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CHAPTER I

Introduction

This thesis is a study of magnetic materials that contain both local magnetic

moments and itinerant electrons or holes. We investigate how changing both the

carrier concentration (n) and the local magnetic moment concentration (N) affect

the magnetic and electronic properties of a system. An overview of different types of

magnetic materials is plotted on a carrier concentration - magnetic moment concen-

tration (n-N) diagram (Fig. 1.1). We present the experimental results of compounds

representing three different regions on the n-N plane. In each case, we are motivated

by reports of observations of new electronic and magnetic phenomena. In this thesis,

we perform extensive measurements and analysis of compounds that display these

unexplained phenomena in an effort to better understand the mechanisms that lead

to them.

1.1 Thesis Organization

In the remaining part of this first chapter, we introduce the novel electronic and

magnetic phases associated with the three different regions on the n-N plane that

we present in this thesis. We first introduce the Wigner lattice, which is located

at the lower left corner, in the N=0, and low n region of Figure 1.1. In the next

section, we introduce the unexplained dependences of TC on n and N for dilute

1



2

Itinerant Magnets

Wigner Lattice ?

Magnetic Insulators

Dilute Magnetic 
Semiconductors Heavy Fermions

0
0

1020

1015

C
ar
rie
rs

Figure 1.1: Schematic of different types of magnetism based on the local magnetic moment concen-
trations and itinerant carrier concentrations of the host materials.

magnetic semiconductors (DMS) located at the low to moderate N and n region of

the plot. In the following section, we introduce the magnetic heavy fermion materials

that have a quantum critical point (QCP), which are located in the hign N and n

region. Chapter 2 is a description of the experimental techniques that were used. In

Chapter 3, a description of the flux growth method that was used to grow all the

single crystals of CaB6, PtSb2, and Yb3Pt4 that we studied is presented. In Chapters

4 through 6, our experimental results on each of the three compounds are presented.

In the concluding chapter, we summarize our results and suggest further studies and

measurements.

1.2 The Wigner Lattice

We begin our study at the low n, and N=0 region, where we use the semiconduc-

tor, CaB6, to search for and study the properties of a three dimensional ferromagnetic

Wigner lattice, which had never been observed until it was reportedly observed in

La doped CaB6 by Young et al in 1999 [1]. The observation of ferromagnetism in
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Ca1−xLaxB6 (0.001<x<0.05) with Curie temperatures of 600 - 900 K was remark-

able considering its semiconducting character and non-magnetic elements [1]. The

maximum saturation moment, MS = 0.07 µB per electron was found at x=0.005,

which is an average separation of 25 Å between neighboring electrons. With such

large interelectron distances, it was concluded that a previously unobserved type of

mechanism had to be responsible for the ferromagnetism. The proposed mechanism

was the Wigner lattice, a decades old theory proposed by E. Wigner in the 1930s.

Wigner showed that an electron gas in a positive background will crystallize into a

lattice at sufficiently low density. A two dimensional Wigner lattice was experimen-

tally observed in 1979 when electrons were floated on liquid helium [2, 3], but a three

dimensional Wigner lattice has never been observed.

In an effort to observe and fully characterize the proposed Wigner lattice in doped

CaB6, we measured the field dependence of the magnetization of single crystals of

electron doped CaB6 at different temperatures over an extensive range of electron

concentrations ranging from 1016 cm−3 to 1020 cm−3, which were determined by Hall

voltage measurements, but found no correlation between electron concentration and

ferromagnetism. Electron microprobe analysis and magnetization measurements of

some of the single crystals before and after acid etching found a correlation between

ferromagnetism and the presence Fe and Ni impurities found on the crystal surfaces.

1.3 Tuning the Curie Temperature in Dilute Magnetic Semiconductors

We next move on to the low to moderate n and N region of the plot, represented

by the dilute magnetic semiconductors. In this region, we measure PtSb2 doped

with rare earth elements. Previous measurements of dilute magnetic semiconduc-

tors (DMS) show unexplained dependences of TC on n and N [4]. The purpose is
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to explore the possibility of controlling both n and N by doping, and then, after

measurements of the electronic and magnetic properties, determining and explain-

ing the relation between n, N and the Curie temperature (TC) of the ferromagnetic

crystals. From our experiments, we hoped to learn how the interactions between

localized magnetic moments evolve from dipolar when n=0 to Ruderman Kittel Ka-

suya Yosida (RKKY) when both n and N are large. We also wanted to determine

how the n and N dependence of TC evolves from TC ∝N in the low n, high N region,

such as in the rare earth chalcogenides, where we expect dipolar interactions domi-

nate [5] to TC ∝n2 in the high n and N region, such as in the rare earth elements,

Er, Tm and Dy, where we expect RKKY interactions to dominate [6, 7, 8]. In prin-

ciple, in magnetic semiconductors, both the carrier concentration and local magnetic

moment concentration can be controlled independently by adding either electrons

or magnetic moments by doping with the appropriate elements. We synthesized a

variety of single crystals of PtSb2 doped with Ce, Gd, La and Yb and measured their

electronic and magnetic properties. We found evidence for ferromagnetism in some

of our crystals, and evidence for superconductivity in others, but in each case, we

determined that these effects resulted from secondary impurity phases that formed

on the surfaces of our crystals.

1.4 Quantum Critical Points in Heavy Fermion Compounds

The study of compounds in the high n and N section of figure 1.1, represented by

rare earth based heavy fermion compounds, is the main focus of this thesis and was

motivated by the discovery of quantum critical points (QCP) and their associated

novel phases of matter, including an unconventional non-Fermi liquid (NFL) metallic

state such as that observed in magnetic field tuned YbRh2Si2 [9] and pressure tuned
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CeCu6−xAux [10], and unconventional superconductivity, such as that observed in

the pressure tuned materials, CePd2Si2 [11] and CeCu2(Si0.9Ge0.1)2 [12]. A QCP is

a point at T=0 at which a second order phase transition takes place and is thus not

driven by thermal fluctuation, but by zero point quantum fluctuations and is thus

known as a quantum phase transition (QPT). Intense experimental and theoretical

efforts are underway to try to better understand these novel phases, QPTs and the

QCP itself [13, 14] and the four examples listed above are examples of magnetic field

or pressure tuned rare earth based heavy fermion quantum critical systems that have

been most thoroughly measured and studied. Since the early 1990s many metallic

magnetic compounds have been tuned to quantum critical points by doping [15, 16],

however, because doping introduces disorder, which significantly affects the physcial

properties of magnetic metals, a tuning parameter other than doping should be

used to tune the system to a quantum critical point. Thus, there is a shortage of

stoichiometric materials to study that host quantum criticality and one of the goals

of our research group is to synthesize new materials that host quantum criticality.

We have synthesized a new binary intermetallic antiferromagnet, Yb3Pt4, that

can be tuned to a QCP with the application of a 1.6 T magnetic field, when the field

is applied parallel to the rhombohedral a-axis of the crystal. We have extensively

measured the properties of Yb3Pt4 in magnetic fields up to 9 T and temperatures

as low as 60 mK, and have constructed a magnetic field-temperature (H-T) phase

diagram to illustrate the unique properties of this new quantum critical antiferro-

magnet. In Chapter 6, we present our extensive measurements and results of the field

and temperature dependences of the heat capacity, magnetization, AC magnetic sus-

ceptibility, and resistivity. Yb3Pt4 is a new unique quantum critical material with

an unusual transition from a local moment paramagnet to a local moment antifer-
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romagnet via a weakly first order phase transition at TN=2.4 K. As the applied

magnetic field increases, TN decreases and the first order phase line terminates at a

critical endpoint near 1.5 T and 1.2 K. As the magnetic field is further increased, TN

continues to decrease and reaches a QCP at 1.6 T. The properties of Yb3Pt4 deviate

significantly from those of YbRh2Si2 and CeCu6−xAux, suggesting a new scenario for

quantum criticality is realized in Yb3Pt4.



CHAPTER II

Experimental Methods

In this chapter, we describe the experimental techniques used to measure the

thermal, electronic and magnetic properties of the single crystals of CaB6, doped

PtSb2 and Yb3Pt4 that we studied in this thesis. Most of the heat capacity and

resistance measurements were performed using the 3He insert option of our Quantum

Design Physical Properties Measurement System (PPMS) at temperatures as low as

0.38 K and at magnetic fields as high as 9 T. We also have a second PPMS equipped

with a 14 T magnet and a dilution refrigerator insert capable of temperatures as low

as 50 mK. All of the magnetization and AC magnetic susceptibility measurements

were performed using a Quantum Design Magnetic Properties Measurement System

(MPMS) at temperatures ranging from 1.8 K to 300 K and in magnetic fields as high

as 7 T.

2.1 Specific Heat

All heat capacity measurements were performed in a Quantum Design Physical

Properties Measurement System (PPMS), with a 9 T superconducting magnet, and

a 3He insert, allowing access to temperatures as low as 0.38 K. The PPMS measures

the heat capacity at constant pressure, CP =(dQ/dT)P , where Q is the flow of heat

out of the crystal, using a numerical method developed by Hwang et al [17] [18]. This

7
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section begins with a description of the crystal mounting procedure, and the basic

hardware, followed by a discussion of Quantum Design’s measurement method and

fitting technique. It is then shown how this fitting technique fails near very sharp

phase transitions, and a method to estimate the latent heat of a first order phase

transition using the PPMS raw data is introduced.

2.1.1 Hardware and Crystal Mounting

Metallic Frame 
 

T = TB 

Metallic Frame 
 

T = TB 
Crystal 

Apiezon N-grease 
K = Kg 

Sapphire Platform 

Thermometer Heater 

Wires 
K = KW 

Figure 2.1: Schematic of the heat capacity hardware, and associated thermal connections. Kg is the
thermal conductance of the grease, and KW is the thermal conductance of the wires,
and TB is the temperature of the puck frame, which acts as the thermal bath.

(a) (b)

heaterThermometer

Figure 2.2: (a) Picture of the heat capacity puck used to mount the crystal for measurement in
the He-3 insert of the PPMS. (b) A close-up picture of the heat capacity puck with the
heater and the thermometer visible on the underside of the platform.
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Fig. 2.1 is a schematic representing a single crystal mounted on the heat capacity

puck. A small amount of Apiezon N grease is used to hold the crystal in place on a

sapphire platform. The grease also acts as a good thermal connection between the

crystal and the platform. A thermometer and a heater are located on the underside of

the platform, which is suspended by four platinum wires that also serve as voltage and

current leads for the heater and the thermometer, and provide a thermal connection

to the surrounding bath (the metallic puck frame). Figure 2.2 shows two pictures

of the heat capacity puck, including a close-up (Fig. 2.2(b)) that reveals the heater

and the thermometer on the underside of the platform.

2.1.2 Measurement Technique

Since its start in the early 20th century, a number of heat capacity measurement

techniques and instruments have been developed [18, 19, 20, 21, 22, 23]. Quantum

Design uses a numerical method developed by Hwang et al [17, 18] based on a thermal

relaxation method. Lashley et al [19] provide a good review of the measurement

technique, and the fitting method used in the PPMS to obtain the specific heat from

the raw data. The heater applies a constant power, P, increasing the temperature of

the system to T+∆T (∆T/T≈1%). The heater is then turned off, and the system

is allowed to cool, losing heat through the wires to the bath at a rate, P=KW T.

Referring to Fig. 2.1, the flow of heat through the system is described by the two

differential equations,

P = CP
dTP

dt
+ Kg(TP − TC) + KW (TP − TB)

0 = CC
dTC

dt
+ KW (TC − TP )

where P is the constant power applied by the heater, CC is the heat capacity of

the single crystal, CP is the heat capacity of the platform, including the heater,
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thermometer, and the grease, TC is the crystal temperature, TP is the platform

temperature, TB is the temperature of the thermal bath (puck frame), Kg is the

thermal conductance through the N-grease between the crystal and the platform,

and KW is the thermal conductance through the wires.

Ideally, the grease provides an excellent thermal connection between the sample

and the platform, so that Kg >>KW , and TC ≈TP . In the PPMS fitting routine, this

assumption is called the ”simple model”. For this case, the two above expressions

above simplify to one differential equation,

P = (CP + CC)
dTC

dt
+ KW (TC − TB)

where P is constant during heating, and zero during cooling. During the cooling

phase (P = 0), the entire platform, crystal, and grease cool exponentially as one

unit, resulting in a simple solution to the differential equation:

TC(t) = TB + ∆Te(−t/τ)

where τ=(CP +CC)/KW , and ∆T=T(t)-TB. Using this simplified picture to deter-

mine the heat capacity is often called the relaxation method [19, 20, 21, 22]. In

the relaxation method, the total heat capacity, Ctot=CP +CC , is easily obtained by

plotting the raw T(t) vs. t data on a log scale. The result is a straight line represen-

tation of the temperature decay region, whose slope is equal to 1/τ . Knowing the

value of KW , a linear fit is all that is required to determine Ctot. KW is determined

by measuring the temperature rise as a constant heater power is applied. Gener-

ally, the temperature dependence of CP , CC , and KW are insignificant during the

small temperature rise that occurs during the measurement. CP , the platform heat

capacity is determined by measuring the heat capacity of the entire platform with

just the grease, before adding and measuring the crystal. This initial measurement
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determines CP over the desired temperature range, which is then subtracted from

the total heat capacity, Ctot=CP +CC .

Using the fitting method developed by Hwang et al [18], the PPMS numerically

fits the entire T(t) vs. t heat pulse. It attempts to fit the data using both the simple

model (Kg >>KW ), and the two tau method, which includes the heat flow between

the crystal and the platform. The PPMS chooses the result of the model that gives

a better fit. This is one of the strengths of the Quantum Design fitting method. It

can measure the specific heat even when the crystal is not thermally well connected

to the platform. In the following section, raw data taken using a single crystal of

Yb3Pt4 will be used to illustrate how the PPMS fitting routine tails near very sharp

phase transitions.

2.1.3 Very Sharp Phase Transitions

The fitting method used by the PPMS to obtain heat capacity values from raw

data, does not yield accurate results near sharp phase transitions. Lashley et al [19]

show, using a single crystal of Sm2IrIn8 near its first order phase transition at 14

K, that the PPMS, with its current fitting routine, is unable to obtain an accurate

value for the heat capacity from the raw data for first order phase transitions near the

critical temperature. In fact, the PPMS is unable to accurately measure any sharp

phase transition near the critical temperature, whether it is first order or sharply

second order. Measurements carried out on Yb3Pt4 near its very sharp, weakly first

order magnetic phase transition at 2.4 K (Fig. 2.3) will be used to illustrate this

point.

This weakly first order phase transition shows a decrease in latent heat as the

magnetic field is increased, and resembles a second order phase transition when H = 1

T. A close look at the raw temperature versus time data reveals a way to differentiate
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a first order phase transition from a sharp second order transition, and to estimate

its latent heat. At temperatures just below, and just above the transition, the PPMS

Figure 2.3: The temperature dependence of the specific heat near the weakly first order magnetic
transition at 2.4 K. Because the transition in Yb3Pt4 is very sharp, the PPMS is unable
to accurately fit the raw T(t) vs. t data.

fitting routine is accurate. Figure 2.4 shows a typical result for Yb3Pt4 just below

the critical temperature, where the temperature versus time raw data fits well to

the simple model employed by the PPMS, yielding an accurate result. It is easy to

check the PPMS value for the heat capacity by applying the relaxation method to

the cooling section of the raw data. As described previously, on a logarithmic scale,

the exponential decay yields a straight line with the slope equal to 1/τ . However,

the shape of the raw data changes significantly, when, during the heat pulse, the

temperature rises through the critical temperature (Fig. 2.5). For this case, the

fitting routine will not give an accurate result, because it tries to fit to a region with

a single constant heat capacity, but the raw data has two regions with two different

heat capacities. The two regions are clearly seen on a logarithmic scale (Fig. 2.5(b)).

The steeper sloped, high temperature linear region represents the lower specific heat,

at temperatures just above the TC . The smaller sloped linear region represents the
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(b)(a)

T(0) = 2.34 K

Figure 2.4: (a) Plot of the T(t) vs. t raw data used to determine the heat capacity of the Yb3Pt4
crystal just below the sharp phase transition at 2.4 K. (b) T-TB vs. t on a semilog
scale to show the linear region with slope equal to τ−1

higher specific heat at temperatures just below TC . The non-linear region in between

represents the time during which there is a flow of latent heat associated with the

first order phase transition. Ideally, the signature of a latent heat is a completely flat

T(0) = 2.34 K

(b)(a)

8

L=0.09 J/mole Yb-K

Figure 2.5: (a) The T(t) raw data with the heat pulse passing through the transition temperature.
Attmepting to fit this data using the simple model will not give an accurate result.(b)
The raw data plotted as ∆T vs t on a semilog scale. There are two different regions, the
steeper slope representing the heat capacity just above the transition and the smaller
slope representing the heat capacity just below the transition. The non-linear region
in between is the signature of the latent heat associated with the first order phase
transition.

horizontal line both on the temperature rise side, and the temperature decay side

of the T(t) vs. t raw data. However, the condition depicted in Fig. 2.1 is far from

ideal. Only the crystal is experiencing the first order phase transition. The platform,

grease, thermometer, and heater do not. Even though the temperature of the crystal
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is not changing, the temperature of the other components continues to change as

heat is added to or removed from the system. The result is the non-linear region

observed in Fig. 2.5(b). The heat flow during the decay cycle can be estimated using

dQ/dt=KW ∆T. KW is calculated by the PPMS at each temperature, and does not

change much over the temperature range of the zero-field 2.4 K phase transition.

Near 2.4 K, it is approximately 5×10−7 J/Sec-K. The latent heat is then estimated

by multiplying the power by the length of time the raw data remains in the non-

linear region. As indicated in the figure, we estimate a latent heat of 0.09 J/mole

Yb-K. In chapter 6, we will show how the latent heat changes as a function of applied

magnetic field.

2.2 Resistivity

In this section we describe the technique used to measure the resistivity and the

Hall effect. We describe the crystal mounting procedure, the hardware used, and the

measurement method. Using the 3He insert, we were able to measure the resistance

from 0.38 K up to 300 K in fields up to 9 T. This enables the measurement of the

magnetoresistance in addition to the usual temperature dependence of the resistivity,

which is especially useful when creating magnetic field-temperature phase diagrams,

like the one for Yb3Pt4. As described below, with the 9 T field, we can calculate the

charge carrier concentration via measurements of the Hall effect.

2.2.1 Hardware and Crystal Mounting

The first step in the crystal mounting procedure is to make sure that the crystal

is free of any macroscopic impurities, and that the surface is clean. The quantity

of importance is the resistivity, ρ=RA/L, where A is the cross sectional area of the

sample, R is the measured resistance and L is the distance between the voltage leads.
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Thus, before attaching electrical leads and mounting the crystal on the PPMS puck,

its shape and dimensions need to be measured and recorded. The PPMS comes

equipped with a 8 pin plug-in crystal mounting stage (Fig. 2.6(a)). As shown in the

diagram, the crystal need to be mounted on the plug-in stage. The stage has room

for two crystals, to be wired to each set of four pads, consisting of two outer current

leads (I+, I−) and two inner voltage leads (V+, V−). Figure 2.7 is a picture of an

actual resistance puck with two crystals attached. The crystal should first be glued

I+ V+ I-V-

I+V+V-I-

channel 1

channel 2

crystal 1

crystal 2

=   plug-in pins

I+ V+ I-V-

I+V+V-I-

channel 1

channel 2

crystal 1

crystal 2

(a) (b)

Figure 2.6: (a) A schematic of the mounting stage used for doing regular temperature or magnetic
field dependent resistance measurements using the 3He insert of the PPMS. (b) The
same schematic as in (a), but with the crystals wired to obtain the magnetic field
dependent Hall voltage.

onto the stage using GE varnish, but care must be taken to put varnish only on

the side of the crystal that will be glued to the stage. If excess varnish accidentally

gets onto the wiring side of the crystal, it needs to be promptly removed, or it will

interfere with the crystal contacts. Once the varnish is dried, and the crystal is

held to the surface, small gauge platinum wire is used to connect each lead from the

crystal surface to the correct contact pads on the stage. The first step is to attach

four platinum wires to the crystal, two outer current leads, and two inner voltage
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(b)

(a)

1 cm1 cm

Figure 2.7: (a) A picture of the resistance puck used for the PPMS 3He insert with two crystals
mounted. The Pt wires are attached to the crystals using silver epoxy and to the puck
frame using regular Pb-Sn solder. (b) A close-up of the crystal attached at channel 1.

leads. The Pt leads should be cut roughly 1 cm long. The best way to place them

on the crystal surface is by using tweezers to dip one end of a Pt wire into silver

epoxy, then carefully place that end at the proper position on the crystal surface.

Once all four leads have been laid onto the crystal, the epoxy needs to be cured for

several hours at about 100 C. The entire crystal plus stage can be placed in the oven

as long as the temperature is kept near or below 100 C. When the epoxy is cured

the two-lead contact resistance needs to be measured. Any resistance above ∼ 10 Ω

is too high. To obtain a lower contact resistance, the first thing to try is to put a

relatively high current through the bad contact. If no improvement in the contact

resistance is achieved using a maximum of 100 µA, the contact needs to be redone.

Silver epoxy contacts can be removed by soaking them in a 50/50 mix of methanol

and toluene. Once the contact resistances of the silver epoxy joints are at acceptable

values, the other ends of the Pt wires can be attached to the contact pads of the

stage using regular Pb-Sn solder with any standard flux and any standard soldering

iron. After all the leads are attached, it is advisable to check the resistance of the

crystal using at least one other method such as lock-in amplifier, or a sensitive four
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lead digital voltmeter to be compared to the value given by the PPMS, to verify that

neither the contacts nor the crystal itself has been damaged by the mounting process

and is ready to be measured. After this test, the crystal holding stage can be placed

back in its 8 pin holder.

2.2.2 The PPMS Resistance Measurement Method

As described in the Quantum Design Hardware and Options Manuals [17] all

of the resistivity measurements were done using the standard PPMS measurement

technique, which uses a bridge circuit to drive an AC current through the sample, and

measures the corresponding change in voltage across the votage leads. The current

is driven at 7.5 Hz, and typically we set the current to 100 - 500 µA. The first stage

in the measurement process is to maximize the signal to noise, but this turns out

to be a balancing act. The first step is to set the minimum base temperature of

∼ 0.38 K. If the current is too high or the contact resistances are too high, there

could be significant heating, which can prevent the 3He system from reaching its

minimum temperature. If the system is unable to get below ∼ 0.45 K, either the

excitation current is too high, or one of the current contacts is too high. Sometimes

a contact can fail during the cooling process. If the system successfully reaches 0.38

K, the current should be increased to as high a value as possible without heating the

system. This can be achieved by writing a sequence which repeats a five or ten step

resistance measurement at different currents. If the value of the resistance does not

change with increasing current, the highest current should be used.

2.2.3 Measuring the Hall Voltage

By applying a magnetic field to the crystal and measuring the voltage perpen-

dicular to the direction of the current, the carrier concentration can be determined
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via the Hall effect. Whenever there is both a current and a magnetic field present,

charged particles will feel a force, ~F=e~v × ~B, where e is the electron charge and ~v

is the velocity of the electron. This will result in negatively and positively charged

particles moving to opposite sides of the crystal perpendicular to the direction of the

current, resulting in a potential difference called the Hall voltage. To measure the

Hall voltage, the voltage leads need to be positioned to measure the voltage differ-

ence across the crystal perpendicular to the direction of the current (Fig. 2.6(b)).

The charge carrier concentration is determined by

n =
i

(∆V/∆B)et

where i is the current through the crystal, ∆V/∆B is the slope of the linear Hall

voltage versus applied magnetic field data, e is the charge of the electron, and t is

the thickness of the crystal, determined by dividing the cross sectional area by the

distance between the two Hall leads. The data are only linear if the carrier concen-

tration is constant across the full field range at the chosen temperature. Because it

is generally not possible to completely avoid any of the normal magnetoresistance

mixing in with the perpendicular voltage component, the same number of data points

must be taken with the same magnetic field range applied in the opposite direction

so that the positive and negative field data can be averaged to filter out the parallel

component of resistance and isolate the pure Hall voltage signal.

2.3 Measurement of Magnetic Properties

All of the magnetic measurements of Yb3Pt4 were done using a Quantum Design

Magnetic Property Measurement System (MPMS) in temperatures from 1.8 K to

300 K, and in fields up to 7 T. To characterize the magnetic properties of Yb3Pt4,

we measured the field and temperature dependence of the magnetization, and the
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AC magnetic susceptibility. In this section, each type of measurement is described.

