrimer. This implies that a lower generation cannot remove the lipid 

molecules from the surface. Figure 4.5 shows the effect of a pre-existing bilayer defect. 
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The size of the hole generated from the edges of defect is larger than that from intact part 

of layer.  

A G5-acetamide PAMAM dendrimer barely caused the formation or expansion of 

defects in the lipid layer. Instead, they caused the formation of ledges. In the simulations, 

as shown in Figure 4.6, the size of hole is very small and there is a well near the 

dendrimer.  

The interaction between a single dendrimer and the lipid layer would not be 

strong enough to create a large hole in the bilayer, while the size of a hole in the 

experiment is larger than the size of a dendrimer. It is, however, possible that multiple 

dendrimers combined are able to remove lipids by forming larger aggregates.  From the 

simulation results shown in Figure 4.7, we can verify this hypothesis. Here, we assumed 

the dendrimers are well distributed by the repulsive forces between the charges at the 

surface. The results of combined dendrimers are much larger than the hole from a single 

dendrimer. 
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Figure 4.2 Evolution of the membrane with a G7 amine-terminated dendrimer. Each time 
step is 2 ct . 

  



 

70 
 

 

Figure 4.3 Evolution of the membrane with a G7 acetamide-terminated dendrimer. The 
right part of (h) shows a hole viewed from the bottom. Each time step is 2 ct . 
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Figure 4.4 Evolution of the membrane with a G5 amine-terminated dendrimer. Each time 
step is 2 ct . 
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Figure 4.5 The effect of an existing bilayer defect. (a) and (b) are initial configurations. 
After 6 ct ,  the generated hole from a pre-existing defect (d) is larger than the hole from a 
intact membrane (c).  
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Figure 4.6 Evolution of the membrane with a G5 acetamide-terminated dendrimer. Each 
time step is 2 ct . 
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Figure 4.7 A larger hole formation from multiple dendrimers (each time step is 4 ct ). The 
generated hole is larger than a single dendrimer particle. 
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4.4 DENDRIMER INTERACTION CONCLUSIONS 

 

This chapter has developed and implemented a phase field model for the 

interactions between a PAMAM dendrimer and a lipid bilayer. Simulations have shown 

that the G7-amine PAMAM dendrimer, which is positively charged, had caused the 

formation of a small hole in the membrane. The G7-acetamide PAMAM dendrimer, 

which is neutrally charged, similarly caused a hole formation but resulted in a smaller 

hole than that from G7-amine PAMAM dendrimer. Those conclusions agree well with 

experimental observations. Also, from the experiment, the size of the dendrimer is 

another important factor on the interactions. The simulation results showed that the lower 

generation dendrimer had a greatly reduced ability to remove lipid molecules from the 

surface. Furthermore, the simulation results demonstrated that a pre-existing defect on a 

lipid layer could be expanded by a dendrimer, which is also observed from the 

experiment. Finally, it is also demonstrated that multiple dendrimers form a larger hole 

which may not be induced by a single dendrimer. In summary, the simulation results 

agree with the results from experimental observations. Furthermore, it provides us with a 

mechanism for the formation of a hole. Consequently, the results may be useful in the 

design of nanoparticles for various biological and medicine applications.  
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CHAPTER 5  

 

ELECTROWETTING OF A DROPLET PARTICLE ON A DIELECTRIC 

 

E lectrowetting originates from the observation of Lippmann [112], where the 

capillary depression of mercury in contact with electrolyte solutions could be varied by 

applying an electric field. However, there was an obstacle to broaden the application: 

electrolytic decomposition of water on high voltages. Recently, Berge [113] used a thin 

insulating layer to separate the conductive liquid from a metallic electrode in order to 

eliminate the problem of electrolysis. This approach is referred to as electrowetting on 

dielectric (EWOD). Electrowetting has been investigated by researchers using diverse 

approaches. Also experimental studies [114-117] have been conducted and have revealed 

saturation/instability of the contact angle when the applied voltage is raised above a 
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critical value. Welters et al. [118] and Sondag-Huethorst et al. [119] calculated effective 

interfacial tension, which was reduced by an applied voltage. Berge [113] performed a 

minimization of the free energy, in this case, the corresponding thermodynamic potentials 

are related by a Legendre transformation. In order to provide a picture including forces 

exerted on the droplet,  Jones et al. [120, 121] and Zeng et al. [122] introduced the 

Maxwell stress tensor and obtained the net force acting on the droplet. Verheijen et al. 

[115] suggested the charge trapping is responsible for the saturation. Vallet et al. [114] 

and Mugele et al. [123] reported similar results that the contact line became unstable at 

high voltages, leading to the ejection of small droplets from the mother droplet with a 

characteristic lateral spacing. While the above models seem to capture the essential 

physics, there is still a need for a thorough understanding of the mechanism to maximize 

its potential. In this chapter, we present the results of computational simulations related to 

the instability phenomenon. A phase field model combining thermodynamics and 

hydrodynamics provides us with a useful tool for predicting the electrowetting 

phenomena from the various experimental environments. It enables us to extend our 

system to the complex droplet morphologies, patterned electrodes, and topographical 

surface patterns. Moreover, it provides the dynamic aspects of the electrowetting 

phenomenon, which is important for practical applications, while most of the theories and 

experiments were focused on static properties. Based on these advantages, we seek to 

elucidate why the instability occurs and how to suppress this obstacle.  
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5.1 MODELING 

 

5.1.1 Phase field model 

 

The phase field model is described by a set of field variables, which characterize 

the spatial distributions in different phases. The field variables are updated as the system 

evolves to reduce the free energy. The wetting phenomenon can be ascribed to the 

minimization of free energy in the system; the interfaces between the two immiscible 

matters are free to change their morphology to minimize the free energy. The phase 

interface is considered to be a region of finite width in which the phase field variable 

varies rapidly, but smoothly, from one phase value to another.  

