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ABSTRACT

The purpose of this experimental study was to investigate the sta-
bility of Poiseuille flow and compare the experimental results with the
theoretical predictions of a recent unpublished mathematical analysis
of the problem by Corcos and Sellars. A review of this theory is pre-
sented and experimental results are compared with its predictions.

A detailed description of the method used to obtain axially symmet-
ric undisturbed laminar flow of air in a pipe is given. Temperature gra-
dients in the settling chamber, located upstream of the pipe, caused the
maximum velocity point of the parabolic velocity distribution to lie be-
low the centerline of the pipe. An asymmetric addition of heat in the
settling chamber provided a means of correcting for the adverse tempera-
ture gradients. No tendency of the undisturbed flow to become turbulent
was detected up to a maximum Reynolds number of approximately 20,000, the
maximum capacity of the air supply system. Tests were not made at this
Reynolds number because of unsteadiness in the laboratory air supply.

Hot-wire anemometer measurements were made in fully developed lami-
nar flow in a smooth lucite pipe having an internal diameter of 1.25
inches and a length of 73 feet at Reynolds numbers of k4,000, 6,600 and
13,000. ©Small, nearly-axially symmetric disturbances were superimposed
upon the mean flow by longitudinal oscillations of a sleeve immediately
adjacent to the inner wall of the pipe. The frequency and amplitude of
this motion could be continuously controlled over a suitable range of
values. Radial traverses of the disturbed flow field gave amplitude and
relative phase angle variations across the pipe while longitudinal sur-
veys provided means of computing wave velocities and damping factors of
the disturbances. Results of several typical radial, peripheral and lon-
gitudinal surveys are presented. These surveys indicate that the distur-
bance does not achieve complete equilibrium before it is completely damped.
Nonaxial symmetry of the disturbances in interpreted as a superposition
of axially and nonaxially symmetric components. Measurements indicate
that the nonaxially symmetric components decay at least as rapidly as ax-
ially symmetric disturbances.

Some brief observations of the effects of large disturbances are pre-~
sented also. The fact that the onset of turbulent flow is not an instan-
taneous phenomenon appears to be a rather significant result of these ob-
servations. Large disturbances appear to undergo a systematic distortion
as an intermediate step in the establishment of the fully turbulent state.
When a turbulent wake was introduced at a mid-radial position, initially
the wake diffused radially with little effect on the velocity profile,

At a distance of 47 diameters downstream both the turbulence distribution

vii



and the velocity profile were near those for fully developed turbulent
flow.

The results are presented in the form of curves showing undisturbed
velocity profiles, with and without heat addition; radial, peripheral and
longitudinal disturbance distributions; comparison of experimental results
with small perturbation theory; transition to turbulent flow through a
systematic distortion of large disturbances; and the radial diffusion of
a turbulent wake until turbulent flow completely fills the pipe.

Several general conclusions can be drawn from this experimental in-
vestigation: (1) Poiseuille flow is stable when perturbed by small axi-
ally symmetric or nonaxially symmetric disturbances within the Reynolds
number range investigated, (2) the rate of decay and speed of propagation
of disturbances are in satisfactory agreement with theory, and (3) the
onset of turbulent flow in fully developed laminar pipe flow, when large
disturbances are imposed, 1s not an instantaneous phenomenon but one that
takes place through a relatively regular process of growth and diffusion
of the disturbance.
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OBJECTIVE

The purpose of this experimental study was to in-
vestigate the stability of Poiseuille flow and compare

the experimental results with theoretical predictions.
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Abstract: This report contains the results of an experimental investi-
gation of the stability of axially symmetric Poiseuille flow. A review
of a recent mathematical formulation of the problem is presented. Ex-
perimental results are in satisfactory agreement with this theory, which
predicts that the flow is stable to small axially symmetric disturbances.
A description of the methods utilized to obtain axially symmetric lami-
nar flow, superimpose small periodic disturbances and observe the dis-
tribution and propagation of the disturbances is given. A maximum
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sion of a turbulent wake indicate that the onset of the turbulent re-
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INTRODUCTION

Since Osborne Reynolds first conducted hls experiments in a circular
pipe, many investigations, both theoretical and experimental, have revealed
much information concerning meny aspects of Poiseuille flow. Through these
investigations, determinations of mean velocity distribution and its de-
velopment to a steady state condition, friction factors for both laminar
and turbulent flow, introduction of secondary flows at pipe bends, etc.,
have received extensive attention. For the most part, primary interest
appeared to be concerned with the general overall effects resulting from
various external factors, such as pipe length, wall smoothness, alignment
and. initial disturbances. These general overall effects included transi-
tion from laminar to turbulent flow in both the laminar transition and
fully developed laminar flow states. Other investigators, such as Lau-
fer,lB have dealt with fully developed turbulent flow.

In early investigations the determination of so-called "eritieal
Reynolds number" was the principle objective. Little emphasis appeared
to be placed upon the laminar flow regime in which the tests were conduc~
ted and little effort was directed towards an identification of the source
of the disturbances which ultimately lead to transition. The upper limit
of the critical Reynolds number then attracted some interest. As Prandt1®°
points out, results seemed to indicate that there is no definite upper
limit to the ecritical Reynolds number and that it can be made to exceed
any value by reduction of initial disturbances. The critical region is
in the inlet region of the pipe where the boundary layer is thin. Here
free stream disturbances can contaminate the boundary layer, which has

definite stability criteria, and cause the entire flow fileld to become



turbulent as a result of the presence of large initial disturbances or
or the amplification of particular small disturbances.

A recent theoretical study by Tatsumi®t indicates that there exists
a definite minimum critical Reynolds number below which all small distur-
bances in the inlet flow will be dsmped. He has shown the existence of
a neutral stability curve which depends upon the distance downstream of
the inlet, However, sinee, as will be shown later, the fully developed
flow is stable to small disturbances, disturbances originating in the in-
let region will damp when they reach the region of fully developed flow,
unless their amplitude is great enough to exceed the range of application
of the stability theory.

Other experiments in the fully developed laminar flow region have
had somewhat different objectives than the present work. Rethfus and
Prengle22 were concerned with transition due to initial disturbances but
it is doubtful whether their results are significant due to disturbances
introduced by the dye ejector and possible secondary flow disturbances in
the inlet region. Weske and Plantholt®® were interested in the behavior
of discrete vortex systems which were introduced asymmetrically into fully
developed pipe flow. While there appear to be indications in previous
work that fully developed pipe flow is stable, the investigation reported
here is the first quantitative experimental study of the stability of
fully developed laminar flow to small disturbances. Several theoretical
investigations have been attempted but only very recently did Corcos and
Sellars*# complete what is believed to be the entire mathematical formu-
lation of the stability problem.

The preliminary work of the above authors provided the initial stim-

ulation to attempt an experimental investigation of the stability problem.



At that time 1t was not known whether the mathematical picture was correct
or noty in fact, there was some doubt because computer results (reference
11) did not agree with the results of Pekeris.'® Then it was found that
Pekerls had solved only a portion of the problem, and that the unsolved
portion provided predictions for the practical case. The theoretical
problem was completed almost simultaneously with the completion of the
experiments and the results of the two are in satisfactory agreement.
Therefore, it appears that within the range of Reynolds numbers covered

in this experiment the flow is stable to small disturbances and the theory
does describe the physical phenomenon.

What follows is a description of the experimental apparatus and tech-
niques used in conducting the necessary tests. An attempt to include all
the essential details was made so that a continuation of the present work
can be made without excessive duplication of effort especially in the es-
tablishment of axially symmetric flow.

