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ABSTRACT 

 
FIBER-OPTIC MULTIPHOTON FLUORESCENCE SPECTROSCOPY 

FOR BIOSENSING AND IN VIVO FLOW CYTOMETRY 

 
by 

 
Yu-Chung Chang 

 
 

Chair:  Theodore B. Norris 
 

 

There is considerable interest in developing real-time diagnostic tools to detect 

disease signatures and therapeutic responses in vivo; however, tissue scattering and 

absorption limit the capability of traditional optical techniques for quantitative biosensing 

in deep tissue. To address these limitations, we have developed a fiber optic two-photon-

excited fluorescence probe system to enable deep tissue quantitative measurements in situ. 

A high sensitivity double-clad fiber (DCF) probe was used to measure targeted delivery 

of biocompatible dendrimer nanoparticles into tumor cells. In addition to quantification 

of specific uptake of dendrimers in the tumor, the DCF fiber has adequate sensitivity to 

quantify low levels of non-specific binding of dendrimers or tissue autofluorescence. 

Exploiting the ability of two-photon excitation to excite multiple fluorophores, we were 

able to quantify few-nanomolar concentrations of different emission-wavelength antibody 

conjugates in mouse tumors.  



 xv

To enable time-resolved spectroscopic measurements, a time-correlated single-

photon counting (TCSPC) module was incorporated into the system. Fluorescence 

lifetime changes due to quenching of the fluophores on the dendrimer conjugates were 

observed. In addition, fiber optic-based two-photon fluorescence correlation spectroscopy 

(FCS) was demonstrated for the first time with this system. Fluorescent nanoparticles as 

small as 7 nm in radius were measured. By inserting the fiber probe into a flow system, 

we demonstrated the technique’s ability to measure the flow velocity of fluorescent 

species. When applying the technique to measure flow cells, distinct FCS curve behaviors 

were observed in differently labeled cells; this may enable cell differentiation by in situ 

FCS measurements.  

The minimally invasive nature of the single-fiber probe geometry is suitable for in 

vivo long-term monitoring of circulating cells, which is critical in the understanding of 

cancer metastasis. We used the fiber probe to implement flow cytometry in vivo and in 

vitro. With dual-channel detection, we conducted quantitative ratiometric measurements 

on the detection efficiency of dual-labeled fluorescent protein-expressing cells. In the in 

vitro studies, our system showed about one order of magnitude higher detection 

sensitivity for green fluorescent protein (GFP)-expressing cells in whole blood when 

compared to the sensitivity of the free-space detection scheme. In the in vivo studies, 

cancer cells were injected into different locations in mice, and the cell circulation 

dynamics were monitored. Similar detection efficiency was observed for the GFP-

expressing cells. The enhanced detection sensitivity of GFP-expressing cells in vivo may 

enable the study of cancer metastasis in mouse models by fluorescence techniques. 

 


