ENGINEERING RESEARCH INSTITUTE UNIVERSITY OF MICHIGAN ANN ARBOR #### PROGRESS REPORT # STUDY OF CONCRETE CONTAINING FLY ASH FROM MARYSVILLE STATION Ву F. E. LEGG, JR. Assistant Professor of Engineering Materials and Assistant Supervisor, Michigan State Highway Department Testing Laboratory Project 2211 DETROIT EDISON COMPANY DETROIT, MICHIGAN June 15, 1954 #### SYNOPSIS This is the second progress report pertaining to use of Detroit Edison Company fly ash in air-entrained concrete. The first progress report, dated May 15, 1954, dealt with Trenton Channel ash exclusively. This report gives similarly acquired data for fly ash from the Marysville station and draws a few comparisons with the results from the Trenton study. Concrete containing the Marysville ash developed slightly lower strengths under comparable conditions than that containing Trenton ash. The most significant difference between the two ashes, judged from the presently available data including compressive-strength tests up to the 28-day age, is their different requirement for air-entraining admixture to obtain the air content considered necessary for maximum weather resistance. Marysville ash requires three or more times more Darex than Trenton ash, making the Darex requirement of some consequence in the cost of the concrete. Caution is again advised against predicting strength of job concrete from the data contained herein unless suitable safety factors are utilized to compensate for possible field variations in mixing, curing, and proportioning. #### ENGINEERING RESEARCH INSTITUTE • UNIVERSITY OF MICHIGAN # STUDY OF CONCRETE CONTAINING FLY ASH FROM MARYSVILLE STATION #### Introduction On May 15, 1954, a progress report was issued concerning the use of Trenton Channel fly ash in air-entrained concrete. The data presented therein were developed from laboratory studies started by the Engineering Research Institute of the University of Michigan persuant to a contract between the Institute and the Detroit Edison Company. This second report contains similarly acquired data for Marysville fly ash. Again, only data obtained from compressive-strength tests up to 28-day age is now available and can be presented at this time. Results from volume-change bars and strength specimens of 90-day and 1-year age will be given in a later report. Repetitious matter pertaining to test procedures, etc. which were covered in the Trenton Channel report will be omitted here since the testing procedures for the two fly ashes remained unchanged. This report pertains to the use of Marysville fly ash in airentrained concrete exclusively. Darex air-entraining admixture was used in all the mixes in such amounts as to obtain the amount of air considered desirable to obtain maximum weather resistance. #### Mix Design Mix-design procedure was identical with that used in the Trenton Channel fly-ash series, viz., full advantage was taken of the added plasticity of the mortar constituent provided by the addition of fly ash, and, consequently, increased stone contents were used over those normally employed in concrete not containing fly ash. Control specimens with no fly ash were not made in this series since the procedures and materials were identical with those of the Trenton Channel series and it was considered that the control specimens just #### ENGINEERING RESEARCH INSTITUTE . UNIVERSITY OF MICHIGAN previously made in that study would suffice. It will be recalled that the "Recommended Practice for Selecting Proportions for Concrete" currently being considered for adoption by the American Concrete Institute was used as the design basis for