We begin with a description of the crystal mounting procedure, which is the same

for both measurement methods.

2.3.1 Crystal Mounting

For all standard magnetic measurements, the crystal is mounted in a drinking

straw, and held in place by using a small amount of Apiezon N-grease to stick the

crystal to the side of the straw, or the crystal can be placed in a straw segment, and

the segment can then be placed in a full sized straw (Fig. 2.8). For crystals with a

very small magnetization, like CaB6, the diamagnetic signal of the straw will drown

out the crystal signal. In cases such as these, a sample holder with as small a back-

ground as possible should be used. For our measurements of doped CaB6, we used

high purity quartz tubing, which has an extremely small, nearly zero magnetization.

Once the crystal is mounted in the holder, the holder is attached to end of the sample

rod and lowered into the MPMS inside the measurement coils, where it then must

be precisely centered. A crystal rotation insert is also available for measuring the

angular dependence of the magnetization or AC magnetic susceptibility (Fig. 2.8

(a),(b)). The crystal is glued onto the platform using GE varnish.

(a) (b) (c)

crystal

straw
segment

Figure 2.8: (a) A photograph of the end of the rotator insert for the MPMS next to a drinking
straw, a tube of N-grease used to stick the crystal to the inside of the straw, and a
wooden stick, used to apply the N-grease to the straw. (b) A close-up of the rotation
insert, showing the platform on which the crystal gets mounted. (c) A close up of the
middle of a drinking straw, where a straw segment containing a crystal has been placed.
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2.3.2 Magnetization

As described in the Quantum Design MPMS manuals [24], the magnetization

of a crystal is measured by moving it through a set of four very precisely wound

superconducting pick-up coils (Fig. 2.9) [25], with the two outer coils counterwound

relative to two inner coils, allowing the MPMS to almost completely filter out the

large magnetic fields of the superconducting magnet to 0.1%. The signal detected

by the pick-up coils is coupled to the Superconducting Quantum Interference Device

(SQUID) via an isolation transformer. The crystal is moved through the coils by

a stepper motor, which can be adusted to move the crystal from 0.1 cm to 12 cm,

and take anywhere from 2 to 64 evenly spaced data points. We typically used scan

lengths of either 4 or 6 cm, and 24, or 32 data points respectively. The first step is

to center the crystal with respect to the pick-up coils. This is done by lowering the

crystal to approximately the right position, and intiating a full lenth scan in a small

applied field typically ranging from 100 to 1000 Oe. Normally, the biggest part of

the signal corresponds to the crystal. The MPMS can then auto-adjust the starting

position. Because the coil set has two coils in the center plus one above and one

below, the total voltage induced will be twice as high for the center compared to the

voltage induced by each of the outer coils. Fig. 2.10 is a schematic of the voltage

versus position signal for a well centered crystal [25]. After taking a measurement,

the actual signal is fit to the expected signal for a magnetic dipole moving through

the SQUID pick-up coils, and the value of the magnetization is obtained from this

fit.

For the special case of very small signals, such as the case with CaB6, it is some-

times difficult to find a centering signal in the background noise. In this case, the

starting position can be obtained, by first centering a test crytal that has a very
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crystal 

Figure 2.9: A schematic of the pickup coils used to detect the magnetic signal in the MPMS. The
blue arrows show the direction of the current induced by the magnetic crystal. There
are a total of four wire turns, with two of them counterwound with respect to the other
two to cancel the current induces by the applied magnetic field (Figure from McElfresh,
1994 as referenced in the text).

Figure 2.10: A schematic of the signal induced by a well centered crystal with a positive magneti-
zation (Figure from McElfresh, 1994 as referenced in the text).

large signal, then replacing the test crystal with the actual small signalled crystal.

If the crystal has a magnetic signal, but just too small to be seen from scan to scan,

the MPMS should be set to average many scans. For a typical crystal with a healthy

signal, we generally average 3 scans. In the case of CaB6, which had a very weak

signal, we averaged 27 scans. In addition, we used highly pure quartz tubes to min-

imize the background signal. Drinking straws have a small diamagnetic signal that

can interfere when trying to measure very small magnetizations.
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2.3.3 Arrott Plot Analysis

Arrott plot analysis is a method to determine the Curie temperature and critical

exponents of a ferromagnetic phase transition based on measurements of the field

dependence of the magnetization taken at different temperatures [26, 27, 28]. In this

method, the magnetic field, H, is expanded in odd powers of the magnetization,

H = a0M + a1M
3 + a2M

5 + ...

Keeping just the first term in the expansion, H/M=a0+a1M
2. We then plot M2

vs H/M and extrapolate the high field lines to the closest axis (Fig. 2.11). The

Y-intercept of the isotherms gives us the extrapolated spontaneous magnetization

squared, M2, at each temperature below TC . The X-intercept is the zero field in-

verse magnetic susceptibility, χ−1
0 at temperatures above TC . TC can be roughly
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Figure 2.11: (a) The field dependence of the magnetization for a single crystal of Gd doped PtSb2

at different temperatures as indicated. (b) Arrott plots for the same crystal indicating
that TC ≈11 K. Inset: The temperature dependence of the extrapolated zero field
spontaneous moment fit to a power law in reduced temperature, t=(T-TC)/TC , with
M∝ |t|−β , with β=0.37, and TC=10.25 K.

determined by observing which isotherm passes through the origin. A more care-

ful analysis of the temperature dependences of both extrapolated values can then
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be plotted as a function of the reduced temperature, t=(T-TC)/TC and standard

graphical fitting routines can be use to determine both TC and the values of the crit-

ical exponents. Fig. 2.12 shows the field dependence of the magnetization taken at

different temperatures and the associated Arrott plot for single crystal of Gd doped

PtSb2. The inset shows the extrapolated spontaneous magnetization as a function

of temperature with the best fit to M vs (TC-T)−β giving the critical exponent for

the spontaneous moment, β=0.37 and TC=10.25 K.

2.3.4 AC Magnetic Susceptibility

The AC magnetic susceptibilty sytem and measurement technique is described

in detail in the MPMS Options manual [24]. The preparation for an AC magnetic

susceptibility measuremet is exactly the same as the preparation for the DC magne-

tization measurement. The crystal is mounted near the center of a drinking straw, a

small magnetic field is applied, and the sample is centered in this DC field. However,

for an AC susceptibility measurement, the crystal must be centered and measured

using a 6 cm scan length. The MPMS has a measurement resolution of 5×10−12Am2

over a frequency range of 0.001-1000 Hz [24].

The AC susceptibility measures χAC=dM/dH=χ′+iχ′′. A small AC field is applied

to the crystal, and the resulting in phase, χ′, and out of phase, χ′′ signals are recorded.

The MPMS first applies what Quantum Design calls drive nulling, during which the

MPMS records and then nulls the response of the entire system to the drive frequency.

subtracts unwanted background noise stemming from the AC current drive, the 60

Hz line, and other electronic noise. This takes place with the crystal centered in

the bottom measurement coil. After the nulling process, the MPMS measures and
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averages a number of measurements as specified by the program and is fit to

Mb = A + Bt + M ′cos(ωt) + M ′′sin(ωt),

[24] where Mb signifies that the measurement is taken in the bottom coil, A is the

remaining DC offset, B is the linear drift in temperature or magnetic field, ω is

the frequency of the AC drive signal, and M ′ and M ′′ are the in-phase and out-of-

phase parts of the measurement signal. In the next measurement stage, the stepper

motor moves the crystal up to the center of the two middle coils and performs

a similar process, producing a second measurement, Mc. The results of the two

measurements are Mb,c=Mf(b,c)+M0, where M is actual crystal signal, M0 is the

remaining background signal left from an imperfect nulling process, and f(b,c) is the

response function expected for an idealized dipole which varies with the position in

the coils. The final χ′ and χ′′ signals are then given by

M = N
Mc −Mb

f(c)− f(b)

where N is a normalization factor [24]. The operator then determines the signal

averaging in the measurement program.

2.3.5 Detecting Superconductivity

Measurements of the temperature dependence of the AC magnetic susceptibility

can detect the presence of superconductivity. When a material becomes supercon-

ducting, it expels magnetic flux [29]. This effect is known as the Meissner effect and

is unique to superconductivity [29]. This expulsion of magnetic flux from a super-

conducting material is observed in measurements of the AC magnetic susceptibility.

When the magnetic flux is expelled from the superconducting crystal, the magne-

tometer will measure a negative magnetic susceptibility, that when normalized for
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crystal volume will indicate that magnetic flux lines initially passing through the

crystal in its normal state, have been completely expelled from the crystal in its su-

perconducting state. For example, Fig. 2.12 is a plot of the temperature dependence

of the AC magnetic susceptibility, normalized by volume, for a partially supercon-

ducting crystal of Yb-doped PtSb2. When the flux has been completely expelled

from the crystal, the normalized value will be -1/4π. If the result is some fraction

of -1/4π, then the crystal is only partially superconducting, so if only half of the

crystal volume is superconducting, the measurement will find a reading of -1/8π in

the superconducting state, so this measurement can also determine the amount of a

superconducting impurity phase that may be present in a crystal. For the case of the

Yb-doped crystal of PtSb2 shown in the figure, χ′=-0.00045 in the superconducting

state, indicating that less than 0.1% of the crystal is experiencing superconductivity.

This extremely small volume superconducting region is from a small amount of su-

perconducting impurity phase, PtSb, on the surface of the crystal and is not a bulk

effect.
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Figure 2.12: The temperature dependence of the volume normalized AC magnetic susceptibility,
χ=χ′ (hollow squares)+iχ′′(filled circles) for a partially superconducting crystal of
Yb-doped PtSb2.



CHAPTER III

Growth of Single Crystals from Metallic flux

3.1 Introduction

The flux growth technique was used to grow all of the compounds that were

studied in this thesis. Single crystals of CaB6 were grown from Al flux, doped PtSb2

from Sb flux, and Yb3Pt4 from Pb flux. An excellent overview of this technique has

been written by Fisk and Remeika [30]. The growth of intermetallic crystals from

metallic flux is analogous to the growth of sugar crystals from water. To grow large

sugar crystals, water is heated up and regular polycrystalline sugar is dissolved in

to it. A piece of string, or a wood stick is then placed into the solution to act as a

nucleation site, or the crystals can grow on the walls of the container. The crystals

slowly grow after the solution is removed from the heat source and allowed to cool.

In this case the water acts as the flux from which the sugar crystals grow. For the

case of CaB6, molten Al is the flux, and for PtSb2 and Yb3Pt4 the fluxes are molten

Sb and Pb.

3.2 Advantages of Flux Growth

The flux growth method is an inexpensive and relatively easy way to grow crystals,

requiring only a simple box furnace with a maximum temperature of 1500 C or

less. Fisk and Remeika [30] present a good review of some of the advantages and

26
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disadvantages of the flux growth method. The materials are placed in a small Al2O3

or MgO crucible, which is then sealed in a quartz tube backfilled with Ar gas. Flux

growth enables crystal growth at temperatures much lower than the actual melting

points of the constituent metals, which improves crystal quality by minimizing strain

and defects sometimes induced by a higher temperature environment. The formation

of the crystals within the metallic flux also serves as an extremely clean environment,

again leading to improved crystal quality. Flux growth enables the formation of

crystals containing elements with very high vapor pressures, such as Yb, which are

prone to evaporate in a simple solid state reaction. In the flux growth method,

while some of the Yb will evaporate into the enclosed atmosphere, and deplete the

mixture, most of it dissolves and remains in the metallic flux. Laboratories searching

for new intermetallics to study can simply choose two or three metallic elements and

experiment with the element ratios, and end up with a multitude of potentially

interesting and useful single crystals. In the case of some element combinations,

such as the Yb-Pt binaries, the existence of the many different phases can also be a

disadvantage when attempting to isolate just one kind of crystal.

3.3 Disadvantages of Flux Growth

One of the main disadvantages of the flux growth method is the inconsistency of

both crystal type and quality, with the quality of crystal varying from compound to

compound and from batch to batch. The crystals are sometimes too small or delicate

to measure. Also, the flux itself can become a part of the crystal, leading to even more

potentially parasitic binary and ternary compounds. Often, during initial growth,

and sometimes even after the best ratio of elements and oven settings have been

determined, a single batch will contain several different crystal types, both binary
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and ternary. Especially during initial exploratory growths, it is difficult to predict

exactly what crystals will grow. Since there is a limited number of metals suitable

for use as a flux, sometimes it is not possible to grow certain compounds using this

technique. The most significant problem with flux growth is the inconsistent purity

of the crystals. They often contain flux inclusions, and worse, secondary phases

contained within the sample, or on the sample surface, which ultimately can result

in the detection of phase transitions that are not associated with the bulk single

crystal. Sometimes, the crucible type contributes to this problem. We tended to use

Al2O3 crucibles, and at sufficiently high temperatures, the Al will evaporated out

of the container, and could contribute to unwanted impurity phases. SiO2 is also

available as a crucible material, but this could lead to impurity phases from the Si.

3.4 Determining the Ratio of Elements

After deciding which compound to grow, previously published binary phase dia-

grams are a good place to start [31], but they are often incomplete, and in the case

of the Yb-Pt phases, we grew at least three previously unreported peritectic phases,

Yb5Pt9, Yb3Pt5, and what we believe to be Yb4Pt7. We also grew the known ternary

compound, Yb2Pt2Pb. The unintended growth of ternary compounds due to the in-

corporation of the element used for flux is not unusual. For example, the role of

Pb must be considered when planning to grow Yb-Pt binary compounds and we

always consider an Yb-Pt-Pb ternary phase diagram, which we interpolate by trial

and error.

We first consider the simpler, binary phase diagram method twhen first attempting

to grow a certain material. For example, if we want to grow Yb3Pt5 from Pb flux,

we would first look on the Yb-Pt phase diagram (Fig. 3.1) [31], find the peritectic,
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Figure 3.1: The Yb-Pt binary phase diagram (from Binary Alloy Phase Diagrams Handbook, 1990,
as referenced in the text). These diagrams are often incomplete. The dashed lines
representing the liquidus mean that the lines have not been experimentally established,
only inferred. In addition, we found at least two new phases, Yb5Pt9, and a second
phase of Yb3Pt5.

and determine the correct ratio of Yb-Pt that should be used to start near the top of

the Yb3Pt5 liquidus then cool to the bottom of the Yb3Pt5 liquidus to maximize the

amount of Yb3Pt5 grown. As a general rule, we would make sure that the total mix

of Yb, Pt and Pb consisted mostly of Pb (95-98%) to make sure that the Yb and

Pt could dissolve into it. Thus for this simple method, we would begin with roughly

95% Pb, making sure that the mass of Pb was enough to mostly fill the crucible.

The remaining 5% of the mix would consist of Yb and Pt in a molar 3:5 ratio.

Sometimes this simple method works well, but as described above, normally the

element used as flux must also be considered and sometimes will form ternary com-

pounds with the elements meant for binary compounds. This occurs for Yb and Pt

in a Pb flux. Yb2Pt2Pb grows easily over a wide range of element ratios. The growth

of single crystals of Yb3Pt4 from Pb flux turns out to be very sensitive to the exact



30

ratio of Yb:Pt:Pb used. This situation is further complicated by the very high vapor

pressure of Yb, which results in the evaporation of some percentage in the growth

melt, which affects the element ratios present in the melt, resulting in a decrease in

Yb relative to the other elements.

The best way to find and maximize the element ratios and temperature profile

of the growth is by trial and error, growing crystals using slightly different ratios of

Yb:Pt:Pb in certain regions in an Yb-Pt-Pb digram, which is produced by creating

a three axis plot representing all possible ratios of Yb:Pt:Pb (Fig. 3.2). Each side

of the digram in Fig. 3.2 represents one of the three binary phase diagrams, Yb-Pt,

Pt-Pb, and Yb-Pb. The result is an unknown three-dimensional liquidus surface,

that is determined experimentally by trial and error. Thus, we end up with points,

or regions on the diagram that correspond to the growth of different crystals. For

example, we found two places that produce single crystals of Yb3Pt4. The first region

produces small blocky crystals (Fig. 3.3(a)), while the other region produces long,

thin, bar-like crystals (Fig. 3.3(b)).

3.5 Growth Procedure

Because the top of the mix will sometimes spill as it is sealed in a quartz tube,

the Yb and Pt should be placed on the bottom of the crucible so that any spillage

is in the form of Pb, and will not affect the ratio significantly. Once the mix is in

the crucible the crucible is placed in a flat bottomed quartz tube, and the whole

thing is evacuated by a regular roughing pump and backfilled with Ar gas several

times to prevent oxidation. Using a propane or hydrogen torch the quartz tube is

then sealed under vacuum. The material plus quartz tube is then placed in a larger

crucible, which is placed in a box furnace and baked. The maximum temperature
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Figure 3.2: A three axis diagram representing all the possible combinations of Yb, Pt and Pb. After
a careful exploration via multiple trial and error, we found two regions that produced
Yb3Pt4. In region 1, a ratio of Yb:Pt:Pb=40:20:40 produces smaller blocky crystals
∼1 mg, using a growth temperature profile (blue) of 12 hours at 1240◦C followed by a
44 hour cool-down to 1100◦C. In region 2, with a ratio Yb:Pt:Pb=9:3.5:87.5, we find
much bigger bar-like crystals up to ∼70 mg, using a growth temperature profile (red)
of 4 hours at 1240◦C followed by a 134 hour cool-down to 800◦C.

can not be set over 1200 C, because this is the melting temperature for quartz. As a

general rule, the furnace is sent to 1190 C, and allowed to sit for 4 hours to make sure

that all the material is melted and dissolved in the crucible. The whole mix is then

cooled gradually. A reasonable rate to start with is 7 C per hour until the bottom of

the peritectic liquidus is reached, and the desired crystals have grown. Maximizing

crystal quality and size requires maximizing the cooling rate and determining the

best temperature to remove the melt normally requires a number of trials. Since the

crystals are now sitting in molten Pb, the Pb needs to be removed. Placed above the

the mixture in crucible is some quartz wool, or a tantalum strainer to allow the Pb

to pour out, but stopping any crystals. The whole thing is then placed upside down

in a centrifuge, which is then spun, forcing the molten Pb out of the crucible, leaving
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(a) (b)

Figure 3.3: (a) A picture of single crystals of Yb3Pt4 grown using the temperature profile and
element ratios in region 1 (blue, Fig. 3.2), next to a dime. (b) A picture of single
crystals of Yb3Pt4 grown using the temperature profile and element ratios in region 2
(red, Fig. 3.2), next to a dime.

the crystals. When the whole thing has cooled to room temperature, it is placed in

some paper and smashed open with a hammer, or crushed open with a vise to reveal

the crystals.

3.6 Crystal Isolation

YY bP b 3

Y b 2P t2P b

Y b 3P t5

Figure 3.4: A photograph of the side of a crucible on which at least three different phases grew, as
indicated on the photograph.

The first step after a growth is crystal isolation and identification. The contents of

the crucible are visually inspected and any obvious crystals are separated out. This

step is sometimes complicated by the presence of multiple phases. For the case of
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the Yb-Pt-Pb melt for example, before determining exactly how to grow each phase,

we often grew multiple phases (Fig. 3.4). The next step is to remove any remaining

metallic flux on the crystal surface. One of the easier ways to do this is to use an

etchant that will remove the flux, while leaving the desired crystal intact. For the

case of removing Pb flux from Yb-Pt binaries, a 50/50 by volume mixture of acetic

acid and H2O2 removes residual Pb flux from the crystal surface, but does not affect

any of the Yb-Pt binaries. However, this method can not be used for Yb2Pt2Pb,

because the etchant will dissolve the crystal. In this case, each crystal needs to have

each of its sides polished manually using emory cloth and ethanol or some other

lubricant.

3.7 Crystal Identification

For previously measured compounds, identification can be quite simple. A match-

ing powder X-ray pattern, or a matching distinct anomaly in the specific heat can

verify the desired crystal identity. We simply collect crystals and crush them into

a powder with an agate mortar and pestle, place the powder on a slide, which is

then mounted in the X-ray diffractometer. Fig. 3.5 shows the known X-ray pow-

der pattern for Yb3Pt4 taken at the National Synchrotron Light Source (NSLS) at

Brookhaven National Laboratory, on a batch of crystals grown in our laboratory. If

there is not enough material for a powder pattern, single crystal X-ray diffraction

can be used to verify the crystal structure. In the first successful growth of Yb3Pt4,

the crystals were splinter-like with typical dimensions of 0.2×0.2×1 mm3. Before we

figured out how to grow it, we had only a few single crystals, not enough for powder

X-ray measurements, so we chipped a small fragment off of one of the crystals, and

determined the crystal structure using single crystal X-ray diffraction. Below we



34

discuss the importance of determining the correct stoichiometry of the compound

before making any conclusions based on X-ray diffraction measurements.

Figure 3.5: The X-ray powder pattern for Yb3Pt4 (Figure courtesy of P. Stephens).

It can be a difficult challenge to accurately identify new or unknown compounds.

The first technique to try is powder X-ray diffraction. In the early stages of our

exploration of the Yb-Pt binary compounds, we grew at least three unknown phases,

including Yb5Pt9. We realized we had a new Yb-Pt binary compound after com-

paring the powder pattern to known powder patterns of other Yb-Pt binaries with

similar stoichiometries [32] (Fig. 3.6). It is also difficult to differentiate between

Pt and Pb during X-ray analysis. Normally, an initial guess of the stoichiometry is

determined by microprobe analysis. The importance of first determining the rough

stoichiometry by microprobe analysis, which gives the stoichiometry of the crystal

within 2%, is best illustrated by a false conclusion on one of the initially unknown

compounds that we grew and measured, Yb2Pt2Pb. After obtaining the crystals

structure from single crystal X-ray diffraction measurements, we concluded that the

compound was Yb2Pt3. This error occurred, because Pb and Pt are difficult to

distinguish.
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Figure 3.6: The powder diffraction patterns for several Yb-Pt binary compounds compared with
the powder pattern obtained from Yb5Pt9, which at the time was unknown. The
powder patterns of the known structures were obtained from the Cambridge Structural
Database, as referenced in the text (Figure courtesy of M. S. Kim).

For the case of Yb3Pt4, microprobe analysis was carried out using a Cameca SX100

system, containing Yb and Pt standards used to accurately normalize the measure-

ments. The atomic ratio of Yb:Pt was found to be uniform across the surface with a

systematic error of ∼2%. Single crystal X-ray diffraction measurements revised the

approximate atomic Yb:Pt ratios to 3:4, finding a rhombohedral P42/mnm crystal

structure for Yb3Pt4, as described in Chapter 6.

Measurement of the heat capacity is an excellent way to identify compounds with

distinct phase transtions that produce large anomalies in the specific heat. Yb3Pt4

can be identified by its unique anomaly at 2.4 K. It can also be identified by its unique
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temperature and field dependent AC magnetic susceptibility, its resistivity, and by

its magnetoresistance. With all the tools of compound identification described above,

the insidious problem of minority impurity phases can still sneak into an experiment.

In the next section, we discuss the very tedious, but essential methods to identify

impurity phases. As discussed in Chapters 4 and 5, ignoring this step can lead to

spurious results from impurity phases falsely attributed to the bulk crystal.

3.8 Finding Impurity Phases

One of the disadvantages of the flux growth method is the possibility of growing

minority impurity phases on the crystal surface, or within the crystal. The best

way to find impurity phases on the crystal surface is by microprobe analysis. A

careful scan of the entire surface of each crystal is advisable. The impurity phases

will show up as lighter or darker shades on the elemental intensity measurement

images. Electron microscopy and electron microprobe analysis were used extensively

to determine the rough stoichiometry of newly grown crystals and to look for impu-

rity phases on the crystal surface. The EMAL lab at the University of Michigan is

equipped with a Hitachi model S3200N scanning electron microscope (SEM), and a

more accurate Cameca SX100 Microprobe Analyzer. A microprobe analyzer is just a

highly accurate SEM. Electron microscopy works by bombarding the crystal surface

with an external beam of electrons, which penetrate the crystal surface, knocking

bound electrons from the inner atomic core, resulting in the release of X-rays from

the atoms near the crystal surface. Detectors count the X-rays and using the relative

intensity of X-rays of different energies corresponding to the different elements, the

stoichiometry can be determined. The microprobe renders a more accurate result

in two different ways. First, unlike the SEM which uses only one detector, the mi-
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croprobe has several more sensitive detectors that can be separately tuned to detect

only certain X-ray frequencies. Second, the microprobe always measures actual ele-

mental standards and re-calibrates the machine before each measurement. The SEM

relies only on a data base, and has no actual standards. It is extremely important

to make sure that the crystal has as flat a surface as possible with respect to the

incoming electron beam. An uneven, or angled surface will result in an inaccurate

stoichiometry result, because the detectors will not measure all the emitted X-rays.