 

 

Figure 5.1 A schematic diagram for the system. The droplet is partially wetting on a 
dielectric layer and the field is generated by an electrode and an electro-rod. Here, the red 
dotted line represents the phase field model, and the dielectric layer is added for the 
calculation of electric field. Here, θ  denotes the contact angle. 
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Figure 5.1 shows a droplet of partial wetting on a dielectric layer. In our phase 

field model, the 2-dimensional system is confined to the droplet and the medium because 

we ignore the evolution of the layer. We may define the concentration of each phase by 

its volume fraction. Treat the concentration of the droplet, ( , )c tx , as a spatial continuous 

and time dependent function. Here, x  is a position vector; note that ( , ) 1c t =x  for the 

droplet and ( , ) 0c t =x  for the medium. The total free energy of the system depends on 

phase configurations and electric field distributions, namely, 

22
0

1 1( ) ( ) ( ) [ ( ) ( )]
2 2 r SD SM SDG f c h c c dS c dlε ε φ σ σ σ ρ

Ω ∂Ω

⎛ ⎞= + ∇ − ∇ + + −⎜ ⎟
⎝ ⎠∫ ∫  (5.1) 

The first three terms of energy functional approximate the total energy in the area of the 

system and the last integration represents the surface energy on the boundaries. The ( )f c  

term represents the chemical energy, which drives phase separation. We use a double-

well function, 2 2
0( ) ( 1)f c f c c= − , where 0f  is a positive constant. The function has two 

minima corresponding to the droplet and medium phases, respectively. The interface 

energy between the droplet and the medium can be established through a gradient term of 

c  in the Eq. (5.1), where h  is a material constant. The third term represents the 

electrostatic energy. Here, 12
0 8.85 10ε −= × F/m is the vacuum permittivity, rε  is the 

dielectric constant of the material, and φ  is the applied field. The dielectric constant may 

be interpolated using a transition function, ( )( ) 1/ 2 1 tanh(5 10 )c cρ = + − , to make a rapid 

and smooth variation in the value, namely, ( )( ) 1 ( ) ( )droplet medium
r r rc c cε ε ρ ε ρ= − + . Note, 

( ) 0dropletcρ =  and ( ) 1mediumcρ = . The negative sign in the electrostatic energy is due to a 

constant applied voltage. The surface energy at the boundaries is also expressed using a 
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transition function. Here SDσ  and SMσ  represents the surface energy difference between 

the solid and the droplet, the solid and the medium, respectively.  Consider a variation in 

G  from the Eq. (5.1), 

( ) 2
0

1( ) ( ) ( ) ( ) ( )
2 r SM SLG f c c h c c c c dS c cdlδ δ δ ε ε φ δ σ σ ρ δ

Ω ∂Ω

⎛ ⎞′ ′ ′= + ∇ ∇ − ∇ + −⎜ ⎟
⎝ ⎠∫ ∫  (5.2) 

The variation in G can be simplified by taking into account a boundary condition, 

 ( ) ( ) 0SM SLh c cσ σ ρ′⋅∇ + − =n  (5.3) 

The diffusion is the only mass transport mechanism which is given by M μ= − ∇J , 

where M  is the mobility and J  is the flux. Viscous flow adds a convective term, cv , to 

the flux, where v  is the flow velocity. Here, we consider incompressible flow so that

0∇ ⋅ =v . The chemical potential is defined by /G cμ δ δ= , then, the variation in G  can 

be expressed as G cdSδ μδ
Ω

= ∫ . Also, a variation in c combined with mass conservation 

relation gives, ( / )c c t dt dtδ = ∂ ∂ × = − ∇ ⋅J . Applying the divergence theorem results in, 

 ( )G dt dS dt dlδ μ μ
Ω ∂Ω

= ∇ ⋅ − ⋅∫ ∫J n J  (5.4) 

The boundary integral vanishes by taking, 0⋅ =n J  on∂Ω . From the above equations, we 

have a governing equation set,  

 

( )

( ) ( )

22
0

( )

1( ) ( )
2

0 , ( ) ( ) 0

r

SM SL

c c M
t

f c h c c

h c c

μ

μ ε ε φ

μ σ σ ρ

Ω

Ω

∂Ω ∂Ω

∂⎛ ⎞+ ⋅∇ = ∇ ⋅∇⎜ ⎟∂⎝ ⎠

⎛ ⎞′ ′= − ∇ − ∇⎜ ⎟
⎝ ⎠

′⋅∇ = ⋅∇ + − =

u

n n

 (5.5) 