the mixes not containing fly ash. Concrete with three cement contents have again been investigated, viz., 4, 5, and 6 sacks per cubic yard. Three fly-ash contents for the 5-and 6-sack concrete and four fly-ash contents for the 4-sack concrete have been used. Attention is particularly called to the fact that the increments of fly ash have been stepped down 50 pounds per cubic yard from that used in the Trenton Channel lean-concrete series (4 sacks per cubic yard), since preliminary examination of the concrete strengths appeared to indicate the desirability of lower ash contents for the Marysville material. #### Materials With the exception of the fly ash, all concrete materials were identical with those used previously in the Trenton Channel fly-ash study, viz., l-inch maximum size natural-gravel coarse aggregate, natural sand having fineness modulus of 3.0, and an "anonymous" cement consisting of a blend of equal amounts of Peerless, Wyandotte, and Huron. The Marysville ash used was furnished in January, 1954. The portion of the analysis of this ash now available is shown in Table I-A in the appendix. #### Fabrication of Specimens and Test Procedures The methods of mixing, curing, and testing the specimens were identical with those used in the Trenton Channel study. #### Discussion of Test Results Detailed tabulation of the Concrete-mix data and compressive-strength results are shown in the appendix in Tables II-A, III-A, and IV-A, for the 4-sack, 5-sack, and 6-sack concrete, respectively. 1. Coarse-Aggregate Content. Use of a lower increment of fly ash in the 4-sack concrete for Marysville ash (100 lb per cubic yard) required an additional evaluation of the stone content to obtain proper workability. Table I gives the values found satisfactory for both Trenton Channel and Marysville ashes for 1-inch maximum size aggregate and a sand having a fineness modulus of 3.0. The value $V_{\rm S}$ is expressed as dry rodded volume of coarse aggregate per unit volume of concrete. TABLE I $\mbox{VOLUME, $V_{\mathtt{S}}$, OF DRY RODDED COARSE } \\ \mbox{AGGREGATE PER UNIT VOLUME OF CONCRETE}$ | Fly Ash
lb/cyd | 4 Sack | 5 Sack | 6 Sack | |--------------------------------------|--|------------------------------|------------------------------| | 0
100
150
200
250
300 | 0.64
0.72
0.78
0.81
0.81
0.81 | 0.64
0.78
0.78
0.78 | 0.64
0.75
0.75
0.75 | 2. Strength Results. Average values of compressive strengths up to the 28-day age have been tabulated in Table II. Attention is called to the fact that the strengths of the control specimens not containing fly ash are results from the Trenton Channel study. New control specimens were not made, as previously indicated. As in the case of Trenton Channel fly ash, the most prominent feature of the strength results is the substantial increase of strength of the lean fly-ash mixes over the lean plain cement mixes at the 28-day age. Table III shows the strength of both Trenton Channel and Marysville fly ash at each age expressed as percentage of strength of the plain cement mixes having the same cement content. With few exceptions, the tabulation indicates reduced strength for the Marysville ash with respect to the Trenton ash for a corresponding fly-ash content, cement content, and age. Better strength equivalence of the two ashes is obtained if comparison is made of the strengths of the concrete containing, in each case, 50 lb per cubic yard less Marysville ash than Trenton ash. Comparison of the rate-of-strength gain between 7- and 28-day age has been summarized in Table IV. As indicated in the Trenton Channel study, the leaner mixes gain strength faster, and increased amounts of either Trenton or Marysville ash tend to hasten this strength gain. Figures 1 to 3 show the average strengths plotted against age. Strength gain is again orderly as in the case of Trenton ash. TABLE II SUMMARY OF RESULTS - MARYSVILLE FLY ASH | | ~ | · | | | | |--------------------------|---------------------|---------------------------------------|-----------------|---------------------------------|------------------------------| | | l