It is hoped that this work will stimulate others to renew their in-
terest in this problem and as a result lead to a complete analysis of the

problem of stability of fully developed laminar flow in a pipe.



REVIEW  OF THEORETICAL INVESTIGATIONS

By the end of the last century interest in stability of fluid motions
had grown considerably. However, it was not until 1906-8 when Orr' and
Sommerfeld® first formulated the disturbance equations from the equation
of motion and equation of continuity for the cases of two-dimensional and
axially symmetric flows, that much impetus was given to the problem. These
authors were unable to accomplish much beyond the derivation of the prob-
lem because of the complex type of pericdic disturbance they assumed.

Due to the extremely diffiecult mathematics involved, little work was done
to obtain solutions until a contribution by Heisenburg3 initiated renewed
interest in the problem as a whole, Heisenburg's methods were improved
by Tollmien* and Schlichting,5 both of whom studied the two-dimensional
Blasius and Couette flows and predicted that instablility could be induced
by the amplification of infinitesimal disturbances originating within the
boundary layer. This result was viewed with suspicion by workers in the
field because disturbances of this nature had not been observed during
experimental investigations. TIn addition, the mathematical difficulties
were so extensive, both theoretically and practically, that combined with
the above physical uncertainty, the net result was a lack of interest in
the problem.

The experdimental work of Schubauer and Skramstad6 initiated renewed
interest by showing that disturbances of the type predicted by Tollmien*
and Schlichting5 actually existed within the boundary layer and that
they introduced an instability which could result in transition. Follow-
ing this discovery, C. C. Tin® working on the theoretical approach to

the problem resolved most of the mathematical difficulties.



Prior to the above experimental work, there were essentially two
schools of thought concerning the cause of transition. G. I. Taylor8
and others took the view that finite disturbances from the main stream
entering the boundary layer developed adverse pressure gradients and
eventually caused separation to occur. The other viewpoint was that
certain infinitesimal disturbances within the boundary layer, aided by
proper conditions, grew with respect to time and eventually achieved
large enough magnitudes to cause transition to turbulent flow. Schu~
bauer and Skramstad  substantiated the second viewpoint. Therefore,
since the first mechanism was already accepted as a possible cause of
transition, this work indicated that both viewpoints were legitimate.

The above discussion has been a general resume of the advances
made in the field of stability of laminar flow. In the present work
however, we are concerned with the stability of fully developed axi-
ally symmetric laminar flows, and therefore we will proceed to the the-
oretical work in that field by first indicating how the disturbance
equation is developed from the equations of motion and continuity.

For an incompressible viscous fluid having axial symmetry two equa-

tions of motion exist, namely:

5
W .o, _ _1 ¥ T, 1 w,ou 5.1
e + U = + W 5 5 §§ + Vv [axz + 3 + §;§ 2 ( )
F g, F 1 %, ., | _F 1 &,
&-‘!‘U.&‘FWB; = —5- gf-l'v-[axa r2+r 8;‘*'81‘2 ~(2‘2)
and the equation of continuity becomes
%§v+ g + %g = 0 . (2.3)



The x~axis coincides with the axis of the pipe and the r-axis 1s normal
to it, Fig. 1. U and ¥ are the total velocities in the x and r

directions, respectively and v is the kinematic viscosity.

U
__—__..’
X
Fig. 1. Coordinate system.
We now assume that
U=U-u; W=w; P=P+0p (2.4)

where U 1is the steady-state undisturbed velocity in the direction of
the x-axis and a function of r alone, P is the pressure in the un-
disturbed flow; u and w, the disturbance velocities, are small in
comparison with U and p << P. Since it is assumed that steady-
state conditions exist, OU/dt = 0. Substituting (2.4) into (2.1) and
(2.2) and neglecting products of small quantities only, the pressure
terms can be eliminated by cross differentiation. From (2.3) a stream
function can be defined for the superimposed disturbance flow in the

following manner:

Hl

0110/
= le
e
5
1
ol o

134

(2.5)

This permits the disturbance equation to be written in terms of theaxially

symmetric stream function. In nondimensional form it appears as follows:



R | A o, 4| Lo | &
X H|xE T I i T =
4 3 o 4 "
1|3 2 v .3 v 3w 3y aﬂ
R [Br4 T oo T X ® X te dr2ox” T (2.6)

where primes denote differentiation with respect to r. R = Uﬁa/v is
defined where "a" is the radius of the pipe and Uy is the maximum undis-
turbed veloeity in the flow field. The U that appears is nondimensional
and varies from O to 1.

On the walls of the pipe both disturbance velocities must be zero

while at the center w = O and u must remain finite. The boundary con-

ditions in terms of ¥ are
oy oy Lim (1 v
% = - 0eetr=L r.olr x = °

; (2.7)
Lim |1 Vr
r >0 C; 5?) is bounded .

Assuming that the functional dependence of V¥ on T, X, and t can
be separated in a simple way, it is then required that a solution of (2.6)

be of the form

Wrn,t) = gr) 2t (2.8)

Then an equation for the eigenfunctions, which is similar to the equation

of Orr and Sommerfeld, can be written.

U -c) (8" - g'/r - &B) + g(ut/r - U")

¢E_%¢t"+}3§¢H_%¢_2a2(¢unéﬂ>+a4¢ ) (2.9)

1
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The boundary conditions in terms of ¢ have the following form

Mn (B) .o Lm () 5 poundea
r > 0\r r >0 r (2.10)

g(1) = ¢gr(1) = o .

The stagblility problem is now reduced to finding the behavior of the
eigenvalues, ¢, as both & and R are allowed to vary. In general, ¢ is
complex so that ¢ = ¢, + ieg, and the conditions that the disturbance am-
plifies, that it be neutral, and that it be damped, are simply ey >0,
¢y = 0, and ¢; < O, respectively.

Several investigators have proceeded from this point towards a solu-
tion of the eigenvalue problem (2.9). The details of these investigations
gan be found in the references and therefore will not be given here. How-
ever, the essential features of each investigation will be presented.

The first study of the stability of Poiseuille flow to be reported
was that of Sexl.9 By expressing (2.9) as two simultaneous second order
equations and using boundary conditions (2.10), he obtained solutions
from which he coneluded that the flow was stable, even though he gave no
eigenvalues., His work has been criticized by Pekeris,lo Sellarsll and

2 on the grounds that it was not mathematically vigecrous.

Corcos®
Pretsch,ls using the method of expansions in terms of small parame-
ters developed by Heisenburg,3 indicated a method of solving the eigen-
value problem but it 1s unknown whether he aectually made the calculations.
His selection of boundary conditionsg and rejection of certain solutions
of the transformed eigenvalue egquation causes his approach to the prob-
lem to be highly questionable on both mathematical and physical grounds.

A detailed critieism of his work has been made by Sellars®® and Corcos.'®



The work of PekerislO is considered to be correct but incomplete.
He found the eigenvalues of one set of modes whereas two sets of modes
actually exist, although he did mention the possibility of two different
types of modes.

i1 using an analog computer, found a set of modes which

Sellars,
were not in agreement with the results of Pekeris. He, therefore, pre-
sumed that he had obtained eigenvalues of the other set of modes. This
was substantiated by Corcos who found that in addition to the set of
modes reported by Pekeris, namely those for which ¢ + 1 as R » «, there
exists another set for which ¢ + 0 as 0R » ». The eigenvalues of the
latter set reported by Corcos were slightly inaccurate but in a more re-
cent work by Corcos and Sellars'® these quantities have been corrected.
Their results are believed to be a complete proof of the stability of
Poiseuille flow when disturbed by infinitesimal axially symmetric per=-
turbations, since it is shown that cq is always negative.

