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¯ow line, reaching a minimum of 0.7 cm yr-1 at Vostok station.
Along the eastern shoreline a signi®cant increase in accretion rate to
2.9 cm yr-1 is necessary to produce the grounded accreted ice. It is
possible that some of the accreted ice thickening along the eastern
shoreline is the result of compressive ¯ow and not accretion. The
lower layers in the ice sheet (3,300±2,800 m) undergo a 7%
thickening, in contrast to the shallower layers of the ice sheet
(2,400±1,900 m) which thin by 5±13% when grounding. The
accretion process is most evident along the lake shorelines.

In the grounded ice adjacent to the southeastern Lake Vostok
shoreline, we observe an average of 295 m of accreted ice in 21 radar
pro®les (Fig. 1, inset). No accretion ice is imaged adjacent to the
eastern grounding line in the northern 15 radar pro®les. We
estimate the ice ¯ux out of the lake, projected onto a 165-km line
downslope of the lake, parallel to local contours. Assuming an
average thickness of 295 m of accretion ice and a mean velocity of
3 m yr-1, we estimate an annual accreted ice volume ¯ux of
0.146 km3 yr-1 along this line. For a lake volume14 of 1,800 km3,
the residence time is 13,300 years. Previous estimates of residence
time range from 4,500 years (ref. 6) to 125,000 years (ref. 1). The
lower estimate (4,500 years), derived from the He4/He3 ratio6, may
be related to the formation of the accreted ice samples along the
western shoreline in regions isolated from the main lake circula-
tionÐthat is, the shallow embayment or the western grounding
line. Deeper samples of accreted ice should be more representative
of the open lake.

In the southern portion of Lake Vostok, the interaction between
the lake and the overlying ice sheet is dominated by accretion.
Earlier evidence for melting in this region4 was based on radar data
oblique to the ice ¯ow ®eld, and is, we believe, incorrect. Ice ¯ow
over southern Lake Vostok has a strong along-lake component, and
has had a consistent orientation for the past 16,000 yearsÐassum-
ing that the velocity has been constant over this time period. The
accretion process dominates at the lake shorelines, although some
accretion continues over the middle of the lake. The accretion ice is
generally transported out of the lake along the southeastern lake
margin. Most samples of accretion ice analysed to date are derived
either from the shallow embayment or from the western grounding
line, environments that are not representative of the open lake
system. M
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Seismological observations reveal highly anisotropic patches at
the bottom of the Earth's lower mantle, whereas the bulk of the
mantle has been observed to be largely isotropic1±4. These patches
have been interpreted to correspond to areas where subduction
has taken place in the past or to areas where mantle plumes are
upwelling, but the underlying cause for the anisotropy is
unknownÐboth shape-preferred orientation of elastically hetero-
genous materials5 and lattice-preferred orientation of a homo-
geneous material6±8 have been proposed. Both of these
mechanisms imply that large-strain deformation occurs within
the anisotropic regions, but the geodynamic implications of the
mechanisms differ. Shape-preferred orientation would imply the
presence of large elastic (and hence chemical) heterogeneity
whereas lattice-preferred orientation requires deformation at
high stresses. Here we show, on the basis of numerical modelling
incorporating mineral physics of elasticity and development of
lattice-preferred orientation, that slab deformation in the deep
lower mantle can account for the presence of strong anisotropy in
the circum-Paci®c region. In this modelÐwhere development of
the mineral fabric (the alignment of mineral grains) is caused
solely by solid-state deformation of chemically homogeneous
mantle materialÐanisotropy is caused by large-strain deforma-
tion at high stresses, due to the collision of subducted slabs with
the core±mantle boundary.

Lattice-preferred orientation (LPO) leads to the development of a
mineral fabric in material that deforms primarily by dislocation
creep. Previous work9 has shown that slabs cause high-stress regions
in the lower mantle, which leads to localized regions of dislocation
creep within a lower mantle dominated by diffusion creep under a
wide range of rheological parameters. It has also been shown that
hot, upwelling regions are low stress, and are therefore dominated
by diffusion creep. The presence of dislocation creep is not in itself a
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suf®cient condition for the formation of LPO in slabs. In addition,
the strain due to the dislocation creep must be greater than 100±
200%. Here we investigate the circumstances under which this
condition is met by a combined mineral-physics and dynamical-
modelling approach. This requires the use of a composite rheology
formulation involving a combination of diffusion and dislocation
creep deformation mechanisms.