With the presence of a diffusive interface, the modified Navier-Stokes equation describes 

the viscous flow, 
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 ( )p c
t

ρ η μ∂⎛ ⎞+ ⋅∇ = −∇ +∇⋅ ∇ + ∇⎜ ⎟∂⎝ ⎠
v v v v  (5.6) 

Here, ρ  is the density, η  the viscosity, and p is the pressure that enforces the 

incompressibility constraint 0∇ ⋅ =v . The last term cμ∇  accounts for the sum of all the 

given forces at the interface. Eq. (5.5) and (5.6) need to be solved simultaneously as well 

as the electric field to obtain evolution sequences of the system. The electric potential 

satisfies the Laplace equation, 

 ( ) 0rε φ∇ ⋅ ∇ =  (5.7) 

The geometry of the system for an electric field calculation is shown in Figure 5.1. We 

applied a constant potential at the droplet boundary and on the bottom electrode. For 

outer boundaries in the system, the Neumann boundary conditions were applied. We 

normalize Eq. (5.5), (5.6) and (5.7) with a characteristic velocity cV , length cL  , and time 

/c c ct L V= .  Eq. (5.7) retains the same form after normalizing, and dropping the index of 

the normalization of Eq. (5.5) and Eq. (5.6) gives, 

 

( ) ( )

22 2

1 ( )
Pe

( )1( ) Ch
2

0 , ( ) 0

r

c c
t

cf c c
c

c c

μ

εμ φ

μ βρ

Ω

Ω

∂Ω ∂Ω

∂⎛ ⎞+ ⋅∇ = ∇ ⋅ ∇⎜ ⎟∂⎝ ⎠

∂⎛ ⎞′= − ∇ − ∇⎜ ⎟∂⎝ ⎠

′⋅∇ = ⋅∇ + =

v

n n

 (5.8) 

 ( ) 1 0
Ca

p cη μ−∇ +∇ ⋅ ∇ + ∇ =v  (5.9) 

The mobility M and viscosity η  are dimensionless numbers normalized by the mobility 

and viscosity of the droplet, 0M  and 0η . The potential field φ  is normalized by 

0/c c oL fφ ε= . In Eq. (8), the Péclet number ( )0 0Pe /c cV L M f=  reflects the ratio of the 
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diffusive time scale and the convective time scale. The significance of the interface 

energy is described by the Cahn number, represented by 0Ch / / ch f L= . The Reynolds 

number, 0Re /c cV Lρ η= , reflects the ratio of inertial and viscous forces. We consider a 

viscous fluid at moderate velocities, for example, a low Reynolds number. In Eq. (5.9), 

we ignore the inertia term, the left-hand side of Eq. (5.6). Thus, the velocity is 

instantaneously inferable from the concentration. The capillary number 0 0Ca /( )c cV L fη=  

affects the relative magnitude of viscous force and interface force. The parameter 

( ) /c SM SLL hβ σ σ= −  possesses the information about the surface energy differences, 

which determines the contact angle without an electric field. 

 

5.1.2 Finite element method 

 

The numerical approach needs to have high spatial resolution to resolve the high-

order derivatives in the diffusion equation, as well as the large gradients at the interface. 

In this work, we combine the Galerkin finite element method for Eq. (5.8) and semi-

implicit Fourier spectral method for Eq. (5.9). We follow the standard procedure for 

setting up the variational formulation, taking a weighted integral residual projection of 

the governing equation with the test function w , and through integrating by parts. Hence, 

our problem becomes one of finding a function of c such that 

 ( ) 1, , , 0
Pe

c w c w w
t

μ
Ω

Ω Ω

∂⎛ ⎞ ⎛ ⎞+ ⋅∇ + ∇ ∇ =⎜ ⎟ ⎜ ⎟∂⎝ ⎠ ⎝ ⎠
v  (5.10) 

( ) ( ) ( ) ( ) ( )23 2 2 21, 4 6 2 , , , ( ),
2h r hw c c c w C c w w C c wμ ε φ βρ

Ω Ω ∂ΩΩ Ω
′= − + + ∇ ∇ − Δ ∇ + (5.11) 
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where the usual inner product notation is used for the respective interior and boundary 

integrals. Now, we partition off Ω  into a number of finite elements eΩ , then solve the 

corresponding discrete system of the equations. A variable can be expressed by using the 

basis of the shape function e
jψ , for one example of the variable c  in eΩ , 

 
1

( , ) ( ) ( )
eN

e e e
j j

j
c t c t ψ

=

=∑x x  (5.12) 

where eN  is the number of nodes in eΩ , and e
jc  is the value of ec  at node e

jx  of the 

element. The finite element approximation of Eq. (5.12) leads to a system of N  ordinary 

differential equations in the N  unknown functions ( )jc t  in the form, 

 1 2
( ) ( ) ( ),0dc t c t t t T

dt
+ = ≤ ≤A A a  (5.13) 

where 1,
e

ij i jA dψψ
Ω

= Ω∫  , ( )2,
e

ij i jA dψ ψ
Ω

= ⋅∇ Ω∫ v , and 1
Pee

i ia dμ ψ
Ω

= − ∇ ⋅∇ Ω∫ . In 

order to solve Eq. (5.13), we first partition the time domain 0 t T≤ ≤  into equal intervals 

of length tΔ . At 0t = , the solution is known from the initial configuration. To advance 

the solution in time from t n t= Δ  to ( 1)n t+ Δ , we use the forward finite difference 

approximation, 

 
1( ) ( ) ( )n ndc n t c t c t

dt t

+Δ −
≈

Δ
 (5.14) 

