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CHAPTER 1

Introduction

Polymers are a broad range of organic substances that are made up of long,

intertwined molecular chains. This structure gives polymers useful characteristics

and they are an important engineering material. They are lightweight in comparison

with steel and aluminum. Polymers have lower strength and stiffness than metals

but their lower cost and weight make them more attractive than metals for many

non-load bearing structural applications. They are also easily formed and shaped

into complex geometries by injection molding, extrusion, thermoforming and other

commonly used manufacturing processes.

Polymers play an ever increasing role in product design and manufacturing. In

the year 2000 the average North American car contained 245.5 pounds of plastic, a

weight percentage of 7.6% [1]. A total of 4.1 billion pounds of plastic were used by the

auto industry in 2000, a 17% increase from 3.5 billion pounds used in 1996 [1]. This

trend was indicative of polymer production as a whole. The total North American

production of plastics in the year 2000 was 87 billion pounds, a 19% increase from

73 billion pounds in 1996 [1].

In the auto industry plastics were originally used almost exclusively in the vehi-

cle’s interior of automobiles but they now have a major presence in exterior compo-

1
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nents (exterior trim and body panels) and underhood components (coolant bottles,

anti-noise baffles and resonators, and intake manifolds) as well. With the current

drive for fuel economy and recyclability the importance of plastics, particularly ther-

moplastics, will only increase.

Injection molding is one of the most common and most important methods of

processing polymers. It provides a method for making geometrically complex parts

with cycle times as low as those found in the die casting of metals. A modern

injection molding machine is shown in Figure 1.1. Polymers generally have low

thermal conductivity and are easily degraded by direct application of heat so they

cannot be melted and formed in the same manner that metals are cast. Injection

molding takes advantage of the high viscosity of polymer melts to generate and

distribute heat through viscous dissipation and mixing. Solid pellets of a polymer

are placed into the hopper of an injection molding machine and are carried through

the barrel by the rotation of a large screw. Frictional heating softens the pellets until

they begin to flow. The high viscosity and thorough mixing of the polymer melt by

the screw gives a high temperature, evenly heated melt. As the liquid polymer

collects at the end of the screw the pressure increases and forces the screw back.

When the screw has moved back far enough to build up the amount of liquid plastic

necessary to fill the mold the machine is ready to start an injection event.

The injection molding cycle consists of the following phases.

1. Injection. The screw moves forward like a ram and forces the plastic through

the nozzle of the machine and into the mold. Once it enters the mold it passes

through the sprue, into the runner(s) and through the gate(s) into the mold

cavity.
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Figure 1.1: The Vista-Sentry injection molding machine

2. Packing and Holding. Plastics shrink during solidification. This is undesirable

since the goal of injection molding is to make parts that match the mold cavity

shape. Plastics are also somewhat compressible. To combat shrinkage liquid

plastic is packed into the mold after the filling phase is complete. The pressure

in the mold rises rapidly during the packing stage. This high pressure is main-

tained in the holding phase. Fluid enters the mold slowly during this phase

and it has long been known [2] that this flow influences the frozen-in molecular

orientation of the solid plastic part. This in turn affects the residual stresses

and strains in the final solid part.

3. Sealed Cooling. The gate is a very narrow opening into the mold. Since it is

narrow it freezes off before the main body of the part solidifies. When the gate

solidifies it isolates the contents of the mold from the machine and the part
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cools and solidifies in a sealed state. Even though the part is sealed internal

flow can still occur due to temperature gradients and solidification effects.

4. Shot Buildup and Part Ejection. Once the gate has frozen the part can no

longer be affected by the screw. During this cooling period the screw rotates

and builds up a new shot of liquid plastic. When the part has solidified the

mold opens and the part is ejected. By this time a new shot of liquid plastic

is waiting in the barrel of the molding machine. The mold closes and a new

injection cycle starts. Typical cycle times range from one to several minutes.

1.1 Motivation

Engineers that design plastic parts are concerned with dimensional stability, me-

chanical properties, residual stresses, warpage and part-to-part consistency. The

engineers that manufacture the parts are concerned with fill time, process variabil-

ity, and the effects of processing parameters on part quality. All of these concerns are

affected by the fluid mechanics of the mold filling process. The fluid mechanics affects

the solid mechanics by influencing the molecular orientation within the solid part.

The orientation of the molecules in the solid part plays a critical role in determining

the properties of the part. This orientation is influenced by the fluid flow during the

mold filling, packing, holding and cooling phases of the injection cycle. Thus the

fluid mechanics of injection molding has a major impact on the final product.

As a result, engineers need to predict flow patterns in a mold. Easily controlled

molding parameters such as melt temperature, melt pressure and injection rate

greatly influence the melt flow and can be used to improve parts and processes.

Unfortunately, polymer melt flow prediction is very difficult. Polymers are made

up of long molecular chains. These chains move and orient themselves under ap-
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plied shear stress, giving rise to non-Newtonian phenomena such as shear thinning,

viscoelasticity, memory effects, and non-zero normal stress differences.

The mold flow problem consists of predicting the velocity field for the unsteady,

non-isothermal flow of a non-Newtonian liquid that solidifies as it flows in a complex

geometry. Add to this the fact that the constitutive relations for the fluid are com-

plicated or largely unknown and it becomes obvious that predicting polymer flow is

a task best suited for a computer.

Computational polymer fluid dynamics is an active area of research and com-

mercial codes are available for predicting mold flow. The accuracy of these codes

depends on the validity of the constitutive models they employ and on their inherent

assumptions about the mold geometry and flow. It is difficult to judge the accuracy

of the codes and the models on which they are based because of the lack of in-mold

flow data with which to compare them. As discussed below, non-Newtonian flow

research has focused on simplified processes such as steady capillary flow into cavi-

ties or on simplified non-Newtonian liquids such as Boger fluids. Real time velocity

vector field data of commonly used polymers under actual molding conditions has

not been reported in the archival literature at the present time.

Newtonian fluid researchers have captured velocity vector fields in high speed

air and water flows using a laser-sheet particle-imaging technique known as Particle

Image Velocimetry, or PIV. PIV has been extensively used to generate accurate flow

velocity measurements in Newtonian flows. Newtonian fluids are constitutively well

characterized but the high speeds typical to flows of engineering relevance leads to

turbulence. The closure problem and the need for turbulence models makes the

prediction of turbulent flow difficult. Experimentally obtained velocity vector field

information is useful for developing and validating turbulence models and computer
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codes.

The difficulties inherent in the use and validation of theoretical constitutive re-

lations for non-Newtonian flows are similar to those in the use and validation of

turbulence models in Newtonian flows, and the same benefits might be reaped from

comparing computational predictions to velocity field data. PIV would be partic-

ularly well suited to polymer melt flows because such flows are much slower and

much more viscous than typical Newtonian flows, leading to Reynolds numbers far

below unity. The non-Newtonian research community has not yet embraced PIV

techniques.

This thesis addresses this situation and provides the following unique contribu-

tions:

1. The direct study of commercially important non-Newtonian polymer liquids

with current Newtonian flow techniques.

2. A quantitative study of the mold filling process based on a new and unique

experimental data base. This data base can be used to evaluate polymer fluid

constitutive models and computer codes.

3. The direct investigation of flow during the packing phase of injection molding.

4. The characterization of the residual stress field of the solidified parts using po-

larized light, along with a proposed computational method to allow the extrac-

tion of the same parameters from computed three-dimensional residual stress

fields.
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1.2 Previous Work in the Visualization of Non-Newtonian
Flows

The use of in-mold flow visualization as a tool to study the flow of polymers in

an injection molding machine was first reported by Gilmore and Spencer in 1951 [3].

A glass walled mold was used to qualitatively filling flow, weld line formation, and

the undesirable jetting of polymer melt from the gate across the mold cavity. These

researchers also used simple models of the flow to study the effects of injection pres-

sure, temperature and packing time on the injection molding process [4]. Polarized

light was used to study the impact of packing flow on the physical properties and

molecular orientation of solid parts [2]. The results of these experimental and theo-

retical investigations were combined into an overview of the fluid mechanics of mold

filling [5]. The present study extends this early work by providing quantitative re-

sults.

Kamal and Kenig [6, 7] combined flow visualization with a more sophisticated

mathematical model to study the in-mold flow of partially crystalline polymers. Their

model simulated the one dimensional radial creeping flow of a power law fluid of

limited compressibilty in a semi-circular mold. High speed photography of a glass

walled mold was used to track the flow front of polyethylene as it filled a semi-circular

mold. This data was used to confirm the model predictions. The present study also

provides qualitative front-tracking results in combination with the velocity vector

field information of the polymer melt.

A remarkable aspect of the work of Gilmore and Spencer and Kamal and Kenig

is that they used industrially relevant polymers in industrially relevant molding ma-

chines. In the 1970’s the focus of research in modeling and visualization narrowed

to studying the fundamentals of the non-Newtonian flow of polymers in idealized
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geometries. Instead of using actual injection molding machines or extruders many

researchers used capillary rheometers with glass dies to visually study polymer flow.

An early example of the use of a glass die and a capillary rheometer is the melt

fracture study of Tordella [8]. A popular technique, described by Schmidt [9], in-

volved the preparation of special preformed polymer rods for the capillary rheometer.

Colored pellets of the parent plastic were inserted into the solid polymer rod in spec-

ified locations. The rod was then fed into the machine. The resulting part would

have bands of color that revealed the final location of the marker pellets. Although

this technique actually measures gross displacements instead of velocities Schmidt

was able to use it to demonstrate the fountain flow that results from the interacting

extensional and shear flows at the melt front. White and Dee [10] combined this

method with windowed molds to study mold filling phenomena. White [11] used

this data for an analysis of isothermal and non-isothermal flow in rectangular molds.

The transparent rheometer concept was also used by Oda [12] to study the effect of

extrudate swell on jetting in mold filling, by Chan [13] to study the effects of glass

fibers on the molding process, and by Lee [14] to study fiber orientation. A good

summary of the results of this period relating flow effects to the characteristics of

solid parts was given by White and Dietz [15]. A notable exception to the trend of

using industrial polymers in simplified geometries is described by Anastas, Lynn and

Brodkey [16]. This experiment used an extruder with a transparent barrel to process

frozen pellets of plasticized polystyrene. In effect they used an idealized polymer to

study an industrial machine. The investigation reported here differs from these stud-

ies in that it presents quantitative velocity information of the flow of an industrial

polymer in an industrial injection molding machine.

In the late 1970’s and 1980’s the focus of research narrowed even further to the
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study of idealized non-Newtonian liquids in idealized geometries. Well-characterized

fluids and simple geometries allowed researchers to concentrate on fundamental rhe-

ological questions and on constitutive modeling. Coyle, Blake and Macosko [17]

photographed fountain flow patterns in Newtonian and shear-thinning liquids and

compared them to the results of Schmidt [9]. The simpler apparatus and idealized

fluids gave better insight into the fountain flow process. Typical of this period was

the large number of studies of the flow of non-shear thinning elastic liquids (the so-

called Boger fluids) in abrupt contractions. These studies investigated the impact

of elasticity on the flow of non-Newtonian liquids and have been well described by

Boger [18]. Most of these studies involved visualization of the streamlines in a steady

flow through the use of long exposure photography. Fluids with different viscoelastic

properties showed very different streamline patterns. In contrast, the results pre-

sented here are quantitative measures of the unsteady flow of an industrial plastic

flowing in a mold in an industrial molding machine.

From the early 50’s until the late 70’s most of the flow visualization experiments

of polymers and polymeric liquids consisted of forensic studies on solid parts, obser-

vation of steady state streamlines through transparent molds and dies, observation

of fluid stress patterns through flow birefringence, and front tracking. The forensic

studies included the inspection of short shots to observe the flow of plastic in molds,

the marker pellet method described above [9], and the use of birefringence on solid

parts to observe the effects of flow parameters on the locked in strain orientation [2].

These studies had many inherent limitations. Visualization of streamlines could

only provide quantitative information about the streamlines themselves, not the ve-

locity field itself, and were limited to steady flows. Front tracking and flow birefrin-

gence could give some quantitative measure of the flow, but again the velocity field
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could not be measured directly. The forensic studies were limited because they could

not be used to study the polymer melt flow directly. Rather, the effects of the flow

on the solid part were used to deduce facts about the flow itself.

Forensic methods are still being used today, often in conjunction with other

methods of investigation. For example, Hobbs [19] used short shots to complement

his investigation of weld line morphology using optical micrographs. Chen, Hsu

and Jung [20] have used co-injection molding to mold parts from clear and colored

polystyrene. The colored polymer was used late in the molding cycle during packing

flow to highlight the packing flow penetration in the solid part. Yokoi, Kamata,

and Kanematsu [21] used a coil to produce a magnetic field around the gate of an

injection mold. A magnetic powder was mixed with the plastic. The coil was then

energized at desired intervals, magnetically marking the polymer that flowed through

the gates. The final location of these magnetically marked particles gave information

about the flow field, but again in contrast to the current work detailed velocity field

information could not be extracted.

Front tracking is also an active area of research. Yokoi, Watanabe and Oka [22]

used a mold with a glass insert to study the formation of weld lines using front

tracking methods. Weissenberger, Giacomin, Reuscher and Russell [23] have used

neutron radiography to observe mold filling in an aluminum mold. No glass windows

were required. In 2004 Özdemir et. al. [24] used front tracking in a glass-inserted

mold to study melt-front advancement and compared experimental data to Moldflow

simulations.

Melt flow visualization has been used to address other molding problems as well.

Yokoi et al. [25] used a glass-inserted mold to study jetting during mold filling.

Yokoi [26, 27] also used this mold to study the formation of surface defects known
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as flow marks.

A major limitation of all of these methods is that point velocity data and velocity

vector field data is difficult, if not impossible to obtain. This began to change

in the mid 1970’s. Experimenters in the field of Newtonian fluid mechanics had

been using lasers to perform non-intrusive point velocity measurements since the

mid 1960’s. Laser doppler velocimetry (LDV) was used to measure velocities at

discrete points in water and air flow fields. A good overview of the development

of LDV has been given by Penner and Jerskey [28]. LDV has been used on non-

Newtonian flows since the mid-70’s. An early example is Ramamurthy’s use of LDV

to study die flow instabilities [29]. Mackley and Moore [30] used LDV to make

velocity measurements of polyethylene flowing into a slit. A 1995 article by Ahmed

and Mackley [31] describes the use of LDV and flow birefringence to study the flow

of polyethylene in a glass walled slit die. Yalamanchili [32] used LDV to study the

flow of dilute polymer solutions through corrugated channels in the same year.

This was a major step forward in the visual study of Newtonian and non-Newtonian

flows. For the first time optically transparent molds could be used to generate de-

tailed, quantitative measurements of melt flow velocities. LDV, though limited to

point measurements in transparent fluids, gave accurate measurements of velocities

as a function of time in unsteady flows. Even with these advances, though, there

were still major limitations. Flow fields are more important in fluid mechanics than

flow at a particular point. Shear stresses and velocity gradients are intimately linked,

and measurement of velocity gradients requires planar measurements of velocity.

The use of lasers has also allowed vector field information to be obtained. Lasers

can been used to produce thin sheets of light. Seed particles are used to track the

flow dynamics. Prior to the development of lasers seed particle studies were full-field
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for the most part. The advantage that the laser brought was the ability to selectively

illuminate particles in specific planes.

The simplest way to extract velocity information from a laser and seed particle

experiment is to simply use long exposures to capture the pathlines of a steady flow.

This was done in 1991 by Tremblay [33] to study the flow of polyethylene blends

in a capillary rheometer through sudden contractions. Individual particles were not

tracked, but the superposed pathlines provided information about the nature of the

flow. This technique has limitations in unsteady flows.

Short exposure photographs can also be taken to capture particle pathlines. If the

exposure is long enough to capture portions of the particle pathlines and short enough

that these pathline fragments are linear then the velocity vectors of the particles may

be estimated from a single image. This technique was used successfully by Kröger

and Rath [34] to study the flow field in a device designed to measure elongational

viscosity using exposures of 0.5 seconds. If the exposure is shortened further and the

seeding density is low enough that individual particles may be identified and tracked

from image to image then a pair of consecutive images may be used to estimate the

particle velocity vector. This technique is known as particle tracking velocimetry

(PTV). Yokoi and Inagaki [35] used a video camera to get 30 ms exposures of the

flow of polystyrene in the thickness direction of an injection mold. Tehrani [36] used

PTV to study particle migration in pipe flows of non-Newtonian fluids.

PTV is the logical first step towards measuring velocities in a plane. PTV could

be used to measure not only fluid velocities, but velocity gradients. This meant that

quantities such as vorticity and strain rate could be measured experimentally.

The main difficulty with this method is its requirement for low seeding density.

Data analysis of PTV images requires clear pathlines (as in [34]) or it requires track-
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ing each particle from frame to frame (as in [35]). In either case the seeding density

needs to be low, resulting in low spatial resolution of the measured velocity field.

The seeding density issue can be overcome by pulsing the laser light to produce

multiple exposures of the flow field. The overlapping images produce a speckle pat-

tern that cause Young’s fringes when illuminated with an interrogation laser. The

orientation and spacing of the fringes at each interrogation point can be used to

determine the in-plane components of the velocity vector. For very high seeding

densities this method is called laser speckle velocimetry (LSV). This technique has

been used to study the steady flow of a Boger fluid through a glass tube with a

contraction [37]. For medium seeding density it is called particle image velocime-

try (PIV). A thorough overview of these techniques has been given by Adrian [38]

and a recent comprehensive practical guide has been written by Raffel, Willert and

Kompenhans [39]. For medium seeding densities digital photography can be used

to capture the images and cross-correlation techniques can be used to estimate the

velocity field. The resolution is not as fine as on chemical film but it bypasses the

need to develop photographs and interrogate them point by point with a laser. This

variation of PIV is called digital PIV (DPIV) and has been described by Willert and

Gharib [40]. The studies described herein use DPIV.

DPIV was used by Baumert [41] in 1997 to study flow instabilities in Boger fluids.

This is one of the few recent attempts at using DPIV in a non-Newtonian fluid. But

in this work extremely low particle seeding densities were used in conjunction with

exceedingly long (25 second) exposures. The resulting images were processed as

described by Willert and Gharib [40]. While technically this can be called a DPIV

experiment, its seeding density and exposure time set it outside the norm of standard

PIV experiments. Pakdel and McKinley [42] performed a series of experiments on
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non-Newtonian solutions and Boger fluids in various geometries. Their studies used

a standard CCD camera and more typical particle seeding densities and were true

DPIV experiments in non-Newtonian fluids.

The current state of the art in the field of polymer flow investigations is the

use of PTV or LDV with model fluids in simplified geometries. For example, in

2002 Giri Kollo et. al. [43] used PTV to study the fountain flow effect of a single

phase viscoelastic fluid (liquid soap) in a cylindrical geometry. In 2004 Michaeli

and Blömer [44] used LDV to study the flow of a pumped model fluid in a model

spiral die at room temperature. PIV has been used to study non-Newtonian fluids at

room temperatures and pressures and in simple geometries [42]. At the present time

true PIV has not been used to study polymer melts flowing under injection molding

conditions.

1.3 Previous Work on the Visualization of Residual Stress

The photoelastic effect was first discovered by Sir David Brewster [45, 46] and

has long been used to study stress distributions in transparent plastic parts. The

molecular orientation of the part at any given point is a result of the residual strain

at that point, and this orientation in turn determines the index of refraction tensor

at that point. The residual strains in an elastic part determine the residual stresses

as well, and measurements of the components of the index of refraction tensor at a

point can be used to experimentally determine the residual strains and stresses at

that point using the stress-optic rule.

Measurements of the index of refraction tensor components can be made with

a polarimeter. The residual strain field in a plastic part causes fringe patterns to

appear in the part when the part is placed in the polarimeter. Observations of the
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fringes due to index of refraction differences can then be translated into observations

about the residual strain and stress fields. The current study exploits prior work

in this area to provide documentary information about residual stresses in injection

molded parts.

This is a mature area of study and there are many introductory texts on the

subject. Experimental stress analysis in general is well-presented by Dally [47] and

by Hendry [48]. A classic two-volume text on photoelasticity was written in the

1940’s by Frocht [49, 50]. The subject of three-dimensional photoelasticity was ad-

dressed by Aben [51] and a modern treatise on digital photelasticity was presented

by Ramesh [52]. Polarization of light and its application to photoelastic studies is

treated by Huard [53]. Matrix methods in photoelasticity are presented very practi-

cally by Gerrard and Burch [54] and with more theoretical details by Theocaris and

Gdoutos [55].

Birefringence studies of polymers can be divided into two broad categories, flow

birefringence in the molten state and residual stress birefringence in the solid state.

Some researchers have combined the two, such as in a 1978 study by Han [56].

Han filmed the flow birefringence patterns of polystyrene during injection and then

measured the residual stress after the part had solidified. Flow birefringence studies

in themselves are not directly relevant to the present work, but they are interesting

to note since they all involve visualization of the flow of non-Newtonian liquids.

Many researchers have used flow birefringence to study the flow of polymer melts

and other non-Newtonian liquids. White and Baird [57] used flow birefringence to

study planar entry flows of polymer melts. Subramanian [58] used a similar technique

to test constitutive equations for polymer melts. A notable feature of these two works

is that they use polymer melts in industrial equipment. Saito [59] built an elaborate
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optical access mold designed for polarized light. He studied the flow birefringence

during the shot to visualize stress gradients in a flow around an obstruction.

It is interesting to note that while the object of these flow birefringence studies is

different than that of the present work (measurement of stress fields during flow as

opposed to measurement of velocity fields during flow), they are much closer to the

present work in spirit than the velocity field studies previously cited. Flow birefrin-

gence researchers have been more willing to study the flow of industrially relevant

polymers in industrially relevant equipment than their flow velocity colleagues. Per-

haps this is because the phenomena of flow birefringence is non-Newtonian in nature

and has been developed by researchers interested in the flow of polymer melts and

solutions. In contrast, PIV had its genesis in Newtonian flow studies and has not

yet been fully embraced by the non-Newtonian flow community.

1.4 Summary

The goal of the present work has been to study the melt flow of an industrially

relevant polymer in industrially relevant equipment using standard analysis tech-

niques and techniques not yet adapted to this type of flow. This goal is reflected in

the experimental design. The flow studies presented here are of a Dow STYRON

615 APR polystyrene melt flowing in a Cincinnati Milacron VS33 injection molding

machine. True DPIV was used to study the flow, with seeding densities and frame

rates typical of Newtonian DPIV studies. Information about the residual stresses

was extracted using a standard polariscope. In this way modern experimental tech-

niques have been used to provide quantitative results in an area of research that was

qualitatively explored fifty years ago.



CHAPTER 2

Experimental Design and Setup

A general schematic of the experimental setup can be seen in Figure 2.1. First,

the particles and plastic pellets were weighed and mixed together. Then the pellet

and particle mixture was poured into the hopper of the injection molding machine

and a shot was manually prepared in the barrel.

The CCD camera was then placed in a free running mode with an open shutter.

The vertical sync signal was stripped from the camera and used to synchronize the

pulsed laser to the camera frame rate. The lab was then darkened and a movie

recording initiated on the the computer.

The injection molding machine cycle was then started. The laser illumination

was manually controlled during the shot to offset illumination problems due to the

motion of the flow front. At the end of the cycle the image acquisition was ended.

The part was removed, labeled and stored for residual stress measurements with a

polarimeter.

The experimental setup can be divided into these broad categories:

Polymer Melt and Particles Includes the particle and polymer selection and char-

acterization of the polymer-particle melt

17
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Figure 2.1: Schematic of the experimental setup
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Flow Generation Includes the injection molding machine, the optical access mold

and the auxiliary melt pressure and mold temperature measurements

Image Capture Includes the laser, sheet-producing optics, CCD camera, frame-

grabber and image recording software

Residual Stress Measurements Includes birefringence measurements with a po-

larimeter and null-balance compensator

Each of these categories will be discussed separately below. First, a comment about

variable naming conventions. This chapter deals with rheology and polarimetry

and both fields often have different meanings attached to common variable names.

For instance, λ typically stands for wavelength in polarimetry and time constants

in rheology. In this chapter λ will refer to wavelengths, τ will be used for time

constants, and σ will be used for stresses.

2.1 The VS33 Injection Molding Machine

The Vista-Sentry VS33 is an injection molding machine capable of generating

30 metric tons of clamp force and a 100 gram shot capacity. Machines this size

are commonly used in industry to make small plastic parts. The specifications of

the Vista-Sentry VS33 injection molding machine are listed in Table 2.1 [60]. The

machine itself is shown in Figure 1.1.

2.2 PIV Particles

Many types of particles were tried during the course of this experiment, as dis-

cussed in Section 3.2. The particle that was finally chosen for this work is manufac-

tured under the trade name Alu*flake by the Glitterex corporation. These particles



20

Table 2.1: Specifications of the Cincinnati Milacron VS33 injection molding machine

Specification English Metric
Max. Displacement 6.83 in3 111.96 cm3

Max. Injection Pressure 18,156 psi 1252 bar
Max. Injection Rate 5.71 in3/sec 93.68 cm3/s
Injection Screw Stroke 4.33 in 110 mm
Screw Diameter 1.42 in 36 mm
Screw L/D Ratio 17.7:1 17.7:1
Max. Screw Speed 205 RPM 205 RPM
Torque at Screw 4800 in-lb 542 Nm

@ 2475 psi @ 170 bar
Number of Barrel Pyrometers 4 4
Total Heat Capacity 5.36 kW 5.36 kW
Max. Clamp Force 33 tons 30 tons
Max. Clamp Stroke 9.84 in 250 mm
Max. Ejector Stroke 3.15 in 80 mm
Max. Ejector Force 1.9 tons 1.7 tons

are highly reflective clear-coated aluminum flakes. These flakes are precision-cut

squares that measure 0.004”±0.001” on a side with a thickness of 0.0005”. As dis-

cussed in Section 3.2.3, the particles have an equivalent spherical diameter of 60µm.

The a detailed analysis of the ability of these particles to track the non-Newtonian

flow is discussed in Chapter 3.

2.3 STYRON 615APR

STYRON 615APR is a high flow, FDA compliant all-purpose resin typically

used in medical, pharmaceutical, and packaging applications. It was chosen for this

project because it is easy to mold, has excellent transparency, is used in industry,

and is readily available. The physical properties of this material are shown in Ta-

ble 2.2 [61].The injection molded mechanical properties of this material are shown in

Table 2.3 [61].

One of the goals of this work is to provide benchmark data for those seeking to
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Table 2.2: Physical, optical and thermal properties of STYRON 615APR as provided
by Dow. The middle column designates the relevant ASTM standard
governing the test method.

Physical Properties
Melt flow rate (200◦ C/5 kg) D 1238 14.0 g/10 min
Specific Gravity D 792 1.04
Linear Thermal Expansion (10−5) D 696 9.0 cm/cm/◦ C
Mold Shrinkage D 955 .003-.007 cm/cm

Optical Properties
Transmittance D 1003 90%
Haze D 1003 1%
Refractive Index D 542 1.59

Thermal Properties
Vicat Softening Temperature D 1525-B 101◦ C
(120◦ C/hr, 1 kg)
Deflection Temperature Under Load D 648

@ 0.45 MPa, Unannealed 88◦ C
@ 1.8 MPa, Unannealed 76◦ C

Table 2.3: Injection molded mechanical properties of STYRON 615APR as provided
by Dow. The middle column designates the relevant ASTM standard
governing the test method.

Impact Strength (12.7× 3.2 mm specimen)
Notched Izod @23◦ C D 256 16.0 J/m
Gardner Impact @23◦ C D 3029 0.113 J

Tensile Strength (12.7× 3.2 mm specimen, 5 mm/min rate)
Yield Tensile Strength D 638 44 MPa
Ultimate Tensile Strength D 638 44 MPa
Ultimate Elongation D 638 1.5%
Tensile Modulus D 638 2868 MPa

Flexural Properties (1.3 mm/min rate)
Flexural Strength (3 point) D 790 83 MPa
Flexural Modulus (3 point) D 790 3130 MPa
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model the flow of polymers during injection molding. Data will be presented related

to the residual stresses in the form of birefringence measurements of the solid part,

as described in Chapter 8. In order for this data to be useful to a modeler the

stress-optic coefficient of the polymer must be known.

The stress-optic coefficient relates the difference in principal stresses at a point

to the difference in index of refraction along the principal directions. In practice the

difference in index of refraction is measured as a fringe order using a polariscope and

a null-balance compensator as described in Section 2.9. The fringe order f is given

by:

f =
hc

λ
(σ1 − σ2) (2.1)

where h is the thickness of the specimen at the point of interest, c is the stress-optic

coefficient for the polymer, λ is the wavelength of light used in the polarimeter,

and σ1 and σ2 are the principle stresses at the point of interest. The stress-optic

coefficient c is a material property of the polymer and is measured in Brewsters (Br),

with one Brewster equal to 10−12 Pa−1. The details of the measurement of c are given

in Section 2.9. The value of c for the polymer used in this study was determined to

be 8.0 ± 0.6 Br.

2.4 Characterizing the Polymer and Particle Mixture

Samples of the polymer and particle mixture were sent to DatapointLabs (www.

datapointlabs.com) for material testing. Viscosity measurements were performed

on a Goettfert Rheograph 2003 capillary rheometer using a representative mixture

of STYRON615 APR pellets and Alu*flake particles. Dynamic tests were performed

on a Rheometrics ARES cone and plate rheometer using 1” diameter disks cut from

the center of plaques molded at 230◦ C at an injection rate of 23.0 cm3/s. All tests
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were performed at a temperature of 230◦ C. The full report from DatapointLabs can

be found in Appendix A.

2.4.1 Shear-rate Dependent Viscosity of the Polymer and Particle Mix-
ture

Viscosity data at high shear rates is best obtained with a capillary rheometer,

while data at low shear rates more easily obtained with a cone and plate rheometer.

For an oscillatory shear test the shear strain is given by

γ(t) = γ0 sinωt (2.2)

where γ0 is the strain amplitude and ω is the frequency. The resulting shear stress

can be expressed as

σ12(t) = γ0ω [η′(ω) cosωt+ η′′(ω) sinωt] (2.3)

where η′ and η′′ are material functions with the units of viscosity. A complex viscosity

can then be defined as

η∗(ω) ≡ η′(ω)− iη′′(ω) (2.4)

The magnitude of the complex viscosity as a function of frequency of the polymer

and particle blend used in the present work is plotted in Figure 2.2.

The Cox-Merz Rule [62] predicts that the magnitude of the complex viscosity is

equal to the viscosity measured at corresponding values of frequency and shear rate:

η(γ̇) = |η∗(ω)|, ω = γ̇ (2.5)

This rule was used to superpose the low frequency complex viscosity data (ω < 1

rad/s) with the viscosity data obtained by the capillary rheometer. The resulting

viscosity curve is shown in Figure 2.3.
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Figure 2.2: Complex viscosity data for STYRON 615APR with 0.02% (by weight)
loading of aluminum flakes at a temperature of 245◦ C obtained by an
ARES cone and plate rheometer (viscosity error ±1.17%).
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Figure 2.3: Viscosity data for STYRON 615APR with 0.02% (by weight) loading of
aluminum flakes at a temperature of 245◦ C. The circles represent the
magnitude of the complex viscosities determined by an ARES cone and
plate rheometer (viscosity error ±1.17%). The squares represent data
taken with a Goettfert Rheograph 2003 capillary rheometer (viscosity
error ±2.49%). The Cox-Merz rule was used to combine the two data
sets. The solid line represents a best-fit of the Carreau model with con-
stants η0 = 295.43 Pa·s , τ = 0.0193 s, and n = 0.4179.
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This viscosity curve can be fitted using the Carreau model [63]

η = η0[1 + (τ γ̇)2]
n−1

2 (2.6)

where η0 is the zero-shear viscosity, λ is a time constant, and n is the power-law

exponent. MATLAB was used to fit the Carreau model to the combined viscosity

data shown in Figure 2.3. The best-fit Carreau parameters are η0 = 295.43 Pa·s ,

τ = 0.0193 s, and n = 0.4179.

At high strain rates the Carreau model reduces to the power law model

η = mγ̇n−1 (2.7)

with n=0.4179 and m = η0τ
n−1 = 2940.6 Pa·s n.

2.4.2 Impact of PIV Particles and Molding History on the Shear-rate
Dependent Viscosity

Chapter 3 addressed the question of how well the PIV particles track the polymer

melt flow. Another question of interest relates to the effect of the particles on the

properties of the base polymer. Do the particles change the flow behavior of the

polymer? Yet another question relates to the shear history of the polymer. Computer

simulations usually use the properties of virgin material when calculating the melt

flow even though the material has undergone significant shearing in the barrel of the

injection molding machine and during its passage through the runners and gate of

the mold. Is this a valid assumption?

To address these questions several tests were made using an Instron 1611 capillary

rheometer at the University of Michigan shown in Figure 2.4. Viscosity curves were

generated using virgin STYRON 615APR pellets with and without particles. In

addition, several molded specimens were made with and without particles. These

specimens were sawed into pellet-sized pieces and were also tested in the capillary
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Figure 2.4: Instron 1116 Capillary Rheometer

rheometer. The data was reduced using the Rabinowitch correction as described by

Brodkey [64]. The results are shown in Figure 2.5. This figure shows data from

four different materials: virgin polymer pellets, virgin polymer pellets with 0.02% by

weight PIV particles, molded polymer without particles, and polymer molded with

0.02% by weight PIV particles. All tests were performed at 230◦ C using a capillary

with 1.0035”±0.001” length and 0.0501”±0.5% diameter.

The superposition of the curves in Figure 2.5 shows that the presence of particles

and the molding history do not affect the shear-thinning viscosity of the base polymer.

2.4.3 Linear Viscoelastic Properties of the Polymer and Particle Mixture

The linear viscoelastic properties of a polymer can be characterized by the re-

laxation modulus G(t)[63]. The most popular way represent the shear relaxation

modulus in functional form is through the use of the generalized Maxwell model [62].
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Figure 2.5: Viscosity data for virgin and molded STYRON 615APR with and with-
out 0.02% (by weight) loading of aluminum flakes at a temperature of
230◦ C (viscosity error ±4%). The superposition of the curves indicates
that the molding history and presence of particles do not affect the shear-
thinning viscosity of the base polymer.
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Figure 2.6: Mechanical analog for the generalized Maxwell model.

In this model the rheological constitutive equation is analogous to a parallel assembly

of N Maxwell elements as shown in Figure 2.6. Each Maxwell element consists of

a spring and dashpot in series. The shear relaxation modulus of a single Maxwell

element is given by

G(t) = Gie
−t/τi (2.8)

where Gi and τi are the relaxation strength and relaxation time of the Maxwell

element. In the generalized Maxwell model the elements are additive and the overall

relaxation modulus is given by

G(t) =
N∑

i=1

Gie
−t/τi (2.9)

As the number of Maxwell elements approaches infinity the collection of relaxation

times and strengths can be replaced by a continuous relaxation spectrum H [65]:

G(t) =

∫ +∞

−∞
e−t/τH(ln τ)d(ln τ) (2.10)

The relaxation spectrum is also related to the storage modulus G’ and loss mod-
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ulus G” [65]:

G′(ω) =

∫ ∞

−∞

H(ln τ)ω2τ 2

1 + ω2τ 2
d(ln τ) (2.11)

G′′(ω) =

∫ ∞

−∞

H(ln τ)ωτ

1 + ω2τ 2
d(ln τ) (2.12)

The storage and loss moduli are measures of the amount of energy stored and

dissipated during an oscillatory shear test. The measured shear stress in such a test

can be expressed as

σ12(t) = γ0 [G′(ω) sinωt+G′′(ω) cosωt] (2.13)

Comparison with Equation 2.3 shows that G′ = ωη′′ and G′′ = ωη′.

In the present work the relaxation modulus of the polymer-particle mixture was

not measured directly. The storage and loss moduli were measured directly, though,

so in principle Equations 2.11 and 2.12 can be used to determine the relaxation

spectrum H. Once the spectrum is known Equation 2.10 can be used to calculate

the relaxation modulus.

In practice this is difficult for a number of reasons. First, as Dealy [62] points out,

rheometers are limited to a range of a few decades of frequency and the reliability of

the inferred H curve decreases rapidly as τ → ω−1
min and τ → ω−1

max, where ωmax and

ωmin are the largest and smallest frequencies at which experiments were possible. A

second difficulty arises from the form of Equations 2.11 and 2.12. These equations

are Fredholm equations of the first kind and inverting them is an ill-posed problem.

Any approximation of H from these equations will be non-unique. Honerkamp and

Weese [66] have shown that the use of a mathematical technique known as classical

Tikhonov regularization can be used to calculate a discrete spectrum from experi-

mental data that converges to the continuous spectrum as the number of Maxwell

elements is increased.
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Honerkamp [66] used a FORTRAN program called FTIKREG (Fast TIKhonov

REGularization) [67] to extract relaxation spectra from rheometer data. As an ex-

ample of how FTIKREG works, assume that it is desired to find the spectrum H

from measurements of the storage modulus G′. Given a set of n data points g′i with

experimental errors σi and a trial spectrum H, the trial spectrum can be used to

make estimates of the storage modulus G′
i using Equation 2.11. A relative error

estimate ε is given by

ε =
n∑

i=1

1

σ2
i

(g′i −G′
i)

2
(2.14)

The program FTIKREG minimizes the expression

V (Λ) = ε+ Λ‖LH‖2 (2.15)

where L is an operator and Λ is a the regularization parameter. The first term of

this expression forces the trial function to approximate the experimental data. The

second term leads to a smooth estimate of the spectrum H [67].

FTIKREG was used in the present work to extract the relaxation spectrum from

the cone and plate rheometer data provided by DatapointLabs. The program solved

Equations 2.11 and 2.12 simultaneously. The second derivative was chosen for the op-

erator L and an additional constraint was imposed that the spectrum vanish smoothly

at the upper and lower boundaries of the frequency range. The spectrum was calcu-

lated over the interval of 10−4 seconds to 10 seconds, the interval being dictated by

the range of frequency of the rheometer data. The resulting spectrum is shown in

Figure 2.7. The spectrum has six distinct peaks corresponding to six predominant

relaxation times.

The spectrum was then used to generate the parameters of the generalized Maxwell

model. The spectrum H in Figure 2.7 was first approximated as a set of six delta
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Figure 2.7: Relaxation spectrum of the polymer-particle mixture calculated by the
program FTIKREG. The peaks of this spectrum were used to generate
the relaxation times and moduli of the generalized Maxwell model used
in Figure 2.8.
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Table 2.4: Relaxation times τi and strengthsGi for a six-element generalized Maxwell
model of the polystyrene-particle blend.

τi (s) Gi (Pa)
2.66×10−4 118872
3.59×10−3 19881
1.56×10−2 4653
4.86×10−2 1146
1.79×10−1 193

5.46 18

functions with each delta function centered at a peak of H. The coefficient of each

delta function was set equal to the area under the corresponding peak of the spec-

trum. This resulted in a discrete spectrum Ĥ with the following form:

Ĥ =
n∑

i=1

Giδ(ln τ − ln τi), Gi =

∫
peak

Hd(ln τ) (2.16)

where n is the number of peaks and τi are the times at which the peaks occur.

Substituting Ĥ into Equation 2.10 gives

G(t) =

∫ +∞

−∞
e−t/τ

(
n∑

i=1

Giδ(ln τ − ln τi)

)
d(ln τ) (2.17)

=
n∑

i=1

Gie
−t/τi (2.18)

which is the definition of the generalized Maxwell model given in Equation 2.9.

The values of the relaxation times and of the corresponding relaxation strengths

calculated by this process are shown in Table 2.4.

The magnitudes of the last two peaks in Table 2.4 are considerably smaller than

the first four. Is it necessary to include them in the generalized Maxwell model? To

answer this question the generalized Maxwell model parameters were evaluated by

using them to calculate curves for G′ and G′′ using the following equations [62]

G′(ω) =
i=N∑
i=1

Giω
2τ 2

i

1 + ω2τ 2
i

(2.19)
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Figure 2.8: Storage and loss moduli for STYRON 615APR with 0.02% (by weight)
loading of aluminum flakes at a temperature of 245◦ C, (error ±1.17%).
The curves are the predicted values of G’ and G” using four, five and six
element generalized Maxwell models.

G′′(ω) =
i=N∑
i=1

Giωτi
1 + ω2τ 2

i

(2.20)

Three different n-element Maxwell models were compared, with each model using

the first n entries of Table 2.4. The results of using a four-element, five-element and

six-element model are plotted in Figure 2.8. From the figure it is evident that the

G′′ curve is well represented by the four-element Maxwell model. The number of

Maxwell elements has a much greater impact on the G′ curve. Figure 2.8 shows that

only the six-element model adequately represents the G′ data.

The relaxation modulus was then calculated from the six element Maxwell model

using Equation 2.9. The result is shown in Figure 2.9.
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Figure 2.9: Relaxation modulus of STYRON 615APR with 0.02% (by weight) load-
ing of aluminum flakes at a temperature of 245◦ C. The modulus was
calculated using the six element generalized Maxwell model described in
Table 2.4.
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The relaxation modulus shown in Figure 2.9 can be used to cross-check the vis-

cosity curve shown in Figure 2.3. In Figure 2.3 the low shear-rate data was calculated

from the cone-and-plate rheometer data using the Cox-Merz rule since the capillary

rheometer data did not extend below a shear rate of 1 ss. This resulted in a zero-

shear viscosity η0 equal to 295 Pa·s . The theory of linear viscoelasticity can be

used [63] to show that

η0 =

∫ ∞

0

G(s)ds =
∑

i

Giτi (2.21)

Performing this calculation with the values shown in Table 2.4 gives η0 = 364 Pa·s .

2.4.4 Nonlinear Viscoelastic Properties of the Polymer and Particle Mix-
ture

The relaxation modulus discussed above is a linear viscoelastic property. Poly-

mers also exhibit nonlinear viscoelastic effects, chief of which is the presence of nor-

mal stress differences under shear flow [63]. The first normal stress difference N1 was

measured by Datapoint Labs as a function of shear rate γ̇ for the polymer-particle

mixture. The quantity N1 was calculated from the normal force F on the plate of

radius R using the following formula [68]:

N1 = τ11 − τ22 =
2F

πR2
(2.22)

From this data the first normal stress coefficient may be calculated [63]:

Ψ1 =
N1

γ̇2
(2.23)

The resulting curve of Ψ1 versus shear rate is shown in Figure 2.10.