We choose rheological parameters for the upper and lower mantle
based on mineral-physics observations10,11, resulting in a viscosity
pro®le that generally increases with depth and includes an increase
at the base of the transition zone. We also use a yield stress
approach12 in the upper regions of our model to form subducting
slabs. We place strain tracers in slab regions above the transition
zone to track the evolution of deformation. Given the uncertainties
related to ®rst-principles calculations of fabric development, such as
the critical shear stresses associated with speci®c slip systems and
the nature of dynamic recrystallization, we assume that strain may
be used as a proxy for the development of mineral fabric. During
dislocation creep, material ¯ows by the slipping of speci®c glide
planes, resulting in an oriented array of crystal axes and promoting
fabric development. On the other hand diffusion creep occurs by the
migration of atoms involving grain-boundary sliding, resulting in a
random orientation of crystal axes and tending to destroy any pre-
existing fabric. Therefore, we track strain only in regions dominated
by dislocation creep. We compare the resulting strain ®eld to
mineral-physics deformation experiments in order to assess the
expected seismic anisotropy.

The numerical calculations of mantle convection are solved
using the conservation equations of mass, momentum and energy
in the extended Boussinesq formulation13 using a ®nite-element
approach. The modelling geometry is a two-dimensional quarter-
cylinder with free-slip boundaries. We employ depth-dependent
thermal expansivity and thermal conductivity14,15. We allow our
convection calculations to run for long enough to ensure that the
initial condition does not affect the results. Details of the model
setup and rheological formulation are given in previous work9.
Parameters used for the calculations presented here are given in
Table 1.

Lagrangian ®nite strain is calculated as a post-processing step,

using the velocity ®elds at each time step of the convection
calculation. Strain is calculated for particles within regions domi-
nated by dislocation creep by time-integrating the deformation
gradient tensor for each strain tracer16. The strain calculation code
was checked by comparison to analytical solutions of simple and
pure shear as well as a combination of the two17. If a strain tracer
leaves the regime of dislocation creep, its recorded strain magnitude
is decreased as a function of further material strain. We assume that
LPO is destroyed after the material stretches further than twice its
original length.

The results of two calculations are given here (Figs 1 and 2) to
illustrate the insensitivity of our results to the amount of internal
heating and to the scaling geometry. The calculations vary in terms
of heating mode and radial scaling. Figure 1 shows results from a
calculation in which the mantle is entirely bottom-heated and scaled
to preserve the volume ratio of the Earth's upper and lower mantle.
Figure 2 shows results from a calculation in which the mantle is
heated by both internal and bottom heating (,50% each), and is
scaled to preserve the surface area to volume ratio of the mantle in a
spherical Earth. These scalings have been found to better approxi-
mate the heat and mass transfer of spherical models18. Both results
yield heat ¯ow and radial viscosity pro®les that are consistent with
observations19,20.

Snapshots in time of the temperature and viscosity ratio ®elds
are shown in Figs 1c±e and 2c±e. The viscosity ratio is de®ned as
the ratio of the components corresponding to dislocation creep and
diffusion creep. Regions in blue represent a positive ratio, indicat-
ing that they are dominated by diffusion creep. Red regions
represent a negative ratio, indicating a domination of dislocation
creep. Note that most of the upper mantle ¯ows by dislocation
creep. In contrast the interior of the upper-mantle slab ¯ows
primarily by diffusion creep, because the upper-mantle activation
coef®cients result in a transition stress that increases with decreasing
temperature. Away from the slab region, lower-mantle ¯ow is
dominated by diffusion creep, particularly in the lowermost bound-
ary region, where high temperatures lead to low viscosities and
therefore low stresses.

Strain tracers are shown as points on the viscosity ratio ®elds.
Superimposed on tracer points are vectors representing the ®nite

Table 1 Calculation parameters

Parameter Description Units Value, Fig. 1 Value, Fig. 2
...................................................................................................................................................................................................................................................................................................................................................................

DT Temperature drop across mantle K 3,000 3,000
ao Reference thermal expansivity K-1 3 3 102 5 3 3 102 5

ro Reference density kg m-3 4,500 4,500
Cp Speci®c heat J kg-1 K-1 1,250 1,250
h Mantle thickness m 2:8 3 106 2:8 3 106

ko Reference thermal conductivity W m-1 K-1 5.6 5.6
g Gravitational constant m s-2 9.8 9.8
ko Reference thermal diffusivity m2 s-1 10-6 10-6

Di Dissipation number 0.5 0.5
dum Upper mantle grain size mm 2.0 2.0
dlm Lower mantle grain size mm 1.0 1.0
m Grain size index 2.5 2.5
n Power law index 3.0 3.0
Adiff-um+ Upper-mantle diffusion creep prefactor dm

um Pa-1 s-1* 1:3276 3 102 13 2:6551 3 102 14

Adiff-lm+ Lower-mantle diffusion creep prefactor dm
um Pa-1 s-1* 6:2230 3 102 14 1:3276 3 102 13