Then, Eq. (5.13) and (5.14) lead to the algorithm, 

 1 1
1 2( ) ( ) ( )n n n nc t t c t c t+ − ⎡ ⎤= Δ ⋅ − +⎣ ⎦A a A  (5.15) 

where ( )n n t= Δa a . Similarly, using the basis of the hat functions, we can solve the 

corresponding discrete system of the Eq. (5.11) for the chemical potential. The finite 
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element approximation of Eq. (5.11) leads to a system of N  ordinary differential 

equations in the N  unknown functions ( )j tμ  in the form 

 ( )tμ =B b  (5.16) 

where
e

ij i jB dψψ
Ω

= Ω∫ , ( )3 2
,1 4 6 2

h
i ib c c c dψ

Ω
= − + Ω∫ , 2

,2 ( )
h

i h ib C c dβ ρ ψ
∂Ω

′= Ω∫ ,                         

2
,3

h
i h ib C c dψ

Ω
= ∇ ⋅∇ Ω∫ ,  2

,4
1
2 h

i r ib dε φ ψ
Ω

= − Δ ∇ Ω∫  and ,1 ,2 ,3 ,4i i i i ib b b b b= + + + . It is 

clear that the calculation of element stiffness matrices and load vectors for a curvilinear 

element eΩ  would be awkward if performed directly in terms of the global coordinates.  

Moreover, the character of such a calculation would change from element to element in 

the mesh. If we introduce an invertible transformation between a master element Ω̂  of 

simple shape and an arbitrary element eΩ , it should be possible to transform the 

operations on eΩ  so that they hold on Ω̂ . Then, we can perform the calculations 

conveniently on the master element. In this research, we use triangle elements. The shape 

function, ψ̂ , pertains to the master element, Ω̂ . From the linear map, from arbitrary 

element eΩ   to master element, the shape functions are  

 1 2 3ˆ ˆ ˆ1 , ,ψ ξ η ψ ξ ψ η= − − = =  (5.17) 

where ξ , η  are local coordinates on the master element. Thus, integrals of functions over 

element eΩ  can be evaluated using calculations on Ω̂  by simple relationship, for instance, 

ˆ
ˆˆ ˆ ( , )ij i jA dψ ψ ξ η

Ω
= Ω∫ J . Here, the Jacobian ( , )ξ ηJ  represents the area ratio between 

two domains. The matrix computations were done with the preconditioned biconjugated-

gradient method and the Jacobi pre-conditioner is adopted. The approach allows one to 

compute a large domain efficiently. We followed similar steps for the electric field 
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calculation with the finite element method.  The velocity field is solved by Eq. (5.9) and 

the incompressibility condition. To treat the variable viscosity, we rewrite [124] 

 ( ) 2 ( )Bη∇⋅ ∇ = ∇ +v v r v  (5.18) 

where ( ) 2( )r v Bη= ∇ ⋅ ∇ − ∇v v  and B  is a constant. We take max( )B η=  in the 

simulations, and achieve numerical stability in all situations. Taking the divergence on 

both sides of Eq. (5.7) and applying the incompressibility constraint 0∇ ⋅ =v , we obtain 

the pressure at the thn  time step 

 2 1 1( ) ( )
Ca

n n n np r cμ−∇ = ∇ + ∇ ⋅ ∇v  (5.19) 

The velocity field is given by reorganizing Eq. (9), namely, 

 2 11 1( ) ( )
Ca

n n n n np r c
B

μ−⎛ ⎞∇ = ∇ − − ∇⎜ ⎟
⎝ ⎠

v v  (5.20) 

The equation (5.19) and (5.20) are solved to obtain the velocity. The following is the 

outline of the procedure to compute 1nc +  from nc . First, compute the electric field nφ  that 

corresponds to the concentration distribution nc . Then substitute the solution of  nφ  into 

the Eq. (5.11) to get nμ . After solving the modified Navier-Stokes equation, it gives nv . 

Using this result, we compute the Cahn-Hilliard equation by Eq. (5.10) to obtain 1nc + .   
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5.1.3 Simulation parameters  

 

Consider a water droplet as an example. The interface thickness, δ , in terms of 

the model parameters, can be obtained as, /h Wδ ∼ [105]. Here, W represents the 

height of the barrier between wells in the free energy density, f . In our model, the value 

of W  is 0 /16f . Then the surface energy can be obtained from a simplified interface 

profile. If we assume a flat interface, the phase field variable ( , )c tx  can be expressed as a 

function of 1/ 2 tanh(4 / )c x δ= . Then, the surface energy, DMσ , can be calculated from, 

 
2

0
1.33333 1

3DM
c hh dx hf
x

σ
δ

∞

−∞

∂⎛ ⎞= =⎜ ⎟∂⎝ ⎠∫ ∼  (5.21) 

We choose the characteristic length 010 /cL h f= , which is around 10nm  and it gives 