2.4.5 The Deborah Number

The fundamental nondimensional group in non-Newtonian fluid mechanics is the

Deborah number, De [69]. The Deborah number is defined as the ratio of the char-
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Figure 2.10: First normal stress coefficient Ψ1 for STYRON 615APR with 0.02% (by
weight) loading of aluminum flakes at a temperature of 245◦ C, (error
±1.17%).
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acteristic time of the fluid to the characteristic time of the flow. Solid-like behavior

is observed for De� 1 and fluid-like behavior is observed for De� 1. Viscoelastic

behavior is observed for De ∼ O(1).

The characteristic time of the flow may be taken to be the duration of the exper-

imental observation [63], but there is no universally accepted way to calculate the

characteristic time of the flow for any given situation. A variety of methods will be

employed here and the results tabulated.

One approach is to use the time constant λ from the Carreau model, Equa-

tion 2.6 [70]. Using this method, the characteristic time of STYRON 615 APR is

0.0193 s.

Another method is to use the first normal stress coefficient, Ψ1, to create a char-

acteristic time linked to the elasticity of the flow [70]:

λT =
τ11 − τ22
τ12γ̇

=
Ψ1

η
(2.24)

In this formulation the characteristic time is a function of strain rate. Figure 2.11

was constructed using Equation 2.24 and the data provided by Datapoint Labs found

in Appendix A. The characteristic time λT ranges from 0.86 seconds at a strain rate

of 1 s−1 to 1.6×10−5 seconds at a strain rate of 100 s−1, a strain rate typical of

injection molding.

A characteristic time of the fluid can also be extracted from the G(t) curve.

Bird [63] shows that the ratio of integrals
∫∞

0
sG(s)ds/

∫∞
0
G(s)ds appears in the

solution of many linear viscoelastic problems, where G is the relaxation modulus

and s is the elapsed time from a reference time t′, s = t − t′. This integral has the

units of time and Bird [63] points out that it is often used as the characteristic time

of the fluid in the construction of the Deborah number.
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Figure 2.11: Characteristic time of the fluid based on the first normal stress coef-
ficient Ψ1 for STYRON 615APR with 0.02% (by weight) loading of
aluminum flakes at a temperature of 245◦ C.
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Carrying out these integrations using the generalized Maxwell model leads to the

following expression for the characteristic time of the fluid τc:

τc =

∞∫
0

sG(s)ds

∞∫
0

G(s)ds

=

N∑
i=1

Giτ
2
i

N∑
i=1

Giτi

(2.25)

Substitution of the discrete Maxwell model parameters from Table 2.4 into Equa-

tion 2.25 gives a characteristic time of the fluid equal to 2.4 seconds.

It is curious that this last estimate of the characteristic time is orders of magni-

tude larger than the others described. The difficulty arises from the fact that a real

polymer has a spectrum of relaxation times and each method weighs the individ-

ual relaxation times differently to calculate a single characteristic time of the fluid.

This is well illustrated by a final calculation of the relaxation time recommended by

Shenoy [70]. Shenoy [70] points out that the characteristic time for any material can

be defined as the time required for a material to reach 63.2% or 1-1/e of its ultimate

retarded elastic response to a step change.

Bird [63] shows that the stress growth at the inception of steady state shear flow

in a linear viscoelastic fluid is given by

τxy = γ̇0

∫ t

0

G(t− t′)dt′ = γ̇0

∫ t

0

G(s)ds = η+γ̇ (2.26)

where γ̇0 is the magnitude of the step change in the strain rate at time t = 0 with

the restriction that the product of γ̇0 and the maximum relaxation time be much

less than unity. The viscosity function η+ can be calculated using the generalized

Maxwell model parameters shown in Table 2.4. The result is shown in Figure 2.12,

where it has been scaled by the zero-shear viscosity η0.

The difficulty in choosing a characteristic time is immediately apparent. The

viscosity curve climbs sharply, and then slows over a long period of time. The
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Figure 2.12: Stress growth function of an initially quiescent linear viscoelastic fluid
that experiences a step change in strain rate.

viscosity curve reaches 63.2% of its final value in 0.07 seconds, but it takes 18 seconds

to reach 99% of its final value. So using the 63% rule would give a time constant

of 0.07. Using the rule of thumb that it takes four time constants to reach the final

value would give a time constant of 4.5 seconds. This explains the time constants

calculated above that range from 0.019 seconds to 2.4 seconds.

In addition to the difficulty in establishing a characteristic time of the fluid, the

characteristic time of the flow varies with injection rate. In the present work the

fastest mold fill time was 1.3 seconds, and the slowest was 4 seconds. The range of

Deborah numbers corresponding to the different estimates of the characteristic time

discussed above are shown in Table 2.5.
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Table 2.5: Deborah numbers based on varied calculations of the characteristic time
of the fluid. The “Reference” column gives the Figure or Equation that
the estimate was based upon. The minimum and maximum Deborah
numbers are based on fill times of 4 seconds and 1.3 seconds, respectively.

τ (s) Reference Min. Max.
1.66×10−5 Equation 2.24 4.15×10−6 1.28×10−5

0.019 Equation 2.6 0.00475 0.0146
0.07 Figure 2.12 0.018 0.054
2.4 Equation 2.25 0.6 1.8

Most of the estimates of the Deborah number shown in Table 2.5 are much less

than unity. This would suggest that viscoelasticity would play little or no role in the

flow studied in the present work. This suggestion was found to be accurate, as will

be discussed in Chapter 5.

2.5 The Optical Access Mold

The heart of the flow field generation system is the optical access mold, specially

designed for this experiment and described previously by Bress [71]. An isometric

view of the closed mold can be seen in Figure 2.13. An exploded view of the mold

components can be seen in Figure 2.14. See Appendix B for detailed drawings of the

mold components and a brief explanation of their function.

A schematic of the mold cavity, windows, and cavity orientation with respect to

the parting plane can be seen in Figure 2.15. The mold has a cavity that produces

plaques with dimensions of 109.5 mm × 66.7 mm × 6.3 mm (4.3125” × 2.625”

× 0.25”). The mold has three windows: two along the small faces at the top and

bottom of the cavity (66.7 mm × 6.3 mm), and one along the largest face (109.5 mm

× 66.7 mm). There is 1
2
◦ of draft along the top and bottom windowed faces as well

as on the steel face opposite the large window to facilitate ejection of the molded
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Figure 2.13: Isometric view of the optical access mold
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Figure 2.14: Exploded view of the optical access mold. 1. Sprue bushing 2. Guide
ring 3. Top clamping plate 4. “A” plate 5. Cavity block 6. “B” plate 7.
Front and rear ejector plates with ejector pins and return pins 8. Rear
clamping plate 9. Acrylic entrance and exit windows 10. 0.75” thick
quartz window 11. 0.125” thick polycarbonate shields 12. Three 1”
thick glass plates 13. Steel window brace 14. Six 1” diameter hardened
steel bolts
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Figure 2.15: Melt flow visualization schematic. The liquid plastic enters the rect-
angular mold at the lower right corner. The mold cavity is contained
within the portion of the mold base attached to the moving platen. The
flowing plastic is viewed through a window over the planform area of
the part. Light enters and exits the mold through the windows on its
top and bottom.

parts. The mold cavity may be illuminated from either the top or bottom windows.

In Bress [71] both approaches were used with a halogen source, in the current work

a laser sheet entering from the bottom of the mold was used. The rectangular shape

was chosen to allow planar windows for undistorted viewing and for ease of meshing

in computational mold-filling studies.

Typically parts such as these would be made with one of the large 109.5 mm

× 66.7 mm faces on the parting plane for easy part ejection. But as shown in

Figure 2.15, the parts were made with one of the 109.5 mm × 6.3 mm faces on the

parting plane. This unusual orientation allows full visualization of the mold cavity

from the side of the mold facing the operator of the machine, and also extends the

machine’s clamping capability to parts with larger planform area. By placing a small

edge in contact with the stationary half of the mold higher packing pressures can be

used without flashing than would be possible in the more typical orientation.

This unusual choice of orientation comes at a price. The main disadvantage is
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difficulty of part ejection. In the more typical orientation the only faces in frictional

contact with the mold would be the four small edges. In the orientation necessary

for visualization two of those small edges are substituted with the largest faces on

the part. This necessitates longer cooling times to promote shrinkage, and at times

loosening or removal of the window to remove the part. Another restriction resulting

from this orientation is that the gate must be placed along the face that is in contact

with the stationary mold platen. The gate may be placed anywhere on this face. In

this study the gate is a semi-circular channel 3.125 mm in diameter that is centered

5 mm above the lower right corner of the part. See Figures 2.23 for more details.

An exploded view of the mold can be seen in Figure 2.14. The mold was designed

as a solid model using AutoCAD. The main challenge was to design a window that

could withstand the extremely high melt pressures found in the packing phase of a

typical injection molding cycle. Finite element analysis was used to create a design

capable of withstanding a 69 MPa melt pressure. The portion of the window in

contact with the melt is a quartz block 19 mm thick. Quartz was chosen for its

capability of withstanding significant temperature gradients. A 3 mm thickness of

polycarbonate acts as a buffer between the quartz and three 25 mm thick pieces of

plate glass. These are followed by another 3 mm thick layer of polycarbonate and

the whole assembly is held in place by a steel brace and six hardened grade-eight 25

mm diameter bolts. The top and bottom walls of the cavity are also transparent.

They can be formed by rectangular blocks of either quartz or acrylic and are held in

place by slots machined into a steel block inserted into the mold base.

This steel insert is another notable feature of the mold design. The insert holds

the quartz pieces that form the top and bottom of the mold, and forms the rear face

and left side wall of the mold cavity. The thickness, length and width of the final
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part are all determined by the steel insert. The number, type and location of the

gates are also determined by the insert. Transducers of various types can be placed

on the rear wall of the cavity by modifying the insert. The draft angles on all faces

(except for that of the large quartz face, which has no draft) are also determined

by the insert. The insert makes the optical access mold a modular design that can

easily be adapted for different melt flow experiments. The insert was steam treated

to give it a uniform blue-black finish, improving the image contrast of the PIV digital

movies.

The mold was constructed from a DME mild tool steel mold base.

2.6 Image Capture

The imaging system consists of the following elements:

• Pulnix TM-9701 CCD camera

• PC with a Coreco Dig-SE frame grabber running Io Industries VideoSavant

v3.0 software

• HP8116A Pulse/Function Generator

• Spectra-Physics Quanta-Ray Nd:YAG laser with sheet-producing optics

2.6.1 The Pulnix TM-9701 CCD camera

The Pulnix camera has a 30 Hz frame rate and was run in non-interlace mode to

better freeze the particle motion. The camera provides 8 bit gray scale 640 pixels by

480 pixels images which are transmitted to the PC by a digital cable. The camera

specifications can be found in Table 2.6.

The camera was modified to output a vertical sync signal through one of the pins

on its power connection. This signal is used to trigger the HP pulse generator. The
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Table 2.6: Specifications of the Pulnix TM-9701 progressive scanning full frame shut-
ter camera

Imager 2/3” progressive scanning interline transfer CCD
Pixels 768 (H) × 484 (V)
Cell size 11.6µm× 13.6µm
Scanning 525 lines 30 Hz or 60 Hz 2:1 interlace
Resolution 8 bits (256 gray levels)
S/N ratio 50 dB min.
Min. illumination 1.0 lux, f=1.4
Gamma 1.0

pulse generator then sends a pulse train to the Spectra-Physics laser, specifically

tailored to the laser’s input sync requirements.

The camera was set to free-running mode with an open shutter. During an

experiment the room lights are extinguished. Each time a new image frame was

started the vertical sync pulse triggered the laser to fire. The laser fired in a quick

burst, freezing the particle motion without need of shuttering the camera. Each

image frame corresponded to a single pulse of laser light.

2.6.2 Calibration of the Pulnix-TM9701 Camera

All image systems suffer from distortion of one form or another. The distortion

inherent in the digital images taken by the TM-9701 camera was compensated using

a MATLAB software package written by Jean-Yves Bouguet [72].

A checkerboard pattern image target was used to calibrate the camera. The

target consisted of alternating black and white 5mm squares. It was placed in the

mold cavity in six different orientations as shown in Figure 2.16.

When the target was in place the mold was closed and a halogen lamp placed

atop the mold directly above the light path. The safety gate was then closed and

an image taken with the TM-9701 camera. Note that since the window is present
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Figure 2.16: Calibrating the Pulnix-TM9701 camera with a checkerboard target.

and the safety gate is shut that all of the light-transmitting elements used to make

digital movies of the melt flow are in place during the calibration.

The images were then processed by the Matlab calibration package. The calibra-

tion program located the corners of each square in the checkerboard pattern of the

calibration images. The orientation of the checkerboards was then calculated and a

sixth-order image distortion model was created. An example of the complete distor-

tion model of the TM-9701 camera is shown in Figure 2.17. The radial component

of the distortion model is shown in Figure 2.18 and the tangential component of the

distortion model is shown in Figure 2.19.

Once the distortion model was calculated it was used to undistort the individual

frames of the melt-flow movies. This step was performed prior to any other image

processing. The distortion model did not correct for non-square pixels but it did

provide a measurement of the pixel aspect ratio. That measurement was used to

correct for non-square pixels after the PIV and melt front image processing had been
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Figure 2.17: The complete distortion field of the Pulnix 9701 CCD camera

completed.

As an example, a raw image frame is shown in Figure 2.20. The result of running

the undistortion program on this image is shown in Figure 2.21. These two images are

hard to distinguish with the naked eye, but there are differences. These differences

are illustrated in Figure 2.22, which shows the result of subtracting the undistorted

image in Figure 2.21 from the raw image shown in Figure 2.20.

2.6.3 The Spectra-Physics Nd:YAG laser

A Spectra-Physics GCR-130-030 Nd:YAG laser was used. The laser produced a

2.8W beam of 532 nm coherent light. As described below, the laser was pulsed at

the Pulnix TM-9701’s frame rate of 30 Hz resulting in an energy discharge of 93

mJ/pulse. The laser was positioned on the floor in front of the injection molding

machine at right angles to it. The laser was targeted at the open area underneath the
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Figure 2.18: The radial component of the distortion field of the Pulnix 9701 CCD
camera

Figure 2.19: The tangential component of the distortion field of the Pulnix 9701
CCD camera
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Figure 2.20: A typical raw image frame taken by the Pulnix 9701 CCD camera

Figure 2.21: The result of running the undistortion program on the image in Fig-
ure 2.20
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Figure 2.22: The result of subtracting the undistorted image shown in Figure 2.21
from the raw image shown in Figure 2.20
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mold. The beam was redirected upward by a right-angle prism and was then focused

by a convex lens fixed to a translation stage, allowing the beam to be steered as well

as focused. The beam was then intercepted by a plano-concave lens, spreading the

beam into a 1 mm thick sheet. The sheet entered the bottom of the optical access

mold and exited through the top, illuminating the mold cavity. The sheet-forming

optics were all mounted to an optical rail which was supported by a post fixed to a

heavy base. The base was not in contact with the injection molding machine, and the

molding machine was mounted on isolation pads. This minimized the transmission

of vibrations to the sheet-producing optics.

The camera was mounted on a tripod placed between the laser and the injection

molding machine. The camera was fixed to a two-axis tilt table, allowing for fine

correction of the camera angle with respect to the mold cavity. A 28mm Nikon

lens is used, to which is attached an adjustable red gel filter. The filter extended

only part way into the field of view and could be rotated freely with respect to the

camera. This allowed the filter to be used as a user-controlled glare shield that could

be targeted at any of the cavity edges simply by rotating the filter.

The images were transmitted digitally to the frame grabber and were captured

and displayed using the VideoSavant software. The images are then stored to the

hard drive for subsequent analysis.

2.7 In-Mold Pressure Measurements

The melt pressure in the cavity was measured at the gate on the 109.5 mm × 6.3

mm face of the part formed by the stationary half of the mold. A D-M-E SS-405C 500

lb. slide sensor was used in conjunction with a D-M-E IPC-01-01 Pressure Control

Unit. The load cell was mounted beneath a 3.175 mm diameter pin. The recorded
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Figure 2.23: Schematic of the steel face of the mold cavity showing the in-mold sen-
sors. One pressure sensor is located at the gate on a perpendicular wall
and the other is located as shown here. The in-mold thermocouple is
located as shown. The thermocouple is 6mm below the cavity surface.
All dimensions are in millimeters.

load was divided by the area of the pin face to get the melt pressure.

The pin face was flush with the mold surface to avoid the hole pressure effect [73].

The placement of the sensor on the side face of the part keeps the sensor from being

directly impacted by the plastic as it exits the gate.

An Omega LCGC series 1 kg load cell was located on the large face of the mold

cavity as shown in Figure 2.23. This load cell was also located beneath a 3.175 mm

pin whose face was flush with the mold surface. The sensor was mounted in the

removable mold insert and was powered by an HP E3611A DC Power Supply.

The signals from both load cells were conditioned and amplified by a Krohn-Hite

Model 3362 low-pass/high-pass 4-pole Butterworth/Bessel filter. The Model 3362
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was configured as a low-pass Butterworth filter with a 20 Hz frequency cut-off and

provided the D-M-E sensor with 20 dB of input gain and the Omega sensor with 40

dB of input gain.

The conditioned and amplified signals were then routed to a Data Translation

DT301 data acquisition board. This board was chosen for its compatibility with

VideoSavant. VideoSavant recorded the pressure signals simultaneously with the

melt flow images, sychronizing the pressure data to the image data.

A calibration curve of the system consisting of the Omega LCGC load cell, the

Krohn-Hite filter and the DT301 data acquisition board is shown in Figure 2.24.

The sensor near the gate produced readings during the filling stage that were

suspiciously low compared to values predicted by Moldflow. Since this sensor has

a maximum pressure input of 61 MPa and the pressures recorded during the filling

stage are on the order of 0.5 MPa it was possible that the sensor was not accurate

in this range. To test this theory the mold was pressure tested. Aluminum blocks

replaced the glass in the windows. A pressure line was tapped into the cavity and the

line was connected to a cylinder of compressed nitrogen. The mold cavity was filled

with a viscous grease and the mold was then sealed with RTV. The tank pressure

regulator was used to vary the pressure from 0-0.6 MPa and the output of the sensor

was recorded.

The result of this experiment is shown in Figure 2.25. The sensor is inaccurate

at pressures below 0.6 MPa. This could be due to a number of factors. The pressure

test of the mold was designed to mimic actual operating conditions. The sensor is

housed in a slot in the stationary half of the mold. The sensor sits beneath the head

of a mold pin, with the other end of the pin flush to the mold surface. When the

mold closes the area around the sensor is subjected to clamp forces, and these forces
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Figure 2.24: Calibration curve of the system consisting of the Omega LCGC load
cell, the Krohn-Hite filter and the DT301 data acquisition card. The
error on the output voltage is ± 3mV.
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may interfere with the sensor reading. The hole around the mold pin may also distort

slightly, causing the pin to bind, or perhaps Coulomb friction is a factor. Sensitivity

and dynamic range may have also played a role. The sensor was designed to read

pressures as high as 61 MPa, and the filling pressures were under 1 MPa.

A correction factor was calculated, defined as the ratio of the imposed pressure

to the pressure recorded by the sensor at the gate. The sensor was found to be

inaccurate at low pressures, with the correction factor approaching a plateau of 1.6.

This scaling factor curve was applied to measurements made during the filling stage.

The sensor proved accurate at high pressures, and so no scaling factor was applied

during the packing phase.

2.8 Mold Temperature Measurement

The mold temperature was monitored with an insulated T-type thermocouple.

The thermocouple was mounted 6 mm below the surface of the large mold face formed

by the mold insert. The thermocouple mounting hole was in the insert. A second

thermocouple was used to monitor the ambient air temperature.

2.9 Residual Strain Measurements

Birefringence measurements were made using a Vishay Model 080 Polariscope

as shown in Figure 2.27. The polariscope uses white light that can be transformed

into either plane or circularly polarized light. The circular polarizers are designed

for a wavelength of 575 nm, producing a sharp red-purple tint of passage at the

first fringe order. The polariscope was outfitted with an optional Vishay Model

084A monochramator as shown in Figure 2.28. The monochramator is a narrow-

band interferential filter with a 10 nm bandpass at the same 575 nm tint of passage
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Figure 2.25: Calibration of the gate pressure sensor at a low pressure range. The
calibration curve shows that the sensor is inaccurate at low pressures.
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Figure 2.26: Correction factor for the gate pressure sensor at a low pressure range.
The correction factor was defined as the imposed pressure divided by
the pressure sensor reading. The scaling factor reaches a plateau value
of 1.6.
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Figure 2.27: The Vishay Model 080 Teaching Polariscope. The polariscope uses an
overhead projector as a white light source.

wavelength. When in use it converts the multicolored fringes into monochromatic

ones, the same that you would see if a monochromatic 575 nm light source was used

in the polariscope instead of white light. Specimens rested on a Vishay Model 083

stress-free transparent support stage and fringe measurements were made using a

Vishay Model 285 manual null balance compensator. The stress-free support stage

and the compensator are also shown in Figure 2.28. All residual strain measurements

were made following the procedure described in ASTM 4093 [74].

A plane polarized strain viewer was also used for calibration purposes. The

circular polarizers were removed from the Vishay Model 080 Polariscope and were

mounted in the proper orientations and positions on the plane polarized strain viewer.

This created a circularly polarized strain viewer that could easily be placed on its



62

Figure 2.28: Auxiliary test equipment for the Vishay Model 080 polariscope. From
top to bottom: Vishay Model 285 null-balance compensator, Vishay
Model 84A monochromator, Vishay Model 083 stress-free support stage.

Figure 2.29: Measuring the stress-optic coefficient of Styron 615APR. The specimen
is placed in an Instron 8516 tensile test machine and is viewed with a
circularly polarized stress viewer. The fringe order is measured using a
Vishay Model 285 null balance compensator (not shown).
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side for calibration purposes.

The stress-optic coefficient for Styron 615APR was measured using this circularly

polarized strain viewer and an Instron 8516 tensile test machine. Rectangular test

specimens were molded on an Arburg M60 All-Rounder injection molding machine.

The specimens were then annealed in a Stabil-Therm constant temperature cabinet

for 24 hours at 90◦ C. The specimen width and thickness were constrained in the

cabinet. The length was left unconstrained, allowing the parts to shrink with the

annealing process but preventing them from warping.

The specimen cross-section dimensions were then measured with calipers and the

specimen was then mounted in the Instron 8516. The circularly polarized strain

viewer was then placed on its side with the circular polarizers on either side of the

specimen as shown in Figure 2.29. A preload was placed on the specimen until the

gage length appeared black in the strain viewer. This preload was recorded as a load

offset to be subtracted from subsequent load readings. The load was then increased

incrementally and the Vishay 285 null balance compensator was used to measure the

fringe order at each load.

In this test the specimen experienced uniaxial tension along its length, making

that direction a principal direction. The stress in the perpendicular direction was

zero, making the measured uniaxial stress equal to the principal stress difference.

The results of these tests were then plotted as fringe order vs. stress. An example

curve is given in Figure 2.30, where it is evident that the assumption of a linear

relationship between applied stress and measured fringe order is valid. The slope of

the best fit line, call it m, is equal to the ratio of the fringe order to the principal

stress difference. Equation 2.1 can then be rewritten as:

c =
λ

h
m (2.27)
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Figure 2.30: Plot of the results of one of the birefringence calibration tests. Known
stresses are placed on the sample and the resulting fringe order is mea-
sured with a null balance compensator. The thickness of the specimen
was 3.5 mm and the fringe order was based on a reference wavelength
of 575 nm.

where c is the stress-optic coefficient, h is the part thickness, λ is the design wave-

length of the polariscope and m is the slope of the fringe order vs. stress curve. The

design wavelength of the Model 080 polariscope is 575 nm.

This test was repeated eleven times using specimens that were molded at the high

and low values of the melt temperatures and injection rates used to make the plaques

in the optical access mold. The results of each test were plotted and the slope of the

best-fit line was calculated. The stress-optic coefficient was then calculated for each

sample using Equation 2.27 and the resulting distribution was used to estimate c.

The value of c was found to be 8.0 ± 0.6 Br.

Tabulated values of the stress-optic coefficient c are difficult to find. Tabulated

values of c for STYRON 615 APR at a wavelength of 575 nm are even more elusive.
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A comparison to tabulated values of c can only be made in a general sense since

tabulated values are typically listed only for generic polystyrene in the glassy state

with no mention of the wavelength of light used to make the measurement. Tabulated

values of c for solid polystyrene range from 5 Br [75] to 10.7 Br [76]. Wimberger [77]

collected previously published results and gave c a range from 6-10 Br. The mean

measured value of 8.0 Br falls comfortably within these tabulated values.



CHAPTER 3

On the use of PIV in Polymer Melts

Injection molding involves the unsteady, non-isothermal flow of a shear-thinning,

viscoelastic liquid under high temperatures and pressures. In the current study the

nominal melt pressures in the barrel of the molding machine are as high as 10,000 psi,

and as high as 3000 psi in the mold cavity during packing. Nominal temperatures

were as high as 245◦ C. The fluid has a free surface and is solidifying as it flows. This

poses technical challenges to experimentalists interested in the application of PIV

to the flow of polymer melts, and poses analytical challenges to theoreticians and

programmers interested in modelling such a flow. Fortunately, some of the aspects of

polymer melt flow offer benefits not enjoyed by Newtonian PIV researchers, and some

of the difficulties they face do not apply to PIV in polymer melts. The purpose of

this chapter is to examine both the positive and negative factors involved in applying

PIV to polymer melt flows.

3.1 Injection Molding Flow Characteristics

Injection molding flow has distinguishing characteristics that are common to

nearly all molding flows. The characteristics that will be considered here were chosen

because they all affect the design and setup of a PIV experiment in a polymer melt.

66
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3.1.1 High Viscosity

A major benefit of PIV in polymer melts is the fact that polymers are orders

of magnitude more viscous than typical Newtonian liquids such as air, water and

lubricating oils. The Reynolds number of a polymer melt flow is be many orders of

magnitude smaller than typically encountered in Newtonian PIV experiments.

To estimate a typical Reynolds number for the polymer melt flow in the present

work, take a reference length equal to the cavity thickness h and define a character-

istic velocity using the cavity length and the fill time Tf . This gives the following

expression for the Reynolds number:

Re =
ρh2

ηTf

(3.1)

Using h = 6.4 mm, Tf= 1 s, ρ = 1050 kg/m3 and η = 300 Pa·s gives a Reynolds

number of 1.4×10−4.

Many of the spatial and temporal resolution issues that face Newtonian PIV

experimenters are avoided because of the extremely low Reynolds number of polymer

melt flows. For example, the flow is smooth, turbulence is not an issue, and large

dense particles can be used without loss of tracking accuracy. This makes the flow of

polymer melts particularly well-suited to digital implementations of PIV. As Willert

and Gharib [40] point out, the current technological limitations on the image size

and frame rate of CCD cameras limits the application of DPIV to moderate speed

flows. But this statement is somewhat biased towards low-viscosity Newtonian fluids.

It would be better to say that technological limitations currently limit DPIV to

low Reynolds number flows. The viscosity of polymer melts is so high that higher

velocities can be tolerated without transitioning into turbulence.

The high viscosity of polymers has its disadvantages as well. It takes large pres-
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sure differences to pump highly viscous fluids and the melt pressure in the cavity is

on the order of tens of megapascals during the packing phase. Since injection molds

are not typically transparent a window system must be designed that can withstand

these high pressures if it is to be used to study mold packing as well as mold filling.

3.1.2 Flat Velocity Profile

Polymer melts are typically shear-thinning liquids. Their viscosity as a function

of strain rate can be described by a number of constitutive models. The simplest is

the power law model:

η = mγ̇n−1 (3.2)

where η is the viscosity, n is the power-law exponent, m is the power-law coefficient,

and γ̇ is the shear rate. For a Newtonian liquid, n = 1 and m is the viscosity.

Departures from Newtonian behavior can be gauged by n. If n < 1, the fluid is

shear-thinning. The shear-thinning index of the polystyrene used in this study is

0.42.

A more accurate model of polymer behavior is the Carreau model, a good descrip-

tion of which can be found in Bird [63]. This model includes a zero-shear viscosity

and represents the low shear-rate behavior of polymer melts more accurately than

the power law model:

η = η0[1 + (τ γ̇)2]
n−1

2 (3.3)

where η0 is the zero-shear viscosity, τ is a time constant, n is the power law exponent

and γ̇ is the shear rate. For high shear rates (τ γ̇)2 � 1 and the Carreau model reduces

to the power law model.

Injection molded parts are typically designed with the thinnest possible thick-

nesses, on the order of a few millimeters. This means that injection molding flow is
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a pressure-driven flow that takes place in a thin channel. Given the high viscosity

of polymer melts large pressure drops are needed to produce this flow. The regions

of the flow near the cavity walls experience the highest shear stress while the region

near the midplane experiences very little shear. For shear-thinning polymers this

creates zones of low-viscosity melt near the walls and a zone of high viscosity melt

in the center, leading to a plug-flow velocity profile instead of the parabolic profile

expected with a Newtonian flow.

The velocity profile of the Poiseuille flow of a power-law fluid in a channel of

width 2B is derived in Section C.1. The profile is given by:

u = umax

(
1−

∣∣∣ y
B

∣∣∣n+1
n

)
(3.4)

This profile is plotted in Figure 3.1 for a polystyrene with an index of 0.42 and

for a Newtonian fluid with an index of 1.0. The profile of the channel flow using a

Carreau model of polystyrene is also superposed. This profile was calculated using

Carreau model curve fit shown in Figure 2.3. The pressure gradient for the flow was

-8.0 MPa/m, a gradient that gives centerline velocities comparable to those observed

in the optical access mold with a volume flow rate of 34.0 cm3/s.

This broad, flat velocity profile is a boon for PIV work in polymer melts. The

goal of the work presented here was to measure the velocities at the midplane of the

mold cavity. The plug-flow velocity profile is much more forgiving to errors in laser

sheet thickness and centering than a parabolic profile would be. The flow velocity is

nearly uniform over a broad region at the center of the mold.

An estimate of velocity bias errors due to sheet thickness and sheet offset can be

calculated using the velocity profile given by Equation 3.4. Given a laser sheet with

width 2h in a channel of width 2B and walls at y = ±B. The sheet is parallel to the
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Figure 3.1: Fully developed non-dimensionalized velocity profiles for a shear-thinning
liquid and a Newtonian liquid in a channel of width 2B. The Carreau
model parameters are η0 = 295.43 Pa·s , λ = 0.0193 s, and n = 0.42.
The power law exponent is n = 0.42.

walls and has a centerline at y = y0. The average velocity encompassed by the sheet

is given by:

ū =
umax

2h

∫ y0+h

y0−h

(
1−

∣∣∣ y
B

∣∣∣n+1
n

)
dy (3.5)

Since the flow front is symmetric we can assume that the offset error is positive

without loss of generality. The analysis will also be limited to those laser sheets that

encompass the cavity centerline. These two conditions can be expressed as:

y0 > 0 (3.6)

y0 − h < 0 (3.7)

Care must be taken when carrying out the integration in Equation 3.5 because

of the absolute values involved. Due to the conditions listed above the limits of

integration bracket zero and the argument of the absolute value will change sign
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during the integration. The integral must be done in pieces:

ū

umax

=
1

2h

∫ 0

y0−h

(
1−

∣∣∣ y
B

∣∣∣n+1
n

)
dy +

1

2h

∫ y0+h

0

(
1−

∣∣∣ y
B

∣∣∣n+1
n

)
dy

=
1

2h

∫ h−y0

0

(
1−

∣∣∣ y
B

∣∣∣n+1
n

)
dy +

1

2h

∫ y0+h

0

(
1−

∣∣∣ y
B

∣∣∣n+1
n

)
dy (3.8)

= 1− n

2n+ 1

B

2h

((
h− y0

B

) 2n+1
n

+

(
y0 + h

B

) 2n+1
n

)
(3.9)

Let ε∗0 be the offset error normalized by the channel half-thickness B, and let h∗

be the sheet thickness normalized by the cavity thickness. Then:

ū

umax

= 1− n

2n+ 1

B

2h

[
(h∗ − ε∗0)

2n+1
n + (ε∗0 + h∗)

2n+1
n

]
(3.10)

Define a measure of the velocity bias error u∗err as the negative of the percentage

difference between umax and ū:

u∗err(%) = 100× umax − ū

umax

= 100× n

2n+ 1

B

2h

[
(h∗ − ε∗0)

2n+1
n + (ε∗0 + h∗)

2n+1
n

]
(3.11)

Figure 3.2 shows superposed contour plots of Equation 3.11 for polystyrene with

n = 0.42 and a Newtonian fluid with n = 1. The shear-thinning fluid is much less

sensitive than the Newtonian fluid to sheet thickness and offset errors. Combinations

of laser sheet thickness and offset that would lead to 5% velocity bias errors in a

Newtonian fluid give less than an 1.6% velocity bias error in the polystyrene.

These bias errors can be considered as upper and lower bounds on the bias errors

in the present work. As shown in Figure 3.1, the Carreau model predicts a velocity

profile that falls between the Newtonian and power-law profiles. Unlike the Newto-

nian and power-law profiles, the shape of the Carreau profile is not self-similar at

different flow rates. High pressure gradients push the profile toward the power-law

limit and low flow rates push the profile toward the Newtonain limit. Therefore the
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Figure 3.2: Contours of percent velocity bias error as a function of sheet thick-
ness/cavity thickness and sheet offset/cavity half-thickness for a shear-
thinning fluid with power law exponent of 0.42–+ and a Newtonian fluid.
A sheet in a Newtonian fluid with a velocity bias error of 5% has an error
of only 1% in the shear-thinning fluid. A sheet in a Newtonian fluid with
a velocity bias error of 10% has less than a 3.5% velocity bias error in
the shear-thinning fluid.

actual bias error will be a function of the flow rate for Carreau model fluids. A

practical result of this observation for PIV experimentation is that the bias error

becomes smaller at higher flow rates.

3.1.3 Fountain Flow

The flow of a polymer melt into a cavity is essentially a fountain flow, see Fig-

ure 3.3. As the mold fills there must be a flow front, a boundary between the polymer

melt and the air in the cavity. The polymer melt flows from the gate toward the
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Figure 3.3: Streamlines for fountain flow in a frame of reference traveling with the
stagnation point ‘A’. The flow in the center of the channel reaches a
stagnation point at the front and is redirected to the walls, causing out-
of-plane motion near the front.

front in the middle portion of the cavity, the velocity vectors remaining parallel to

the cavity walls. As the flow reaches the front it is redirected like a fountain toward

the cavity walls. The polymer solidifies rapidly once it has made contact with the

wall

The fountain flow effect has an impact on PIV in polymer melts. In the neigh-

borhood of the front it cannot be guaranteed that the particles are moving in the

midplane of the mold. Therefore PIV results very close to the front are suspect.

The fountain flow causes other problems as well. The strong curvature of the flow

front through the thickness direction acts as a lens and can cause glare at the flow

front. Fortunately these two problems, out-of-plane motion and glare, are confined

to the same region of the image.

3.1.4 Moving Flow Front

Injection molding flows have a moving flow front during the filling stage. The

front not only moves but it also changes shape as the polymer melt fills the cavity.

The flow front is a polymer-air interface whose curvature affects the transmission
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of light. Transparent polymers have indices of refraction ranging from 1.495-1.60[78].

The polystyrene used in this work has an index of 1.59. This means the polystyrene-

air interface has a critical angle θc of 38.97◦ [79]. Total internal reflection occurs if

the incident angle of the laser sheet on the interface is greater that θc and partial

reflection occurs for angles less than θc. This leads to uneven illumination of the

polymer melt.

Total internal reflection can occur when the laser sheet impinges on the interface

from the air or from the polymer melt. Figure 3.4 illustrates both problems. In the

region labeled A the curvature of the flow front prevents the penetration of the laser

sheet. This creates a dead zone in which the particles are under-illuminated. In

the region labeled B the curvature of the front reflects the laser light back into the

polymer melt, creating a saturated zone in which the particles are over-illuminated.

This over-illumination places a limit on the laser power during this portion of the

mold filling. If the laser power is too high this region oversaturates. If the laser

power is set low enough to avoid oversaturation in this region then the rest of the

polymer melt will be under-illuminated.

When the polymer melt contacts the far wall the dead zone issue disappears,

but the internal reflection problem due to the flow front intensifies. During the

transition from radial flow to channel flow the flow front changes shape rapidly and

the reflected laser light sweeps through the area behind the front like a searchlight,

see Figure 3.5. This means that illumination of individual particles in this region

may change radically from movie frame to movie frame, causing problems for the

PIV cross-correlation. The rapid transition from radial flow to channel flow may

also cause the non-spherical aluminum flakes to rotate, changing their illumination

and also causing potential PIV problems.
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Figure 3.4: Uneven illumination due to total internal reflection. In the portion of
the image labeled A the laser sheet is reflected from the interface and
fails to illuminate particles in the polymer melt. In the portion of the
image labeled B the laser sheet is reflected back into the polymer melt
causing the region behind the front to be over-illuminated.

Figure 3.5: Uneven illumination due to total internal reflection. In this portion of
the mold filling the front changes shape rapidly and the reflected laser
light sweeps through the area behind the front like a searchlight.
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3.1.5 Effects of Strong Radial Flow

Cross-correlation is the heart of PIV analysis. An interrogation window is placed

on an image and is cross-correlated with a window on the succeeding image. The

second window is moved about systematically and a cross-correlation is performed

at each new location. The correlation will have a local maximum when particles

in the first window match particles in the second. The amount of displacement ~d

between the two windows and the time difference between the two frames are used

to determine the local velocity at the location of the first window:

~u =
~d

M∆t
(3.12)

where M is a scale factor with units of pixels/length.

If the particles from the first window cannot be found in the second window, or if

the particles from the first window correlate with the wrong particles in the second

window the method will fail. This leads to difficulties if the underlying flow field has

a strong radial character.

Raffel [39] points out that the cross-correlation analysis assumes that all the

particles in an interrogation window experience a constant displacement ~d. Particles

with initial positions ~xi in the first image will be found at ~xi + ~d in the second.

This maximizes the correlation peak. Small variations in the velocity vector among

particles in the same interrogation window will lead to a lower, but still identifiable,

cross-correlation peak. This leads to a trade-off in window size selection. Large

windows contain more particles to correlate, small windows have particles with more

uniform velocities.

In a radial flow, though, none of the particles in an interrogation window have

identical velocity vectors no matter how small the window. Each particle has a
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velocity component that causes it to separate from its neighbors. This velocity

component gets stronger the closer the particles are to the origin of the radial flow.

Since the displacement of particles is not constant for any interrogation window near

the gate, there will be a zone around the gate in which PIV will fail. Techniques such

as super-resolution PIV [80] might succeed if the individual particles can be tracked,

but standard PIV methods will fail.

To estimate the severity of this problem assume that two particles of diameter dp

in a radial flow are separated by a distance x as shown in Figure 3.6. The particles

are both at a distance R from a volume source Q in a channel of width 2B. The

particles subtend an angle 2θ from the source. The velocity of the particles is given

by:

ur =
Q

4πRB
êr (3.13)

During the time ∆t the particle separation increases to x+∆x but the angle θ stays

constant:

sin θ =
x

2R
=

x+ ∆x

2(R + ur∆t)
(3.14)

Solving for ∆x gives

∆x =
Q∆t

4πR2B
x (3.15)

Imagine that a cross-correlation is performed with the original particles separated

by x in the first frame and the with the particles separated by x+ ∆x in the second

frame. The cross-correlation will fail when the the increased separation ∆x is greater

than or equal to the particle diameter dp. This will happen at a critical radius Rc:

Rc ≤

√
Qx∆t

4πdpB
(3.16)

To estimate Rc take the average initial particle separation to be equal to half

the length of the interrogation window. Given an interrogation window of N × N
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Figure 3.6: Particles in a radial flow with source strength Q and initial separation
x. The particles are at a distance R from Q and subtend an angle of 2θ.

pixels and a magnification factor of M pixels per unit of length the average initial

separation is equal to N/2M :

Rc ≤

√
QN∆t

8MπdpB
(3.17)

For the present work the maximum flow rate is 34.5 cm3/s, the particle equivalent

spherical diameter is 60µm(see Section 3.2.3), ∆t is 1/30 second, w is 6.3 mm and

the magnification factor M is 5.2 pixels/mm. This gives a maximum critical radius

of 38.6 mm. Particles within this radius will separate from each other by a distance

greater than the particle diameter between movie frames. Standard PIV techniques

will be unreliable or fail altogether in this region. Table 3.1 lists the critical radii for

the flow rates and geometry used in the present work.

3.1.6 Effects of Extensional Flow

The present work did not involve an extensional flow, but extensional flows are

often studied by non-Newtonian flow researchers. The argument of Section 3.1.5
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Table 3.1: Critical radius Rc for the flow rates and geometry used in the present
work. PIV will fail at points whose radial distance from the gate is less
than Rc.

Flow rate (cm3/s) Rc (mm)
11.5 22.3
17.3 27.3
23.0 31.5
34.5 38.6

can also be applied to the use of PIV in extensional flows. The basic argument of

Section 3.1.5 is that PIV will fail if particles in the interrogation volume separate

from each other more than a particle diameter between image frames. In such a case

the cross-correlation will fail. In an extensional flow the effect would be much more

severe. Two particles separated by a distance x0 in the direction of the extensional

flow will separate exponentially fast [63]:

x = x0e
ε̇∆t (3.18)

where x is the new particle separation and ε̇ is the extensional strain rate of the flow.