vear | | | | | | th, psi | 90
davs | | | | | | Strength, | 28
davs | 3070
3922
3823 | 3724
3569 | 3993
4211
4028
4237 | 4633
4266
4243
4123 | | | 7
davs | 2282
2456
2456 | 2396
2095 | 3002
2768
2762
2615 | 3576
3152
3145
2901 | | Compressive | 3
days | 1546
1714
1641 | 1663 | 2088
1917
1867
1851 | 2505
2404
2113
2153 | | | 1
day | 702
792
786 | 723 | 1080
898
880
886 | 1449
1191
1126
1145 | | Darex, | fluid oz/
cyd | 4.2
16.3
27.4 | 38°3
49°7 | 4°5
31°5
42°5
49°4 | 4.2
27.2
36.9
45.1 | | Slump, | în, | 0 m m | 0. T. | ル
い
い
い
す
す
ず | 4.7
4.3
4.3 | | Air | Content,
percent | ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ | 8° 4
6° 4 | らろうらららうう | 5.6 | | Fly Ash Wet Mixing Water | gal/sk | 6.95
7.12
7.38 | 7, 81
8,51 | 5,48
6,47
6,82
7,14 | 4.77
5.17
5.61
5.92 | | Net Mix | lb/cyd | 231
237
246 | 283 | 228
270
284
298 | 239
259
280
296 | | Fly Ash | lb/cyd | 0
100
150 | 200
250 | 0
150
200
250 | 0
100
150
200 | | Actual
Cement | Content,
sk/cyd | 4.10
4.05
4.00 | 5, 50
98, 98 | 5.11
5.04
4.96
5.02 | 6.06
5.99
5.96
5.98 | | Nominal
Cement | Content,
sk/cyd | ٥٠4 | | 5.0 | 0.9 | TABLE III COMPRESSIVE STRENGTHS OF FLY-ASH MIXES EXPRESSED AS PERCENT OF STRENGTH OF PLAIN CEMENT MIXES OF SAME CEMENT CONTENT | Cement | | | | Com | Compressive Str | Strengths, Percent | ercent | | | |---------------|---------|-----------------|------------|---|--------------------|--------------------|--------------------|---------|--------------------| | Content, | Fly Ash | H | 1 day | 3 d | 3 days | 7 days | ays | 28 | 28 days | | sk/cyd | l.b/cyd | Trenton Marys | Marysville | Trenton | Trenton Marysville | Trenton | Trenton Marysville | Trenton | Trenton Marysville | | 7 | 100 | | 113 | | 111 | | 1.08 | | 128 | | . | 150 | 130 | 112 | 121 | 106 | 116 | 108 | 131 | 125 | | † . | 200 | 112 | 103 | 108 | 108 | 108 | 105 | 122 | 121 | | † | 250 | 104 | 91 | 101 | 95 | 100 | 92 | 122 | 116 | | . | 200 | 1 76 | | 66 | | 8 | . | 115 | | | | | | | | | | | | | | ľĊ | 150 | 107 | 83 | 76 | 92 | 26 | 92 | 66 | 105 | | 70 | 200 | 96 | 82 | 101 | 89 | -
86 | 92 | 700 | [0] | | <u>.</u> | 250 | 93 | 82 | 76 | 88 | 92 | 87 | 103 | 106 | | \ | | , | ı | | | | | | | | 9 ' | 100 | 96 | 82 | 101 | 96 | 76 | 88 | 96 | 92 | | 9 ' | 150 | 66 | 62 | 96 | †8 | 93 | 88 | 97 | 92 | | 9 | 200 | 75 | 80 | 93 | 98 | 89 | 81 | 26 | 86 | | | | | | | | ****** | | | | | | | | | *************************************** | | | | | | #### ENGINEERING RESEARCH INSTITUTE • UNIVERSITY OF MICHIGAN TABLE IV AVERAGE RATIO OF 28-DAY TO 7-DAY COMPRESSIVE STRENGTHS | Cement Content
sk/cyd | Fly Ash
lb/cyd | to 7-Day | Day Strength
Strength | |--------------------------|-------------------|----------|--------------------------| | | | Trenton | Marysville | | 4 | 0 | 1.35 | 1.35 | | 4 | 100 | | 1.60 | | 4 | 150 | 1.51 | 1.56 | | 4 | 200 | 1.52 | 1.55 | | 4 | 250 | 1.65 | 1.70 | | 4 | 300 | 1.62 | | | 5 | 0 | 1.33 | 1.33 | | 5 | 150 | 1.37 | 1.52 | | 5 | 200 | 1.48 | 1.46 | | 5 | 250 | 1.50 | 1.62 | | 6 | 0 | 1.30 | 1.30 | | 6 | 100 | 1.32 | 1.35 | | 6 | 150 | 1.35 | 1.35 | | 6 | 200 | 1.42 | 1.42 | 3. Air-Entraining Admixture Requirement. Substantially greater amounts of Darex air-entraining admixture were required for Marysville ash than for Trenton ash under comparable conditions of use. Table V summarizes the amounts used for the two ashes. The large amounts of Darex which must be used with Marysville ash make it doubtful that it is economically feasible to use this admixture. Vinsol resin air-entraining admixture would be considerably cheaper. TABLE V AMOUNTS OF DAREX AIR-ENTRAINING ADMIXTURE PER CUBIC YARD OF CONCRETE | Cement Content