0.1hC = . The surface energy of a water droplet in the air is 3 270 10 ( / )J m−× . From the 

relationship, we have 8
0 2.1 10f = ×  and 102.1 10h −= × . The capillary number, Ca , for a 

water droplet is about 310−
 [125]. The mobility 0M is related to the diffusion coefficient, 

02 oD M f= , which is approximately 2 10.2272(0.1 )nm ps−⋅ . The viscosity of water in 

room temperature is 310 ( )Pa s− ⋅ . These values give Pe 18∼ . From the Young’s equation,  

 3cos
10

SM SD
c

DM

σ σθ β
σ
−

= =  (5.22) 

we estimate the range of β , which is approximately 3.3β ≤ . 
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5.2 SIMULATION RESULTS 

 

5.2.1 Dynamic aspect 

 

All the simulations are performed on a domain of 56 32×  with an cL  length unit 

scale. We used 7163 isosceles triangular elements with the length of 0.25 cL  and 0.17 cL . 

The initial configuration of a droplet is a sphere with radius 8 cL , which touches the solid 

surface. First, we predict the final contact angle without an electric field. Depending on 

the surface energy difference, the contact angle varies as demonstrated in Equation (5.23).  

Figure 5.2 shows the final configurations depending on β . A larger β , which represents 

a hydrophilic surface, shows a wettable surface, and a smaller β , which represents a 

hydrophobic surface, shows a non-wettable surface. The final contact angles are well-

matched with Equation (5.22), as can be seen in Figure 5.2. 

 

Figure 5.2 Critical angles for different β s without an electric field (a: 2.5β = − , b: 

1.5β = − , c: 0.5β = − , d: 0.5β = , e: 1.5β = , f: 2.5β = ) 
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Figure 5.3 Comparison of the contact angle. The blue star marks represent the 
computational results and the dotted line represents the contact angle from Young’s 
equation, Eq. (5.22). 

 

The Equation (5.22) provides just static properties, whereas dynamic responses of the 

droplet are important for many practical applications. In addition, Equation (5.22) does 

not include the size of the droplet, which means the contact angle is independent on the 

size. A theoretical model [126] was developed to predict the effect of droplet size on 

contact angle for droplets on surfaces. The model takes into account the fact that the 

effect of gravity diminishes as the size of the droplet decreases, therefore, for small 

droplets, gravity becomes negligible and the droplet contact angle becomes more 

dependent on surface wettability than on gravity. Thus, the asymptotic contact angle 

depends only on material properties. However, the response time to the applied field may 

depend on the volume size. Figure 5.4 shows the variation of the contact angles of three 

droplets with the same material property in different sizes. The angle of smaller droplets 

becomes reduced more quickly than those of larger droplets. This may be due to the 
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difference in time for the molecules of the droplet to relocate by the diffusion and the 

convection. 

 

Figure 5.4 Time evolutions of three different size droplets under an electric field 
0.04φ = , 2.5β = − ,  with each time step 100 ct  (a) 8 cr L=  (b) 10 cr L=  (c) 12 cr L=  

 

Now, we apply an electric field. The initial configuration is obtained from the 

result without an electric field. We increase the electric field from 0.01 to 0.04, with an 

increment of 0.01, and 2.5β = −  for all cases. Note that as the electric field increases the 

velocity is also increased, and as a result, Ca  and Pe  vary. A relationship 2v φ∝ , which 

is qualitatively well-matched with an experimental result [127], is used for the variation 

of the two parameters, Ca  and Pe . Figure 5.5 shows the dynamic contact angles for  

each different applied field. The tendency is similar to the results from a molecular 

modeling simulation [128]. Above the critical angle in Young’s equation, the net force, 

SM SDσ σ− , in the horizontal direction is larger than the horizontal component of the SMσ , 

as a result, the time variation in the contact angle is larger than that around the critical 

angle.  
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Figure 5.5 The dynamic contact angles for each voltage, where in all cases 2.5β = − . The 
contact angles are decreased quickly, then slowly reach their final angles. 

 

The lab-on-a-chip device performs entire analyses on a chip. For this purpose, it requires 

many steps of manipulation of the liquid sample. In many cases, it relies on pumping and 

pipetting, which need a large mechanical apparatus. Electrowetting is one solution for 

this problem. The principal idea for using electrowetting in the lab-on-a-chip is to provide 

a substrate with a series of individually addressable electrodes that allow for moving 

droplets around along the paths. Undoubtedly, diverse surface patterns of the electrodes 

and droplets may give rise to new opportunities in order to extend its application. Figure 

5.6 shows one example of the partial wetting with an activated electrode (right side in red) 

and a deactivated electrode (left side in blue). 
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5 2.2 Instability of electrowetting 

 

 

Figure 5.7 Droplet evolutions with different applied voltages (A: 0.03φ = , B: 0.04φ = , 
C: 0.05φ = , D: 0.06φ = , a: 20t = , b: 200t = , c: 600t = , unit: ct , and 0.5β =  ) 

 

Figure 5.7 shows representative results at selected time intervals from the 

computational experiments of increasing the voltage. As can be seen in the figure, the 

droplet becomes more wetted with increased voltage, which means the contact angle is 

reduced. This is a well-known phenomenon, referred to as EWOD (ElectroWetting On a 

Dielectric). However, in Figure 5.7(C), with a relatively high potential 0.05φ = , ripples 

of the droplet occur on the solid surface at time 200 ct t=  (Figure 5.7 (c)). This instability 
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is similar to the experimental result; the contact line becomes unstable at high voltages 

which lead to the ejection of small droplets from the edge of the big droplet, with a 

characteristic lateral spacing. In Figure 4.7(D), when the external field is increased 

further, the instability starts more quickly at time 20 ct t= . 