The particles separate much faster than in a radial flow and, even worse, the

effect is uniform over the entire flow field. The change in particle separation over the

time ∆t is given by

∆x = x0(e
ε̇∆t − 1) (3.19)

PIV will fail when ∆x > d. This means that instead of a critical radius as was

seen radial flow, there is a critical particle separation. For PIV to succeed we must

have

x0 <
d

eε̇∆t − 1
(3.20)

This analysis can be taken further. The minimum particle separation, assuming
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no overlap in the images, is d itself. Setting x0 equal to d results in

ε̇∆t ≤ ln 2 (3.21)

This can be used to calculate the maximum strain rate that can be resolved for a

given camera frame rate f . Taking f = 1/∆t:

ε̇max = f ln 2 (3.22)

This is a much more severe condition than that imposed by radial flow. Radial

flow imposes a dead-zone radius around the source that is dependent on the flow

rate and the frame rate of the camera. Extensional flow imposes a restriction on

the entire field, and the maximum extension rate of the experiment as a whole is

dictated by the frame rate of the camera.

3.1.7 Non-Isothermal Flow

Polymer melt flow is non-isothermal by its very nature. This causes unavoidable

problems for PIV analysis because the index of refraction of a polymer is a function

of its temperature. That means that the sheet thickness can vary with position in

the melt. This is mitigated by the broad, flat velocity profile of the shear-thinning

melt as shown in Figure 3.1.

3.2 Particle Selection

PIV calculates the Lagrangian velocity of particles at a point and equates it to the

Eulerian velocity of the fluid at that point. The only way this can produce accurate

results is if the particle motion tracks the fluid motion. The particles also need to

be well mixed in the fluid and easily visible.
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3.2.1 Practical Issues

There are many practical issues in particle selection for polymer melt PIV that

are not found in standard PIV experiments. Most of these issues stem from the fact

that the PIV particles are introduced to the polymer while it is in the solid state.

The solid polymer pellets and the PIV particles are weighed separately and are

coarsely mixed together outside of the molding machine. Then the mixture is poured

into the hopper. The screw then plasticizes the pellets and simultaneously mixes the

PIV particles with the melt. Fortunately most injection screws are designed to

promote good mixing. There were no issues in the present work with poor particle

distribution in the melt. The difficulty lies in the fact that melting the polymer pellets

through screw action is a high shear operation. Many of the particles typically used

in PIV experiments will not survive the polymer melting process.

Many sizes and types of particles were tried and discarded. The first particles

tried were those used in conventional Newtonian PIV work. Hollow glass spheres

ranging from 50 µm to 100 µm were tested first, both silvered and not silvered. These

particles were bright enough, but tended to be pulverized by the mixing action of the

screw. Fluorescent particles were tried as well, with the same result. Glitter flakes

were also tried, but they also failed to survive the passage through the screw.

The high viscosity of polymer melts allows heavy particles to be used without

sacrificing tracking accuracy, as described in Section 2.2. Various metal particles

were tried. Aluminum flakes were tried first. These survived the passage through

the screw and were bright enough, but they were not symmetric and the literature on

the dynamics of their interaction with the surrounding polymer is scanty. Aluminum

oxide powder was then tried, but the diameter control, general shape and reflectance

were not satisfactory.
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Atomized copper spheres were then tried. These particles did not have the ori-

entation problems experienced by the aluminum flakes, but the reflectance from the

copper surface was mediocre. Atomized aluminum spheres were tried next. These

particles also survived the passage through the screw and had higher reflectance than

the copper particles, but were still not reflective enough to give good PIV images.

In the end the aluminum flakes were selected for their superior reflectance. Even

though spherical particles would have been preferred the flakes were the only particles

that resulted in adequate PIV images. The flakes used were precision-cut squares

0.004” on a side with a thickness of 0.0005”. Further details about the specifications

of these particles can be found in Section 2.2.

3.2.2 Particle Interactions

Particle suspensions in Newtonian fluids can behave like non-Newtonian fluids.

As Kamal [81] points out, suspensions of particles in Newtonian fluids can exhibit

yield stresses, time and/or strain dependent properties, shear thinning or thickening,

and normal stresses. These phenomenon are due to structures generated by particle-

particle interactions. The interaction of these structures with the surrounding flow

leads to non-Newtonian effects. Polymer PIV experiments should be designed to

reduce these non-Newtonian effects so that they will not be intertwined with genuine

non-Newtonian effects of the base fluid.

Fortunately, this is easily done in a polymer melt PIV experiment. The seeding

density is quite low, typically 0.02% by weight. The strength and amount of particle

interaction increase with the seeding density, so low seeding densities minimize these

effects. The high viscosity of polymer melts also helps achieve this goal. As pointed

out by Metzner [82], when fluid phase viscosity exceeds about 100 Pa·s there is usually
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no evidence of interparticle effects. The polystyrene melts in this work had zero-shear

viscosities of near 300 Pa·s , so particle interactions are likely to be inhibited.

3.2.3 The Equivalent Spherical Diameter

In order to speculate on the ability of the particles to track the non-Newtonian

flow an equivalent spherical diameter must be chosen. Two choices of equivalent

spherical diameters that are applicable have been described by Jennings [83]. One

choice of equivalent spherical diameter is obtained by calculating the diameter of a

sphere with a volume equal that of the square flake. For a square flake with side s

and thickness t the equivalent volume diameter dv is given by:

dv =

(
6s2t

π

) 1
3

(3.23)

For the particles used in this work dv= 63µm.

Another choice of equivalent spherical diameter is the Stokes diameter. The

Stokes diameter is the diameter of a sphere that sediments at the same rate as the

non-spherical particle. This choice of diameter seems particularly appropriate for a

discussion of PIV analysis. For a disc-like particle with diameter δ and diameter-to-

thickness ratio ρ Jennings [83] gives the following expression for the Stokes diameter

ds:

ds = δ

√
3

2ρ
tan−1 ρ (3.24)

Using the planiform area of the square particle to calculate an equivalent disk diam-

eter δ gives ds=60 µm.

These two equivalent diameters are in good agreement. For the purposes of this

chapter ds will be used as an equivalent spherical diameter.
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3.2.4 Flow Tracking Accuracy

The standard measure of the ability of a particle to assume the velocity of the

local flow field is that the Stokes number St be much less than unity [84]:

St =
τv
τf
� 1 (3.25)

where τf is a characteristic time of the fluid and τv is the momentum response time

defined as:

τv =
d2

pρp

18µf

(3.26)

Taking the fill time Tf as a characteristic time of the flow gives the following expres-

sion for the Stokes number:

St =
d2

pρp

18µfTf

(3.27)

where dp is the particle diameter, ρp is the particle density, and µf is the dynamic

viscosity of the fluid. The density of aluminum is 2700 kg/m3 and the density of

polystyrene is 1050 kg/m3[85]. Using the polymer viscosity of 295.4 Pa·s and a

fill time of 1 s gives a Stokes number of 2×10−9. This is much lower than Stokes

numbers found in typical Newtonian PIV experiments. Melling [86] collected data

on the particles used by numerous Newtonian flow PIV studies. The Stokes numbers

of the particles used in these studies ranged from O(10−2) to O(10−1).

Another tracking issue to consider, especially with heavy particles, is the effect

of gravity on particle motion. Raffel et. al. [39] give the following expression for the

slip velocity of a spherical PIV particle:

Vslip = d2 (ρp − ρ)|V̇ |
18η

(3.28)

where V̇ is the particle acceleration and ρ and η are the fluid density and viscosity.

Replacing V̇ with the gravitational acceleration g gives a slip velocity on the order

of 10−8 m/s. Gravitational effects on the particles are negligible.
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These calculations show that metallic particles are quite suitable for PIV in poly-

mer melts. Caution must be used, however, since these calculations are based on the

assumption that the particle experiences Stokes drag in a Newtonian fluid. In poly-

mer melts these assumptions may not apply. The impact of non-Newtonian effects

on the particle drag are explored in the following sections.

3.3 Particle Drag in Non-Newtonian Fluids

To estimate how well the spherical particles track the flow the drag on the parti-

cle from the surrounding liquid must be known. There is a large body of literature

studying drag on spheres in creeping non-Newtonian fluids. Chhabra [87] has pub-

lished an excellent compendium of the relevant research on this topic. He devotes

separate chapters of his book to the drag experienced by a sphere moving in a gener-

alized Newtonian (time-independent) fluid and in a viscoelastic fluid. The same will

be done here. Unfortunately, as Chhabra [87] notes, there is a dearth of experimen-

tal data relating to the non-spherical particle dynamics in non-Newtonian fluids. An

equivalent spherical diameter must be chosen in order to use the current literature

to speculate on the impact of non-Newtonian fluid parameters on PIV analysis.

3.3.1 Particle Drag in Shear-Thinning Fluids

Chhabra [87] claims that the general consensus of available research is that shear-

thinning effects enhance the drag on spherical particles. This is good for PIV in

polymer melts because it decreases the Stokes number. Bush and Phan-Tien [88]

did computational studies of the drag coefficient for spheres in Carreau model fluids

and compared them to the results of Chhabra and Uhlherr [89]. They presented the
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following Stokes drag relation:

FD = 6πη0rV X (3.29)

where FD is the drag force on on a particle of radius r moving with velocity V relative

to a Carreau model fluid with zero-shear viscosity η0. X is a correction factor equal

to the ratio of the actual drag to the drag that would be experienced by a particle

in a Newtonian fluid of viscosity η0:

X =
CDRe0

24
(3.30)

where Re0 is the Reynolds number based on the particle diameter and velocity and

the zero-shear viscosity of the fluid:

Re0 =
V d

η0

(3.31)

They then presented the following functional form of X:

X = (1 + k2Λ2)
n−1

2 (3.32)

where k is a fit parameter. Bush and Phan-Tien [88] present a table of k for various

values of n, but showed that setting k = 0.275 matched a wide range of experimental

data within ±10%. The other parameter in Equation 3.32, Λ, is a dimensionless time

scale known as the Carreau number:

Λ =
2τVslip

dp

(3.33)

where τ is the time constant of the Carreau model of a generalized Newtonian liquid,

dp is the particle diameter and V is the particle velocity relative to the fluid.

To calculate the value of Λ for the present work the velocity Vslip must be esti-

mated. In PIV both the particle and the fluid are moving, so V is the slip velocity
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between the two. By design this slip velocity must be small if the PIV results are to

be accurate. Equation 3.28 can be used to estimate this slip velocity. The shear rate

in the region illuminated by the laser sheet should be very low, and is theoretically

zero at the midplane, so the zero-shear rate viscosity can be used in Equation 3.28.

In order to calculate the slip velocity an estimate of the particle acceleration must

be made. Mass conservation leads us to expect that the radial velocity in the region

of the gate should be inversely proportional to r, and thus the acceleration should

be inversely proportional to r2:

dV

dt
∝ r−2dr

dt
=
V

r2
(3.34)

Examination of the PIV results at the 34.0 cm3/s show velocities of approxi-

mately 20 cm/s at a distance of 3 cm from the gate, giving an estimated acceleration

of 22 m/s2. Using these values and the Stokes diameter ds in Equation 3.28 gives

an estimated slip velocity on the order of 2.5×10−8 m/s. Using this value of the slip

velocity, the particle diameter and the Carreau parameter λ = 0.0193 s in Equa-

tion 3.33 give an estimate of Λ = 1.6×10−5. Using this value in Equation 3.32 with

n = 0.42 gives a correction factor of X=0.999.

This means that the drag experienced by the particle is equal to the drag ex-

perienced by a particle in a Newtonian fluid with viscosity equal to the zero-shear

viscosity. This justifies the use of the zero-shear viscosity in calculating the Stokes

number in Section 2.2.

This result is in accord with the general consensus reported by Chhabra [87] that

shear thinning effects are neutral, or somewhat enhance the Stokes drag. For studies

of power law fluids, the value of X is referenced to the particle drag for a Newtonian



88

fluid at the same effective Reynolds number RePL:

RePL =
ρV 2−n

slip d
n

m
(3.35)

where n and m are the power-law parameters. Bush and Phan-Tien [88] claim that

X is approximately 1.4 for fluids with power-law exponents of 0.2-0.5, representing a

drag enhancement over the Newtonian drag at the same effective Reynolds number.

For the flows in the present work the effective power-law Reynolds number is on the

order of 10−14.

3.3.2 Particle Drag in Viscoelastic Fluids

Viscoelasticity can also affect particle drag. The general consensus as reported

by Chhabra [87] is that viscoelasticity reduces particle drag, but that its effects are

completely overshadowed by shear-thinning effects at low Reynolds numbers. At

high Reynolds numbers the viscoelastic effects can be appreciable. This is apparent

in the following empirical relation by Acharya et. al. [90]:

CDe = CD

[
1− 0.18(RePLWe)0.19

]
(3.36)

where CDe is the drag coefficient in elastic liquids and CD is the drag experienced by

a particle in a Newtonian flow at the effective power-law Reynolds number defined

in Equation 3.35. The Weissenberg number, We, is a measure of the importance of

elastic effects:

We =
τV

r
(3.37)

where τ is a characteristic relaxation time, V is the slip velocity and r is the particle

radius. For the present work the Weissenberg number based on the particle size and

slip velocity is on the order of 10−6.
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This relation shows that even at small Weissenberg numbers there will be a slight

reduction in particle drag compared to a strictly shear-thinning, non-elastic power-

law fluid. But since RePL is so small for the slipping flow of a polymer melt past a

PIV particle the effect is negligible. The drag experienced by a particle in a creep-

ing shear-thinning viscoelastic flow is effectively the same as that of a comparably

shear-thinning non-elastic flow. This general result is confirmed by Chhabra and

Uhlherr [89] and Bush and Phan-Tien [88] who found that the measured values of

drag coefficients in highly viscoelastic fluids were in excellent agreement with purely

viscous theories [87].

Based on the power-law model, then, shear-thinning enhances particle drag while

viscoelasticity decreases particle drag. Overall, the particle drag is enhanced since

the shear-thinning effects overshadow the viscoelastic effects. These conclusions are

reflected in Table 3.2.

In some cases drag may be enhanced by viscoelasticity. Solomon and Muller [91]

and Chmielewski et. al. [92] have found that drag can be enhanced in certain Boger

fluids when referenced to particle drag in Newtonian fluids of the same viscosity. The

drag enhancement occured at Weissenberg numbers greater than 0.1.

The determination of whether particle drag is enhanced or decreased by elastic

effects in STYRON 615APR is beyond the scope of this project, although it is likely

that drag enhancement does not occur since the particle Weissenberg number is

an order of magnitude lower than the drag enhancement threshold found in the

above-mentioned studies. In any case, drag enhancement would be positive for PIV

in polymer melts. Since there is a strong possibility that drag is slightly reduced,

however, the effect is listed as negative in Table 3.2.
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3.4 Particle Migration Across Shear Planes

Gauthier [93, 94] showed that particles in non-Newtonian flows tend to migrate

across planes of shear. In a series of tubular Couette and Poiseuille flows of shear-

thinning and viscoelastic fluids he demonstrated that neutrally bouyant rigid spher-

ical particles moved laterally, a phenomenon that would not be observed in New-

tonian flows. For shear thinning fluids particles tended to move in the direction

of the shear stress gradient, from the center toward the outer wall. The migration

velocity dropped with increasing distance from the tube axis. For viscoelastic flu-

ids the behavior was reversed. Particles moved in the direction of decreasing shear

stress gradient, from the walls toward the tube axis. The migration velocity dropped

with decreasing distance from the tube axis. In both cases the migration velocities

increased with increasing flow rate.

This phenomena raises concerns for those attempting to use PIV in a polymer

melt. Particle migration can cause a number of problems. The most pressing concern

relates to particle migration in the plane of the image. If the particles do not follow

the fluid flow then the PIV data will not be representative of the actual flow field.

Luckily this concern is the most easily dismissed. The shear gradients in the midplane

of the cavity are small, so any particle migration effects should also be small.

Another possible problem, though less pressing, is harder to dismiss. In an injec-

tion molding flow the shear gradient through the cavity thickness can be quite high.

This means that particle migration into and out of the illuminated midplane is likely

to happen.

Particle migration perpendicular to but within the illuminated plane poses no

issue in this work. The PIV analysis is strictly two-dimensional, so lateral velocity
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components are of no concern if the particle stays within the laser sheet. This is

because, as mentioned previously, the velocity profile of a shear thinning fluid in

a cavity flow is very flat at the midplane. Lateral motion within the sheet has

very little effect on the in-plane velocity components. If three-dimensional PIV were

employed or if a more weakly shear-thinning fluid were used then lateral migration

perpendicular to but within the sheet would be more problematic than it is in this

work.

Particle migration into the illuminated sheet due to viscoelastic effects is prob-

lematic, but not insurmountably so. Particles that are present only in the second

image of a PIV pair raise the background noise level of the cross-correlation due to

false positive matchups with the migrating particles. But if the particles in the first

frame are still present in the second frame and if the illumination is good then the

true correlation peak should still be found and the correct velocity vector calculated.

The most problematic effect of particle migration is the loss of illuminated par-

ticles as they migrate out of the laser sheet toward the cavity walls due to shear-

thinning effects. Lost particles cause failures in the cross-correlation which lead to

errors in the calculated velocities.

3.4.1 Particle Migration in Shear-thinning Fluids

Emerman [95] used dimensional analysis and curve-fitting of Gauthier’s [94] shear-

thinning fluid test data to produce an analytic expression relating the particle mi-

gration velocity Ur to the tube radius R, particle radius a, volume flow rate V and

the power-law index n of the fluid. He produced the following model that fit the

observed behavior in Gauthier’s [94] experiments:

Ur =
1

50
(1− n)

V

R2

( a
R

)n ( r
R

)2(n−1)

(3.38)
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Emerman recognized, however, that injection molding flow is more closely ap-

proximated by a two-dimensional Poiseuille flow rather than by a circular Poiseuille

flow. In the absence of experimental data he created the following two-dimensional

equivalent of Equation 3.38:

Uy =
23n

50
(1− n)

Q

h

(a
h

)n (y
h

)2n−1

(3.39)

where Uy is the lateral migration velocity, Q is the volume flux per unit width, h is

the channel width, and y is the particle position with the cavity midplane at y = 0

and the walls at y = ±h/2.

Emerman then made the broad claim that Equation 3.39 “gives the lateral mi-

gration rate in the y-direction of a spherical particle during injection molding due to

the shear thinning of the polymer melt” [95]. He placed no qualifications on any of

the variables appearing in the equation.

An attempt was made to use Equation 3.39 in the present work to estimate the

severity of particle migration out of the midplane. It became apparent, however,

that Equation 3.39 is not as applicable as Emerman claimed.

The problem lies in the (y/h)2n−1 factor of Equation 3.39. Given that Gau-

thier’s [94] fluid had a shear-thinning index of n = 0.77, Equation 3.39 predicts that

the migration velocity increases with increasing distance from the center-plane. This

contradicts Gauthier’s observation that the migration velocity decreased as particles

moved away from the center line.

Even worse, this behavior is dependent on the the value of n in Emerman’s model.

If n = 0.5 the y dependence of Uy disappears entirely. For fluids with n < 0.5, such

as the polystyrene used in the present work, the exponent of y becomes negative. In

this case the migration velocity does indeed decrease with increasing y, but tends to
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infinity for particles near the midplane of the cavity. When applied to the present

work this gives unreasonably large estimates of the migration velocity for particles

in the laser sheet.

In the absence of experimental data and of reliable models of particle migration in

two-dimensional Poiseuille fluids, no direct estimate of the particle migration velocity

can be made in the present work.

3.4.2 Particle Migration in Viscoelastic Fluids

Emerman [95] also considered the effect of normal stress differences on particle mi-

gration, basing his analysis on the work of Brunn [96] and Chan and Leal [97]. These

researchers calculated the lateral migration rate of a rigid sphere in an an unbounded

second-order fluid, assuming low particle Reynolds number and low Weissenberg

number. Applying their results to a two-dimensional Poiseuille flow Emerman [95]

gave the following relation:

Uy = −482

25

ψ1

η

(
1 +

259

241
α

)(a
h

)2 Q2

h4
y (3.40)

where a is the radius of the sphere, h is the channel width, ψ1 is the first normal

stress difference, η is the viscosity and α is the negative of the ratio of the first and

second normal stress differences.

Several observations can be made from this relation:

1. Uy/y is negative for polymer melts because ψ1 > 0 [63] and α typically ranges

from 0-0.4 [98] for these fluids. This means that particles will migrate toward

the midplane. Therefore the viscoelastic effect and the shear-thinning effect on

particle migration will tend to cancel each other out, with the caveat of Gau-

thier’s [94] observation that particle migration outward due to shear-thinning

seemed somewhat stronger than inward migration due to viscoelasticity.
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2. Uy is zero at y = 0. Particles on the midplane do not migrate.

3. The ratio a/h will be small by design in any PIV experiment, leading to small

values of Uy.

4. The viscoelastic Uy is linearly proportional to Q2 and a2, while the shear-

thinning Uy is linearly proportional to Q and an. Particle migration due to

normal stress differences is more sensitive to high flow rates than migration

due to shear-thinning, but the effect is mitigated for PIV particles by the

increased sensitivity to particle radius.

The viscosity and the first normal stress difference were measured for STYRON

615APR with a rheometer, see Section 2.4. It was found that η = 295.4 Pa·s and

ψ1 = 1000 Pa. The second normal stress difference could not be measured with the

rheometer, but to be conservative it can estimated as 0.4α [98]. Taking the highest

value of the volume flow rate used in this work (34.0 cm3/s) and dividing it by the

specimen width of 66.7 mm gives Q = 5.25 cm2/s. Taking y = 0.5 mm to be the edge

of the laser sheet and using these values in Equation 3.40 gives a worst-case estimate

of the particle migration velocity Uy = -0.17 mm/s. For the conditions described

above typical PIV velocities were on the order of 10 cm/s, indicating that particle

migration due to viscoelastic effects will be negligible.

Finally, returning to Gauthier’s [94] observation that migration due to shear-

thinning was only slightly stronger than that due to viscoelasticity, it may be hoped

that particle migration due to shear-thinning will also be negligible.
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Table 3.2: Comparison of factors unique to PIV in polymer melts with Newtonian
PIV experiments. A “+” in the center column means that this factor is
favorable to PIV in polymer melts, a “-” means that the factor is unfa-
vorable.

High viscosity + Reduces particle-particle interactions
+ Increases Stokes drag, allows the use of larger and

heavier particles
+ Smooth flow due to low Reynolds number
- High pressures, large loads on window

Fountain flow - Causes out-of-plane particle motion near the melt
front

Moving flow front - Reflection from front causes uneven illumination
Strong radial flow - Cross-correlation fails near gate
Non-isothermal flow - Laser sheet thickness is not constant
Particle mixing in
the solid state

- Particles are mixed with the melt in a high-shear
environment. Standard PIV particles do not sur-
vive the process.

+ Injection screws are designed to promote good
mixing

Shear thinning + Increases Stokes drag at low Re
+ Flattens the velocity profile in thickness direction
- Causes particle migration away from midplane

Viscoelasticity - Slightly decreases Stokes drag at low Re
- Causes particle migration toward midplane

3.5 Summary

A summary of the factors discussed in this chapter is given in Table 3.2. The

technical challenges of setting up a PIV experiment in a polymer melt are exotic and

formidable. But once the experiment is set up the high viscosity and shear-thinning

nature of the flow eliminate many of the challenges faced by experimenters studying

higher Reynolds number flows of Newtonian liquids.



CHAPTER 4

Image Analysis

The preparation and analysis of the digital images was a multi-step process that

may be summarized as:

1. The Pulnix-9701 camera was calibrated as described in Section 2.6.2

2. Digital movies were made of the injection molding process

3. The images were corrected using the camera calibration

4. The flow front was manually extracted from the corrected images

5. Flow front propagation velocities were calculated from the extracted flow front

images

6. The flow fronts and cavity walls were then used to create image masks, and

the masks were used to extract the polymer melt images from the mold cavity

7. PIV analysis was performed on the masked, undistorted images of the flow

8. Median velocity fields were calculated from repeated trials for continuity anal-

ysis

The first three steps were discussed in Section 2.6.2. The rest of the steps will be

explained and illustrated in the following sections.

96
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4.1 Extracting the Flow Front Geometry

The flow front is the boundary between the illuminated midplane of the melt and

the dark mold cavity. In a given digital image the flow front is a region where the

intensity and the intensity gradient change sharply. Determining the location and

shape of a region such as this is typically done using edge detection algorithms.

Edge detection is a very common image processing task and many algorithms have

been developed to perform this task. Algorithms include Gaussian, Sobel, Prewitt,

and Canny edge detection routines. Each one of these standard routines extracts

edges by looking for steep intensity gradients. The details and effectiveness of the

routines vary, but they all operate on this key principle.

Edge detection algorithms would normally be the best approach for extracting a

boundary such as the melt flow front. PIV images of melt fronts, though, present

some particular challenges to successful implementation of standard edge detection

routines.

The first challenge to edge detection algorithms is that PIV images are speckled

by nature. Images that are to be analyzed by a PIV program must consist of particle

images that move with the local flow velocity. These particle images are small and

bright, leading to an overall image that is filled with sharp changes in intensity over

small length scales. These sharp changes in intensity are found by edge detection

algorithms and result in a very high number of spurious edges that are not related to

the flow front. The number of edges found depends on the algorithm used, but even

the most sophisticated methods give practically unusable results. The edges found

along the flow front are also typically unconnected, leading to more difficulties. In

order for the results to be usable a human being would have to sort through the
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edges, discarding those that are spurious and connecting those that lie on the front.

As an example of this a typical image frame is shown in Figure 4.1. The result of

using Matlab’s implementation of Canny edge detection on this image is shown in

Figure 4.2.

The second challenge to edge detection algorithms is related to the polymer melt

itself. Stray reflections from the flow front onto the cavity wall can confuse edge

detection algorithms. The presence of precursor gas in the mold can also increase

the general level of illumination in the cavity near the front, reducing the contrast

between the front and the cavity. Areas of high front curvature near the walls can

lead to a lens effect, making that region of the image brighter than other regions.

This increased brightness near the walls makes edge detection more difficult because

it also reduces contrast.

After numerous failed attempts with the various edge detection routines avail-

able in the MATLAB Image Processing Toolbox it became obvious that a different

approach was called for.

The binary morphological approach has many advantages, most prominently the

fact that it can be automated to a significant degree. When the flow front is sharply

defined in the image this method works well. Unfortunately the flow front is not

always sharply defined in the digital image.

Fortunately human beings are better than computers at pattern recognition in

cases like this. When all else fails the flow front can be traced by hand. This can

be done at a computer but it is difficult. A mouse is not an ideal tool for this type

of operation. It is difficult to create free curves by clicking and dragging a mouse.

The proper tool for this type of work is a stylus, allowing the user to “draw” on the

screen.
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Figure 4.1: Typical frame from an injection molding movie.
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Figure 4.2: Results of using Matlab’s implementation of Canny edge detection on
the image shown in Figure 4.1
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This can be done using a personal digital assistant (PDA). For this project a

Tungsten TX PDA was used. A program called TealPaint v6.43 was used to manually

extract the flow fronts when needed. The digital images were loaded on the PDA

and read by TealPaint. The images were then magnified by a factor of eight, making

the individual pixels large enough to be seen conveniently. The melt front was then

positioned on the screen by dragging the PDA stylus. Once a portion of the front

was centered on the screen the curve draw tool was used to trace the front. The

curve draw tool allows the user to drag the stylus across the screen leaving a line in

its wake. The motion of the stylus is averaged, creating a smooth line that follows

the front without being overly jittery. The front was then traced in a piecewise

fashion, moving the image around on the screen as necessary until the entire front

was traced. The original image was then deleted, leaving only the tracing of the

front. This image was then exported to a file and then loaded onto the computer

that was used to perform the image analysis.

As an illustration of this process the result of manually extracting the flow front

from the sample image shown in Figure 4.1 is shown in Figure 4.4.

4.2 Calculating the Velocity of the Flow Front

When the geometry of the flow front has been established it is possible to calculate

the normal component of the front velocity at any point. The procedure is as follows:

1. Represent the flow front as a polynomial. The form and degree of the poly-

nomial will depend on whether the flow has contacted the wall opposite the

gate.

2. Select points along the flow front and calculate the normal vectors to the front.

This gives the direction of the front velocity.
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Figure 4.3: Manual extraction of the flowfront using TealPaint on a Tungsten TX
PDA. The tracing was done directly on the PDA screen using a stylus
with the image at 8x magnification.

Figure 4.4: The result of manually extracting the flow front from Figure 4.1
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Figure 4.5: Coordinate system for fitting a polynomial to the extracted flow front
for the channel flow regime. The origin is at the corner near the gate.

3. Superpose the front from the next frame of the digital movie. Propagate out-

ward along the normal direction until the second front is intersected. This

gives the magnitude of the front velocity.

4.2.1 Calculating the Flow Front Velocity in the Channel Flow Regime

This step is critical to calculating the front velocity. The approach taken depends

on the flow front geometry. For fronts in the radial flow regime it is necessary to

use polar coordinates in the calculations. This is not necessary for the channel flow

regime, simplifying the calculations.

For the channel flow regime, rotate the flow field 90◦ counterclockwise about the

lower left corner as shown in Figure 4.5. The flow front can now be represented by

a function since each point on the front has a unique x coordinate. MATLAB was

used to fit a tenth order polynomial to the flow front.

Once the polynomial has been fitted its derivative is easily calculated at any given

point. This information is used to construct a unit vector tangent to the front at the
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Figure 4.6: This figure shows flow fronts manually extracted at times equal to 30%,
50%, 70% and 90% of the overall fill time. Each front is also paired with
the front taken from the movie frame immediately following. The velocity
vectors show the front propagation displacements calculated using the
methods described in Section 4.2.1 and Section 4.2.2.

point of interest. Once this vector has been determined a unit vector perpendicular to

it (and thus to the front) is constructed, taking care to insure that this vector points

away from the gate. This unit vector points in the direction of the perpendicular

velocity component of the flow front.

The flow front from the next frame of the digital movie is then used. The front

is fitted by a polynomial in the same manner described above. The point of interest

on the first front is then used as a starting point. A test point is propagated along

the normal direction until it intersects the polynomial representation of the second

front. The propagation distance divided by the time between frames is equal to the

magnitude of the flow front propagation velocity.
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Figure 4.7: Coordinate system for fitting a polar polynomial to the extracted flow
front for the radial flow regime. The origin is at the corner near the gate.

4.2.2 Calculating the Flow Front Velocity in the Radial Flow Regime

The procedure described above must be modified for flow fronts in the radial flow

regime. The difficulty lies in the fact that the points on the flow front no longer have

unique x coordinates, which means that the front cannot be described by a function

using Cartesian coordinates. Rotation of the front will not resolve this difficulty.

Polar coordinates can be used to sidestep this problem. If the points on the

flow front are represented with polar coordinates as shown in Figure 4.7 then the

points will all have unique θ components. This means that a polynomial of the form

r = r(θ) can be constructed. The r coordinates of the flow fronts in the radial flow

regime are well-represented by sixth-order polynomials in θ.

Care must be taken when calculating the derivative of this polynomial. The

derivative of r(θ) is not equal to the slope of the tangent vector of the front. Using

the relations x = r cos θ and y = r sin θ and letting r′ = dr/dθ it can be shown using
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the chain rule that

dx

dθ
= −r sin θ + r′ cos θ (4.1)

dy

dθ
= r cos θ + r′ sin θ (4.2)

The ratio of these equations can be used to get the slope of the vector tangent

to the front:

dy

dx
=

r cos θ + r′ sin θ

−r sin θ + r′ cos θ
(4.3)

Once the normal directions have been determined the procedure is the same as

for the channel flow regime with modifications for using polar coordinates. The

point of interest on the front is propagated along the normal directions in Cartesian

coordinates. At each new position of the point along the normal the Cartesian

coordinates are transformed into polar coordinates. The polar polynomial of the

next sequential front is then used to check whether the point has been propagated

far enough to intersect the second front.

4.3 Calculating the Velocity Field of the Polymer Melt

The flow fronts and cavity outlines were then used to create image masks. The

flow front and cavity outline were used to create a binary image mask, as illustrated

in Figure 4.8. The mask was created by inverting the image shown in Figure 4.4 and

using the binary morphology functions in the MATLAB Image Processing Toolbox

to fill in the portion of the image representing the polymer melt. The cavity edges

were then removed to create a mask in which pixels representing the polymer melt

have a value of “1” and all other pixels have a value of “0”.

This image was used to mask the undistorted movie image, leaving only the

portion of the image occupied by the molten polymer as illustrated in Figure 4.9.



107

Figure 4.8: The binary mask created from Figure 4.4

These images were then used as the inputs for the PIV analysis.

The PIV analysis was accomplished using DaVis 6.2.2 software. The PIV analysis

was performed using cross-correlation on consecutive images from the mold-filling

movies. Adaptive multipass with decreasingly smaller window size was used. The

first three passes used 64 pixel × 64 pixel windows followed by two passes with 32

pixel × 32 pixel windows. The highest injection rate runs required initial passes at

128 pixels × 128 pixels followed by passes at 32 pixels × 32 pixels. The windows

had a 50% overlap, resulting in a grid spacing of sixteen pixels. The resulting data

was filtered using a median filter. The data was smoothed using a 3 × 3 Gaussian

filter.

The PIV output was then processed as follows. First, the data was scaled to

real world coordinates. The lower corner of the cavity near the gate was used as

the origin of the coordinate system. The data and coordinates were then scaled to

correct for the non-square pixels of the Pulnix camera and the image size of the

cavity was used to calculate the magnification factor of the image. Once the points

were in real-world coordinates the PIV displacements were divided by the camera
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Figure 4.9: The masked version of Figure 2.21 created using the mask shown in
Figure 4.8

frame rate to calculate local velocities in real-world coordinates.

4.4 Combining Multiple Data Sets with Median Filtering

One of the drawbacks of performing PIV experiments in a polymer melts is the

difficulty in obtaining an even distribution of particles throughout the flowfield. As

discussed in Chapter 3, the mixing of particles and polymer first takes place in the

solid state. Particles and pellets are mixed together and are introduced into the

hopper of the injection molding machine. The mixing of particles into the liquid

plastic occurs in the barrel of the injection molding machine and is outside of the

experimenter’s control. There is no way to check the particle distribution before a

shot is made, and once the shot is underway the laminar nature of the flow ensures

that regions of the fluid that are particle-poor remain particle-poor throughout the
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shot.

This led to difficulties in the PIV analysis in the present work. The resulting

velocity vector fields had large gaps in them due to uneven particle distribution in

the melt. The locations and number of these gaps would vary unpredictably from

shot to shot. The low-particle areas would lead to obviously erroneous velocity

vectors or would lead to areas with no velocity vectors at all. Figure 4.10 shows two

PIV fields calculated at the 90% fill time for two different specimens made under the

same molding conditions during the same run of parts. Velocity vector drop-outs are

evident in both fields, but in different locations.

The solution to this problem hinges on the fact that the overall flowfield was

very repeatable and very smooth. The velocity at a given point and a given time

was very consistent from shot to shot, even if the particle density was inconsistent.

This consistency suggested that the results of different movies made under the same

conditions could be pooled to overcome the random defects in particle density.

For each set of processing parameters a number of movies were be made under

identical conditions. The digital movies were then processed, typically yielding a set

of 6-8 sets of velocity vector fields and their corresponding flow fronts for a particular

time of interest.

The PIV vector fields were then superposed for each time of interest. Since most

of the data sets were taken from a series of sequential runs the camera location and

calibration were constant over a given set. This meant that the PIV grid points also

tended to be constant for a given data set. The data sets were examined manually to

ensure that the grid coordinates were identical. If they were not identical the non-

conforming data sets would be interpolated onto the grid used by the other members

of its set.
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For each grid point there was a set of velocity vectors, one vector for PIV field in

the set. A median filter was implemented for each component of the velocity vector,

and the median velocity components were selected at each grid point.

Since the location of the bad vectors varied from shot to shot there were only

a few bad vector components at any given point in the flow field. The median was

chosen rather than the average at each point since the median is more robust and

is less likely to be affected by bad vectors. The effect of taking the median at each

point was to eliminate the gaps due to variations in particle density in the images.

An example of the outcome after median filtering is shown in Figure 4.11.

The flow fronts from the superposed PIV images were also superposed on each

other and the entire set used as an input to the polynomial fitting scheme described

in Section 4.2. The flow front positions were very consistent, falling in a range of

±0.25 cm around the best fit front. An example of this consistency is shown in

Figure 4.12. This figure shows a superposition of flow fronts from six data sets and

the best fit curves calculated from them.

4.5 Estimating the Error of the Median Velocity Fields

The following procedure was used to estimate the error in the median velocity

fields. Eight movies were made under identical conditions and were processed as

described above. The movies were then divided into two sets of four movies each

and the median filter was applied to each set at the point of 90% fill. Let the

resulting median fields be ~v1 and ~v2. A difference field ∆~v was then calculated, with

∆~v = v1 − v2. An error estimate ε was then calculated as

ε =

√∑
|∆~v|2∑
|~v1|2

(4.4)

The error ε can be interpreted as the mean magnitude of the difference field



111

Figure 4.10: PIV vector fields computed at the 90% fill time for two different speci-
mens molded under the same conditions during the same run of parts.
The PIV fields have missing vectors in different places of the flow field.
This problem is corrected with median filtering as described in Sec-
tion 4.4. The PIV fields also show the failure of the PIV software to
resolve the correct vectors near the gate.
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Figure 4.11: This figure shows the result of median filtering a set of seven PIV fields
calculated at the same point of fill from specimens molded at identical
conditions. Two of the PIV fields used in the set are shown in Fig-
ure 4.10. A dead-zone radius was applied around the gate to eliminate
vectors from the region where the PIV analysis fails.

Figure 4.12: Flow fronts extracted from data sets molded at identical conditions. The
data points shown are subsets of the actual data for clarity of plotting.
The best-fit fronts calculated from these fronts are also displayed.
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normalized by the mean magnitude of the vectors in the median field. This process

was then repeated for every possible way of dividing the original set of vector fields

into two equal subsets. The resulting distribution of ε had a mean of 8.2%, leading

to an upper bound error estimate on the median velocities of ±8.2%; medians from

eight samples should be more accurate.

4.5.1 Nondimensionalizing the Continuity Equation

The continuity equation in Cartesian coordinates for the flow of an incompressible

fluid is given by Equation 4.5. This equation is true regardless of the Newtonian or

non-Newtonian nature of the fluid.

∇ · ~v = 0 (4.5)

The polymer flow in this study is incompressible during the filling process. Also,

the flow at the center plane of the cavity can be considered two-dimensional except

near the gate and near the front. At the gate the flow is still developing into a

smooth laminar flow and two-dimensionality cannot be guaranteed. At the front the

fountain flow effect shown in Figure 3.3 creates a three-dimensional region of flow.

But for region in between the gate and the front, the flow at the midplane should

be two-dimensional and incompressible. Thus Equation 4.5 can be expressed in this

region as:

∂u

∂x
+
∂v

∂y
= 0 (4.6)

Since the PIV vector data is taken at discrete time intervals ∆t and on a regularly

spaced grid of points with separations ∆x and ∆y the continuity equation can also

be discretized:

∆u

∆x
+

∆v

∆y
= ε(x, y) (4.7)
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where ε is an error term with units of inverse time. The error will be a function

of position for any given PIV vector field. The error arises from inaccuracies in the

PIV data itself and from the inherent numerical error arising from approximating

derivatives on a discrete grid.

Ideally ε would be zero at all points in the flow field during mold filling except

for at the gate. But PIV analysis delivers only an uncertian measurement of the

velocity vector field and so ε will not be identically zero at each point in the flow

field. But as the quality and resolution of the PIV data increase the magnitude of ε

should decrease.

It is desirable to nondimensionalize Equation 4.7 and in particular to nondimen-

sionalize ε. A nondimensionalized ε would become a measure of the quality of the

PIV data. The nondimensionalization used in this work developed from consideration

of the nature of the error term ε and of the basic nature of PIV analysis.

The error ε can be interpreted as a field of volume sources and sinks, depending

on the sign of the error at any given point. By the nature of PIV analysis the

velocity vector at a given point in the flow field must be considered constant over the

interrogation volume VI used to to generate that velocity vector [40]. Consequently

the velocity gradients must also be considered constant within VI . Since ε is the sum

of two velocity gradients it must also be constant within VI . Thus Equation 4.7 may

be integrated over a given interrogation volume as follows:∫ ∫ ∫
VI

ε |(x,y) dV = VI ε |(x,y) (4.8)

The error term now has the units of volume flow rate. For an injection molding flow

it is natural to nondimensionalize the result of Equation 4.8 using the injection flow
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rate Q. This leads to a nondimensionalized continuity equation:

(∇ · ~v)∗ = ε∗ (4.9)

with

(∇ · ~v)∗ =
VI

Q
∇ · ~v (4.10)

ε∗ =
VIε

Q
(4.11)

The term (∇ · ~v)∗ is the nondimensionalized flow divergence. The variable ε∗ can be

interpreted as the local spurious source strength scaled by the global injection rate.

If ε∗ = 0 at a point then the continuity equation is satisfied at that point. As the

magnitude of ε∗ at a point approaches unity the magnitude of the erroneous source

strength at that point approaches that of the injection flow rate itself.

4.5.2 Calculating the Flow Divergence

The previous sections described how the flow front was extracted and how the

velocity vector field was generated. With this data in hand the velocity gradients at

each point can be calculated, and thus the flow divergence.

A Matlab program was written to process the velocity data. The cavity outline

and flow front were used to delineate the time-varying boundary of the flow. The

PIV grid points within the flow domain were then classified by their distance from

the boundary. Points that were more than one full grid spacing from the boundary

were classified as interior points and points that were less than one full grid spacing

from the boundary were classified as boundary points. The x and y distances from

the physical boundaries (cavity walls and flow front) were then calculated for each

boundary point.
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The boundary points then needed further classification. If a grid point was within

one grid spacing of a cavity wall it was considered a cavity boundary point, and if it

was within one grid spacing of the flow front it was considered a flow front boundary

point. Note that the classification of a given point can differ for the x and y directions.

For example, a point near the top wall could be a boundary point in the y direction

and an interior point in the x direction. A point near the intersection of the front and

a wall could be a flow front boundary point in the x direction and a cavity boundary

point in the y direction.