Other methods to find impurity phases are measurements of the heat capacity,

magnetization, and AC magnetic susceptibility. These methods work only if the im-

purity phase has a phase transition detectable by one of these methods. The easiest

to find are superconducting impurity phases. For a BCS superconductor for exam-

ple, it is easy to determine what percentage of the crystal is superconducting using

the famous result, (CS-CN)/CN=1.43, where CS is the value of the electronic heat

capacity at TC of the superconducting state and CN is the value of the electronic

heat capacity at TC of the normal state. A value smaller than 1.43 indicates that

the crystal is only partially superconducting, indicating the possible presence of an

impurity phase. Another way to determine the percentage of the crystal that is su-

perconducting is via the AC magnetic susceptibility, using the fact that a completely

superconducting crystal will completely expel magnetic flux. A partially supercon-

ducting crystal will only partially expel magnetic flux. The way to find Pb, or In

flux inclusions is to look for partial superconducting transitions near 7 K and 3.5 K.

A magnetic transition might also be easy to attribute to an impurity phase. For a

ferromagnetic impurity phase, the saturation magnetization and the Hund’s rule mo-

ment will be smaller than expected for an Yb, or Ce based bulk crystal if it originates

with a minority impurity phase.



CHAPTER IV

The Search For a Wigner Lattice in Electron Doped CaB6

4.1 Observation of High TC Ferromagnetism in Doped CaB6

In a ferromagnet, the Curie temperature (TC) is determined by the competition

between magnetic interactions and thermal energy. The reported observation of

ferromagnetism in Ca1−xLaxB6 (0.001<x<0.05) with Curie temperatures of 600 -

900 K [1, 33] was completely unexpected. An extremely high TC indicates very

strong ferromagnetic interactions, but this seems unlikely in Ca1−xLaxB6, because

all the elements that make up this compound are non-magnetic. Table 3.1 lists TC

and the saturation moments (MS) for a number of known high TC ferromagnets and

for two single crystals of Ca1−xLaxB6. As indicated in the table, the maximum TC for

Ca1−xLaxB6 occurs for x=0.01, and the maximum MS occurs for x=0.005. Relative

Table 4.1:
The Curie temperature and saturation moment of two single crystals of Ca1−xLaxB6

compared with some other known ferromagnets.
Compound TC(K) MS (µB/f.u.) Ref.

Fe 1043 2.22 [34]
Co 1388 1.72 [34]
Ni 627 0.606 [34]
Gd 292 7.63 [34]
Dy 88 10.2 [34]

MnBi 630 3.52 [34]
Ca0.995La0.005B6 600 0.07 [1, 33]
Ca0.99La0.01B6 900 0.03 [1, 33]

38
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to other ferromagnets, CaB6 has a high TC , but the very low saturation moment

shows that we have a low magnetic moment density. Because there are no magnetic

elements present in the single crystals, the source of the magnetism must originate

with the magnetic moments of the itinerant electrons. For the crystal with the highest

saturation moment, the electron concentration, inferred based on the amount of La

doped into the single crystals, indicates that the average spacing between electrons

is 25 Å. This large distance between moments makes the extremely high TC all

the more remarkable. An obvious question follows: what then is the source of this

ferromagnetism? We designed our experiments to consider two possible origins: the

formation of a Wigner lattice and contamination from high TC magnetic impurities.

Initially, based on the initial published report, the possibility of contamination seems

unlikely, because D. P. Young et al measured a number of other La doped alkaline

earth hexaborides, and added the tetravalent dopant Th to CaB6 as well [1, 33].

Sr1−xLaxB6, and Ba1−xLaxB6 also displayed similar magnetic behavior, and each

showed a maximum magnetic moment at x=0.005, in complete agreement with the

results for Ca1−xLaxB6. To further dispel the contamination argument, CaB6 was

also doped with Th. La is trivalent and is therefore an electron donor when it replaces

divalent Ca. Th is tetravalent and thus contributes two electrons per atom. As

expected, Ca1−xThxB6 displayed a maximum moment at x=0.0025 [1, 33], suggesting

that the magnetism is primarily a function of the electron density, which is consistent

with a ferromagnetic Wigner lattice. However, mass spectrometry measurements

showed that Fe is present in some ferromagnetic crystals of CaB6 in amounts that

are roughly proportional to MS [35], suggesting that the ferromagnetism originates

with Fe impurities. In another study, electron dispersive x-ray spectroscopy and

Auger electron spectroscopy measurements have shown that Fe contamination is
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present several microns into single crystals of Ca1−xThxB6 [36], again suggesting

that the origin of the ferromagnetism is Fe based impurities and not the formation

of a Wigner lattice. The goal of our experiments on doped CaB6 is to determine

whether the origin of the ferromagnetism is intrinsic as in the case of the Wigner

lattice, or extrinsic, coming from Fe contamination. We begin in the next section with

a theoretical description of the Wigner lattice. In the following section, we describe

the known properties of undoped and doped crystals of CaB6. With the theoretical

background and description of the basic properties of CaB6 in place, we then present

our transport and magnetization measurements, and microprobe analysis results of

the surface of a ferromagnetic crystal and ultimately our conclusions about the origins

of the ferromagnetism.

4.1.1 The Wigner Lattice

In the 1930s, E. Wigner showed that an electron gas in a positively charged

background crystallizes into a lattice at sufficiently low electron density [37, 3]. In

a 1987 publication [3], Tsidil’kovskii presents an excellent summary of the early

theoretical and experimental developments of the Wigner lattice. For the electrons to

become localized in a lattice, the potential energy per electron needs to be larger than

the thermal kinetic energy. As the electron density decreases, the potential energy

increases, and the kinetic energy decreases, resulting in a critical electron density,

nC , where the kinetic and potential energies are equal and a lattice forms. The first

experimental observation of a Wigner lattice occurred in 1979 when electrons were

floated on the surface of liquid helium and a two dimensional Wigner lattice formed [2,

3]. A three dimensional Wigner lattice has never been experimentally confirmed.

nC is easily calculated in the free electron gas model, where the kinetic energy,

EK=3/5EF =50.1 eV/r2
S, and the potential energy, EP =e2/r0, where EF is the Fermi
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energy for the free electron gas, r0 is the mean distance between electrons, and rS is

the same distance, but in units of Bohr radii, with rS=r0/a0, and r0=(3/4πn)1/3 [3,

5]. In other words, EK is dominant for small rS (large n), and EP is dominant

for large rS (small n). Using this simple picture, the results of the calculation for

nC , and its associated critical spacing, rC are rC=1.1, and n
1/3
C a0=0.56. In our

measurements, we found a typical value of our samples of n=5×1018 cm−3, which

corresponds to n
1/3
C a0=0.009, which places all of our crystals well within the Wigner

lattice regime. Later theoretical efforts added various interactions including exchange

and correlation energy [1], while another included lattice vibrations, and the fact

that critical displacement from the lattice sites results in melting [3]. More accurate

descriptions followed. In 1980, Ceperley used a quantum Monte Carlo method to

derive what are considered the most accurate estimates of rC and nC [38]. The result

predicts that between the free electron gas and the crystalline state, there is an

intemediate spin polarized fluid state, which is either paramagnetic or ferromagnetic.

If the spin polarized fluid is paramagnetic, rC=75 ± 5 and n
1/3
C a0=0.0083 ± 0.0005. If

the spin fluid is ferromagnetic, rC=100 ± 20 and n
1/3
C a0=0.0062 ± 0.0013. Ortiz also

used quantum Monte Carlo methods to identify the same phase boundaries, obtaining

somewhat different values of rC=65 ± 10 and n
1/3
C a0=0.0099 for the crystallization

of the electron gas, and 25 ± 5 < rC < 35 ± 5 for the spin-polarized fluid [39].

In this case, the fluid gradually changes from paramagnetic at low values of rC to

ferromagnetic at high values of rC . One of our primary experimental goals is to test

the accuracy of these results, and to seek evidence for other phases which might

be present as functions of electron concentration, temperature and magnetic field.

Before describing the experimental details, we first describe the properties of undoped

CaB6 in the following section.
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4.1.2 Properties of Undoped CaB6

Single crystals of CaB6 are grown from Al flux using an excess of Ca relative to

stoichiometric amounts of Ca and B [40]. Undoped CaB6 has a simple cubic crystal

structure (no. 221), with a lattice constant, a=4.15 Å comprised of Ca atoms and

B6 octahedra [41, 42]. The band structure of the hexaborides is determined by the

hybridization of the B atoms [43]. For divalent cations, including Ca, Sr and Ba, the

Fermi level lies in the gap between the third and fourth lowest lying bands, resulting

in an insulating material. For trivalent cations, there is partial filling of the fourth

band leading to metallic behavior. LaB6 for example is metallic and superconduct-

ing [44]. Results from these early tightbinding calculations were confirmed by more

sophisticated GW calculations [45], which predict that CaB6 is a direct gap semicon-

ductor. There were, however some conflicting reports about whether undoped CaB6

is a semiconductor or a semimetal and if it was a semiconductor, how big a gap it

had. A 1997 theoretical prediction based on LDA calculations predicted that CaB6

should be a semimetal [46] and Denlinger et al pointed out that even within the

more reliable GW calculations, the size of the predicted gap varies from 0.3 to 0.8

eV [47], emphasizing the need for further experimental measurements of the gap of an

undoped CaB6 single crystal. In 2002, Denlinger et al, using angle resolved photoe-

mission spectroscopy (ARPES) measurements confirmed that stoichiometric CaB6 is

a semiconductor with a direct 1.15 eV gap [47]. As expected for a semiconductor, the

magnetic susceptibility is negative and temperature independent (diamagnetic) [48].

Also consistent with semiconducting behavior, CaB6 has a thermally activated re-

sistance [40], which increases with decreasing temperature as ρ(T)=ρ0e
−∆/kT , where

∆ is the energy gap between the carriers and the lowest lying itinerant state. From

measurements of the temperature dependence of ρ, ∆=0.4 eV [40], which is substan-
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Figure 4.1: The temperature dependence of the resistivity for a CaB6 crystal with n=1.2×1019

cm−3. The resistivity has regions where it increases with decreasing temperature and
regions where it decreases with decreasing temperature, illustrating that this crystal is
close to the metal-insulator transition.

tially smaller than the value obtained from ARPES measurements. We argue that

this suggests the possibility that the defect states play a role in the transport.

Doping CaB6 with La, leads to some of the divalent Ca ions being replaced by

trivalent La ions which adds electrons to the system, ultimately driving it metal-

lic, resulting in the creation of a Fermi surface, which has been confirmed by de

Haas van Alphen measurements [49]. Measurements of the temperature dependence

of the resistivity also shows a change from the thermally activated resistance of a

semiconductor to that of a metal, with ρ increasing with increasing temperature [1].

This insulator to metal transition occurs near the doping levels at which the ferro-

magnetism is observed. Crystals with this range of n typically show behavior that

is neither purely semiconducting nor purely metallic, often with one or more broad

maxima in the temperature dependence of the resistivity (Fig. 4.1). In the next sec-

tion, we present our experimental results, beginning with Hall effect measurements

to determine the carrier concentration of 14 doped CaB6 crystals.
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4.1.3 Hall Voltage Measurements

In order to determine if there is some relationship between the electron concen-

tration, n, and the Curie temperature, TC , we first collected multiple crystals with

a range of electron concentrations and measured both the Hall effect and the field

dependence of the magnetization to determine the saturation magnetizaton, MS. We

performed Hall voltage measurements on 14 crystals of CaB6 that were not inten-

tionally doped and found a range of electron concentrations ranging from 1017 to

1020 cm−3. Hall effect measurements were conducted at temperatures ranging from

0.4 K to 100 K using a 9 T superconducting magnet, and also at the National High

Magnetic Field Laboratory at Los Alamos using a 50 T medium pulse length magnet.

The Hall voltage was linear in field over the entire field range (Fig. 4.2(a)) with

25 50-25-50 0
H (T)

150

-150

V
   

  (
m

V
)

H
al

l

10
18

10
19

10
20

n
 (c

m
   

 )
-3

0 50 100
T(K)

(a)
(b)

Figure 4.2: (a) The field dependence of the Hall voltage taken in fields approaching 50 T at 0.5 K.
(b) The temperature dependence of the electron concentration for six of our crystals,
showing that n is largely temeperature independent.

a slope indicating that electrons are the dominant carriers. Figure 4.2(b) is a plot

of the temperature dependence of the electron concentration for six of the crystals,

showing that the electron concentration is temperature independent in all cases. In

Figure 4.3, we show that we have obtained crystals that represent a significantly

larger range of electron concentrations than those of previous studies [1, 50, 51],
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Figure 4.3: A schematic showing the range of electron concentrations studied by Young et al (from
Young, 1999, as referenced in the text), Taniguchi et al (from Taniguchi, 2002, as
referenced in the text), and in this work. The dashed lines represent the different
states of the electrons as a function of electron concentration in units of rS according
to Ceperleys theoretical predictions.

and we compare each range to the theoretical predictions of various Wigner lattice

states according to the predictions of Ceperley [38]. After establishing the carrier

concentration for all fourteen of the crystals, we measured the corresponding field

dependence of the magnetization as described in the next section.

4.1.4 Magnetization Measurements

We measured the field dependence of the magnetization at 250 K, and at fields

as high as 7 T for all fourteen of the crystals. All of the crystals were found to

be ferromagnetic with the characteristic non-linear field dependence of the magne-

tization, and coercive fields ranging from 40 to 200 Oe. Figure 4.4 is a plot of the

field dependence of the magnetization for four of the crystals with different electron

concentrations. We then fit each M(H) curve to a Langevin function to obtain MS,

which we then plotted as a function of n in Figure 4.5(a) (black circles) and compared

the data with those of Young et al (red circles) [1]. We find no systematic relation

between MS and n. In Figure 4.5(b), we re-plot MS in units of µB per electron (µB/e)

and find unphysically large values in the low n region, with MS reaching as high as

35 µB/e. We conclude that it is unlikely that the magnetization can be correlated to
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Figure 4.4: A plot of the field dependence of the magnetization for four different crystals of CaB6

with electron concentrations of 9×1017 cm−3 (black circles), 2.5×1018 cm−3 (red circles),
3×1018 cm−3 (green circles) and 5×1019 cm−3 (blue circles).

the variations in n as might be expected for instabilities of an electron gas. The next

set of experiments was designed to test whether the ferromagnetism is of extrinsic

origin. The first experiment, described in the next section, uses microprobe analysis

to search the crystal surfaces for ferromagnetic contaminant phases.

4.1.5 Surface Analysis

We used electron microprobe analysis using a Cameca Microprobe Analyzer at

the University of Michigan Electron Beam Microanalysis laboratory (EMAL) to scan

the surface of several of our crystals to look for ferromagnetic contaminant phases.

Analysis of the surface of single crystals of CaB6 found Fe and Ni impurities on the

surface for all of the crystals that we examined. As an example, we will describe the

results of our surface analysis on two of our crystals, one with smooth, flat surfaces

with visible terracing and the other with a rough surface. Both show significant

amounts of Fe and Ni on the surface. Figure 4.6 is an electron backscattering

image of one of the corners of a single crystal, illustrating the smooth surfaces and

terracing. The consistent brightness over the whole surface indicates a homogeneous
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Figure 4.5: (a) A plot of the saturation magnetization as a function of the electron concentrations
for all of the crystals measured in this study (black circles) and the same plot for the
data of Young et al (red circles) (from Young, 1999, as referenced in the text).(b) The
same data as in (a), but with MS plotted in units of µB per electron to illustrate the
unphysical values obtained by assuming that the ferromagnetism is intrinsic.

composition, but at the edges of the growth steps, we observe a brighter shade,

indicating the presence of contamination consisting of elements with a higher atomic

number relative to CaB6. To identify the nature of this contamination, we measured

electron microprobe maps for Ca, Fe and Ni and compared them with the electron

backscattering image (Fig. 4.7). Figure 4.7(b) shows that the Ca concentration is

spatially uniform over the crystal surface. The Fe map (Fig. 4.7(c)) shows that the

bright regions on the step edges first seen in the electron backscattering image contain

Fe. The Ni map (Fig. 4.7(d)) shows that the step edges also contain small amounts of

Ni. These contaminant phases on the step edges are likely to be close to pure Fe and

Ni, because no other elements show an enhancement in this region, although we can’t

rule out the presence of Fe-B binary phases, which might also be present in small

amounts. Figure 4.8(a) is a backscattering image for a crystal with a rough surface

over a 50 µm square region on its surface, showing bright contaminant regions, that

Fe and Ni maps reveal are primarily Fe and Ni (Fig. 4.8(c),(d)). The significant

amounts of Fe and Ni contamination result in the shadowing evident in the Ca map
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Figure 4.6: An electron backscattering image for a corner of a crystal with a smooth surface. The
presence of elements with a higher atomic number relative to CaB6 is evident on the
step edges.

(Fig. 4.8(b)), which otherwise shows a spatially uniform Ca concentration. It should

be noted that the crystals were previously etched, and it is in principle possible for

crystals to become contaminated from the acid in the etch. It is unlikely that Fe

and Ni were introduced during acid etching, given that the Fe and Ni contamination

extends well into the crystal surface. It is more likely that the contamination took

place before or during crystal growth from contaminated batches of the component

elements, Ca, and B, or the Al flux, which may have become contaminated from

unclean growth apparatus such as the crucibles or the quartzware. In the next

section, we describe the etching experiment that we conducted to show this.

4.1.6 Etching Experiments

For our final experiment, we used 50% aqua regia solution to etch the Fe and Ni

contaminated surfaces of a crystal of CaB6 with n=1.2×1019 cm−3. An edge finder

determined that the etch rate is 300 ±100 Å per second. We measured the field

dependence of the magnetization before and after a 6000 Å and 12000 Å etch (Fig.

4.9(a)). The first etch reduced MS by 47%, but the second etch did not further

reduce MS, showing that the Fe and Ni contamination extends roughly 6000 Å into
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Figure 4.7: (a)The Ca microprobe map, showing a uniform distribution of Ca over the crystal
surface. (b) The Al microprobe map showing that there is no residual Al flux on the
surface of the crystal (c) The Fe microprobe map showing the presence of Fe along the
step edges. (d) The Ni microprobe map showing the presence of Ni along the step edges,
but in smaller amounts compared with the Fe.

the crystal surface. In Fig. 4.9(b), we show that the resistivity of the crystal does not

change as a result of the etch, indicating that it is representative of the bulk crystal

and not affected by the surface impurities. In Figure 4.10(a) we show the electron

backscattering image, and microprobe Fe (Fig. 4.10(b)) and Ni (Fig. 4.10(c)) maps

of the same 50 µm square region of the same unetched crystal shown in Fig. 4.7,

but with sharper contrast to show that the Fe and Ni are found in different areas

of the same region, trapped in surface features. The typical Fe and Ni contaminant

particle size is of the order of microns. The next etching test was performed on two

other smooth surfaced single crystals by comparing electron microprobe images of

the surfaces of two single crystals of CaB6 before and after etching. Fig. 4.10 shows

Fe microprobe maps of these two crystals before etching (d,g), then after a 30 second

etch (e,h), and then after a second 60 second etch (f,i). It is evident from the images
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Figure 4.8: (a) The electron backscattering image for a rough surfaced crystal. The bright shades
indicate the contamination. (b) The Ca map, showing a uniform distribution of Ca
over the crystal surface, except where the contamination covers the surface, where the
shadowing occurs. (C) The Fe microprobe map showing the presence of significant
amounts of Fe on the crystal surface. (d) The Ni microprobe map showing significant
amounts of Ni on the crystal surface.

that the Fe contamination extends fairly deeply into the crystal surface and that the

acid etching gradually removes the contamination from the edges of the steps, but

the Fe is especially persistent in these locations, and it would require a 10,000 to

20,000 Å etch to completely remove the Fe. As summarized in the following final

section, we conclude that the ferromagnetism in CaB6 originates with Fe and Ni

impurities found at step edges of the single crystals at depths to roughly 10,000 Å.

4.2 Summary

We sought to determine whether the high TC ferromagnetism in doped CaB6

originates with the formation of a Wigner lattice [51]. For a ferromagnetic Wigner

lattice, we would have expected to find a systematic relation between n, TC and MS.

Also, below TC , we would expect to find an insulating state, which would result in a
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Figure 4.9: (a) The field dependence of the magnetization for a CaB6 crystal before etching (black
circles), and after 6000 Å were removed by an acid etch (red circles) and after 12000
Å were removed by the etch (green circles). (b) The temperature dependence of the
resisitivity before etching (red circles) and after a 6000 Å etch (blue squares).

sharp increase in the resistivity at TC . By measuring the Hall voltage, and the field

dependence of the magnetization, we determined that MS was not related to n. We

also found no correlation between the measurement of the temperature dependence

of the resistance and the presence of ferromagnetism. None of our ferromagnetic

crystals showed the thermally activated resistivity expected for an insulating state.

Finding it unlikely that the ferromagnetism resulted from the formation of a Wigner

lattice, we searched the crystal surfaces for magnetic impurities. Electron microprobe

analysis found Fe and Ni contaminants on the crystal surfaces, and roughly 10,000 Å

into the bulk. Acid etching experiments found that the Fe and Ni impurities could

be removed by etching with a 50% solution of aqua regia. We measured the field

dependence of the magnetization for a crystal before and after etching and found

that MS substantially decreased after etching. We are left to conclude that the

ferromagnetism in CaB6 does not come from the formation of a Wigner lattice or

any other intrinsic origin, but is of extrinsic origin, resulting from Fe and Ni based

contaminant phases.
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Figure 4.10: (a) An electron backscattering image of a 50 µm square region on the surface of a
single crystal of CaB6 before etching. (b) An electron microprobe map for Fe of the
same region of the same single crystal as in (a). (c) An electron microprobe map for
Ni of the same region of the same single crystal as in (a). (d) An electron microprobe
map for Fe for a single crystal of CaB6 before etching. (e) An electron microprobe
map for Fe for the same region of the same as crystal as in (c) after a 30 second acid
etch. (f) An electron microprobe map for Fe for the same region of the same crystal
as in (c) after a second 60 second etch. (g) An electron microprobe map for Fe for
another single crystal of CaB6 before etching. (h) An electron microprobe map for Fe
for the same crystal as in (g) after a 30 second acid etch. (i) An electron microprobe
map for Fe for the same crystal as in (g) after a second 60 second etch.



CHAPTER V

The Origins of Superconductivity and Ferromagnetism in
Rare Earth Doped PtSb2

5.1 Ferromagnetism in Dilute Magnetic Semiconductors

The simplest magnetic interaction that can lead to ferromagnetism in a lattice

of localized spins with no itinerant carriers present is dipolar. When dipolar inter-

actions dominate, we expect TC ∝ N [5], but as N decreases, the distance between

local moments will increase and the dipole-dipole interactions will become weaker.

However, with a sufficient density of intinerant carriers present, Ruderman-Kittel-

Kasuya-Yosida (RKKY) interactions will occur and the localized moments will in-

teract strongly despite the large distances between them. In the RKKY interaction,

the magnetization density of the conduction electrons is spatially modulated around

the localized magnetic moments and the spatially oscillating spin density of the con-

duction electrons conveys the spin information between even very distantly spaced

local moments, allowing them to interact indirectly. Depending on the distance be-

tween the local moments and on the value of kF , they will order either ferromagneti-

cally, or antiferromagnetically, with the ordering temperature for a given N, TC,N ∝

n2 [6, 7, 8]. The purpose of our experiments is to better understand how the interac-

tions which lead to ferromagnetism evolve from dipolar when no itinerant carriers are

present to RKKY when many itinerant carriers are present. In this chapter we focus

53
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on the region in Figure 1.1 located horizontally to the right of the N=0 Wigner lattice

region (red region) in the low to moderate n and N region (green region) represented

by the dilute magnetic semiconductors (DMS), a type of semiconductor made by

substituting magnetic ions in place of some percentage of the regular cations of the

host semiconductor. DMS are ideal for this study, because in principle we can con-

trol both n and N by doping with suitable magnetic and/or non-magnetic elements.