 

 
(a) 

 
(b) 

Figure 5.8 (a) Diffusion flow (b) Convection flow at one moment of an instability. The 
driving forces at the end of tail are very complicated.  

 

The gradient of the chemical potential, 22
0( ) 1/ 2 ( ) ,rf c h c cμ ε ε φ′ ′= − ∇ − ∇

represents the driving force for the diffusion process. An electromechanical approach 

[129], where a total force exerted on the droplet was calculated using the Maxwell stress 

tensor, cannot predict an instability phenomenon. However, the localized driving forces, 

as can be seen in Figure 5.8(a), show a physical picture. The force at the tail is strong 

compared to other regions, and it causes alternating compression/tension and 
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pressing/releasing which breaks the contact line and leads to the instability. This picture 

demonstrates that the surface tension, beyond a certain critical voltage, cannot resist a 

strong electrostatic force, and as a result, the emission of small droplets occurs. Figure 

5.8(b) shows the convection flow at the same time with Figure 5.8(a). A thin liquid 

bridge is connecting the departing droplet with the mother droplet. 

 

 

Figure 5.9 Results of a parametric study. It shows the final contact angles for different β
and φ . 

 

In order to verify that the instability of electrowetting is related to some other 

physical parameter more than the strength of the applied electric field, we conduct a 

parametric study. We select β  as the independent variable because it is a function of the 

surface energies of the droplet, the solid, and the medium. By varying the value of β , 

different materials, including hydrophobic ( 0β < ) and hydrophilic ( 0β > ) surfaces, can 
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be involved in the simulations. The value of β  is changed from 2.5−  to 2.5 with an 

increment of 1. For each value of β , the electric field is applied from 0.01 to 0.05 , with 

an increment of 0.01. Fig. 5.9 shows contact angle variations with β  and φ . In all 

situations, the contact angle is decreased with the strength of the field which is similar to 

Figure 5.7. The incrementation of the angle is almost quadratic in relation to the applied 

voltage. This is consistent with the relationship from the effective interfacial energy 

method [119],  

 
2

0cos cos
2

d
Y

LM

V
d

ε εθ θ
σ

= +  (5.23) 

 where Yθ  is the Young’s equilibrium contact angle from Eq. (5.23), 0ε  and dε  is the 

permittivities for vacumm and dielectric, respectively, d  is the thickness of the dielectric 

layer, and  V  is the applied voltage.  

 

 

 

Figure 5.10 Starting time of an instability. Note that there is no instability for 2.5β = −  
case when 0.05φ =  is applied. 
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The strength of the field where the instablity occurs is increased for a smaller β . 

The droplet ( 2.5β = − ) in Figure 5.9 (a) is at 0.05φ = , which has a stable contact angle. 

However, the two representive droplets (b: 1.5β = − , c: 2.5β = ) in the figure show the 

occurrence of the instability at 0.05φ = . The other droplets ( 0.5,0.5,1.5β = − ) also show 

instabilities; this behavior provides us with a clue for understading experimental 

observations [114]. It was observed that the droplet ejection is suppressed when salt is 

added to the water droplet. It has long been known that adding salt to water generally 

increases the surface energy of the solution. The ion-dipole bond formed between the 

water molecule and ions is stronger than the hydrogen bond formed between the water 

molecules. The additional energy needed to break the stronger bond raises the surface 

energy. As a result, a decreased β  increases the field strength for the instablity. Figure  

5.9 also indicates that the angle at the beginning of instable motion is smaller for a larger 

β . It means that hydrophilic materials can be more wettable without any instability.  

Figure 5.10 represents the time it took to reach the set point of the instability after 

applying an electric field. Note that there is no instability for 2.5β = −  case when 

0.05φ =  is applied. An instability begins more quickly for large values of β , and φ . We 

perform one more computational experiment to verify the previous discussion. From 

Figure 5.9, in all cases for 2.5β > − , the instability occurs at 0.05φ =  and the droplet is 

stable at 0.04φ = , so we apply 0.045φ = . As we can expect from the discussion, in the 

case of a smaller 1.5β = − , the droplet is still stable (Figure 5.11(a)). However, in the 

case of 1.5β = , the droplet becomes unstable (Figure 5.11(b)).  
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Figure 5.11 Droplet evolutions with different β  parameters (a) 1.5β = − , (b) 1.5β =
with an applied field 0.045φ = . 