Once the points were classified the velocity gradients could be calculated. The

velocity gradients of the interior points were calculated using a standard central

differencing scheme as described by Gerald [99]:

∂u

∂x
=
ui+1 − ui−1

2hi

+O(h2
i ) (4.12)

∂v

∂y
=
vj+1 − vj−1

2hj

+O(h2
j) (4.13)

where i is a counter that increases in the positive x direction and j is a counter that

increases in the positive y direction. The variables hi and hj are the grid spacings in

the x and y directions respectively.

In order to maintain the second order accuracy of the gradient approximations

special care was needed at the boundary points. Cavity boundary points used a

variation of the central differencing scheme formulated for non-uniform grid spacing.

Flow front boundary points required a three-point one-sided differencing scheme.

A cavity boundary point has two neighboring points in the direction perpendicu-

lar to the cavity wall. One point is an interior point that has a known velocity and is

separated from the cavity boundary point by a full grid spacing. The other neighbor-

ing point is on the cavity wall itself. This point is less than a full grid spacing away
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and is assumed to have zero velocity (the no-slip condition). The gradient was then

calculated using a non-uniform grid spacing central differencing scheme described by

Gerald [99].

Given a function f(x) known at discrete points with non-uniform spacing let

f0 = f(x0), f+ = f(x0 + h+), and f− = f(x0− h−) with h+ 6= h−. Manipulating the

Taylor expansions of f+ and f− results in:

∂f

∂x
=

(
f+

h2
+

− f−
h2
−

)(
1

h+

+
1

h−

)−1

− f0

(
1

h+

− 1

h−

)
+O(h+h−) (4.14)

Note that this formula reduces to Equation 4.12 for the case h+ = h−, as it should.

A flow front boundary point also has two nearest neighbors, an interior point

and a point on the front. The problem here is that the midplane velocity of the

the point on the front is unknown due to the fountain flow effect. This precludes

the use of a central differencing scheme. In order to maintain second-order accuracy

a three-point one-sided differencing scheme was used as described by Gerald [99].

The two nearest interior points in the desired direction were used with the boundary

point to approximate the gradient in that direction.

Given a function f(x) known at discrete points with uniform spacing h let f0 =

f(x0), f1 = f(x0 + h), and f2 = f(x0 + 2h). Then:

∂f

∂x
=
−f2 + 4f1 − 3f0

2h
+O(h2) (4.15)

After the velocity gradients ∂u/∂x and ∂v/∂y were calculated for all internal

and boundary points the nondimensional divergence error ε∗ was calculated using

Equation 4.10. The value of ε∗ was then superimposed on the PIV graph as a

pseudocolor field using the Matlab “Jet” colormap. Figure 4.13 shows the result

of applying the scaled continuity equation to the median-field PIV data shown in

Figure 4.11.
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Figure 4.13: Application of the scaled continuity equation described in Section 4.5.1
to the median-field PIV data shown in Figure 4.11. The front propaga-
tion velocity vectors are also shown.



CHAPTER 5

Parameter Study of the Effects of Injection Rate

and Melt Temperature on Mold Filling

A parameter study of the mold filling process was performed using the experimen-

tal setup described in the previous chapters. The goal of the study was to examine

the effects of injection rate and melt temperature on the flow kinematics of the filling

of the optical access mold.

5.1 Molding Conditions

An initial parameter study was performed using melt temperature and injection

rate as the input parameters. The values chosen for this study are listed in Table 5.1.

The parameter values were chosen to represent the widest practical range for the

experimental setup. At temperatures and speeds lower than this range the flow would

not fill the mold smoothly and short shots would often result. The injection molding

machine labored excessively at speeds higher than this range, and at temperatures

exceeding this range the melt viscosity would be low enough to cause difficulties in

building up the shot.

Eight digital videos were made for each set of molding conditions and the results

were processed according to the procedure described in Chapter 4.

119
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Table 5.1: Molding conditions used in the parameter study

Injection rate (cm3/s) Melt temperature (◦ C)
11.5 230
23.0 230
34.5 230
11.5 245
17.3 245
34.5 245

5.2 PIV Results

The resulting PIV fields are shown in Figures 5.1 through 5.12. The vector fields

shown correspond to values of t∗ equal to 0.3, 0.5, 0.7 and 0.9 where t∗ is time

normalized by the fill time of the optical access mold. Note that the cavity and

vector fields in these figures have been rotated clockwise by 90◦ for convenience in

plotting.

The black vectors show the velocity field of the polymer melt along the midplane

during mold filling and the red vectors show the melt front propagation velocity.

The melt velocity and melt front vectors have been scaled down by a factor of ten

for convenience in plotting. The figures also show the shape of the flow front and

the surrounding cavity. The pseudocolor field superposed on the flow shows the

nondimensionalized continuity error as described in Equation 4.10. Green represents

areas of the flow where continuity was satisfied to a high degree of accuracy. Red

represents areas of the flow where the PIV analysis yields spurious volume sources,

and blue represents areas of the flow where the PIV analysis yields spurious volume

sinks. The range of errors covered by the color range is ±10% of the gate flow source.

The size of the dead zone around the gate was chosen to match the predictions

found in Table 3.1. Errors around the periphery of the dead zone may be attributed to
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the difficulty of using standard PIV to measure radial flow, as described in Chapter 3.

Errors near the flow front may be attributed to the fountain flow effect also described

in Chapter 3. Notice that the region near the front is consistently colored light blue,

meaning that volume is disappearing near the front. The fountain flow effect is a

three-dimensional phenomena that carries the fluid away from the center plane of the

mold and deposits it on the side walls of the mold. This would explain the errors seen

in the continuity equation near the front. Another factor contributing to continuity

errors near the front is the fact the front has curvature in the thickness direction as

well as in the midplane. This could lead to optical distortion near the front.

5.3 Calculating the Volume Flow Rate from the PIV Data

The volume flow rate can be calculated from the PIV fields and then compared to

the injection rate to test the integrated accuracy of the data. This test was performed

using the t∗=0.9 data at all molding conditions.

Taking the cavity in the orientation shown in Figures 5.1 through 5.12, call the

long cavity dimension x and the short cavity dimension y. A set of control volumes

was constructed using the walls of the cavity and a control surface S perpendicular to

the x-axis as shown in Figure 5.13. Each control volume had a different x-coordinate

for the surface S. The range of the location of S was chosen to be larger than

the critical radius at which the PIV analysis failed and smaller than the flow front

location to avoid the fountain flow effect.

Applying the mass conservation equation, the volume flux through S was calcu-

lated as follows:

Q =

∫
S

[u(y)± uε(y)]w(y)Fdy (5.1)

where u is the component of the fluid velocity in the x-direction, uε is the velocity
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Figure 5.1: 230◦ C, 11.5 cm3/s, t∗=0.3 (top) and t∗=0.5 (bottom)
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Figure 5.2: 230◦ C, 11.5 cm3/s, t∗=0.7 (top) and t∗=0.9 (bottom)
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Figure 5.3: 230◦ C, 23.0 cm3/s, t∗=0.3 (top) and t∗=0.5 (bottom)
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Figure 5.4: 230◦ C, 23.0 cm3/s, t∗=0.7 (top) and t∗=0.9 (bottom)
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Figure 5.5: 230◦ C, 27 cm3/s, t∗=0.3 (top) and t∗=0.5 (bottom)
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Figure 5.6: 230◦ C, 27 cm3/s, t∗=0.7 (top) and t∗=0.9 (bottom)
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Figure 5.7: 245◦ C, 11.5 cm3/s, t∗=0.3 (top) and t∗=0.5 (bottom)
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Figure 5.8: 245◦ C, 11.5 cm3/s, t∗=0.7 (top) and t∗=0.9 (bottom)
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Figure 5.9: 245◦ C, 17.3 cm3/s, t∗=0.3 (top) and t∗=0.5 (bottom)
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Figure 5.10: 245◦ C, 17.3 cm3/s, t∗=0.7 (top) and t∗=0.9 (bottom)
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Figure 5.11: 245◦ C, 27 cm3/s, t∗=0.3 (top) and t∗=0.5 (bottom)
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Figure 5.12: 245◦ C, 27 cm3/s, t∗=0.7 (top) and t∗=0.9 (bottom)
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Figure 5.13: Illustration of the control volume used for the volume flux and pro-
file factor calculations shown in Figure 5.14 and Figure 5.15. The x-
coordinate of the right-hand surface ranges from 2 cm to 8 cm in these
figures, in this example it is at 7 cm.
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error, w(y) is the cavity thickness taking draft into account, and F is a profile factor.

The velocity error uε at each point was set to twice the standard deviation of the

velocity vectors making up the median field at that point.

The profile factor F is a function of the velocity profile through the cavity thick-

ness. Since this profile was not measured the value of F is unknown. In order to

circumvent this difficulty a normalized flow rate was calculated. The 11.5 cm3/s,

230◦ C run was chosen as a baseline and its flow rate was calculated at a number

of x coordinates using a profile factor of unity. The mean of these flow rates was

designated as Q0. A scaling factor fQ was also defined as the injection rate of a given

run normalized by 11.5 cm3/s. These factors were used to calculate a normalized

flow rate for every data set for various control volumes.

Q∗ =
Q

Q0fQ

(5.2)

If it is assumed that the value of the profile factor F is constant over the range of

flow rates studied and that it is not a function of y then both Q and Q0 are linearly

dependent on F and the normalized volume flux Q∗ in independent of F .

Ideally the value of Q∗ should be close to unity for every injection rate and for

any location of the control surface S. Figure 5.14 shows that the PIV data does

indeed predict volume fluxes that scale linearly with the nominal injection rates.

Calculating absolute values of the volume flow rate directly from the PIV vector

fields is not possible because the velocity profile through the thickness of the mold

cavity was not measured. However, an estimate of the profile can be made and

compared to that of a comparable power-law fluid.

Appendix C gives a derivation of the velocity profile of a power-law fluid flowing
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Figure 5.14: Normalized volume flux vs. normalized x-coordinate. The volume flux
was normalized by the mean flux of the 11.5 cm3/s, 230◦ C test and
by ratio of the nominal flow rate and 11.5 cm3/s. The x-coordinate is
normalized by the length of the mold cavity.
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through a channel. The volume flow rate of such a flow is

Q = 2WBū = 2WB
n+ 1

2n+ 1
umax = 2WBFumax (5.3)

where F is a profile factor equal to (n+1)/(2n+1), with n being the shear-thinning

exponent of the power-law fluid.

Equation 5.1 can be used to estimate the profile factor F if it is assumed that F

is constant:

F =
Q0∫

S
u(y)w(y)dy

(5.4)

where Q0 is the imposed volume flow rate of the injection molding machine and w(y)

is the cavity thickness accounting for draft.

In Chapter 2 the shear-thinning of exponent of polymer-particle mixture was

found to be equal to 0.42. This gives a profile factor F = 0.77.Figure 5.15 shows the

result of using Equation 5.4 to estimate the profile factor at various x-coordinates

at t∗=0.9 for all six sets of molding conditions studied. At small values of x, closer

to the gate, the flow is more radial and the value of F is less than 0.77. But as the

flow moves further from the gate it develops into a channel flow. The further the

flow is from the gate, the more fully-developed the channel flow becomes and the

profile factor approaches the power-law value of 0.77. The mean of the values shown

in Figure 5.15 is 0.7±0.1.

So, even though the absolute flow rate cannot be measured, the congruence of the

estimated profile factor with that of a power-law fluid with the same shear-thinning

exponent suggests that the volume flow rates of the PIV vector fields match those

imposed by the injection molding machine.
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Figure 5.15: The calculated velocity profile factor through the thickness of the mold
cavity for the six sets of molding conditions studied. The profiles were
calculated at various x coordinates using the PIV fields at t∗=0.9. The
profile factor for a power-law fluid with n=0.39 in a one-dimensional
channel flow is 0.78. The mean of the data shown here is 0.7±0.1.
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5.4 Flow Kinematics of the Filling of the Optical Access
Mold

Do the injection parameters have a statistically significant impact on the observed

PIV flow fields? Certainly the injection rate has a significant effect on the observed

magnitudes of the PIV fields. Faster injection rates lead to higher velocities. The

question needs to be rephrased to eliminate this trivial answer.

To compare flow fields with different injection rates we can first find a scaling

factor that best eliminates the effect of the flow rate difference. One way to do this

is to examine the residual field ~r

~r = ~v1 − α~v2 (5.5)

where ~v1 and ~v2 are two velocity fields under consideration. By convention we will

take ~v1 to be the field with the higher injection rate. The constant α is a scaling

factor that is chosen minimize the scalar R where

R =
∑

|~r | =
∑

|(~v1 − α~v2)| (5.6)

The scalar R is the magnitude of the vector sum of all the vectors in the residual

field.

Choosing α to minimize R gives a scaling factor α that best approximates the

equation

〈~v1〉 = α〈~v2〉 (5.7)

where 〈~v1〉 and 〈~v2〉 are the average velocities of the PIV fields. To see this, let

N be the number of PIV vectors in the given velocity fields. Divide both sides of
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Equation 5.6 by N and assume that the residual term R/N is small:∣∣∣∣∑~v1

N
− α

∑
~v2

N

∣∣∣∣ =
R

N
(5.8)

≈ 0 (5.9)

〈~v1〉 ≈ α〈~v2〉 (5.10)

where 〈~v1〉 =
∑
~v1/N and 〈~v2〉 =

∑
~v2/N . Since the polymer melt flow during the

mold filling phase is incompressible and since the cavity volume remains constant

the average velocities should scale linearly with injection rate. The factor α should

be approximately equal the ratio of injection rates for any vector fields ~v1 and ~v2.

In order to calculate α the PIV velocity vector fields must be resolved to exactly

the same grid points. This was not possible to enforce experimentally since the grid

point positions are functions of camera placement and calibration, and these varied

slightly from data set to data set. A reference grid was chosen for the purpose of this

analysis and all of the PIV vector fields were resolved to this reference grid using

linear interpolation. Zero-magnitude velocity vectors were placed at the cavity walls

to aid in the interpolation of PIV vectors at the periphery of the field.

Once all of the data sets were resolved to the same grid a critical radius needed to

be chosen to eliminate the region near the gate where PIV analysis failed. MATLAB

was used to perform unconstrained nonlinear optimization to determine the value of

α for every pair of median data sets for a range of critical radii from 2 cm to 6.5 cm.

The critical radius was varied to ensure that the choice of dead-zone radius did not

influence the final result.

The result can be seen in Figure 5.16. In this plot the deviation of α from the

injection rate ratio Q12 is plotted versus the critical radius. Here Q12 = Q1/Q2,

the ratio of the injection rates set on the injection molding machine. The deviations
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Table 5.2: Legend for Figures 5.16, 5.19, 5.29, and 5.30.

~v1 ~v2

Symbol Q (cm3/s) T (◦ C) Q (cm3/s) T (◦ C)
◦ 34.5 245 11.5 245
• 34.5 230 11.5 230
O 23.0 230 11.5 230
H 34.5 245 17.3 245
♦ 17.3 245 11.5 245
� 34.5 230 23.0 230
� 34.5 245 23.0 230
� 34.5 245 11.5 230
� 34.5 230 17.3 230
I 34.5 230 11.5 245
� 17.3 245 11.5 230
J 23.0 230 11.5 245
× 23.0 230 17.3 245
M 34.5 245 34.5 230
N 11.5 245 11.5 230

plateau and remain fairly constant for radii of 4 cm or more. In the plateau region the

mean deviation is 3.3%. The values of α closely approximated the ratio of injection

rates for any given pair of data sets.

Do the injection parameters have a statistically significant effect on the deviation

of α from the injection rate ratio? This question can be addressed using Analysis of

Variance (ANOVA) [100]. The variation of the deviation of α from Q12 was examined

as a function of two variables. The first variable, Q12, was defined as the ratio of

nominal injection rates of the faster flow to the slower. All of the PIV field pairings

had values of Q12 equal to 1, 1.33, 1.5, 2 or 3. The second variable was a two-level

variable relating to temperature. This variable, T12, had a value of zero if the melt

temperatures were identical between two vector fields and had a value of one if the

temperatures were different.The residual metric data was collected from the 90% fill

data of the median vector fields. Data less than 4.5 cm from the gate was ignored to
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Figure 5.16: Deviation of the calculated scaling factor α from the ratio of injection
rates Q12 as a function of critical radius for all possible median field
comparisons. The legend for the symbols is found in Table 5.2.
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Table 5.3: Statistical significance levels as functions of p-value

p > 0.10 Not significant
0.10 ≥ p > 0.05 Mildly significant
0.05 ≥ p > .01 Significant
p ≤ .01 Highly significant

remove any influence of the critical radius below which PIV analysis failed.

The null hypothesis of the ANOVA analysis was that the variables Q12 and T12

had no effect on the deviation of α from Q12. MATLAB was used to perform the

analysis. The outcome of the ANOVA analyses are a set of p-values gauging the

significance of the given factors in accounting for the observed variation in the data.

The statistical significance as a function of p-value used in the present work follows

that described by Koopmans [100] and is shown in Table 5.3.

The resulting p-value for the Q12 variable was 0.1017 and the p-value for the

T12 variable was 0.9908. This means that the null hypotheses cannot be rejected

at the 90% significance level. The injection parameters do not have a statistically

significant effect on the deviation of α from the incompressible scaling factor Q12.

This can be illustrated by the use of notched box plots, as described by McGill [101].

A box plot is a means of graphically displaying relevant statistics of a data set. A

typical box plot is shown in Figure 5.17. The center line of the box represents the

median of the data set. The top and bottom of the box are the upper and lower

quartiles of the data, thus the box itself contains the middle 50% of the data set. The

whiskers extending above and below the box extend to the most extreme non-outlier

data points, defined as points that lie within ±1.5 inter-quartile ranges of the edges

of the box. Individual outliers are indicated by ‘+’ symbols. If the data set has

a normal distribution with standard deviation σ, Koopmans [100] shows that the
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Figure 5.17: Schematic of a typical boxplot. Box plots graphically represent relevant
statistics of a data set.

upper and lower limits of the box are at ±1.348σ and the ends of the whiskers are

at ±2.696σ.

The notches in the box represent a robust estimate of the uncertainty about

the median for box-to-box comparisons. Boxes whose notches do not overlap have

medians that are significantly different at the 95% confidence level [101].

Figure 5.18 shows boxplots of the deviation of the calculated scaling factors α from

the nominal injection rate ratios as a function of injection rate ratio and temperature.

The figure shows that there is no statistically significant difference in the deviations

when sorted by the temperature variable. The figure shows that there seems to be

an upward trend of the error as the injection rate ratio increases, but the confidence

intervals (as shown by the notch widths) are also large.

The slight increase in the deviation of α from the injection rate ratio can possibly
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Figure 5.18: Boxplot of the deviation of the calculated incompressible scaling factors
α from the nominal injection rate ratios as a function of injection rate
ratio and temperature difference.
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be explained by the fact that the digital movies were all taken with the same frame

rate. As the injection rate increases the amount of change in the flow field that

takes place between frames also increases. This could lead to an inherent increase

in the error associated with the velocity fields, and this could in turn lead to larger

deviations in α from the nominal injection rate ratios.

Once α has been determined a nondimensional error metric εR can be defined :

εR =

√∑
i,j |~r(i, j)|2∑
i,j |~v1(i, j)|2

(5.11)

This metric can be interpreted as the mean residual vector magnitude normalized by

the mean magnitude of the higher injection rate field. A plot of the residual metric

for all possible median field comparisons vs. critical radius is shown in Figure 5.19.

As in Figure 5.16, Figure 5.19 shows that the residual metric plateaus as the

critical radius increases. For consistency, a critical radius of 4.5 cm was chosen for

the following analysis.

If the residual metric εR is high, it is an indication that there is a significant

difference in the flow fields that cannot be accounted for by a simple scaling of

injection rates. Since a laminar Newtonian flow would scale linearly with the injection

rate this would suggest a non-Newtonian fluid effect.

The metric εR can now be used to rephrase the question asked at the beginning

of this section: Do the injection parameters have a statistically significant impact on

the residual PIV vector fields? In other words, do the injection parameters have a

statistically significant impact on the injection molding flow that cannot be accounted

for by a simple incompressible viscous Newtonian scaling?

MATLAB was used to perform a 2-way ANOVA on the residual metric results

using a 95% significance level.
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Figure 5.19: Residual metric εR as a function of critical radius for all possible median
field comparisons. The legend for the symbols is found in Table 5.2.
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The null hypotheses were that the injection rate ratio and temperature difference

had no effect on the residual metric εR. The resulting p-value for the injection rate

ratio was 0.7377 and the resulting p-value for the temperature difference was 0.7168.

Thus the null hypotheses could not be rejected. The injection rate ratio and the

temperature difference had no statistically significant impact on the residual metric

εR. Within the bounds of this parameter study, the injection parameters had no

significant impact on the flow kinematics that could not be explained using a simple

Newtonian scaling factor.

There was only one PIV field pairing with an injection ratio of 1.33, leading to

a perhaps unnecessary extra level of Q12. The ANOVA analysis was carried out a

second time, assigning the residual metric of the Q12=1.33 run to the Q12=1.5 group

to reduce the number of levels of Q12. The resulting p-value for the new Q12 was

0.8923 and the p-value for T12 was 0.9352, leading to the same conclusion that the

injection parameters have no statistically significant effect on the residual metric.

Figure 5.20 shows boxplots of the residual metric sorted by the variables Q12 and

T12. There was only one pairing with a ratio of 1.33, leading to a degenerate boxplot

for that injection ratio. The position of the notches indicate that the means of the

different groups are not statistically distinguishable from each other.

Note that this conclusion does not mean that the polymer flow is Newtonian.

The flow profile through the thickness of the cavity is non-Newtonian, but was not

measured in this work. But this conclusion does not claim that the in-plane flow

is Newtonian either. The underlying flow may have non-Newtonian characteristics,

but in this study those characteristics scale with a simple Newtonian scaling factor.
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Figure 5.20: Boxplots of the residual metric as a function of injection rate ratio and
melt temperature difference. The molding parameters have no statisti-
cally significant effect on the residual metric.
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5.5 Examining the Structure of the Residual Velocity Fields

The previous analysis examined the global effect of the molding parameters on

the velocity fields. Although no statistically significant effect was found, there might

still be interesting effects found at the local level. In order to examine this possibility

the residual fields were compared with each other to see if any structural similarities

were present.

This analysis was carried out using cross-correlations. Given two residual vector

fields a correlation coefficient Φ may be defined as:

Φ =

∑
~r1 · ~r2√∑

|~r1|2
∑
|~r2|2

(5.12)

where ~r1 and ~r2 are residual fields (including scaling factors) as defined in Equa-

tion 5.5.

If two residual fields are well-correlated then the value of Φ would approach unity.

If the two fields were uncorrelated the value of Φ would approach zero.

The correlations were carried out for every pair of residual fields and the results

were tabulated and explored. A histogram of the correlation coefficients is shown in

Figure 5.21. The values are distributed fairly evenly across the interval (-1,1) with a

mean of 0.0651. No discernable effect of molding parameters on the correlations was

found.

To confirm this statistically, a Kolmogorov-Smirnov test was performed [102].

The Kolmogorov-Smirnov test compares the empirically determined cumulative dis-

tribution function (CDF) of a given random variable to the known CDF of a partic-

ular distribution. The null hypothesis is that the two distributions are the same.

MATLAB was used to perform a Kolmogorov-Smirnov test comparing the distri-
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bution of Φ to a uniform distribution. The resulting p-value was 0.0724, leading to

the conclusion that the null hypothesis could not be rejected at the 5% significance

level. The correlations of the residual fields have a distribution statistically indistin-

guishable from a uniform distribution. This can be seen graphically in Figure 5.22.

The residual fields show no meaningful correlation. The molding parameters do

not cause meaningful structure in the residual fields that persists from one case to

another.

5.6 Simulating the Mold Filling Flow with Moldflow

As described in Section 1.1, one of the motivations of this research was to provide

data that could be used to benchmark existing polymer-flow simulation codes. To

accomplish this Moldflow 6.1 was used to simulate the flow studied in the present

work.

A midplane mesh model of the cavity of the optical access mold was constructed

and is shown in Figure 5.23. Summary statistics of the mesh can be found in Ta-

ble 5.4. A midplane mesh is two-dimensional, but the assigned thickness of the

elements can vary to reflect changes in the cavity thickness. In the optical access

mold, draft on the large steel surface opposite the main window causes the cavity

thickness to vary. This was reflected in the midplane mesh and is illustrated in Fig-

ure 5.23. The assigned element thicknesses varies across the shaded regions and are

listed in Table 5.4.

Simulations were run for the same set of molding conditions used in the PIV

experiments. The Moldflow results were then exported to Matlab for further analysis.

This process involved a number of steps. The average velocities and the nodal fill

times were exported to XML files, and XML parsing routines were written in Matlab
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Figure 5.21: Histogram of the correlations between median field residuals. The cor-
relations show no trend that can be linked to molding conditions.
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Figure 5.22: Cumulative distribution functions of Φ and of a uniform distribution.
The two functions are not statistically distinguishable at the 5% signif-
icance level
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Figure 5.23: Mesh used in the Moldflow simulation of the mold filling process. The
mesh is in the same orientation as the cavities shown in Figures 5.1-
5.12. The shaded regions denote elements with constant assigned thick-
ness. The thickness varies to account for draft in the mold cavity. The
assigned element thicknesses are found in Table 5.4.
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Table 5.4: Statistics for the Moldflow mesh used to simulate the flow in the mold
filling phase.

Entity Counts
Surface triangles 880
Nodes 478
Mesh volume 48.9511 cm3/s
Mesh area 73.7051 cm2

Surface triangle aspect ratio
Minimum aspect ratio 1.233
Maximum aspect ratio 2.033
Average aspect ratio 1.535

Assigned element thicknesses
Region 1 6.408 mm
Region 2 6.641 mm
Region 3 6.525 mm
Region 4 6.757 mm
Region 5 6.874 mm

to extract the necessary information from the tagged XML files. Moldflow calculates

one average velocity per mesh element per time step and locates the average velocity

vector at the centroid of each element. The velocities can be saved to a file, but they

are referenced to element number only, not to specific centroid coordinates. The

situation is similar for the nodal fill times. The fill times are referenced to node

numbers, but the node coordinates are not given.

In order to perform post-processing on the Moldflow results the node coordinates

were needed, as well as a list of which nodes bound each element. This information

was obtained by exporting the mesh information to an ASCII file. Another parsing

routine was written to extract the necessary node and element information from the

file. A linked list of element boundary nodes and nodal coordinates was created,

and this information was then used to calculate the centroid coordinates of each
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element. These coordinates were then matched to the average velocity data through

the element number. The final result was an array of velocity data with linked

centroid coordinates, allowing the data to be plotted outside of Moldflow as shown

in Figure 5.24.

Extracting the flow front information from the Moldflow results presented sim-

ilar difficulties. Moldflow does not report flow front information per se, it instead

calculates the time it takes for melt to reach each node of the mesh. This results in a

spatial distribution of fill times. A contour plot can then be made for any desired fill

time, with the contour denoting the boundary of the melt at that given time. This

boundary can be thought of as the flow front.

In order to calculate the flow front position outside of Moldflow the array of nodal

fill times was exported to an XML file. A parsing routine was written that extracted

the fill times and corresponding node numbers and imported them into Matlab.

The node coordinates were extracted from the ASCII mesh file and were linked to

the corresponding fill times. This resulted in a non-uniform spatial distribution

of fill times since the node coordinates do not fall on a regular grid. This spatial

distribution was then interpolated onto a regular grid to enable the use of Matlab’s

contour function. The contour function was then used to plot contours at desired

fill times. The coordinates of the contour points were then used to plot the simulated

flow fronts, as shown in Figure 5.25.

Further post-processing was needed to perform a direct comparison of the Mold-

flow simulation with the experimentally measured PIV results. The goal of the

post-processing was to plot the Moldflow results with the same grid spacing, flow

front velocity vectors, and overlaid continuity scaling that were used on the PIV

data shown in Figures 5.1- 5.12. The Moldflow velocity vectors were reported at
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Figure 5.24: Example of Moldflow simulation data prior to post-processing. The
velocity vectors are placed at the centroids of the triangular mesh el-
ements shown in Figure 5.23. The flow front is a contour of nodal fill
times matching the point of time at which the velocity field was calcu-
lated.
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Figure 5.25: Contour plots of Moldflow nodal fill time results. The contours are of
the nondimensionalized fill time t∗, the ratio of the local fill time to the
total fill time.
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the centroids of the mesh elements, forming an irregular array of velocity vectors.

These vectors were then resolved onto the same grid produced by the DaVis PIV

processing software. The corresponding flow front contour was then calculated for

the same point in time. An example is shown in Figure 5.26.

A second flow front contour was then calculated at a time 1/30th of a second later

to allow calculation of the front propagation velocity with the same time resolution

as was used with the hand-traced flow fronts from the digital mold-filling movies.

The melt velocity and flow front contour data were then put into exactly the same

format as the DaVis PIV results and the hand-traced flow front coordinate data.

In order to facilitate comparison between the experimental data and simulation

results the PIV dead zone radii were also applied to the simulation results. As seen

in Figure 5.24 there is no dead zone near the gate in the simulation results, but

applying a dead zone to the simulation has two positive effects. First, it allows a

direct comparison between the data and the simulation. Vectors that appear in the

simulation results will always have corresponding vectors in the experimental data

plots. Second, it makes it easier to plot the simulation results on the same scale

as the experimental data. The velocity vectors near the gate are quite large and

dominate the images when plotted at the same scale as the experimental data.

The result of this post-processing effort was a set of Moldflow simulation data

that was indistinguishable in format from the experimental PIV and flow front data.

This allowed the same processing and plotting routines to be used for both the ex-

perimental data and the simulation results. For example, the same scaled continuity

pseudo-color plot could be superposed on the simulation results that was used in the

PIV analysis.

The final result of this post-processing can be seen in Figure 5.27 and Figure 5.28.
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Figure 5.26: Result of interpolating the Moldflow velocity results onto a grid with
the same density as the PIV results shown in Figures 5.1- 5.12. The
Moldflow flow front has also been superposed on the data.
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These are the results of the Moldflow simulation of the melt flow resulting from a

245◦ C melt injected at a rate of 34.5 cm3/s.

5.7 Examination of the Structure of the Simulated Velocity
Fields

In Section 5.4 and Section 5.5 it was found that the PIV velocity fields scaled

linearly with volume flow rate and that the residual fields that remained after ac-

counting for this scaling were uncorrelated and uniformly distributed. These same

analyses were then performed on the simulation data to see if the same results would

be obtained.

First the simulation fields were compared to each other and a best-fit scaling

factor α was calculated for each pair of simulation fields using Equation 5.5. As with

the PIV results the calculations were repeated for various critical radii to ensure that

the final result was not a function of critical radius.

The deviation of the best-fit scaling factor α from the injection rate ratio was

then plotted against the critical radius. The result of this is shown in Figure 5.29.

The legend for the symbols is found in Table 5.2.

This figure is directly comparable to the analysis of the PIV vector fields shown

in Figure 5.16. A comparison of the two shows that the deviation from Newtonian

scaling for the simulation results is a factor of ten smaller than that of the PIV

results. This indicates that the simulation results are even more strongly scalable

with injection rate than the PIV results.

The residual fields were then created for the simulation results using Equation 5.5

and the residual metrics calculated using Equation 5.11. The residual metrics were

calculated using several values of critical radii to ensure that the results did not
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Figure 5.27: Moldflow simulation: 245◦ C, 34.5 cm3/s, t∗=0.3 (top) and t∗=0.5 (bot-
tom)
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Figure 5.28: Moldflow simulation: 245◦ C, 34.5 cm3/s, t∗=0.7 (top) and t∗=0.9 (bot-
tom)
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Figure 5.29: Deviation of the calculated scaling factor α from the ratio of injection
rates Q12 as a function of critical radius for all possible comparisons of
the Moldflow simulation results. The legend for the symbols is found in
Table 5.2. The deviations for the simulations are a factor of ten smaller
than those calculated from the PIV results as shown in Figure 5.16.
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Table 5.5: Summary of the statistics used to describe the experimental PIV results
and the Moldflow simulation results. These results show that both the
experimental and simulation velocity fields scale in a Newtonian fashion
with the injection rate ratio.

Experimental Results
(α−Q12)/α 0.03±.07
Residual metric εR 0.11±0.07

Simulation Results
(α−Q12)/α 0.003±.008
Residual metric εR 0.03±0.07

depend on the choice of critical radius. The resulting residual metrics were then

plotted against critical radius in Figure 5.30. The legend for the symbols can be

found in Table 5.2.

Comparing Figure 5.30 to the corresponding figure for the PIV data, Figure 5.19,

it can be seen that the relative error metric for the simulation is on the order of three

times smaller than that found in the PIV data. In combination with Figure 5.29 this

shows that the simulation results scale linearly with injection rate. When this scaling

is accounted for between two fields the residual field is much smaller than that found

in the PIV velocity fields. The summary statistics of the scaling factor and residual

metric calculations for both the PIV data and the Moldflow simulations can be found

in Table 5.5.

The effect of injection rate and temperature on the scaling factor α and on the

residual metric for the simulated velocity fields was then studied. ANOVA analyses

identical to those carried out on the PIV data and described in Section 5.4. The

results of these analyses on the simulation results, as well as those on the PIV data,

are shown in Table 5.6 and Table 5.7.
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Figure 5.30: Residual metric εR as a function of critical radius for all possible median
field comparisons. The legend for the symbols is found in Table 5.2. The
residual metrics for the simulations are a factor of three smaller than
those calculated from the PIV results as shown in Figure 5.19.
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Table 5.6: Summary of the results of the statistical tests used to analyze the devi-
ation of the velocity field scaling from Newtonian scaling summarized in
Table 5.5. The ANOVA analyses tested the null hypotheses that the in-
jection rate ratio and melt temperature were not significant factors of the
observed variations of the best calculated scaling factor from the Newto-
nian scaling factor. The analyses were carried out at the 5% significance
level.

Experimental Results
Factor p-value Significance
Injection rate ratio 0.1017 Not significant
Temperature 0.9908 Not significant

Simulation Results
Factor p-value Significance
Injection rate ratio 0.0084 Highly significant
Temperature 0.9979 Not significant

It was found that temperature was not a statistically significant factor for the

deviation of the scaling factors from the injection rate ratio, with a p-value of 0.9979.

This agrees with the analysis on the PIV data. However, the injection rate ratio was

a highly significant factor with a p-value of 0.0084. These results are illustrated

graphically with boxplots in Figure 5.31. This is in contrast with the analysis on the

PIV results which showed that injection rate ratio was not significant. These results

are illustrated graphically with boxplots in Figure 5.31.

Melt temperature was a mildly significant factor in explaining the variation found

in the residual metric with a p-value of 0.0632. Injection rate ratio was a highly

significant factor with a p-value of 0.0061. These results are illustrated graphically

with boxplots in Figure 5.32. This again is in contrast with the analysis on the PIV

results, which showed that neither melt temperature nor injection rate ratio were

significant factors.
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Figure 5.31: Boxplot of the deviation of the incompressible scaling factors α from
the nominal injection rate ratios for the Moldflow simulation results as
a function of injection rate ratio and temperature difference.
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Figure 5.32: Boxplots of the residual metric for the Moldflow simulation results as
a function of injection rate ratio and melt temperature difference. The
molding parameters have no statistically significant effect on the resid-
ual metric.
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Table 5.7: Summary of the results of the statistical tests used to analyze the resid-
ual velocity fields after accounting for the Newtonian scaling with injec-
tion rate summarized in Table 5.5. The ANOVA analyses tested the null
hypotheses that the injection rate ratio and melt temperature were not
significant factors of the observed variations of the residual metric.

Experimental Results
Factor p-value Significance
Injection rate ratio 0.7377 Not significant
Temperature 0.7168 Not significant

Simulation Results
Factor p-value Significance
Injection rate ratio 0.0061 Highly significant
Temperature 0.0632 Mildly significant

It must be kept in mind that even though there are discrepancies between the

ANOVA analyses on the PIV and simulation scaling factors and residual metrics,

these results are secondary. The primary result of comparing the PIV and simulation

scaling factors is that both deviate only slightly from the injection rate ratios, with

the deviation in the simulation results a factor ten smaller than that of the PIV

results. Similarly, the residual metrics of both are small, with the simulation residual

a factor of three smaller than that of the PIV results. When the much smaller scaling

deviations and residual metrics of the simulations were examined more closely it was

found that injection rate ratio was a significant factor. This was not the case for the

PIV data.

The residual fields of all possible pairings of the simulation results were then

cross-correlated as they were for the PIV results using Equation 5.12. The goal of

this analysis was to see if there were any significant, persistent structures remaining

in the residual fields after the injection rate scaling had been accounted for. A
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Table 5.8: Summary of the results of the Komolgorov-Smirnov tests used to analyze
the correlations of the residual experimental PIV fields with each other
and of the correlations of the Moldflow simulation residual fields with each
other. The null hypotheses of the tests were that the distributions of the
correlations were uniform. The tests were carried out at a 5% significance
level.

Data Source p-value Conclusion
Experiment 0.0724 Uniform distribution
Simulation 2.4863×10−4 Non-uniform distribution

histogram of the correlations is shown in Figure 5.33.

The cumulative distribution function of these correlations is shown in Figure 5.34

along with the CDF of a uniform distribution. Unlike the corresponding figure for

the PIV results, Figure 5.22, the CDF of the simulation correlations seems to differ

significantly from that of a uniform distribution. This conclusion was confirmed by a

Komolgorov-Smirnov test. This test resulted in a p-value of 2.4863×10−4, rejecting

the null hypothesis that the correlation distribution was taken from a population

with a uniform distribution. This result is in contrast to the corresponding test on

the PIV data, as shown in Table 5.8.

5.8 Simulating Polymer Melt flow with the Hele-Shaw Ap-
proximation

Before comparing the experimental and simulated results a brief overview of

Moldflow’s solver is in order. Moldflow uses a Hele-Shaw model to model the fluid

flow in the mold cavity. The Hele-Shaw model assumes that the pressure gradients in

the cavity thickness direction are negligible, ∂p/∂z � ∂p/∂x and ∂p/∂z � ∂p/∂y,

and that flow in the cavity thickness direction is negligible, vz � vx and vz � vy.
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Figure 5.33: Histogram of the correlations between Moldflow simulation residuals
created in the same manner as Figure 5.21.
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Figure 5.34: Cumulative distribution functions of Φ, based on Moldflow results, and
of a uniform distribution.
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Dantzig and Tucker[103] give a good summary of the use of the Hele-Shaw equa-

tion in the modeling of polymer flow. Following their derivation, the Hele-Shaw

model equation is given by:

∇ · (S∇p) = 0 (5.13)

where S is the flow conductance and is given by:

S(x, y) =

∫ B

0

z2dz

η(x, y, z)
(5.14)

and η is the local viscosity and B is the cavity half-thickness.

Once Equation 5.13 has been used to determine the pressure distribution the

gap-wise average velocities are given by

ū = −S
B
∇p (5.15)

The full velocity distributions can be calculated using

~u = −
(∫ h

z

z′dz′

η(z′)

)
∇p (5.16)

where z′ is a dummy variable of integration.

The Hele-Shaw approximation does not satisfy the full continuity equation∇·u =

0. It instead satisfies an integrated continuity equation, a weaker requirement. This

can be seen by combining Equations 5.13 and 5.15:

∇ · (Bū) = 0 (5.17)

Equations 5.13 and 5.15 have important ramifications for any simulation employ-

ing the Hele-Shaw model. First, only average velocities are calculated. It is possible

to calculate velocity variations in the thickness direction using Equation 5.16, but

this velocity profile only affects the magnitude of the velocity as a function of thick-

ness. The velocity vector orientations are constant throughout the thickness of the
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part. Equation 5.17 also shows that velocity profiles calculated from the flow con-

ductance are not guaranteed to satisfy the continuity equation since only the average

velocity used in the mass conservation equation.

Another important ramification arises from consideration of the boundary condi-

tions of Equation 5.13. Dirichlet boundary conditions are typically imposed at the

front, where p = 0, and at the injection location where an injection pressure may be

specified. At the solid boundaries of the mold cavity Neumann boundary conditions

are imposed with ∂p/∂n = 0. Equation 5.15 show that this is equivalent to imposing

a no-penetration boundary condition at the walls. These boundary conditions com-

pletely specify the solution of Equation 5.13, so a no-slip boundary condition cannot

be imposed on a flow when using the Hele-Shaw model. In fact, Dantzig [103] points

out that there will always be a pressure gradient parallel to the wetted surface of the

mold. Since the velocity is parallel to the pressure gradient, this means that there

will always be a non-zero tangential velocity at the walls of the mold when using the

Hele-Shaw model.

Another ramification of the Hele-Shaw model concerns its prediction of flow

fronts. Programs such as Moldflow use the calculated pressure distribution to gen-

erate average velocities, and then uses these velocities to move the polymer in the

cavity. But along the cavity walls the imposed boundary condition is ∂p/∂n = 0.

This means that isobars will always be perpendicular to the cavity walls at the point

of intersection with the wall. Since the flow front is also an isobar with p = 0, this

means that the flow fronts will also be perpendicular to the cavity walls.

One last ramification of the Hele-Shaw model is its assumption of negligible veloc-

ity in the thickness direction. This is a good approximation for polymer melt flows in

most areas of the mold cavity, but it does not hold true near the flow front due to the
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fountain flow effect. To summarize, then, the Hele-Shaw model has limitations that

can be expected to cause deviations between simulation results and experimental

data:

• Only the average velocities are calculated. Midplane velocities may be cal-

culated by assuming a constitutive relation, but they are not guaranteed to

satisfy continuity.

• The no-slip boundary condition cannot be imposed, and slip velocities should

be expected along the walls.

• Flow fronts will tend to be perpendicular to the cavity walls.

• Fountain flow effects near the front cannot be captured by the Hele-Shaw

model.

