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the shear rate increases, the DNA molecules tend to align more
towards the flow direction (see Fig. 4 legend).

Polymers extended in the direction of the shear flow have been
qualitatively predicted by classical theories, and have been indirectly
observed by using bulk birefringence3,4. Partial stretching of indi-
vidual polymers in the direction parallel to the flow direction is due
to the viscous drag exerted on the molecule5, which has been
invoked to explain shear-thinning in polymer solutions1. However,
the existence of vertical conformations (such as those shown in
Fig. 2a–c) is unexpected, and is not considered by classical models
of polymer physics5,6. Classically, it is assumed that, in the plane
parallel to the velocity and the velocity-gradient directions, shear
orients polymers at an angle <458 with the flow direction. Shear
may also induce tumbling of the polymers within such a plane.
However, in the plane parallel to the velocity and the vorticity
directions (the present plane of visualization; see Fig. 1), neither
shear-induced alignment nor polymer tumbling can explain the
existence of vertical conformations. Although fluid-mechanics
models—such as Jeffery orbits describing the motion of axi-
symmetric rigid particles in a shear flow—may serve as limiting-
case analyses19–23, they cannot be directly applied to the dynamics of
flexible polymers reported here. Furthermore, classical polymer
theories predict5 that a flexible polymer becomes stretched and
oriented when the Weissenberg number, We ¼ ġt, is equal to or
larger than unity. But here we find shear-induced deformation of
flexible polymers can occur at Weissenberg numbers much smaller
than unity (Figs 1–4).

Our experimental results show that conventional approaches,
such as birefringence and light scattering, which measure only
ensemble-averaged molecular parameters (that is, 〈v〉, 〈l 〉), overlook
the extremely rich dynamics of individual polymers under shear.
Our observations also provide an insight into the conformational
and orientational changes of polymers in a shear flow, and a basis
for further theoretical modelling. The molecular-level approach to
non-equilibrium polymer physics that we describe here could be
readily extended to many other polymer systems, including
entangled solutions of flexible polymers and semiflexible polymers
such as actin24,25. M
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From seashells to DNA, chirality is expressed at every level of
biological structures. In self-assembled structures it may emerge
cooperatively from chirality at the molecular scale. Amphiphilic
molecules, for example, can form a variety of aggregates and
mesophases that express the chirality of their constituent mol-
ecules at a supramolecular scale of micrometres (refs 1–3).
Quantitative prediction of the large-scale chirality based on that
at the molecular scale remains a largely unsolved problem.
Furthermore, experimental control over the expression of
chirality at the supramolecular level is difficult to achieve4–7:
mixing of different enantiomers usually results in phase
separation18. Here we present an experimental and theoretical
description of a system in which chirality can be varied con-
tinuously and controllably (‘tuned’) in micrometre-scale struc-
tures. We observe the formation of twisted ribbons consisting of
bilayers of gemini surfactants (two surfactant molecules
covalently linked at their charged head groups). We find that the
degree of twist and the pitch of the ribbons can be tuned by the
introduction of opposite-handed chiral counterions in various
proportions. This degree of control might be of practical value; for
example, in the use of the helical structures as templates for
helical crystallization of macromolecules8,9.

Gemini surfactants, consisting of two identical (twin) surfactants
joined by a hydrocarbon spacer of variable length, have been shown
to have properties that are unusual compared to those of simple
surfactants and lipids10. Cationic gemini surfactants having chiral
counterions such as L-tartrate (Fig. 1) form gels in both water
and some organic solvents11 by creating extended networks of
the multilamellar twisted ribbons reported here (Fig. 2, helix B).
A feature of this system is that the chirality comes from the
counterion rather than from the amphiphile itself, which allows
us to both adjust the pitch and to introduce excess chirality in the
form of sodium tartrate salts.

Similar structures to those that we observe are found for diacety-
lenic lipids, bile and glutamates1,2, which form long helical strips of
membranes with exposed edges (Fig. 2, helix A). However, these
helical ribbons are unstable: they evolve into tubules (Fig. 2)
consisting of a bilayer (or multilayer) membrane of amphilic
molecules wrapped in a cylinder which exhibits a ‘barber’s-pole’
pattern on its surface as evidence of its chiral origin.

The twisted ribbons that we observe have several original features.
Geometrically, their saddle-like curvature differs from the cylind-
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rical curvature of helical ribbons. Also, in contrast with the tubule-
forming systems, we observe no evolution towards closed chiral
aggregates. The twisted ribbons may be thermodynamically stable,
as is predicted for highly chiral systems by the model described
below. Most importantly, we demonstrate that the chirality of the
microstructures can be continuously varied by mixing of counter-
ion enantiomers.

