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Distinct classes of chromosomal rearrangements
create oncogenic ETS gene fusions in prostate cancer
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Recently, we identified recurrent gene fusions involving the 59
untranslated region of the androgen-regulated gene TMPRSS2
and the ETS (E26 transformation-specific) family genes ERG,
ETV1 or ETV4 in most prostate cancers1,2. Whereas TMPRSS2–
ERG fusions are predominant, fewer TMPRSS2–ETV1 cases have
been identified than expected on the basis of the frequency of high
(outlier) expression of ETV1 (refs 3–13). Here we explore the
mechanism of ETV1 outlier expression in human prostate
tumours and prostate cancer cell lines. We identified previously
unknown 59 fusion partners in prostate tumours with ETV1 out-
lier expression, including untranslated regions from a prostate-
specific androgen-induced gene (SLC45A3) and an endogenous
retroviral element (HERV-K_22q11.23), a prostate-specific andro-
gen-repressed gene (C15orf21), and a strongly expressed house-
keeping gene (HNRPA2B1). To study aberrant activation of ETV1,
we identified two prostate cancer cell lines, LNCaP and MDA-PCa
2B, that had ETV1 outlier expression. Through distinct mechan-
isms, the entire ETV1 locus (7p21) is rearranged to a 1.5-megabase
prostate-specific region at 14q13.3–14q21.1 in both LNCaP cells
(cryptic insertion) and MDA-PCa 2B cells (balanced transloca-
tion). Because the common factor of these rearrangements is
aberrant ETV1 overexpression, we recapitulated this event in vitro
and in vivo, demonstrating that ETV1 overexpression in benign
prostate cells and in the mouse prostate confers neoplastic pheno-
types. Identification of distinct classes of ETS gene rearrange-
ments demonstrates that dormant oncogenes can be activated in
prostate cancer by juxtaposition to tissue-specific or ubiquitously
active genomic loci. Subversion of active genomic regulatory
elements may serve as a more generalized mechanism for carcin-
oma development. Furthermore, the identification of androgen-
repressed and insensitive 59 fusion partners may have implications
for the anti-androgen treatment of advanced prostate cancer.

Recurrent chromosomal rearrangements have been causally impli-
cated in haematological and mesenchymal malignancies; although
predicted to occur in common epithelial carcinomas, they have not
been well characterized14,15. Using a bioinformatics strategy to nom-
inate genes showing high (outlier) expression in a subset of cancers,
we identified fusions of the 59-untranslated region of TMPRSS2
(21q22) to ERG (21q22), ETV1 (7p21) or ETV4 (17q21) in cases
that overexpressed the respective ETS family member1,2. TMPRSS2
had previously been characterized as androgen-regulated16, and its
androgen-responsive regulatory elements drive ETS family member
outlier expression1,17. Thus, fusions between TMPRSS2 and ETS

family members are functionally similar to haematological malig-
nancy rearrangements in which tissue-specific promoter or enhancer
elements of one gene are juxtaposed to proto-oncogenes15,18.

Multiple studies have confirmed the presence of TMPRSS2–ERG
fusions in 36–78% of prostate cancers from prostate-specific-
antigen-screened surgical cohorts (Supplementary Table 1). Appro-
ximately 90% of samples with ERG outlier expression harbour
TMPRSS2–ERG fusions1,19, confirming this as the predominant
mechanism driving ERG overexpression. In contrast, although
microarray studies show ETV1 outlier expression in 6–16% of pro-
state cancer samples, only 2 of 205 (1.0%) samples analysed har-
boured TMPRSS2–ETV1 fusions (Supplementary Table 1).

Here we addressed this discrepancy between ETV1 outlier and
TMPRSS2–ETV1 frequencies. By quantitative PCR (Q-PCR) across
2 cohorts, 26 and 3 of 54 localized prostate cancer samples showed
ERG (48%) and ETV1 (5.5%) outlier expression, respectively
(Supplementary Fig. 1). Additionally, two hormone-refractory
metastatic prostate cancer samples, MET26 (our TMPRSS2–ETV1
index case1) and MET23, showed ETV1 outlier expression.
However, other than MET26, no samples expressed TMPRSS2–
ETV1 fusion transcripts.