We begin our study by looking for a consistent general relation among TC , n and N

in previously measured ferromagnetic DMS. Figure 5.1 is a plot of the n and N de-
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Figure 5.1: Curie temperatures for the DMS described in the introduction and the three rare earth
metals, Er, Tm and Dy plotted as a function of the carrier concentration, n, and the
magnetic moment density, N. The patterned region is an unexplored sector on the n-N
plane potentially accessible using rare earth doped PtSb2.

pendence of TC for the previously measured DMS, Ga(Mn)As [52], PbSnMnTe [53],

and Gd and La doped EuS [54]. For (III,Mn)V compounds with high n, a modified

mean field theory, predicting TC ∝ Nm*n1/3, where m* is the effective mass [55],

agrees with experimentally obtained values for the Curie temperature. As shown in

Figure 5.1, for most compounds there are regions on the n-N plane where TC(n) is

sub-linear, suggesting that it is the closest fit of the three predictions to the known
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DMS data. For comparison, we also include the ferromagnetic rare earth metals Er,

Tm and Dy, located in the high n and N area of this region where RKKY interactions

dominate. By the flux growth process described in Chapter 2, we grew a new DMS

from Sb flux, rare-earth doped PtSb2 with values of n and N that allow us to access

the unexplored region of the n-N plane marked by asterisks in Figure 5.1. We plan

to determine the n and N dependence of TC in this unexplored region and together

with the known results displayed in Figure 5.1 try to find a common relation among

TC , n and N. Before presenting our experimental results of rare earth doped crys-

tals, we first summarize the known properties of undoped PtSb2, which have been

thoroughly characterized in previous experiments [56, 57, 58, 59, 60, 61, 62, 63]. The

following two sections then describe our transport, heat capacity and AC magnetic

susceptibility measurements of single crystals of rare earth doped PtSb2 doped with

Ce, Eu, Gd, La and Yb, which find superconductivity in some of the Yb and La

doped crystals and ferromagnetism in some of the Ce and Gd doped crystals. In

each of these sections, we also present electron microprobe anlaysis results which

indicate that secondary impurity phases are present on the surface of most of our

single crystals. We find that these impurity phases and not the bulk properties of

the crystals are the source of the superconductivity and ferromagnetism. In the final

experimental section, we present heat capacity measurements of five of our crystals

that have been etched to remove the surface impurity phases, and show that some of

the rare earth elements are successfully doped into the bulk, changing the electronic

properties, but not enough magnetic moments are doped into the system to access

the regime of most interest.
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5.2 Properties of Undoped PtSb2

In this section, we describe the properties of undoped PtSb2 determined by pre-

vious theoretical calculations and experiments. Powder X-ray diffraction measure-

ments find that crystals of PtSb2 form in the pyrite structure (cP12) with a lattice

constant of 0.644 nm [59]. Tight binding band structure calculations predict that

PtSb2 has an indirect energy gap of 0.8 eV [60]. Experimentally, an indirect gap

of 0.11 eV has been determined by measurements of the temperature dependence

of the resistivity and by infrared absorption measurements [56, 61]. The transport

properties have been measured for a number of single crystals and they vary from

crystal to crystal, because most crystals deviate from ideal stoichiometry [58]. Only

a few single crystals show semiconducting behavior, with ρ increasing with decreas-

ing temperature, while most show behavior with both semiconducting and metallic

aspects [58]. For example, some of the crystals have a maximum in ρ(T) between 150

and 400 K, while in other crystals, ρ(T) saturates at low temperature [58]. Previous

Hall effect measurements show that the carriers can be electrons resulting from Sb

vacancies, or holes, resulting from Pt vacancies or Sb interstitials. n ranges from

1017 to 1020 cm−3 [58, 57], which is exactly the range of n that we wish to study,

making PtSb2 an ideal material, provided that it is also possible to vary N by doping

with magnetic elements. We attempt to control N by doping PtSb2 with the rare

earth elements La, Eu, Ce, Gd and Yb. The rare earth elements are ideal for this

study of systems of local moments and itinerant carriers, because of the localized

nature of the magnetic moments of the f electrons. We grew all of our single crystals

of rare earth doped PtSb2 from Sb flux and performed extensive measurements of

their transport, magnetic and compositional properties. We present our transport,
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Table 5.1:
The electron concentrations calculated from Hall voltage measurements for 7 rare-earth
doped single crystals of PtSb2.

Crystal n (cm−3)
Yb1 1.8×1019

Ce1 5×1019

Gd1 4×1019

Gd2 2×1019

Gd3 2×1019

Eu 3×1017

La1 5.7×1018

La2 7.5×1018

heat capacity, magnetization, AC magnetic susceptibility and electron microprobe

measurements of these crystals in the following section.

5.3 Experimental Results

In this section, we present the resistivity, specific heat, magnetization and AC

magnetic susceptibility as well as electron microprobe measurements of our rare

earth doped PtSb2 crystals. The first step in our experiment is to verify that our

single crystals were within the desired carrier concentration range of 1016 to 1020

cm−3. Using our PPMS, we measured the Hall effect in all of our single crystals

at temperatures ranging from 1.8 K to 300 K and in fields up to 9 T. In all cases,

the field dependence of the Hall voltage was linear and the carriers were electrons,

suggesting that they originate from the rare earth dopants or from Sb interstitials.

From the Hall voltage data, we calculate electron concentrations ranging from 1017

to 1020 cm−3 for all of our crystals. We find that the electron concentration is

largely temperature independent for all of the measured single crystals. Table 4.1

is a Table of electron concentrations for some of our single crystals. We observe

superconductivity in three Yb doped crystals and one of the La doped crystals and

ferromagnetism in some but not all of the Ce and Gd doped single crystals. Based
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on our heat capacity measurements, we find that although most of the rare earth

elements are not absorbed into the bulk, a small percentage of them do end up in the

bulk, resulting in modified electronic properties. We then use electron microprobe

analysis to find the secondary impurity phases responsible for the superconductivity

and ferromagnetism. In the next two sections, we present the experimental results

for the superconducting crystals followed by the experimental results for the ferro-

magnetic crystals. We then present the bulk properties of the crystals and conclude

with a summary of our results.

5.3.1 Superconductivity in single crystals of Yb and La doped PtSb2

The first signs of superconductivity appeared in measurements of the temperature

dependence of the resistivity in one La doped crystal and three Yb doped crystals.

We performed this measurement on all of our doped single crystals from 1.8 K to 300

K and found a variety of results. Figure 5.2 is a plot of the temperature dependence

of the resistivity for three different crystals to illustrate some of the different temper-

ature dependences. The Eu doped crystal shows the thermally activated resistance

expected in a semiconductor. The Yb doped crystal shows a decrease in resistivity

with decreasing temperature characteristic of metal, followed by a sudden drop in

resisitivity at the lowest temperatures, indicating a transition to a superconducting

state. The La doped crystal shows a temperature dependence that has characteristics

of both a semiconductor and a metal, with the resistivity initially increasing with

decreasing temperature, but then after reaching a maximum near 150 K, decreasing

with decreasing temperature. Like the Yb doped crystal, it also shows a sudden drop

in the resistivity at the lowest temperatures, indicating a transition to a supercon-

ducting state. To further characterize the superconducting state, we measured the

temperature dependence of the resistivity in different magnetic fields. The transi-
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tion temperature decreases with increasing magnetic field and the temperature range

over which the transition takes place broadens, also consistent with a superconduct-

ing transition with a critical field, HC ∼ 800 G. However, the resistivity does not

drop all the way to zero, indicating that the crystal is only partially superconducting,

suggesting that perhaps an impurity phase is the source of the superconductivity. We

found partial superconducting transitions for three crystals of Yb doped PtSb2 and

one La doped crystal, with values of TC ranging from 1.6 K to 2.2 K and associated

HC ranging from 500 to 1200 G (Fig. 5.3). We compared our results to the results

for the YbSb2 crystal [64] to determine whether the superconductivity might origi-

nate with small impurity regions of YbSb2 unintentially introduced into our crystals

during growth. It is clearly observed in Figure 5.3 that HC for the rare earth doped

PtSb2 crystals is five to ten times higher than HC for YbSb2. We conclude that the

source of the superconductivity in our crystals does not lie fully with YbSb2.

(a) (b)

Figure 5.2: (a) The temperature dependence of the resistivity for a Eu doped crystal (black circles),
a La doped crystal (red squares) and an Yb doped crystal (blue triangles). (b) The
temperature dependence of the resistivity of a single crystal of Yb doped PtSb2 in zero
field (black circles), 200 G (red squares), 350 G (green crosses), 500 G (blue triangles),
and 1000 G (magenta circles) at temperatures up to 2.5 K.

To determine what percentage of each crystal is superconducting, we measured

the temperature dependence of the specific heat of the superconducting single crystal
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Figure 5.3: The field dependence of the superconducting transition temperature, TC , for three
single crystals of Yb doped PtSb2 (circles, triangles, squares), and one crystal of La
doped PtSb2 (asterisks) and the data from one crystal of YbSb2, previously measured
by Yamaguchi et al, referenced in the text.

of La doped PtSb2 and the temperature dependence of the AC magnetic suscepti-

bility of four single crystals of Yb doped PtSb2 and two single crystals of La doped

PtSb2. The temperature dependence of the specific heat of the La doped crystal was

measured from 0.38 to 2.6 K (Fig. 5.4), but there is no observable anomaly near 2

K (Fig. 5.4 inset), where the transition in the resistivity is observed. To estimate

the percentage of the crystal that is superconducting, we assume that the supercon-

ducting transition is well described by the Bardeen-Cooper-Schrieffer (BCS) theory,

where (CS-CN)/CN=1.43, where CS is the electronic specific heat at TC of the su-

perconducting state, and CN is the the electronic specific heat at TC of the normal

state [29]. Based on the sensitivity of our specific heat measurement, no more than

1% of the crystal is superconducting. To corroborate the result from the specific heat

measurement we also measured the zero field AC magnetic susceptibility of four sin-

gle crystals of Yb doped PtSb2, and two single crystals of La doped PtSb2. The AC

susceptibility, χ=χ′+iχ′′ was measured from 1.8 K to 6 K at a frequency of 113 Hz
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Figure 5.4: The temperature dependence of the specific heat of a single crystal of La doped PtSb2.
Inset: The specific heat near 2 K shows no noticeable anomaly.

and with an amplitude of 4.17 Oe. Figure 5.5(a) shows the temperature dependence

of the in phase and out of phase AC magnetic susceptibility for one of the partially

superconducting Yb doped crystals. χ′ drops sharply near 2 K, indicating that, as

expected at the superconducting transition, magnetic flux is being expelled from the

crystal. The peak in χ′′ indicates that at base temperature, 1.8 K, χ′ is very close to

its final temperature independent value. The base temperature value is χ′=-0.00045

is less than 0.1% of the expected value of -1/4π for a fully superconducting crystal

experiencing the Meissner effect, indicating that less than 0.1% of the Yb doped

crystal is superconducting.

To determine whether or not the superconductivity is associated with an impurity

phase located on the crystal surface, we measured the AC magnetic susceptibility

of one of the partially superconducting La doped crystals before and after a 15

minute etch in heated aqua regia (Fig. 5.5(b)), which dissolved roughly half of the

original crystal. Before the etch there is clearly a Meissner effect indicating the
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presence of superconductivity, but after the etch, there is no longer any Meissner

effect, indicating that the source of the superconductivity is likely a surface phase

occupying a relatively small part of the crystal volume.
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Figure 5.5: (a) The temperature dependence of the in-phase, χ′ (squares) and out-of-phase, χ′′

(circles) components of the AC magnetic susceptibility for a single crystal of partially
superoconducting Yb doped PtSb2. The peak in χ′′ indicates that the value of χ′ at
the 1.8 K base temperature is close to its minimum temperature independent value. (b)
The in-phase AC magnetic susceptibility of a single crystal of partially superconducting
La doped PtSb2 before (circles) and after (triangles) a 15 minute etch in heated aqua
regia. The superconductivity is no longer present after the etch.

To find and identify the superconducting impurity phase on the crystal surface,

we used electron microprobe analysis to measure a single crystal of Yb doped PtSb2.

Figure 5.6(a) is an electron backscattering image of a single crystal of partially su-

perconducting Yb doped PtSb2. The surface shows some flat regions and also areas

with a more irregular topography. The two regions of different shading show that

there are at least two different compositions, with the brighter shaded region having

a composition with a larger average atomic number relative to the darker shaded re-

gion. To determine the composition, we measured EDS maps for Pt (Fig. 5.6(b)), Sb

(Fig. 5.6(c)), and Yb (Fig. 5.6(d)). The Pt map shows that the two different phases

seen in the electron back scattering image each contain Pt, where the brighter shaded

area (Fig. 5.6(b) left) has a higher concentration of Pt relative to the darker shaded



63
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PtSb PtSb2

Figure 5.6: (a) Electron backscattering image of a single crystal of partially superconducting Yb
doped PtSb2. (b)(Pt), (c)(Sb), and (d)(Yb) are electron microprobe maps of the same
crystal.

area (Fig. 5.6(b) right). The Sb map (Fig. 5.6(c)) also shows that the same two

regions also contain Sb, with the lighter shaded region (Fig. 5.6(c) right) containing

a higher concentration of Sb relative to the darker shaded region (Fig. 5.6(c) right).

Not surprisingly residual Sb from the flux is also present in patches on the crystal

surface. Quantitative EDS analysis shows that the lighter shaded region on the left

side of the Pt map, which corresponds to the darker shaded region on the Sb map is

PtSb, and the other region is PtSb2. We believe that the impurity phase responsible

for the partial superconductivity in the Yb and La doped crystals originates from

thin surface layers of PtSb with a superconducting transition temperature, TC=2.1

K [63], which is consistent with the TC near 2 K observed in all of the superconduct-

ing crystals. We also considered the possibility that the superconducting impurity

phase might be YbSb2, but with TC=1.25 K [64], it is different from the 2 K found

in our crystals. Indeed, careful EDS analysis found no YbSb2 on the crystal surface.
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5.3.2 Ferromagnetism in Single Crystals of Ce and Gd Doped PtSb2

Weak ferromagnetism was observed in some of the Gd and Ce doped crystals.

We measured the field dependence of the magnetization in one Ce doped crystal

and five Gd doped crystals in fields up to 9 T and at temperatures ranging from 2

to 100 K. Figure 5.7(a) is a plot of the field dependence of the magnetization for

a single crystal of Gd doped PtSb2 at the different temperatures indicated in the

figure. As expected for a ferromagnet, the temperature dependence becomes more

and more non-linear as the temperature decreases, and eventually saturates above

2 T at the lowest temperature (Fig. 5.7(a), stars). TC was determined by Arrott

plot analysis of the M(H) data for all of the ferromagnetic crystals. TC for the Gd

doped crystals range from 1.9 to 10.5 K, and 19 K for the Ce doped crystal. For

the Gd doped crystal with TC=10.5 K, the magnetization saturates above 4 T (Fig.

5.7(a)) and the associated Arrott plot (Fig, 5.7(b)) shows that a spontaneous moment

develops near 10.5 K as the temperature decreases. The temperature dependence

of the extrapolated zero field magnetization is mean-field like, with M(H=0)∝ (1-

T/TC)1/2. The different Curie temperatures among the Gd and Ce doped crystals

suggest that the composition of the ferromagnetic phase varies among the different

doped crystals.

We measured the temperature dependence of the DC magnetic susceptibility for

all the Gd and Ce doped crystals in a 0.2 T magnetic field at temperatures from

1.8 to 300 K, and found that they all follow a Curie law, χ(T)=C/(T+θ), where C

is the Curie constant, and θ is the Weiss temperature. In each case, assuming the

Hund’s rule moment of 7.92 µB for Gd3+, we used the Curie constant to determine
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Figure 5.7: (a) The field dependence of the magnetization for a single crystal of Gd doped PtSb2

at different temperatures as indicated. (b) Arrott plots for the same crystal indicating
that TC ≈11 K. Inset: The temperature dependence of the extrapolated zero field
spontaneous moment fit to a power law in reduced temperature, t=(T-TC)/TC , with
M∝ |t|−β , with β=0.37, and TC=10.25 K.

the concentration, N, of rare earth ions in the doped crystals, since

C =
Np2µ2

B

3kB

where µB is the Bohr magneton, kB is the Boltzmann constant, N is the number of

magnetic atoms, and p is the effective magnetic moment. For five of our Gd doped

single crystals, we found that 0.07 to 0.16 % of the unit cells contain a Gd ion.

Figure 5.8 is a plot of the temperature dependence of the magnetization for a single

crystal of Gd doped PtSb2 showing the typical Curie-Weiss behavior. In an effort to

understand the mechanism behind the magnetic order, we looked for a relationship

between the Curie temperature and the concentrations of rare earth elements in

each ferromagnetic crystal (Fig. 5.8 inset). We find no relationship between TC

and the Gd concentration, which is not surprising, because the low concentrations

of Gd that we found would amount to one Gd ion per 52 unit cells at most. If

the ferromagnetic phase was a bulk phase, the implied large Gd-Gd spacing makes
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it unlikely that the Gd ions are responsible for the ferromagnetism. We conclude

that the ferromagnetism more likely originates from a secondary impurity phase.

Accordingly, we measured the temperature dependence of the specific heat for the

Gd doped crystal with TC=10.5 K (Fig. 5.9), which revealed a barely discernable

anomaly near TC . This result corroborates, at least qualitatively, the magnetization

measurements that suggest that at most 0.16 % of the crystal is ferromagnetic.
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Figure 5.8: The temperature dependence of the DC magnetic susceptibility for a single crystal of Gd
doped PtSb2 taken in a 0.2 T field. Inset: TC plotted as a function of Gd concentration
for five different Gd doped crystals.

We performed an etching test to find out if the source of the ferromagnetism is

an impurity phase on the crystal surface. Figure 5.10 is a plot of the temperature

dependence of the the DC magnetic susceptibility in a 1 T field before and after

a 15 minute etch in heated aqua regia. Before the etch, the susceptibility shows a

rapid increase with decreasing temperature and a maximum near 10 K indicating

magnetic order. After the etch, the susceptibility is negative and temperature inde-

pendent except at the lowest temperatures. This diamagnetic behavior is expected

for semiconductors with very low carrier concentration, such as undoped PtSb2. This
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Figure 5.9: The temperature dependence of the specific heat for the Gd doped crystal with TC=10.5
K. Inset: The specific heat near 10.5 K shows at most a tiny anomaly.

result shows that the ferromagnetism in the unetched crystal originated with a sec-

ondary impurity phase residing on the crystal surface that is easily removed with a

15 minute acid etch. However, the Curie tail observed in the etched crystal at the

lowest temperatures indicates that some of Gd was successfully doped into the bulk

PtSb2 crystal. The inset of figure 5.10 shows a Curie-Weiss fit to the data from the

etched crystal. Assuming that the Curie tail originates with Gd3+ ions, we find a

Gd concentration of 2.65 × 1018 cm−3, or 1 Gd ion per 1400 unit cells, a significant

reduction from the original result of 1 Gd ion per 52 unit cells deduced from the

unetched, contaminated crystal.

We used electron microprobe analysis to find and identify the surface impurity

phase one of the Gd doped crystal. The electron backscattering image clearly shows

regions with two different phases on the crystal surface, with the lighter shaded

surface having a higher average atomic number relative to the darker shaded region

(Fig. 5.11(a)). The Pt map shows an even distribution of Pt on the lower right
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Figure 5.10: The temperature dependence of the DC magnetic susceptibility for a single crystal of

Gd doped PtSb2 before (filled circles) and after (hollow squares) a 15 minute etch in
heated aqua regia. Inset: A Curie-Weiss fit (solid line) to the magnetic susceptibility
data (hollow circles) for the etched crystal.

part of the crystal (Fig. 5.11(b)) associated with PtSb2, indicating that the darker

shaded region on the upper left corner is likely a surface impurity phase containing

a relatively small percentage of Pt. The Sb map (Fig. 5.11(c)) shows an even

distribution of Sb in both the PtSb2 region in the lower right, and in the impurity

phase on the upper left, but with relatively more Sb in the PtSb2 region. The brighter

regions on the surface indicate regions of excess Sb flux. The Gd map (Fig. 5.11(d))

shows that all the Gd is located at the impurity phase in the upper left region,

with no Gd present in the bulk PtSb2 crystal. Quantitative EDS analysis showed

that the Gd based surface impurity is roughly 16% Pt, 38% Sb and 46% Gd. To

our knowledge, there is no Gd based intermetallic of this composition reported. We

conclude that this compound is the source of the ferromagnetism in the Gd doped

crystals. We performed a similar electron microprobe measurement (Fig. 5.12) on

a Ce doped crystal of PtSb2 that was found to be ferromagnetic via Arrott plot

analysis, with TC ∼ 19 K. We once again found regions of leftover Sb flux on the
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Figure 5.11: (a) An electron backscattering image of a single crystal of Gd doped PtSb2. (b) Pt,
(c) Sb, and (d) Gd electron microprobe maps of the same region.

surface (Fig. 5.12(c)) and also a surface impurity region, but over a much smaller

area (Fig. 5.12(d)). Quantitative EDS analysis found the composition to be very

close to CeSb2, which has a reported Curie temperature of 15 K [65], which is close

to the Curie temperature that we estimated using Arrott plot analysis. We conclude

that the ferromagnetism in the Ce doped crystal originates with the small amounts

of CeSb2 that grew on the surface of PtSb2 as a secondary impurity phase.

So far, we have found that for all of our measured crystals, all observations of su-

perconductivity and ferromagnetism originate with secondary impurity phases found

on the crystal surfaces. We have also found that we can remove these impurity phases

by acid etching. In the next section, we study the bulk properties of etched rare earth

doped PtSb2 via heat capacity measurements.
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Figure 5.12: (a) An electron backscattering image of a single crystal of Ce doped PtSb2. (b) Pt,
(c) Sb, and (d) Ce electron microprobe maps of the same region.

5.3.3 Bulk Properties of Rare Earth Doped PtSb2

In this section, we present the results of heat capacity measurements of etched rare

earth doped PtSb2. We compare the bulk electronic properties among the crystals

by comparing the electronic part of the heat capacity. We measured the temperature

dependence of the heat capacity for three Yb doped crystals, an La doped crystal and

a Eu doped crystal. With the exception of the Eu doped crystal, which is insulating,

all the other crystals show evidence that the rare earth doping has modified the

electronic properties. We assume that the heat capacity has two parts, C=CE+CP ,

where CE=γT is the electronic part of the heat capacity due to the conduction

electrons and CP =βT3 is the phononic part of the heat capacity. Experimentally,

we obtain values for γ and β by plotting the heat capacity divided by temperature,
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C/T=γ+βT2 as a function of T2 (Fig. 5.13(a)), where γ is given by the y-intercept

and β is given by the slope of the line. We have also experimentally determined the

carrier concentrations from Hall voltage measurements, so we can compare the values

of γ and β obtained from the heat capacity measurements with those expected in

the Sommerfeld model for the free electron gas, where γ=π2nk2
Bm∗

e/~2k2
F , where kF

is the Fermi momentum, given by kF =(3π2n)1/3, which yields the relation γ=m∗
en

1/3

(Table 4.2). In Figure 5.13(b), we compare the electron concentration dependence

obtained from the heat capacity data with the Sommerfeld value calculated using

the electron concentration obtained from Hall voltage measurements. We find that

γ increases linearly with n, not as n1/3, suggesting that there could be an increase in

m* with increasing n.
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Figure 5.13: (a) The specific heat divided by temperature plotted as a function of temperature
squared for three Yb doped crystals, one Eu doped crystal and one La doped crystal.
(b) The electron concentration (n) dependence of γ obtained from the Sommerfeld
model with with m*/me=1 (solid line) and for γ obtained from the plot in (a) (circles).

5.4 Conclusions

Our experimental results indicate that most of rare earth dopants end up in sec-

ondary impurity phases on the surface of the PtSb2 crystals, which leads to the
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Table 5.2:
Calculated and experimental values of γ and β obtained for three Yb doped crystals,
one Eu doped crystal and one La doped crystal.