5.9 Comparison of the Simulated Flow Fronts with the Ex-
perimental Data

Figure 5.35 shows a comparison between the manually extracted flow fronts and

the Moldflow simulation fronts at t∗=0.1, 0.3, 0.5, 0.7 and 0.9 for specimens molded

at 245◦C and 11.5 cm3/s. The striking feature of this figure is the difference between

the data and the simulation near the cavity walls. This is due to the Hele-Shaw

approximation. As discussed in Section 5.8, the Hele-Shaw approximation enforces

the no-penetration boundary condition but not the no-slip boundary condition. Since

the velocity is proportional to the pressure gradient, the no-penetration condition

forces the component of the pressure gradient perpendicular to the cavity walls to be

zero at the walls. This in turn forces the pressure isobars to be perpendicular to the

cavity walls. The flow front coincides with the p = 0 isobar, so the simulated flow
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fronts based on this isobar will tend to be perpendicular to the walls when using the

Hele-Shaw approximation. This is not what actually happens in the mold cavity. In

the flow fronts extracted from the digital movies the fronts always curve toward the

wall due to the no-slip boundary condition.

Another feature of Figure 5.35 is that the actual fronts always lead the simulated

fronts. This is due to the fountain flow effect. The actual fronts have curvature

through the thickness of the cavity. Examination of a short shot would show that

the flow front has a somewhat parabolic shape when viewed from the side. The

manually extracted flow fronts trace out the tip of this profile. The simulation

calculates an average velocity, which is constant through the thickness of the part.

This means that the experimentally determined fronts will lead the simulated fronts,

even if the two fronts enclose equal polymer volumes.

The differences between the measured and the simulated fronts are shown in

Figure 5.36 and Figure 5.37. Figure 5.36 compares the flow fronts at t∗=0.1 and

t∗=0.3. At these two times the flow is primarily radial. The coordinates of the

points on the fronts were converted into polar coordinates using the reference frame

illustrated in Figure 4.7. The normalized residuals of the r-components of the points

on the fronts were calculated for values of θ ranging from 0◦ to 90◦. The figure shows

that the simulated fronts are most accurate in the middle of the cavity and have high

residuals near the walls.

Figure 5.37 compares the flow fronts at t∗=0.5, t∗=0.7 and t∗=0.9. At these times

the flow is primarily a channel flow. The coordinates of the points on the fronts

were transformed to the reference frame illustrated in Figure 4.5 and the normalized

residuals of the y coordinates were calculated for values of x ranging from 0 to 6.7

cm. Again, the simulated fronts are most accurate near the middle of the cavity but
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Figure 5.35: Comparison of the simulation flow fronts (dashed lines) with those ex-
tracted manually from the digital movies of the mold filling (solid lines).
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Figure 5.36: Comparison of the simulation flow fronts with those extracted manually
from the digital movies of the mold filling for the radial flow regime.

have significant residuals near the walls.

5.10 Comparison of the Simulated Velocity Fields with the
Experimental PIV Data

In Section 5.5 it was shown that the simulation results scale with the injection

rate. That being the case, the results for the 245◦, 34.5cm3/s conditions shown in

Figure 5.27 and Figure 5.28 can be taken as typical of the simulation results and will

be compared with the experimental results at the same molding conditions shown in

Figure 5.11 and Figure 5.12.

Direct comparison of the experimental and simulated flow fields is complicated

by the fact the Hele-Shaw analysis calculates average flow velocities, not midplane
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Figure 5.37: Comparison of the simulation flow fronts with those extracted manually
from the digital movies of the mold filling for the channel flow regime.
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velocities. But, since for the bulk of the flow the Hele-Shaw assumptions hold true

for polymer melts, a Hele-Shaw analysis should deliver accurate streamlines and

thus accurate velocity vector orientations. This suggests that the best approach

to comparing the experimental results with simulations would be to examine the

velocity vector orientations and magnitudes separately.

In order to compare velocity vector orientations the vector angles were calculated

at each point in the t∗=0.9 field and in the corresponding PIV vector field. A scalar

field was created by subtracting the simulation orientations from the PIV orientations

at ecah point in the field. A pseudo-color overlay was then used to superpose this

scalar field on top of the simulated vector field. The result of this operation is shown

in Figure 5.38. This figure shows that the predicted orientations are quite good, with

a mean angular difference of 1.7◦. The standard deviation of the orientations was

1.4◦.

Direct comparison of the PIV midplane velocity vectors to the Moldflow results

is not possible since Moldflow calculates average velocities, not midplane velocities.

An intermediate step must be taken to make a comparison. Two such steps are

considered here. The first is to use the PIV data to calculate average velocities. The

second is to use the Moldflow simulation to calculate midplane vectors.

In Figure 5.15 it was shown that in the channel-flow region of the mold filling

process the average profile factor F was 0.7. If this factor is applied to the entire

field an estimated average velocity field can be calculated as ū = Fu. Figure 5.39

shows the result of this comparison. The pseudo-color overlay represents the ratio

of the PIV vectors to the simulated vectors and is overlaid on the simulated vector

field. In general the comparison is quite good, with the mean ratio of magnitudes

equal to 0.998 and a standard deviation of 0.25. The main areas of difference are
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Figure 5.38: Pseudocolor overlay represents the difference in angles between the PIV
vectors and the Moldflow simulation vectors in degrees. The mean
angular difference is 1.7◦.
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Figure 5.39: Pseudocolor overlay represents the ratio of magnitude of the PIV vectors
to the simulation vectors. The median ratio is 0.998 with a standard
deviation of 0.25.

near the walls, particularly in the corner. This is likely due to a combination of two

factors. Near the walls the simulation is bound to have a higher velocity since the

Hele-Shaw approximation does not impose the no-slip boundary condition. Second,

near the corner the flow is transitioning from radial to channel flow. This means that

the profile factor calculated from the purely channel-flow regime is probably not as

applicable in this region.

The second method for comparing the Moldflow simulation to the PIV data is

to use Moldflow itself to calculate midplane velocities. Moldflow allows the user to

estimate midplane velocities by assuming a parabolic profile through the thickness

of the part. The parabola is modified near the walls due to the presence of a frozen
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Figure 5.40: Moldflow uses a parabolic profile assumption in calculating the midplane
velocity from the average velocity. Near the walls the flow is slower
due to solidification effects. This further sharpens the profile at the
midplane. The profile factor for this profile is 0.589

layer. An example of this profile is shown in Figure 5.40. Calculating the average

value of this profile results in a profile factor F = 0.589. A pure parabola would have

a profile factor F = 0.667.

Figure 5.41 shows the comparison of Moldflow’s prediction of midplane velocity

vectors superposed by the scaled continuity equation. Obviously, plotting a field

of midplane velocity vectors is pushing Moldflow outside of its normal operating

parameters. The continuity equation shows large errors compared to Moldflow’s

prediction of average velocities. Taking the final step, these midplane velocities are

compared to the PIV vectors in Figure 5.42. Again the ratio of the PIV vectors

to the simulated vectors is overlaid on the simulated vector field. The mean ratio

is 0.89 with a standard deviation of 0.37. This means that the simulated midplane

vectors consistently overestimate the PIV vector magnitudes. This is due to the fact
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that Moldflow’s assumed velocity profile through the cavity thickness is parabolic.

Moldflow assumes a Newtonian profile instead of a non-Newtonian profile. The ratio

of the PIV vectors to the simulation vectors should be equal to the inverse ratio of

profile factors since the average flow rates are equal. For example, take a sample

area dA spanning the mold cavity and perpendicular to the cavity walls:

dQPIV = FPIV uPIV dA (5.18)

dQMF = FMFuMFdA (5.19)

dQPIV = dQMF (5.20)

FPIV uPIV dA = FMFuMFdA (5.21)

uPIV

uMF

=
FMF

FPIV

(5.22)

where QPIV and QMF are the flow rates through the area dA based on the PIV

vectors and the Moldflow midplane vectors. uPIV and uMF are the PIV and Moldflow

midplane velocities and FPIV and FMF are the profile factors for the PIV field and

the Moldflow field. Using the measured estimates of FPIV = 0.7 and FMF = 0.589

gives a predicted midplane velocity ratio of uPIV /uMF = 0.86, comparing favorably

with the measured ratio of 0.89.
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Figure 5.41: Moldflow prediction of midplane velocities superposed by the scaled
continuity equation.
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Figure 5.42: Ratio of the PIV data magnitudes to the Moldflow prediction of mid-
plane velocity magnitudes. The predicted ratio based on the ratio of
profile factors is 0.85. The measured mean ratio is 0.89 with a standard
deviation of 0.37.



CHAPTER 6

Estimation of the Power Law Parameters of

Polystyrene Using the Optical Access Mold

The direct outputs of the optical access mold experiment are the digital images,

from which PIV and flow front data may be extracted, and the in-mold pressure

traces. The gate pressure data corresponding to the PIV data presented in Chapter 5

will be presented here along with Moldflow simulations. An analytical model of the

pressure rise during the radial flow portion and channel flow portion of the mold

filling process will also be presented. The model will be used to estimate the power-

law coefficient and exponent of STYRON 615 APR.

6.1 Gate Pressure During the Filling Phase

The pressure at the gate of the optical access mold was measured by a mold

pressure sensor as described in Section 2.7. The pressure traces reflect three flow

regimes as illustrated in Figure 6.1. The initial portion of the pressure trace is due

to the radial flow of the polymer as it fills the mold and is described in Section 6.3.1.

When the melt contacts the wall opposite the gate it transitions into a channel flow,

characterized by a linear pressure rise as described in Section 6.3.2. When the melt

contacts the last wall it rises sharply, with the pressure reaching a maximum as the

188
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melt fills the final corner of the mold.

The gate pressure curves corresponding to the molding conditions found in Ta-

ble 5.1 are shown in Figure 6.2 and Figure 6.3. The pressure traces were averaged

over each set of molding conditions.

As described in Section 2.7, the mold pressure sensor proved inaccurate at the

relatively low pressures seen during the filling phase. The calibration curve shown

in Figure 2.25 was applied to the pressure data. The plateau value of the correction

factor seen in Figure 2.26 was extended to cover pressures up to 1.5 MPa, the range

of pressures seen during the filling stage.

The pressure sensor problems are most evident in the 11.5cm3/s data sets. These

data sets have “dead zones” at the beginning of the shot where the pressure does

not begin to increase until at least 0.25 seconds into the shot. These runs were

at the lowest gate pressures, and apparently the pressures were too low during the

beginning of the mold filling to register on the pressure sensor. The sensor seems

to exhibit a threshold stress when it is in the mold and the mold is closed. The

sensor did not exhibit this behavior when calibrated outside of the mold, suggesting

a friction problem with the mold pin that the sensor is seated beneath.

6.2 Moldflow Simulation of the Gate Pressure During the
Filling Phase

The Moldflow simulations described in Chapter 5 produce gate predictions as well

as velocity fields. The same mesh shown in Figure 5.23 and described in Table 5.4

was used to generate gate pressure traces.

Two sets of Moldflow simulations were performed. The first set used the en-

try for STYRON 615APR found in the Moldflow material database. The viscosity
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Figure 6.1: Typical gate pressure curve for the filling of the optical access mold. The
curve reflects three different flow regimes: radial flow for the first half of
the shot, channel flow for the second half of the shot, and a peak due to
the flow contacting the far wall and filling the last corner of the mold.
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Figure 6.2: Averaged gate pressure traces for specimens molded at 230◦C.
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Figure 6.3: Averaged gate pressure traces for specimens molded at 245◦C.
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curves in this database were generated by a capillary rheometer. A second set of

simulations was performed using data generated by an injection molding rheometer.

Tseng [104] and Amano [105] have used injection molding machines to force poly-

mer melts through capillary rheometers. The goal of this type of measurement is to

ensure that the polymer melt undergoes a shear history typical of injection molding

before its viscosity is measured.

Moldflow Plastics Labs (MPL) measured the viscosity of the polymer and particle

mixture used in the present work using an injection molding rheometer. Their full

report can be found in Appendix A. MPL also provided a Moldflow-compatible

material database file that contained the Cross-WLF and Carreau model parameters

that best fit the injection molding rheometer data.

Viscosity curves calculated from the Cross-WLF models for both the standard

capillary rheometer data and the injection molding rheometer data are shown in

Figure 6.4. The Cross-WLF model is given by:

η =
η0

1 + (η0γ̇/τ ∗)
1−n (6.1)

where

η0 = D1 exp

[
−A1(T − T ∗)

A2 + (T − T ∗)

]
(6.2)

T ∗ = D2 +D3P (6.3)

A2 = Ã2 +D3P (6.4)

(6.5)

where P is the melt pressure in Pascals and T is the melt temperature in degrees

Kelvin.

The viscosity as measured by the injection molding rheometer tends to be lower

than that measured by the standard capillary rheometer at identical melt temper-
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Table 6.1: Comparison of the Cross-WLF model parameters for STYRON 615 APR
from two different types of viscosity measurement. The Moldflow database
values were extracted from capillary rheometer data, and these are com-
pared with parameters extracted from data taken on an injection molding
rheometer..

Cross-WLF Moldflow Injection molding
Parameter database value rheometer value
n 0.3775 0.3720
τ ∗ (Pa) 12726 21765.5
D1 (Pa·s) 7.44×1010 4.32561×1010

D2 (K) 373.15 373.15
D3 (K/Pa) 0 0
A1 25.391 25.245

Ã2 (K) 51.6 51.6

atures and shear rates. The lower viscosity leads to lower predicted gate pressures

as seen in Figure 6.5 and Figure 6.6. The differences between the simulations are

slight, but are more pronounced at the lower injection rates.

The Moldflow simulations using the injection molding rheometer data are com-

pared with the experimental results in Figure 6.7 and Figure 6.8. The correspondence

between the simulation and the data is best during the radial flow portion of the pres-

sure traces, although allowance has to be made for the poor sensor sensitivity in the

slower injection rate data. Both the data and the simulations evince a linear channel

flow regime, but the data shows a smaller slope than the simulation in every case.

Both the data and the simulation show a sharp pressure peak during the corner filling

regime, but the peak in the simulation is significantly higher than that seen in the

data in every case.
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Figure 6.4: Comparison of the viscosity curves of STYRON 615 APR measured on
two different types of rheometer. The open symbols represent the viscos-
ity as found in the Moldflow database, measured by capillary rheometer.
The filled symbols represent the viscosity as measured by an injection
molding rheometer.
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Figure 6.5: Moldflow gate pressure simulations for specimens molded at 230◦C. The
open symbols represent simulations using the standard viscosity data for
STYRON 615 APR. The filled symbols represent simulations using the
viscosity measured by an injection molding rheometer.
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Figure 6.6: Moldflow gate pressure simulations for specimens molded at 245◦C. The
open symbols represent simulations using the standard viscosity data for
STYRON 615 APR. The filled symbols represent simulations using the
viscosity measured by an injection molding rheometer.



198

Figure 6.7: Comparison of measured gate pressures with Moldflow simulations using
viscosity data from the injection molding rheometer. The data is for a
melt temperature of 230◦C.
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Figure 6.8: Comparison of measured gate pressures with Moldflow simulations using
viscosity data from the injection molding rheometer. The data is for a
melt temperature of 245◦C.
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6.3 Power Law Model of the Gate Pressure During the Fill-
ing Phase

Following Bird’s [63] formulation, the constitutive relationship between shear

stress and strain rate for a power law fluid is given in tensor form by:

τij = mγ̇n−1γ̇ij (6.6)

where γ̇ij is the rate-of-strain tensor

γ̇ij =
∂ui

∂xj

+
∂uj

∂xi

(6.7)

The scalar γ̇ is a function of the second invariant of γ̇ij:

γ̇ =

√
1

2
γ̇ij γ̇ji (6.8)

The constants m and n are the power law coefficient and exponent respectively.

The power law model has the virtue of simplicity and accuracy at high shear

rates. It is not a good model for low shear rates, but this is typically not a problem

for polymer processing since most relevant molding processes occur at a high rate of

shear.

The power law’s greatest benefit is that it can be used to provide an analytical

solution to many flow problems in simple geometries. Many of these solutions can

be found in Bird [63].

6.3.1 Modeling the Radial Flow Portion of the Mold Filling Process

In order to model the flow of polystyrene in the mold it is first necessary to restrict

our attention to the radial flow portion of the mold filling process. By doing this we

can take advantage of the solution of a standard problem, that of the radial flow of

a power law fluid between parallel plates. The solution to this problem is given in
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Bird [63], but the analysis is left to the reader. The basic approach to the problem

is to first solve the simpler problem of the one-dimensional pressure-driven flow of a

power law fluid between parallel plates. Then the lubrication approximation is made

to apply this solution locally to radial flow between parallel plates. The velocity

profile is then integrated to relate the flow rate to the pressure drop, power law

parameters and mold geometry. The steps in this analysis are detailed in Appendix C.

The final result of the analysis, Equation C.21, is the following:

Q◦ =
4πB2

(1/n) + 2

[
(P1 − P2)B(1− n)

m(R1−n
2 −R1−n

1 )

]1/n

(6.9)

where m and n are the power law coefficient and exponent respectively and B is

the half-height of the cavity. The subscripts 1 and 2 refer to two different points of

interest in the cavity, with P the pressure at these points and R the radial distance

from the origin of the flow. The circle subscript on the flow rate Q is a reminder

that the radial flow occurs in a full 360◦ arc around the source.

Let us choose point 1 to be at the origin of the radial flow. Point 2 will be used to

represent the location of the flow front at a particular point in time. We can then set

R1 = 0, and R2 = Rfront. P1 is equal to the pressure at the gate. The atmospheric

pressure acting on the flow front is equal to P2. This gives P1 − P2 = Psensor, where

Psensor is the gage pressure read by the melt pressure sensor at the gate. These

substitutions lead to:

Q◦ =
4πB2

(1/n) + 2

[
PsensorB(1− n)

mR1−n
front

]1/n

(6.10)

In the present work the radial flow of the polymer covers a 90◦ arc, so the injection

rate Q is related to Q◦ by the relation Q = Q◦/4. If the injection molding machine

is set to a constant volume flow rate Q and if the shot starts at time t = 0, mass
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conservation leads to:

Qt ≈ π

4
R2

front(2B) (6.11)

This is an approximation that assumes a flat velocity profile perpendicular to

the mold with radius Rfront. The velocity profile in reality is not flat, thus the

approximation. It is good approximation, though, since the actual flow front for a

power law fluid has a very broad and flat central region, minimizing the error of

approximation.

Solving Equation 6.11 for Rfront as a function of time and taking the approxima-

tion as an equality gives:

Rfront =

√
2Qt

πB
(6.12)

It must be kept in mind that the flow into the corner-gated rectangular cavity is

one quarter of the full radial flow assumed in Equation 6.10. This gives:

Q =
Q◦

4
=

πB2

(1/n) + 2

[
PsensorB(1− n)

mR1−n
front

]1/n

(6.13)

Substituting the expression for Rfront from Equation 6.12 into Equation 6.13

gives

Q =
πB2

1/n+ 2

[
PsensorB(1− n)

m

(
πB

2Qt

) 1−n
2

]1/n

(6.14)

Solving this equation for Psensor gives

Psensor =
m

B(1− n)

[
Q(1/n+ 2)

πB2

]n [
2Qt

πB

] 1−n
2

(6.15)
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Since m,n,B, and Q are constant for any given shot we have:

Psensor ∝ t
1−n

2 (6.16)

If a plot is made of logPsensor vs log t, the result should be a straight line with

slope of (1 − n)/2. Equation 6.15 can also be used to calculate the power law

coefficient. According to this equation the intercept of the logPsensor vs log t plot

would be:

log

{
m

B(1− n)

[
Q(1/n+ 2)

πB2

]n [
2Q

πB

] 1−n
2

}
(6.17)

Since Q and B are known and since n can be calculated from Equation 6.16 the

only remaining unknown in the above expression is m.

Another way to calculate m and n from the pressure data is to fit Equation 6.15

directly to the data. This approach was taken using MATLAB to perform an uncon-

strained nonlinear optimization using the function fminsearch. The pressure data

from the two 34.5cm3/sruns were used. These runs had the highest recorded gate

pressures and showed the least ill-effects from the pressure sensor low-pressure sen-

sitivity issue. In particular, these runs had little or no “dead zone” at the beginning

of the run. Equation 6.15 makes no allowance for a dead zone, the pressure begins

to rise immediately. The presence of a dead zone in the data makes it impossible to

fit the data to Equation 6.15.

Even without the dead zone, though, the data points at the very beginning of

the 34.5cm3/s runs are still suspect since they have the lowest pressure values and

hence the highest errors. To avoid biasing the nonlinear optimization the first four

points of the two data sets were removed from consideration. The data points in the

radial flow regime were used for the optimization up to the point t∗=0.5, a time of
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Figure 6.9: Averaged gate pressures as a function of time for the radial portion of
the filling flow for specimens molded at the highest flow rate. The best
fit curves using Equation 6.15 are also shown. The best-fit values of n
and m for each curve are noted in the legend.

0.65 seconds for these two runs. The data points used and the resulting curve fits

are shown in Figure 6.9.

The extracted power-law parameters for the two data sets, as well as for the capil-

lary rheometer data presented in Chapter 2, are shown in Table 6.2. The mean value

of the shear-thinning exponent n was 0.4063, within 0.4% of n = 0.4079 measured

from the rheometer data. The mean reference stress was 17.25 kPa, within 14%

While it is natural to compare values of n computed from different data sets,

comparing values of m is more problematic. Reiner [106] points out that since the
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Table 6.2: Values of n, m, and τ100 extracted from the 34.5 cm3/s gate pressure
data. The reference stress τ100 is the stress calculated from the given
power-law parameters at a reference strain rate of 100 s−1. The “mean”
value of m is the reference value m100 defined in Equation 6.18. The row
labeled “Rheometer” contains the constants extracted from the capillary
rheometer data shown in Figure 2.3..

n m (Pa·sn) τ100 (kPa)
230◦ 0.4600 2097.5 17.4
245◦ 0.3526 3376.7 17.1
Mean 0.4063 2659.4 17.25
Rheometer 0.4079 2940.6 20.14

units of m depend on n the values of m for different shear thinning exponents cannot

be compared directly. It also means that since the value of n extracted from the

pressure data has error attached to it, the dimensions of m become uncertain. Direct

comparison of values of m is senseless. A way around this difficulty is to choose a

reference shear rate. For each data set a value of n may be extracted and then the

shear stress at that reference shear rate can be calculated. The values of the shear

stresses at the reference shear rate can then be compared. Observed differences in

the shear stress will be due in part to differences in m.

For the purposes of the present work a reference shear rate of 100 s−1 was chosen,

a shear rate typical of injection molding processes. Using this shear rate and the

values of n and m shown in Table 6.2 the reference shear stress τ100 was calculated.

This stress had a mean of 17.25 kPa for the two 34.5cm3/s runs, within 14% of the

20.1 kPa calculated using the values of n and m extracted from rheometer data.

Given the reference strain rate γ̇100 = 100 s−1 and the mean values of n and τ100,

a reference value of m can be calculated:

m100 =
τ100

γ̇n
100

(6.18)
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This results in m100=2659.4 Pa·s , a value within 9.5% of the value of m calculated

from the rheometer data.

6.3.2 Modeling the Channel Flow Portion of the Mold Filling Process

The radial flow portion of the mold filling process ends when the flow front

contacts the wall opposite the gate. After a short transition period the flow front

shape becomes fairly constant and the front moves across the mold at a constant

rate. The rate of pressure increase during this channel flow portion of the mold

filling is linear as shown in Figure 6.1.

This linear rise can be explained as follows. For comparison, consider a duct flow

of a generalized Newtonian liquid. A generalized Newtonian liquid is one for which

η = f(γ̇). For a steady flow with constant flow rate Q the pressure gradient must

also be constant.

The channel flow portion of the mold filling is very similar to the duct flow. The

flow rate Q is held constant by the injection molding machine controller. The main

difference in the mold filling is the presence of the flow front. But since the front

shape is fairly constant and moves at constant rate the flow can be treated as quasi-

steady. In order to maintain the constant flow rate the pressure gradient must also

be constant.

The pressure gradient can be estimated as follows:

dp

dx
≈ ∆P

∆x
≈ Pfront − Pgate

xfront − xgate

= K (6.19)

where K is a constant. Taking the pressure at the front to be zero and the position

of the gate to be zero gives

dp

dx
≈ − Pgate

xfront

= K (6.20)
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But during the channel flow the front moves at an average speed of Q/2BW ,

where Q is the injection flow rate and 2BW is the cross-sectional area of the cavity.

Thus

xfront =
Q

2BW
t+ c (6.21)

where c is a constant. So:

Pgate = −Kxfront = −K
(

Q

2BW
t+ c

)
(6.22)

where W is the width of the channel in the z direction and B is the channel half-

thickness. This equation predicts that the the pressure will rise linearly with time

during the channel filling process.

Up to this point the argument has been applicable to any generalized Newtonian

fluid. To estimate the rate of pressure rise the constant K must be determined,

and this depends on the type of fluid used. Appendix C gives the derivation of the

volume flow rate of a power-law fluid in a channel:

Q =
2WB2

1
n

+ 2

[
−B
m

dP

dx

]1/n

(6.23)

Thus the constant K is determined as

dp

dx
= K = −m

B

[
Q
(

1
n

+ 2
)

2WB2

]n

(6.24)

Using Equation 6.22, the estimated rate of pressure rise during the channel flow

portion of the mold filling of a power-law fluid is given by

dPgate

dt
=

Qm

2WB2

[
Q
(

1
n

+ 2
)

2WB2

]n

(6.25)

Equation 6.25 was used on the 230◦C pressure traces in conjunction with the

values of n = .41 and m = 2941 extracted from Figure 2.3. Since the data in

Figure 2.3 was taken at 230◦C, and since the value of m is a function of temperature,
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Figure 6.10: Predicted slopes of the 230◦C pressure traces in the channel flow regime.
The slopes were predicted using Equation 6.25 and the values of n = .41
and m = 2941 Pa·sn extracted from Figure 2.3.

only the 230◦C pressure traces were analyzed. The result of this analysis is shown

in Figure 6.10. The predicted and actual slopes from this figure are summarized in

Table 6.3. The comparison between predicted and actual slopes is quite good. Since

the channel flow regime has a higher gate pressure than the radial flow regime the

pressure sensor issues do not come into play.
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Table 6.3: Slopes of the pressure traces during the channel flow portion of the filling
phase. The slopes were predicted using Equation 6.25 and the values of
n = .41 and m = 2941 Pa·sn extracted from Figure 2.3..

Flow rate (cm3/s) Predicted slope (MPa/s) Actual slope (MPa/s) Deviation
11.5 0.0990 0.1104 12%
23.0 0.2610 0.2927 12%
34.5 0.5047 0.5176 3%

6.4 On the Non-Newtonian Fluid Dynamics of the Polymer
Melt

The results of Chapter 5 showed that the polymer melt flow in the optical access

mold scaled linearly with injection rate. No interesting non-Newtonian flow artifacts

were observed. It could therefore be said that the fluid kinematics of the melt flow

behaved in a Newtonian fashion.

However, the results of Section 6.3.1 and Section 6.3.2 show that the behavior

of the pressure at the gate can be convincingly modeled as that of a shear-thinning

power-law fluid. Both the radial flow and channel flow regimes of the mold filling

process show shear-thinning power-law behavior. It could therefore be said that the

fluid dynamics of the melt flow behaved in a non-Newtonian fashion.

This pattern of Newtonian kinematics paired with non-Newtonian dynamics is

not uncommon in non-Newtonian fluid mechanics [63], particularly for second-order

fluids. A second-order fluid is one whose constitutive relation relies upon only the

rate of strain tensor γ̇ij and its first contravariant convected derivative [63]. At small

Deborah numbers the model recovers Newtonian behavior.

The three-dimensional flow theorem of Giesekus [107] states that a velocity field

that satisfies the equations for creeping flow of an incompressible Newtonian fluid

will also satisfy the equations for the creeping flow of a second-order fluid but with
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a different pressure field. The plane-flow theorem of Tanner and Pipkin [73] is sim-

ilar and applies to the creeping plane flow of an incompressible second-order fluid.

Tanner [108] later examined the extension of these Giesekus-like theorems to other

non-Newtonian flows.

The polymer melt studied in the present work cannot be modeled as a second-

order fluid since second-order fluids have constant viscosity [63] and polystyrene

shows marked shear-thinning. But the fact that in this study the polystyrene melt

exhibits Newtonian fluid kinematics and non-Newtonian dynamics is not unprece-

dented.

6.5 A Proposal for the Quality Control of Polymers

Rheology in a laboratory and rheology on the plant floor are two different beasts

entirely. A good comparison of these two methodologies is given by Dealy and

Wissbrun [62]. They point out that laboratory-based rheology is typically aimed at

measuring well-defined physical properties or material functions, such as the viscosity

curve and the storage and loss moduli. The goal is to make measurements that are

independent of the testing equipment, measurements of properties that are particular

to the material itself.

Industrial rheology is mainly concerned with tests that simulate the molding pro-

cess. The two goals of industrial rheology are quality control and the determination

of processability. Industrial tests do not typically measure properties of the polymers

tested, but rather give an indication of how the polymer will perform in a given mold.

Repeatability of the results of these tests using different batches of a polymer indicate

that the polymer is consistent from batch to batch. Comparison of the results of the

same test with two different polymers may indicate which polymer would fill a given
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mold on the plant floor more readily. By their very nature such tests are equipment-

and process-dependent. Two of the most popular industrial rheology tests are the

melt flow index test and the moldability test. Dealy [109] describes other empirical

tests, such as testing the melt strength during fiber drawing, measurement of ex-

trudate swell, generating squeezing flows in a parallel plate plastometer, and mixing

tests using torque rheometers. These tests are most often used in processes that

have a considerable extensional flow component. Since the melt flow index and the

moldability test are two of the most prevalent tests for injection molding applications

these tests will be considered in detail.

6.5.1 The Melt Flow Index

The melt flow index is a quantity described and regulated by ASTM D1238-

04c [110]. A melt flow indexer is basically a primitive capillary rheometer. A polymer

sample is forced through a capillary tube by a weight-driven piston. The flow rate

of the polymer through the capillary is the melt flow index.

Obviously the melt flow index is related to the viscosity of the polymer. The

problem is that the melt flow index itself is not sufficient for measuring the true

viscosity, only an apparent viscosity. The quantities measured are not sufficient for

calculating the end correction or the Rabinowitsch correction necessary for determin-

ing the true viscosity [62]. The Rabinowitsch correction needs the rate of change of

the psuedo-shear rate with respect to the wall shear stress, as pointed out by Brod-

key [64]. End effects are even harder to correct. As Brodkey [64] points out, end

effects are best eliminated by using capillaries with large L/d ratios. The viscosity

of polymers is so high, though, that the only way to pump them through a capillary

with a reasonably low pressure gradient is to use capillaries with small L/d ratios.
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So end effects cannot be eliminated from the measurement of the melt flow index.

Another serious limitation of the melt flow index is that it is a single point test.

Even if the test could measure the true viscosity, it would only make the measurement

at one particular rate of shear. Even worse, that rate of shear is orders of magnitude

smaller than the shear rates experienced by the polymer during injection molding.

6.5.2 The Moldability Test

The moldability test is an empirical test of a polymer’s ability to fill a mold. The

polymer is placed in an injection molding machine and is injected into a mold with a

long flow path typically in the form of a spiral [62]. Other popular geometries include

disks, snakes and bars. The result of the test, the moldability index, is simply the

distance the polymer travelled before solidifying. The further the travel, the more

easily flowing the polymer. ASTM D3123-98(2004) [111] describes a spiral mold

test for thermosets at low injection pressures, but there is no universal standard for

thermoplastics.

Again, the viscosity is obviously related to the moldability index. But in this test

the relationship between the true polymer viscosity and the result of the test is even

murkier than for the melt flow index. The result is highly dependent on the molding

parameters and mold geometry as well as the viscosity of the polymer.

6.5.3 A Proposal

The viscosity of a polymer is the dominant factor in determining its moldability.

The melt flow index gives an approximation of the viscosity, but it is difficult to

apply the result to a real mold on the factory floor. The moldability index is more

applicable to real situations, but is a complex function of material parameters, mold-

ing conditions, and mold geometry. Perhaps there is a middle way that combines
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the appealing qualities of both tests: measurement of the viscosity in a way that is

applicable to actual injection molding conditions.

The analysis given in this chapter can be used as this middle way. Use of an optical

access mold with a laser to measure Carreau model parameters is not recommended

for industrial purposes, but this chapter has demonstrated that a measurement of

the power law parameters of a polymer can be carried out with a radial flow mold

and a pressure sensor if the test is carried out under the right conditions.

Consider a mold designed to produce radial flow from the gate. There are a

number of possible geometries that could be used. For example the mold cavity could

be a disk with a centrally located sprue. The problem with this is that the cavity

would be larger than it needs to be since a full 360◦ radial flow is not necessary. The

cavity could be rectangular with the gate near the corner as described in Chapter 2.

This results in a smaller cavity. The problem with a rectangular cavity is that the flow

is only radial for a portion of the filling process. A third possibility would be to make

the cavity a sector of a circle with the gate near the corner as shown in Figure 6.11.

This would combine the benefits of both a circular cavity and a rectangular cavity,

giving a radial flow field over the entirety of the flow and minimizing the amount

of polymer consumed in each shot. The hatched circle in the figure represents the

location of the pressure sensor. The sensor is directly below the injection location,

with the polymer entering the cavity perpendicular to the plane of flow. The cavity

could also be constructed in such a way that the polymer entered parallel to the plane

of flow, as shown in Figure 6.12. This design is not recommended, though, as the

polymer would be prone to jetting across the cavity. Placing the gate perpendicular

to the cavity causes the polymer to contact the opposite wall quickly and leads to a

smoother fill of the mold.
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Consider Equation 6.9. For the radial flow of a power law fluid in which the

lubrication approximation is valid the flow rate is a function of the pressure gradient,

the power law parameters and the geometry of the cavity. Keeping the flow rate

constant results in Equation 6.16. Thus the pressure trace alone can be used to

estimate the power law exponent and coefficient.

Of the two parameters, the power law exponent is more robust. The power

law coefficient is more sensitive to temperature and is thus sensitive to shear rate

as well, since higher shear rates lead to higher temperatures in the melt. It is

interesting to note that if the power law exponent is the only desired quantity, then

the measurement itself is very robust. Note that Equation 6.16 is independent of

the flow rate and the cavity thickness. This measurement is even independent of the

calibration of the pressure sensor. If we assume that the pressure sensor is properly

zeroed and that it produces a voltage proportional to the pressure then we have:

Vsensor ∝ Psensor ∝ t
1−n

2 (6.26)

A log-log plot of the voltage trace vs. time will have the same slope as the log-log

plot of the pressure vs. time and can thus be used to determine n. The measurement

of the power law coefficient, though, requires knowledge of the flow rate, the cavity

thickness and the pressure sensor calibration constant.

So, a radial flow mold with a pressure sensor at the origin of flow is sufficient for

determining the power law representation of the polymer for a given melt temper-

ature. This gives it the appealing virtue of being directly related to the viscosity,

much like the melt flow index.

As stated in Section 6.5.2, disk cavities are a popular choice for moldability tests.

If the cavity radius in this proposed test is larger than the expected radial travel of the
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polymer before solidifying, then the test could also be used to judge the moldability

of the polymer. The outcomes of the test would be the pressure trace (from which

the power law parameters would be extracted) and the radius of the solidified part.

This would combine the best aspects of both the melt flow index and the moldability

tests into a single test, all for a cost comparable to that of a standard moldability

test.

This test does not appear in the literature and is claimed to be original to this

work. A review of periodical databases and ASTM standards turned up no references

to this kind of test. Furches [112] considered rheological quality control tests for ABS

resins in 1989 but did not mention anything like this proposal. More convincingly,

Dealy [109] published a book on rheology and its role in plastics quality control in

2000. The entire book deals with the subject of rheology in the lab and on the plant

floor as used for quality control. No mention of this kind of test was found in this

work.
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Figure 6.11: Proposed cavity geometry for polymer quality control. The hatched
circle indicates the location of the pressure sensor. The gate is at the
corner of the 90◦ arc with the plastic entering the cavity perpendicular
to the pressure sensor, as shown in the side view. The radius is large
enough to ensure that the mold will not fill during the test.
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Figure 6.12: Proposed cavity geometry for polymer quality control. The hatched
circle indicates the location of the pressure sensor. The gate is at the
corner of the 90◦ arc with the plastic entering the cavity parallel to the
pressure sensor, as shown in the side view. The radius is large enough
to ensure that the mold will not fill during the test.



CHAPTER 7

Polymer Melt Flow During Packing

Molten polymers shrink during solidification, defeating the goal of making parts

that match the mold cavity shape. This phenomena is known as shrinkage. To

combat shrinkage liquid plastic is packed into the mold after the filling phase is

complete. The pressure in the mold rises rapidly during the packing stage. This

high pressure is maintained in the holding phase. Fluid enters the mold slowly

during this phase until the gate solidifies, isolating the mold cavity from the pressure

being applied to the melt by the screw in the barrel of the injection molding machine.

The goal of this portion of the present work is to study the flow during the packing

phase. In some ways this flow is easier to study than the flow during the filling phase:

• The flow is slower. This effectively increases the time resolution of the PIV

analysis since the ratio of the time scale of the flow to the frame rate of the

camera is increased. This also ameliorates the problem of resolving PIV vectors

near the gate. A slower flow rate leads to a smaller dead zone around the gate.

• There is no flow front. This simplifies the analysis greatly. Image masks are no

longer necessary for the PIV analysis as described in Section 4.3. Calculation

of the velocity gradients, as described in Section 4.5.1, is also easier without

a flow front. The digital images of the flow are also improved because the

218
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absence of a front leads to a more uniform illumination of the flow, eliminating

the “searchlight” problem described in Section 3.1.4.

In other ways the packing flow is harder to study:

• The melt pressure is much higher. This puts more stress on the glass windows

in the optical access mold and can lead to glass breakage. Even if the glass

does not break, higher pressures can cause polymer leakage out of the mold,

known as flash.

• The flow is no longer two-dimensional. Unlike the filling process, there is no

theoretical reason for the flow at the midplane to stay at the midplane.

7.1 Molding Conditions

The specimens used in this study were all molded with an injection rate of

11.5 cm3/s and a melt temperature of 245◦ C. The specimens had nominal pack-

ing pressures of 11.0 MPa, 16.5 MPa and 27.6 MPa. The packing pressure applied

for five seconds, followed by an identical holding pressure for five seconds. The actual

pressure at the gate of the mold cavity as a function of time was beyond the control

of the operator. Only the nominal packing pressure could be specified. The actual

pressure trace was a function of the injection molding machine’s internal hydraulic

control system. Solidification at the gate also influenced the pressure measured at

the gate.

Five specimens were made sequentially at each condition and the results averaged

for the pressure traces and PIV data presented in this chapter. The averaged gate

pressure traces for the three different packing levels are shown in Figure 7.1.
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Figure 7.1: Measured gate pressure as a function of time for nominal constant pack-
ing pressures of 11.0 MPa, 16.5 MPa, and 27.6 MPa.
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7.2 PIV Results for Flow During the Packing Phase

PIV measurements of the packing flow were produced with the same experimental

setup described in Chapter 2. The image processing followed the same steps outlined

in Chapter 4 with the following exceptions. Since there was no flow front present

during the packing phase all steps related to the manual extraction of flow fronts

and calculation of flow front propagation velocity vectors were omitted. The binary

image masks were created solely from the cavity outlines.

The PIV processing was identical to the that described in Chapter 2. It was

found that the PIV vector fields were much more complete than those of the filling

study. This was possibly due to the fact that the illumination was more even due to

the lack of a flow front, and to the fact that the flow was much slower than that of

the filling phase. The character of the flow was more constant than that of the filling

phase as well. In the filling phase the character of the flow changed as the flow front

contacted the cavity walls. This was not an issue for the packing flow.

Since the PIV vector fields did not have the vector dropout problems shown in

Figure 4.10 no median filtering was performed. The fields were averaged, however,

to present the mean flow fields observed during the packing phase.

7.2.1 Estimating the Volume Flow Rate During Packing Flow

In the filling phase the flow is driven by the injection rate Q set by the operator.

In the packing phase the flow rate is not set directly by the operator, but indirectly

through the packing pressure. Since the packing flow rate is not known directly a

different metric was required.

The packed specimens were weighed after they had solidified. The average masses

of the packed specimens are given in Table 7.1. The difference between the mass of the
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Table 7.1: Average mass of specimens molded at different packing pressures. The
overall packing flow rates are also listed, calculated using Equation 7.5.

Packing Specimen ∆M Packing
pressure (MPa) mass (g) (g) flow rate (cm3/s)

Unpacked 50.2 - -
11.0 51.0 0.8 0.16
16.5 51.3 1.1 0.22
27.6 53.9 3.7 0.74

packed specimens and mass of the unpacked specimens is an indicator of the amount

of flow that took place during the packing phase. As the specimens solidified in the

mold a volume change took place. The freed volume was then taken up by polymer

melt entering the gate at the nominal melt temperature and packing pressure. If the

melt density were known it could be used in conjunction with the specimen mass

differentials to calculate the overall melt volume flow rate during the packing phase.

The Tait equation is often used as an equation of state for polymer melt calcula-

tions [113] and it was used to calculate the melt density during packing. Using the

implementation of the Tait model found in Moldflow:

v(T, p) = v0(T )

(
1− 0.894 ln

(
(1 +

p

B(T )

))
(7.1)

where v is the specific volume of the melt. The functions v0(T ) and B(T ) are given

by

v0 = b1 + b2T̄ (7.2)

B = b3 exp(−b4T̄ ) (7.3)

T̄ = T − b5 (7.4)

The constants b1 through b5 for STYRON 615 APR as found in the Moldflow material

database are given in Table 7.2.
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Table 7.2: Material specific constants for the Tait model. The following values are
taken from the Moldflow database for a STYRON 615 APR melt..

b1 0.000972 m3/kg
b2 6.042e-7 m3/kg-K
b3 1.85917e8 Pa
b4 0.004927 1/K
b5 376.81 K

The Tait model was used to calculate the melt density ρm as a function of packing

pressure and melt temperature. The duration of the packing phase, tp, was set at

five seconds The magnitude of the packing flow was close to zero by this time, as

will be shown in Section 7.2.4. Using the mass differential ∆M , the melt density ρm

and the packing phase duration tp a packing flow rate Qp was calculated:

Qp =
∆M

ρmtp
(7.5)

7.2.2 Scaling the Velocity Divergence For Packing Flow

In the packing flow the melt is compressible and solidifying, so in general∇·~v 6= 0.