The following is a synopsis of the work completed by Corcos and
Sellars.14 Tt is not intended that this presentation be a complete re-
view of their work but merely a general survey which will enable the
'reader to gain a greater insight into the philosophy of approach and
mathematical pitfalls inherent in the problem.

The differential equation for the eigenfunctions (2.9) has four lin-
early independent solutions. By using the proper method of approach, it
was possible to eliminate two of the solutions which were not sufficiently
regular near the center of the pipe.

Following a procedure used by Sex1® and Pekeris,lo the expression
for the undisturbed velocity profile is given in nondimensional form as

U(r) = 1 - r2. Substitution of this expression into (2.9) gives
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L

£ - = £ - oPF - 1R(L - 18 - ¢)f = O (2.11)

where

¢n __::KL.: ¢t - O[2¢ = T . (2.12)

gn - g - - o (2.13)

satisfy (2.9), and the so-called inviseid, or perfect fluid solutions are
obtained. They are referred to as inviscid solutions because they are
obtained by letting R + » in the perturbation equation (2.9). Two lin-
early independent solutions of (2.13) are obtained but due to nonconform-
ity with the boundary conditions at the origin (eenter of the pipe) one

must be rejected leaving only
g; = rJi(dor) . (2.1k)

The second set of linearly independent solutions is referred to as

the viscous solutions and is assumed to be of the form
G = e . (2.15)

It is assumed that for large OoR an asymptotic series can be used to

describe g, namely,

-n
g = ((x’R)ngO‘ + gl + (aR) g‘z 4+ semas ° (2016)
Substituting (2.15) and (2.16) in (2.9) and equating proper terms we get

1/

r
r
n = 1/2, g = & «/; 4Jia(U-c) dp, g1 = log ?E:ETEZZO‘(2D17)
0

Using only the first and second terms of (2.16) an approximation of the
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solutions is obtained, namely,

EVE [ﬁ.ZJiOAR(U-c) dp —ﬂ.ZJiaR(U—c) dp]
¢a = W Ae +Be .

The ratio A/B is determined by comparing ¢a with a regular (viscous)

(2.18)

solution valid in the neighborhood of r = 0. It is found to be A/B = 1.
This ratio is not expected to remain constant for the whole interval,

0 < r <1, particularly in the neighborhood of the singularity U = ¢ be -
cause the asymptotic representation must be single valued if it is to
approximate an exact solution of (2.9).

It was noted that the coefficients of A and B had branch cuts
and were multivalued functions of r, where r was complex. This led to
the result that either A or B must be modified when entering differ-
ent regions of the complex r plane if the representation was to be con=
tinuous. This property is known as the Stokes' phenomenon. The regions
that yielded valid solutions were determined by investigating whether the
eigenvalues obtained were consistent with the assumptions.

This analysis led to a rather complicated algebraic eigenvalue equa-
tion which determined ¢ as a funetion of & and QR. The equation
could be solved by a trial and error process onlyj however, conclusions
could be noted by considering the general behavior of the eigenvalues and
examining the limiting cases, namely, ¢ - 1 as QR » ©» and ¢ ~ O as OR + .

Tn the first limiting case a family of eigenvalues given by

LN _omi

2 I
w2 3 N=12.5 e (2.19)

¢c =14
(aR

was obtained., This family contains values of ¢ that correspond to

damped disturbances only. The use of (2.19) is restricted in the sense
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that a relatively small number of modes is given accurately since LN must
be much smaller than OR.

The second limiting case gave a family of eigenvalues described by

= L W+ 1 - 2V P% w010
= 2w/ | MM P T e e

where

8 = are tan[}[—_ (2iaR) 1/2 B/%} . (2.20)

This again corresponds to damped disturbances. The value of N must
again be restricted. Here N must be limited to values such that [c| < 1.
An investigation was made to determine whether the asymptotic repre-
sentations leading to (2.19) and (2.20) were valid when R » ». The ques-
tion arises because the singularity, U = ¢ (Stokes point) approaches the
boundaries of the interval, namely r = O in the case of (2.19) and r = 1
in the case of (2.20) as R + ». It was shown that (2.19) gives a family
of eigenvalues which are correct. In fact, a greater number of modes will
be given with greater accuracy when R increases. In the case of (2.20)
however, the accuracy of the solution is greatly impaired when the Stokes
point approaches r = 1. Using some of Lin's’ results an alternate ap-
proach was developed to give a more accurate viscous solution. This an-~
alysis resulted in a determination of the eigenvalues in terms of the

Tietjens function, F(z), where for Poiseuille flow

z = (1 -~1-¢)(1 - <:)l/6 21/3(043)1/3 : (2.21)

From this an equation was developed which gave a discrete set of values
for z, called z,, which lie in pairs and are very nearly reflections

about the line arg z = —a/6. Employing a method of numerical integration
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various pairs were computed. The least stable solution was found to be

given by
-xi
21 = 423 e 17 (2.22)
which comes from the pair
i + o
We+12
Zl,z = )—l-.23 e . (2.25)

Combining (2.21) and (2.22) the first mode of the second set of eigen-

values is given by
L.2% e 12 = (L -N1-¢e)1 - c)l/eel/s(oc,R)l/3 (2.2k)

which can be solved for ¢ by trial and error for a particular value of
oR.

It was also shown that at each end of the interval, ¢ = 0 to ¢ = 1,
there are a finite number of eigenvalues described by z, and (2.19). 1In
the middle region where the two modes Jjoin, however, neither representa-
tion is accurate, and therefore the complete algebraic eigenvalue equa~
tion must be used. The present solutions however indicate that only a
finite number of eigenvalues exist for any value of OR.

Figures 2 and 3 were supplied by Corcos and Sellars.'®* These figures
show the results of their numerical calculation and analog computer re-
sults. Figure 2 illustrates the values of ¢ given by (2.19) and (2.20)
and by various pairs of z, at OR = 10,000. Figure 3 gives the comparison
between their computer results and (2.24) in terms of c, and ¢y vs (aR)l/s.

It should be noted that the theory has several limitations. First
of all, its use must be confined to cases involving small disturbances.

However, no accurate criteria is provided to establish the maximum allow-



1h

able amplitude of a small disturbance. Secondly, while it predicts sta-
bility to small disturbances, the introduction of large disturbances re-
sults in transition to turbulent flow and no explanation of the mechanism
ig included. Thirdly, stability is predicted for all values of ORj how-
ever, it seems reasonable to expect that there is some upper limit to OR

in the practical case.



EXPERIMENTAL APPARATUS AND PROCEDURE

(&) EXPERIMENTAL APPARATUS

The experiments were conducted in a lucite pipe 1.25 inches in diame-
ter and T3 feet (700 diameters) long. The air was supplied from a high
pressure tank, passed through a settling chamber and discharged through
the pipe to the atmosphere. Figure 4 is a schematic diagram of the equip-
ment.

High pressure air (90 psi) from the laboratory supply line was passed
through a separator to remove most of the oil and water present in the in-
coming air. From the separator the air proceeded through an activated
alumina dryer to a pressure regulating valve which controlled the pressure
in a 100 cu ft storage tank used as a constant pressure source for the air
supply system. Air flowed from the tank through a flowmeter to the set-
tling chamber for the pipe. The flowmeter was used simply as a monitor
to deteet any change in Reynolds number during a run. High pressure rub-
ber hose was used as the supply line between the pressure tank and the
settling chamber. The air flowed into the settling chamber through a
length of straight pipe in which was mounted a honeycomb to remove swirl
and secondary flows introduced by pipe elbows located at its upstream end.
Also a coarse screen was placed in the pipe to help remove large scale
disturbances in the air supply. In addition, two relatively coarse screens
were placed at the inlet to the settling chamber to inhibit the initiation
of separation at that point. In the settling chamber two baffle plates
were.placed opposite the inlet to help remove any jet effect which might
result in nonuniform flow. Downstream of the baffles, two relatively

coarse sctreens, a fine screen, a honeycomb and three fine screens were

15
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mounted in that order. The relatively coarse screens were 50 mesh, and
the fine ones 100 mesh. The honeycomb cells had a 6:1 length to width
ratio. Following the last screen was a wooden nozzle having a 64:1 con-
traction ratio. Air flowed from the nozzle into the lucite pipe. Figure
5 is a photograph of the experimental setup.