We find that the pure 16-2-16 L-tartrate consistently forms
twisted ribbons of the same handedness, whilst the D-enantiomer
forms ribbons of opposite handedness (the 16-2-16 nomenclature
is defined in Fig. 1 legend). However, these enantiomers do not
undergo a lateral phase separation into helices with opposite
chiralities when mixed in arbitrary proportions. Instead, they mix
homogeneously and form helices with a continuous variation of
twist period and width (Fig. 3). An increase of the enantiomeric
excess (e.e.) causes a decrease of the twist pitch from infinite (flat
ribbons) to 200 nm (Table 1): e.e. is defined as the relative con-
centration difference ðfL 2 fDÞ=ðfL þ fDÞ, from 0 (racemic) to 1
(pure L-tartrate). On increasing the enantiomeric excess, we also see
a decrease of the mean width of the ribbons from ,400 nm to
40 nm, and their period and width seem to become more regular
(Table 1). On addition of the salt sodium L-tartrate, a helix of 16-2-
16 L-tartrate twists even further (Fig. 3d). The decrease of the pitch
and width eventually reaches a limit (100 nm and 20 nm, respec-
tively) at ,3 equiv. of salt added, presumably as the cationic bilayers
become saturated with chiral anions (Table 1). Thus, tuning the
geometrical parameters of these helices can be performed using very
simple means.

How does the shape of the twisted ribbons arise from the
particular molecular structure of the amphiphiles? To answer
this, we examined the properties of structural variants of 16-2-16
tartrate, and came to the following conclusions.

First, the absence of twist for the malate derivative (Fig. 1), and
the properties of the gels in organic solvents11, strongly support
extensive hydrogen-bonding of tartrate counterions between con-
secutive bilayers. For simple geometric reasons, such interlayer
coordination tends to favour a saddle-like curvature over that of a
cylinder (see Fig. 2 legend).

Second, in water the twisted ribbons are stable for gemini
surfactants with hydrocarbon chains ranging from 14 to 16 carbons.
For shorter hydrocarbon chains, only micelles form for concen-
trations at least up to 40%. At 18 carbons, helical ribbons form
instead of twisted ribbons, presumably as a result of the elevated
chain melting temperature and the consequent solid phase, which
will favour a cylindrical shape.

Third, the ability of the amphiphile to form such anisotropic
aggregates (having ribbons with both long and short sides) appears
to be directly linked to its dimeric character. For instance, the
monomeric counterpart, cetyl trimethyl ammonium tartrate, fails
to form any ribbon-like structure, whilst gemini surfactants having
simple bromides as counterions form flat ribbons similar to those of
Fig. 3a (ref. 12). Furthermore, these highly anisotropic structures
strongly suggest a long-range alignment of the constituent
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Figure 1 Cationic gemini amphiphiles having chiral counterions. Shown are the

structures of ethylene-1,2-bis(dimethylalkylammonium) surfactants with various

chiral anions. The nomenclature n-2-n refers to the numberof carbonatomsof the

first hydrocarbon chain, the ethylene spacer, and the second hydrocarbon chain,

respectively.Only the tartrate derivatives form twisted ribbons, the pitch andwidth

of which decreases for shorter hydrocarbon chains. When the counterion is

L-malate, which lacks one of the hydroxy groups of tartrate, hydrogen-bonding

between the counterions is weakened and only flat bilayers are observed despite

the chirality of the components. When using gluconate or glucarate as counter-

ions, extended hydrogen bonding remains possible, but the affinity of the anions

for the surfactant head groups is decreased due to the larger distance between

the negative charges. Again, these ions do not cause a twist in the amphiphilic

bilayers.
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Figure 2 Schematic representation of helical and twisted ribbons. Top, platelet or

flat ribbon. Helical ribbons (helix A), precursors of tubules, feature inner and outer

faces. Twisted ribbons (helix B), formed by some n-2-n tartrate surfactants, have

equally curved faces and a C2 symmetry axis. Bottom, the consequences of

cylindrical and saddle-like curvatures in multilayered structures. In a stack of

cylindrical sheets, the contact area from one layer to the next varies. This is not

the case for saddle-like curvature, which is thus favoured when the layers are

coordinated.

Table 1 Properties of ribbons formed by 16-2-6 tartrate

e.e. T W T/W
(mm) (mm)

.............................................................................................................................................................................