The divergence at each point of the velocity field can still be calculated, but it is

now not purely an error term as it was during the filling flow. Non-zero residuals

are to be expected, but it is impossible to separate the legitimate residual due to

compressibility and solidification from numerical error.

The packing flow rate Qp can be used to scale the divergence residual ε described

in Equation 4.7

ε∗ =
VIε

Qp

=
VIρmtpε

∆M
(7.6)

where VI is the interrogation volume. Just as in Figures 5.1-5.12 this scaled diver-

gence residual was overlaid as a pseudocolor plot on the PIV vector fields.
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7.2.3 Polymer Melt Velocity Fields During Packing Flow

The PIV vector plots for the packing flow are presented here. Since the duration

of the packing flow is not known ahead of time, the fields will not be presented

in terms of a nondimensional time t∗ as in Figures 5.1-5.12. Here the results are

presented at half-second increments of time during the packing phase. Two other

plotting conventions are different as well. The scale on the colorbars is much larger

to match the larger velocity divergences seen during the packing flow. The vectors

themselves are also presented at full scale. This makes them look large in comparison

to the filling vector fields, where the vectors were scaled down by a factor of ten for

clarity in plotting. The packing velocity vectors are much smaller in magnitude and

do not need to be scaled down for ease of plotting.

The PIV vector fields paint an interesting picture of the packing flow. The flow

decays rapidly and shows a shrinking radius of effect as the packing time increases.

There is also a high amount of variability as shown by the velocity divergence. Al-

ternating blocks of positive and negative divergence dominate the lower edge of the

cavity. Since these are averaged fields, the lower edge hot spots are likely the result

high variability among the individual fields in those areas. This is supported by Fig-

ure 7.11. In this figure the pseudocolor overlay represents the sums of the variances

of the u and v components of the five velocity fields the average field is drawn from.

The variance of the velocity vectors is very high along the bottom wall.

One possible explanation for this is that the bottom wall is the wall with the

gate. The flow along this wall stays parallel to the wall for the entire filling process

and represents the area of the flow field with the most consistent shear history.

The molecular orientation is likely highest along this wall, as is evidenced by the

birefringence photos in Figures 8.2-8.9. As pointed out in Chapter 8, the orientation



225

Figure 7.2: Initial packing flow (top) and flow at 0.5 seconds (bottom) for the 27.6
MPa packing pressure, 245◦C data sets.
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Figure 7.3: Packing flow at 1.0 seconds (top) and for 1.5 seconds (bottom) for the
27.6 MPa packing pressure, 245◦C data sets.
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Figure 7.4: Packing flow at 2.0 seconds (top) and for 2.5 seconds (bottom) for the
27.6 MPa packing pressure, 245◦C data sets.



228

Figure 7.5: Initial packing flow (top) and flow at 0.5 seconds (bottom) for the 16.5
MPa packing pressure, 245◦C data sets.
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Figure 7.6: Packing flow at 1.0 seconds (top) and for 1.5 seconds (bottom) for the
16.5 MPa packing pressure, 245◦C data sets.
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Figure 7.7: Packing flow at 2.0 seconds (top) and for 2.5 seconds (bottom) for the
16.5 MPa packing pressure, 245◦C data sets.
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Figure 7.8: Initial packing flow (top) and flow at 0.5 seconds (bottom) for the 11.0
MPa packing pressure, 245◦C data sets.
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Figure 7.9: Packing flow at 1.0 seconds (top) and for 1.5 seconds (bottom) for the
11.0 MPa packing pressure, 245◦C data sets.
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Figure 7.10: Packing flow at 2.0 seconds (top) and for 2.5 seconds (bottom) for the
11.0 MPa packing pressure, 245◦C data sets.
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Figure 7.11: Packing flow at 2.0 seconds (top) and for 2.5 seconds (bottom) for the
11.0 MPa packing pressure, 245◦C data sets. The pseudocolor overlay
represents the sum of the variances of the u and v components of the
velocity vector field. The greatest velocity variance is found on the wall
with the gate.

is so uniform near the specimen edges that the residual stress field is two-dimensional

in this region. The depth of penetration of the fringes along the bottom wall is as

high or higher than any other region of the part, indicating that the principle stress

difference is also high in this region.

It is possible that there is a correlation between the high molecular orientation

along this wall and the high variance in the packing flow along this wall. High

orientation could lead to a higher rate of stress relaxation during the packing flow,

which could be reflected by the higher variance of the packing flow in this region.
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7.2.4 Calculating the Magnitude of the Packing Flow

The magnitudes of the PIV results were then analyzed. The first PIV vector field

in the packing phase, ~u0, was used as a baseline. The following PIV vector fields

~ui were calculated for each sequential pair of movie frames and were compared with

the baseline field. A best-fit scaling factor φ was then calculated by comparing each

velocity field with the baseline by minimizing the following residual:

ri = ‖~ui − φ~u0‖ (7.7)

The scaling factor curves were then averaged over six runs to obtain a mean

scaling factor curve. The curves were quite repeatable. Figure 7.12 shows a super-

position of the scaling factor curves from six runs at a nominal packing pressure of

16.5 MPa.

The best-fit scaling factors φ for the three packing pressures studied are shown in

Figure 7.13. The three curves indicate that the evolution of the flow is very similar

for all three pressures. The scaling factors decay exponentially, as evidenced by the

fact that the plots are linear on semilogarithmic axes.

7.2.5 Calculating the Variability of the Packing Flow

A residual metric similar to that defined in Equation 5.11 can be defined to

examine the variability of the packing PIV fields. In Equation 5.11 two vector fields

were compared with each other. The magnitude of the residual vector was calculated

at each point in the field, and then the entire field of residual magnitudes was summed

together. This was divided by the sum of the magnitudes of the vectors of one of

the two fields. This idea can be extended to compare multiple fields.

The mean velocity vector components are computed at each point. The variances

of each component are then computed at each point and summed to get a total
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Figure 7.12: Superposition of the scaling factor curves for six runs at a nominal
packing pressure of 16.5 MPa.
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Figure 7.13: Calculated scaling factors showing the evolution of the packing flow in
time compared to the first velocity vector field computed during the
packing phase.
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variance of both vector components at each point. The total variances can be thought

of as the square of the magnitude of a “standard deviation vector” at each point.

This magnitude is then summed over the entire field and is then divided by the sum

of the squares of the magnitudes of the mean velocity vectors.

Letting su(i, j) and sv(i, j) represent the standard deviation of the u and v velocity

components at a point and ū(i, j) and v̄(i, j) represent the mean velocity components

at a point the packing residual metric εp is given by:

εp =

∑
i,j[s

2
u(i, j) + s2

v(i, j)]∑
i,j[ū

2 + v̄2]
(7.8)

The packing residual metric was calculated for each of the PIV plots shown in

Figures 7.8-7.4. The residual metrics are plotted as a function of packing time in

Figure 7.14. A number of conclusions may be drawn from this figure:

1. The residuals are quite high. Even at the beginning of the packing phase the

residual magnitudes are between 10-20%. After 2.5 seconds they range from

40-80%. There is a strong random component to the packing flow.

2. The residuals tend to increase with time for all cases. The random element of

the packing flow becomes stronger with time.

3. The curves do not intersect. The residual magnitudes increase as the packing

pressure decreases.

The combination of the last two points is interesting. In Section 7.3 it is shown

that the flow during packing can be convincingly modeled as a combination of flow

due to melt compressibility and flow due to solidification. The influence of the flow

due to compressibility is greater at the beginning of packing. After the packing

pressure stabilizes the packing flow is due to solidification.
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Figure 7.14: The residual metric εp as a function of time for the packing PIV vector
fields.
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It would seem that the packing pressure has a large impact on moderating the

random element of the packing flow. As noted above, the residual metric decreases

as the packing pressure increases independent of time. Second, the flow due to com-

pressibility is strongest at the beginning of packing and decays rapidly as the packing

pressure stabilizes. As the packing time increases the flow due to compressibility de-

creases and the flow due to heat transfer increases. So there is a negative correlation

between the magnitude of packing flow due to the application of packing pressure

and the residual metric. There is a positive correlation between the magnitude of

the flow due to heat transfer and the residual metric.

7.3 Calculating the Mass Flow During the Packing Phase

Unlike the filling phase, the flow rate during the packing phase is not imposed

directly by the injection molding machine. Flow into the mold during packing is

a function of a number of factors, including packing pressure, melt compressibility,

and melt solidification. Melt solidification is a function of the overall heat transfer

coefficient between the melt and the mold and mold geometry and will be dealt with

in a later section.

The curves shown in Figure 7.13 can be thought of as representing the ratio of

the two-dimensional volume flow rate at any given time during the packing flow to

that of the initial two-dimensional flow at the start of the packing phase. By making

the assumption that the calculated scaling factors apply to the three-dimensional

flow as well, the volume flow rate during the packing phase can be written as

Q = Q0φ(t) (7.9)

where Q0 is the unknown initial volume flow rate at the onset of packing.
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The mass flow into the cavity during packing can then be calculated. The injec-

tion pressure during the packing phase changes with time so the density of the melt

entering the cavity also changes with time. The density can be calculated from the

packing pressure and melt temperature using the Tait equation, Equation 7.1. Using

Equations 7.9 and 7.1 with the packing pressure trace and the melt temperature, the

mass flow rate into the cavity can be calculated:

ṁ = Q0φ(t)ρ(t) (7.10)

where ρ(t) is the time-varying density calculated from the Tait equation. At this

point the initial volume flow rate during packing, Q0, is still unknown. In order to

calculate it, Equation 7.10 can be integrated to produce the total mass influx to the

cavity during packing:

m(t) =

∫ t

0

ṁdt = Q0

∫ t

0

φ(t)ρ(t)dt (7.11)

This integral can be carried out numerically since φ(t) and ρ(t) are known. By

integrating the curve until the end of the packing phase, the final part mass can be

calculated. This mass can then be compared with the measured specimen mass to

solve for the the unknown Q0. Letting the duration of the packing time be denoted

as tp and letting the measured difference in mass between a packed specimen and an

unpacked specimen be denoted by ∆M :

Q0 =
∆M∫ tp

0
φ(t)ρ(t)dt

(7.12)

Substituting this into Equation 7.11 gives

m(t) = ∆M

∫ t

0
φ(t)ρ(t)dt∫ tp

0
φ(t)ρ(t)dt

(7.13)

Equation 7.11 was then applied to the 11.0 MPa, 16.5 MPa, and 27.6 MPa data

sets. The PIV scaling factor curves of Figure 7.13, the packing pressure traces of
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Figure 7.15: Increase in mass of the filled part as a function of time at three packing
pressures.

Figure 7.1 and the specimen averaged masses shown in Table 7.1 were combined with

Equation 7.11 to produce Figure 7.15.

One striking feature of Figure 7.15 is that the 27.6 MPa packing masses seem

disproportionately large compared with the 16.5 MPa data and the 11.0 MPa data.

Estimates of packing mass using the Tait equation could only account for approxi-

mately half of the 27.6 MPa packed mass curve shown in Figure 7.15. No reasonable

adjustment of the model parameters described in Section 7.4 could produce results

matching this curve.

Further investigation revealed that the solid specimens produced at the 27.6 MPa

packing pressure had thicknesses larger than the nominal cavity thickness including
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Table 7.3: Evidence of mold window deflection at the 27.6 MPa packing pressure
level. Specimen thicknesses were measured for eight parts at six locations
shown in Figure 8.10. The measurements are tabulated in Table E.15.
The specimen thicknesses exceed the nominal cavity thickness including
draft..

Measurement Nominal cavity Mean specimen Specimen thickness
location thickness (mm) thickness (mm) standard deviation (mm)

1 6.49 6.76 0.06
2 6.64 6.95 0.04
3 6.79 7.00 0.06
4 6.49 6.79 0.06
5 6.64 6.96 0.04
6 6.79 7.06 0.04

draft. A micrometer was used to measure the thickness of eight 27.6 MPa specimens

at the six locations shown in Figure 8.10. These measurements are tabulated in

Table E.15 and are summarized in Table 7.3. It is evident that the high packing

pressure pushed the window approximately a quarter millimeter away from the mold

cavity. This also explains why the maximum pressure for the 27.6 MPa trace shown

in Figure 7.1 is only 25 MPa. The packing pressure was relieved as the window moved

away from the cavity. Unfortunately the window deflection as a function of time is

unknown, so it is impossible to account for it in the analytical model that follows.

Therefore the model will only be compared with the 16.5 MPa and 11.0 MPa data

sets. Investigation of the specimen thicknesses for these packing pressures shows no

evidence of window deflection. All thicknesses, found in Table E.7 and Table E.11,

are less than the nominal cavity thicknesses shown in Table 7.3.

7.4 Analytical Model of Flow Rate During the Packing Phase

The polymer melt solidifies as it cools. Since the density of the solid is higher

than the density of the melt, this creates volume in the mold cavity as the polymer
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cools. This effect is known as shrinkage. The purpose of the packing phase is to

force molten polymer into the mold to compensate for shrinkage and to ensure that

the final part matches the mold dimensions.

In order to force polymer melt into the cavity to combat shrinkage the melt pres-

sure must increase considerably. In the present work the packing pressure climbed

as high as 25 MPa. The hydraulic system of the injection molding machine cannot

impose such a dramatic pressure increase instantaneously, so the melt pressure in-

creases as a function of time. Melt compressibility becomes another mechanism for

mass influx during the packing stage.

Analytical models for flow due to heat transfer and for flow due to melt com-

pressibility were developed and are presented below. Since the compressibility model

depends on the results of the heat transfer model, the heat transfer model will be

presented first.

7.4.1 Single-Sided Model of Flow Due to Heat Transfer Effects

Shrinkage is a thermal effect, and a heat transfer model was created to estimate

the volume flow rate of polymer melt into the cavity as a function of time. The mold

cavity is essentially a rectangular slab with length and width much greater than the

cavity thickness. In addition, polymer melts are poor conductors of heat. These

two factors suggest that the heat transfer from the melt to the mold will primarily

be through the thickness direction and that the mold cavity can be satisfactorily

modeled as a one-dimensional slab as shown in Figure 7.16. Note that in this model

the glass face of the mold is considered to be insulated to take into consideration

that the thermal conductivity of glass is much less than that of steel. Since heat will

only leave the polymer melt through the steel side of the mold this model is called
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Figure 7.16: Illustration of the single-sided one-dimensional heat transfer model with
boundary and initial conditions used to predict the volume flow rate of
polymer during the packing phase. The glass boundary is treated as
an insulated surface. The dashed line shows a possible location of the
glass transition temperature plane.

the single-sided heat transfer model.

Amorphous polymers such as polystyrene do not have a sharp phase transition

from liquid to solid as they cool and solidify. They pass through a rubbery or leathery

stage over a range of temperatures rather than having a well-defined melting point.

Yet it is common to choose a temperature known as the glass transition temperature

Tg to mark the boundary between solid-like and liquid-like behavior of a polymer.

For the purposes of this model is is assumed that the density change of the polymer

as it transitions from liquid to solid occurs at the glass transition temperature.

In this one-dimensional heat transfer model the temperature varies with x and
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all points on a plane perpendicular to the x-axis share the same temperature. That

means we can imagine a plane at a location xg whose points are all at the glass

transition temperature Tg. This plane is guaranteed to exist since Tm > Tg > T∞,

where Tm is the initial melt temperature and T∞ is the mold temperature. As time

progresses the Tg plane moves in the negative x direction from the steel face of the

mold toward the glass face. As the Tg plane moves it frees up an incremental volume

∆V as the polymer melt changes density.

∆V = −
(

1− ρm

ρs

)
A
dxg

dt
∆t (7.14)

where A is the cross-sectional area of the mold perpendicular to the thickness direc-

tion, ρm is the melt density, and ρs is the solid density. The negative sign is due to

the fact that the Tg plane is moving in the negative x direction. The volume flow

rate of polymer into the cavity Q is then:

Q =
∆V

∆t
= −

(
1− ρm

ρs

)
A
dxg

dt
(7.15)

In order to get the mass influx into the cavity, integrate Equation 7.15 and recognize

that the incoming mass is at the melt density:

M(t) = ρm

∫ t

0

Qdt = ρm

(
1− ρm

ρs

)
A∆xg(t) (7.16)

where ∆xg(t) is the distance traveled by the the xg plane from the beginning of the

packing phase until the desired time t.

In order to estimate the distance travelled by the xg plane the one-dimensional

heat transfer model shown in Figure 7.16 must be used. Following the derivation in

Lienhard [115], the nondimensionalized one-dimensional heat equation is given by:

∂2Θ

∂X2
=

∂Θ

∂Fo
(7.17)
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Table 7.4: Parameters used in the analytical model of flow rate during the packing
phase.

Dimensional Parameters
Tm = 245◦C Melt temperature
Tg = 100◦C Glass transition temperature
T∞ = 30◦C Mold temperature
L = 6 mm Cavity thickness (single-sided model)
L = 3 mm Cavity half-thickness (double-sided model)
α = 0.82×10−7m2/s[114] Thermal diffusivity of the melt

Dimensionless Parameters
Θ = (T − T∞)/(Tm − T∞) Temperature difference
Θg = (Tg − T∞)/(Tm − T∞) Tg

X = x/L Length
Xg = x(Tg)/L Location of the Tg plane
Fo = αt/L2 Fourier number

with nondimensionalized parameters as shown in Table 7.4. The initial condition is

that the entire melt is at the specified melt temperature:

Θ(X,Fo = 0) = 1 (7.18)

The face of the slab at x = 0 is formed by the glass window of the optical access

mold while the face at x = L is formed by the steel face of the mold. Since glass

is a poor conductor of heat compared to steel, an insulated boundary condition is

imposed at x = 0:

∂Θ

∂X

∣∣∣∣
X=0

= 0 (7.19)

Since the thermal capacity of the steel mold is very high and the heat transfer from

the poorly conducting polymer is slow the mold temperature remains nearly constant

during the packing phase. Thus a constant mold temperature boundary condition is

imposed at x = L.

Θ(X = 1, Fo) = 0 (7.20)
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Lienhard [115] give the exact solution of the one-dimensional heat transfer equation

with the specified boundary conditions as:

Θ =
4

π

∞∑
n,odd

1

n
exp

[
−
(nπ

2

)2

Fo

]
sin
[nπ

2
(X + 1)

]
(7.21)

Using the values given in Table 7.4, the nondimensionalized glass transition tem-

perature Θg = 0.326. Therefore the location of the Tg plane as a function of time

can be calculated using Equation 7.21

0.326 =
4

π

∞∑
n,odd

1

n
exp

[
−
(nπ

2

)2

Fo

]
sin
[nπ

2
(Xg + 1)

]
(7.22)

In order to use Equation 7.22, the number of terms in the summation must

be specified. MATLAB was used to solve Equation 7.22 using 1 to 40 terms in

the summation. The solutions were computed at a discrete set of Fourier numbers

Foi ranging from 0-0.025, representing a 10 second packing and holding time. The

residuals between successive approximations of Xg(Fo) were computed using the

following formula:

εj+1 =

(∑
i

[
Xj+1

g (Foi)−Xj
g(Foi)

]2)1/2

(7.23)

where the superscripts refer to the number of terms kept in the summation. The

resulting residuals are plotted as a function of the number of terms retained in the

summation in Figure 7.17. It can be seen from the figure that the residuals plateau at

a value of approximately 10−3 after 25 terms retained. The resulting position of the

Tg plane as a function of Fourier number when retaining 25 terms in the summation

is shown in Figure 7.18.

7.4.2 Double-Sided Model of Flow Due to Heat Transfer Effects

A second heat transfer model can be developed similar to the one described above.

The single-sided model treated the glass as an insulated surface. The double-sided
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Figure 7.17: Residual of comparing successive solutions of Xg(Fo) using Equa-
tion 7.22. The x axis shows the number of terms retained in the sum-
mation in Equation 7.22.
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Figure 7.18: Plot of the nondimensionalized location of the Tg plane as a function of
Fourier number for the single-sided model. This result was generated
by solving Equation 7.22 and retaining 25 terms in the summmation.
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heat transfer model, shown in Figure 7.19, treats the glass as a constant temperature

surface at T = Tmold. This model treats the glass as if it were no different from the

steel on the opposite face. The heat transfer equations for this model are exactly the

same as in the single-sided model. The only difference is that the length L is now

the cavity half-thickness instead of the cavity thickness. The effect of this change

is that the Fourier numbers are increased. There are now two Tg planes spaced

symmetrically about the cavity midplane. The planes move faster than in the single

sided model and cause the melt to solidify more quickly.

The single-sided and double-sided models represent two extreme ways to model

the glass. In the single-sided model the glass conducts no heat at all, and in the

double-sided model it conducts heat as well as the mold steel.

7.4.3 Model of Flow Due to Melt Compressibility

The Tait equation (Equation 7.1) can be used to predict the flow due to melt

compressibility. Given a measured packing pressure trace P (t) and a melt tempera-

ture Tm, the melt density as a function of time can be calculated using Equation 7.1.

The mass flow rate into the cavity due to the compressibility can then be given by

ṁ =
dρ

dt
V (7.24)

where V is the cavity volume.

Two refinements can be made to this model. The first refinement is to recognize

that the volume of the cavity filled by polymer melt decreases with time due to

the increasing presence of solidified melt near the wall. Using the Tg plane as the

demarcation line between liquid and solid polymer in the cavity and denoting the

distance of travel of the Tg plane from the beginning of packing to time t as ∆xg(t)
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Figure 7.19: Illustration of the double-sided one-dimensional heat transfer model
with boundary and initial conditions used to predict the volume flow
rate of polymer during the packing phase. The glass boundary is treated
as a constant temperature surface with T = Tmold. The dashed line
shows a possible location of the pair of glass transition temperature
planes.
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gives

ṁ =
dρ

dt
(V − A∆xg(t)) (7.25)

where A is the cross-sectional area of the cavity perpendicular to the cavity thickness.

The second refinement of this model is to recognize that the PIV results show no

evidence of flow toward the gate during packing. Equation 7.25 can give negative

mass flow rates if dρ/dt < 0. In fact, the packing pressure curves do show negative

slopes after the packing peak. Using the Tait equation, this would predict density

curves that also have negative slopes after the packing peak. This would cause the

compressibility model to predict negative mass flow rates that were not observed in

the experiment. In order to avoid this, the compressibility model can be adjusted to

“turn off” the packing flow if the rate of change of the density becomes negative.

Mρ =

∫ ∆t

0

ṁ =

∫ ∆t

0

max(
dρ

dt
, 0)(V − A∆xg(t))dt (7.26)

where Mρ is the mass influx into the cavity due to compressibility and ∆t is the

packing duration.

7.4.4 The Combined Compressibility and Heat Transfer Model

The compressibility model and the single and double-sided heat transfer models

were applied to the 11.0 MPa and the 16.5 MPa data. The 27.6 MPa data was not

treated due to the evidence of window deflection presented in Table 7.3.

Figure 7.20 shows the results of the compressibility model and the two heat

transfer models when applied to the 11.0 MPa data. Figure 7.21 shows the results

of applying the three models to the 16.5 MPa data. The mass influx due to com-

pressibility is 63.8% of the total packing mass for the 11.0 MPa case, and is 63.5%

of the total for the 16.5 MPa case. The mass influx due to compressibility enters

rapidly during the first two seconds of packing. The mass influx due to heat transfer
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Figure 7.20: Components of the compressibility model, the single-sided heat transfer
model and the double-sided heat transfer model compared with the 11.0
MPa packed mass data.

enters more slowly but at near-constant rate. This supports the conclusion drawn

in Section 7.2.5 about the variability of of the PIV vector fields during packing.

The residual metric is low during the portion of the flow dominated by the packing

pressure. The residual metric increases as the flow due to heat transfer increases.

The compressibility and heat transfer models are combined and compared with

the 11.0 MPa data in Figure 7.22. The models are again combined and compared with

the 16.5 MPa data in Figure 7.23. In both figures the experimental data is bracked

closely by the combined compressibility and single-sided heat transfer model and the

combined compressibility and double-sided heat transfer model. This suggests that

the actual behavior of the glass boundary lies between the two extremes posited by
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Figure 7.21: Components of the compressibility model, the single-sided heat transfer
model and the double-sided heat transfer model compared with the 16.5
MPa packed mass data.
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the heat transfer models. The glass is neither an insulated boundary nor a constant

mold temperature boundary, but is somewhere in between. To pursue this further

a heat transfer coefficient for the glass-polymer melt boundary would need to be

measured and a Biot number Bi calculated. The heat transfer model boundary

condition at x = 0 would need to be modified to [116]:

∂Θ

∂X

∣∣∣∣
X=0

= −BiΘ(0, Fo) (7.27)

This is beyond the scope of the present work. The analytical models have served

their purpose by bracketing the experimental data. The models show that the mag-

nitudes of the packing flow PIV vector fields are reasonable. The models also show

that the evolution of the PIV fields with time is physically realistic and is consistent

with the packing pressure data and the observed masses of the solid parts.



257

Figure 7.22: Comparison of the 11.0 MPa packed mass curve extracted from the
PIV data, gate pressure traces, and specimen weight with the analytical
model. The single-sided and double-sided heat transfer models bracket
the packed mass curve.
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Figure 7.23: Comparison of the 16.5 MPa packed mass curve extracted from the
PIV data, gate pressure traces, and specimen weight with the analytical
model. The single-sided and double-sided heat transfer models bracket
the packed mass curve.



CHAPTER 8

Effect of Fluid Flow on the Residual Stain of Solid

Parts

The photoelastic effect has long been used to study strain [45, 46] in mechanical

components. Typically a model is made of the component using a transparent,

homogeneous photoelastic material. The model is constructed in such a way that

when it is unstrained it produces no fringes when placed in a polarimeter. When a

load is applied, fringes appear due to the photoelastic effect. This method can also

be used to study residual strains in transparent polymers. In this case, the specimen

produces fringes in a polarimeter even when no external stresses are applied due to

the presence of residual strains in the interior of the specimen.

For the most part studies have been done on specimens specially prepared to

have a two-dimensional strain field, with the principal strain directions and differ-

ences remaining constant throughout the thickness of the part. Most reference books

on the subject devote the bulk of their pages to the study of two-dimensional bire-

fringent plates known as linear retarders. A brief introduction to two-dimensional

photoelasticity will aid in the discussion of three-dimensional photoelasticity.

259
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8.1 Two-Dimensional Photoelasticity

When polarized light impinges on a two-dimensional birefringent material in a

state of plane strain it is split into two components, each one parallel to a principal

strain axis. These waves propagate through the material at different speeds due to

the different indices of refraction along those two directions. This speed difference

causes a relative phase retardation between the two waves as they exit the specimen.

As shown by Dally [47] this relative retardation δ (in radians) is given by:

δ =
2πhc

λ
(σ1 − σ2) (8.1)

where h is the thickness of the specimen at the point of interest, c is the stress-optic

coefficient for the polymer, λ is the wavelength of light used in the polarimeter,

and σ1 and σ2 are the principle stresses at the point of interest. This result is

known as Wertheim’s law [117]. Note that even though it is the residual strains that

produce this effect, it is typical in the literature to refer to the residual stresses. This

convention will be followed in this chapter when standard photoelasticity equations

are cited.

The retardation can also be expressed as a length δl:

δl =
δ

2π
λ = hc(σ1 − σ2) (8.2)

where the last equality was obtained using Equation 8.1.

Another way to think about linear retarders is to consider them as transformers

of polarization. In general, when light of any polarization is passed through a linear

retarder it will emerge with an elliptical polarization different than the initial state.

It can be shown that for any two-dimensional linear retarder there are two orthogonal

principal directions with unique properties. When plane polarized light enters the
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retarder oriented in one of the principal directions it will emerge as a plane polarized

beam. In addition, the orientation of the emerging light will be the same as that of

the incoming plane polarized light. For any other entrance angle the light loses its

plane polarization and emerges as an elliptically polarized beam.

8.1.1 Using a Polarimeter to Determine Principal Directions

A plane polariscope can be used to find the principal directions of the residual

strain tensor at a given point. The plane polariscope consists of a light source,

a plane polarizer (the “polarizer”), and a second plane polarizer (the “analyzer”).

The polarization axes of the polarizer and analyzer are perpendicular to each other.

When no model is present, the transmitted light is blocked and the polarimeter field

appears dark.

When a two-dimension linear retarder is placed between the polarizer and the

analyzer a fringe pattern emerges. At any point in the retarder where the local prin-

cipal directions are aligned with the polarizer and analyzer axes light is extinguished.

These fringes are called isoclinics, meaning “same inclination”, because they occur

when the inclination of the principal axes matches that of the polarimeter axes.

These fringes are a function of principal axis orientation only and are not functions

of the wavelength of light used. Isoclinic fringes extinguish all light, causing black

fringes even in a white light polariscope.

The polarizer and analyzer can be rotated as a unit until a black isoclinic fringe

moves over a given point of interest. When that occurs the orientation of the polarizer

and analyzer axes match the orientation of the principal axes at that point.
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8.1.2 Measuring Relative Retardation

Isoclinic fringes are caused solely by the orientation of the principal axes relative

to the polarimeter axes. There are other fringes, called isochromatics, that are

produced by the phase retardation introduced by the linear retarder independent

of the principal axis orientation.

Dally [47] shows that the transmitted light intensity in a polariscope is modulated

by sin2(δ/2), where δ is the retardation at the point of interest. Whenever the phase

retardation is a multiple of 2π light is extinguished. In a monochromatic polariscope

the isochromatic fringes will be black. But this modulating factor depends on δ,

which is a function of wavelength. In a white light polariscope, the only frequencies

of light extinguished are those with a period that is a multiple of the retardation

at that point. Since only certain wavelengths of light are extinguished at any given

point the fringe pattern is in color. Hence an isochromatic fringe (meaning “same

color”) is a fringe along which the retardation is constant.

The relative retardation is typically measured using a null-balance compensator to

subtract known amounts of birefringence at the point of interest along the principal

direction corresponding to the higher strain. As the compensator is adjusted the

fringe changes color. When the fringe goes to black at the point of interest the output

of the null-balance compensator can be used to calculate the relative retardation at

that point. Typically the results are given in terms of fringe order N rather than δ,

with

N =
δ

2π
=

δl
λ1

(8.3)

where δl is defined in Equation 8.2 and λ1 is the reference wavelength of the polarime-

ter. Table 8.1 shows the correspondence between observed color and fringe order for
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Table 8.1: Isochromatic fringe characteristics for a polariscope with λ1 = 575 nm

Color Approximate Relative Fringe Order
Retardation (nm) N

Black 0 0.00
Gray 160 0.28
White 260 0.45
Pale Yellow 345 0.60
Orange 460 0.80
Dull Red 520 0.90
Purple (Tint-of-Passage) 575 1.00
Deep Blue 620 1.08
Blue-Green 700 1.22
Green-Yellow 800 1.39
Orange 935 1.63
Rose Red 1050 1.82
Purple (Tint-of-Passage) 1150 2.00
Green 1350 2.35
Green-Yellow 1440 2.50
Red 1520 2.65
Red/Green Transition 1730 3.00
Green 1800 3.10
Pink 2100 3.65
Pink/Green Transition 2300 4.00
Green 2400 4.15

a reference wavelength of 575 nm, the design wavelength of the quarter-wave plates

used in the Vishay 080 Teaching Polariscope.

The measured retardation can then be used to calculate the principal strain

difference at that point using either Equation 8.1 or Equation 8.2.

This procedure can also be used for the special three-dimensional case where the

retardation varies through the thickness of the part but the orientation of the prin-

cipal axes remain constant. In this case there is only one set of principal directions

and the resulting retardation is determined by the integral of the incremental re-

tardations through the thickness of the part. This result is known as the integral
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Wertheim law [117]:

δl =

∫ h

0

c(σ1 − σ2)dz (8.4)

where δl is the retardation length from Equation 8.2. The integral Wertheim law

can be used to show that if two birefringent plates with the same principal axes are

stacked the resulting retardation is equal to the sum of the individual retardations.

This is the reason why the compensator principal axis must match the local prin-

cipal axis. It makes no difference whether the compensator is inserted between the

polarizer and the specimen or between the specimen and the analyzer.

8.2 Three-Dimensional Photoelasticity

In a two-dimensional state of strain the principal strain difference, the orientation

of the principal strain axes, and the stress-optic coefficient are constant throughout

the thickness of the part.

These conditions do not generally apply to the residual strain distribution found

in plastic parts made by injection molding. The fountain flow effect produces highly

oriented layers near the walls of the cavity with a more randomly oriented layer at

the center. The wall layers also solidify much more quickly than the center. Since the

molecular orientation is affected by the fluid flow and since the flow patterns change

between the time that the walls and the center solidify the orientation changes as

well. It is unreasonable to expect that the result would be a purely two-dimensional

state of residual strain. For example, Wimberger [118] has studied the injection

molding of polycarbonate compact disks and shows that the magnitude of retardation

and principal axis orientation are functions of position through the thickness of the

compact disk.

Three-dimensional states of residual strain in birefringent materials have a more
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complicated effect on polarized light than do two-dimensional states of strain, but

there are some similarities. A birefringent material in a three-dimensional state of

strain can still be thought of as a transformer of polarization. There are still two

orthogonal principal directions, and plane polarized light oriented along either of

these directions emerges as plane polarized light. There the similarity ends. In the

three-dimensional case the orientation of the emerging plane polarized light need not

be the same as that of the entering plane polarized light.

8.2.1 Poincaré’s Equivalence Theorem

The fundamental principal of three-dimensional photoelasticity is known as Poincaré’s

equivalence theorem [119]. A recent treatment of this theorem has been published by

Hammer [120]. Poincaré’s equivalence theorem states that any non-absorbing passive

optical element can be replaced by an optically equivalent model consisting of one

linear retarder and one rotator. A rotator is an optical element that introduces no

retardation, but rotates the electric vector by a specified amount. Figure 8.1 gives a

schematic of the optically equivalent model.

The optically equivalent model has the same effect on polarized light as the three-

dimension birefringent plate. If plane polarized light enters the linear retarder along

either of the principal axes it emerges as a plane polarized beam with the same

orientation. The rotator then rotates the beam and the beam exits the model plane

polarized but with a different orientation than it had originally.

A consequence of Poincaré’s equivalence theorem is that the integrated effect of

any three-dimensional residual strain field on polarized light travelling through the

field can be characterized by three parameters. These three parameters are the char-

acteristic elements of the optically equivalent model: the principal axis orientation
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Figure 8.1: Schematic of Poincaré’s optically equivalent model of a three-dimensional
strain field at a point. The model consists of a linear retarder in series
with a rotator. The linear retarder has principal axes oriented at angle
α to the reference axes and angular retardation δ. The the amount of
angular rotation due to the rotator is ρ. The orientation angle of the
secondary axis β (not shown) is given by β = α+ ρ.

α of the linear retarder with respect to a given zero axis, the retardation δ of the

linear retarder, and the rotation angle ρ of the rotator. The secondary principal

axis orientation β with respect to the same zero axis could also be specified, with

β = α+ ρ. Then δ and any two of α, β or ρ completely specify the optically equiva-

lent model at the point of interest. Unfortunately, unlike the two-dimensional case,

these parameters are not easily related to the underlying strain field.

8.2.2 Using a Plane Polarimeter to Determine Primary and Secondary
Principal Directions in a Three-Dimensional Residual Strain Field

The presence of the rotator in the optically equivalent model causes difficulties

when using a polariscope. Consider a two-dimensional birefringent plate. If a plane

polarized beam of light is oriented with either of the principal directions it exits the

specimen as a plane polarized beam with the same orientation. The principal axes
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can be found by crossing the polarizer and analyzer and rotating them as a unit

because it is known in advance that the plane polarized light entering and leaving

the part will have the same orientation. Finding the principal directions requires a

one-parameter search space.

For a three-dimensional birefringent plate there exist two orthogonal primary

principal directions and two orthogonal secondary principal directions. If a plane

polarized beam is oriented at one of the principal directions it exits the part as a

plane polarized beam, but it will now be oriented in the corresponding secondary

principal direction. The light can still be extinguished by properly orienting the

analyzer with respect to the polarizer, but the required angle is not known a priori.

The polarizer and analyzer must be rotated independently of each other to cause

extinction of the transmitted light. This is a two-parameter search space.

Srinath and Keshavan [121] and Srinath and Sarma [122] have described a fast

iterative procedure to determine these characteristic directions with a standard po-

lariscope. The key to their approach is to decouple the polarizer and analyzer. First

the polarizer is rotated until the transmitted light intensity is minimized. Then the

analyzer is rotated to reduce this intensity even further if possible. Then the polar-

izer and analyzer are alternately rotated until the transmitted intensity cannot be

minimized further. When this occurs the polarizer will be oriented along one of the

primary principal directions and the analyzer will be oriented along one of the sec-

ondary principal directions. Srinath and Keshavan [121] show that the transmitted

light intensity is reduced each iteration by a factor of cos2 δ and they claim that the

primary and secondary directions can usually be found within three iterations.
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8.2.3 Measuring Relative Retardation in a Three-Dimensional Residual
Strain Field

The compensator can also be used to measure relative retardation in the three-

dimensional case, although it is not obvious how to go about it. Srinath [121, 122]

states that it is possible to use a circular polarimeter in the standard configuration

to measure retardation, but does not go into detail. The presence of the rotator in

the optically equivalent model is the issue. Should the analyzer be crossed with the

polarizer (the primary axis), or should it be crossed to the secondary axis? Should

the second quarter-wave plate be crossed with the first quarter-wave plate, or should

it be adjusted to account for the rotator as well?

Physically, it would seem that the rotator can be ignored in the case of a circular

polarimeter. The light entering the rotator is already circularly polarized, adding an

extra rotation should be irrelevant. This seems to be what Srinath was suggesting

when he spoke of a circular polarimeter in a standard configuration.

In order to test this hypothesis an analysis was made of the effect of a three-

dimensional birefringent specimen on polarized light in a circular polarimeter. The

analysis was done using the Mueller calculus.

Mueller [123] proposed a vector representation of polarized light in the late 1940’s.

Instead of trying to represent the polarization state of the light directly, Mueller used

a collection of four experimentally measured parameters called the Stokes parameters.

The parameters are all real and are collected into a vector called the Stokes vector

S.

A good explanation of the significance of the Stokes parameters may be found

in Huard [53]. The parameters are all related to the intensity of the polarized light.

The first parameter, I, is the overall intensity of the light and can be measured
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with a photocell. The remaining parameters can also be measured experimentally

by passing the light through various linear and circular polarizers and measuring the

intensity of the transmitted light, as discussed by Gerrard [54].

The Mueller representation of polarized light is linear. An optical element can

be represented by a 4× 4 real matrix known as the Mueller matrix, M . The effect

of the element on polarized light is given by:

Sout = MSin (8.5)

For a series of n optical elements with Mueller matricesMi the output polarization

is given by:

Sout = MnMn−1 · · ·M2M1Sin (8.6)

In Appendix D Equation 8.6 is used to calculate the intensity of light transmitted

through an optically equivalent model of a three-dimensional birefringent specimen

in a circular polariscope in a standard configuration. Assuming without loss of

generality a horizontally oriented polarizer, that configuration is as follows:

1. Ideal linear polarizer (the “polarizer”) with θ = 0◦

2. Ideal quarter-wave linear retarder with θ = 45◦

3. Ideal linear retarder with retardation δ and fast axis at angle α

4. Ideal rotator of strength ρ

5. Ideal quarter-wave linear retarder with θ = 135◦

6. Ideal linear polarizer (the “analyzer”) with θ = 90◦ (dark-field circular po-

larimeter) or with θ = 0◦ (light-field circular polarimeter)
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The final result of the calculation in Appendix D is that the intensity of the

transmitted light as it exits the dark-field circular polariscope is

I ∝ sin2 δ

2
, I = 0 for δ = 2nπ (8.7)

The intensity as it exits the light-field circular polariscope is

I ∝ cos2 δ

2
, I = 0 for δ = (2n+ 1)π (8.8)

The final intensity is a function of the retardation only and is independent of the

primary axis orientation and the rotator strength. The final intensity is identical to

that produced by a two- dimensional birefringent specimen of the same retardation

placed in a circular polarimeter, as shown by Dally [47]. Therefore a compensator

can be used to measure the birefringence of a three-dimensional specimen using the

same procedure as for a two-dimensional specimen.

As shown in Section 8.1.2, in the two-dimensional case the compensator must be

aligned with the principal axes and the compensator can be inserted on either side of

the part. The three-dimensional procedure is similar. If the compensator is inserted

between the polarizer and the part it must be aligned with the primary principal

direction with the larger principal strain. If the compensator is inserted between the

part and the analyzer then it must be oriented along the corresponding secondary

principal direction.

When the compensator is aligned in this way the retardation introduced by it

will be additive with the retardation in the part at that point. The compensator is

then adjusted until a black fringe moves over the point of interest. The reading on

the compensator equals the amount of retardation in the part at that point.
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8.3 The Effect of the Flow Field and Packing Pressure on
Residual Strain

The residual strain fields of the solidified specimens produced by the optical

access mold were measured using the Vishay 080 Teaching Polariscope and accessories

described in Section 2.9. All specimens were made at flow rates of 11.5 cm3/s and

melt temperatures of 245◦ C. Eight specimens were made at each of the following

nominal packing pressures: 11.0 MPa, 16.5 MPa and 27.6 MPa. The parts were

packed at the specified pressures for ten seconds, the maximum allowed by the VS-

33 injection molding machine.

8.3.1 Residual Strain Near the Cavity Walls

The specimens were first examined in a circular polariscope to compare their

isochromatic fringe patterns. These fringes were functions of the retardation only

as described in Section 8.2.3. A representative image of the fringe patterns for an

unpacked specimen in both the dark-field and light-field polarimeters is shown in

Figure 8.2. A representative image of the fringe pattern for a packed specimen in

both the dark-field and the light-field polarimeters is shown in Figure 8.3.