Crystal γcalc (mJ/mole-K2) γfit (mJ/mole-K2) βfit

Yb2 0.097 0.279 0.191
Yb3 0.065 0.279 0.201
Yb4 0.111 0.240 0.221
Eu 2.22 0 0.542
La 0.334 0.410 0.270

observation of partial superconducting or ferromagnetic transitions. However, after

removing the impurity phases with an acid etch, we find that some of the rare earth

elements were successfully doped into the bulk in up to 1 in 1400 unit cells. A pre-

vious attempt to dope PtSb2 with Mn found similar complications during crystal

growth [66]. In this case, a Czochralski method was used to grow the crystals, but

most of the Mn ended up in secondary impurity phases on the crystal surface. Al-

though neither attempt was successful at doping PtSb2 with high concentrations of

magnetic elements, we believe that PtSb2 still holds promise as a host for magnetic

ion doping, and does not necessarily have a limited solubility for rare earth or tran-

sition metal elements. Given the high crystal symmetry, and the small band gap of

PtSb2, we still believe that it holds great promise as a host for magnetic ion doping,

but it is clear that neither flux growth, nor Czochralski growth methods are suitable

for synthesizing heavily doped single crystals of PtSb2. For the small concentrations

of rare earths that were successfully doped into PtSb2, we found that the n depen-

dence of γ was enhanced compared with the Sommerfeld model for the free electron

gas, suggesting that m* increases with increasing n.



CHAPTER VI

Magnetic Field Tuning of Electronic and Magnetic Phases in
Yb3Pt4

6.1 Introduction

We now focus on the high n and N region of Figure 1.1, represented by rare earth

based intermetallic compounds, where the magnetic rare earth elements Ce and Yb

are combined with other metallic elements to form binary or ternary intermetallics,

with the Ce or Yb atoms forming a lattice of local magnetic moments. These com-

pounds typically are magnetically ordered at low temperatures and will sometimes

form novel electronic and magnetic states when external pressure or magnetic field

is applied [13, 14, 15, 16]. The experimental exploration of these novel phases is

the subject of this chapter. We will present our extensive measurements of single

crystals of a new binary intermetallic antiferromagnet, Yb3Pt4, which we synthesized

by the flux growth method. In zero field, the antiferromagnetic transition occurs at

TN=2.4 K for Yb3Pt4, but we will show that TN decreases with increasing magnetic

field and eventually at H=1.6 T and TN=0, terminates at a quantum critical point

(QCP). A QCP occurs where the magnetic ordering temperature is suppressed to

T=0. This suppression of TN to zero is common with a number of these types of

antiferromagnetic compounds, including YbRh2Si2, where TN=70 mK in zero field,

but is driven to TN=0 by applying a magnetic field of 0.7 T [9] and CeCu5.8Au0.2,

73
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where TN is driven from 0.22 K at ambient pressure to zero with the application of

5 kbar of pressure [67]. In 1977, based on two competing mechanisms, the Kondo

effect and the RKKY interaction, Doniach deduced a generic phase diagram describ-

ing this suppression of magnetic order. We begin this chapter with a description

of the Kondo Effect, the RKKY interaction and how their competition leads to the

Doniach phase diagram.

6.1.1 The Kondo Effect

Understanding the presence of a broad minimum at low temperatures in the re-

sistivity in nominally pure metals had been a theoretical challenge for years until

1964, when J. Kondo solved the problem by considering a single localized d-electron

magnetic impurity coupled to itinerant electrons in a metal [68]. The cause of the

minimum is the interaction between the conduction electrons and the magnetic impu-

rity. As the temperature decreases, this magnetic interaction between the localized

d-electron and the conduction electrons begins to have a significant effect on the

resistivity via the spin-flip scattering of the itinerant electrons from the magnetic

impurity. At sufficiently low temperature, the conduction electrons form a spin sin-

glet state with the localized moments. This state of lowest energy requires the spins

to be antiparallel, which is satisfied for the localized electron having spin up and the

itinerant electrons having spin down, or the opposite case. Since these two cases are

indistinguishable, the ground state of this system is a singlet linear combination of

both states, where the wavefunction is

1√
2
(↑L↓I − ↓L↑I),

where ↑ represents the spin up state, ↓ represents the spin down state and L and I

indicate the localized and itinerant electrons. In this way, the Kondo effect quenches



75

the local moments present at high temperatures and creates a non-magnetic ground

state.

The exchange interaction between a conduction electron and a local magnetic

moment is quantified by the Kondo Hamiltonian,

HK = −2JSkSl

where J is the exchange interaction, Sk is the spin of the interacting conduction elec-

trons, and Sl is the localized spin. This interaction leads to the resistivity due to the

magnetic impurity, ρ ∝ -ln(T/TK) via the second order Born approximation [68],

which leads to a correct prediction of the resistivity in metals with magnetic impu-

rities. TK is the approximate temperature scale, below which the interacting con-

duction electrons form the Kondo singlet with the local moment. There is, however,

another interaction, the Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction, that

competes with the Kondo effect in the heavy fermion materials acting to magnetically

order localized spins via the conduction electrons.

6.1.2 The RKKY Interaction

In the 1950s, Ruderman and Kittel [69], and Kasuya [70] and Yosida [7], inde-

pendently determined that the same mechanism responsible for conduction electrons

indirectly mediating the hyperfine interaction between nuclear spin and s-electron

spin in metals also led to magnetic order in metals where the local moments are

located too far apart to experience strong nearest neighbor dipolar interactions. In

the RKKY interaction, the magnetization density of the conduction electrons is spa-

tially modulated around localized f-electron moments. The spatially oscillating spin

density of the conduction electrons conveys the spin information between distant
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local moments allowing them to interact indirectly. The exchange Hamiltonian,

HRKKY ∝ SiSjJ
2f(2kF r),

where Si and Sj are the interacting localized spins, J is the exchange interaction, kF

is the Fermi wave vector, and

f(2kF r) =
sin(2kF r)− 2kF rcos(2kF r)

(2kF r)4
,

which is a damped oscillating function of 2kF r extending outward from the localized

moment (Fig. 6.1) [34], making the exchange interaction ferromagnetic for positive

values of f, and antiferromagnetic for negative values of f. The RKKY interaction

can create long range magnetic order, coupling moments that are too far apart to

order by a direct mechanism. In 1977, based on a one-dimensional chain of inter-

acting moments, Doniach predicted a phase diagram for systems in which RKKY

interactions compete with the Kondo effect [71]. We describe the resulting phase

diagram in the next section.

Figure 6.1: A plot of the oscillating RKKY function (Figure from O Handley, 2000 as referenced in
the text).
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6.1.3 The Doniach Phase Diagram

In Doniach’s phase diagram, the resulting phases are determined by the compe-

tition between the Kondo effect and the RKKY interaction. The magnetic ordering

temperature in the RKKY interaction,

TRKKY ∝ J2η(EF ),

where J is the exchange interaction, and η(EF ) is the conduction electron density of

states at the Fermi level, EF . In the Doniach model, the exchange interaction, J also

governs the Kondo effect, with

TK ∝ η(EF )−1e
−1

Jη(EF ) .

Experimentally, J can be tuned by a parameter such as doping, magnetic field or

pressure to adjust the relative magnitudes of the RKKY interaction and the Kondo

effect. Figure 6.2 is a schematic of the Doniach phase diagram. The J dependencies

of TK and TRKKY are plotted on the diagram to show that for low values of J,

the RKKY interaction dominates and the material is magnetically ordered. At high

values of J, the Kondo effect reduces the local moment magnitude and the magnetic

order is suppressed. The phase transition at the QCP occurs at T=0 when TRKKY

≈ TK . It is remarkable that the resulting phase diagram based on these two simple

interactions accurately describes the suppression of magnetic order in heavy fermion

systems such as YbRh2Si2, by magnetic field and CeCu5.8Au0.2, by pressure. Based

on experimental results, the Doniach phase diagram also includes the development

of a Fermi liquid (FL) phase, shown in the high J region, which is a fundamental

theory that describes normal metals.
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Figure 6.2: The expected Doniach phase diagram for a typical Ce or Yb based intermetallic crystal
containing a lattice of local f-electron magnetic moments. Below the QCP, the RKKY
interaction is dominant (blue dotted line), but above the QCP, the Kondo effect (red
dotted line) is dominant.

6.1.4 Introduction to the Fermi Liquid

Landau proposed his phenomenological Fermi liquid theory to describe the be-

havior of a collection of strongly interacting fermions, such as liquid 3He. It is a

testament to its success that Fermi liquid theory also describes the behavior of elec-

trons in metals, including the normal metallic state of heavy fermion systems at low

temperatures. In their book on quantum liquids [72], Pines and Nozieres give a good

description of the development of a Fermi liquid from a dilute gas as the temperature

is decreased. At high temperature and low density, each fermion behaves indepen-

dently, with negligible interactions and is well described by the theory of a classical

gas. As temperature decreases, the thermal energy decreases and the fermion density

increases, leading to an increase in fermion-fermion interactions. Eventually, there

is a phase transition to a classical liquid state. As the temperature continues to

decrease, the fermions become more and more strongly correlated and the density
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continues to increase as the thermal energy becomes very small. Eventually, the den-

sity is high enough so that the inter-fermion spacing is comparable to the de Broglie

wavelength of the fermion, and thus we move from a classical to a quantum regime,

where the behavior of fermions and bosons is strikingly different. For example, liq-

uid 4He is a Bose liquid, and liquid 3He is a Fermi liquid. Obvious from their name,

heavy fermion materials consist of high densities of fermions (electrons), and so we

limit our discussion to the properties of Fermi liquids.

One of the key features of Fermi liquid theory is a one to one correspondence

between the electrons in the electron gas and the electrons in the Fermi liquid, which

can no longer be viewed as individual particles [72]. Because the electrons are in a

liquid-like state, they are strongly correlated and excitations end up simultaneously

affecting many electrons. It is thus not accurate to consider the excitations of a single

electron. Excitations within this electron liquid are called quasiparticles. Because the

electrons are strongly correlated, if the properties of a single electron are measured,

it behaves as if it has a much bigger mass than a single electron, because if it is

moved by some force, it drags its environment with it and thus seems much heavier.

This effect is quantified by replacing the electron mass, me with the effective mass,

m*. In normal metals, m*≈me, but the heavy fermion materials are called heavy,

because they can have values of m* as large as 1000 me [73]. In this state, since the

electrons are interacting, the action of one electron affects all the other electrons.

The Fermi liquid theory describes a system of quasiparticles. The energy of a single

quasiparticle is

E0 = ~2k2/2m∗,

where k is the wavevector and m* is the effective mass. If we add one quasiparticle

to a system of quasiparticles, we need to consider the energy of the quasiparticle,
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plus the energy of its interactions with each of the other quasiparticles, so its energy

will be

Ek = E0 +
1

V

∑
k′

f(k, k′)δ(k′),

where k and k’ are the wavevectors of the added quasiparticle and the interacting

quasiparticle in the system, V is the volume of the system, δ(k’) is 1 for a quasi-

electron, and -1 for a quasi-hole and f(k,k’) is the quasiparticle interaction function.

Because the two interacting quasiparticles can have either parallel or antiparallel

spins, the interactions can be broken up into two independent parts,

f(k ↑, k′ ↑) = f s(k, k′) + fa(k, k′)

f(k ↑, k′ ↓) = f s(k, k′)− fa(k, k′)

Because it is assumed that interacting quasiparticles lie close to the Fermi surface,

k≈k’≈kF , the interaction function can expressed as a series of Legendre polynomials,

fa,s(k, k′) =
∑

l

fa,s
l Pl(cosθ).

These coefficients are normally expressed in a dimensionless form, Fa,s
l =η(EF )fa,s

l ,

where η(EF ) is the density of states at the Fermi level, η(EF )=m*kF /π2~2. Based

on these results, expressions for the expected magnetic susceptibility, specific heat,

and resistivity can be deduced.

Specific observable predictions of Fermi liquid theory occur in the temperature

dependence of the resistivity, specific heat, and magnetic susceptibility [15, 13, 72].

For the electronic specific heat,

C(T ) = γT,

where γ=π2k2
Bη(EF )/3, where η(EF )=m*kF /π2~2 is the density of states at the Fermi

energy. Since η(EF )=m*kF /π2~2, γ=k2
BkF m*/3~2. This is the same expression



81

found in the Sommerfeld model of non-interacting electrons, but the mass of the

electron, me is replaced by the effective mass, m*. Thus, γ is a measure of the ef-

fective mass, m*. As mentioned previously, the class of heavy fermion materials is

distinguished by their very large m*, up to 1000 me [74]. For resistance measure-

ments,

ρ(T ) = ρ0 + AT 2 (T < TFL),

where ρ0 is the remaining resistivity at T=0, due to impurities, T is the temperature,

where TFL=EF /kB is the Fermi temperature, and EF is the Fermi energy. The heavy

fermion compounds also have very large values of A, which measures the quasi-

particle scattering, A∝1/T2
FL ∝(m*)2 [13]. The magnetic susceptibility for systems

with interacting electrons is given by

χ(T ) =
µ2

Bm∗kF

π2~2

1

1 + F a
0

,

where Fa
0 is the dimensionless spin antisymmetric Landau parameter. This is just the

temperature independent non-interacting Pauli susceptibility, χ=µ2
Bη(EF ), increased

by the dimensionless factor, (m*/me)/(1+Fa
0). For χ to remain positive, Fa

0 >-1.

For the case of the diverging susceptibility associated with ferromagnetism, Fa
0=-1.

An in-depth theoretical explanation of the Fermi liquid and the derivations of the

expected observables can be found in the quantum liquids book by Pines [72] and in

the review article by von Lohneysen [13].

There are two useful relations between Fermi liquid parameters that are often

used to analyze and classify heavy fermion materials. In 1986, Kadowaki and Woods

observed what seems to be a universal constant relation between A and γ [75]. It is

known as the Kadowaki-Woods relation and finds a constant value for most heavy



82

fermion intermetallics, with

A/γ2 = 10µΩ− cmK2mol2/J2.

Another commonly used ratio is the Sommerfeld-Wilson ratio that relates χ0 to γ,

RW =
π2k2

Bχ0

µ2
effγ

.

For the case of a non-interacting system, RW =1, while heavy fermion compounds

typically have significantly higher values. Based on a theoretical calculation, a spin

1/2 Kondo system should have a value of RW =2 [76]. Substantially larger values are

found in systems with magnetic correlations [77]. Superconductors are found to have

RW <2 [77]. We will show in later sections that Yb3Pt4 shows very high values of

χ0 and A, suggesting that it could be a heavy fermion compound, but the coefficient

of the electronic part of the heat capacity, γ is not enhanced. We use the Kadowaki-

Woods ratio, and RW to compare Yb3Pt4 to other heavy fermion compounds that

have similar values of A and χ0.

6.1.5 Quantum Critical Points in Heavy Fermion Compounds

Figure 6.3 is a schematic of the typical Doniach-like phase diagram found in

quantum critical heavy fermion materials, including YbRh2Si2 and CeCu6−xAux. In

measurements of these materials, we observe much more than just the suppression of

TN to zero temperature. The point on the phase diagram where TN=0 is a special

point known as a quantum critical point (QCP) that influences the states of matter

over a wide region of the phase diagram, and sometimes leads to newly observed

phases of matter including an unconventional metallic phase and unconventional

superconductivity. We will describe the properties of YbRh2Si2 and CeCu6−xAux,

which display actual QCPs and of CePd2Si2 and CeCu2(Si1−xGex)2 which display

unconventional superconductivity.
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Figure 6.3: A schematic of the typical phase diagram found for quantum critical heavy fermion
compounds.

During a classical second order phase transition from a magnetically ordered state

at lower temperatures to a paramagnetic state at higher temperatures, thermal fluc-

tuations continuously increase with increasing temperatures until the thermal energy

becomes greater than the energy of the magnetic interactions, destroying the mag-

netic order. Analogously, at a QCP a magnetically ordered state at T=0 transitions

to a paramagnetic state via the application of pressure or magnetic field. Because

the transition at a QCP occurs at T=0, it is not driven by thermal fluctuations, but

by zero-point quantum fluctuations, making it a quantum phase transition (QPT).

The discovery of quantum critical points and their associated novel phases of mat-

ter in experimentally determined phase diagrams of rare-earth based intermetallic

compounds has generated intense interest and experimental and theoretical efforts to

better understand these systems [15, 16, 13, 14]. The quantum critical point (QCP)

is ultimately thought to be the origin of these phases [13, 14]. It is only very recently

that systems with QCPs have been experimentally observed and thoroughly studied
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and many more quantum critical materials need to be synthesized and measured in

order to guide a better theoretical understanding of the mechanisms behind these

phases [13, 14]. There are actually many heavy fermion materials that have been

tuned to a QCP via doping [15, 16], but these are not very useful systems for the

study of quantum criticality, because doping introduces disorder and the effects of

the disorder tend to be very strong near quantum critical points. To date, the two

best examples of materials that have a QCP are the rare earth based compounds,

YbRh2Si2 (Fig. 6.4(a)) [9] and CeCu6−xAux (x=0.1-1) (Fig. 6.4(b)) [67]. These

types of compounds are classified as heavy fermions for reasons that will be discussed

later in the chapter. Fig. 6.4 shows the field-temperature (H-T) phase diagram for

QCPQCP QCPQCP

AF

FL

NFL

(a) (b)

YbRh
2
Si

2 CeCu
5.8

Au
0.2

unconventional 
Metallic State

unconventional 
Metallic State

Figure 6.4: (a) The H-T phase diagram for YbRh2Si2 has a QCP near 0.8 T. At low magnetic fields
and temperatures, YbRh2Si2 is antiferromagnetically ordered and at magnetic fields
beyond the QCP, it is in a normal metallic, Fermi liquid state. The unconventional non-
Fermi liquid metallic state extends upward in temperature from the QCP (Figure from
Gegenwart, 2002 as referenced in the text) (b) The P-T phase diagram for CeC05.8Au0.2

has a pressure driven QCP from an antiferromagnetic state near 5 kbar and also has
the unconventional non-Fermi liquid metallic state extending upward in temperature
from the QCP (Figure from von Lohneysen, 2001 as referenced in the text).

YbRh2Si2 and the pressure-temperature (P-T) phase diagram for CeCu5.8Au0.2. In

each case, there is a QCP, as indicated in the figure. There are common features

shared by the phase diagrams of these two quantum critical heavy fermion materials.
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At low temperatures and low values of the tuning parameter (pressure or magnetic

field), there is an antiferromagnetically ordered state that can then be tuned to a

QCP. Beyond the QCP there is a conventional Fermi liquid (FL) metallic state. One

of the properties of quantum critical systems that is generating interest is the pres-

ence of an unconventional non-Fermi liquid (NFL) metallic state extending upward

in temperature over a surprisingly large range, demonstrating the strong influence of

the QCP on the electronic properties of quantum critical systems. Equally intrigu-

ing is the recent discovery and measurement of unconventional superconductivity

in the quantum critical heavy fermion compounds, CePd2Si2 (Fig. 6.5(a)) [11] and

CeCu2(Si1−xGex)2 (Fig 6.5(b)) [12]. For the case of CeCu2(Si1−xGex)2, when x=0.25,

CePd
2
Si

2

unconventional
superconductivity

(a)

CeCu
2
(Si

1-x
Ge

x
)

2

(b)

Figure 6.5: (a) The P-T phase diagram for CePd2Si2 has the expected antiferromagnetic state
at low temperatures and pressures, but as pressure increases, instead of reaching a
QCP, a region of unconventional superconductivity develops around the expected QCP
(Figure from Yuan, 2006 as referenced in the text). (b) The P-T phase diagram for
CeCu2(Si1−xGex)2 again showing how antiferromagnetic order and unconventional su-
perconductivity are found so close together (Figure from Mathur, 1998 as referenced in
the text).

there is a QCP ∼2.2 GPa, but for x=0.1, as pressure increased, before the antifer-

romagnetic state reaches a QCP, an unconventional superconducting phase forms
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around the expected QCP. It is surprising that magnetic order and superconductiv-

ity, two normally mutually exclusive states are located so close to one another. The

close proximity of these unconventional quantum critical superconducting states to

antiferromagnetic QCPs suggests that the superconductivity may be magnetically

mediated. This observation has added to the already intense interest in quantum

critical systems. However, just like YbRh2Si2 and CeCu6−xAux, there are very few

materials available that display this unconventional superconductivity. In addition

to CePd2Si2 and CeCu2(Si1−xGex)2 another promising group of materials showing

unconventional superconductivity is the 1-1-5 materials based on CeCoIn5, where

Co can be replaced by Rh or Ir [78]. So far, all of the heavy fermion materials

displaying either a QCP or unconventional superconductivity are antiferromagnetic

and none are quantum critical ferromagnets. It would be a significant experimental

breakthrough to discover a heavy fermion ferromagnet that can be tuned to a QCP

and very important to theorists working on magnetic QCPs. Unfortunately heavy

fermion ferromagnets are rare, and attempts to synthesize one continues to be a

major ongoing effort in our research group. Ferromagnetic QCPs do exist in other

classes of materials. Quantum critical points have been found in weak itinerant fer-

romagnets, including ZrZn2 [79] and MnSi [80], FeGe [81] and also in Sr3Ru2O7 [82],

which is a magnetically induced ferromagnet with a possible QCP. These systems,

however, display a different type of phase diagram (Fig. 6.6(a)) [13, 83] with an

initially second order phase line becoming a first order phase line before a QCP is

reached. The pressure-temperature phase diagram for the itinerant helical ferromag-

net, MnSi, for example, becomes first order above a certain pressure, p*, before TC

reaches zero (Fig. 6.6(b)) [13, 84].

Theoretical efforts to understand magnetic quantum phase transitions (QPT) in
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(a) (b)

MnSi

Figure 6.6: (a) Generic pressure-field-temperature phase diagram by Belitz, 2005 (Figure from von
Lohneysen, 2007 as referenced in the text). (b) The P-T phase diagram by Pfleiderer,
2004 for MnSi showing the ferromagnetic phase line becoming first order above p*
(Figure from von Lohneysen, 2007 as referenced in the text).

metals have been ongoing, beginning with the early work of Hertz in 1976 on continu-

ous quantum phase transitions in metals [85]. Good review articles about the current

theoretical and experimental developments can be found in papers by Lohneyesen et

al [13] and Gegenwart et al [14]. A comprehensive list of intermetallic compounds

displaying NFL behavior can be found in review papers by Stewart [15, 16]. Much

more experimental work is needed and the current lack of more quantum critical ma-

terials and experimental results has motivated our efforts to synthesize new quantum

critical materials. We have succeeded in synthesizing an unconventional antiferro-

magnetic material, Yb3Pt4, which can be tuned to a QCP with an applied magnetic

field of 1.6 T. The properties of this material are unique among quantum critical

systems, with a weakly first order phase transition from a local moment paramag-

netic state to a Fermi liquid antiferromagnetic state at 2.4 K. The temperature of the

first order phase transition decreases with increasing magnetic field and terminates

at a critical endpoint, but then continues to a QCP, but as a second order phase
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transition.

6.1.6 Evolution of the Fermi Liquid Parameters across phase lines near a QCP

One of the key signatures of a QCP is the divergence of the effective mass on

approach to the QCP from the FL regime [13, 14]. Since the coefficient of the

electronic part of the heat capacity, γ is a direct measure of the effective mass in a

FL, we expect quantum critical heavy fermions to show a divergence in γ on approach

to the QCP in the FL regime. This behavior is observed in the previously discussed

quantum critical heavy fermion compound, YbRh2Si2 (Fig. 6.7 (red circles)) [86].

We also know from FL theory that A ∝ (m*)2, so we also expect A to diverge on

approach to the QCP from the FL regime. This is exactly the behavior observed in

YbRh2Si2 (Fig. 6.7 (blue triangles)) [86].

Figure 6.7: The temperature dependence of the quadratic part of the resistivity, A (blue triangles),
and the coefficient of the linear temperature dependence of the specific heat for a FL,
γ (red circles), showing how both of these values diverge at the QCP because of the
diverging effective mass, m* (Figure from Gegenwart et al, 2006 as referenced in the
text).

As previously discussed, FL and NFL regimes in quantum critical heavy fermion

compounds can be directly observed in measurements of the heat capacity, resistivity
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and magnetic susceptibility. Values of γ are obtained from measurements of the heat

capacity by plotting C/T versus T and extrapolating to T=0. For quantum critical

heavy fermions, γ is expected to be large and in the FL regime, C=γT, and in

the NFL regime, C∼TlnT. This behavior is evident in the plots of the temperature

dependence of these quantities in both YbRh2Si2 (Fig. 6.8(a))and CeCu5.8Au0.2 (Fig.

6.8(c)). γ is 2 J/mole-K2 for YbRh2Si2 and 3 J/mole-K2 for CeCu5.8Au0.2, among

the highest observed values of γ among heavy Fermion materials. The expected FL

behavior is also observed for both materials, with C/T nearly constant in the FL

regime, and C/T∼ lnT in the NFL regime, extending upward in temperature from

the QCP.

