Preparation of Pt clusters, hydrogen chemisorption and EXAFS

One gram of carbon was impregnated with 2 ml acetonitrile containing H2PtCl6 drop by drop with vigorous agitation. The amount of H2PtCl6 in the solution was varied, depending on the desired metal loading. After being dried in a H2 flow while increasing the temperature from room temperature to 300 °C over 2 h. The sample was subsequently outgassed for 2 h at 300 °C, for the desorption of H2 from the resultant Pt clusters. Hydrogen adsorption isotherms were measured at room temperature, in situ on the Pt clusters, using a volumetric adsorption apparatus. The hydrogen chemisorption (the number of H atoms per Pt atom) was determined by the extrapolation of the adsorption isotherm in the range of 10–30 Pa to zero pressure. For EXAFS, the sample that was outgassed at 300 °C was cooled to room temperature and exposed to air. About 0.1 g of the powder sample was pressed into a disk 10 mm in diameter, using polyethylene powder as a binder, and subsequently treated with H2 at 80 °C. The EXAFS was measured at the Pt LIII edge at room temperature under H2 atmosphere, using the BL10B2 facility at the Photon Factory in Tsukuba. The EXAFS data was carried out by standard methods using the UWXAFS2 program package as in ref. 19.

Preparation of electrodes and electrocatalytic activity measurement

Twenty milligrams of Pt/C powder and 0.40 ml ethanol containing 5.0-60% Naion were ultrasonically dispersed in 100 ml distilled water. A 30-μl portion of the resultant ink was dropped onto an electrode surface, which was composed of a glassy carbon core, 3 mm in diameter; the surrounding insulation area was 6 mm in diameter. The ink was carefully dried in a 70 °C oven so that Pt catalysts could be uniformly coated over the entire cross-section of the 6-mm diameter area. The electrocatalytic current was measured at room temperature and a rotating speed of 10,000 r.p.m., in 0.1 M HClO4 saturated with O2.

Received 2 February; accepted 29 May 2001.

19. Ben A. van der Pluijm*, Chris M. Hall†, Peter J. Vrolijk‡, David R. Pevear‡ & Michael C. Covoy†

* Department of Geological Sciences, University of Michigan, Ann Arbor, Michigan 48109, USA
† ExxonMobil Upstream Research Co., Houston, Texas 77252-2189, USA

Direct dating of ductile shear zones and calculation of uplift/exhumation rates can be done using various radiometric dating techniques. But radiometric dating of shallow crustal faulting, which occurs in the crust's brittle regime, has remained difficult because the low temperatures typical of shallow crustal faults prevent the complete syntectonic mineral recrystallization that occurs in deeper faults. Both old (detrital) and newly grown nanohydrates or phyllosilicates are thus preserved in shallow fault zones and therefore their radiometric ages reflect a mixture of both mineral populations. Also, the loss of 39Ar during neutron irradiation in dating of clay minerals can be done reliably. We present a method of characterizing the clay populations in fault gouge, using X-ray imaging, combined with sample encapsulation, and show how it can be used to date near-surface fault activity reliably. We examine fault gouge from the Lewis thrust of the southern California, which we determine to be ~52 Myr old. This result confirms the western North America stress regime to have changed from contraction to extension in only a few million years during the Eocene. We also estimate the uplift/exhumation age and sedimentary source of these rocks to be ~172 Myr.

Dating of shallow faults is, among other things, critical for our understanding of crustal evolution, plate interaction and fault reactivation, but there are two obstacles to radiometric dating of clay-rich fault rocks: (1) 39Ar recoil in 40Ar/39Ar chronology and (2) ‘contamination’ of samples from old, detrital material. The reaction transfer that occurs during the 39Ar(α,n) 40K reaction is sufficient to move a produced Ar atom about 0.1 μm from the site of the original K atom, which, for clay minerals, can be much greater than the average grain thickness. Thus, one expects massive losses of 39Ar during neutron irradiation, which would lead to erroneously old ages. Vacuole-encapsulated irradiation has been developed as a solution to the recoil problem. The second problem, a mixed age

Reference text:

Supplementary information is available on Nature's World-Wide Web site (http://www.nature.com) or as paper copy from the London editorial office of Nature.

Acknowledgements
R.R. thanks M. Nomura for helpful discussions on EXAFS measurement. This work was supported in part by the Ministry of Science and Technology through the Creative Research Initiative Program (R.R.), by the School of Molecular Science through the Brain Korea 21 Project (R.R. and J.K.), by the Korea Science and Engineering Foundation through the MICROS Center at KAIST (J.K.), and by CREST, Japan Science and Technology Corporation (O.T.).

Correspondence and requests for materials should be addressed to R.R. (e-mail: ryoo0@mail.kais.k.ac.kr).
resulting from the contribution of detrital (old) and newly formed (authigenic) phases, can be resolved through quantitative X-ray analysis of clay grain size populations in low-grade samples. Rather than (erroneously) assuming that little or no detrital material is left in very fine grain size fractions, we quantify the ratio of authigenic and detrital mica in different clay size fractions. This ratio typically decreases with increasing grain size. These grain size fractions are subsequently prepared for Ar dating, which produces a different apparent age for each grain size population. Combined with knowledge of the percentage of detrital illite these apparent ages constrain the age of each end-member phase (that is, of authigenic and detrital clays).