The specimens themselves are larger than the aperture of the Vishay 080 Teach-

ing Polariscope, so a series of three images were taken with a digital camera on a

tripod, moving the specimen as needed to get full coverage of the specimen in the

three photos. In all of the photos the polariscope was set with the polarizer and

analyzer parallel to the specimen edges. The photos were then undistorted using the

MATLAB package described in Section 2.6.2. The images were then cropped to show

only the specimen itself, and these images were merged using the Adobe Photoshop

Elements 2.0 Photomerge function. Since the Photomerge function is automatic the
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user cannot control the output to ensure the correct aspect ratio of the part. The

photos are therefore not suitable for data extraction, but are provided as a visual

reference.

A series of photos was also taken of specimens in a larger plane polariscope, the

same polariscope as shown in Figure 2.29. The plane polariscope aperture was large

enough to allow an entire specimen to be photographed. Digital photographs were

taken of the specimens in the plane polariscope with the polariscope axes aligned with

the specimen edges (0◦ polariscope orientation) and at 45◦ to the specimen edges.

The specimens were photographed with a millimeter scale to allow measurements

to be made. The photographs were then undistorted using the MATLAB package

described in Section 2.6.2. The undistorted images were then cropped. The images

are shown in Figures 8.6 through 8.9.

The circular polariscope photos (Figures 8.2- 8.5) show isochromatic fringes,

fringes that are due to retardation only. The dark-field photos show the ordinal

fringes (n = 0, 1, 2 . . .) while the light-field photos show half-order fringes (n =

0.5, 1.5, 2.5 . . .). The striking feature of these photos is that fringes are parallel to

the edges of the specimens. The number of fringes and their penetration toward the

center of the part both increase as the packing pressure increases.

The plane polariscope photos (Figures 8.6- 8.9 show a superposition of isochro-

matic fringes due to retardation and isoclinic fringes due to orientation of the residual

strain axes in the specimens. The images taken at 0◦ polarimeter orientation with

respect to the specimen edges are particularly interesting. The regions near the wall

are dark, almost black. Polarimeter measurements taken in the near-wall regions

gave two interesting results:

• The rotator angle for points near a wall was zero.
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Figure 8.2: Unpacked sample viewed in a dark-field circular polarimeter (top) and a
light-field polarimeter (bottom). The gate is in the lower left corner.
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Figure 8.3: Sample packed at 11.0 MPa viewed in a dark-field circular polarimeter
(top) and a light-field polarimeter (bottom). The gate is in the lower left
corner.
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Figure 8.4: Sample packed at 16.5 MPa viewed in a dark-field circular polarimeter
(top) and a light-field polarimeter (bottom). The gate is in the lower left
corner.
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Figure 8.5: Sample packed at 27.6 MPa viewed in a dark-field circular polarimeter
(top) and a light-field polarimeter (bottom). The gate is in the lower left
corner.
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Figure 8.6: Unpacked sample viewed in a plane polarimeter with primary axes ori-
ented parallel to the specimen edges (top) and at 45◦ to the specimen
edges (bottom). The gate is in the lower left corner and the scale is in
millimeters.
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Figure 8.7: Sample packed at 11.0 MPa viewed in a plane polarimeter with primary
axes oriented parallel to the specimen edges (top) and at 45◦ to the
specimen edges (bottom). The gate is in the lower left corner and the
scale is in millimeters.
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Figure 8.8: Sample packed at 16.5 MPa viewed in a plane polarimeter with primary
axes oriented parallel to the specimen edges (top) and at 45◦ to the
specimen edges (bottom). The gate is in the lower left corner and the
scale is in millimeters.
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Figure 8.9: Sample packed at 27.6 MPa viewed in a plane polarimeter with primary
axes oriented parallel to the specimen edges (top) and at 45◦ to the
specimen edges (bottom). The gate is in the lower left corner and the
scale is in millimeters.
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• The primary axes for points near a wall were parallel and perpendicular to the

wall

The images taken at 45◦ polarimeter orientation to the specimen edges are also inter-

esting. The color fringes near the walls are isochromatic fringes, fringes of constant

retardation. The black fringes are isoclinics, showing areas in the specimen whose

primary axis orientation is at 45◦ to the specimen edges. Polarimeter measurements

taken near the corners gave two interesting results:

• The rotator angle for points near the corner was zero.

• The primary axes for points on the corner angle bisectors were parallel to the

angle bisectors (at 45◦ to the edges)

These observations lead to an interesting set of conclusions:

• The residual strain field near the edges of the specimen is two-dimensional

• The primary axes of the residual strain tensor near the edges of the specimen

are parallel and perpendicular to the edges of the specimen, and parallel to the

corner-angle bisector near the corners.

• The retardation near the specimen edges is constant along planes parallel to

the edge

The conclusion about the two-dimensionality of the residual strain field near the

edges of the specimen follows directly from the observation that the rotator strength

is zero in these regions. The three-dimensional, three-parameter Poincaré model

degenerates into the two-dimensional, two-parameter model for a linear retarder. The

conclusion about primary axis orientation comes from the near-wall measurements
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made with a plane polarimeter at 0◦ orientation to the specimen edges, and is also

evidenced by the black regions near the wall in Figures 8.6- 8.9. The conclusion about

the retardation comes from near-wall measurements made with a circular polarimeter

and is also evidenced by the color fringes in Figures 8.2- 8.5.

These conclusions deal with the two-dimensionality of the residual strain field near

the edges of the part and are primarily based on measurements of the the primary

angle and rotator strength. Since the field does appear to be constant through the

thickness of the specimen in these regions, thickness variations due to draft have no

effect on the measurements.

The two-dimensionality of the residual strain field near the walls can be explained

by examining the fluid flow of the polymer during the filling stage. The region near

the walls of the cavity are the regions of the highest shear stress and shear stress

gradients during the filling phase. The orientation of the flow in these regions is

also very uniform throughout the entire shot, as shown in Figures 5.1- 5.12. The

high shear stress and shear stress gradient would be expected to give a very uniform

molecular orientation near the walls, with the long-chain polymer molecules oriented

parallel to the walls. The uniformity of the flow orientation throughout the entire

shot would lead to uniformity of molecular orientation through the thickness since

the flow orientation in the quickly solidified skin would be same as in the more slowly

solidifying core, leading to a two-dimensional residual strain field.

8.3.2 Residual Strain in the Interior Region

Six points in the interior of the specimens far from the cavity walls were then ex-

amined in the Vishay 080 Teaching Polariscope, see Figure 8.10. The three constants

of the optically equivalent model were measured: the primary axis orientation, the
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Figure 8.10: Locations of the birefringence measurements. The gate is in the lower
right corner. All dimensions are in millimeters.

retardation, and the rotator strength. These quantities were measured following the

procedures outlined in Section 8.2.2 and Section 8.2.3.

In the case of a two-dimensional residual strain field the measured angular re-

tardation is linearly proportional to the specimen thickness at a given point (see

Equation 8.1. A nondimensional retardation can be defined that takes thickness

variations into account using Equation 8.2:
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δ∗ =
δl
h

= N
λ

h
(8.9)

where N and h are the fringe order and thickness at a given point, and λ is the

design wavelength of the polarimeter.

In a three-dimensional residual strain field the retardation is no longer directly

proportional to specimen thickness, yet it is reasonable to account for thickness

variations in the same way. Due to the draft present in the optical access mold the

specimen thickness is not constant even in highly packed parts. In lightly packed

or unpacked parts there is a further thickness variation due to uneven shrinkage of

the part away from the mold surfaces. For each specimen in the present work the

thickness was measured at each of the six measurement locations using a micrometer

with conical tips. These measurements were then used to calculate the values of δ∗.

The measurement data for the primary axis orientation α, rotator strength ρ,

and nondimensional retardation δ∗ can be found in Appendix E.

In contrast to the near-wall region, the rotator strength in this region was not zero.

The residual field in the interior region was three-dimensional, not two-dimensional.

A major difference between the interior region and the wall region is that the flow

velocity orientation does not remain constant in the interior region. The velocity

orientation at the beginning of the shot determines the molecular orientation in the

frozen layers at the top and bottom of the part. The orientation at the end of the shot

determines the molecular orientation in the core of the part. Since these orientations

are different in the interior region of the part the resulting residual strain field is

three-dimensional.
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8.3.3 The Influence of the Flow History and Packing Pressure on the
Residual Strain Field

In order to investigate the influence of packing pressure and flow history on the

residual strain field two-way ANOVA analyses [100] were performed on the primary

axis orientation, the retardation and the rotator strength data. The ANOVA factors

considered were position and packing pressure, where the position factor can be

thought of as a flow history factor. The goal of the analyses was to see if these factors

had a statistically significant effect on the optically equivalent model parameters.

The two-way ANOVA analysis was carried out with the null hypotheses that

packing pressure and position had no effect on the measured values of primary axis

orientation, rotator strength, and retardation. The tests were carried out at the 5%

significance level using the MATLAB anova2 function. The statistical significance

as a function of p-value used follows that described by Koopmans [100] and is shown

in Table 5.3.

Both position and packing pressure have significant effects on the retardation

and rotator strength, but their interactions are not significant factors. The packing

pressure is only a mildly significant factor in determining primary axis orientation.

Position is a significant factor, and the interaction of position and packing pressure

is significant, but the packing pressure itself is not significant.

A physical explanation of this can be made by equating the position factor with

flow history. Each different position in the solid part experienced a different flow

history. The flow history has a significant effect on the orientation of the long-chain

polymer molecules in the molten state and in the solid state. Thus it is reasonable to

expect that position (and thus flow history) have a significant impact on the primary

axis orientation, the rotator strength and retardation.
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Table 8.2: Resulting p-values from the two-way ANOVA analyses examining the ef-
fect of position and packing pressure on primary axis orientation α, re-
tardation δ, and rotator strength ρ.

Significance of Position
Factor p-value Significance
α 6.60×10−6 Highly significant
δ∗ 2.26×10−6 Highly significant
ρ 0.0256 Significant

Significance of Packing Pressure
Factor p-value Significance
α 0.0669 Mildly Significant
δ∗ 1.86×10−4 Highly significant
ρ 0.0158 Significant

Significance of Position and
Packing Pressure Interaction

Factor p-value Significance
α 4.00×10−3 Highly significant
δ∗ 2.49×10−4 Highly significant
ρ 0.3843 Not significant
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Figures 8.2 through 8.5 demonstrate that packing pressure has an obvious effect

on the polarimeter fringe pattern, and thus on the retardation. It is less obvious

why packing pressure should be significant for rotator strength and less significant

for primary axis orientation. One possible way of explaining this result would be to

assume that the primary axis orientation is determined by by the highly oriented skin

of the specimen and that the rotator strength is determined by the more amorphous

core of the specimen.

The fountain flow effect causes the frozen molecular orientation of the top and

bottom surface of the part to be set during the filling stage of the flow. The orienta-

tion of the top and bottom layers should be equal due to the symmetry of the flow.

The orientation of the core of the specimen is set during the later phase of the flow,

including the packing phase since the core is molten during the packing phase. The

application of packing pressure will effect the orientation of the core since the core

is still solidifying, but it will have little effect on the orientation of the frozen layer

at the top and bottom of the part.

Therefore the solid part can be thought of as a stacked series of three plates:

two highly oriented plates with equal primary axes sandwiching a third, less oriented

plate with a possibly different primary axis orientation. If this third plate has roughly

the same orientation as the other two plates the rotator strength would be zero, as

shown by the integral Wertheim law in Equation 8.4. The rotator strength will grow

larger as the difference in orientation between the core and the skin grows larger.

Since the packing pressure only affects the core of the specimen it would have a

strong effect on rotator strength but only a second order effect on the primary axis

orientation. This shows up in the ANOVA analysis as a mildly significant effect of

the packing pressure on primary axis orientation but a significant effect on rotator
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strength.

The p-value of the effect of packing pressure on the primary axis orientation was

found to be mildly significant at the 5% significance level. Further statistical testing

was performed to investigate the validity of this finding. The ANOVA procedure

assumes that the data being studied has a normal distribution. A Lilliefors test [124]

was used to test the normality of the birefringence data.

The normality of the data was tested by examining sets of data taken from spec-

imens molded under the same conditions. As mentioned above, there were four

different packing pressures used, and birefringence measurements were made at six

points on each plaque. Eight specimens were measured from each packing pressure.

This leads to 24 combinations of packing pressure and position, with eight replica-

tions at each combination. Three different birefringence measurements were made at

each point (primary axis orientation, rotator angle, and retardation). This gives a to-

tal of 72 data sets, with each set having a unique combination of measured quantity,

position, and packing pressure. These 72 data sets all had eight measurements. The

Lilliefors test was performed for each of these 72 data sets to test their normality.

The Lilliefors test uses the Kolmogorov-Smirnov statistic to perform a two-sided

goodness-of-fit test to determine if a given distribution comes from a normal distribu-

tion. The Lilliefors tests in the present work were performed with the null hypothesis

that the birefringence data were drawn from normal distributions. The tests were

performed at the the 5% significance level. The MATLAB lillietest function was

used to perform the calculations. The results of these tests are tabulated with the

raw data in Appendix E. A total of 19 of the 72 distributions (26.4%) failed the

Lilliefors test for normality, indicating that the distributions did not wholly meet

the assumption of normality made by the ANOVA analysis.
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A Friedman analysis [125] was then performed to further investigate the signifi-

cance of packing pressure and position on the measured residual strain field parame-

ters. A Friedman analysis is similar to an ANOVA analysis except that it relaxes the

assumption that the data is drawn from a population with a normal distribution [125].

In a Friedman analysis it is assumed that the data is drawn from a population with

a continuous, but not necessarily normal, distribution. The Friedman analysis treats

each factor separately and does not test for interactions.

The Friedman tests were carried out with the null hypotheses that packing pres-

sure and position had no effect on the primary axis orientation, rotator strength, and

retardation measurements. The tests were carried out at the 5% significance level

using the MATLAB function friedman.

The results of the Friedman analyses are shown in Table 8.3. The resulting p-

values are different from those of the two-way ANOVA tests shown in Table 8.2, but

the conclusions are similar. Position and packing pressure are both highly significant

factors for rotator strength and retardation. Position is also a highly significant factor

for primary axis orientation. Packing pressure in not a significant factor for primary

axis orientation (p = 0.3339). This is a stronger result than the corresponding

ANOVA analysis, which showed that packing pressure was a mildly significant factor

for primary axis orientation (p = .0669). But the two tests are in basic agreement.

The packing pressure and position are significant factors affecting the retardation

strength and rotator strength. The position is also a significant factor on primary

axis orientation. The packing pressure is a much less significant factor on primary

axis orientation.

In conclusion, the flow history has a number of important effects on the residual

strain:
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Table 8.3: Resulting p-values from the Friedman analyses examining the effect of
position and packing pressure on primary axis orientation α, retardation
δ, and rotator strength ρ.

Significance of Position
Factor p-value Significance
α 1.16×10−5 Highly significant
δ∗ 3.35×10−5 Highly significant
ρ 3.22×10−3 Highly significant

Significance of Packing Pressure
Factor p-value Significance
α 0.3339 Not Significant
δ∗ 9.60×10−4 Highly significant
ρ 1.26×10−3 Highly significant

• Near the walls the residual strain field is two-dimensional and the primary

strain axes parallel the walls. This is a flow artifact independent of packing

pressure.

• Packing pressure increases the observed number of fringes near the walls.

• In the interior of the cavity the strain field is three-dimensional.

• The primary axis orientation of the equivalent optical model is a function of

position with packing pressure a second order effect.

• Position and packing pressure are both significant factors for retardation and

rotator strength in the interior of the cavity.



CHAPTER 9

Summary and Conclusions

9.1 Summary

Flowing polymer melts have been studied using a variety of optically accessi-

ble molds since the 1950s. Much of this early work was qualitative rather than

quantitative. Flow front tracings and mold pressure measurements provided some

quantitative data, but melt velocity fields were beyond the reach of the experimental

methods available at the time.

Experimental methods in non-Newtonian fluid mechanics have advanced rapidly,

although the adoption of techniques such as Particle Image Velocimetry (PIV) has

been slower than in Newtonian fluid experiments. The use of PIV in non-Newtonian

flows has grown in the last ten years, but due to the wide variety of non-Newtonian

effects these experiments have been on model fluids in simplified geometries at stan-

dard temperatures and pressures.

For this thesis a series of PIV experiments has been performed using an industrial

polymer in an optical access mold in an industrial injection molding machine. Stud-

ies of the filling phase have been performed under different injection rates and melt

temperatures. The velocity vector fields have been measured, analyzed and evalu-

ated. The vector fields were checked for consistency with the imposed flow rates and

291
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a scaled version of the continuity equation was employed to evaluate the resulting

vector fields.

The PIV vector fields were then compared to Moldflow simulations of the same

flows. The Moldflow data was formatted and displayed on the same grid as the

PIV data and the same analyses were performed. The accuracy of the Moldflow

vector magnitudes and orientations was measured. The Moldflow simulation velocity

vectors were, for the most part, within ±1.7◦ of the experimentally measured velocity

vectors. The magnitudes of the cavity-thickness averaged velocities were also found

to be accurate for the bulk of the flow, but significant deviations were found near

the walls and flow front. These deviations are caused by Moldflow’s use of the Hele-

Shaw model and the inability of the Hele-Shaw model to impose no-slip boundary

conditions at the cavity walls.

The vector fields during the filling phase were found to scale linearly with the flow

rate, leading to the conclusion that the flow kinematics were Newtonian in nature for

this weakly elastic polymer in this simple geometry. The measured gate pressures,

however, showed strong evidence of shear-thinning behavior. An analytical power-law

model was proposed that accurately predicted the shape of the pressure curve in both

the radial and channel flow regimes of the mold filling phase. The model of the radial

flow pressure rise was used to successfully calculate the power-law exponent. The

power-law coefficient was also predicted from the pressure traces, but with somewhat

less success when compared with results from standard rheological tests.

The packing flow of the polymer melt was also studied. PIV vector fields were

measured for the influx of polymer melt during the packing phase. These fields

showed a high level of variability that increased with time and decreased with packing

pressure magnitude. The velocity fields, gate pressure traces and final part masses
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were used to estimate the mass flow rate into the mold during packing as a function

of time. An analytical model was then constructed to predict the mass flow rate into

the mold during packing. The model included melt compressibility and solidification

effects. The model predictions were then compared with the mass flow rate curves

generated from the experimental data.

The residual stress fields of the solidified parts were then studied using a po-

lariscope. The polariscope was capable of generating plane polarized or circularly

polarized light, but it was intended to measure two-dimensional residual stress fields.

Injection molded parts may be expected, in general, to have three-dimensional resid-

ual stress fields. Detailed measurements of the internal residual stress fields were

not possible, but it was possible to measure the three components of the Poincaré

optically equivalent model of the three-dimensional field. These three parameters

include a primary axis orientation, a retardation, and a rotator strength.

It was found that the residual stress field near the edges of the part were two-

dimensional in character since the measured rotator strength was zero. The fringes

were parallel to the edges as well, with higher order fringes appearing at higher

packing pressures. The two-dimensionality of the field along the edges was likely

due to the fact that the polymer melt experiences the highest shear stresses near

the walls of the cavity, and that these stresses are uniform through the thickness of

the part. These high, uniform shear stresses cause the molecular orientation to align

with the cavity walls causing the primary stress axes to be parallel to the walls and

the rotator strength to be zero.

Far from the walls, however, the residual stress field was found to be three-

dimensional. This was indicated by the measurement of non-zero rotator strengths

at points far from the walls. An analysis of variance (ANOVA) was performed to see
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if the position (or flow history) and packing pressure levels were significant factors in

explaining the observed variance in primary axis orientation, retardation, and rotator

strength.

9.2 Conclusions

This work led to the following conclusions. These results are new and unique to

the present work except as noted below.

1. PIV is possible in a polymer melt in an injection molding machine.

Chapter 3 explores the theoretical and practical consequences of attempting PIV

in an injection molding machine. The relevant issues are summarized in Table 3.2.

The extremely low Reynolds number and the blunt velocity profile through the cavity

thickness produced by the shear-thinning polymer are positive factors in performing

a PIV experiment and help to minimize velocity bias errors (Figure 3.2. The moving

flow front and fountain flow effect make PIV difficult near the front. The strong radial

flow at the gate produces a dead zone in which the PIV analysis fails (Equations 3.16

and 3.17). This dead zone is a function of camera frame rate and decreases with

increasing frame rate. The high temperatures and pressures call for a robust optical

window design. The high shear rates present in the barrel of the injection molding

machine mandated the use of metal particles. These particles needed to be mixed in

the solid state with the plastic pellets. The high viscosity of the polymer was sufficient

to drag the particles at the local fluid velocity despite their weight, enabling their

use in PIV (Equations 3.27 and 3.28).
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2. The flow kinematics in the optical access mold scale linearly with
injection rate.

Figures 5.1-5.12 show the PIV vector fields for specimen made at the conditions

listed in Table 5.1. A control surface analysis was employed to examine the con-

sistency of the PIV results with each other. Figure 5.14 shows that the calculated

volume flow rates are consistent with each other when normalized by the calculated

volume flux of the 11.5 cm3/s run. Best fit scaling factors were found between the

vector fields from different tests. These scaling factors were found to deviate from

the ratio of injection rates by less than 5% on average. The portions of the fields that

remained after accounting for this scaling factor were also examined. These residual

fields were found to be small in all cases as shown in Figure 5.19. The residual fields

were then correlated with each other to see if there were any flow structures that

persisted from one set of molding conditions to another. The distribution of the

correlations were statistically indistinguishable from that of a uniform distribution

as shown in Figure 5.21 and Figure 5.22. Thus, the flow kinematics in the optical

access mold scale linearly with injection rate.

3. Moldflow accurately predicts velocity orientation and average velocity
magnitude in the bulk of the flow. Moldflow does not accurately predict
the velocity field near the cavity walls and flow front.

The Moldflow simulation results were plotted on the same grid as the PIV vectors

and were plotted and analyzed in the same fashion as the PIV vectors. The velocity

vector fields resulting from the Moldflow simulation are shown in Figure 5.27 and

Figure 5.28. The Moldflow simulations also scaled linearly with injection rate. The

best-fit scaling factor between any two flows deviated from the ratio of injection rates

by an average of 0.2%.
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However, Moldflow’s predictions of flow front shapes are not realistic, as seen

in Figure 5.35. The differences between the simulated fronts and actual fronts are

shown in Figure 5.36 and Figure 5.37.

Moldflow does a much better job simulating the melt-flow velocity vectors. The

simulations were compared to the PIV data. Figure 5.38 shows the difference between

the simulated vector orientations and the PIV vector orientations. The mean angular

difference over the whole field was 1.7◦, although larger deviations were seen near

the cavity wall and corner opposite the gate.

Two different methods were used to assess the accuracy of Moldflow’s velocity

vector magnitudes. This was necessary since Moldflow reports thickness-averaged

velocities, not midplane velocities. The first method was to use the PIV vectors to

estimate the thickness-averaged velocities. This was done using a profile factor of

0.7 calculated from Figure 5.15. The ratio of the PIV estimated average velocities to

the Moldflow average velocities is shown in Figure 5.39. The mean of this ratio for

the entire field was 0.998 with a standard deviation of 0.25. Regions near the walls

and flow front fared worse than regions near the center of the field.

A second method of comparing the magnitude of the simulation to the magni-

tude of the PIV data was to have Moldflow calculate midplane vectors. This did

not produce a good comparison. Moldflow uses the Hele-Shaw approximation, and

this approximation does not conserve mass except in an average sense as shown in

Equation 5.17 and illustrated in Figure 5.41. Another problem lies in the fact that

Moldflow assumes a parabolic velocity profile with a profile factor of 0.6 through

the cavity thickness even though it has access to models of the material viscosity as

shown in Figure 5.40.

The ratio of the PIV midplane vectors to the Moldflow prediction of midplane
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vectors is shown in Figure 5.42. The mean ratio across the entire field is 0.87 with

a standard deviation of 0.37. The sub-unity mean ratio is due to difference in pro-

file factors between the simulation and the real flow, which has a profile factor of

approximately 0.7. The ratio of these two profile factors is 0.86.

4. The flow dynamics in the optical access mold exhibit shear-thinning
behavior. The gate pressure can be used to measure the shear-thinning
exponent of the polymer melt.

An analytical model of the gate pressure during the radial flow portion of the mold

filling is given in Equation 6.15. This model is an extension of a power-law exercise

presented by Bird [63]. The power-law coefficient and exponent are decoupled in this

equation, and a best-fit curve to this equation has been used to estimate the power-

law parameters. The best-fit curves of Equation 6.15 are shown in Figure 6.9 for

the two data sets at 34.5 cm3/s. The power-law exponent was predicted successfully

to within 0.4% of the value measured by a capillary rheometer, with the predicted

n=0.4063 and the value extracted from the rheometer data being n=0.4079. A

reference stress based on the extracted values of n and m at γ̇= 100 s−1 was within

14% of the value calculated from the rheometer power-law parameters. The mean

value of m based on the reference stress was defined in Equation 6.18 and was equal

to 2660 Pa·sn , a value within 9.5% of the value of m=2940 Pa·sn calculated from

the rheometer data. The results are tabulated in Table 6.2.

An analytical model of the gate pressure was also made for the channel flow regime

of the mold filling process. Equation 6.25 predicts a linear rise of the gate pressure

during the channel flow regime and provides an estimate of the slope. Figure 6.10

compares these predicted slopes to the actual pressure data, and the results of this

comparison are tabulated in Table 6.3. The predicted slope was within 3% of the
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actual slope for the 34.5 cm3/s, 230◦ C run and was with in 12% for the 11.5 cm3/s,

230◦ C run and for the 23.0 cm3/s, 230◦ C run.

5. The flow during packing is highly variable. The variability increases
as packing progresses and decreases with higher packing pressures. The
variability is particularly intense along the wall region that has the highest
residual stresses in the solidified specimens.

The packing PIV velocity fields are shown in Figures 7.2-7.10. A residual metric

was defined in Equation 7.8 to gauge the level of variability of the packing flow. A

plot of the residual metric versus time for all three packing pressure levels is found in

Figure 7.14. The random component of the packing flow at the beginning of packing

was between 10-20% of the mean flow and grew to be between 60-80% of the mean

flow after five seconds of packing. Figure 7.14 shows that the variability of the flow

increased with time for all packing pressures and decreased with packing pressure

level for all times.

Figure 7.11 shows a packing PIV field with a pseudocolor overlay representing

the sum of the variances of the u and v components of the velocity field. This figure

shows that the variance is highest on the wall with the gate. This wall also happens

to be the region of the flow with the most uniform flow history and is a region of

high stress as evidenced by Figures 8.6-8.9. It is possible that the high variability in

this region is due to a higher rate of stress relaxation during the packing flow.

6. The flow into the mold during packing can be accounted for using a
melt compressibility model and a one-dimensional solidification model.

The mass flow into the cavity during packing was estimated from the evolution of

the PIV vector fields, the packing pressure trace, and the mass of the final part using

Equation 7.13. The results of this calculation are plotted in Figure 7.15. An analyt-

ical model was constructed to predict the mass flow into the mold during packing.
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The model was composed of two components, mass flow due to melt compressibility

and mass flow due to solidification. The compressibility model used the Tait model

as an equation of state and resulted in Equation 7.11. The solidification model was

based on two one-dimensional heat transfer models illustrated in Figure 7.16 and

Figure 7.19. In one model the glass window is treated as an insulated surface and

in the other it is treated as a constant temperature surface. The model equation is

given by Equation 7.16.

The comparison of the model components with the experimental data is shown

in Figures 7.20 and 7.21. The model predicts that the packed mass due to compress-

ibility is 63.8% of the total packing mass for the 11.0 MPa case, and is 63.5% of the

total for the 16.5 MPa case. The comparison of the total model with the data is

shown in Figures 7.22 and 7.23. The data lies between the two model formulations,

suggesting that some heat transfer to the glass window does occur, but that it is less

than the amount of heat transferred to the opposite steel mold surface.

7. The three-dimensional residual stress field of a polymer specimen may
be explored with a two-dimensional polarimeter using the Poincaré optical
equivalence theorem

The optical equivalence theorem is described in Section 8.2.1 and is illustrated

in Figure 8.1. This theorem provides three experimentally measured parameters

that describe the integrated effect of the specimen on polarized light. These three

parameters are a primary axis orientation, a retardation, and a rotator strength.

This conclusion is not unique to this work, although a search of the literature pro-

vided scant details on how to use a two-dimensional polarimeter to measure these

parameters. In particular, details about how to use a compensator to measure the re-

tardation in a three-dimensional field were scarce. Section 8.2.3 describes a method
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for doing so in detail. The method is confirmed mathematically in Appendix D

where a Mueller matrix calculation is carried out to show that the polarimeter and

compensator configuration described does indeed measure the retardation accurately.

8. The residual strain field in the solid parts produced by the optical
access mold are two-dimensional near the cavity walls. The primary axes
of the residual strain field are parallel the specimen edges in the two-
dimensional region. The residual strain field is three-dimensional in the
central region of the solid specimens.

Figures 8.6-8.9 show the specimens in a plane polarimeter with the polarimeter

primary axes aligned with the specimen edges. The dark fringes along the edges show

that the primary axis of the residual strain field is also aligned with the specimen

edges. The rotator strength was found to be zero in this region, showing that the

field was two-dimensional.

In the central portion of the specimens six points were selected for study, the

locations of which are shown in Figure 8.10. The rotator strength was found to be

non-zero at these points, indicating a three-dimensional residual strain field.

9. Position (flow history) has a significant to highly significant impact on
the parameters of the Poincaré equivalent model of the solid specimens.
Packing pressure is also significant, but plays less of a role in determining
the primary axis orientation.

A two-way ANOVA analysis was performed with the null hypothesis that position

(also considered as flow history) and packing pressure were not significant factors

in predicting the values of the Poincaré parameters. Twenty-four specimens were

sampled, eight specimens at each of three packing pressure levels. Six positions

on each specimen measured using a polariscope and compensator. The results of

this study are found in Table 8.2. Position was found to significant for rotator

strength and highly significant for primary axis orientation and retardation. Packing
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pressure was found to be significant to rotator strength and highly significant for

retardation, but only mildly significant for primary axis orientation. This suggests

that primary axis orientation is “locked in” by the flow history and is influenced by

packing pressure magnitude only to a lesser extent.

9.3 Possible Future Work

The work presented here is fundamental in the sense that it presents, for the

first time, a full-bodied PIV study in an industrial polymer in an industrial injection

molding machine. Since this had not been done before the selection of polymer and

mold cavity geometry were primarily driven by applicability and simplicity. There

are a number of possible future projects that could be done to extend the research

presented here.

1. Choose a mold design and polymer combination that will exhibit vis-
coelastic behavior.

The polymer used in the present work was shear-thinning but not strongly vis-

coelastic. Also, the mold cavity was a simple plaque gated at the corner. This

combination did not produce any distinctly non-Newtonian behavior in the veloc-

ity fields. One possibility for a future project would be to design the experiment

to specifically produce non-Newtonian behavior in the velocity fields. This would

be challenging for a number of reasons. A more aggressive polymer would prob-

ably require the installation of cooling lines in the mold, complicating the design,

manufacture and operation of the mold.

A more severe challenge lies in designing the mold to produce viscoelastic effects.

These are typically produced in experiments by forcing the non-Newtonian fluid to

flow around a corner or through a contraction. This could be done by introducing flow
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obstructions into the mold cavity. In order to do this in a mold cavity perpendicular

to the parting plane, as in the current work, complex coring mechanisms would have

to be introduced into the mold cavity to retract the obstructing features and allow

ejection of the solid part. It would be far easier to introduce obstructions into the

mold if the cavity were parallel to the parting plane as would typically be done in

industry. However, this would require a complete redesign of the optical access routes

to the mold cavity. Mirrors would have to be introduced into the mold to allow the

cavity to be visualized. In either case, the flow obstructions would have to be made

of a transparent material to allow passage of the laser sheet.

2. Build and test the quality control mold proposed in Figure 6.11 and
Figure 6.12

The analytic model of the gate pressure presented in Equation 6.15 successfully

predicted the shear thinning exponent of the polystyrene used in the present work

and proposal was made in Section 6.5.3 to build a quality control mold based on

this model. It would be interesting to actually build this mold in conjunction with

a turn-key data acquisition and analysis system to see if it could successfully de-

tect variations in the shear thinning exponent between different grades of the same

polymer, or between filled and unfilled versions of the same polymer. How robust

would such a system be? How sensitive would it be to mold temperature or other

environmental factors? Would it be of any practical use to industrial molders?

3. Design a stereo-PIV experiment to investigate particle migration across
streamlines in rectangular channels

In Chapter 3 experiments were cited [93, 94] that studied particle migration

across streamlines in the tubular Couette and Poiseuille flow of shear-thinning and

viscoelastic liquids. The tubular geometry is not generally applicable to PIV in



303

injection molding. A channel geometry would be far more useful in establishing

whether or not particle migration across streamlines is an issue for non-Newtonian

PIV researchers. A stereo-PIV experiment could be used to explore this question.

A vertical channel with glass walls could be set up to ensure that gravity does not

influence the results. A steady channel flow of a non-Newtonian liquid could be

established in the channel and a laser sheet introduced at the cavity midplane. A

stereo-PIV experiment could be designed to dectect out-of-plane motion of the PIV

particles. Does the migration happen? If so, do the particles move toward or away

from the midplane? The laser sheet could be indexed to different positions off the

midplane to measure the growth or decay of the out-of-plane motions as a function of

distance from the midplane. Various non-Newtonian fluids could be used to attempt

to correlate out-of-plane velocities with fluid properties.
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APPENDIX A

STYRON-615APR Characterization

This appendix presents the Datapoint Lab results and the Moldflow Testing Lab

results

This appendix presents the results of rheological testing done on the polymer-

particle mixture used in the present work. Two laboratories were contracted with

to perform testing on this material. DatapointLabs performed capillary rheometer

testing at a single temperature and cone-and-plate steady and oscillatory tests at the

same temperature. Moldflow Plastics Labs performed an injection molding capillary

rheometer test on the material to see if the inclusion of a typical injection molding

shear history would lead to significantly different viscosity results.
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Test Report: Styron 615APR

Client Thomas Bress

Company University of Michigan

Address 1231 Beal Ave.

Ann Arbor, MI 

United States

Sample Received 6/25/2007

Sample Source Client

Report Prepared 7/2/2007

Prepared By

Title Engineer

Issued By

Title Operations Manager

http://www.datapointlabs.com

95 Brown Road, Ithaca, NY 14850

Phone: 607-266-0405   Fax: 607-266-0168

Toll-Free (U.S.): 1-888-328-2422

This data is available in True Digital format

www.matereality.com

© DatapointLabs (2007)

PAGE 1 OF 9

DatapointLabs is accredited by the American Association 
for Laboratory Accreditation (A2LA Certificate # 1242.01), 
and maintains a quality system in accordance with 
ISO/IEC 17025. Any opinions or interpretations expressed 
in this report are outside the scope of the accreditation.

The results in this report relate only to the items tested.  
This report shall not be reproduced except in full without 
the written approval of DatapointLabs. 

DatapointLabs cannot be held liable under any 
circumstances for damages arising out of the use of this 
information or for claims in excess of that originally paid for 
the testing.  DatapointLabs disclaims all other warranties, 
either express or implied, including implied warranties of 
merchantability or fitness for a particular purpose.  

dds
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Viscosity

Method ASTM D 3835 - 02

Determination of Properties of Polymeric

Materials by Means of a Capillary Rheometer

Instrument Goettfert Rheograph 2003 Capillary Rheometer

Specimen type pellets

drying none

other preparation none

Parameters initial pressure 0 MPa

barrel diameter 12 mm

die entry angle 180 °

die inner diameter 1 mm

die length 20 mm

preheating time 6 min

Data Correction

Precision temperature +/- 0.1 °C 

die inner diameter +/- 0.0069 mm

die length +/- 0.025 mm

Uncertainty per standard

Viscosity Data
245 °C

Shear Rate Viscosity
s-1 Pa·s

10 304.64

20 274.18

50 244.28

100 201.53

200 155.73

500 102.60

1000 69.61

2000 45.49

5000 25.16

10000 15.94

Tested By: JA

Certified By:

0 Digital data at www.matereality.com Test Date: 6/29/2007

PAGE 3 OF 9

Polymer rheology characterizes 
the complex flow behavior of 
plastics. A capillary rheometer 
measures viscosity as a function 
of temperature and shear rate.  
The Goettfert rheometer utilizes 
direct measurement of melt 
pressures through a side 
mounted pressure transducer. 
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Viscosity Continued

Viscosity vs Shear Rate

Cross WLF

PAGE 4 OF 9
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Cone & Plate Rheology

Method ASTM D 4440 - 95a

Rheological Measurement of Polymer Melts 

Using Dynamic Mechanical Procedures

Instrument Rheometrics ARES 

Specimen type disc

conditioning none

other preparation none

Parameters plate diameter 25 mm

cone angle 0.1 radians

gap 50 μm

temperature 245 °C

frequency range 0.1-500 rad/s

strain 15 %

Precision temperature ±2 °C 

Strain Sweep

Tested By: JA

Certified By: BC

0 Digital Data at www.matereality.com Test Date: 6/29/2007
Cone and plate DMA measurements are not included in our current scope of accreditation.

PAGE 5 OF 9

Polymer rheology characterizes 
the complex flow behavior of 
plastics. A dynamic mechanical  
rheometer measures complex 
viscosity as a function of 
temperature and frequency.  
Assuming the applicability of the 
Cox Merz relationship, the 
frequency bears a 1:1 
relationship to the shear rate.

10

100

1000

0.1 1 10 100

Strain (%)

G
', 

G
" 

(P
a)  G' 245°C

 G" 245°C

310



DatapointLabs Report # 12155: Styron 615APR PAGE 6 OF

Cone & Plate Rheology Continued

DMA Data

 Temp ωωωω ηηηη*  G'  G"

°C  rad/s  Pa•s  Pa  Pa

245 0.1 366.1 -7.58 35.82 NOTE: Shaded cells denote

245 0.1 296.1 6.10 43.03 torque below instrument limits.

245 0.2 361.6 13.76 76.67

245 0.3 307.9 18.55 95.58

245 0.5 318.0 9.32 147.30

245 0.7 275.7 19.94 186.76

245 1.0 286.1 28.39 284.71

245 1.5 268.8 35.91 392.84

245 2.2 266.0 60.71 569.78

245 3.2 263.1 103.74 825.64

245 4.6 255.4 173.73 1172.51

245 6.8 247.3 298.35 1658.16

245 10.0 237.3 506.97 2317.95

245 14.7 225.1 844.25 3194.46

245 21.5 210.8 1368.77 4329.65

245 31.6 194.9 2164.10 5770.62

245 46.4 177.5 3312.83 7544.08

245 68.1 159.2 4923.81 9663.83

245 100.0 140.6 7107.37 12129.50

245 146.8 122.1 9956.72 14898.80

245 215.4 104.1 13544.40 17886.80

245 316.2 87.1 17858.20 20970.00

245 464.2 71.0 22768.60 23854.20

PAGE 6 OF 9
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Cone & Plate Rheology Continued

Complex Viscosity Plot

G’-G” Plot

PAGE 7 OF 9
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First Normal Stress Difference

Method ASTM D 4440 - 95a

Rheological Measurement of Polymer Melts 

Using Dynamic Mechanical Procedures

Instrument Rheometrics ARES 

Specimen type disc

conditioning none

other preparation none

Parameters plate diameter 25 mm

cone angle 0.1 radians

gap 50 μm

temperature 245 °C

scan time 1 s

shear rate range 0.1-100 /s

Precision temperature ±2 °C 

Tested By: JA

Certified By: BC

0 Digital Data at www.matereality.com Test Date: 6/29/2007
Cone and plate DMA measurements are not included in our current scope of accreditation.

PAGE 8 OF 9

Polymer rheology characterizes 
the complex flow behavior of 
plastics. A dynamic mechanical  
rheometer measures complex 
viscosity as a function of 
temperature and frequency.  
Assuming the applicability of the 
Cox Merz relationship, the 
frequency bears a 1:1 
relationship to the shear rate.
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First Normal Stress Difference Continued

DMA Data

 Temp ωωωω ηηηη N1

°C /s  Pa•s Pa

245 1.0 246.4 246.44 NOTE: Shaded cells denote

245 1.6 236.5 374.90 material began to be forced out from 

245 2.5 228.2 573.22 between the cone and plate

245 4.0 220.4 877.57

245 6.3 212.7 1341.94

245 10.0 193.5 1935.05

245 15.8 133.9 2122.18

245 25.1 71.1 1786.35

245 39.8 26.3 1046.40

245 63.1 8.3 522.40

245 100.0 0.2 23.37

First Normal Stress Difference v. Shear Rate

PAGE 9 OF 9
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Laboratory Manager 

4 March, 2008 

©Moldflow 2008. This report may not be reproduced, except in full, without written 
approval of Moldflow Plastics Labs. 

MOLDFLOW  is a registered trademark of Moldflow Corporation.