In both YbRh2Si2 (Fig. 6.9(a)) [9] and CeCu5.8Au0.2 (Fig. 6.9(b)) [10], the FL

region is also marked by the quadratic temperature dependence of the resistivity.

Both materials also show a linear temperature dependence extending upward in

temperature from the QCP, as expected for the NFL regime. The expected very

high values of the magnetic susceptibility, χ0 for quantum critical heavy fermion

materials are observed in YbRh2Si2, as high as 10−5 m3/mole, which puts it among

the highest values observed in the heavy fermions [87]. At low temperatures and

low fields, the susceptibility is temperature independent, consistent with the Pauli

susceptibility of a FL. In the next section, we present our measurements of Yb3Pt4,

which has a field tuned QCP, but with unique properties that deviate from those of

the two known quantum critical systems described above. We present our results

beginning with our zero field measurements in the following section. As shown in Fig.

6.3, one of the hallmarks of a system with a QCP is a large region of NFL behavior

extending upward in temperature from the QCP. We describe the signatures of this

NFL behavior in the next section.
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Figure 6.8: (a) A semi-log plot of the temperature dependence of ∆C/T, for YbRh2Si2 showing the
high values of γ. ∆C is the magnetic part of the specific heat minus the specific heat
due to the nuclear Schottky peak of Yb at low temperatures. As expected near the
QCP, C/T∼logT, and in the higher field FL regime, C/T is a constant (Figure from
Gegenwart et al, 2002 as referenced in the text). (b) The temperature dependence of
the magnetic susceptibility in different magnetic fields for YbRh2Si2, showing the very
high values of χ0, as expected for a heavy fermion compound (Figure from Gegenwart
et al, 2002 as referenced in the text). (c) A semi-log plot of the temperature dependence
of C/T for CeCu5.8Au0.2, showing the very high values of between 2 and 4 J/mole-K2.
The temperature dependence of C/T ∼logT illustrating the NFL behavior expected
near the QCP. beyond the QCP, at 6.9 kbar, the temperature dependence is nearly
constant, consistent with the conventional FL state at higher pressures (Figure from
von Lohneysen, 1996 as referenced in the text).
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(a)

(b)

Figure 6.9: (a) The temperature dependence of the resistivity for YbRh2Si2 for field orientations
applied perpendicular to the c-axis of the crystal (left) and parallel to the c-axis of the
crystal (right), where the arrows mark the position in temperature where the resistivity
deviates from a quadratic (FL) temperature dependence. The expected linear (NFL)
temperature dependence extending up in temperature from the QCP is also observed
in the data set with no arrow present, which is roughly at the QCP (Figure from
Gegenwart, 2002 as referenced in the text). (b) The same type of plot as is shown in
(a), with the arrows marking where the temperature dependence of the resistivity for
CeCu5.8Au0.2 deviates from quadratic. The NFL linear temperature dependence of the
resistivity is also observed in the data sets with the hollow arrowheads, just above the
FL line (Figure from von Lonhneysen, 1996 as referenced in the text).
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6.1.7 Signatures of Quantum Critical Non-Fermi Liquid Behavior

We have discussed how much of the motivation for studying quantum criticality

stems from the observation of a universal NFL behavior found in heavy fermion

systems with second order antiferromagnetic phase transitions that can be tuned to a

QCP. There are measurable signatures of the NFL state in this type of QCP material

(Fig. 6.3) [13, 15]. The temperature dependences of ρ(T), C(T), and χ(T) predicted

by Fermi liquid theory are no longer observed. Instead, it is observed that ρ ∼T,

C∼TlnT, and χ ∼T−δ, where δ is small. This behavior is observed in known quantum

critical second order antiferromagnetic systems such as YbRh2Si2 and CeCu5.8Au0.2

near the quantum critical point. While anomalous ”NFL” is observed in itinerant

ferromagnetic systems including MnSi [13] and in the unconventional superconductor,

CePd2Si2, the experimental signatures are different from those of YbRh2Si2 and

CeCu5.8Au0.2. The temperature dependence of the resistivity extending upward from

the the QCP in MnSi for example is not linear, but ρ ∝T3/2 [13] and for CePd2Si2

there is a quasi-linear temperature dependence, ρ ∝T1.2 [11]. Another difference in

the itinerant ferromagnetic systems is the lack of a FL region with ρ ∝T2.

Anomalous ”NFL” behavior varies among quantum critical systems and seems to

depend on the type and form of magnetic order that is suppressed to form the QCP.

Local moment systems show different behavior from itinerant systems, antiferromag-

netic systems differ from ferromagnetic systems, and systems with a second order

phase transition differ from systems with ferromagnetic order. We will show that

Yb3Pt4 is unique among quantum critical systems, with no NFL behavior observed

near the QCP.
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6.1.8 The H-T Phase Diagram for Yb3Pt4

The Phase diagram for Yb3Pt4 (Fig. 6.10) is unique among quantum critical

antiferromagnets. While the previously measured quantum critical heavy fermion

antiferromagnets show an entirely second order phase line for the antiferromagnetic

phase, Yb3Pt4 has a first order phase transition in zero field with TN=2.4 K. TN

decreases with increasing magnetic field and is driven to a critical endpoint (CEP)

at 1.2 K and 1.5 T. Further increasing the magnetic field continues to decrease TN ,

with the phase line extending to a QCP near 1.6 T, but as a second order phase

line. The ordered phase is a Fermi liquid, and there is a second Fermi liquid region

in high fields. In the high field FL region, the crossover line does not terminate at

the QCP as it does in the other quantum critical antiferromagnets, but instead has

a minimum near the CEP. There is no evidence for NFL behavior extending upward

from the QCP, or anywhere else in Yb3Pt4. Later, the details of the measurements

leading to the construction of the phase diagram for Yb3Pt4 will be presented.

FL-1FL-1

AFMAFM

PM-1PM-1

PM-2PM-2

1st Order

FL-2FL-2

2nd Order

QCPQCP

Crossover

Figure 6.10: The H-T phase diagram for Yb3Pt4 based on the data indicated in the key.
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Before constructing the phase diagram for any newly grown material, a number

of standard exploratory measurements are performed to determine whether the ma-

terial has the potential to have a quantum critical point and if it does, to thoroughly

characterize its zero field properties. We perform these measurements of ”the basic

properties of Yb3Pt4” in the following section. The most important feature is the ob-

servation in multiple measurements of a low temperature transition to a magnetically

ordered phase. It will be shown in the following sections that Yb3Pt4 displays this

feature, showing a transition to an antiferromagnetic phase at TN=2.4 K observed in

measurements of the magnetization, AC magnetic susceptibility, heat capacity and

resistivity. With the potential for quantum criticality apparent in Yb3Pt4, the zero-

field properties are thoroughly measured and analyzed in anticipation of a careful

analysis of how they evolve with increasing magnetic field.

6.2 The Basic Properties of Yb3Pt4

In this section, we present the basic properties of Yb3Pt4 based on the zero-

field resistance, magnetic susceptibility, heat capacity measurements and the field

dependence of the magnetization at different temperatures. These results show that

Yb3Pt4 has an unusual transition from a local moment paramagnetic phase to a

weak antiferromagnetic phase in a FL state via a first order phase transition at 2.4

K. AC magnetic susceptibility measurements suggest that this zero field transition

is antiferromagnetic. Powder neutron diffraction measurements confirm that Yb3Pt4

is an antiferromagnet with a moment of 1.0 µB per Yb atom [88].

6.2.1 The Crystal Structure of Yb3Pt4

As described in Chapter 2, single crystals of Yb3Pt4 were grown from Pb flux.

Polycrystalline Yb3Pt4 has been previously studied [89], but we have synthesized
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single crystals of Yb3Pt4 for the first time, and are thus the first to measure its

intrinsic physical properties. The single crystals had masses as large as 2 mg, with

typical dimensions of 0.2×0.2×0.5 mm3 (Fig. 6.11). Single crystal X-ray diffraction

measurements of a fragment of one of the measured crystals determined that Yb3Pt4

crystallizes in a rhombohedral hR14 (No. 148) space group with lattice parameters

of a = 12.8971 Å, c = 5.6345 Å, and V = 811.65 Å3, with Z = 6. The structure

was solved and refined using the SHELXL-97 program [90]. The atomic coordinates

and thermal parameters are listed in table 5.1, and a schematic of the structure is

shown in Fig. 6.12. The primitive cell has three Pt positions and just one Yb site

symmetry. The full unit cell consists of 18 Yb atoms and 24 Pt atoms. Although

Yb3Pt4 is overall not a layered system, we show in Fig. 6.12 that some of the

Yb atoms form layers of equilateral triangles. These results have been confirmed by

powder X-ray diffraction measurements carried out on powders prepared by grinding

subsequent batches of Yb3Pt4 single crystals.

Figure 6.11: A photograph of a single crystal of Yb3Pt4 next to a dime.
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Table 6.1: Crystallographic data for Yb3Pt4.
Atom Site x y z Ueq(Å2)
Pt1 3a 0 0 0 0.00754
Pt2 18f 0.88391 0.28131 0.05311 0.00534
Pt3 3b 0 0 1/2 0.00975
Yb 18f 0.04279 0.21182 0.23494 0.00630

Pt1

Pt3

Pt2

Yb
Pt1

Pt3
Yb

Pt2

Pt1
Pt3

Pt2

Yb

Pt3

Pt3

Yb

Pt

c

a

c

Figure 6.12: Schematic representation of the unit cell with a top view (left) and a side view (right)
showing that the Yb atoms form layers of equilateral triangles. The red, blue, green
and yellow circles all represent Yb atoms and are used to distinguish between the four
equilateral triangles contained in the unit cell.

6.2.2 The Temperature Dependence of the Magnetization

We measured the temperature dependence of the magnetization in a 0.2 T field

from 1.8 K to 300 K for two field orientations, parallel and parallel to the a-axis

of the crystal and found local moment behavior for most of the temperature range.

For both field orientations, the susceptibility increases more and more sharply with

decreasing temperature, but with a larger increase when the field is applied parallel

to the a-axis (Fig. 6.13a). The anisotropy is well illustrated by measurements of the

angle dependence of the magnetization taken on a single crystal of Yb3Pt4 mounted

on a rotator. We measured the change in magnetization in a 100 G field as we rotate

the crystal position with respect to the applied magnetic field from parallel to the

c-axis to parallel to the a-axis (Fig. 6.14). We find that the easy magnetic axis lies

in the a-b plane of the crystal, with no anisotropy found in this plane. There is no
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anisotropy (χ⊥/χ‖ = 1) above ∼ 150 K, but below 150 K, the anisotropy increases,

reaching a maximum of just over 2 at the lowest temperatures (Fig. 6.13(b)). This

value is smaller than the value of approximately 3 implied in Fig. 6.14 and is likely

due to misalignment of the crystal with respect to the applied magnetic field.

(a) (b) (c)

Figure 6.13: (a) The temperature dependence of the DC magnetic susceptibility of Yb3Pt4 in a 0.2
T magnetic field applied parallel (red circles), and perpendicular (black circles) to the
c-axis of the crystal. (b) The temperature dependence of the anisotropy of the DC
magnetic susceptibility, χ‖/χ⊥ shows no anisotropy down to 150 K, and a maximum
anisotropy of just over 2 at low temperature.

H    a

H    c

Figure 6.14: The angular dependence of the magnetization of a single crystal of Yb3Pt4 at 2 K, in
a 100 G field.

The temperature dependence of 1/χ (Figure 6.13(c)) is linear above 150 K for both

field orientations, indicating local moment behavior described by the Curie-Weiss

expression,

χ‖,⊥ = C/(T − θ),
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where T is the temperature, C is the Curie constant, and θ is the Weiss temperature.

A linear fit to 1/χ⊥ yields values of θ=-2.3 K, suggesting net antiferromagnetic

correlations, and C=4.8×10−6mole Yb3+/m3K, where,

C = g2µ2
BJ(J + 1)/3kB,

where the numerator is the effective magnetic moment, µeff=gµB

√
J(J + 1) squared,

g is the Lande g-factor, µB is the Bohr magneton, kB the Boltzmann constant, and

J=L+S is the combined intrinsic plus orbital spin. Using the known values for Yb3+,

g=8/7 and J=7/2, we obtain an effective moment, µeff=4.24 µB per Yb ion, which

is just below the expected Hund’s rule moment for Yb3+, 4.54 µB. For temperatures

below ∼150 K, 1/χ‖ is enhanced relative to 1/χ⊥. This could be the result of anti-

ferromagnetic correlations, the crystal electric field splitting of the f-electron states

of the Yb ions, or both. At low temperature, there is a slope change at 2.4 K (Fig.

6.15), consistent with a transition to an antiferromagnetic state. The main result

of this section is that the Yb moments are trivalent with full CEF occupancy above

∼150 K.

Figure 6.15: The temperature dependence of the inverse dc magnetic susceptibility showing a
change in slope at TN=2.4 K for both χ−1

⊥ (black circles) and χ−1
‖ (red squares).
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6.2.3 The Temperature Dependence of the AC Magnetic Susceptibility

The temperature dependence of the real part of the zero field ac magnetic suscep-

tibility, χ′ (Fig. 6.16), shows a distinct cusp at 2.4 K, indicating that the transition

seen in the temperature dependence of the susceptibility (Fig. 6.15) is to an antifer-

romagnetic state. Also plotted is the derivative, dχ′/dT , which shows a discontinuity

at 2.4 K, in agreement with the position of the ordering feature observed in the spe-

cific heat. The transition is also seen in the DC magnetic susceptibility data as a

change in slope at 2.4 K for both χ−1
⊥ and χ−1

‖ (Fig. 6.15), showing that the anti-

ferromagnetic order develops directly from a local moment paramagnetic state, with

no evidence for any significant critical fluctuations. Turning to the measurements

Figure 6.16: The temperature dependence of the ac magnetic susceptibility, χ′ac (black triangles),
showing an antiferromagnetic cusp, and a discontinuity in its temperature derivative,
dχ′/dT (red circles) at the antiferromagnetic transition temperature, TN=2.4 K.

of the temperature dependence of the AC magnetic susceptibility, and referring to

Fig. 6.16, we find a very high value for the extrapolated zero field susceptibility,

χ0=6.8×10−6m3/mole Yb. This value is comparable to the highest values found in

the heavy fermion materials [87]. We also find that the temperature dependence of

χ′ in the ordered state is nearly temperature independent, suggesting that it is the
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Pauli susceptibility of a Fermi liquid.

6.2.4 The Field Dependence of the Magnetization

Local moment behavior is also observed in measurements of the field dependence

of the magnetization of single crystals of Yb3Pt4, taken at temperatures ranging from

1.78 K to 100 K and in fields up to 7 T (Fig. 6.17(a)). At high temperatures, the

magnetization is linear with field, but as the temperature is lowered, M increases more

and more sharply at low field, then levels off, approaching a maximum value (the

saturation magnetization, MS) of MS=2.1 µB/Yb. A plot of the field dependence of

the magnetization for a smaller selection of temperatures is shown in Figure 6.17(b)

for clarity. This selection is then re-plotted as a function of H/T (Fig. 6.17(c)). The

data collapse onto a single curve, with the low temperature high field magnetization

reduced by about a factor of 2 from the expected J=7/2, g=8/7 magnetization

expected for an Yb3+ based local moment paramagnet, where the magnetization

M = NgJµBBJ(x)

where N is the number of Yb3+ atoms, g is the Lande factor, and BJ(x) is the

Brillouin function,

BJ =
2J + 1

2J
coth(

2J + 1

2J
x)− 1

2J
coth(

x

2J
)

where x=gµBBJ/kBT. The wide range of H/T scaling observed in the magnetization

of Yb3Pt4 shows that local moment magnetism persists down to the lowest tem-

peratures and is not replaced by critical fluctuations. The saturation moment of

∼2.1 µB/Yb3+ is about half of the expected low temperature, high field value of 4.0

µB/Yb, but, as shown later, this result is consistent with the crystal electric field

splitting of the Yb3+ state deduced from specific heat measurements, which breaks
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the degeneracy of the Yb3+ ions. In this section, we have shown further evidence

that antiferromagnetic order emerges from a paramagnetic state with nearly ideal

local moment behavior.

(b) (c)(a)
H    a

Figure 6.17: (a) The field dependence of the magnetization at temperatures ranging from 1.78 K to
100 K with the field applied parallel to the a-axis of the crystal. At low temperature,
the magnetization increases sharply, then levels off, approaching the saturation mag-
netization, Msat= 2.1 µB . (b) The field dependence of the magnetization for a smaller
selection of temperatures used in (c) to illustrate the scaling (c) The magnetization
plotted as a function of H/T, with the J = 7/2 Brillouin function (black line). The
magnetization data are reduced from the J=7/2 Brillouin function because crystal
fields lift the degeneracy of the Yb3+ ground state.

6.2.5 The Temperature Dependence of the Heat Capacity

In this section, we present the results of our zero-field heat capacity measure-

ments. The temperature dependence of the zero-field heat capacity was measured

from 0.38 K to 75 K (Fig. 6.18(a)). Generally, the temperature dependence of

the heat capacity is a combination of electronic, magnetic and phonon contributions,

with Ctot=Ce+Cmag+CPh=CM+CPh, where CM is the combined electronic and mag-

netic contribution, which depends upon the type of magnetic order and the type of

electronic phase. The phonon contribution dominates the heat capacity at interme-

diate and high temperatures. Fig. 6.18(b) reveals a very sharp feature associated

with the antiferromagnetic transition at 2.4 K found in the AC and DC susceptibility

measurements. Using the dilution refrigerator insert for the PPMS, we measured the

temprature dependence of the heat capacity down to 50 mK (Fig. 6.18(c),(d), black

data points) and found that the data agreed with that taken using the 3He insert
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and revealed an upturn in the temperature dependence at the lowest temperatures

associated the nuclear Schottky peak of the Yb atoms.

(a) (b)

(c) (d)

Figure 6.18: (a) The temperature dependence of the heat capacity shows an ordering peak at low
temperature and is dominated by the phonon contribution at intermediate and high
temperatures. (b) The temperature dependence of the heat capacity near the ex-
tremely sharp antiferromagnetic transition at TN=2.4 K. (c) The temperature depen-
dence of the heat capacity measured in the 3He system (red circles) plotted with the
temperature dependence of the heat capacity measured in the dilution refrigerator
(black squares), revealing the sharp upturn associated with the nuclear Schottky peak
of the Yb atoms at the lowest temperatures. (d) A close-up of the low temperature
region of the plot shown in (c) clearly showing the sharp upturn associated with the
nuclear Schottky peak of the Yb atoms.

In order to analyze the electronic and magnetic parts of the specific heat, CM ,

we need to model and then subtract the phonon contribution, CPh. The phonon

contribution to the specific heat was estimated using the Debye model [5],

CPh = 9nkB(
T

ΘD

)3

∫ ΘD

0

x4exdx

(ex − 1)2
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which is then subtracted from the total heat capacity to isolate CM=C-CPh (Fig.

6.19, blue line). A close-up view of the temperature dependence of CM is plotted

in Figure 6.19(b), and reveals a broad Schottky-like feature peaked near 26 K. The

crystal field splitting scheme is confirmed by a good fit of the data to the Schottky

expression,

C =

∑
i Eie

− Ei
kBT∑

i e
− Ei

kBT

which finds a second doublet, E1=50 K, and a third doublet, E2=127 K. To obtain

the entropy, S, at some given temperature, T (Fig. 6.20(a), red dashed line), a plot

of C/T versus T is numerically integrated using

S(T ) =

∫ T

0

C

T ′dT ′

To determine the entropy associated with the magnetic ground state and the excited

crystal field states, the specific heat and entropy are plotted together in a composite

plot (Fig. 6.20(a)) along with a Schottky fit to the broad crystal electric field feature

(Fig. 6.20(a), blue dotted line). The entropy reaches a value of Rln2 just after the

large anomaly in the specific heat (Fig. 6.20(a), red dashed line), indicating that

the magnetic ground state is a doublet. S reaches Rln4 after the first Schottky peak,

indicating that the eight degenerate states of the J=7/2 Yb3+ are split by the crystal

electric field, into 4 doublet states, as expected for the symmetry of the Yb structure

(Fig. 6.20(b)) [91].

Also obtained from a plot of C/T versus T is the coefficient of the electronic part

of the heat capacity at T=0, γ. Since the electronic part of the heat capacity is given

by Ce= γT, this is easily obtained by plotting C/T versus T, and extrapolating the

data to T=0. This analysis yields an extremely low value for γ, which suggests very

little mass enhancement of the quasiparticles.
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Careful analysis shows that the phase transition is weakly first order. Fig. 6.21 is

a plot of the raw temperature versus time data during the decay cycle taken at the

phase transition, TN=2.4 K. As explained in the chapter on experimental technique,

the heat flow during the decay cycle can be estimated using the heat flow equa-

tion, dQ/dT=KW ∆T, where KW is the thermal conductance through the platform

wires, which is calculated by the PPMS at each temperature and is approximately

5×10−7J/sec-K and ∆T is the difference between the initial temperature and the

time dependent temperature. The latent heat is estimated by multiplying the power

by the length of time the raw data remains in the non-linear region. We estimate

a latent heat of just ∼2.17×10−4J/g, or 0.09 J/mole Yb. For comparison, Table

5.2 lists other rare-earth elements and rare-earth based compounds with first order

magnetic phase transitions. Clearly, Yb3Pt4 is very weakly first order.

(a) (b)

Figure 6.19: (a) The temperature dependence of the specific for temperatures ranging from 0.38 K
to 75 K, where the estimated phonon heat capacity (red line) is subtracted from the
total heat capacity (black line), isolating the magnetic part of the heat capacity (blue
line. (b) A close up of the temperature dependence of the specific heat for temperatures
ranging from 0.38 K to 75 K for the magnetic part of the heat capacity, CM . The sharp
ordering anomaly at low temperatures is followed by a broad Schottky-like feature at
the higher temperatures.

We found that the temperature dependence of CM/T in the ordered state has a

significant contribution from a Schottky peak originating with the exchange splitting
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Figure 6.20: (a) A composite plot containing the temperature dependence of the specific heat (solid
line), with its associated entropy (red dashed line), and a good fit to the broad feature
in the specific heat using the expression for Schottky anomaly (blue dotted line). (b)
A schematic of the first three doublet energy levels for the crystal field splitting of the
rhombohedral Yb structure.

Table 6.2:
Latent heat and critical temperature of first order ferromagnetic or antiferromagnetic
transitions in some rare earth elements, and rare earth based compounds.

Compound TC(K), TN (K) L(J/moleRE) Ref.
Dy 91(FM) 39 [92]
Er 19(FM) 24 [93]

Er0.4Ho0.6Rh4B4 1.9(FM) 74.5 [94]
Sm2IrIn8 14(AFM) 5 [95]

Sm0.55Sr0.45MnO3 130(FM) 180 [96]
Yb3Pt4 2.4(AFM) 0.09 this work

of the doublet ground state. We have added the estimated Schottky anomaly to the

plot (Fig. 6.22, dashed magenta line) assuming that the doublet ground state is split.

We are unable to determine an exact value for the energy splitting of the exchange

split doublet, however, because there are likely multiple contributions to the heat

capacity in the ordered state and we thus can only estimate a best fit to a Schottky

anomaly. We will, however, show later that measurements of the temperature de-

pendence of the heat capacity in large magnetic fields is consistent with the presence

of a Schottky anomaly resulting from the increased Zeeman splitting of the exchange



106

T(0) = 2.38 K

Figure 6.21: The time dependence of the difference between the time dependent temperature, T(t)
and the initial temperature, T(0), of the raw heat capacity data taken near TN=2.4 K
during the decay cycle plotted on a semi-log plot. The two linear regions represent the
value of the heat capacity on either side of TN . The region in between is non-linear
because there is a latent heat of ∼2.17×10−4J/g present.

split doublet ground state with increasing magnetic field.