The settling chamber design proved to be satisfactory. No transi-
tion to turbulent flow occurred within the pipe at any flow rate within
the range of the system. In fact, ét one point in the preliminary in-
vestigations the inlet to the settling chamber was partially blocked by
a piece of sheet metal covering one-half the inlet cross section. This
had no measurable effect upon the shape of the fully developed laminar
profile at the downstream end of the lucite pipe. Figure 6 .is a photo-
graph of the settling chamber.

Unfformity of the internal diameter and concentricity of the pipe,
as supplied by the manufacturer, were found to be within 0.005 inch for
all sections of pipe used. The length of each section was approximately
50 inches. To insure against any discontinuity of the inmer wall of the
pipe at the junctions of adjacent sections, the ends of each section were
accurately machined and bolted together by means of flanges cemented to
the outer surface. In order to eliminate any adverse effects due to cur-
vature along the length of the pipe, a theodelite was used to align and
level the pipe. Alignment was accomplished by locating the theodolite be-
yond the exit of the pipe; then, starting at the upstream end, each section
was aligned as it was added until the entire pipe was assembled (see Fig.
5). It was estimated that this method of alignment resulted in a system
which departed at most only several hundredths of an inch from true align-

ment over the entire length of pipe.
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All measurements were made by means of a hot-wire anemometer. The
associated switching and electronic equipment, Fig. T, consisted of a
Thiele-Wright hot-wire anemometer system, a dual-beam cathode-ray oscil-
loscope, a Polaroid-Land camera and several oscillators. All signal out-
puts were mean-square values obtained from a thermocouple located at the
output of the hot-wire signal amplifier. Mean velocity measurements
were obtained by means of the Wheatstone bridge and the potentiometer of
the Thiele-Wright equipment. All hot-wire anemometers were calibrated
by using a free jet of air, a pitot-static tube and a Betz-type micro-
manometer.

Figures 8 and 9 are photographs of one of the two hot-wire probe as-
semblies used to make radlal surveys inside the pipe. Accurate position-
ing of the hot-wire probe along a diameter of the pipe was achieved by
means of the micrometer gage. Azimuth positioning was accomplished by
merely rotating the entire assembly about the axis of the pipe. Figure
10 shows a probe installed in the pipe. It was estimated that all radial
position readings were accurate to within five thousandths of an inch.
The correspondence between gage reading and probe position was determined
by moving the probe until the hot-wire Jjust touched the wall of the pipe
and then noting the gage reading.

The hot-wire element itself was a platinum wire approximately one
millimeter long and 0.0002 inch in diameter. This element was made from
Wollaston wire, the platinum core being covered by a silver sheath. The
hot-wire element was attached to the probe in the following manner. First,
a length of Wollaston wire was formed into a U, the ends of which were
soft soldered to the needles of the probe. The shape and size of the loop

was determined by the length and tension desired in the final hot-wire
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element. The silver sheathing was then removed electrolytically by means
of a small jet of very dilute nitric acid and a small electric current.
The Jjet was utilized to obtain uniformity in resistance of the hot wires
by controlling the length -of etched wire. When the silver sheathing was
removed, exposing the platinum wire, tension in the loop caused it to
open slightly drawing the platinum into a straight line. A straight wire
is essential for accurate measurements.

To take measurements at a fixed radial distance from the wall and in
a longitudinal direction, a probe was constructed in such a way that it
could be made to slide along the wall of the pipe. This probe is shown
in the foreground of Fig. 8 and shall be referred to as the "bug." By
means of the "bug," measurements of signal amplitudes and phase angles,
as a function of distance along the pipe, could be made.

The disturbance generator, Figs. 11 and 12, was an electromagnetic
deviece which introduced velocity fluctuations into the flow within the
pipe. Figure 13 is a schematic cross-sectional view of the generator.
The motive element consisted of a coll located in a permanent magnetie
field. When excited by an alternating current a sinuseidal oscillation,
parallel to the axis of the pipe, was imparted to the coil. Amplitude of
the motion at a given frequency was varied by varying the driving current.
The range of frequencies within which the generator operated satisfactor-
ily was from approximstely zero to 150 cps. Attached to the coll was a
cylindrical sleeve having a wall thickness of 0.002 inch and a length of
two inehes. When in position the sleeve formed a section of the inner
wall. Disturbances were imparted to the uniform flow through the action
of friction between the sleeve and the adjacent flow field. Motion of

the sleeve altered the boundary conditions at the wall and therefore super-



19

imposed disturbance velocities upon the axially symmetric parabolic flow
field.

The above method produced disturbances which were not completely axi-
ally symmetric. Another attempt to produce axially symmetric disturbances
and at the same time obtain larger velocity perturbations was made by cen-
trally mounting a ring airfoil within the cylindrical sleeve. The airfoil
had a chord of 0.10 inch and a thickness of 0.003 inch. The diameter of
the ring was approximately 0.9 inch and was a truncation of a cone having

a cone angle of six degrees.

(b) EXPERIMENTAI PROCEDURE

After assembling and aligning the pipe, measurements of velocity pro-
files were made at several stations along the pipe for various Reynolds
numbers. These radial surveys revealed that the undisturbed velocity dis-
tribution was not axially symmetric, the maximum velocity of the parabolic
distribution occurring below the centerline of the pipe. A systematic re-
orientation of the various components of the settling chamber and pipe
plus a modification of the settling chamber inlet effected no change in
the velocity distribution. It was decided that the asymmetry was not due
to any geometric configuration but rather to some more subtle phenomenon.

Several radial surveys near the pipe inlet indicated that the dis-
symmetry was actually originating within the settling chamber by showing
that the velocity of the core was not uniform but was slightly greater
near the bottom of the pipe. Radial surveys of temperature and velocity
distribution were made within the settling chamber but the results were
inconclusive because of vibration of the probe near full extension and
the minuteness of variations in the radisl distributions of these quan~

tities. Maximum temperature and velocity differences across the settling
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chamber were approximately O.4 degree centrigrade and 0.0k foot per sec-
ond, respectively. These were of the same order of magnitude as the re-
spective sensitivities of the system. Therefore, a heating element was
placed at the upstream end of the settling chamber near the baffle plates,
as shown in Fig. 4. The purpose was to create a temperature gradient
within the settling chamber and note the effect upon the fully developed
laminar profile. The curved heating element, made from a length of py-
rex glass tubing with a nichrome wire wound around it, spanned a central
angle of approximately 150 degrees. At first the element was located in
the bottom sector of the annulus. As the heat was gradually increased,
no noticeable effect was detected until above a critical value of the
heating current the flow within,the pipe became turbulent. Upon reduec-
ing the heat the flow returned to the laminar state, It seemed apparent
that the temperature gradient artificially introduced within the settling
chamber by the heater in that position had a very severe destabilizing
-effect, so it was relocated diametrically opposite, at the top of the
settling chamber.