The success of our approach is demonstrated in a suite of gouge samples from the Lewis thrust in the southernmost Canadian Rockies (Gould dome near Crowsnest pass)\(^{11-13}\). This site was selected because faulted mudstone and bentonite units produce excellent outcrops of clay-rich gouge and the geologic age of faulting is reasonably well defined. The oldest age for motion on this fault is defined by the age of the youngest footwall sediments, which are Maastrichtian in age (~65 Myr). The youngest age for thrusting in the area is based on stratigraphic and structural characteristics of early Eocene deposits and is limited by the age of normal faults that cut the thrust and associated middle Eocene epoch (~48 Myr) deposits\(^{11-13}\). To the south, in the Rocky Mountain foreland of Wyoming, the latest foreland thrusting is also considered to be early Eocene in age\(^{11-14}\).

Three grain size fractions from two sites of the Lewis thrust near Crowsnest pass were prepared\(^{11}\). The properties of the samples are listed in Table 1 and the corresponding Ar spectra are shown in Fig. 1. Two samples were prepared from the finest grain size fraction and show excellent repeatability. X-ray diffraction analysis shows the Lewis thrust gouge samples to be mixtures of authigenic illite in illite/smectite and discrete detrital illite (mica). Transmission electron microscopy shows that smectite away from the contact is replaced by illite-rich mixed-layer illite/smectite and occasional discrete illite near the contact.\(^{16}\) The Ar data similarly display features that are characteristic of mixed-layer illite/smectite age spectra. Ages start at approximately zero for the room temperature ‘recoil’ gas fraction, indicating that there was virtually no loss of radiogenic \(^{40}\)Ar (ref. 17). Thus, the degree of \(^{39}\)Ar loss due to recoil is based on the sample’s structure and is not due to heating from neutron irradiation. After the recoil fraction, ages climb gradually to a level above the total gas age. \(^{39}\)Ar recoil may produce point defects in the clay crystal structure, and is therefore likely to induce enhanced diffusional loss\(^{18,19}\), which accounts for both the rise of ages from zero and an ‘overshoot’ in apparent ages in what might normally be considered a plateau segment. Plateau ages can therefore only be used with well crystallized (episolonen grade) illite, where the net loss of \(^{39}\)Ar due to recoil is trivial. We also see evidence in the Ar spectra of increasing detrital mica with increasing grain size fraction. Gouge samples show distinctive high age zones at the high-temperature part of the age spectra, which is a feature also noted in synthetic mixtures of clay components\(^8\) and Gulf coast shale samples\(^{17}\).

Using modelling of X-ray spectra\(^{16}\), we determined the percentage of discrete (detrital) illite (of total illite: %\(_{\text{detrital}} + %_{\text{authigenic}} = 100\%) in each grain size population. Our previous efforts indicate that these estimates have a 1–3% error; in our analysis we have therefore used an average ±2% error. Table 1 lists the data from three size fractions of the two gouge samples. In Fig. 2 we plot percentage detrital illite against the total gas age of the eight analyses.

Table 1 Lewis thrust gouge data

<table>
<thead>
<tr>
<th>Sample</th>
<th>Illite (%)</th>
<th>Detrital (%)</th>
<th>Ar/Ar(total) (Myr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bentonitic claystone at fault</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>104G-c</td>
<td>70</td>
<td>57</td>
<td>129.6 ± 0.4</td>
</tr>
<tr>
<td>104G-m</td>
<td>83</td>
<td>21</td>
<td>81.3 ± 0.4</td>
</tr>
<tr>
<td>104G-f</td>
<td>85</td>
<td>12</td>
<td>67.5 ± 0.1</td>
</tr>
<tr>
<td>104G-d</td>
<td>85</td>
<td>12</td>
<td>67.2 ± 0.2</td>
</tr>
<tr>
<td>Bentonitic claystone 10 cm from fault</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>102E-c</td>
<td>69</td>
<td>73</td>
<td>133.0 ± 0.4</td>
</tr>
<tr>
<td>102E-m</td>
<td>80</td>
<td>39</td>
<td>94.6 ± 0.4</td>
</tr>
<tr>
<td>102E-f</td>
<td>75</td>
<td>18</td>
<td>72.3 ± 0.1</td>
</tr>
<tr>
<td>102E-d</td>
<td>75</td>
<td>18</td>
<td>72.0 ± 0.3</td>
</tr>
</tbody>
</table>

The table shows percentage of illite in mixed-layer illite/smectite (I/S), percentage of detrital illite (Discrete I), and total gas Ar ages in Myr (Ar/Ar(total)) for three size fractions of fault gouge samples. Corresponding spectra are shown in Fig. 1.