sk/cyd | Fly Ash
lb/cyd | Dare
fluid o | | |--------------------------|-------------------------------|-------------------------------------|------------------------------| | | | Trenton Ash | Marysville Ash | | 7+
7+
7+
7+ | 0
100
150
200
250 | 4.2
10.3
11.4
14.4 | 16.3
27.4
38.3
49.7 | | 5
5
5
5
5 | 300
0
150
200
250 | 17.3
4.2
11.9
13.0
16.5 | 31.5
42.3
49.4 | | 6
6
6
6 | 0
100
150
200 | 4.2
9.9
11.6
14.3 | 27.2
36.9
45.1 | ### TABLE I-A # PROPERTIES OF FLY ASH (54C-4) | Physical Properties | | |---|------| | Specific surface, air permeability test, sq cm per gm | 4578 | | Compressive strength, 20 percent by weight of portland-cement addition, hand mixing, 73°F cure, percent of control | | | 7 days | 107 | | 28 days | 106 | | 90 days | 137 | | Water requirement, percent of control | 111 | | Compressive strength, 25 percent by weight of sand, sand replacement, machine mixing, 73°F cure, percent of control | | | 7 days | 164 | | 28 days | 181 | | 90 days | | | Water requirement, percent of control | 126 | | Compressive strength, 25 percent by weight of cement, sand replacement, machine mixing, 73°F cure, | | | percent of control | 153 | | 7 dáys
28 days | 155 | | 90 days | ±// | | Water requirement, percent of control | 105 | | Drying Shrinkage, 28 days, percent | 0.08 | | Soundness, autoclave expansion, percent | 0.03 | | Specific gravity | 2.28 | | Chemical Properties | | | Silicon dioxide (SiO2), percent | 44.5 | | Magnesium dioxide (MgO), percent | 1.5 | | Sulfur trioxide (SO3), percent | 0.5 | | Loss on ignition, percent | 10.3 | ## TABLE I-A (Concluded) ### MARYSVILLE FLY ASH ## Mortar Strength Tests | | | Compres | sive Strer | ngth, psi | |--|---|--------------|--------------|---------------| | | (F | ercent of | control in | n parentheses | | | | 7 days | 28 days | 90 days | | 20 Percent | by Weight of Cement Ad | ldition (Ha | nd Mix) | | | Control (54C-7) | | 3252 | 4969 | 5171 | | Fly Ash (54C-2) | | 3440 | 5231 | 7027 | | | | (107) | (106) | (137) | | Control Mix | Fly-Ash Mix | | | | | 750 g cement | 750 g cement | | | | | 2062 g graded sand | 150 g fly ash | | | | | 360 ml water | 2062 g graded sand | | | | | | 400 ml water | | | | | 105.8% Flow | 112.3% Flow | | | | | 25 Percent by W | eight of Sand, Sand Re | placement | (Machine M | Mix) | | Control (5)(C 150) | | 0050 | 4271 | | | Control (54C-158) | | 2950
4825 | • • | | | Fly Ash (54C-4) | | (164) | , , - | | | Control Mix | Fly Ach Mix | (104) | (101) | | | 750 g cement | Fly-Ash Mix
750 g cement | | | | | 2062 g graded sand | | | | | | | | | | | | | 1547 g graded gand | | | | | 365 ml water | 1547 g graded sand
460 ml water | | | | | | | | | | | 365 ml water | 460 ml water | Replacemen | t (Machine | e Mix) | | 365 ml water 115.4% Flow 25 Percent by We | 460 ml water | | | e Mix) | | 365 ml water 115.4% Flow 25 Percent by We Control (540-158) | 460 ml water | 2950 | 4271 | e Mix) | | 365 ml water 115.4% Flow 25 Percent by We | 460 ml water | 2950
4521 | 4271
6600 | e Mix) | | 365 ml water 115.4% Flow 25 Percent by We Control (540-158) | 460 ml water | 2950 | 4271 | e Mix) | | 365 ml water 115.4% Flow 25 Percent by We Control (54C-158) Fly Ash (54C-4) | 460 ml water 112.5% Flow eight of Cement, Sand | 2950