We initially considered the possibility that the heat capacity in the ordered state

may be due to a magnetic spin wave, but rejected this scenario after failing to find

a good fit to the data using the expression for a gapped spin wave. We show the

results of these fits in Fig. 6.22, where we compare fits for gapped ferromagnetic and

antiferromagnetic spin waves in the ordered state, using

CM/T = T ne−∆/kBT ,

where kB is the Boltzmann constant, ∆ is the spin wave energy gap, and n=2 for

and antiferromagnetic spin wave and n=0.5 for a ferromagnetic spin wave [97]. We

found that the best fit to the data is for n=0, but we know of no mechanism that

would lead to this relation.
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Figure 6.22: The temperature dependence of CM/T (black circles) is fit to the expression for a
ferromagnetic spin wave with a gap, CM/T=γ+AT0.5e−δ/T (red dashed line), where
A=3.3 J/mole-Yb-K5/2, δ=∆/kB=4.1 K, where ∆ is the spin wave energy gap. The
blue dotted line is a fit to an antiferromagnetic spin wave, CM/T=γ+AT2e−δ/T as-
suming a 1 K gap. In both cases, the coefficient of the specific heat, γ is found to be
negligible. The best fit to the data in the ordered phase is to CM/T=γ+AT0e−δ/T

(solid green line). The dashed magenta line is the expected Schottky anomaly if the
doublet ground state is split.
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6.2.6 The Temperature Dependence of the Resistivity

Measurements of the temperature dependence of the resistivity, ρ(T), of a single

crystal of Yb3Pt4 (Fig. 6.23(a)) show metallic behavior, with ρ(T) decreasing with

decreasing temperature and reaching a minimum value of ρ0=21µΩ-cm at 0.38 K

from a 300 K value of 108 µΩ-cm. Fig. 6.23(b) shows a sudden change in slope

at the transition temperature, TN=2.4 K, where ρ(T) drops ∼25% from ρ(2.4K) to

ρ(0). The sudden drop in ρ at the lowest temperatures is caused by the loss of spin

disorder scattering due to antiferromagnetic order below TN=2.4 K. Re-plotting the

low temperature data as

ρ− ρ(0) = AT 2

(Fig. 6.23(c)) reveals a quadratic temperature dependence of the ordered state, in-

dicating that it is a Fermi liquid, with the large coefficient, A=1.7 µΩ-cm/K2,

which would be consistent with a large quasiparticle effective mass, characteristic

of heavy Fermion compounds. As previously discussed, materials classified as heavy

(a) (b)

TN

(c)

Figure 6.23: (a) The temperature dependence of the resistivity for a single crystal of Yb3Pt4 from
0.38 K to 300 K. The sudden drop in the resistivity at the lowest temperatures is associ-
ated with a transition to an antiferromagnetic phase. (b) The temperature dependence
of the resistivity near TN=2.4 K. The sudden decrease in spin disorder scattering upon
entering the antiferromagnetic state results in a drop in the resistivity (c) ∆ρ=ρ− ρ0

plotted as a function of T2. The temperature dependence is quadratic below TN =
2.4 K indicating that the ordered low temperature phase is a Fermi liquid. The slope
of the linear fit is 1.7 µΩ-cm/K2, indicating that Yb3Pt4 is a heavy fermion.

fermions have been shown to obey the Kadowaki-Woods relation, A/γ2=10µΩ-cm-
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mole2K2/J2 [75]. While the very large value of A=1.7 µΩ-cm/K2 is similar to that of

UPt3 and comparable to values found in other heavy fermion materials (Fig. 6.24),

γ is extremely small, so we can not ascribe large values of A and χ0 to a large value

of m*. We can not classify Yb3Pt4 as a heavy fermion. We considered the possibility

that there is significant reduction in the quasi-particle concentration associated with

the magnetic transition at 2.4 K, but recent Hall voltage measurements of Yb3Pt4 do

not show any change in electron concentration at TN [98]. The two known quantum

critical systems, YbRh2Si2 and CeCu6−xAux both show values of A and γ among the

highest found, showing that the quasiparticles are very strongly scattered relative to

other heavy fermion systems. The value of A for Yb3Pt4 in zero field is comparable,

as indicated in Fig. 6.25, but it does not obey the Kadowaki-Woods relation because

of the very small value of γ. In 9 T, however, Yb3Pt4 does obey the Kadowaki-Woods

relation, showing values of A and γ comparable to UPt2.

Since the ordered state is a Fermi liquid, we can use the Sommerfeld-Wilson

ratio, RW =π2k2
Bχo/µ

2
effγ to determine the strength of magnetic correlations. As

previously discussed, in most cases RW =1 for a non-interacting system, RW <2

for superconducting compounds and RW >2 for more strongly interacting magnetic

systems. We want to see how Yb3Pt4 compares with other previously measured

heavy fermions that experience magnetic interactions. For Pd, RW =6-8 [99], for

YbAgGe, RW =2 [100], for YbRh2Si2, RW =13 [73], and for SrRu2O7, RW =10 [101].

Fig. 6.25 [87] is a plot of γ versus χ0 for some know heavy fermion compounds. We

have added the zero field and 9 T values for Yb3Pt4. In zero field, Yb3Pt4 has an

extremely high value of χ0, but a very small value of γ, yielding a very high value of

RW , over 1000, showing that it is completely different from the typical heavy fermion

compounds shown in the plot. At 9 T (red circle), however, Yb3Pt4 is comparable
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Figure 6.24: A log-log plot of A vs. γ, illustrating the Kadowaki-Woods relation. The horizontal
red dashed line shows that the coefficient of the quadratic part of the resistivity for
Yb3Pt4 in zero field (red circle) is comparable to that of UPt3, but it does not obey the
Kadowaki-Woods relation, because of the very small value of γ. In a 9 T field Yb3Pt4
has values of A and γ comparable to those of UPt2 and has a Kadowaki-Woods ratio
consistent with that expected for a heavy fermion material (blue circle). Both of the
quantum critical systems previously discussed, YbRh2Si2 and CeCu6 have very large
values of γ and A, because of their very large effective masses. The data for the heavy
fermion compounds shown in the plot was obtained from Kadowaki, 1986 and Tsujii,
2003 as cited in the text.

to other known heavy fermion compounds, yielding a value of just over 1, showing

that at high magnetic fields it is a weakly interacting Fermi liquid.

We observed a Fisher-Langer relation between the temperature dependences of

the specific heat, CM(T), and the derivative of the temperature dependence of the

resistivity, dρ/dT(T) in the magnetically ordered state [102] (Fig. 6.26). The Fisher-

Langer relation predicts that CM(T) and dρ/dT should be proportional if the fluctu-

ations in the magnetization are dominantly antiferromagnetic [102]. The observation

of the Fisher-Langer relation in Yb3Pt4 indicates that antiferromagnetic fluctuations

are stronger than ferromagnetic fluctuations around and in the ordered state, which

is consistent with the weak cusp observed at TN in the temperature dependence of

the zero field AC magnetic susceptibility.
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Figure 6.25: A plot of γ versus χ0 for some known heavy fermion compounds. In zero field, Yb3Pt4
has the largest value of χ0 among the plotted compounds, but has a very small value
of γ, placing it well below the range of the plot. The red dashed line indicates where
Yb3Pt4 would lie on the plot based only on its value of χ0. In a 9 T field, it has
values of χ0 and γ comparable to UPt5 and fits in well with the other heavy fermion
compounds (Figure from Fisk, 1987 as referenced in the text).

Figure 6.26: A plot of the temperature dependence of the resistivity, ρ(T) (blue circles), and its
derivative, dρ/dT (red circles), compared with the temperature dependence of the
specific heat divided by temperature, CM/T (black triangles) near the transition tem-
perature, TN .
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6.2.7 Analysis of the Magnetically Ordered State

Recent powder neutron diffraction measurements [88] confirm that Yb3Pt4 orders

antiferromagnetically. The magnetic structure was solved assuming that each Yb

ion hosts a localized moment, with pairs of nearest neighbor spins interacting anti-

ferromagnetically (Fig. 6.28). The magnetic diffraction pattern was obtained from

the difference between neutron powder patterns above and below TN (Fig. 6.27(a))

and the magnetic structure was solved using representation symmetry analysis. The

moment on the Yb site was determined to be ∼1µB and the temperature dependence

of the primary magnetic peak is shown in Fig. 6.27(b). Based on previous measure-

ments of the temperature dependence of the magnetization, we find 1.4 µB per Yb in

the paramagnetic phase at temperatures just above TN and extending right down to

TN (Fig. 6.15). This is in fairly good agreement with the value of 1µB found in the

ordered state just below TN . This slightly lower value in the magnetically ordered

state could be due to the exchange splitting of the doublet ground state. In the next

section we show, based on measurements of the temperature dependence of the heat

capacity in different magnetic fields, that the doublet ground state in Yb3Pt4 is split

by the applied magnetic field, with the magnitude of the splitting increasing with

increasing magnetic field as expected.
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Figure 6.27: (a) The neutron intensity plotted as a function of angle at 5 K (above TN ) and 1.4
K (below TN )(b) The intensity of the main magnetic peak plotted as a function of
temperature. Analysis results indicate an effective moment of 1.0 µB per Yb ion
(Figure courtesy of P. Stephens).

a

c

Figure 6.28: (A schematic of the solved magnetic structure for the antiferromagnetically ordered
phase of Yb3Pt4 (Figure courtesy of Y. Janssen).
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6.2.8 Initial Conclusions

Our initial results are that Yb3Pt4 orders antiferromagnetically and becomes a

Fermi liquid at TN=2.4 K, and has some weak magnetic anisotropy. The pres-

ence of a latent heat, measured from the raw heat capacity data shows that the

antiferromagnetic transition is weakly first order. Also, the measurements of the

temperature dependence of the heat capacity and the magnetic susceptibility do not

show significant critical fluctuations. Powder neutron diffraction measurements [88]

have confirmed the antiferromagnetic structure of Yb3Pt4, the Fisher-Langer relation

observed between C(T) and dρ(T)/dT suggests that antiferromagnetic fluctuations

are dominant, but while weak, there may also be a net ferromagnetic component.

The underlying Schottky anomaly from the Zeeman splitting of the doublet ground

state make it difficult to determine, separate and fit all the components of the spe-

cific heat. However, we believe that the Sommerfeld coefficient is very small in the

ordered state.

The most remarkable result is that the magnetic ordering enables the formation

of a Fermi liquid. Our results indicate that the magnetic phase transition is from a

local moment paramagnet to an antiferromagnet, with at best weak coupling between

the local magnetic moments and the conduction electrons. There is little evidence

for the Kondo effect in zero field, universally present in the known heavy fermion

quantum critical systems. At 21µΩ-cm, the base temperature resistivity is also high

compared with other quantum critical metals, but the significant drop in resistivity

at TN suggests that the high resistivity is not the result of impurity scattering, but

of quasiparticle scattering from magnetization fluctuations. Considering the weak

coupling between conduction electrons and local magnetic moments combined with

the extremely small value of γ, it is surprising to find that the the ordered state
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shows the resistivity of a Fermi liquid, with ρ=ρ0+AT2, with the very high value of

A= 1.7 Ω-cm/K2, which is similar to values found in heavy fermion systems.

The low ordering temperature of TN=2.4 K automatically makes Yb3Pt4 a good

potentially quantum critical candidate. We need only to attempt to decrease TN

via pressure or magnetic field to see if it can be tuned to a QCP. On a deeper

level, in order to gain a better understanding of the different mechanisms at play in

different types of quantum critical systems, we need to be able to classify the phase

transition based on order type, and how the electronic and/or crystal structures are

affected by the development of magnetic order and other underlying mechanisms.

We know that the magnetic phase transition is antiferromagnetic and weakly first

order, but it is not clear whether the phase transition is a local moment type of

transition, or if it originates with a Fermi surface instability. We do know from recent

Hall voltage measurements [98] that there is not a change in the electron density

going from the paramagnetic phase at higher temperatures to the antiferromagnetic

phase at lower temperatures, suggesting that there is not a significant change in

the number of electrons contained in the Fermi surface. The development of Fermi

liquid behavior exactly at TN is unusual and suggests significant and perhaps a novel

type of modification to the Fermi surface. Powder neutron diffraction measurements

show that we have a antiferromagnetic order that can be modeled assuming local

magnetic moments [88], but we are unsure about what role the itinerant electrons

play in the magnetic order. In the next section, we tune TN to a QCP by applying

a magnetic field and based on the field and temperature dependences of the heat

capacity, resistivity, magnetization and the AC magnetic susceptibility, we build a

magnetic field-temperature (H-T) phase diagram.
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6.3 The Construction of an H-T Phase Diagram for Yb3Pt4

The initial measurements presented in the previous section showed that Yb3Pt4

holds great promise as a potential host for quantum criticality and its associated

non-Fermi liquid behavior. After the initial measurements, our strategy was to use

magnetic field to suppress TN from 2.4 K to 0 K at some finite achievable field,

revealing the quantum critical phenomena in Yb3Pt4. In this section, we show that

TN can indeed be driven to a QCP (TN=0) with an applied magnetic field of 1.6

T. Based on extensive in-field measurements of the specific heat, resistivity, and

magnetic susceptibility, we construct an H-T phase diagram for Yb3Pt4 at fields

up to 9 T. Measurements of the temperature dependence of the heat capacity in

different magnetic fields show that the first order phase transition in zero field at 2.4

K terminates at a critical endpoint at 1.2 K, 1.5 T when the field applied parallel

to the a-axis of the crystal. We find some anisotropy, with the critical endpoint

occurring at 1.2 K, 3.5 T when the field is applied parallel to the c-axis of the crystal.

Measurements of the magnetoresistance and of the field dependence of the specific

heat show that the phase line continues downward in temperature with increasing

magnetic field to a QCP at 1.6 T, but as a second order phase transition.

6.3.1 The Temperature Dependence of the Specific Heat in a Magnetic Field

This section describes the evolution of the temperature dependence of the heat

capacity with increasing magnetic field, and begins the construction of a magnetic

field-temperature (H-T) phase diagram. Fig. 6.29(a) is a plot of the full data set of

the temperature dependence of the specific heat in magnetic fields ranging from zero

to 9 T, with the field applied parallel to the a-axis of the crystal. In Fig. 6.29(b),

we focus on the sharp ordering anomaly at low temperatures to illustrate the effects
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of the magnetic field on the position and shape of the ordering anomaly. Both the

position of the peak, TN , and its magnitude, ∆C, decrease with increasing magnetic

field and eventually the sharp ordering anomaly is gone and only the broad maximum

in the background remains. This broad maximum moves upward in temperature with

increasing magnetic field, suggesting that it is a Schottky anomaly with an energy

originating with the Zeeman splitting of the doublet ground state. We consider this

possibility and provide a more detailed analysis in section 5.4. In Fig. 6.30(a), we

have plotted the temperature dependence of the specific heat in different magnetic

fields, with the field applied parallel to the c-axis of the crystal and it too shows

a decrease with increasing fields in both ∆C and TC . Also shown in Fig. 6.30(a)

are graphical definitions of ∆C and TC . To lay the foundation for our H-T phase

diagram, we have plotted the field dependence of TN , revealing the phase line of the

antiferromagnetic state. As discussed previously, the zero field transition at 2.4 K

is a weakly first order phase transition with a latent heat of 0.09 J/mole Yb (Fig.

6.31). As the applied magnetic field is increased, however, the transition loses its first

order character (Fig. 6.29(b)), resembling a second order phase transition beyond

1.5 T. For the perpendicular configuration, the first order phase line ends at 1.2 K,

and 1.5 T, indicating the presence of a critical endpoint (Fig. 6.30(b)). The results

for the parallel field configuration are similar, but the phase line ends at 1.2 K, and

3.5 T (Fig. 6.30(b)). In the next section, we present the results of measurements of

the field dependence of the latent heat, obtained by examining the raw temperature

versus time heat capacity data.
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(a)

(b)

Figure 6.29: (a) The temperature dependence of the specific heat in different magnetic fields for
temperatures up to 20 K. The sharp feature at low temperature marks the phase
transition to the antiferromagnetic state. There is also a broad maximum at slightly
higher temperatures(b) The same plot described in (a), but zooming in on the low
temperature region to show the details of the ordering anomaly associated with the
antiferromagnetic phase transition.
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Figure 6.30: (a) The temperature dependence of the specific heat in different magnetic fields with
the field applied parallel to the c-axis of the crystal. The small peak at low temperature
is due to the presence of a very small amount of a secondary impurity phase, which
has been identified as Yb3Pt5. The net magnitude of a peak is defined as ∆C and the
position of the peak in temperature is defined as TC . It takes about twice as much
magnetic field to suppress the ordering anomaly in the parallel field configuration
compared to the perpendicular field configuration. (b)The temperature at which the
specific heat peak occurs, TC , as a function of magnetic field for both the perpendicular
and parallel configurations. The peak disappears below 1.3 K, 1.53 T (blue circle) for
the perpendicular configuration, and below 1.3 K, 3.5 T (red circle) for the parallel
configuration, indicating the presence of a critical endpoint at these positions.
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Estimating the Latent Heat

Fig. 6.31 shows a progression of the time dependence of the temperature of a single

crystal of Yb3Pt4 from zero field to 0.4 T to 1 T for a single crystal of Yb3Pt4 near TC .

The non-linear region associated with the latent heat decreases with increasing field,

and is nearly gone when the field reaches 1 T. A true second order phase transition, no

matter how sharp, would not have a non-linear region, just an immediate transition

from one linear region to another with a different slope, with no non-linear region (no

latent heat). Fig. 6.32 shows plots of the field dependence of the latent heat. The

latent heat is proportional to the reduced field, h=(H-HCEP )/HCEP to the power

2.4, where HC is the value of the magnetic field at the critical endpoint, 1.5 T (Fig.

6.32(b)). A composite plot of the field dependence of the latent heat and the field

dependence of ∆C, shows that both quantities decrease with increasing field, but at

different non-linear rates, and disappear at the critical endpoint (Fig. 6.33).

T(0) = 2.34 KT(0) = 2.38 K

8

T(0) = 2.11 K

Figure 6.31: A progression of plots of raw T(t) vs. t data for zero, 0.4 T, and 1.0 T fields with heat
pulses that rise through the critical temperature. The top row shows the raw data,
and the bottom row shows the data re-plotted as log∆T vs. t to illustrate the two
linear regions separated by the the field dependent non-linear region associated with a
latent heat. At 1 T, the latent heat is nearly gone, and the phase transition resembles
a second order phase transition.
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(a) (b)

Figure 6.32: (a) A plot of the field dependence of the latent heat. (b) The field dependence of the
latent heat plotted on a log-log plot to show its power law behavior. The latent heat,
L∼h2.4, where the reduced field, h=(H-HCEP )/HCEP .

Figure 6.33: A composite plot of the field dependence of the latent heat and ∆C.
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6.3.2 The Field Dependence of the Specific Heat at Different Temperatures

To take a more careful look at the nature of the antiferromagnetic phase line at

temperatures near and below that of the critical endpoint at 1.2 K, we measured the

heat capacity again, but this time holding temperature constant and sweeping the

magnetic field. We are especially interested in determining whether the first order

phase line extends beyond the critical endpoint to a QCP as the the magnetoresis-

tance data suggests. Fig. 6.34(a) is a plot of the field dependence of the specific heat

at different temperatures. Above the 1.2 K critical endpoint, the field dependence

of the heat capacity shows a step at the phase line, in agreement with the sharp

weakly first order phase transition observed in the C(T) measurements. Below 1.2

K, the step becomes a lambda-like anomaly, as expected for a second order phase

transition. The results verify the presence of a first order phase line down to a crit-

ical endpoint at (1.5 T, 1.2 K), which becomes a second order phase line below 1.2

K. This information is added to the H-T phase diagram and is in good agreement

with the C(T) data (Fig. 6.34(b)). In the next section, we verify the position of the

phase line in each field configuration by overplotting the position in field (HC) of a

peak observed in measurements of the magnetoresistance, and find that the phase

line continues downward in temperature below the critical endpoint and terminates

as a QCP at T=0, and H≈1.6 T.
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(a)

(b)

Figure 6.34: (a) The field dependence of the specific heat taken at different temperatures indicated
in the key. (b) The position of the phase line determined from the position of the
feature observed in the data in (a). The temperatures at which the feature seems first
order (solid green circles) and second order (hollow green circles) are added to the H-T
phase diagram.
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6.3.3 Magnetoresistance

The magnetoresistance was measured at magnetic fields as high as 9 T, and at

temperatures ranging from 0.4 K to 30 K with the field both parallel to the a-

axis and parallel to the c-axis of the crystal. For higher temperatures within the

ordered state, the phase line is marked by a change in slope, which moves up in

field as the temperature is decreased (Fig. 6.35) and becomes a peak below ∼1.5 K.

This is consistent with the heat capacity data that established a first order phase

transition at temperatures higher than the critical endpoint and a second order phase

transition for temperatures below the critical endpoint. The magnetoresistance is

negative at lower fields, as expected from the decrease in spin disorder scattering with

increasing field, but shows a tendency toward a quadratic temperature dependence

at higher fields, as expected for a metal. When the positions of the peak in the

(a) (b)

Figure 6.35: (a) The field dependence of the resistivity with the field applied parallel to the a-axis
of the crystal. (b) The field dependence of the resistivity with the field applied parallel
to the c-axis of the crystal.

magnetoresistance are added to the H-T phase diagram, the resulting phase line lies

right on top of the line obtained from the heat capacity measurements, and continues

the the phase line beyond the critical endpoint. The phase diagram, updated to show
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the addition of the field dependence of the peak position of the magnetoresistance

is shown in figure 6.35. We will show in the following two sections that there is

step associated with the phase transition observed in both the temperature and field

derivatives of the magnetization.

Figure 6.36: An H-T phase diagram for Yb3Pt4 from heat capacity and magnetoresistance mea-
surements of a single crystal. The black circles represent the position of the ordering
anomaly in the temperature dependence of the heat capacity, with the first order phase
line terminating at a critical endpoint for the field applied parallel to the c-axis of the
crystal (red) and parallel to the a-axis of the crystal (blue). The orange stars represent
the position of the ordering feature in the magnetoresistance when the field is applied
parallel to the a-axis, which is a change in slope associated with a first order phase
transition at temperatures higher than the position of the critical endpoint (solid stars)
and a peak associated with a second order phase transition for temperatures lower than
the position of the critical endpoint (hollow stars). The same data for the field applied
parallel to the c-axis is represented by the solid and hollow green stars. The phase line
mapped out by the magnetoresistance agrees with the specific heat data for the same
single crystal of Yb3Pt4.

6.3.4 The Temperature Dependence of the AC Magnetic Susceptibility in Different
Magnetic Fields

In this section we present our measurements of the field derivative of the magne-

tization, which is determined from the AC magnetic susceptibility (χAC=χ′+iχ”),
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where χ′(H)=∂M/∂H. In Fig. 6.37, we have plotted the temperature dependence of

the in-phase AC magnetic susceptibility, χ′ at different fixed fields above and below

the value of the field at the critical endpoint, HCEP . In zero field the magnetic sus-

ceptibility has a cusp at TN=2.4 K, but when a magnetic field is applied, a sharp

step-like anomaly in the magnetic susceptibility develops at TN , which increases in

magnitude with increasing magnetic field (Fig. 6.37(b)). We have added the position

of the step-like anomaly to our H-T phase diagram and it lies right on top of the

phase line determined from the specific heat and magnetoresistance data (Fig. 6.38,

blue triangles). The phase line based on the magnetoresistance data (Fig. 6.32, ma-

genta stars) does not line up with the heat capacity data (Fig. 6.38, green circles).

We have verified that TN(H) is the same for crystals taken from different batches,

but since we only control sample orientation to ∼5◦, the difference between the two

data sets most likely reflects this uncertainty. The crystal used for the magnetore-

sistance measurements seems to have been misaligned by ∼5◦ from the a-axis of the

crystal, resulting in the phase line falling to zero temperature at a slightly higher

field, consistent with the known anisotropy properties described earlier. There is also

a broad maximum at higher temperatures that moves upward in temperature with

increasing magnetic field (Fig. 6.37(a)). We will take a closer look at this broad

maximum in sec. 5.4 and show that it could be associated with the Zeeman splitting

of the ground state doublet.
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(a)

(b)

Figure 6.37: (a) The temperature dependence of the AC magnetic susceptibility in different fields
in temperatures up to 30 K for a single crystal of Yb3Pt4 with the magnetic field
applied perpendicular to the c-axis of the crystal. (b) The same data as in (a), but
zooming in on the low temperature region to show the sharp feature associated with the
transition to the antiferromagnetic state. The vertical dashed lines show the position
in temperature of the antiferromagnetic transition, TN .