Adisl-um+ Upper-mantle dislocation creep prefactor Pa-n s-1* 4:7295 3 102 13 9:4590 3 102 14

Adisl-um+ Lower-mantle dislocation creep prefactor Pa-n s-1* 1:2446 3 102 29 2:6551 3 102 29

gdiff-um Upper-mantle diffusion creep activation coef®cient 17 17
gdiff-lm Lower-mantle diffusion creep activation coef®cient 10 10
gdisl-um Upper-mantle dislocation creep activation coef®cient 31 31
gdisl-lm Lower-mantle dislocation creep activation coef®cient 10 10
jd Ductile yield stress MPa 400 250
j9b Brittle yield stress gradient MPa km-1 5.33 3.33
Rsurface Non-dimensional surface radius 1.67813 1.4292
Rbottom Non-dimensional bottom radius 0.67813 0.4292
Rinterface Non-dimensional upperÐlower mantle boundary radius 1.42 1.19
hmax Non-dimensional maximum viscosity 1.0 1.0
hmin Non-dimensional minimum viscosity 10-6 10-6

...................................................................................................................................................................................................................................................................................................................................................................

* Indices m and n are the grain size index and the power law index, respectively.
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strain. The vectors are in the direction of maximum principle strain,
and have a length related to the stretch. The stretch is de®ned as
the ratio of ®nal length to the original length. Therefore, an
undeformed particle has a stretch of unity. To differentiate better
between strained and unstrained tracers the vector length is set to
the stretch minus one, so only strained tracers have an associated
vector.

To illustrate the temporal evolution of strain, Figs 1c±e and
2c±e show the strain con®gurations at successive times. Results
from Fig. 1 reveal that although slab deformation in the lower
mantle is dominated entirely by dislocation creep, the strain is
not well developed because of low strain rates in the viscous slab.
Directly above the core-mantle boundary (CMB), however, the
magnitude of strain increases dramatically, resulting in a region
of high strain that is directed laterally. Figure 1c±e reveals the
time-dependent nature of the strain con®guration. The overall
strain magnitude in Fig. 1e is greatly reduced, and the directional
sense is more random. Results are similar for the calculation

shown in Fig. 2. Again, deformation in the slab is dominated by
dislocation creep in a mantle otherwise dominated by diffusion
creep. Figure 2b reveals a low magnitude lateral sense of strain
directly above the CMB that increases with time (Fig. 2c±e)
resulting in a strong laterally directed strain ®eld. The strain
markers also show that material is rotated as it approaches the
upwellings that are constrained to the side boundaries of the
model.

Our results show that the details of the strain ®eld are time-
dependent and can be quite complicated. Analysis of numerous
convection results reveal that a lateral sense of high-magnitude
extension (in excess of 100%) directly above the CMB is a general
feature of the strain ®eld. This feature tends to be long-lived but
not permanent. As shown here, the strain pattern may decay into
one that is characterized by a lower magnitude and inconsistent
direction (that is, the progression from Fig. 1b±e). We also see that
a coherent pattern of high-magnitude lateral strain tends to
develop from a less developed state (that is, the progression
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Figure 1 Snapshot of a slab impinging on the core-mantle boundary (CMB) in the bottom-

heated model. a, Non-dimensional temperature ®eld and b, ratio of viscosity due to

dislocation creep over that due to diffusion creep. Positive values indicate deformation is

dominated by diffusion creep, and negative values indicate deformation is dominated by

dislocation creep. Superimposed are strain tracers and their associated strain vectors.

Strain vectors represent maximum stretch, lmax, and have a magnitude proportional to the

stretch minus 1. The evolution of strain of the area of b shown in a box is given after

successive intervals of 25 Myr in c, d, e.
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from Fig. 2b±e). In general, we ®nd that slab regions are character-
ized by a high degree of lateral strain directly above the CMB that
occasionally reverts to a low-magnitude, more randomly oriented
strain.

In order to assess the implications for seismic anisotropy,
comparison to mineral-physics data is required. Experimental
studies on LPO development show that the strength of LPO
increases with strain, and reaches nearly steady-state values at a
certain strain21±23. This critical strain depends on the material as
well as deformation conditions. A detailed experimental study of
LPO development is now available for (Mg, Fe)O (ref. 23).
Because of its large elastic anisotropy24, LPO of (Mg Fe)O results
in a detectable seismic anisotropy (,1±2%)5, although its volume
fraction is small (less than 20%). For (Mg, Fe)O, a shear strain of
,200% is needed to develop signi®cant LPO and steady-state LPO
is formed at strains of ,400±500% (ref. 23). At steady state, LPO
of (Mg, Fe)O corresponding to horizontal shear results in
V SH . V SV anisotropy23 where VSH and VSV correspond to hori-
zontal and vertical components of the shear wave velocity,
respectively.