4521 | 4271
6600 | e Mix) | | 365 ml water 115.4% Flow 25 Percent by Water Control (54c-158) Fly Ash (54c-4) Control Mix 750 g cement | 460 ml water 112.5% Flow eight of Cement, Sand Fly-Ash Mix | 2950
4521 | 4271
6600 | e Mix) | | 365 ml water 115.4% Flow 25 Percent by We Control (54C-158) Fly Ash (54C-4) Control Mix | 460 ml water 112.5% Flow eight of Cement, Sand Fly-Ash Mix 750 g cement | 2950
4521 | 4271
6600 | e Mix) | | 365 ml water 115.4% Flow 25 Percent by We Control (54C-158) Fly Ash (54C-4) Control Mix 750 g cement 2062 g graded sand | 460 ml water 112.5% Flow eight of Cement, Sand Fly-Ash Mix 750 g cement 188 g fly ash | 2950
4521 | 4271
6600 | e Mix) | TABLE II-A - MARYSVILLE FLY ASH 4-SACK. CONCRETE DATA | ab. Cord 38ad Stock of Action Water paj/kit lije ir fri Per Cent 11.0 o.j.cycl I day 3 days 12.0 </th <th>Batch
No.</th> <th>Date Made</th> <th>Fly Ash
lb/cyd</th> <th>Actual
Cement
Content</th> <th>*** A</th> <th>Material Proportion
1b/cyd</th> <th>al Propo
1b/cyd</th> <th>ortions
Net</th> <th>Actual
w/c.</th> <th>Wt. Fresh</th> <th>Pressure
Air Content.</th> <th>S</th> <th>Darex,</th> <th></th> <th></th> <th>Compress</th> <th>Compressive Strength</th> <th>gth</th> <th></th> | Batch
No. | Date Made | Fly Ash
lb/cyd | Actual
Cement
Content | *** A | Material Proportion
1b/cyd | al Propo
1b/cyd | ortions
Net | Actual
w/c. | Wt. Fresh | Pressure
Air Content. | S | Darex, | | | Compress | Compressive Strength | gth | | |---|--------------------|-----------------------------|-----------------------|-----------------------------|---------|-------------------------------|--------------------|----------------|----------------|---------------|--------------------------|------|--------|-------------------------|---------------|---------------|----------------------|---|--| | 7.24 146.2 4.9 3.5 16.3 770 1575 2295 7.03 149.5 3.1 3.25 16.3 770 1945 2740 7.09 145.8 4.6 4.25 16.3 760 1945 2740 7.12 145.8 4.6 4.25 16.3 792 1714 2450 7.37 145.8 4.9 3.25 27.7 705 1625 2440 7.21 145.1 5.1 3.25 27.7 705 1655 2445 7.22 145.1 5.3 4.0 26.7 705 1645 2445 7.23 145.1 5.9 4.0 26.7 705 1645 2445 7.24 146.4 5.1 3.5 27.4 706 1645 2445 7.75 145.1 5.3 3.75 37.7 706 1645 2445 7.75 144.4 4.8 5.75 <t< th=""><th></th><th></th><th></th><th>sk/cyd</th><th></th><th></th><th></th><th>Water</th><th>gal/sk</th><th></th><th>Per Cent</th><th></th><th>oz/cyd</th><th></th><th>5 даув</th><th></th><th>days</th><th>\vdash</th><th></th></t<> | | | | sk/cyd | | | | Water | gal/sk | | Per Cent | | oz/cyd | | 5 даув | | days | \vdash | | | 7.03 149.5 3.1 3.25 16.3 765 1945 2740 7.09 145.8 4.6 4.25 16.3 985 1715 2490 7.12 147.2 4.6 4.25 16.3 989 1711 2490 7.21 147.2 4.2 3.7 16.3 792 1714 2456 7.21 145.8 5.1 3.25 27.7 705 1645 2490 7.21 145.1 5.2 27.7 705 1645 2490 7.22 145.1 5.2 27.7 705 1645 2490 7.22 145.1 5.2 27.7 705 1625 2740 7.24 145.1 5.3 27.7 725 1775 1795 2245 7.75 145.1 5.3 37.5 27.4 786 1625 2245 7.75 145.1 4.8 36.3 38.3 1653 1360 | 53 | 5-30-54 | 100 | 4.02 | .18 | 476 | 2211 | 241 | 4.5.7 | 146.2 | 6.4 | 3.5 | 16.3 | 7 ⁴ 0
690 | 1555
1500 | 2295
2190 | 3515
3885 | | | | 7.09 145.8 4.6 4.29 16.3 900 1715 2490 7.12 147.2 4.2 3.7 16.3 792 1714 2456 7.37 145.8 4.9 3.25 27.7 705 1685 2440 7.21 146.4 5.1 3.25 27.7 705 1645 2490 7.21 146.4 5.1 3.25 27.7 705 1645 2490 7.54 146.4 5.1 3.25 27.7 705 1645 2490 7.56 145.1 5.2 27.7 705 1625 2740 7.75 145.1 5.5 27.4 706 1641 2456 7.75 145.1 4.0 26.7 39.1 657 1659 2245 7.75 145.1 4.1 3.75 37.5 37.5 175 1450 2245 8.48 144.1 4.1 4.25 38.3 | 29 | 4-2-54 | 100 | 4.12 | .78 | 426 | 2211 | 234 | 7.03 | 149.5 | 5.1 | 3.25 | 16.3 | 760 | 1945