0 ` 0:40 6 0:28
0.2 5:0 6 1:5 0:12 6 0:046 43 6 5:2
0.33 2:6 6 0:9 0:11 6 0:047 26 6 7:0
0.5 1:0 6 0:5 0:06 6 0:016 17 6 4:7
1 0:2 6 0:024 0:04 6 0:006 4:8 6 0:51
1* 0:12 6 0:007 0:02 6 0:002 7:0 6 0:90
1† 0:115 6 0:01 0:02 6 0:002 5:6 6 0:86
1‡ 0:115 6 0:006 0:02 6 0:002 5:9 6 0:63
.............................................................................................................................................................................
Shown are values of enantiomeric excess (e.e., defined as ðfL 2 fDÞ=ðfL þ fDÞ) and the
mean values and standard deviations of ribbon period (T), width (W), and period/width
(T/W), for different proportions of L and D enantiomers of 16-2-16 tartrate. Statistics were
derived from 10–20 measurements for each sample.
* In the presence of 1 equiv. of sodium L-tartrate.
† In the presence of 3 equiv. of sodium L-tartrate.
‡ In the presence of 10 equiv. of sodium L-tartrate.
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molecules, which may be correlated with a hydrogen-bonded net-
work of tartrate ions11.

In the model we propose, orientational order of the molecules
within the membrane together with the chirality of the constituents
provide a natural explanation for the observed twisted-ribbon
shape, and can also account for the observed trends in the pitch
and width of the ribbons on variation of the enantiomeric excess. In
a membrane composed of gemini surfactants, an anisotropic fluid-
like arrangement of head groups would be analogous to nematic
order in bulk liquid crystals13.

The shape of the membrane is described by a curvature tensor Kij,
whose eigen values c1 and c2 are the principal curvatures along two
orthogonal directions in the membrane14. Including both bending
energies and the coupling of membrane shape to the assumed
nematic field13 Qij ¼ Sðninj 2 1

2
dijÞ, the free energy per unit area of

membrane is given by15,16:

f ¼
1

2
kðTrKijÞ

2 þ k̄DetKij þ leijQjkKki þ
1

2
k9QijKjkKki

¼
1

2
kðc1 þ c2Þ

2 þ k̄ðc1c2Þ þ lS sinð2vÞðc1 2 c2Þ

þ
1

2
k9S cosð2vÞðc1 þ c2Þðc1 2 c2Þ

Here, the coupling l characterizes the degree of chirality of the
system (which should be proportional to the enantiomeric excess),
v is the angle that the molecular orientation makes with respect
to the principle curvature axes, eij is the antisymmetric tensor and k,
k̄ and k9 represent the mean, gaussian and anisotropic bending
stiffness. Finally, we take into account the energy cost of the exposed
edges of the ribbons by introducing an excess free energy g per unit
length of edge. This model assumes that the degree of nematic order
S is fixed, by, for example, detailed molecular packing. Otherwise, it
represents the most general continuum model that includes the
curvature free-energy terms through quadratic order. It is thus
expected to be valid provided that the membrane curvature is not
too large (for example, on the molecular scale).

The analysis and results of this model will be described in greater
detail elsewhere. Here we summarize the most relevant results for
our experiments. First, for a given width of ribbon, the optimal
shape (obtained by minimizing the bulk free energy f with respect to
shape) for chiral systems is that of the twisted ribbon with saddle-
like curvature (specifically, c1 ¼ 2 c2) and the nematic director
oriented at 458 with respect to the curvature axes. For a fluid
membrane, cylindrical curvature—either as a complete tubule, or
as a helical ribbon precursor to a tubule—is not expected. In
contrast, solid-like order would strongly oppose saddle-like curva-
ture and favour cylindrical curvature, as is observed in tubule-
forming systems17.

Figure 3 TEM images of the ribbons. Shown are representative twisted ribbons

formed by 16-2-16 tartrate at 0.1% in water for various values of ðfL 2 fDÞ=ðfL þ fDÞ.

a, 0 (racemate); b, 0.5; c,1 (pure L);d,1 (pure L) in the presence of 1 equiv. of sodium

L-tartrate. Scale bar,100 nm.
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Figure 4 Predicted aspect ratio of twisted ribbons. Main figure, the calculated
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for increasing values of m ¼ lS=g, which is proportional to the enantiomeric
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are possible, although T and W become strongly correlated: the ratio T/W
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structures correspond to the upper boundary of the shaded region, within which

no stable solutions are predicted. For all but a very narrow range of m near the

critical value of 1/2, these are characterized by T/W of the order of 1. Inset,

Measured ratio T/W (points with error bars representing standard deviations of

10–20 samples for ribbons of mixtures of 16-2-16 D and L tartrate, without any salt

added. Enantiomeric excess (chirality) ranges from 0.2 to 1.0 (pure enantiomer).