Placing the heating element in the top sector of the annulus proved
to be the solution of the problem. By correctly adjusting the heating
current the maximum veloecity of the parabolic distribution could be posi-
tioned at the center of the pipe. If the current were increased or de-
creased from the correct value, the position of maximum velocity would
move upward or downward, respectively.

A number of fully developed veloeity profiles were obtained at vari-
ous Reynolds numbers. The stations along the pipe at which these profiles
were obtained corresponded to stations at which the disturbance generator

was placed when runs were made at corresponding Reynolds numbers. Several
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of these velocity profiles are given in Figs. 15 and 16. It can be seen
that good agreement between experiment and theory was obtained by the
addition of heat. A velocity profile obtained when no heat was added is
shown in Fig. 1h4.

Before any series of runs was to be made the profile was checked by
determining whether the point of maximum velocity coincided with the cen-
terline of the pipe. If its location was off the centerline the heat was
adjusted to effect coincidence.

After a symmetrical profile was obtained, the disturbance generator
was fitted into place and hot-wire probes were placed downstream of it.
Preliminary surveys were made to determine the range of disturbance fre-
guencies which appeared to be the least stable, i.e., those for which the
exponential damping factor was the smallest. Then radial surveys of the
disturbance were made at several stations downstream of the generator.

To observe whether the signal level varied during a run, a monitor
hot wire was used. This hot wire could not be placed immediately behind
the disturbance generator because its wake altered the disturbance con-
figuration in the test regions. Therefore, in each case the monitor hot
wire was located in the test region and diametrically opposite the test
probe.

The procedure for making measurements by means of the "bug" was the
game as above. The generator was operated at constant amplitude while
the "bug" was moved longitudinally along the pipe. A monitor probe was
located near the opposite wall of the pipe. The purpose of these meas-
urements was to obtain the wave length and decay rate of the disturbance
as a function of Reynolds number and frequency. The terms computed from
these quantities allow the experimental results to be compared with the

theory.
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All radial surveys were begun at the wall. The probe was moved in-
ward ana the "bug" longitudinally in steps that were considered adequate
to give consistent results. At each radial and longitudinal pesition
the Wheatstone bridge was balanced so that the hot wire had the same mean
registance for all measurements and therefore operated at the same over~
heating ratio.” The signal output was read on a millivoltmeter which was
actuated by the output of a thermocouple. The thermocouple in turn was
energized by the hot-wire signal amplifier. Readings obtained by this
method were mean~square values. After the signal amplitude was obtained,
the disturbance generator was stopped and the mean-square value, which
was interpreted as the "noise level," was taken. It was assumed that the
disturbance signal and the noise were uncorrelated, and hence the mean-
square quantities could be subtracted directly, yielding the signal am-
plitude alone.

The mean-square signal amplitude was referred back to the amplifier
input - the hot-wire output - by means of an amplifier calibration pro-
cedure. After each series of runs the amplifier was calibrated at each
gain setting used in the runs by means of an oscillator. To obtain dis-
turbance veloecities from the fluctuating voltages appearing across the
hot wire, a conversion factor had to be used. This factor is a function
of the local mean veloeity, average resistance of the hot wire and the
average current flowing through it, the overheating ratio, the static
hot-wire calibration and various circuit constants. For further infor-

mation conecerning hot-wire sensitivity and compensation see reference 15.

*No hot-wire compensation was used because the frequency range of the dis-
turbance signals was within the region of flat frequency response of the
hot wire. '
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Phase angles were measured on the face of a dual beam cathode-ray
oscilloscope. The common reference signal used for all phase angle meas-
urements was the input voltage to the disturbance generator. By putting
this signal on one beam of the oscilloscope and the hot~wire signal on
the other beam, relative phase angles could easily be determined with an

aceuracy qf approximately + 5 degrees.



SUMMARY OF RESULTS

A velocity profile without heat addition in the settling chamber is
shown in Fig. 14 and profiles, taken in the testing region at Reynolds
numbers of 4,000, 6,600 and 13,000, with heat addition are given in Figs.
15 and 16.

Typical peripheral surveys of the disturbance at radial positions
r/a = 0.808, 0.648 and 0.488 are shown in Fig. 17. Comparison between
surveys at stations 5.6 and 12.4 diameters downstream of the disturbance
generator are presented.

Radial distributions of disturbances taken at several stations along
‘the pipe and at the three testing Reynolds numbers are shown in Figs. 18
to 32. The local root-mean-square velocity ratios are given in Figs. 18
to 2# and the relative phase angles in Figs. 25 to 32. A pictorial rep-
resentation of the radial disturbance distribution at a frequency of 4O
cps and a Reynolds number of 4OOO is given in Fig. 33. The top trace in
each picture is the reference signal obtained from the driving voltage
supplied to the disturbance generator. Perturbation velocity increases
are indicated by upward deflections of the bottom trace.

Results of longitudinal surveys taken at r/a = 0.76, frequencies of
25, 35, 40 and 45 cps and Reynolds numbers of 4,000 and 13,000 are given
in Figs. 34 to 37. Figures 34 and 35 give the logarithmic decrease of
the root-mean-square velocity and Figs. 36 and 37 show the linear varia-
tion of the relative phase angles with increasing distance downstream.

Comparison between theory, Equation (2.2&), and experiment is shown
in Fig. 38 where cy, and -cqi are plotted against (aR)l/s.

Figure 39 gives the variation of c, with r/a at several stations and

ok
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Reynolds number of 4,000 to 13,000. Plots of r cp/y Vs r/a at several
frequencies and Reynolds numbers of 6,600 and 13,000 are given in Fig. 40.
A cross plot of r Cr/a Vs x/d is given in Fig. k1.

Figure 42 is a pictorial representation of transition from laminar
to turbulent flow through the mechanism of distortion of the disturbance
caused by small increases in the amplitude of the disturbance generator.
The top trace represents the voltage input to the disturbance generator
and provides an indication of the relative amplitudes of the initial dis-
turbance. Perturbation velocity increases are indicated by upward de-
flections of the bottom trace.

Radial measurements at several stations of turbulent diffusion be-
hind the ring airfoil were made at a Reynolds number of 12,000. Figure
43 is a plot of u'/Uygyx Vvs r at each station and Fig. bL gives the
mean velocity profiles. Results obtained at the last station are com-

pared with the results Laufer obtained at a Reynolds number of 50,000.



DISCUSSION

(a) UNDISTURBED FULLY DEVELOPED IAMINAR FLOW

The attainment of undisturbed laminar flow for all flow rates up to
the maximum capacity of the system, approximately R = 20,000, was achieved
with no difficulty. The initial precautions of adequate damping screens
in the settling chambér, a well-rounded inlet to the pipe, and a straight
pipe with smooth joints proved to be sufficient. However, the procuring
of axially symmetric, fully developed velocity profiles was an arduous
task.

After making every feasible geometrical alteration to the system with
negative results, an asymmetric heating (see Fig. 4) of the air at the up-
stream end of the settling chamber produced an axially symmetric profile.
A velocity profile without heating is shown in Fig. 14; the approximately
symmetrical profiles of Figs. 15 and 16 show the effect of heating. The
amount of heating current necessary to retain a symmetrical profile ap-
peared to be not only a function of the Reynolds number but also of the
ambient temperature of the laboratory, which undoubtedly was reflected
in the temperature of the air in the storage tank. In general, the higher
the anbient temperature the larger the heating current required. The re-
lationship between heating current and Reynolds number was rather diffi-
cult to determine because of the ambient temperature relationship. In
general, it appeared that the higher the Reynolds number the smaller the
heating current required, though the differences were not large. The re-
lation between heating current and ambient temperature was quite pronounced
especially when the latter changed appreciably during the day. With the
system operating at a constant Reynolds number and the heating current

held constant, the maximum velocity would be above the centerline of the

26
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pipe in the morning and below in the afternoon after the laboratory be-
came heated by the sun. Therefore, on such days the heating current had
to be continuously increased to maintain an axially symmetric velocity
profile.