 

 

5.3 STABILITY ANALYSIS 

 

 

 

Figure 5.12 a) the schematic diagram of a perturbed droplet, b) one segment of the 

deformation 
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In order to verify the result of the parametric study, we conducted an instability 

analysis by considering a variation of the free energy after imposing a perturbation of 

small amplitude on the contact line between the solid, the medium and the droplet. The 

perturbed contact line has a larger length than the flat line, so the surface energy increases 

with the perturbation. Also an increment of perimeter length of the droplet results in an 

increment of electric capacitance, so the electrostatic energy decreases even under a 

constant applied potential. According to thermodynamic law, the surface energy favors 

the flat surface, but the electric field favors the perturbed line. From the net change in the 

free energy, we can investigate the stability of the system in equilibrium.  

Figure 5.12 (a) shows a schematic droplet shape after perturbation. We slightly 

perturbed the contact line by ( )Acos kxη = , where A  and k  are the amplitude and the 

wavenumber of the perturbation. The wavenumber relates to the wavelength λ  by 

2 /k π λ= . Here, we assumed the perturbation dies exponentially with the distance to the 

edge[130]. For the contribution from the surface energy between the droplet and the 

medium depends on the contact angle Gθ . The surface energy per unit length of the line 

is [131]  

 
2

2sin
4sur DM G

kAG σ θΔ =  (5.24) 

The increased length of the perturbed wetting line per unit length on the solid surface is 

calculated by 

[ ] [ ]
2 2

2 2

0 0

1 1 11 sin( ) 1 1 sin( ) 1
2 4

k AL Ak kx dx Ak kx dx
λ λ

λ λ
Δ = + − − ≈ + − − =∫ ∫  (5.25) 
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The change of the perimeter length of the droplet induces the variation of the electric 

capacitance C [114], as a result, the electrostatic field contribution to the energy can be 

calculated from  21/ 2elecE CV= − ,  

 ( )
2 2

20 1 ln / ( )
2 4

kr
elec G

G

k AE S d p e ξε ε θ φ
π θ

−⎛ ⎞ ⎛ ⎞
Δ = − +⎜ ⎟ ⎜ ⎟− ⎝ ⎠⎝ ⎠

 (5.26) 

where ξ  is a screening length, S  is the surface area of the droplet facing the solid, d  is 

thickness of dielectric layer, and ( )Gp θ  is a smooth function. Note that the electric charge 

distribution close to the line is modified. The roughening of the contour line leads to an 

electrostatic screening which tends to cancel the effect of its increased length [114]. The 

net change in the free energy is the sum of each contribution of Eq. (5.24) and (5.25), 

after normalizing, 

( )

222
2 2

2

505 1sin ln ( )
c

c

L
Lc cr

G
GSM SL

c

L LG S p e
dA

L

πξ
λπ επ θ θ φ

β λ β π θ λσ σ

−⎡ ⎤⎛ ⎞Δ ⎛ ⎞ ⎛ ⎞= − + ⎢ ⎥⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟−⎡ ⎤− ⎝ ⎠ ⎝ ⎠⎢ ⎥⎝ ⎠ ⎣ ⎦⎢ ⎥
⎣ ⎦

(5.27) 

The contact angle, in Eq. (5.23), which is from the effective interfacial energy can be re-

expressed in normalized parameters,  

 23cos 15
10

c
E r

L
d

θ β ε φ= +  (5.28) 
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Figure 5.13 A stability analysis for 2.5β = . The black lines represent GΔ  (the left 
ordinate) and the green dotted line represents the contact angle (the right ordinate). 

 

Figure 5.13 plots the net change in the free energy, GΔ , as a function of the 

applied voltage and the angle between the contact lines. Relevant parameters are 

approximated from experimental data [114] ( 20 mξ μ= , 35 mλ μ= , 50d mμ= ). In 

Figure 5.13, where 2.5β = , the black lines represent GΔ  for each specific angle. For 

each angle, if GΔ  is negative, then the system becomes unstable. However, the final 

contact line follows the green dotted line which is from Eq. (5.28). In order to check the 

stability of the droplet, we need to compare both angles. For instance, when 15Gθ ≤ D , the 

system becomes unstable around 0.43φ = . However, the contact angle at this voltage is 

over 35θ = D , as a result, the system is stable. For the 25θ = D  line, the system unstable at 
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around 0.7φ = , where the final contact angle is also around 25θ = D . Consequently, the 

instability may occur at around  0.7φ = .  Similarly, when 0.5β =  as can be seen in 

Figure 5.14, the droplet may begin the instability at 1.2φ = . It means that the instability 

can be suppressed by decreasing β . This is consistent with the result of the parametric 

study in Figure 5.9. It also demonstrates the experimental results [114]; the droplet 

ejection was suppressed, or at least, the threshold voltage increased substantially when 

salt was added.  

 In addition, the contact angle, when an instability begins, becomes smaller with 

increased β . This is matched with the results of the parametric studies.  

 

 

Figure 5.14 A stability analysis for 0.5β = . The black lines represent GΔ  (the left 
ordinate) and the green dotted line represents the contact angle (the right ordinate).  
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5.4 ELECTROWETTING CONCLUSIONS 

 

In summary, the computational approach provides useful information on the 

electrowetting phenomenon, such as dynamic responses and complex geometry. 