To characterize the ETV1 transcript in outlier cases, we performed
59-RNA-ligase-mediated rapid amplification of complementary
DNA ends (RLM-RACE). Instead of 59 exons from TMPRSS2, the
other four samples contained unique 59 sequences (Fig. 1a). In
PCa_ETV1_1, exons 1–4 of ETV1 were replaced with two exons from
22q11.23 that had homology to human endogenous retrovirus family
K (referred to as HERV-K_22q11.23). In PCa_ETV1_2, exon 1 of
ETV1 was replaced with exon 1 of HNRPA2B1 (7p15), whereas in
PCa_ETV1_3, exons 1–4 of ETV1 were replaced with a 59-extended
exon 1 of SLC45A3 (1q32). In MET23, exons 1–5 of ETV1 were
replaced with exons 1–2 from C15orf21 (15q21) (Fig. 1a). We con-
firmed these fusion transcripts by Q-PCR and genomic fusions by
fluorescent in situ hybridization (FISH; Supplementary Figs 2 and 3).
Additional information about the 59 partners and the FISH results is
described in Supplementary Discussion.

HERV-K_22q11.23–ETV1, SLC45A3–ETV1 and C15orf21–ETV1
fusions contain no predicted translated sequences from the 59 part-
ner, and HNRPA2B1 would only contribute two residues to a
HNRPA2B1–ETV1 fusion protein. Because their regulatory elements
probably drive aberrant ETV1 expression, we characterized the tissue
specificity and androgen regulation of these 59 partners by micro-
array or massively parallel signature sequencing (MPSS, as described
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in the Methods). Similar to TMPRSS2, SLC45A3 showed marked
overexpression in prostate cancer (median is 2.45 standard devi-
ations above the median value per array) compared to other tumour
types (median 5 0.33, P 5 2.4 3 10–7) in a large DNA microarray
study. C15orf21 showed similar overexpression in prostate cancer
(P 5 3.4 3 10–6). In contrast, HNRPA2B1 showed high expression
in prostate and other tumour types (median 5 2.36 versus 2.41,
P . 0.05) (Fig. 1b). By MPSS, HERV-K_22q11.23 was shown to be
highly expressed in normal prostate (94 transcripts per million) com-
pared to the 31 other normal tissues (median 5 9 transcripts per
million; Fig. 1b). By Q-PCR, endogenous expression of SLC45A3
(21.6-fold, P 5 6.5 3 10–4) and HERV-K_22q11.23 (7.8-fold,
P 5 2.4 3 10–4) in the LNCaP prostate cancer cell line was shown
to be greatly increased by the synthetic androgen R1881, similar to
TMPRSS2 (14.8-fold, P 5 9.95 3 10–7). Conversely, the expression of
C15orf21 was significantly decreased (1.9-fold, P 5 0.0012) and the

expression of HNRPA2B1 was not affected by R1881 stimulation
(1.17-fold, P 5 0.29) (Fig. 1c).

We next sought to identify cell-line models of ETV1 outlier express-
ion. Previously, we reported that the LNCaP cell line markedly over-
expressed ETV1, however RLM-RACE revealed expression of only the
wild-type transcript1. We proposed that LNCaP may harbour a prev-
iously unknown rearrangement affecting the expression of ETV1, and
used a split-probe FISH strategy to look for gross rearrangements
(Fig. 2). On LNCaP metaphase spreads, this assay revealed two pairs
of co-localizing signals at the ETV1 locus (7p) and two split signals in
which the 59 signals remained on 7p whereas the 39 probes (overlap-
ping the ETV1 locus) were inserted into another chromosome (Fig. 2b).
As described in the Supplementary Discussion and Supplementary Figs
4–8, we identified this rearrangement as a cryptic insertion of a min-
imal region around ETV1 into an intronic sequence from the MIPOL1
locus at 14q13.3–14q21.1 in the LNCaP cell line (Fig. 2d).
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Figure 1 | Identification of prostate-specific or ubiquitously active
regulatory elements fused to ETV1. a, Structure of new 59 partners fused to
ETV1 in outlier cases. Structures of ETV1 and all 59 partners are based on
sequences listed in Supplementary Table 2. The numbers in the boxes
represent exons. The numbers above the boxes indicate the last base of each
exon. Untranslated regions are in lighter shades (pink and light green).
b, Tissue specificity of 59 fusion partners was determined in normal tissues
or cancers (blue) and in normal prostate or prostate cancer (magenta) (see