The material data presented herein have been produced by highly trained personnel using 
state-of-the-art equipment, and these data are provided in good faith. If any test results are 
believed to be questionable, Moldflow at its own discretion, will retest these properties at 
its own expense. Test results relate only to the item tested. Moldflow disclaims all 
warranties express or implied, including warranties of merchantability and fitness for a 
particular purpose. Moldflow expressly disclaims all incidental and consequential 
damages that may arise from the use of this information. 
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SN5170  Summary 

Moldflow Plastics Labs Styron 615 APR Page 4 of 17

Summary 

Description

Family name STYRENICS (PS, SAN, SBR, ...) 
Trade name Styron 615 APR 
Manufacturer Dow Chemical USA 
Family abbreviation GPPS 
Material structure Amorphous 
Data source Other : pvT-Supplemental : mech-Supplemental 
Date last modified 04-MAR-08 
Date tested 04-MAR-08 
Data status Non-Confidential 
Material ID  
Grade code SN5170 
Supplier code DOWUSA 
Fibers/fillers Unfilled 

Recommended Processing 
   
Mold surface temperature 35 °C
Melt temperature 218 °C
   
Mold temperature range (recommended)
Minimum 21 °C
Maximum 48 °C
   
Melt temperature range (recommended)
Minimum 176 °C
Maximum 260 °C
   
Absolute maximum melt temperature 300 °C
   
Ejection temperature 100 °C

Maximum shear stress 0.24 MPa 
Maximum shear rate 40000 1/s 

Maximum shear stress and maximum shear rate values have been supplemented with generic 
estimates.
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Rheological Properties 
   

Cross WLF Viscosity Model 

n 0.3720  
Tau 21765.5 Pa 
D1 4.32561e+010 Pa-s 
D2 373.15 K 
D3 0 K/Pa 
A1 25.245  
A2 51.600 K 

   

Juncture loss method coefficients 

C1 0.03151 Pa^(1-c2) 
C2 1.534  

   

Transition temperature 

Ttrans 105 °C
   

Moldflow Viscosity Index VI(220)0072  

   

Melt mass-flow rate (MFR)
Temperature  °C
Load  Kg 
Measured MFR  g/10min 
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Thermal Properties 
   
Specific heat data
Temperature (T)  
°C

Specific heat (Cp)  
J/Kg-°C

Heating/Cooling rate 
°C/s 

238 2100.0 -0.33 

Thermal conductivity data   

Temperature (T) 
°C

Thermal conductivity 
(k) W/m-°C

Heating/Cooling rate 
°C/s 

238 0.150 0.0 
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Moldflow Plastics Labs Styron 615 APR Page 7 of 17

PVT Properties 
   
Melt density 0.9608 g/cm^3 
Solid density 1.0481 g/cm^3 
   
2-domain Tait PVT model coefficients 

b5 376.81 K 
b6 3.525e-007 K/Pa 
b1m 0.000972 m^3/Kg 
b2m 6.042e-007 m^3/Kg-K 
b3m 1.85917e+008 Pa 
b4m 0.004927 1/K 
b1s 0.000972 m^3/Kg 
b2s 2.234e-007 m^3/Kg-K 
b3s 2.66301e+008 Pa 
b4s 0.003474 1/K 
b7 0.000e+000 m^3/Kg 
b8 0.000e+000 1/K 
b9 0.000e+000 1/Pa 

pvT properties have not been tested for this material.  The data has been supplemented with generic 
estimates for an unfilled GPPS.

Mechanical Properties 

Mechanical properties data   

Elastic modulus, 1st principal direction [E1] 2700 MPa 
Elastic modulus, 2nd principal direction [E2] 2700 MPa 
Poissons ratio [v12] 0.3500  
Poissons ratio [v23] 0.3500  
Shear modulus [G12] 1000 MPa 

Transversely isotropic coefficient of thermal expansion [CTE] data 

Alpha1 8.310e-005 1/C 
Alpha2 8.310e-005 1/C 
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Shrinkage Properties 

Corrected residual in-mold stress (CRIMS) model coefficients 

A1  
A2  
A3  
A4  
A5  
A6  

Residual strain model coefficients 

 Parallel Perpendicular 
A1   
A2   
A3   
A4   
A5   

Filler Properties 

Filler data 

Description  Weight % 
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Moldflow Plastics Labs Styron 615 APR Page 9 of 17

Viscosity

Method:
MPL Test Method 

Instrument:
Arburg Allrounder 270S Injection Molding Machine 

Test Specifications:
Sample Form: Pellets 

Pre-Processing: Not required 

Moisture Level: Not measured 

Capillary A: Length: 31.9682 mm 

  L/D: 15.9841 

  Die Entry Angle: 180 degrees 

Capillary B: Length: 7.9004 mm 

  L/D: 3.9502 

  Die Entry Angle: 180 degrees 

Barrel Diameter: 30 mm 

Plastication Time: 20 sec 

Dwell Time: 20 sec 

Corrections: Bagley, Rabinowitsch and shear heating 

Date Received: 12-DEC-07 

Date Tested: 30-JAN-08 

Operator’s Notes:
Testing was performed per standard testing procedures. 
No anomalies were noted during the course of testing. 

323



SN5170  Viscosity 
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Apparent Viscosity Data 
     

Temperature     
(°C)

Apparent Shear 
Rate (sec-1)

Apparent Viscosity 
(Pa-s)

Die Diameter   
(mm) Die L/D 

220.1 178 305.35 2 15.98 
220.1 293 220.58 2 15.98 
220.1 25401 15.59 2 15.98 
220.2 63637 9.93 2 15.98 
220.4 738 134.49 2 15.98 
220.9 6430 34.81 2 15.98 
221.1 1299 94.42 2 15.98 
221.2 2559 62.34 2 15.98 
221.2 12669 22.95 2 15.98 
234 178 193.04 2 15.98 
235 293 151.15 2 15.98 
235 738 98.48 2 15.98 
235 6443 27.87 2 15.98 

235.1 12720 17.93 2 15.98 
235.1 25439 11.68 2 15.98 
235.1 63980 7.04 2 15.98 
236 1311 71.32 2 15.98 
236 2572 47.31 2 15.98 
249 178 122.84 2 15.98 
249 293 106.82 2 15.98 
249 738 74.98 2 15.98 

249.9 2559 38.01 2 15.98 
249.9 6404 22.54 2 15.98 
249.9 63649 5.53 2 15.98 
250 1311 56.17 2 15.98 
250 12720 14.79 2 15.98 
251 25388 9.6 2 15.98 

263.7 293 71.57 2 15.98 
264.2 178 73.7 2 15.98 
264.6 738 56.13 2 15.98 
265.3 1299 44.8 2 15.98 
265.6 6443 18.23 2 15.98 
265.7 2559 30.5 2 15.98 
265.7 12669 12.31 2 15.98 
266.6 63586 4.62 2 15.98 
266.7 25439 8.05 2 15.98 
225.5 178 284.04 2 3.95 
225.6 293 231.24 2 3.95 
225.6 25401 28.18 2 3.95 
225.7 2559 99.91 2 3.95 
226.5 12669 43.61 2 3.95 
226.5 63637 16.27 2 3.95 
226.6 738 152.55 2 3.95 
226.6 6430 66.73 2 3.95 
228.6 1299 105.75 2 3.95 
240.4 2572 69.88 2 3.95 
241.4 178 188.17 2 3.95 
241.4 293 157.76 2 3.95 
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Temperature     
(°C)

Apparent Shear 
Rate (sec-1)

Apparent Viscosity 
(Pa-s)

Die Diameter   
(mm) Die L/D 

241.4 738 108.84 2 3.95 
241.6 6443 47.25 2 3.95 
242.4 12720 34.08 2 3.95 
242.4 25439 22.39 2 3.95 
242.4 63980 13.18 2 3.95 
242.8 1311 80.59 2 3.95 
255.3 2559 52.92 2 3.95 
256 293 127.51 2 3.95 

256.3 738 84.84 2 3.95 
256.4 178 156.22 2 3.95 
256.4 6404 35.97 2 3.95 
257.2 1311 64.67 2 3.95 
257.3 63649 10.85 2 3.95 
258.3 12720 26.37 2 3.95 
258.3 25388 18.47 2 3.95 
270.6 2559 41.55 2 3.95 
270.8 293 103.73 2 3.95 
271.3 178 134.92 2 3.95 
271.3 738 69.42 2 3.95 
271.3 1299 52.63 2 3.95 
272.8 6443 27.7 2 3.95 
273.3 25439 14.9 2 3.95 
273.3 63586 9.12 2 3.95 
273.4 12669 20.53 2 3.95 
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Calculated Viscosity Data 
   

Temperature      
(°C)

Shear Rate        
(sec-1)

Calculated 
Viscosity (Pa-s) 

220.1 178 202.94
220.1 25401 11.38
220.1 293 157.67
220.2 63637 6.42
220.4 738 94.86
220.9 6430 26.17
221.1 1299 67.76
221.2 2559 45.39
221.2 12669 17.18
225.5 178 180.04
225.6 25401 10.41
225.6 293 140.64
225.7 2559 41.99
226.5 12669 15.76
226.5 63637 5.8
226.6 6430 23.81
226.6 738 84.43
228.6 1299 59.3
234 178 150.18
235 6443 20.87
235 293 116.67
235 738 72.7

235.1 25439 9.01
235.1 12720 13.8
235.1 63980 5.09
236 2572 35.45
236 1311 52.12

240.4 2572 33.16
241.4 178 129.08
241.4 293 103.32
241.4 738 65.23
241.6 6443 18.98
242.4 63980 4.61
242.4 25439 8.15
242.4 12720 12.45
242.8 1311 46.8
249 178 111.14
249 293 89.91
249 738 57.68

249.9 6404 17.02
249.9 2559 29.01
249.9 63649 4.2
250 1311 41.98
250 12720 11.27
251 25388 7.31

255.3 2559 26.95
256 293 79.49

256.3 738 51.52
256.4 6404 15.67
256.4 178 96.59
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Temperature      
(°C)

Shear Rate        
(sec-1)

Calculated 
Viscosity (Pa-s) 

257.2 1311 37.85
257.3 63649 3.85
258.3 12720 10.18
258.3 25388 6.7
263.7 293 69.76
264.2 178 83.78
264.6 738 45.56
265.3 1299 34.03
265.6 6443 13.99
265.7 2559 23.58
265.7 12669 9.38
266.6 63586 3.48
266.7 25439 6.09
270.6 2559 22.2
270.8 293 62.12
271.3 178 73.96
271.3 1299 31.44
271.3 738 41.42
272.8 6443 12.9
273.3 63586 3.25
273.3 25439 5.69
273.4 12669 8.63
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Rheological Data 

Cross WLF Viscosity Model 
n 0.3720  
Tau 21765.5 Pa 
D1 4.32561e+010 Pa-s 
D2 373.15 K 
D3 0 K/Pa 
A1 25.245  
A2 51.600 K 

Juncture loss method coefficients 

C1 0.03151 Pa^(1-c2) 
C2 1.534  

Viscosity vs Shear Rate
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APPENDIX B

Detailed Drawings of the Optical Access Mold

Components

Figure B.1 gives an exploded view of the optical access mold. This appendix will

give a brief explanation of the functions of the mold components as well as detailed

drawings. The drawings are not meant to enable the reader to duplicate the optical

access mold in every detail, but the level of detail is hopefully sufficient to satisfy

the the reader that wishes more specific information about the mold design.

The major mold components will be presented in isometric view. The machining

details of the guide ring, top clamping plate, A plate, ejector plates and the rear

clamping plate are specific to the problem of mounting this particular mold base in

this particular injection molding machine. Therefore these details will be omitted.

The machining details of the sprue bushing, B plate, cavity block and window brace

are all relevant to the the polymer flow path geometry, the cavity geometry and the

window performance and these components will be presented in more detail.

All dimensions are in inches. In this appendix the front view is considered to be

the view you would see while facing the mold window. The side view is the view of

the mold from the nozzle of the machine, and the top view is the view from above

the machine.
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Figure B.1: Exploded view of the optical access mold. 1. Sprue bushing, 2. Guide
ring, 3. Top clamping plate, 4. “A” plate, 5. Cavity block, 6. “B”
plate, 7. Front and rear ejector plates with ejector pins and return pins,
8. Rear clamping plate, 9. Acrylic entrance and exit windows, 10. 0.75”
thick quartz window, 11. 0.125” thick polycarbonate shields, 12. Three
1” thick glass plates, 13. Steel window brace, and 14. Six 1” diameter
hardened steel bolts

Apologies must be made for the quality of some of the drawings in this appendix.

The original CAD drawings were lost in a catastrophic hard drive crash. The images

in this chapter were scanned in from hard copies of the original Autocad drawings.

B.1 Sprue Bushing and Guide Ring

The polymer first enters the mold through the sprue bushing. An isometric view

of the sprue bushing can be found in Figure B.2. A section view can be seen in Figure

B.3. The channel in the sprue bushing is tapered to facilitate the breakaway of the
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Figure B.2: Isometric view of the sprue bushing.

Figure B.3: Section view of the sprue bushing showing the taper of the sprue opening.
All dimensions are in inches.

solidified sprue when the mold is opened. The dimensioned drawings of the sprue

bushing, the B plate, and the cavity block (Figures B.3, B.9 and B.14 respectively)

give all the geometric details necessary to model the polymer flow path from the

nozzle of the injection molding machine to the cavity gate.

The guide ring serves as a locating device when seating the mold between the

platens of the injection molding machine. It assures that the sprue bushing will line

up with the nozzle of the injection molding machine. An isometric view of the guide

ring is shown in Figure B.4.
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Figure B.4: Isometric view of the guide ring.

B.2 Top Clamping Plate and “A” Plate

The top clamping plate is the part of the mold that is bolted to the stationary

platen of the injection molding machine. It houses the guide ring and part of the

sprue bushing. An isometric view of the top clamping plate can be seen in Figure

B.5.

The “A” plate houses the rest of the sprue bushing and is the mold component

that forms the stationary half of the parting plane. An isometric view of the A plate

can be seen in Figure B.6.

B.3 “B” Plate and Cavity Block

The B plate is the largest component of the mold. It houses the cavity block and

forms the moving side of the parting plane. This plate also provides passage for the

ejector pins and the return pins. The B plate also catches the first, cooler portion of
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Figure B.5: Isometric view of the top clamping plate.
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Figure B.6: Isometric view of the A plate.
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the shot in the cold slug well and provides the portion of the runner from the sprue

bushing to the cavity block. The B plate also contains the mounting holes for the

bolts used to attach the window to the mold. An isometric view of the B plate can

be seen in Figure B.7. The front view is in Figure B.8 and the side view is in Figure

B.9 and the view from the clamp side of the mold is shown in Figure B.10.

The cavity block is the heart of the optical access mold. This block forms the

cavity geometry. It also contains the portion of the runner not found in the B plate

and also the gate. The cavity block houses the two acrylic entrance and exit windows

for the passage of the laser sheet through the cavity. An isometric view of the cavity

block can be seen in Figure B.11. The front view is in Figure B.12 and the side

view is in Figure B.13. A detail of the runner and gate dimensions can be seen in

Figure B.14.

B.4 Ejector Plates and Pins and the Rear Clamping Plate

The ejector pins push the part out of the mold after the mold has opened. The

heads of the pins are sandwiched between two ejector plates. When this plate is

pushed forward by the ejector of the injection molding machine the pins move forward

and eject the part. These plates also contain the return pins. These longer pins

contact the stationary half of the mold when it closes and push the ejector plates

back into their home position. A detailed view of one of the ejector pins is shown in

Figure B.15. Isometric views of the two ejector plates are shown in Figure B.16 and

Figure B.17.

The ejector plates move back and forth in a space created by the rear clamping

plate. The rear clamping plate is the portion of the mold that is clamped to the

moving platen of the injection molding machine. It also provides a passage for the
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Figure B.7: Isometric view of the B plate.
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Figure B.8: Front view of the B plate. All dimensions are in inches.
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Figure B.9: Side view of the B plate from the nozzle direction. All dimensions are
in inches.
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Figure B.10: Side view of the B plate from the clamp direction. All dimensions are
in inches.
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Figure B.11: Isometric view of the cavity block.
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Figure B.12: Front view of the cavity block. All dimensions are in inches.

ejector ram of the injection molding machine. An isometric view of the rear clamping

plate is shown in Figure B.18.

B.5 Window Components

If the cavity block is the heart of the optical access mold, the window components

are its reason for being. The window components form three faces of the mold cavity.

The two 6mm thick acrylic entrance and exit windows mentioned above form the top

and bottom faces of the part. A 19mm thick quartz plate forms the front face of

the cavity. Moving outward from the cavity the next component is a 3mm thick

polycarbonate shield to protect the rest of the window and the user from broken

glass should the quartz piece fail. This is followed by three 25mm thick pieces of

plate glass and another polycarbonate shield.

The window elements are all paralellopipeds, so a list of their dimensions will
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Figure B.13: Side view of the cavity block. All dimensions are in inches.
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Figure B.14: Detail view of the runner and gate in the cavity block. All dimensions
are in inches.

Figure B.15: Detail view of the ejector pin. All dimensions are in inches.
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Figure B.16: Isometric view of the rear ejector plate from the clamp direction.

Figure B.17: Isometric view of the front ejector plate from the nozzle direction. The
two small holes on the left edge are for the ejector pins.
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Figure B.18: Isometric view of the rear clamping plate plate.
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suffice in lieu of dimensioned drawings. In keeping with the convention set by this

appendix all dimensions will be given in inches.

The acrylic entrance and exit windows are the only elements with non-orthogonal

sides. The cross-section of these windows is 0.25”× 0.25” and their length is 2.675”.

The two square faces of these windows are inclined 1/2◦. This is because the windows

themselves are placed in the block at an angle of 1/2◦ from horizontal to provide the

draft on those faces of the cavity. The square faces of the windows need to be angled

at 1/2◦ in order to be parallel to the parting plane of the mold.

The quartz window is 4.875”× 2.875”× 0.75”. It sits on the acrylic windows and

forms the large transparent face of the mold cavity. The three plates of glass are

5.875”× 4.25”× 1”. The polycarbonate shields are 5.875”× 4.25”× 0.125”.

B.6 Window Brace

The final portion of the mold is the steel brace that attaches the window to the

mold. This brace must be strong enough to hold the window in place against the

cavity block while resisting the high melt pressures exerted on the window. The

clamping force is provided by six hardened steel bolts one inch in diameter. An

isometric view of the window brace can be seen in Figure B.19. The front view is

in Figure B.20 and the side view is in Figure B.21.

B.7 Reflections on the Engineering, Design and Fabrication
of the Optical Access Mold

Learning to design even a simple mold is not an easy task. There are many details

that must be addressed. How do you choose a gate? What clearances are necessary

on the myriad pins and holes in the mold? How do you eject the part cleanly? The

answers to these questions can be found in good books on mold design. Generally
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Figure B.19: Isometric view of the window brace.
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Figure B.20: Front view of the window brace. All dimensions are in inches.
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Figure B.21: Side view of the window brace. All dimensions are in inches.
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speaking, the older the book the better the chance that you will find the answer to

specific questions relating to the detailed design and machining of a mold. DuBois

and Pribble [126] is an excellent resource. Stoeckhert [127] is a more recent work

that is rich in the technical details of mold design.

The design of the optical access mold presented unique challenges. The design

criterion for the window system was that it should be able to withstand a melt

pressure of up to 10,000 psi. In order to do this a finite element model of the window

design was made in Hypermesh, and a series of finite element analyses were run using

Patran.

Many iterations of the design were required before the window passed the finite

element test. The original design called for thinner windows, with some of the

elements made of plexiglass. Two problems with this design were revealed by the

finite element analysis. The first problem was that the stresses in the window were

too high, which was corrected by using thicker glass. The second problem was that

the plexiglass elements compressed significantly when the melt pressure was applied

to the window. That would cause the window to move away from the cavity and

would lead to flash. This problem was corrected by replacing the plexiglass elements

with plate glass.

Once the window design was finalized the design of the mold itself was started.

Solid models were made of each of the mold components using Autocad. This was

time consuming, but it ensured that the mold components fit together without inter-

ference. It also allowed detailed prints to be made of each component for machining.

When the mold was machined and installed a series of materials were tested

for sealing the mold cavity. Silicone RTV, Kapton tape, and other materials were

tried. The best results were obtained by cutting strips from aluminum cans. These
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aluminum strips acted as both gaskets and shims. They flattened when the bolts

were torqued down and sealed the gaps between the glass surfaces. They were also

strong enough to survive the pressures place on the edges exposed to the polymer

melt.



352

APPENDIX C

Radial Flow of a Power Law Fluid Between

Parallel Plates

The solution of the radial flow of a power law fluid between parallel plates is

presented in Bird [63], but the analysis is left as an exercise to the reader. For

convenience the analysis will be described here.

The first step in the solution of this problem is to solve the simpler but related

problem of the pressure-driven channel flow of a power law fluid. This solution will

then be applied locally to radial flow between parallel plates using the lubrication

approximation.

C.1 Channel Flow of a Power Law Fluid

Assume a channel aligned with the x-axis with walls at y = ±B, as shown in

Figure C.1.

The relationship between stress and shear rate for a power law fluid is given by:

τ = m|γ̇|n (C.1)

where n is the power law exponent and m is the power law coefficient. This formu-

lation, though standard, gives only positive shear stresses. To correct this defect the
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Figure C.1: Coordinate axes for the analysis of the channel flow of a power-law fluid.

equation can be rewritten as[64]:

τ = m|γ̇|n−1γ̇ (C.2)

For a two-dimensional channel flow with velocity u(y):

τ = m

∣∣∣∣dudy
∣∣∣∣n−1

du

dy
(C.3)

For a steady, fully-developed flow:

0 = −dp
dx

+
dτ

dy
(C.4)

Integrate in y to get:

τ = y
dp

dx
+ C (C.5)

where C is a constant of integration. The shear stress τ = 0 at the centerline of the

channel so C = 0. Substituting for τ :

y
dp

dx
= m

∣∣∣∣dudy
∣∣∣∣n−1

du

dy
(C.6)

Consider the top half of the channel only where y > 0 and du/dy < 0, then

use symmetry to get the entire profile. Note also that since the pressure gradient
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is negative, y dp
dx
< 0 in this region. Rewriting Equation C.6 for the top half of the

channel gives:

y
dp

dx
= −m

(
−du
dy

)n

(C.7)

Solving for the velocity gradient gives

du

dy
= −

[
− y

m

dp

dx

]1/n

(C.8)

Integrate to get the velocity:

u = − 1

1/n+ 1

[
− 1

m

dp

dx

]1/n

y
1
n

+1 + C (C.9)

Since u = 0 at y = B:

u = − 1

1/n+ 1

[
− 1

m

dp

dx

]1/n (
y

1
n

+1 −B
1
n

+1
)

(C.10)

Rearranging this and generalizing it to make it applicable to the lower half of the

channel as well leads to:

u =
Bn

n+ 1

[
−B
m

dp

dx

]1/n(
1−

∣∣∣ y
B

∣∣∣n+1
n

)
(C.11)

Since u = umax at y = 0:

umax =
Bn

n+ 1

[
−B
m

dp

dx

]1/n

(C.12)

u = umax

(
1−

∣∣∣ y
B

∣∣∣n+1
n

)
(C.13)

The average velocity across the channel thickness can then be calculated:

ū =
1

B

∫ B

0

u dy =
n+ 1

2n+ 1
umax = Fumax (C.14)

where F is a profile factor. For a power-law fluid:

F =
n+ 1

2n+ 1
(C.15)
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The average velocity can be used to get the volume flow rate:

Q = 2WBū = 2WB
n+ 1

2n+ 1
umax = 2WBFumax (C.16)

where W is the width of the channel in the z direction and F is the profile factor

defined in Equation C.15.

C.2 Radial Flow of a Power Law Fluid

To apply Equation 5.3 to the radial flow of a power law fluid between parallel

plates use the lubrication approximation with W = 2πr and dP/dx = dP/dr:

Q =
4πrB2

1
n

+ 2

[
−B
m

dP

dr

]1/n

(C.17)

Remembering that Q is not a function of r, solve for dp/dr and integrate to get

an expression for P :

dP

dr
= −m

B

[
Q( 1

n
+ 2)

4πB2

]n

r−n (C.18)

P = − m

B(1− n)

[
Q( 1

n
+ 2)

4πB2

]n

r1−n + C (C.19)

If we consider the pressure difference between two points in the flow at radial

distances R1 and R2 the unknown constant can be eliminated:

P1 − P2 = − m

B(1− n)

[
Q( 1

n
+ 2)

4πB2

]n

(R1−n
1 −R1−n

2 ) (C.20)

Solving this equation for Q gives the result found in Bird [63]:

Q =
4πB2

(1/n) + 2

[
(P1 − P2)B(1− n)

m(R1−n
2 −R1−n

1 )

]1/n

(C.21)
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APPENDIX D

An Example Calculation Using Mueller Matrices

In Chapter 8 it was stated that a circular polarimeter in a standard configuration

can be used to measure retardation of a three-dimensional birefringent specimen.

That claim will be confirmed here using a Mueller matrix calculation.

Table D.1 shows the Mueller matrices for various ideal optical elements. In their

most general forms these matrices allow the elements to be oriented at any desired

angle, but without loss of generality the following calculation will assume that the

polarimeter is configured with the fast axis of the first linear polarizer with θ = 0◦.

With this assumption the standard configuration of the circular polarimeter and

three-dimensional birefringent specimen is as follows:

1. Ideal linear polarizer with θ = 0◦ (the “polarizer”)

2. Ideal quarter-wave linear retarder with θ = 45◦

3. Ideal linear retarder with retardation δ and fast axis at angle α

4. Ideal rotator of strength ρ

5. Ideal quarter-wave linear retarder with θ = 135◦

6. Ideal linear polarizer with θ = 90◦ (the “analyzer”)
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Table D.1: Mueller matrices for ideal optical elements. In the following arrays S2θ =
sin 2θ, C2θ = cos 2θ, Sδ = sin δ, and Cδ = cos δ.

Ideal linear polarizer at angle θ

1
2


1 C2θ S2θ 0
C2θ C2

2θ C2θS2θ 0
S2θ C2θS2θ S2

2θ 0
0 0 0 0



Quarter-wave linear retarder with fast axis at angle θ
1 0 0 0
0 C2

2θ C2θS2θ −S2θ

0 C2θS2θ S2
2θ C2θ

0 S2θ −C2θ 0



Ideal linear retarder with retardation δ and fast axis at angle θ
1 0 0 0
0 C2θ + S2

2θ C2θS2θ(1− Cδ) −S2θSδ

0 C2θS2θ(1− Cδ) S2
2θ + CδC2θ C2θSδ

0 S2θSδ −C2θSδ Cδ



Rotator of strength θ
1 0 0 0
0 C2θ −S2θ 0
0 S2θ C2θ 0
0 0 0 0


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This configuration is commonly called a “dark-field” circular polarimeter since

the field is black if no specimen is present.

The process starts with unpolarized light passing through the polarizer. The

Stokes vector for unpolarized light of intensity I0 is S0 = [ I0 0 0 0 ]T . The

Stokes vector of the light exiting the polarizer is given by

S1 =
1

2



1 1 0 0

1 1 0 0

0 0 0 0

0 0 0 0





I0

0

0

0


=
I0
2



1

1

0

0


(D.1)

The light then passes through a quarter-wave plate with its fast axis at 45◦ to hori-

zontal. The resulting Stokes vector is given by:

S2 =
I0
2



1 0 0 0

0 0 0 −1

0 0 1 0

0 1 0 0





1

1

0

0


=
I0
2



1

0

0

1


(D.2)

Next the light passes through the three-dimensional birefringent plate. This plate

is represented by the equivalent optical model of a linear retarder with retardation

δ and principal axis at angle α followed by a rotator of strength ρ. First the linear

retarder:
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S3 =
I0
2



1 0 0 0

0 C2α + S2
2αCδ C2αS2α(1− Cδ) −S2αSδ

0 C2αS2α(1− Cδ) S2
2α + CδC2α C2αSδ

0 S2αSδ −C2αSδ Cδ





1

0

0

1



=
I0
2



1

−S2αSδ

C2αSδ

Cδ


(D.3)

Next the rotator of strength ρ:

S4 =
I0
2



1 0 0 0

0 C2ρ −S2ρ 0

0 S2ρ C2ρ 0

0 0 0 1





1

−S2αSδ

C2αSδ

Cδ



=
I0
2



1

−C2ρS2αSδ − S2ρC2αSδ

−S2ρS2αSδ + C2ρC2αSδ

Cδ


(D.4)

The light then passes through the second quarter-wave plate. The fast axis of

this plate is at 135◦ to the horizontal:
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S5 =
I0
2



1 0 0 0

0 0 0 1

0 0 1 0

0 −1 0 0





1

−C2ρS2αSδ − S2ρC2αSδ

−S2ρS2αSδ + C2ρC2αSδ

Cδ



=
I0
2



1

Cδ

−S2ρS2αSδ + C2ρC2αSδ

C2ρS2αSδ + S2ρC2αSδ


(D.5)

Finally the light passes through a linear polarizer with a vertical axis:

S6 =
I0
4



1 −1 0 0

−1 1 0 0

0 0 0 0

0 0 0 0





1

Cδ

−S2ρS2αSδ + C2ρC2αSδ

C2ρS2αSδ + S2ρC2αSδ



=
I0
4



1− Cδ

−1 + Cδ

0

0


(D.6)

The intensity of the light exiting the polarimeter, I6, is the first element of the

Stokes vector S6:

I6 =
I0
4

(1− cos δ) =
I0
2

sin2 δ

2
(D.7)

This intensity is a function of the retardation only and is independent of the

orientation of the principal axis α and the rotation strength ρ. Therefore the retar-
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dation can be measured with a compensator with the same procedure that would be

used for a two-dimensional birefringent specimen in a circular polarimeter.

Equation D.7 shows that light is extinguished when the retardation δ = 2nπ.

A common technique in examining fringe patterns in two-dimensional specimens

involves rotating the analyzer 90◦ putting the fast axes of the polarizer and analyzer

in parallel. This configuration is commonly called a “light-field” polarimeter because

the field is light if a specimen is not present. This configuration causes the fringes

to appear when the retardation δ = (2n+ 1)π.

The light-field polarimeter follows the same analysis until the final step where

the polarized light enters a horizontal analyzer rather than a vertical one:

S6 =
I0
4



1 1 0 0

1 1 0 0

0 0 0 0

0 0 0 0





1

Cδ

−S2ρS2αSδ + C2ρC2αSδ

C2ρS2αSδ + S2ρC2αSδ



=
I0
4



1 + Cδ

1 + Cδ

0

0


(D.8)

The intensity of the light exiting the light-field polarimeter is given by the first

Stokes parameter:

I6 =
I0
4

(1 + cos δ) =
I0
2

cos2 δ

2
(D.9)

This confirms that even for a three-dimensional specimen a light-field polarimeter

produces fringes that are functions only of the retardation. The fringes appear for

δ = (2n+ 1)π.
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APPENDIX E

Birefringence Measurements on Packed and

Unpacked Specimens

This appendix contains a tabulation of the birefringence data analyzed in Chap-

ter 8. The location and labels of the data points can be found in Figure E.1.

Each table summarizes all the data taken of a single birefringence parameter over

eight specimens molded at the same packing pressure. The columns of the data

tables in this chapters represent measurements taken at a single position over all

eight specimens. The rows represent data at all six locations from a single specimen.

The last row of each table is an indication of whether the data sets taken at each

position passed the Lilliefors test for normality as described in Chapter 8. A “Y”

indicates that the data passed the test at the 5% significance level and is considered

normally distributed. An “N” indicates that the data did not pass the test at the

5% significance level and in not considered normally distributed.
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Figure E.1: The primary axis, rotator strength, specimen thickness and retardation
were measured and the six locations shown. The gate is in the lower
right corner. All dimensions are in millimeters. The italic numbers are
the labels used in the data tables in this appendix.
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Table E.1: Principal axis orientation measurements in degrees on unpacked speci-
mens. The error is ±2◦.

Specimen Position
1 2 3 4 5 6

1 56 60 80 43 14 36
2 79 78 65 47 26 39
3 70 39 40 41 45 51
4 62 8 12 45 10 25
5 52 78 89 48 2 52
6 63 85 84 51 82 2
7 65 66 33 43 11 38
8 66 64 39 45 9 30

Normal? Y Y Y Y Y Y

Table E.2: Rotator strength measurements in degrees on unpacked specimens. The
error is ±0.9◦.

Specimen Position
1 2 3 4 5 6

1 19.8 5.4 -3.6 10.8 5.4 -16.2
2 0.0 0.0 0.0 7.2 3.6 9.0
3 1.8 -5.4 -12.6 0.0 -3.6 5.4
4 12.6 -10.8 -10.8 3.6 3.6 19.8
5 14.4 3.6 -1.8 5.4 19.8 -39.6
6 5.4 3.6 -10.8 1.8 59.4 68.4
7 10.8 1.8 3.6 0.0 1.8 3.6
8 25.2 0.0 7.2 5.4 12.6 3.6

Normal? Y Y Y Y Y Y
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Table E.3: Specimen thickness measurements in millimeters on unpacked specimens.
The error is ±.0254 mm.

Specimen Position
1 2 3 4 5 6

1 6.1722 6.4516 6.6294 6.3500 6.4262 6.6294
2 6.0452 6.4008 6.4516 6.4008 6.3754 6.6802
3 6.1468 6.4516 6.5278 6.4516 6.4262 6.7310
4 6.2484 6.3754 6.4516 6.4008 6.4262 6.6294
5 6.1976 6.4516 6.8580 6.3754 6.5786 6.7564
6 6.0452 6.3754 6.4770 6.4008 6.3500 6.6802
7 6.0960 6.3754 6.5532 6.3246 6.4516 6.5786
8 6.1722 6.4008 6.4770 6.3246 6.4770 6.6294

Normal? Y Y Y Y Y Y

Table E.4: Measurements of the ratio of retardation length in nanometers to local
specimen thickness in millimeters on unpacked specimens. The error is
±3.4%.

Specimen Position
1 2 3 4 5 6

1 37.26 33.67 19.27 -24.15 -45.73 -73.24
2 16.91 5.99 5.94 13.97 -18.04 -26.78
3 35.34 11.88 -19.57 -13.86 -11.93 34.17
4 22.49 34.07 27.73 -15.97 -33.80 -46.26
5 47.42 35.65 11.18 20.04 -60.21 60.52
6 23.25 24.05 17.76 5.99 52.32 -32.52
7 16.77 14.03 -11.70 8.08 -19.81 -33.02
8 -33.12 -23.96 17.76 -4.04 -19.73 -34.69

Normal? N Y Y Y Y N
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Table E.5: Principal axis orientation measurements in degrees on 11.0 MPa packed
specimens. The error is ±2◦.

Specimen Position
1 2 3 4 5 6

1 81 80 33 20 38 12
2 65 87 88 53 27 20
3 87 79 40 15 80 49
4 56 15 36 44 3 42
5 5 83 56 28 21 19
6 68 5 37 38 19 41
7 70 86 39 43 10 41
8 55 82 45 40 16 50

Normal? Y N N Y Y N

Table E.6: Rotator strength measurements in degrees on 11.0 MPa packed speci-
mens. The error is ±0.9◦.

Specimen Position
1 2 3 4 5 6

1 -5.4 0.0 -3.6 -5.4 7.2 1.8
2 19.8 3.6 -1.8 -5.4 7.2 -5.4
3 7.2 3.6 9.0 -3.6 3.6 5.4
4 0.0 -3.6 1.8 -3.6 3.6 -3.6
5 19.8 3.6 -5.4 -9.0 1.8 -10.8
6 5.4 0.0 5.4 1.8 -3.6 9.0
7 5.4 1.8 3.6 3.6 1.8 -3.6
8 -1.8 -1.8 -1.8 1.8 1.8 5.4

Normal? Y Y Y Y Y Y
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Table E.7: Specimen thickness measurements in millimeters on 11.0 MPa packed
specimens. The error is ±.0254 mm.

Specimen Position
1 2 3 4 5 6

1 6.1976 6.4008 6.3754 6.3246 6.4516 6.5278
2 6.2230 6.4516 6.5278 6.3246 6.4262 6.5024
3 6.2230 6.4770 6.5024 6.2992 6.4770 6.5278
4 6.2230 6.4516 6.5024 6.3246 6.5024 6.5024
5 6.2230 6.4008 6.4008 6.2484 6.4770 6.5024
6 6.1976 6.4262 6.4770 6.2992 6.4770 6.4770
7 6.1976 6.4770 6.3754 6.3246 6.4516 6.4770
8 6.1722 6.4262 6.4516 6.2484 6.4770 6.5024

Normal? N Y Y Y Y Y

Table E.8: Measurements of the ratio of retardation length in nanometers to local
specimen thickness in millimeters in 11.0 MPa packed specimens. The
error is ±3.4%.

Specimen Position
1 2 3 4 5 6

1 18.6 24.0 14.0 14.1 17.8 -33.3
2 26.7 19.8 17.6 -26.3 -47.7 -43.2
3 12.3 7.9 9.8 0.0 -9.9 0.0
4 10.3 -17.8 33.4 26.3 -25.5 47.2
5 4.1 31.9 6.0 6.1 -7.9 -31.4
6 16.5 -2.0 -27.6 -20.3 11.8 13.8
7 24.7 3.9 24.1 24.2 -15.8 23.7
8 29.0 -11.9 -31.7 -20.4 11.8 23.6

Normal? Y Y Y Y Y Y
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Table E.9: Principal axis orientation measurements in degrees on 16.5 MPa packed
specimens. The error is ±2◦.

Specimen Position
1 2 3 4 5 6

1 35 8 35 34 32 28
2 82 3 31 76 26 32
3 71 84 35 2 27 30
4 80 3 36 75 21 28
5 1 2 35 29 32 27
6 75 3 72 26 40 19
7 60 11 70 12 33 9
8 65 5 40 17 48 26

Normal? Y N N Y Y N

Table E.10: Rotator strength measurements in degrees on 16.5 MPa packed speci-
mens. The error is ±0.9◦.

Specimen Position
1 2 3 4 5 6

1 -12.6 19.8 -16.2 3.6 16.2 9.0
2 18.0 14.4 16.2 3.6 -1.8 1.8
3 -7.2 10.8 -3.6 1.8 -1.8 3.6
4 5.4 16.2 10.8 9.0 -3.6 0.0
5 7.2 12.6 -5.4 -3.6 12.6 9.0
6 5.4 3.6 12.6 1.8 19.8 21.6
7 5.4 3.6 9.0 3.6 -10.8 -32.4
8 3.6 9.0 7.2 -3.6 10.8 3.6

Normal? Y Y Y Y Y N
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Table E.11: Specimen thickness measurements in millimeters on 16.5 MPa packed
specimens. The error is ±.0254 mm.

Specimen Position
1 2 3 4 5 6

1 6.3246 6.5786 6.6040 6.3754 6.5786 6.7310
2 6.4008 6.6548 6.6548 6.3754 6.5024 6.6040
3 6.3246 6.6548 6.6548 6.4516 6.5786 6.7564
4 6.4008 6.6294 6.6548 6.3754 6.5532 6.6040
5 6.2992 6.5786 6.6040 6.3246 6.5278 6.5786
6 6.3754 6.5786 6.6040 6.3246 6.5278 6.5532
7 6.4008 6.6294 6.6040 6.3500 6.5532 6.5786
8 6.3246 6.5786 6.6040 6.3754 6.5532 6.6040

Normal? Y N N N Y N

Table E.12: Measurements of the ratio of retardation length in nanometers to local
specimen thickness in millimeters in 16.5 MPa packed specimens. The
error is ±3.4%.

Specimen Position
1 2 3 4 5 6

1 -10.1 9.7 -3.9 6.0 29.1 45.6
2 6.0 9.6 -17.3 -24.1 -3.9 -46.4
3 -18.2 -13.4 7.7 -9.9 -27.2 41.6
4 8.0 5.8 -5.8 -10.0 -9.7 -32.9
5 16.2 13.6 9.7 16.2 3.9 44.7
6 8.0 17.5 -38.7 26.3 7.8 56.5
7 14.0 7.7 -31.0 -18.1 9.7 40.8
8 12.1 9.7 -15.5 10.0 13.6 34.8

Normal? N N Y Y Y N
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Table E.13: Principal axis orientation measurements in degrees on 27.6 MPa packed
specimens. The error is ±2◦.

Specimen Position
1 2 3 4 5 6

1 12 3 87 6 30 20
2 22 8 60 43 50 84
3 88 87 87 3 11 11
4 15 3 86 3 45 60
5 65 3 86 71 25 4
6 10 4 88 82 6 5
7 21 16 6 78 11 14
8 43 79 89 88 27 86

Normal? N N N Y Y N

Table E.14: Rotator strength measurements in degrees on 27.6 MPa packed speci-
mens. The error is ±0.9◦.

Specimen Position
1 2 3 4 5 6

1 0.0 5.4 -12.6 5.4 10.8 -14.4
2 5.4 0.0 0.0 -3.6 -3.6 -1.8
3 -3.6 -3.6 -9.0 7.2 10.8 -18.0
4 -5.4 0.0 -12.6 3.6 9.0 -25.2
5 -3.6 0.0 -7.2 3.6 -7.2 19.8
6 0.0 3.6 -16.2 -10.8 14.4 -5.4
7 -3.6 3.6 -9.0 -7.2 9.0 -7.2
8 7.2 -3.6 -10.8 1.8 0.0 28.8

Normal? Y Y Y Y N Y
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Table E.15: Specimen thickness measurements in millimeters on 27.6 MPa packed
specimens. The error is ±.0254 mm.

Specimen Position
1 2 3 4 5 6

1 6.6294 6.8580 6.8834 6.6802 6.8834 7.0104
2 6.7564 6.9342 6.9596 6.7564 6.9342 7.0612
3 6.7564 6.9596 6.9850 6.7310 6.9596 7.0358
4 6.7564 6.9342 7.0104 6.7818 6.9596 7.0612
5 6.7818 6.9850 7.0104 6.8326 7.0104 7.0358
6 6.7818 6.9850 7.0612 6.8326 7.0104 7.1374
7 6.8072 6.9596 7.0612 6.8326 6.9596 7.0612
8 6.8072 6.9850 7.0358 6.8326 6.9850 7.0866

Normal? N Y Y N Y Y

Table E.16: Measurements of the ratio of retardation length in nanometers to local
specimen thickness in millimeters in 27.6 MPa packed specimens. The
error is ±3.4%.

Specimen Position
1 2 3 4 5 6

1 7.7 35.4 -26.0 -13.4 -16.7 -34.6
2 9.5 -9.2 -14.7 5.7 -11.1 -32.6
3 -7.6 -27.5 -40.2 -24.7 -27.5 -49.0
4 9.5 27.6 -20.0 -24.5 -18.4 -29.0
5 15.1 34.8 -16.4 -22.4 -7.3 -40.0
6 5.7 20.1 -30.8 -28.1 -27.3 -60.9
7 9.4 20.2 -14.5 -33.7 -18.4 -57.9
8 5.6 27.4 -27.2 -13.1 -7.3 -32.5

Normal? N N Y Y Y Y
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