Figure 1 Representative Ar age spectra of clays in samples at the Lewis thrust for three grain size populations. The first fraction in each run is the gas released when the quartz capsule is broken, and represents the gas lost by the sample during neutron irradiation. This ‘recoil’ gas fraction is always nearly zero in apparent age, meaning that \(^{39}\)Ar is released during irradiation due to recoil, but radiogenic \(^{40}\)Ar is not. The amount of recoil \(^{39}\)Ar varies from about 10% to 30% of the total, with the fine-grained samples having a higher percentage loss. This is expected, owing to their higher surface area to volume ratio, which tends to control the recoil loss mechanism. Apparent ages tend to increase at higher-temperature steps, especially in the coarse-fraction samples. We interpret this as representing the outgassing of relatively well crystallized mica from the host rocks. Fine fractions are <0.02 μm (black boxes), medium are 0.2–0.02 μm (grey boxes) and coarse are 2–0.2 μm (white boxes). Errors are ±1σ. Sample numbers correspond to data in Table 1.
The Illite Age Analysis (IAA) plot correlates the percentage detrital component and age of a sample. The percentage of detrital illite in different grain size fractions is based on X-ray analysis of samples, for which we determine the corresponding Ar total gas ages. The function e^(-t) = 1 is linearly proportional to percentage detrital mica and was used to fit the data. A is decay constant, t is apparent age. The lower intercept of the best-fitting line at 0% detrital illite represents the age of faulting (~52 Myr age), whereas the upper intercept at 100% detrital illite represents the metamorphic/cooling age of the samples, the results plot along a well defined line with a high degree of precision (R^2 = 0.96, mean of squared weighted deviates MSWD = 4.8; Fig. 2). The quoted errors are 1σ and include both a priori measurement errors and scatter about the best fit linear regression. Including error estimates for both detrital illite determination and standard Ar analysis error, we derive a lower intercept age at 0% detrital illite of 51.5 ± 3.5 Myr ago (early Eocene), which agrees well with geologic evidence for late movement on the Lewis thrust. The upper intercept of the regression line is calculated as 171.5 ± 6.2 Myr ago, which defines a sample containing 100% detrital material; that is, the ‘age’ of detrital micas. This middle Jurassic period age represents the mean age of uplift of the source terrain through the middle Jurassic period age represents the mean age of uplift of the source of continental regions.

Geology and palaeontology of the Late Miocene Middle Awash valley, Afar rift, Ethiopia

Giday WoldeGabriel1,*, Yohannes Haille-Selassie1, Paul R. Renne2, William K. Hart3, Stanley H. Ambrose4, Berhane Asfaw5, Grant Heiken6 & Tim White7

1* EES-6/MS D462; and # Institute of Geophysics and Planetary Physics, MS C303, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
2† Department of Integrative Biology and Laboratory for Human Evolutionary Studies, Museum of Vertebrate Zoology, 3060 VLSB, University of California, Berkeley, California 94720, USA
3‡ Berkeley Geochronology Center, 2455 Ridge Road, and Department of Earth and Planetary Science, University of California, Berkeley, California 94709, USA
4§ Department of Geology, Miami University, Oxford, Ohio 45056, USA
5¶ Department of Anthropology, University of Illinois, Urbana, Illinois 61801, USA
6# Rift Valley Research Service, P. O. Box 3717, Addis Ababa, Ethiopia

The Middle Awash study area of Ethiopia’s Afar rift has yielded abundant vertebrate fossils (~10,000), including several hominin taxa1-4. The study area contains a long sedimentary record spanning Late Miocene (5.3–11.2 Myr ago) to Holocene times. Exposed in a unique tectonic and volcanic transition zone between the main Ethiopian rift (MER) and the Afar rift, sediments along the western Afar rift margin in the Late Miocene middle window on the Late Miocene of Ethiopia. These deposits have now yielded the earliest hominids, described in an accompanying paper1 and dated here to between 5.54 and 5.77 Myr. These geological and palaeoecological data from the Middle Awash provide fresh perspectives on hominin origins and early evolution. Here we show that these earliest hominids derive from relatively wet and wooded environments that were modulated by tectonic, volcanic, climatic and geomorphic processes. A similar wooded habitat also has been suggested for the 6.0 Myr hominoid fossils recently recovered from Lukeino, Kenya5. These findings require fundamental reassessment of models that invoke a significant role for global climatic change and/or savannah habitat in the origin of hominids.

The western rift margin is more than 30-km wide, and drops in elevation from greater than 2,500 m on the plateau to about 600 m at the rift floor. It is attenuated, with east-dipping, distinct arcuate antithetic morphology from fault displacement in a tectonic transfer zone between the NNW- and NNE-trending Red Sea and MER tectonic domains, respectively2-3 (Fig. 1, inset). Zones of broad warping along rift margins are typical of transfer zones in extensional regions such as the east African rift system2. The transfer zone is permeated by dike swarms3, and such magma flux and dike injection along steep boundary faults during rifting probably increased geothermal gradient, ductile deformation and crustal separation in the southern Afar rift margin. The close association between rifting and development of transfer zones exerts significant influence on structural patterns and synrift sedimentation2.