Methods). See Supplementary Table 4 for tissue and tumour classes. The
significance of prostate cancer versus all other tumours is indicated. Box and
whisker plots show median 1/2 90th%/10th%. c, Assessment of androgen
regulation of 59 fusion partners. Endogenous expression of 59 fusion
partners (normalized to the housekeeping gene GAPDH) was assessed by
Q-PCR in LNCaP cells with (1) or without (–) stimulation by the synthetic
androgen R1881 (mean (n 5 4) plus s.e.).
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By screening additional prostate cancer cell lines for ETV1 over-
expression, we identified ETV1 outlier expression in MDA-PCa 2B
(Supplementary Fig. 9). A previous analysis of MDA-PCa 2B demon-
strated the presence of a balanced t(7;14)(p21;q21)20 translocation
corresponding to the locations of the ETV1 and MIPOL1 loci. We
demonstrate that MDA-PCa 2B also harbour a rearrangement

involving ETV1, because the ETV1 locus translocates to the d14
(Fig. 2c). The 1.5-Mb 14q13.3–14q21.1 region is the partner of this
balanced translocation, because the telomeric 14q13.3–14q21.1
probe localizes to the d7 (Supplementary Fig. 7).

The existence of mechanistically distinct rearrangements resulting
in the localization of ETV1 to 14q13.3–14q21.1 (Fig. 2e) in prostate
cancer cell lines with ETV1 outlier expression suggests that elements
in this region mediate the aberrant expression of ETV1. By character-
izing the tissue specificity and androgen regulation of the four con-
tiguous genes at the 14q13.3–14q21.1 breakpoint (Fig. 2d; SLC25A21,
MIPOL1, FOXA1 and TTC6) as well as that of ETV1 in LNCaP and its
androgen-insensitive derivative C4-2B, we demonstrate that this
region is both prostate-specific and coordinately regulated by andro-
gen (Supplementary Figs 10–12 and Supplementary Discussion).

The 59 partners do not contribute a coding sequence to the ETV1
transcript, therefore the common result of the different ETV1 rear-
rangements in clinical samples and prostate cancer cell lines is aber-
rant overexpression of truncated ETV1. We recapitulated this event
in vitro and in vivo to determine the role of aberrant ETS family
member expression in prostate cancer. We designed adenoviral and
lentiviral constructs to overexpress ETV1, as expressed in our index
TMPRSS2–ETV1 fusion-positive case MET26 (Supplementary Fig.
13a). In RWPE and PrEC cells, ETV1 overexpression had no detect-
able effect on proliferation (Supplementary Fig. 13b, c). ETV1 over-
expression had no effect on the percentage of RWPE cells in the S
phase of the cell cycle (Supplementary Fig. 13d) and was not suf-
ficient for transformation (Supplementary Fig. 13e). However, ETV1
overexpression markedly increased invasion in a modified basement
membrane invasion assay in RWPE (3.4-fold, P 5 0.0005) (Fig. 3a)
and PrEC (6.3-fold, P 5 0.0006) (Supplementary Fig. 14a).
Additionally, ETV1 knockdown in LNCaP using either short inter-
fering (si)RNA or short hairpin (sh)RNA inhibited invasion (Fig. 3b
and Supplementary Fig. 14b–d), consistent with previous work21. To
investigate the transcriptional programme regulated by ETV1, we
profiled stable RWPE-ETV1 cells and analysed the expression signa-
tures using the Oncomine Concepts Map (OCM, http://www.
oncomine.org). The OCM is a resource to look for associations
between more than 20,000 biologically related gene sets by dispro-
portionate overlap10,22. As shown in Fig. 3c, OCM analysis identified a
network of molecular concepts related to cell invasion that were
enriched in our ETV1-overexpressed signature, consistent with the
phenotypic effects described above. Specific examples are described
in Supplementary Discussion.