1945 | 2740
2580 | 4205
4295 | | | | 7.12 147.2 4.2 3.7 16.3 792 1714 2456 7.37 145.8 4.9 3.25 27.7 705 1665 2430 7.21 146.4 5.1 3.25 27.7 726 1655 2430 7.56 145.1 5.9 4.0 26.7 776 1655 2740 7.75 145.1 5.3 3.75 27.4 786 1610 2245 7.75 145.1 4.4 3.75 27.4 786 1610 2245 7.75 145.1 4.4 3.75 27.4 786 1610 2245 7.75 145.1 4.4 3.75 37.5 175 165 2245 7.75 145.1 4.8 3.75 38.4 775 1450* 2140 8.46 146.1 4.8 3.9 38.3 725 1450* 2140 8.46 146.2 38.7 48.9 | 02 | 4-7-4 | 100 | 4.02 | .72 | 2111 | 2041 | 236 | 7.09 | 145.8 | 9.4 | 4.25 | 16.3 | 900 | 1715
1625 | 2490
2440 | 3850
3780 | | | | 7.37 145.8 4.9 3.25 27.7 705 1645 2490 7.21 146.4 5.1 3.25 27.7 725 1715 2490 7.56 145.1 5.9 4.0 26.7 935 1625 2740 7.56 145.1 5.3 3.75 27.4 786 1641 2456 7.73 145.1 5.3 3.75 27.4 786 1641 2456 7.75 145.1 4.4 3.75 27.5 1625 2245 7.75 145.1 4.4 3.75 38.1 650 1520 2245 7.75 144.4 4.7 4.25 38.4 775 1450 2156 8.46 144.4 4.7 4.25 38.3 723 1663 2340 8.46 144.4 4.25 38.3 723 1663 2196 8.46 141.5 4.25 49.8 740 1750 | | Average | 100 | 4.05 | 92. | 1007 | 2154 | 237 | 7.12 | 147.2 | 4.2 | 5.7 | 16.3 | 792 | 1714 | 5456 | 3922 | | | | 7.21 146.4 5.1 3.25 27.7 725 1715 2790 7.56 145.1 5.9 4.0 26.7 920 1625 2740 7.58 145.1 5.3 3.5 27.4 786 1640 2845 7.73 145.1 6.3 3.75 37.5 77.5 1650 2245 7.75 145.1 4.4 3.75 37.5 775 1850 2245 7.76 144.4 4.7 4.25 38.4 775 14508 2155 7.81 144.4 4.7 4.25 38.3 725 14508 2150 8.48 142.7 4.8 3.9 38.3 725 14508 2150 8.48 142.7 4.8 3.9 38.3 725 14508 2140 8.50 141.5 4.9 3.7 38.3 72 1653 2240 8.46 142.5 4.8 740 < | L †1 | 3-26-54 | 150 | 7.00 | .78 | 905 | 2211 | 546 | 7.37 | 145.8 | 6.4 | 3.25 | 27.7 | 705 | 1625
1645 | 2315
2490 | 3920
3465 | | | | 7.56 145.1 5.9 4.0 26.7 935 1625 2155 7.38 145.1 5.3 5.5 27.4 786 1641 2456 7.73 145.8 5.3 3.75 39.1 635 1500 2245 7.75 145.1 4.4 3.75 37.5 775 120 1625* 7.81 144.4 4.8 3.9 38.3 725 1663 2396 8.48 142.7 4.4 4.2 4.2 48.9 560 1290 1960 8.40 141.5 5.5 3.75 50.5 585 1280 2180 8.40 142.2 4.9 4.25 49.8 740 1680 2065 8.41 142.1 4.9 4.2 40.8 740 1680 2065 8.51 142.1 4.9 4.1 40.7 638 1464 2095 | 95 | 3-31-54 | 150 | 4.06 | .78 | 871 | 2211 | 240 | 7.21 | 1,46,4 | 5.1 | 3.25 | 27.7 | 725
740 | 1715 | 2790
2740 | 4205
4030 | | | | 7.38 145.1 5.3 3.5 27.4 786 1641 2456 7.73 143.8 5.3 3.75 39.1 635 1500 2245 7.75 145.1 4.4 3.75 37.5 775 1500 1625* 7.36 144.4 4.7 4.25 38.4 775 1450* 2140 7.81 144.4 4.8 3.9 38.3 725 1653 2366 8.48 142.7 4.4 4.25 38.3 725 1653 2366 8.46 141.5 5.5 3.75 50.5 585 1290 1200 8.46 142.2 4.9 4.25 49.8 740 1680 205 8.46 142.1 4.9 4.25 50.5 585 1290 2140 8.46 142.1 4.9 4.1 49.7 638 1464 2095 | 69 | η-1-5 4 | 150 | 3.94 | .78 | 888 | 2211 | 252 | 7.56 | 145.1 | 5.9 | 7.0 | 26.7 | 935
920 | 1625
1610 | 2155
2245 | 3500
3815 | | | | 7.75 145.8 5.3 3.75 39.1 635 1500 2245 7.75 145.1 4.4 3.75 37.5 775 1765 2630 7.96 144.4 4.8 3.9 38.3 725 1663 2346 8.48 142.7 4.4 4.2 48.9 565 1380 2180 8.60 141.5 5.5 3.75 50.5 585 1290 2140 8.46 142.2 4.9 4.25 49.8 740 1680 2065 8.51 142.1 4.9 4.1 49.7 638 1464 2095 | - | Average | 150 | 7.00 | .78 | 888 | 2211 | 942 | 7.38 | 145.1 | 5.3 | 3.5 | 4.72 | 786 | 1641 | 2456 | 3823 | ***** | | | 7.75 | 94 | 3-24-54 | 200 | 3.96 | .81 | 247 | 5296 | 258 | 7.73 | 143.8 | 5.3 | 3.75 | 39.1 | 635 | 1500°
1520 | 2245
1625* | 3655
3500 | | | | 7.96 144.4 4.7 4.25 38.4 775 1450* 2155 2140 7781 144.4 4.8 5.9 38.3 725 1665 2346 2140 8.48 142.7 4.4 4.25 48.9 565 1380 2120 8.60 141.5 5.5 3.75 50.5 500 1290 1960 8.46 142.2 4.9 4.25 49.8 740 1680 2065 8.51 142.1 4.9 4.1 49.7 638 1464 2095 | 89 | 4-5-54 | 200 | 4.03 | .81 | 217 | 5296 | 258 | 7.73 | 145.1 | η·η | 3.75 | 37.5 | 775