Furthermore, it shows the essential feature of the instability of electrowetting on a 

dielectric. Beyond a certain critical voltage, the surface tension cannot resist the strong 

electrostatic forces, therefore, the contact line becomes unstable. The onset of the 

emission of a small droplet is also related to the surface energies between the three 

phases. From the results of the analyses, we find that the instability can be suppressed by 

changing parameters, such as the surface energy of the droplet. This result may be a 

useful guide for designing novel devices, where the instability will be an obstacle to 

extend one’s applications.  
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CHAPTER 6  

 

CONCLUDING REMARKS 

 

 

This thesis studies the interaction and the self-assembly of nanoparticles. 

Nanoparticle research is currently an area of intense research of nanotechnology due to a 

wide variety of potential applications in optical, biomedical, and electronic fields. The 

purpose of this dissertation is to investigate the use of nanoparticles as a means of self-

assembly into new functional nanostructures and to elucidate the interactions of 

nanoparticles with structures at a nano/micro scale in nanodevices and biomedical system.  

In many applications nanoparticles are functionalized with a thin layer of coating, 

which forms a core-shell structure. A coating prevents agglomeration with each other and 

provides a possibility of fabrication of new nanocomposite materials combining the 

unique properties of the core and shell. When these core-shell nanoparticles are dispersed 



 

104 
 

in a fluid, the functional properties of the colloidal suspension can be tuned by 

controlling the orientation of the particles with an applied electric field. In this research, 

we achieve the following; 1) We obtained an analytical form of the electric field for a 

core-shell particle and rigorously calculated the torque induced by an electric field. 2) We 

developed a dynamic model for the processing of core-shell nanoparticles dispersed in a 

fluid. The above developments lead to the following findings; 1) The shell of a 

nanoparticle has an important effect on the rotational behavior, even when it is thin and 

takes only a small portion of the total volume. 2) For lossy dielectrics, the permittivities 

and conductivities of both the shell and core of a particle determine the magnitude and 

direction of the induced torque. The core-shell structure was found to lead to frequency 

dependent behavior that is quite different from that of bare nanoparticles. 3) A 

competition, between the rotational alignment due to electric field and randomization due 

to Brownian rotation, reveals the evolution of the orientation distribution function (ODF) 

of many Brownian core-shell nanoparticles suspended in a fluid.  

We developed a computational model that predict self-assembly of binary 

nanoparticles in an electric field, without explicitly considering the solvent particles. The 

solvent influences the behavior of the nanoparticles through random collisions and 

through imposing a frictional drag force on the motion of the nanoparticles. From the 

simulations, 1) We elucidate how parameters including permittivity, volume fraction, 

particle size, and the frequency of the field can be utilized to control the morphology of 

the superlattice structures. 2) The study explores rich patterning dynamics and a wide 

range of superlattices from functional gradient columns to an alternating chain-network. 3) 

The ability to pattern nanoparticles into a target structure will provide a critical insight to 
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design for a new functional material. Recent experiments demonstrated the potential of 

new functional materials, which is similar to the structures we demonstrated. However, 

one significant feature of the structures observed from our simulations is a mixture of 

binary particles. These are first non-experimental observations and are not attainable 

from monodispersed particles.     

Poly (amidoamine) dendrimer nanoparticles have been used extensively in diverse 

areas of biology and medicine, such as gene and drug delivery, to disrupt cell membranes 

and allow the transport of material into cells. The size and surface chemistry of the 

nanoparticle have a strong influence on the interaction between a dendrimer and a 

membrane. We proposed a three-dimensional phase field model to account for this 

interaction. Attention is focused on the hole-formation process on the membrane. The 

simulations lead to several findings. 1) An amine-terminated G7 dendrimer, which has 

positive charges on the surface, causes the formation of a hole in the membrane. The 

removed molecules of the membrane encircle the dendrimer and form a dendrimer-filled 

membrane vesicle. 2) This effect is significantly reduced for a smaller dendrimer. 3) An 

acetamide-terminated dendrimer, which has a neutral charge at the surface, does not 

cause holes effectively. These results are consistent with experimental observations from 

AFM. Furthermore, the simulations show the whole process for generation of a hole, 

where the interface energy and elastic energy play an important role in that process. This 

makes the fundamental mechanism clear for the formation of a hole in the membrane. In 

addition, this may provide a critical insight to the designing of nanoparticles for various 

biological and medicine applications. 
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Electrowetting, which means that the wettability of a structured surface can be 

controlled by applying an electric field, has become an especially successful mechanism 

to control the surface morphology of small structures. It has a variety of applications such 

as ‘lap-on-chip’, electrowetting display, and optical system. In this thesis, we have 

developed a three-dimensional phase field model combining thermodynamics and 

hydrodynamics. The model leads to the following achievements. 1) This model is capable 

of predicting the dynamic responses of electrowetting, which may not be obtained from 

the conventional thermodynamic equations, but it is very important for designing 

practical devices. 2) It enables us to extend the system to complex droplet morphologies 

and patterned electrodes. 3) The simulation predicts the instability phenomenon of 

electrowetting, which was observed from experiments. The simulations reveal that the 

driving force for the diffusion around the edge of the droplet is strong and alternating 

compression and tension, breaks the contact line and leads to the instability. 4) A 

parametric study combined with a stability analysis shows that the instability is also 

related to surface energy. This observation explains suppression of the instability by 

changing the surface energy. The presented results may provide a useful guide for 

controlling this phenomenon. 
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