We next determined the effects of ETV1 overexpression in vivo. We
generated transgenic mice expressing a Flag-tagged, truncated ver-
sion of ETV1 under the control of the modified probasin promoter
(ARR2Pb-ETV1) (Supplementary Fig. 13a), which drives strong
transgene expression exclusively in the prostate under androgen
regulation23. This transgene is functionally analogous to the andro-
gen-induced gene fusions of ETV1 we identified in human prostate
cancer. By 12–14 weeks of age, 6 of 8 (75%) ARR2Pb-ETV1 mice
developed mouse prostatic intraepithelial neoplasia (mPIN) (Fig. 4
and Supplementary Table 5). Consistent with the definition of
mPIN24, we observed focal proliferative lesions contained within
normal glands in the prostates of ARR2Pb-ETV1 mice (Fig. 4a–d);
these lesions exhibited nuclear atypia, including stratification,
hyperchromasia and macronucleoli. mPIN was observed in all three
prostatic lobes (anterior, ventral and dorsolateral) of ARR2Pb-ETV1
mice, most commonly in the ventral lobe (7 of 11, 63.6%)
(Supplementary Table 5). By immunohistochemistry in ARR2Pb-
ETV1 mice, we observed strong ETV1–Flag expression exclusively
in mPIN foci and not in benign glands (data not shown). Although
we have not observed progression to invasive carcinoma in ARR2Pb-
ETV1 mice, we have only characterized 4 mice older than 19 weeks of
age, 3 of which (75%) also had mPIN (Supplementary Table 5); this
suggests that additional genetic lesions are required for the develop-
ment of carcinoma. Combined with our in vitro observations, these
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results demonstrate that ETV1 induces a neoplastic phenotype in the
mouse prostate and supports an oncogenic role for ETS gene fusions
in human prostate cancer.

Including fusions between TMPRSS2 and ETS family members, we
have now identified five classes of ETS rearrangements in prostate
cancer (Supplementary Fig. 15). Identification of untranslated
regions from the prostate-specific androgen-induced gene
TMPRSS2 has provided a mechanism for aberrant ETS family mem-
ber expression. Thus, fusions between TMPRSS2 and ETS family
members (class I) represent the predominant class of ETS rearrange-
ments in prostate cancer. Rearrangements involving fusions with
untranslated regions from other prostate-specific androgen-induced
59 partner genes (class IIa) or endogenous retroviral elements (class
IIb) are probably functionally similar to TMPRSS2–ETS rearrange-
ments. Similar to 59 partners in class I and II ETS rearrangements,
C15orf21 is markedly overexpressed in prostate cancer; however,
because C15orf21 is repressed by androgen, this represents a prev-
iously unknown class of rearrangements (class III) involving
prostate-specific androgen-repressed 59 partners.

In contrast, HNRPA2B1, which encodes a member of the ubiqui-
tously expressed heteronuclear ribonuclear proteins, did not show
prostate-specific expression or androgen responsiveness. Thus,
HNRPA2B1–ETV1 represents a previously unknown class of ETS
rearrangements (class IV), in which non-tissue-specific promoter
elements drive ETS expression. Whereas class I–III ETS rearrange-
ments are functionally analogous to IGH–MYC rearrangements in
B-cell malignancies, HNRPA2B1–ETV1 is more analogous to
inv(3)(q21q26) and t(3;3)(q21;q26) in acute myeloid leukaemia,
which are thought to place EVI1 (ecotropic viral integration site 1)
under the control of enhancer elements of the constitutively
expressed RPN1 gene25,26.