128

Figure 6.38: The H-T phase diagram with the temperature and field position of the sharp drop in
the AC magnetic susceptibility added (blue triangles). The magnetoresistance data
(magenta stars) deviate from the actual phase line, because they were taken using a
different single crystal that was misaligned ∼5◦ from the field magnetic field direction
parallel to the a-axis of the crystal.
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6.3.5 The Temperature Dependence of the Magnetization in Different Magnetic Fields

In this section, we show that there is also a step in the temperature derivative of

the magnetization, dM/dT and it corroborates the position of the antiferromagnetic

phase line. Fig. 6.33(a) is a plot of the temperature dependence of the magnetization

measured in different fixed magnetic fields. We find a weak slope change at TN , which

occurs at decreasing temperature with increasing magnetic field. The temperature

derivative, dM/dT, shows a step-like anomaly at TN (Fig. 6.39(b)). We have added

the position of the step like anomaly in dM/dT to our H-T phase diagram and it

too agrees with all the previous measurements (Fig. 6.40, yellow squares). We now

have a well established H-T phase diagram for Yb3Pt4 based on a number of different

measurements.

(a) (b)

Figure 6.39: (a) The temperature dependence of the magnetization taken in different magnetic fields
indicated in the key (b) The derivative, dM/dT of the data in (a).
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Figure 6.40: The H-T phase diagram with the position of the weak peak in the magnetization added
(yellow squares). Recall that the magnetoresistance data (magenta stars) deviate
from the actual phase line, because of the ∼5◦ misalignment with respect to the field
direction parallel to the a-axis of the crystal.
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6.3.6 Mapping the Fermi Liquid Region

Since the region of quadratic temperature dependence of the resistivity defines the

Fermi liquid (FL) region, this region can be added to the phase diagram by measuring

the temperature dependence of the resistivity in different applied magnetic fields and

marking on our H-T phase diagram the position in field and temperature where the

resistivity first deviates from a quadratic temperature dependence. Fig. 6.41 shows

(a) (b)

Figure 6.41: (a) The temperature dependence of the resistivity in fields up to 9 T, applied perpen-
dicular to the c-axis. (b) The temperature dependence of the resistivity in fields up to
9 T, applied parallel to the c-axis.

plots of the temperature dependence of the resistivity in different magnetic fields

with the field applied perpendicular to the c-axis of the crystal (a) and parallel

to the c-axis of the crystal (b). The sharp drop in ρ at TN due to spin disorder

scattering in zero field is gradually suppressed with increasing magnetic field (Fig.

6.41(a)), showing that the application of a magnetic field gradually decreases the

spin disorder scattering. Evidence for spin disorder scattering is found in the relation

between the magnetoresistance and the magnetization shows the expected behavior

of the fluctuating paramagnetic spins gradually forced to align with the increasing
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Figure 6.42: (a) The resistivity plotted as a function of temperature squared in fields up to 9 T
applied perpendicular to the c-axis. The vertical dotted lines indicate the position
where the resistivity deviates from a quadratic temperature dependence(b) The same
plot as in (a), but with the field applied parallel to the c-axis.

magnetic field, resulting in a drop in resistivity according to

∆ρ

ρ
∝

(
M

Ms

)2

,

where ∆ρ/ρ is the magnetoresistance, M is the magnetization, and MS is the satu-

ration magnetization. The data deviate from this behavior after entering the mag-

netically ordered phase (Fig. 6.44(a), black circles and red circles). With the field

applied perpendicular to the c-axis of the crystal, the application of a 9 T field com-

pletely suppresses the spin disorder scattering, rendering the resistivity linear with

temperature from 3 K all the way up to 40 K. With the field applied parallel to

the c-axis of the crystal, a similar trend is seen, but because of the weak anisotropy,

9 T is not quite enough to completely suppress the spin disorder scattering in this

orientation. In Fig. 6.42, we have re-plotted the data from Fig. 6.41 as function of

T2 to show more clearly where the temperature dependence deviates from quadratic

behavior. These temperatures and fields have been plotted on our H-T phase di-

agram (Fig. 6.43), defining an effective Fermi temperature for the quasiparticles,

TFL, below which FL behavior is found.
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Figure 6.43: The H-T phase diagram with the Fermi liquid phase lines obtained from the quadratic
temperature dependence of the resistivity in field. The orange triangles represent the
FL line with the field applied parallel to the a-axis and the green triangles represent
the FL line when the field is applied parallel to the c-axis.

For Yb3Pt4, the Fermi liquid crossover line appears to end not at H=HQCP =1.6

T, but closer to H=HCEP =1.5 T, near the critical endpoint. This is an important

observation, showing the anomalous quantum critical behavior of Yb3Pt4. To make

absolutely sure that the Fermi liquid crossover line does not extend sharply down

to the QCP, we measured the temperature dependence of the resistivity in a high

density of fields around HCEP (Fig. 6.45(a)). To map out the crossover line, we used

the same technique as we used earlier, by plotting ρ-ρ0 versus T2 (Fig. 6.45(b)), and

marking the position in temperature where the resistivity deviates from a quadratic

temperature dependence. The high density data verify that the high field Fermi liquid

crossover line terminates at the critical endpoint, forming a minimum at HCEP (Fig.

6.46, orange triangles). The FL data were taken with the same experimental set-up

and crystal, so have the same alignment as the magnetoresistance data (magenta
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(a) (b)

Figure 6.44: (a) A plot of the normalized resistivity as a function of the normalized magnetization
showing that the data collapse onto a single quadratic curve for data outside the
ordered phase (b) The data from outside the ordered phase only plotted on a log-
log plot showing that they collapse onto a single line that has a slope of 2, showing
the expected quadratic dependence of the normalized resistivity on the normalized
magnetization.

stars). This leads to the FL crossover line also deviating somewhat from the actual

crossover line.

It is remarkable that TFL ≈TN , suggesting that the transition to an antiferro-

magnetic state somehow enables the formation of a Fermi liquid. In the FL region

(T<TFL) we can no longer consider individual electrons and instead consider quasi-

particles with an enhanced mass, m*. In well studied quantum critical materials such

as YbRh2Si2 and CeCu5.8Au0.2, TFL=0 at the QCP, suggesting that both the Fermi

liquid state and thus the quasiparticles and thus m* disappear. It is thus unusual

and unexpected that TFL 6=0 anywhere for Yb3Pt4, despite the presence of the QCP

at 1.6 T.
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T
FL

(a)

(b)

Figure 6.45: (a) The temperature dependence of the resistivity measured over a high density of
fields from zero to 3.2 T, with the magnetic field applied perpendicular to the c-axis
of the crystal. (b) The same data as (a) plotted as a function of T2. The vertical lines
mark where the resistivity begins to deviate from a quadratic temperature dependence
at different fields. (c) A close up of the region of the H-T phase diagram showing that
the Fermi liquid line definitely does not drop sharply to zero at the QCP, but has a
minimum at the critical endpoint.
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Figure 6.46: A close up of the region of the H-T phase diagram showing that the Fermi liquid
line (orange triangles) definitely does not drop sharply to zero, but terminates near
the critical endpoint. The data points based on the magnetoresistance data (magenta
stars) and the ρ(T) in field data deviate slightly from the actual phase line, because
the single crystal used for these measurements was misaligned with respect to the
intended magnetic field orientation parallel to the a-axis of the crystal.
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6.3.7 The Complete Phase Diagram for Yb3Pt4

We have created an H-T phase diagram for Yb3Pt4 at fields up to 9 T, applied

parallel to the a-axis of the crystal, with the phase lines well established and cor-

roborated by multiple measurement techniques (Fig. 6.46). There is local moment

paramagnetism over the entire region of the phase diagram from room temperature

right down to the magnetic and Fermi liquid phase lines (blue region). We find a

critical endpoint at (1.5 T, 1.2 K) (blue circle) and a QCP near 1.6 T (red circle).

The ordered state (yellow region) is a Fermi liquid and there is a second paramag-

netic Fermi liquid state (magenta region) in the high field region outside the ordered

state. In the next section we will further analyze the data that we used to construct

the phase diagram and uncover some of the mechanisms leading to this unique phase

diagram.

FL-1FL-1

AFMAFM

PM-1PM-1

PM-2PM-2

1st Order

FL-2FL-2

2nd Order

QCPQCP

Crossover

Figure 6.47: The H-T phase diagram for Yb3Pt4 based on the data indicated in the key.
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6.4 Properties of the Magnetic Field Tuned Phases in Yb3Pt4

In this section, we continue our analysis of the magnetic field dependent data that

were used to build the phase diagram and present some key properties of the Yb3Pt4

H-T phase diagram revealed by our analysis. We finish this section by comparing the

properties of the Yb3Pt4 phase diagram with the properties of the expected phase

diagram for typical heavy fermion materials such as YbRh2Si2 and CeCu6−xAux.

We begin in the next section by demonstrating the prevalence of H/T scaling and

magnetic field suppression of spin disorder scattering, both of which are expected in

a local moment paramagnetic phase (Fig. 6.47, blue region). In subsequent sections,

we will describe the zero field magnetic structure of Yb3Pt4 determined from powder

neutron diffraction measurements, followed by an analysis of the heat capacity data

that shows the presence of Zeeman splitting of the doublet ground state, affecting

the value of the heat capacity from the ordered state through the high field FL

region. Finally, we will show the field dependence of the FL parameters, γ, χ0 and A

and compare their behavior, and the entire Yb3Pt4 phase diagram to their analogs

expected for a typical heavy fermion quantum critical compound such as YbRh2Si2.

6.4.1 H/T Scaling in the Local Moment Paramagnetic Phase

We know from the basic properties described in previous sections that in the high

temperature paramagnetic phase we find nearly the full Yb3+ moment of 4.24 µB/Yb

from measurements of the DC magnetic susceptibility and Brillouin-like behavior in

the field dependence of the magnetization, indicating local moment character right

down to the antiferromagnetic phase line, with no sign of the approaching magnetic

order (Fig. 6.48). We find additional evidence that the local moment paramag-

netism is dominant in the field dependence of the heat capacity measured at differ-
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ent temperatures and the temperature dependence of the magnetization measured in

different magnetic fields, which both clearly show H/T scaling right up to the antifer-

romagnetic phase line and no evidence for NFL behavior anywhere in the H-T phase

diagram for Yb3Pt4. Fig. 6.48(a) shows that measurements of the heat capacity at

different fields and temperatures taken outside the magnetically ordered phase fall

onto a universal curve when plotted as a function of H/T, with a broad maximum

near H/T=1 T/K. The data that do not fall on the universal curve represent the

magnetically ordered phase, with the sharp step at the higher temperatures asso-

ciated with the first order phase transition betweent the two phases. Fig. 6.48(b)

shows that measurements of the magnetization at different fields and tempetatures

also fall onto a universal curve when plotted as a function of T/H, with the data

from the ordered phase deviating from the universal curve at sufficiently low values

of T/H.
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(a)

(b)

Figure 6.48: (a) A plot of the specific heat as a function of H/T, showing how the data collapse
on to a single curve for all points outside of the ordered phase. (b) A plot of the
magnetization as a function of T/H showing that the data again collapse onto a single
curve for data outside of the ordered phase.
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6.4.2 Zeeman Splitting of the Doublet Ground State

Our specific heat measurements show that the doublet ground state is split by

the applied magnetic field. The broad feature in the temperature dependence of the

specific heat fits well to the expression for a Schottky anomaly, and the energy of the

splitting increases with increasing field (Fig. 6.49). As expected, the broad feature

moves up in temperature with increasing magnetic field reflecting the increased en-

ergy spacing between the ground and excited states. The Schottky fits (Fig. 6.49(a),

black lines) work very well at temperatures above the antiferromagnetic phase tran-

sition, but within the ordered phase, it is very difficult to estimate what contribution

the Schottky anomaly is, because there are likely multiple mechanisms contributing

to the heat capacity in the ordered phase. However, the energy splitting seems to

become constant in the ordered phase ∼4 K. In the next section, we will show how

the FL parameters evolve with changing magnetic field, especially near the QCP.

(b)(a)

Figure 6.49: (a)The temperature dependence of the heat capacity in different magnetic fields indi-
cated in the key with fits to a Schottky anomaly (black lines). The fits become less
accurate at the lower fields within the ordered state, because of the large ordering
anomaly. (b) The field dependence of the energy between the first and second level of
the split doublet ground state.
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6.4.3 The Field Dependence of the Fermi Liquid Parameters

In this section, we present the field dependence of the FL parameters, γ, A, and

χ0 for Yb3Pt4, especially near the QCP. Previously, we discussed how the effective

mass, and therefore A and γ diverge as the QCP is approached from the high field

FL phase in typical quantum critical heavy fermion compounds like YbRh2Si2 and

CeCu6−xAu0.2. The field dependences of the FL parameters exhibit very different

behavior in Yb3Pt4. While moderately high values of γ are found in the high field FL

phase (Fig. 6.50(a)), γ is extremely small in the ordered FL phase despite the very

high values of χ0 and A, making it difficult to classify the ordered phase of Yb3Pt4.

The major difference compared with previously studied quantum critical systems

is that instead of diverging near the QCP, γ is essentially field independent in the

high field FL phase, with a weak maximum near 5 T. The values of γ are moderate

compared with heavy fermion materials with γ ranging from ∼60 mJ/mole-K2 to

∼160 mJ/mole-K2 at the peak near 5 T. The coefficient of the quadratic part of

the resistivity increases by a factor of ∼30 in the high field FL phase from 9 T to

HCEP , then remains nearly field independent through the antiferromagnetic phase

(Fig. 6.50(b)). In the ordered phase, χ0 and A are large and almost field independent

(Fig. 6.50(b)). The Sommerfeld-Wilson ratio (RW ) appears to diverge on approach

to HCEP from the high field FL phase (Fig. 6.51(a)), but a more careful analysis

reveals that it actually diverges at H=0, with RW ∼H−3 (Fig. 6.51(b)), but is cut

off near HCEP by the phase transition to the antiferromagnetic state. We find a

similar result for the field dependence of the Kadowaki-Woods ratio, which initially

also seems to diverge at HCEP (Fig. 6.51(c)), but on closer analysis, also is found to

diverge at H=0, with A/γ2 ∼H−3 (Fig. 6.51(d)), but is cut off near HCEP . There is no

divergence of the quasiparticle effective mass observed in Yb3Pt4 at the QCP, rather
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(a)

(b)

Figure 6.50: (a)The field dependence of γ, showing a weak maximum near 5 T. (b) The field de-
pendence of χ0 and A.

the magnetic order is driven by the diverging quasiparticle interactions, evidenced

by the diverging RW .
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(a) (b)

(c) (d)

Figure 6.51: (a) The field dependence of RW seems to diverge on approach to HCEP (red dashed
line) from the high field FL phase. (b) A closer analysis reveals that RW actu-
ally diverges at H=0, with RW ∼H−3. (c) The field dependence of the Kadowaki-
Woods ratio, A/γ2, showing that Yb3Pt4 has the expected heavy fermion value of
1×10−5Ωcm/K2 (red dashed line), but like RW , seems to diverge at HCEP (blue dot-
ted line). (d) A closer analysis reveals that the Kadowaki-Woods ratio, like RW ,
actually diverges at H=0, with A/γ2 ∼H−3.



145

6.4.4 Phase Diagram Comparison

We now take a look at the overall phase diagram and see how it compares with

some of the general properties of other experimentally determined quantum critical

systems and current theoretical models. In Fig. 6.52, we have plotted the phase

diagram for Yb3Pt4 next to the generic type of phase diagram displayed by typical

previously measured quantum critical systems such as YbRh2Si2 and CeCu6−xAux.

There are several major differences. The phase diagram for Yb3Pt4 is unique. It is the

only known example of a quantum critical system with a first order antiferromagnetic

transition that can be tuned first to a critical endpoint, and then to a QCP near

1.6 T, with the phase transition second order from the critical endpoint to T=0,

a required feature of a QCP. For YbRh2Si2 and CeCu6−xAux, there is no critical

endpoint and the entire phase line is second order. Another significant difference

is that the FL crossover line does not extend to the QCP for Yb3Pt4, but instead

TFL has a minimum near the critical endpoint. The field dependences of the FL

parameters also show unusual behavior. γ (∼m*) for Yb3Pt4 is only very weakly

field dependent near the QCP, but both A (∼m*2) and χ0 (∼m*) diverge at H=0,

but are suddenly cut off by the weakly first order antiferromagnetic phase transition

at H>0.

One of the unique characteristics of Yb3Pt4 is that γ, and therefore m* do not

diverge on approach to the transition to the ordered state. We do, however, observe

that both the Kadowaki-Woods ratio, A/γ2, and RW (∝ χ/γ) do diverge on approach

to H=0 from the high field FL state. We conclude that these divergences are due not

to a diverging m*, which is normally the case for quantum critical heavy fermions, but

due to the magnetic interactions among the quasiparticles. Since A∝ m*2, γ ∝ m*,

and χ0 ∝ m*/1+Fa
0, both RW , and the Kadowaki-Woods ratio are m* independent
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and thus the divergence in these quantities must be due to the 1/1+Fa
0 term, which is

the term representing the magnetic interactions among the quasiparticles in a Fermi

liquid.

FL-1FL-1

AFMAFM

PM-1PM-1

PM-2PM-2

1st Order

FL-2FL-2

2nd Order

QCPQCP

(a) (b)

Crossover

Figure 6.52: (a) The generic phase diagram expected for quantum critical heavy fermion materials
(b) The H-T phase diagram for Yb3Pt4.

6.4.5 Summary and Conclusions

Summary

• We determined the magnetic field-temperature phase diagram for Yb3Pt4 from

measurements of the heat capacity, electrical resistivity, magnetization and AC

magnetic susceptibility. In zero field, Yb3Pt4 undergoes a weakly first order

phase transition to an antiferromagnetic state at TN=2.4 K. The application

of a magnetic field parallel to the a-axis of the crystal decreases TN , with the

first order phase line terminating at a critical endpoint at 1.2 K and 1.5 T. Fur-

ther increasing the magnetic field continues to decrease TN , forming a second

order phase line that is driven to a QCP at 1.6 T. Local moment paramag-

netism dominates at higher temperatures, with both the heat capacity and the

magnetization showing H/T scaling outside the ordered phase.

• We find two FL states in the H-T phase diagram for Yb3Pt4. The transition to
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the antiferromagnetic state at TN=2.4 K coincides with the formation of a Fermi

liquid, with TFL for the ordered state terminating at the CEP. A FL phase is

also found on the high field side of the CEP, with TFL extending upward in field

and temperature from the CEP. TFL never reaches T=0, having a minimum at

TCEP . We find no evidence for NFL behavior near the QCP, or anywhere else

within the phase diagram.

• The zero field Fermi liquid parameters for Yb3Pt4, A=1.7 µΩ-cm/K2 and χ0

= 6.8×10−6m3/mole Yb are among the highest found for heavy fermion com-

pounds, suggesting substantial mass enhancement of the quasiparticles, but

surprisingly, γ is extremely small in the ordered phase, contradicting this re-

sult and suggesting little or no mass enhancement. In the high field FL phase,

γ ∼100 mJ/mole-K, suggesting moderate mass enhancement in agreement with

the moderately high values of χ0 and A. A and χ0 diverge on approach to the

antiferromagnetic phase from the high field FL phase, with A increasing by

a factor of ∼30 from 9 T to HCEP . χ0 shows a much stronger divergence on

approach to the CEP, increasing nearly three orders of magnitude from ∼10−8

m3/mole at 7 T to ∼10−5 m3/mole at HCEP . γ remains largely field independent

on approach to HCEP , showing a weak maximum near 5 T, with values ranging

from 60 to 160 mJ/mole-K2.

Conclusions

• The phase diagram for Yb3Pt4 is unique among quantum critical materials. It

is the only known example of an antiferromagnet with a first order phase tran-

sition. Application of a magnetic field leads to a critical endpoint (CEP) at 1.2

K and 1.5 T and then to a QCP at 1.6 T as a second order phase line. Other
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known quantum critical antiferromagnets such as YbRh2Si2 and CeCu6−xAux

all have second order phase transitions along the entire antiferromagnetic phase

line. The presence of a CEP is also unique among quantum critical antiferro-

magnets. The phase diagram of Yb3Pt4 is somewhat similar to those of the

itinerant ferromagnets ZrZn2 and MnSi, in that they also show a phase line

that has both a first and second order region, but with the second order phase

line occurring first at higher temperatures but becoming a first order phase line

before reaching a QCP.

• It is remarkable that the first order transition to an antiferromagnetic state

coincides with the formation of a FL. The Fermi liquid crossover line, TFL, does

not go to zero at the QCP as it does in other quantum critical materials such as

YbRh2Si2 and CeCu6−xAux, instead terminating at the CEP, suggesting that

the point influencing all the phases in Yb3Pt4 is the CEP and not the QCP. The

properties of the FL in Yb3Pt4 are also unusual. While it is not surprising that

A and χ0 diverge on the approach to the ordered phase from the high field FL

phase and then remain large in the ordered phase, which is expected in quantum

critical antiferromagnets, it is surprising that γ is largely field independent in

the high field FL phase and then seems to become extremely small in the ordered

state. Both YbRh2Si2 and CeCu6−xAux show a diverging γ on approach to the

QCP and a very large value of γ in the magnetically ordered phase. We propose

that the explanation for this unusual behavior is found in the plot of the field

dependence of RW for Yb3Pt4, which does show a zero field divergence cut off by

the advent of the ordered phase. The diverging Kadowaki-Woods ratio and RW

(m* independent) show that the divergence in A (quasiparticle scattering) and

χ0 (∼m*/1+Fa
0) indicate that magnetic order is driven by diverging magnetic
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interactions among the quasiparticles, quantified by the 1/1+Fa
0 term and not

by a diverging quasiparticle mass.

• Despite the presence of a QCP, no NFL behavior is observed in measurements of

the heat capacity, magnetic susceptibility, or resistivity in Yb3Pt4. This differs

from the results for the known quantum critical materials, both among the

heavy fermion antiferromagnetic compounds like YbRh2Si2 and CeCu6−xAux,

in the itinerant ferromagnetic compound, MnSi and in the near quantum critical

superconductors CePd2Si2 and CeCu2(Si1−xGex)2, all of which show various

types of NFL behavior extending over wide regions of temperature and magnetic

field or pressure from the QCP. Perhaps the first order character of the phase

line is responsible for the weakness of the critical fluctuations in Yb3Pt4.



CHAPTER VII

Conclusions

We have presented the results of measurements of CaB6, rare earth doped PtSb2,

and Yb3Pt4. We proposed to experimentally study the mechanisms leading to the

electronic and magnetic phases found in materials that contain varying densities of

local magnetic moments and itinerant electrons. We began by exploring the possi-

bility of the existence of a three dimensional ferromagnetic Wigner lattice in doped

CaB6. We found that the high TC ferromagnetism observed in a 1999 experiment

likely originated with Fe and Ni contamination on the crystal surface and not with

the formation of a Wigner lattice.

The next class of materials that we studied were doped magnetic semiconductors.

We sought to explore the mechanisms that lead to magnetic order in PtSb2 doped

with rare earth elements, specifically to determine how the magnetic interactions

evolve from dipolar to RKKY as the local moment and itinerant electron concen-

trations change. We were unable to dope sufficient amounts of rare earth elements

into PtSb2 to create magnetic order. Initial observations of superconductivity and

ferromagnetism in some of the crystals originated with minority impurity phases and

were not a property of the bulk crystal.

The bulk of our work focused on the synthesis and extensive measurements of

150



151

Yb3Pt4. Our primary interest is to better understand the the mechanisms behind the

formation of the novel states of matter associated with magnetic systems comprised

of a lattice of local magnetic moments in the presence of a high density of itinerant

electrons. We found that Yb3Pt4 is a unique quantum critical system. Our results

showed some very different behavior compared with YbRh2Si2 and CeCu1−xAux.

We conclude that while the presence of a QCP drives novel electronic and magnetic

phases in materials like YbRh2Si2 and CeCu1−xAux, in other types of quantum crit-

ical systems the same types of phases do not necessarily exist. The effect of a QCP

on the physical properties of a material depends upon the specific type of magnetic

order and phase transition. Thus, different types of quantum critical materials with

low temperature magnetic phases need to be synthesized, studied and classified. The

unique properties of Yb3Pt4 illustrate that we are far from a broad understanding

of quantum criticality and more materials that host quantum criticality still need to

be synthesized and measured.

It is highly likely that many more quantum critical systems will be found, because

there remains a vast number of new materials that have not yet been grown. In the

Yb-Pt phase diagram alone, we found at least three new Yb-Pt binary compounds

with low temperature magnetically ordered phases. There are many more incomplete

binary phase diagrams to be explored and there are even more undiscovered ternary

phases, and even more undiscovered quartenary phases many of which will likely

produce new quantum critical materials.
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