The average amount of heat added was approximately ten watts. As-
suming half the air passing through the settling chamber was heated, the
addition of that amount of heat corresponds to a temperature rise of 2.3
degrees centigrade at R = 13,000. Beyond these qualitative observations
no further investigations concerning the asymmetric phenomenon were made
because such work lay outside the scope of the present problem.

Small flow variations, with a period of several minutes, caused the
maximum velocity point to wander slightly about the centerline of the pipe.
It was thought that these variations were due to ambient air disturbances
propagating upstream from the exit of the pipe. Such distrubances may be
pressure fluctuations caused by large scale eddies induced by the venti-
lation system in the laboratory.

In addition to the above distrubances, extremely small, relatively
high frequency disturbances formed a noise background in the flow. The
amplitude appeared to be somewhat sensitive to Reynolds number but had a
maximum value of uF/U of approximately 0.0l percent. The greatest portion
of the noise was believed to be sound because the amplitude remained roughly
constant across the pipe.

Lengths of transition for several Reynolds numbers were checked ap-
proximately and compared with the calculated results of Boussinesq.16
Satisfactory agreement with Boussinesq's formula was obtained at the lower
Reynolds numbers. At higher Reynolds numbers, however, his formula gave

lengths of transition which appeared to be too large. Figure 16 shows
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that at R = 13,000 agreement with theory was good even though the Bous-
sinesq formula indicates that the measurement location is only 0.8 of
the inlet length.

The small discrepancies between experimental and theoretical pro-
files near the walls may be due to the influence of the hot-wire probe.
Tests were made with the supporting stem of the probe spanning the pipe
for all probe positions. Results of these tests did not differ meas-
ureably from results obtained when the stem extended only to the hot-
wire probe. Of course, in this test the probe itself is still an un-
symmetrical disturbance. Regardless of the source, however, the dis-
crepancies did not appear to be large enough to greatly influence the

final results.

(b) DISTURBED FULLY DEVELOPED LAMINAR FLOW

On page 9 it was pointed out that recent theoretical investigations
indicated that fully developed laminar pipe flow remained stable when
disturbed by small axially symmetric disturbances. The mathematical
approach to the problem necessitated certain assumptions, which, while
being logical and valid mathematically, could not be realized easily in
an experimental investigation because of the absence of idealized con-
ditions. Examination of Equation (2.8) describing the type of distur-
bance assumed to be a solution of the perturbation Equation (2.6), re-
veals that an initial axially symmetric disturbance, having an identical
radial distribution for all values of x, is assumed to be imposed upon
the mean flow at each station along the pipe. The initial disturbance
is then released and the history of the disturbance as a function of time

is then described by the solution. In such a picture the influence of
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flow conditions at neighboring stations will be negligible since the dis-
turbance patterns are identical.

Experimentally however, this type of disturbance cannot be imposed
due to physical limitations. Actually the disturbance was introduced
along the wall at a small number of neighboring stations and propagated
radially and longitudinally from there. Due to the fairly rapid decay
of disturbances with time, it is rather doubtful that @ of Equation
(2.8) ever became a function of r alone although Figs. 19 to 24 indi-
cate that this condition was approached. In addition, the continuous
decay of the disturbance, as a function of x, meant that amplitudes of
the disturbance at neighboring stations were not the same.

The influence of these two differences upon the final results can-
not be completely determined. In Fig. 35, the two distinct decay rates
may be due to the process by which the disturbance approaches an equilib-
rium state. The initial decay rate occurs in the region where the radial
redistribution of the disturbance takes place as it tends toward an equi-
‘librium configuration. The second rate of decay is much greater and shows
gatisfactory agreement with the theoretical prediction.

Another source of discrepancy between experimental and theoretical
disturbance configurations refers to the axial symmetry of the distur-
bance pattern. In the theory it was assumed that disturbances were axi-
ally symmetric. This disturbance pattern could not be achieved experi-
mentally. Various methods of generating axially symmetric disturbances
were attempted but none proved to be completely effective. Deviations
of the disturbance from axial symmetry could be caused by any of a num-
ber of factors. These are: small deviations of the fully developed

flow from axial symmetry, small leaks at the disturbance generator caus-
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ing a pumping when the generator is in motion, disturbances at the sup-
ports if a disturbance element is supported away from the wall of the
pipe, minute departures of the shape of the disturbance element from
axial symmetry, and others. All these at some time or other were iden-
tified as factors in causing deviations of the disturbance from axial
symmetry.

While departures of the disturbances from axial symmetry were
troublesome and made measurements more difficult, the comparison with
theory is not necessarily invalidated. In fact, complex disturbances
may be considered as a superposition of axially and nonaxially symmetric
components as lohg as their amplitude 1s sufficiently small so that
small perturbation theory would be applicable. The nonaxially symmetric
component actually would be a three-dimensional disturbance due to its
variation with azimuth angle. Squirel7 has shown that, for plane flows,
three-dimensional disturbances are more stable than two-dimensional and
therefore would decay more rapidly. While the corresponding theorem has
not been proved for axially symmetric flow, the peripheral surveys of
Fig. 17 seem to indicate that the disturbance has a tendency to become

more axially symmetric as it propagates downstream.

(c) MEASUREMENTS OF DISTURBANCES

(1) Peripheral Surveys.-—In addition to indicating that the distur-

bance tended toward axial symmetry, the peripheral surveys of Fig. 17
showed that the disturbances possessed the same general character, as a
function of azimuth angle at each station, This fact supported previ-
ous measurements which indicated the absence of swirl within the pipe.

With this information the making of radial and longitudinal surveys of
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the disturbances was simplified because results obtained at various sta-
tions could be assumed to be comparable as long as the probe was placed
at the same azimuth angle at each station.

(2) Radial Surveys.—In making radial surveys, the ideal situation

would have been to place a monitor hot-wire probe close to the distur-
bance generator so that disturbances having a constant amplitude would
have been generated for similar surveys. This was attempted but was
abandoned when it was found that the wake from such a probe greatly al-
tered the disturbance pattern. Instead the monitor was placed spproxi-
mately at the same station that radial surveys were made but diametri-
cally opposite the testing region. This provided a means of maintaining
a constant disturbance level during any particular survey but prevented
any comparison of disturbance amplitudes obtained from radial surveys at
various stations. Attempts were made 10 maintain a constant signal level
by supplying a constant voltage level to the disturbance generator; how-
ever, Figs. 18 to 24k indicate that the method was inadequate, possibly
because of variations of friction between the sleeve and the pipe wall.
Radial amplitude distributions of disturbances are given in Figs. 19
to 24, In general, all distributions appear to have the same character-
istics except near the wall where in some cases a second amplitude peak
occurs. More will be gaild about this later. Since no theoretical deter-
minations of the radial distribution of u' have been made, comparison
of these results with theory is not possible. Such calculations have been
made for plane Polseuille flow,18 but they have not been carried out for
pipe flow. ©Several general comments concerning the physical nature of the
disturbance can be made, however. Inspection of the rms amplitude curves

reveals that the u-component of the disturbance approaches zero at r = 0
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and r = a. This is in agreement with the boundary conditions of the
mathematical formulation; however, the boundary condition at r = 0 ap~-
pears to permit the presence of sound waves in addition to shear distur-
bances, since u 1is merely constrained to be finite at that point. Such
is the case when sound waves are present.