725 | 1765
1800 | 2630
2810 | 3850
4185 | | | | 7.81 144.4 4.8 3.9 36.3 723 1663 2396 8.48 142.7 4.4 4.25 48.9 565 1380 2120 8.60 141.5 5.5 3.75 5.05 585 1290 2140 8.46 142.2 4.9 4.25 49.8 740 1680 2065 8.51 142.1 4.9 4.1 49.7 638 1464 2095 | <i>L</i> 9 | t-6-54 | 200 | 3.99 | .81 | 730 | 5296 | 265 | 7.96 | ተ-ተተ ፒ | 4.7 | 4.25 | 38.4 | 775
740 | 1450*
1730 | 2155
2140 | 3465
3690 | | | | 8.48 142.7 4.44 4.25 48.9 565 1380 2120 8.60 141.5 5.5 3.75 50.5 585 1290 2140 8.46 142.2 4.9 4.25 49.8 740 1680 2065 8.51 142.1 4.9 4.1 49.7 638 1464 2095 of concrete | | Average | 200 | 3.99 | .81 | 728 | 5296 | 560 | 7.81 | 1,441 | 4.8 | 3.9 | 38.3 | 723 | 1663 | 2396 | 3724 | | | | 8.60 141.5 5.5 3.75 50.5 585 1290 2140 600 142.2 4.9 4.25 49.8 740 1680 2065 8.51 142.1 4.9 4.1 49.7 638 1464 2095 concrete | 43 | 3-23-54 | 250 | 3.98 | .81 | †79 | 2296 | 282 | 8,48 | 142.7 | π. π | 4.25 | 148.9 | 565
600 | 1380
1415 | 2120
1820* | 3320
3695 | | | | 8.46 142.2 4.9 4.25 49.8 740 1680 2065
8.51 142.1 4.9 4.1 49.7 638 1464 2095
of concrete | <u></u> <u>2</u> | 3-29-54 | 250 | 3.95 | .81 | 612 | 5296 | 586 | 8.60 | 141.5 | 5.5 | 3.75 | 50.5 | 585 | 1290 | 2140
1960 | 3500 | *************************************** | | | 8.51 142.1 4.9 4.1 49.7 638 1464 2095 of concrete | 99 | h-6-54 | 250 | 4.02 | .81 | 578 | 5296 | 282 | 94.8 | 142.2 | 6.4 | 4.25 | 49.8 | 740 | 1680
1730 | 2065
2190 | 3885
3570 | | | | *Not included in average
**
Denotes volume of dry rodded coarse aggregate per unit volume of concrete | | Average | 250 | 5.98 | .81 | 605 | 5256 | 283 | 8.51 | 142.1 | 4.9 | 4.1 | 7.64 | 638 | 1464 | 2095 | 3569 | | | | | *Not
**
Deno | included in
tes volume c | average
of dry rod | ded coars | ie aggr | egate p | er unit | volume | of conci | ete | | | | | | | | | | TABLE III-A 5-SACK CONCRETE DATA - MARYSVILLE FLY ASH | | | П | | | | | | | | | | | | |--------------------------------|--------------------------|--------------|--------------|--------------|---------|--------------------------|--------------|--------------|---------|--------------|--------------|--------------|---------| | | T West | | | | | | | | | | | | | | kth | 90 days | | | | | | | | | | | | | | ive Strength | | 4170
4115 | 4170
4330 | 4345
4135 | 4211 | 3960
4080 | 4100
4010 | 4150
3870 | 4028 | 4525
4715 | 3885
3885 | 4310
4100 | 4257 | | Compressive | 7 days | 2650
2740 | 2860
2775 | 2650
2935 | 2768 | 2755
2615 | 2755
2720 | 2755
2970 | 2762 | 2670
2740 | 2490
2420 | 2755
2615 | 2615 | | | 3 dava | 1730
1820 | 2015
1995 | 1855
2085 | 1917 | 1785
1785 | 1765
1855 | 2065
1945 | 1867 | 1785
1785 | 1800
1820 | 1835 | 1831 | | | 1 day | 795 | 1060 | 885
830 | 898 | 865
885 | 830
775 | 990 | 88 | 795
777 | 920
970 | 920
935 | 988 | | Darex, | fluid
oz/cyd | 30.9 | 50.9 | 32.6 | 31.5 | 42.3 | 42.3 | 42.3 | 42.3 | 50.5 | 148.9 | 148.9 | 4.64 | | Slump | | 5.5 | 4.75 | 6.75 | 5.7 | 5.0 | 4.75 | 0.4 | 9.4 | 4.75 | 0.4 | 4.5 | †.
† | | Pressure | Air Content,
Per Cent | 5.5 | 4.5 | 0.9 | 5.3 | 5.5 | 4.5 | 5.1 | 5.3 | 5.0 | 5.1 | 5.2 | 5.1 | | Wt. Fresh | Concrete,
lb/cu ft | 143.8 | 145.4 | 143.2 | 144.1 | 142.3 | 142.3 | 142.8 | 142.5 | 141.8 | 142.5 | 142.0 | 142.1 | | Actual | w/c,
gal/sk | 19.9 | 6.27 | 6.54 | 24.9 | 6.82 | 6.93 | 6.72 | 6.82 | 7.24 | 7.05 | 7.14 | 7.14 | | rtions | Net
Water | 276 | 261 | 273 | 270 | 787 | 589 | 280 | 284 | 302 | 762 | 298 | 298 | | Material Proportions
lb/cyd | Stone | | 2212 | 2212 | 2212 | 2212 | 2212 | 2212 | 2212 | 2212 | 2212 | 2212 | 2212 | | Materia | Sand | 724 | 635 | 754 | 717 | 669 | 919 | 632 | 667 | 543 | 543 | 565 | 550 | | *** | a | .78 | .78 | .78 | .78 | .78 | ٠.