By screening prostate cancer cell lines that have ETV1 outlier
expression, we identified rearrangements in LNCaP and MDA-PCa
2B that result in the localization of ETV1 to 14q13.3–14q21.1.
Because this aberration is recurrent in prostate cancer cell lines, we
propose that characterizing additional prostate cancer cases with
ETV1 outlier expression will identify clinical specimens with similar
rearrangements (class V), in which the entire ETS family gene is
rearranged to prostate-specific regions. The identification of distinct
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classes of 59 fusion partners has implications for the detection of gene
fusions in prostate cancer and may be important for management,
particularly with regard to the effects of androgen ablation on the
expression of the different ETS rearrangement classes (Supple-
mentary Fig. 16), as described in Supplementary Discussion.

Multiple classes of gene rearrangements in prostate cancer suggest
a generalized role for chromosomal rearrangements in common epi-
thelial cancers. For example, tissue-specific promoter elements may
be fused to oncogenes in other hormone-driven cancers, such as
breast cancer. Additionally, whereas prostate-specific fusions would
not provide a growth advantage and be selected for in other epithelial
cancers, fusions involving strong promoters of ubiquitously
expressed genes, such as HNRPA2B1, could result in the aberrant
expression of oncogenes across tumour types. This study supports
a role for chromosomal rearrangements in common epithelial
tumour development through a variety of mechanisms, similar to
haematological malignancies.

METHODS SUMMARY
Q-PCR, RLM-RACE for ETV1 fusions, androgen stimulation of LNCaP cells and

interphase FISH were performed essentially as described1,2 using indicated oligo-

nucleotide primers (Supplementary Table 2) and bacterial artificial chromosome

(BAC) probes (Supplementary Table 3). Tissue-specific expression of 59 fusion

partners was determined using the International Genomics Consortium’s expO

data set accessed in the Oncomine database27 and the Lynx Therapeutics MPSS

data set (GSE1747). Expression profiling was performed using Agilent Whole

Human Genome Oligo Microarrays. Adenoviruses and lentiviruses expressing

ETV1 were generated by the University of Michigan Vector Core. Transgenic

ARR2Pb-ETV1 mice were generated by the University of Michigan Transgenic

Animal Model Core.

Full Methods and any associated references are available in the online version of
the paper at www.nature.com/nature.
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METHODS
Samples and cell lines. Prostate tissues were from the radical prostatectomy

series at the University of Michigan and from the Rapid Autopsy Program29, both

of which are part of University of Michigan Prostate Cancer Specialized Program

of Research Excellence Tissue Core. All samples were collected with informed

consent of the patients and previous institutional review board approval.

The benign immortalized prostate cell line RWPE and the prostate cancer cell

lines LNCaP, Du145 NCI-H660 and PC3 were obtained from the American Type

Culture Collection. Primary benign prostatic epithelial cells (PrEC) were

obtained from Cambrex Bio Science. The prostate cancer cell lines C4-2B,

LAPC4 and MDA-PCa 2B were provided by E. Keller. The prostate cancer cell

line 22-RV1 was provided by J. Macoska. VCaP was derived from a vertebral

metastasis from a patient with hormone-refractory metastatic prostate cancer30.

For androgen stimulation experiments, LNCaP cells were grown in charcoal-

stripped serum containing media for 24 h, before treatment for 24 h with 1%

ethanol or 1 nM of methyltrienolone (R1881, NEN Life Science Products) dis-

solved in ethanol. For all samples, total RNA was isolated with Trizol

(Invitrogen) according to the manufacturer’s instructions.

Quantitative PCR. Q-PCR was performed using Power SYBR Green Mastermix

(Applied Biosystems) on an Applied Biosystems 7300 Real Time PCR system as

described1,2. All oligonucleotide primers were synthesized by Integrated DNA

Technologies and are listed in Supplementary Table 2. HMBS and GAPDH31,

and PSA32 primer sequences were as described. Androgen stimulation reactions

were performed in quadruplicate, siRNA knockdown reactions were performed

in triplicate and all other reactions were performed in duplicate.