The curve represents the predicted steady-state values of T/W as a function of

chirality m ¼ lS=g. The precise relationship of the enantiomeric excess to m

involves an unknown constant of proportionality, which has been chosen to fit

the data.
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As depicted in Fig. 4, minimization of the total free energy per
surfactant predicts equilibrium ribbons if the chirality or enantio-
meric excess is large enough (specifically, if lS > g=2). Thus, despite
the inevitable excess free energy associated with the edges, these
ribbons may not grow beyond a certain preferred width W. In this
case, the twist period T and ribbon width W are expected to vary
inversely with the enantiomeric excess, to be well-defined (for
example, their distributions are expected to be monodisperse),
and the ratio T/W is expected to be of the order of 1, and nearly
independent of the enantiomeric excess. Before these equilibrium
structures are attained, however, it is expected that T varies inversely
with the enantiomeric excess and is uncorrelated with W. Thus, the
aspect ratio and monodispersity that we observe for ribbons formed
by the pure 16-2-16 L-tartrate suggest that these are close to
equilibrium.

The non-equilibrium structures predicted for weakly chiral
systems (specifically, if lS > g=2) are expected to exhibit correlated
values of T and W: T/W varies inversely with enantiomeric excess,
although T and W are expected to have polydisperse distributions.
This corresponds well to the twisted ribbons formed by mixtures
of D and L enantiomers, which exhibit such correlated, though
polydisperse, geometrical parameters, and large T/W ratios. The
observed stability for these helices probably results from kinetic
effects which limit their growth.

Thus, on the basis of molecular parameters such as chirality and
anisotropy of the surfactant polar heads, this simple yet general
model predicts that the observed twisted-ribbon shape is optimal,
and that both the pitch and the width are expected to follow
the trends that we observe on varying the chirality. Also important
are the apparently qualitatively different behaviours for strongly
and weakly chiral systems. The experimental observations and
the theoretical model reported here may open the prospect of
creating stable structures of variable pitch in amphiphilic bilayer
systems. M
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Observations of the Earth’s near-surface temperature show a
global-mean temperature increase of approximately 0.6 K since
1900 (ref. 1), occurring from 1910 to 1940 and from 1970 to the
present. The temperature change over the past 30–50 years is
unlikely to be entirely due to internal climate variability2–4 and
has been attributed to changes in the concentrations of green-
house gases and sulphate aerosols5 due to human activity. Attri-
bution of the warming early in the century has proved more
elusive. Here we present a quantification of the possible contribu-
tions throughout the century from the four components most
likely to be responsible for the large-scale temperature changes, of
which two vary naturally (solar irradiance and stratospheric
volcanic aerosols) and two have changed decisively due to anthro-
pogenic influence (greenhouse gases and sulphate aerosols). The
patterns of time/space changes in near-surface temperature due to
the separate forcing components are simulated with a coupled
atmosphere–ocean general circulation model, and a linear com-
bination of these is fitted to observations. Thus our analysis is
insensitive to errors in the simulated amplitude of these
responses. We find that solar forcing may have contributed to
the temperature changes early in the century, but anthropogenic
causes combined with natural variability would also present a
possible explanation. For the warming from 1946 to 1996 regard-
less of any possible amplification of solar or volcanic influence, we
exclude purely natural forcing, and attribute it largely to the
anthropogenic components.

The coupled model we use is HadCM2 (refs 6, 7), which has a
horizontal resolution of 2.58 in latitude by 3.758 in longitude, 19
atmospheric and 20 oceanic levels, and a flux correction. Its climate
sensitivity to a doubling of the atmospheric concentration of CO2 is
estimated to be 3.3 K (C. A. Senior, personal communication).

The main radiative forcings of climate since 1850 are likely to be
anthropogenic changes in well-mixed greenhouse gases and tropo-
spheric aerosols (mainly sulphate), and natural changes in solar
irradiance and in stratospheric aerosol due to volcanic activity8. We
compare observations1 of 10-year mean near-surface temperature
changes over five 50-year periods (1906–56, 1916–66, ..., 1946–96)
with simulations of HadCM2 forced by the following factors (see
also section 1 of Supplementary Information):
‘G’. Changes in well-mixed greenhouse gases from 1860 to 19968,9,10

expressed as equivalent CO2.
‘GS’. As G but also with changes in surface albedo11 representing the
effects of anthropogenic sulphate aerosols from 1860 to 19966,9,10

derived from an atmospheric chemistry model12. We assume that
this albedo represents both the direct and indirect11,13,14 effects of
sulphate aerosols. When we consider both G and GS we define a
further signal S, the pure sulphate signal, as GS 2 G (see section 9 of
Supplementary Information).
‘Vol’. Changes in stratospheric volcanic aerosols15 from 1850 to 1996.
‘Sol’. Changes in total solar irradiance from 1700 to 1996 based on
proxy data16 for 1700–1991 and extended to 1996 using satellite
observations17.