The amplitude curves also indicate the lack of radial equilibrium
of the disturbance. Identical initial disturbances have slightly differ-
ent amplitude distributions at each station. In general, the peak ampli-
tude moves towards the center of the pipe as the disturbances propagates
downstream. Figure 23 indicates that the peak amplitude appears to ap-
proach an equilibrium position but it is doubtful that equilibrium is
achieved before the disturbance is completely dissipated.

No w-component measurements were made because of the difficulty in
making an x-wire probe small enough to prevent appreciable interference
with the disturbance pattern. Also u-component measurements are suffi-
clent to determine stability characteristics. A pipe having a larger
diameter would have to be employed to make accurate w-component measure-
ments.

Relative phase angles of the disturbances are presented in Figs. 26
to 32. The relative magnitudes of the phase angles at the various sta-
tions were determined by comparison with "bug" measurements at r/a = 0.76.
Phase angles at this radial position were compared with "bug" measurements
at the various longitudinal stations so that the total phase shift between
stations could be computed and the spacing of the curves determined.

The above curves show that, in all cases tested, the phase angle de-
ereased with decreasing radial position. This indicates that the distur-

bance was being propagated downstream at a more rapid rate near the center
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of the pipe. Apparently the mean velocity profile played an important.
part in establishing the general characteristics of the disturbance, es-
pecially in the central region of the pipe. As will be shown later, the
wave velocity at each radial position does not appear to be directly cor-
related with the mean velocity since the former seems to vary inversely
with radial position. Once the disturbance pattern is established, how-
ever, the veloeity profile appears to exert little influence upon the
veloeity of propagation. This is illustrated in Fig. 41 where there ap-
pears to be no general change in ¢, as a function of x.

Several of the curves show a rather abrupt phase shift of approxi-
mately 180 degrees, Examination of corresponding amplitude curves, for
instance Figs. 21 and 28, will reveal that a velocity minimum also occurs
at the same radial position. It appears that this phenomenon indicates
the formation of a clrculatory disturbance similar to that found theoret-
ically, reference 5, and experimental, reference 6, in stability investi-
gations in boundary layers. The circulatory disturbance appears to be
formed near the wall and then propagates radially into the flow as shown
in- Fig. 28, The mechanics by which this phenomenon takes place are not
known. Actually the disturbance pattern is so complex that one cannot
say definitely what 1s happening within the disturbed flow. About all
that can be stated is that the complex disturbance introduced experimen-
tally is much more general than the disturbance assumed in the mathemati-
cal formulation of the problem. Therefore, the results may not compare
directly with theoretical computation because the theoretical results
may be simply specialized solutions of the general problem. The results
ghould be reasonably similar, however.

Figure 33 shows the traces which occurred on the dual-beam cathode-



ray oscilloscope during a typical radial survey. The top trace represents
the driving voltage supplied to the disturbance generator. This signal
provided the common reference for all phase angle measurements. The sweep
frequency and horizontal gain were always adjusted so that one cycle ex-
tended over 18 divisions on the oscilloscope face thereby providing a
horizontal scale of 20 degrees per division. The time scale runs left

to right. Relative amplitudes of disturbance are indicated at each ra-
dial pesition.

This series of pictures shows that the phase angle decreased with
decreasing r. Also a signal null occurs at r/a = 0.792 and is accom-
panied by a phase shift of approximately 180 degrees. If this phenome -
non were a pure circulatory disturbance, the phase angle outside the null
region would remain constant as a function of radial position. Hence the
additional phase shift, especially near the center of the pipe, indicates
that a more complex disturbance is present.

An attempt was made to determine the relationship between ¢, and r.
To accomplish this, Figs. 26 to 32 were used. By teking differences of
relative phase angles occurring at adjacent stations, at the same radial
position, c, was computed for several radial positions. This procedure
was carried out for most of the radial surveys that were taken. There
appears to be approximately an inverse relationship between ¢y, and r,
Figs. 39 and 40. By cross plotting the above results, Fig. 41 was ob-
tained. This figure indicates that the wave velocity at a particular ra-
dial position remains approximately constant as the disturbance propa-
gates downstream.

The above statements can be applied also in the case where the ring

airfoil was used as the disturbance element, namely, Figs. 18 and 25,
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It should be noted that the disturbance shed from the airfoil was quite
different from that introduced at the wall. It contalned larger ampli-
tudes and altered disturbance patterns. First of all, this type of dis-
turbance may possess considerably more vorticity since it is actually a
wake generated by variation of the 1lift on the airfoil, and secondly it
is introduced at r/a = 0.72 and propagates'towards both the wall and the
center of the pipe. In the few measurements of this disturbance that
were taken, it was generally noted that the disturbances were much more
regular with no abrupt phase shifts. The range of Reynolds numbers at
which this type of disturbance can be employed is quite limited however
due to the large ambient disturbance introduced by theApresence of the
airfoil in the flow field.

(3) Longitudinal Surveys.-—Various problems were encountered in ob-

taining accurate data from the "bug" measurements. First of all, the
"bug" had to present a minimum frontal ares to prevent appreciesble block-
ing of the flow within the limited confines of the pipe. Secondly, the
"pug" had to be moved in such a manner that its orientation remained un-
changed, that is, it could not be allowed to wobble or tilt. After con-
siderable adjustment of the "bug" support system a very good set of data
was taken at R = 13,000 and is shown in Figs. 35 and 37. Phase angle
messurements, being less sensitive to "bug" orientation than amplitude
measurements, were satisfactory in most cases. The amplitudes presented
a very erratic distribution when insufficient care was taken, thereby
meking it extremely difficult to compute damping factors.

Figure 35 shows what was believed to be a phenomenon resulting from
nonequilibrium in the radial distribution of the disturbance. The first

rate of decay may have been less than the second because of a radial re-
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distribution of the disturbance as it tended toward an equilibrium distri-
bution. In both cases the decay rate appeared to be logarithmic. The sec-
ond rate of decay was used to compute damping retios which prOVed to be in
satisfactory agreement with theory (see Fig. 38 - circles).

Also in Fig. 35 it should be noted that only a narrow band of frequen—
cies was used. Preliminary tests ipdicated that the frequéncy range used
provided the best experimental conditions. Frequencies above L5 cps were
damped so rapidly that accurate measurements could not be taken while fre“
quencies below 25 cps were difficult to use because of power requirements
and_difficulties in synchronizing.traces on the oscilloscope. Qualitative
tests were made at frequencies ranging from 2 to 15 cps. Results indicated
damping thrdughout the entire range.

Figures 34 and 36 were "bug" meésurements of the disturbance generated
by the ring airfoil. They are quite similar to those mentioned sbove with
the exception that only one decay rate occurred. This may have been due to
the fact that the measurements in this case were taken further downstream
than in cases of disturbances generated by the sleeve. Also they were made
in a region where the local disturbence emplitude was small compared with
the maximum amplitude. This can easily be seen by considering the ampli-

tude at r = 0.475 inch in Fig. 18.

(4)  WAVE VELOCITY. AND DAMPING FACTOR

Wave velocities wére determined from curves shown in F;Lgsn 36 and 37
and from similar curves for other conditions. The longitudinal distance
the "bug" had to be moved to observe a 360-degree phase shift was called
the wave length, A, of the disturbance. Then by definition the nondimen-

sional wave velocity was giveh,by

Cp = Lﬁx : (5.1)
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Figure 38 shows the values of c, obtained from four separate "bug"
measurements. The relatively uniform disagreement with theory at smaller
values of OR could be due to the lack of agreement with theoretical dis-
turbance patterns, or to the fact that the disturbance had not approached
equilibrium by the time the measurements were taken. The fact that the
highest Reynolds number used gave uniformly better agreement may indicate
that the type of disturbance generated by the sleeve approaches more
nearly the theoretical pattern with increasing velocity gradient at the
wall.