RNA-ligase-mediated rapid amplification of cDNA ends. RLM-RACE was

performed using the GeneRacer RLM-RACE kit (Invitrogen), according to the

manufacturer’s instructions as described1,2. To obtain the 59 end of ETV1, first-

strand cDNA was amplified with Platinum Taq High Fidelity (Invitrogen) using

the GeneRacer 59 primer and ETV1_exon4-5-r. For amplification from MET23,

ETV1_exon7-r was used with the GeneRacer 59 primer. Products were cloned

and sequenced bidirectionally as described1,2. RLM-RACE cDNA was not used

for other assays.

Fluorescence in situ hybridization. Interphase FISH on formalin-fixed

paraffin-embedded tissue sections was performed as described2. A minimum

of 50 nuclei per assay were evaluated. For metaphase FISH, spreads of LNCaP

and MDA-PCa 2B were prepared using standard cytogenetic techniques. Slides

were pre-treated in 2 3 SSC for 2 min, 70% ethanol for 2 min and 100% ethanol

for 2 min, and then air-dried. Slides and probes were co-denatured at 75 uC for

2 min, and hybridized overnight at 37 uC. Post-hybridization was in 0.5 3 SSC at

42 uC for 5 min, followed by 3 washes in 1 3 phosphate buffered saline with 0.1%

Tween-20 (PBST). Fluorescent detection was performed using anti-digoxigenin

conjugated to fluorescein (Roche Applied Science) and streptavidin conjugated

to Alexa Fluor 594 (Invitrogen). Slides were counterstained and mounted in

ProLong Gold Antifade Reagent with DAPI (Invitrogen). Slides were examined

using a Zeiss Axio Imager Z1 fluorescence microscope (Zeiss) and imaged with a

CCD camera using ISIS software (Metasystems). At least five metaphases were

assessed, and reported aberrations were observed in all interpretable spreads.

BACs (listed in Supplementary Table 3) were obtained from the BACPAC

Resource Center, and probes were prepared as described2. Pre-labelled chro-

mosome 7 centromere and 7p telomeric probes were obtained from Vysis. The

integrity and correct localization of all probes were verified by hybridization to

metaphase spreads of normal peripheral lymphocytes.

Tissue-specific expression. To determine the tissue-specific expression of 59

fusion partners and genes at 14q13–q21, we interrogated the International

Genomics Consortium’s expO data set (http://expo.intgen.org/expo/public/

downloaddata.jsp), consisting of expression profiles from 630 tumours of 29

distinct types, using the Oncomine database (http://www.oncomine.org)27. To

interrogate the expression of HERV-K_22q11.23, which is not monitored by

commercial array platforms, we queried the Lynx Therapeutics normal tissue

MPSS data set (GSE1747) with the MPSS tag ‘GATCTTTGTGACCTACT’,

which unambiguously identifies HERV-K_22q11.23, as described33. Descrip-

tions of tumour types from the expO data set and the normal tissue types from

the MPSS data set are provided in Supplementary Table 4.

Expression profiling. Expression profiling of LNCaP, C4-2B, RWPE-ETV1 and

RWPE-GUS cells was performed using the Agilent Whole Human Genome

Oligo Microarray. Total RNA isolated using Trizol was purified using the

Qiagen RNAeasy Micro kit. One microgram of total RNA was converted to

cRNA and labelled according to the manufacturer’s protocol (Agilent).

Hybridizations were performed for 16 h at 65 uC, and arrays were scanned using

an Agilent DNA microarray scanner. Images were analysed and data were

extracted using Agilent Feature Extraction Software 9.1.3.1, with linear and low-

ess normalization performed for each array. For the LNCaP and C4-2B hybri-

dizations, the reference for each cell line was pooled benign prostate total RNA

(Clontech). A dye flip for each cell line was also performed. Features were ranked

by average expression (log ratio) in the two LNCaP arrays divided by the average

expression in the two C4-2B arrays after correction for the dye flip. For RWPE

cells, four hybridizations were performed (duplicate RWPE-ETV1/RWPE-GUS

and RWPE-GUS/RWPE-ETV1 hybridizations). Over- and under-expressed sig-

natures were generated by filtering to include only features with significant

differential expression (P-value logratio , 0.01) in all four hybridizations and

twofold average over- or under-expression (log ratio) after correction for the dye

flip. Over- and under-expressed RWPE-ETV1/RWPE-GUS signatures were

loaded into the Molecular Concepts Map22, resulting in concepts containing

527 and 558 unique genes, respectively. Each signature was tested against all

contained concepts in the Molecular Concepts Map for association using

Fisher’s exact test as described10,22.