ه | . 78 | .78 | .78 | 82 | . 78 | .78 | | Actual
Cement | lb/cyd Content
sk/cyd | 16.4 | 5.20 | 4.95 | 5.04 | 4.92 | ħ6. ħ | 5.02 | 7.96 | 5.01 | 5.05 | 5.00 | 5.02 | | Actual
Fly Ash Cement | lb/cyd | 150 | 150 | 150 | 150 | 200 | 200 | 200 | 200 | 250 | 250 | 250 | 250 | | Date Made | | 3-26-54 | 3-30-54 | 4-2-54 | Average | η ς- ηΖ- ς | 3-29-54 | 4-5-54 | Average | 5-51-54 | 4-6-54 | 4-6-4 | Average | | Batch | No. | 817 | 47 | 9 | | 54 | 51 | 63 | | 57 | 65 | 77 | | **Denotes volume of dry rodded coarse aggregate per unit volume of concrete TABLE IV-A 6-SACK CONCRETE DATA - MARYSVILLE FLY ASH | · | Т | | | | | † | | | | 1 | | | | |--------------------------------|----------|--------------|--------------|--------------|---------|--------------|--------------|-----------------|---------|--------------|--------------|--------------|-------------| | | l year | | | | | | | | - | | | | | | th | 90 даув | | | | | | | | | | | | | | Compressive Strength | 28 days | 3940
1450 | 4115
4240 | 1450
1400 | 9924 | 4115
4205 | 4330
4450 | 4510
4045 | 5424 | 4260
4205 | 4065
4135 | 3940
4135 | 4123 | | Compress | 7 days | 3075
2935 | 3040
3305 | 3250
3305 | 3152 | 3235
3145 | 3235
3110 | 2985
3160 | 3145 | 2970
2810 | 2755
2775 | 3005
3110 | 2901 | | | 3 days | 2280
2385 | 2475
2370 | 2545
2370 | 2404 | 2085
2190 | 2065 | 2120
2120 | 2113 | 2155
2120 | 2120
2155 | 2210
2155 | 2153 | | | 1 day | 1080 | 1185 | 1220
1310 | 1191 | 1150 | 990 | 1185 | 1126 | 970
990 | 1325 | 1165 | 1143 | | Darex, | oz/cyd | 27.7 | 27.7 | 26.1 | 27.2 | 39.1 | 35.8 | 35.8 | 36.9 | 45.6 | 45.6 | 0.44 | 45.1 | | Slump | -111. | 5.0 | 4.25 | 4.5 | 9.4 | 4.25 | 4.5 | 4.25 | 4.3 | 4.25 | 0.4 | 5.0 | †. † | | Pressure | Per Cent | 5.6 | 5.9 | 0.9 | 5.8 | 6.1 | 5.5 | 5.2 | 5.6 | 5.2 | 0.9 | 5.5 | 5.6 | | Wt. Fresh | 1b/cu ft | 144.5 | 144.2 | 0.441 | 144.2 | 142.8 | 143.1 | 143.4 | 143.1 | 7.541 | 142.3 | 141.3 | 142.1 | | Actual | gal/sk | 5.32 | 5.05 | 5.14 | 5.17 | 5.51 | 5.63 | 5.68 | 5.61 | 5.92 | 5.88 | 5.95 | 5.92 | | Material Proportions
1b/cyd | Water | 566 | 253 | 257 | 259 | 275 | 281 | 78z | 280 | 596 | 294 | 298 | 296 | | al Prop
1b/cyd | Stone | 2126 | 2126 | . 2126 | 2126 | 2126 | 2126 | 5156 | 2126 | 2126 | 2126 | 2126 | 2126 | | Materi | Sand | 826 | 800 | 800 | 809 | 731 | 743 | 70 / | 726 | 622 | 622 | 622 | 622 | | **** | | .75 | .75 | 55. | .75 | .75 | 5. | .75 | .75 | .75 | .75 | 5 | .75 | | Actual Ty Ash Cement | 8k/cyd | 5.95 | 6.01 | 6.00 | 5.99 | 5.95 | 5.93 | 00.9 | 5.96 | 6.01 | 5.99 | 5.95 | 5.98 | | Fly Ash Cement | | 100 | 100 | 100 | 100 | 150 | 150 | 150 | 150 | 200 | 200 | 500 | 200 | | Date Made | | 3-26-54 | 3-30-54 | 4-2-54 | Average | 3-24-54 | 3-29-54 | 45-5-4 | Average | 3-31-54 | t2-7-4 | ħ5-6-ħ | Average | | Batch | | 61 | 55 | 19 | | ‡ | 22 | ₫ | | 28 | 8 | 72 | |