Wave velocities assoclated with disturbances generated by the ring
airfoll deviated most greatly from theoretical predictions. This 1s s
further indication that the two disturbances are quite different, and it
may show that in the case of the ajrfoil the amplitudes may have been
too large to be in agreement with small perturbation theory. Also the
"pug" measurements were not made in the region near the maximum distur-
bance.

The values of damping factor cy were obtained from the slopes of
curves similar to those shown in Figs. 34 and 35, In accordance with

Equation (2.5) the u-component of velocity can be written as
acqt i a(x-cpt
u o= - g(r) et (x-crt) (5.2)
r

The change in amplitude with respect to time can be expressed, using

(5.2) as follows:
ta

Q cs dt
Joy e

-1-1—2- = & . (5'3)

In Fig. 34 x_. denotes a position 26.L4 diameters downstream from

0
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the ring airfoil and in Fig. 35 Xg corresponds to position 3.6 diameters
downstream from the sleeve. In both figures, u'y is the rms amplitude
at X, and u' the amplitudes at stations downstream of Xge

Writing Equation (5.3) in terms of the measured quantities we get
t(xg)

or

, ut o at
2.3 loglO ETZ = \/1(x ) Cy .
0

Differentiating with respect to t and using relation dx/dt = ¢y, this

equation then becomes

cy = 2'2 Cr é%. logg é%% . (5.4)

The computation of ¢, was shown above. Hence if changes of u'/u'O with
respect to x are the result of damping of the disturbance, the slopes
of the curves should enable cy to be computed by Equation (5.4).

Satisfactory agreement with theory is indicated in Fig. 38. Some of
the scatter of the points was believed to be due to imperfect tracking of
the "bug" which resulted in rather erratic amplitude representations.

Again the data obtained from disturbances created by the ring air-
foil deviated most greatly from theoretical predictions. The fact that
the damping factors for these disturbances are much smaller than predicted
could be interpreted as an indication that the disturbance amplitudes were
too large. As is indicated by the results and discussion in the next sec-
tion, the flow becomes less stable as the amplitude of disturbance was in-

creased until finally transition occurs.
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(e) TRANSITION INDUCED BY LARGE DISTURBANCES

With the hot-wire probe located at r/a = 0.568 and 47 diameters down-
stream of the ring airfoil, which was oscillating at 25 cps, and with R =
4000 the series of pictures shown in Fig. L2 was obtained by gradually iﬁ—
creasing the amplitude of oscillation. Again only u-components of velocity
were observed. The top trace is the input voltage to the disturbance gen-
erator and time 1is measured from left to right. The bottom trace is the
signal from the hot-wire probe where upward deflections correspond to ve-
locity increases,

A result of this test is that the onset of turbulent flow is not an
instantaneous phenomenon bul a process of distortion of the ilmposed dis-
turbance. Each picture gives a reproducible state of the disturbance and
not merely a transient condition. The process was reversible in the sense
that it repeated, regardless of the direction of approach to any of the
states, that is, from low to high or high to low disturbance amplitudes.

In Fig. 42 the imposed disturbance amplitude is represented by the
amplitude of the top trace. For convenience, the amplitude of the in@ut
signal, in terms of divisions on the oscllloscope grid, is given with
each picture. Also accompanying each pileture is the ratio of the partic-
ular rms velocity fluctuation to the maximum mms  fluctuation, shown
in exposure no. 3.

It has been shown previously that small disturbances decayed in all
cages investigated. The introduction of large disturbances, however,
led to instability. Somewhere between these two amplitude extremes must
be an amplitude which is nearly neutrally stable. Tests made with the
same disturbance element as above, at R = 8000, showed that transition
was induced when the airfoil was oscillated with the smallest possible

amplitude.



Lo

At R = 12,000 the ring pirfoil, when in a statlionary state, intro-
duced disturbances which appeared to‘be completely turbulént for:all prac-
tical purposes. When radial traverses were made at several stations down-
stream of the airfoil, the turbulent wake appeared to diffuse uniformly
in a radial direetion and the fluctuations increased in amplitude. |

Figure 43 gives the nondimensional disturbance distribution while
Fig. i gives the corresponding mean-velocity distribution at sevéial
stations downstream of the ring airfoil. It should be noted that the
disturbances originated immediately behind the ring airfoil which had s
mean radius of 0.45 inch.

Results of the traverse at station 47 are compared with the results
Laufer*® obtained in fully developed turbulent pipe flow at R = 50,000.
The comparison indigates that the flow is very nearly in the turbuleﬁt
state. The mean velocity and fluctuating velocity distributions agree
quite well in spite of the difference in Reynolds number.

The significance of the above qualitative results should be empha-
sized again. The onset of turbulence in fully developed laminér pipe
flow is not an abrupt phenomenon; There is a process by which distur-
bances having a sufficiently large amplitude will grow until the‘fully
turbulent state is established. Also the introduction of turbulent spots,
or rings in this case, will lead to fully turbulent flow but only through
a mechanism which appears to be a continuous trénsition process. It‘ap-
pears that the maximum allowable amplitude for ﬁhe preservatioﬁ of sta~

bility decreases with increasing Reynolds number.



CONCLUSIONS

1. Axially symmetric, fully developed laminar flow in a pipe is sta-
ble to small disturbances, whether they are axially symmetric or not, up
to R = 13,000. This conclusion is based on the observation that nonaxially
symmetric disturbances decay at least as rapidly as axially symmetric dis-
turbances.

2. Experimental values of rate of decay and of speed of propagation
of the disturbances afe in satisfactory agreement with theoretical predic~
tions.,

3. Some dependence of speed of propagation of the disturbance on
radial poesition was found. The theory does not postulate any relation-
ship between wave veloeity and radiusj therefore, no comparison could be
made.

4. Instability and transition to turbulent flow are excited when
the disturbance exceeds a given amplitude. This maximum amplitudeicf dis~-
turbance for the preservation of stability decreases with increasing Rey-

nolds number within the range of the experiments.
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Fig. 5. Photograph of experimental apparatus,.

Fig. 6. Photograph of settling chamber.
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Fig. 8. Photograph of hot-wire probe and "bug."
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Fig. 10. Photo

Photograph of hot-wire probe (exploded).

N

W7



¥Fig, 1l. Photograph of disturbance generator.

Fig. 12. Pholtograph of disturbance generator (exploded).
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Fig. 14. Mean velocity profile (no heat added).
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Fig. 15. Mean velocity profiles (heat added).
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Fig. 16. Mean velocity profile (heat added).
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Fig. 17. Peripheral distributions of amplitude of disturbances.
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Fig. 18.. Radial distributions of amplitude of disturbances.
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Fig. 19. Radial distributions of amplitude of disturbances.
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Fig. 20. Radial distributions of amplitude of disturbances.
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Fig. 22. Radial distributions of amplitude of disturbances.
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Fig. 23. Radial distributions of amplitude of disturbances.
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Fig. 24. Radial distributions of amplitude of disturbances.
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Fig. 25. Radial distributions of phase angles of disturbances.
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Radial distributions of phase angles of disturbances.
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Fig. 29. Radial distributions of phase angles of disturbances.
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Fig. 30. Radial distributions of phase angles of disturbances.
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Fig. 32. Radial distributions of phase angles of disturbances.
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Fig. 37. Longitudinal distributions of phase angles of disturbances.
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Fig. 39. Radial variation of wave propagation velocity.
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Fig. 40. Radial variation of wave propagation velocity.
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Radial distribution of turbulent wake of ring airfoil.
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