Southern hybridization. Genomic DNA (10mg) from LNCaP, VCaP, pooled

normal human male DNA (Promega) and normal placental DNA (Promega)

was digested with EcoRI or PstI (New England Biologicals) overnight. Fragments

were resolved on a 0.8% agarose gel at 40 V overnight, transferred to Hybond NX

nylon membrane, pre-hybridized, hybridized with probe and washed according

to standard protocols. A series of 22 probes spanning the region of chromosome

7 implicated by FISH (between RP11-313C20 and RP11-703A4) were generated

by PCR amplification with Platinum Taq High Fidelity on pooled normal human

male genomic DNA (Supplementary Table 2 and Supplementary Fig. 5).

Twenty-five nanograms of each probe was labelled with dCTP-32P and used

for hybridization.

Inverse PCR. To identify the ETV1 breakpoint in LNCaP cells, we used an

inverse PCR strategy based on the rearrangement identified by Southern blotting

(probe A, Supplementary Table 2) as described previously34 and shown in

Supplementary Fig. 6. Primers A1, A2 and A3, which are reverse complemented

from the wild-type sequence and are divergent to primers B1, B2 and B3, were

used for inverse PCR on PstI-digested and religated (to promote intramolecular

ligation) LNCaP genomic DNA template. Nested PCRs were performed in the

following order of primer combinations: A1–B1, A2–B2 and A3–B3. The Expand

20 kbplus PCR system (Roche) was used for amplifying the fusion product

according to the manufacturer’s suggestions. The enriched 3-kb band observed

in nested PCRs was cloned into pCR8/GW/TOPO (Invitrogen), miniprep DNA

was screened for inserts, and positive clones were sequenced (University of

Michigan DNA Sequencing Core). The ETV1 insertion was confirmed by PCR

with Platinum Taq High Fidelity using primers from chromosomes 7 and 14

(Supplementary Table 2).

In vitro overexpression of ETV1. cDNA of ETV1, as present in the TMPRSS2–

ETV1 fusion to the reported stop codon of ETV1 (269–1521, NM_004956.3),

was amplified by RT–PCR from MET26 (ref. 1) and TOPO cloned into the

Gateway entry vector pCR8/GW/TOPO (Invitrogen), yielding pCR8-ETV1.

To generate adenoviral and lentiviral constructs, pCR8-ETV1 and a control entry

clone (pENTR-GUS) were recombined with pAD/CMV/V5 (Invitrogen) and

pLenti6/CMV/V5 (Invitrogen), respectively, using LR Clonase II (Invitrogen).

Control pAD/CMV/LACZ clones were obtained from Invitrogen. Adenoviruses

and lentiviruses were generated by the University of Michigan Vector Core. The

benign immortalized prostate cell line RWPE was infected with lentiviruses

expressing ETV1 or GUS, and stable clones were generated by selection with

blasticidin (Inivtrogen). Benign PrEC were infected with adenoviruses expres-

sing ETV1 or LACZ, because stable lines could not be generated in primary PrEC

cells. Cell counts were estimated by treating cells with trypsin, and analysis was

performed by a Coulter counter at the indicated time points in triplicate. For

invasion assays, PrEC-ETV1 and PrEC-LACZ (48 h after infection) or stable

RWPE-ETV1 and RWPE-GUS cells were used. Representative results from three

separate experiments are shown in Fig. 3a and Supplementary Fig. 14.

ETV1 knockdown. For siRNA knockdown of ETV1 in LNCaP cells, the indi-

vidual siRNAs composing the Dharmacon SMARTpool against ETV1 (MU-

003801-01) were tested for ETV1 knockdown by Q-PCR, and the most effective

single siRNA (D-003801-05) was used for further experiments. siCONTROL

non-targeting siRNA number 1 (D-001210-01) or siRNA against ETV1 was

transfected into LNCaP cells using Oligofectamine (Invitrogen). After 24 h we

performed a second identical transfection, and cells were harvested 24 h later for

RNA isolation and invasion assays as described below. For shRNA knockdown of

ETV1 in LNCaP cells, the microRNA-adapted shRNA construct against ETV1

from the pMS2 retroviral vector (V2HS_61929, Open Biosystems) was cloned

into an empty pGIPZ lentiviral vector (RHS4349, Open Biosystems) according

to the manufacturer’s protocol. pGIPZ lentiviruses with microRNA-adapted

shRNAs against ETV1 or a non-silencing control (RHS4346) were generated

by the University of Michigan Vector Core. LNCaP cells were infected with

lentiviruses, and 48 h later cells were used for invasion assays as described below.

Representative results from six independent experiments are reported.
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Invasion assays. Equal numbers of the indicated cells were seeded onto the
basement membrane matrix (EC matrix, Chemicon) present in the insert of a

24-well culture plate, with fetal bovine serum added to the lower chamber as a

chemoattractant. After 48 h, non-invading cells and the EC matrix were removed

by a cotton swab. Invaded cells were stained with crystal violet and photo-

graphed. The inserts were treated with 10% acetic acid and absorbance was

measured at 560 nm.

FACS cell cycle analysis. RWPE-ETV1 and RWPE-GUS cells were assessed by

FACS for cell-cycle characterization. Cells were washed with 2 3 PBS, and

approximately 2 3 106 cells were resuspended in PBS before fixation in 70%

ethanol. Pelleted cells were washed and treated with RNase (100mg ml–1 final

concentration) and propidium iodide (10mg ml–1 final concentration) at 37 uC
for 30 min. Stained cells were analysed on a LSR II flow cytometer (BD

Biosciences) running FACSDivia, and cell-cycle phases were calculated using

ModFit LT (Verity Software House).

Soft agar assay. A 0.6% (w/v) bottom layer of low-melting-point agarose in

normal medium was prepared in six-well culture plates. On top, a layer of

0.3% agarose containing 1 3 104 RWPE-GUS, RWPE-ETV1 or DU145 (positive

control) cells was placed. After 12 d, foci were stained with crystal violet and were
counted.

Transgenic ETV1 mice. For in vivo overexpression of ETV1, a carboxy-terminal

33Flag-epitope-tagged construct was generated by PCR using pCR8-ETV1 as

the template, with the reverse primer encoding a triple Flag tag before the stop

codon. The product was TOPO cloned into pCR8. To generate a prostate-

specific ETV1 transgenic construct, 33Flag-ETV1 was inserted into pBSII

(Stratagene) downstream of a modified small composite probasin promoter

(ARR2Pb) and upstream of a bovine growth hormone polyA site (PA-BGH).

The ARR2Pb sequence contains the original probasin sequence Pb (426/128)

plus two additional androgen response elements23. The construct was sequenced

and androgen was used to test for promoter inducibility in LNCaP cells on

transient transfection before microinjection into FVB mouse eggs. The

ARR2Pb-ETV1 plasmid was linearized with PvuI/KpnI//SacII and microinjected

into fertilized FVB mouse eggs, and was then surgically transplanted into a

pseudo-pregnant female by the University of Michigan Transgenic Animal

Model Core. Transgenic founders were screened by PCR using genomic DNA

isolated from tail snips. Multiple ARR2Pb-ETV1 transgenic founders were

obtained and crossed with FVB mice, and transgene-positive male mice offspring

were killed at various time points.

Prostates from transgenic mice were dissected using a Nikon dissection scope,

fixed in 10% buffered formalin and embedded in paraffin. Five-micrometre

sections were stained with haematoxylin and eosin, and evaluated by three

pathologists (R.M., M.A.R. and R.B.S.) according to the criteria provided in

the Consensus Report from the Bar Harbor Meeting of the Mouse Models of

Human Cancer Consortium Prostate Pathology Committee24.
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