Our numerical models show the development of strong subhoriz-
ontal shear strain near the base of the mantle. Therefore, LPO of

(Mg, Fe)O provides a natural explanation for the spatial variation in
anisotropy in the lower mantle. Contributions from another major
component, (Mg, Fe)SiO3 perovskite, are dif®cult to estimate
because of the absence of experimental data on LPO. In the two-
phase mixture, (Mg, Fe)O is probably the weaker phase10 and
deforms more easily than (Mg, Fe)SiO3. As a consequence, a
higher degree of strain will occur in (Mg, Fe)O for a given deforma-
tion. In addition, if the results of LPO development in analogous
material are used, the contribution from (Mg, Fe)SiO3 perovskite is
likely to be smaller than that of (Mg, Fe)O and the sense is opposite
(V SV . V SH for horizontal shear)6,23. Once materials leave high-
stress regions, diffusion creep dominates and erases pre-existing
LPO. Our models show highly time-dependent ¯ow patterns, so the
regions of strong anisotropy in these models correspond to regions
with high-stress, large-strain deformation in the recent past. In
contrast, if shape-preferred orientation due to laminated structures
of palaeo-crust and ambient mantle is responsible for the
anisotropy5, then anisotropic structures will have much longer
lifetimes and would not represent recent dynamic regimes. Also,
the origin of the high contrast in elastic properties necessary for
shape-preferred orientation is not clear. (We note that the origin of
anisotropy in the Central Paci®c, probably related to plume upwell-
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Figure 2 As Fig. 1, but for a model with bottom heating and internal heating.
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ing, is not well constrained by the present work. It is possible that
anisotropy in these regions is caused by shape-preferred orientation
involving aligned melt pockets.)

Our results show that slabs are characterized by high stress,
resulting in deformation dominated by dislocation creep within a
mantle otherwise dominated by diffusion creep. We ®nd compli-
cated strain ®elds associated with deformation due to dislocation
creep, but one consistent feature appears to be a large degree of
laterally directed strain directly above the CMB. When examined in
the context of mineral-physics experiments, we predict that this
strain ®eld results in signi®cant seismic anisotropy, with V SH . V SV.
This work shows that LPO of (Mg, Fe)O is a likely candidate for the
seismic anisotropy observed near the CMB in slab regions.
Although other processes may contribute to the formation of
anisotropy5, they are not required, and solid-state processes
within a homogeneous material may suf®ce. M
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Ceratopsians (horned dinosaurs) represent one of the last and the
most diverse radiations of non-avian dinosaurs1±4. Although
recent systematic work unanimously supports a basal division
of Ceratopsia into parrot-like psittacosaurids and frilled neocer-
atopsians, the early evolution of the group remains poorly under-
stood, mainly owing to its incomplete early fossil record. Here we
describe a primitive ceratopsian from China. Cladistic analysis
posits this new species as the most basal neoceratopsian. This new
taxon demonstrates that some neoceratopsian characters evolved in
a more incremental fashion than previously known and also
implies mosaic evolution of characters early in ceratopsian history.

The lacustrine lower part of the Yixian Formation of western
Liaoning, China, has produced many spectacular fossil remains,
including feathered dinosaurs5. Recently a number of important
three-dimensionally preserved vertebrate fossils, including speci-
mens of a new ceratopsian, have been collected from the ¯uvial
facies that form the lowest part of the Yixian Formation6. Some
radiometric analyses suggest these deposits are older than 128 Myr
and younger than 139 Myr (ref. 5) (Early Cretaceous period) but
others imply they are older than 145 Myr (ref. 7) (Late Jurassic
period).

Ceratopsia Marsh, 1890
Neoceratopsia Sereno, 1986

Liaoceratops yanzigouensis gen. et sp. nov.
Etymology. The generic name is derived from the provincial name
`Liaoning', and the suf®x `ceratops', commonly used for horned
dinosaur names. The speci®c name `yanzigou' refers to the village
near which the holotype was found.
Diagnosis. Neoceratopsian characterized by sutures between pre-
maxilla, maxilla, nasal and prefrontal intersecting at a common
point high on the side of the snout, possession of several tubercles
on the ventra margin of the angular, a foramen on the posterior face
of the quadrate near the articulation with the quadratojugal, a small
tubercle on the dorsal border of the foramen magnum, and a thick
posterior border of the parietal frill.
Holotype. IVPP (Institute of Vertebrate Paleontology and Paleoan-
thropology, Beijing) V12738, an almost complete skull (Fig. 1).
Referred specimen. IVPP V12633, a juvenile skull (Fig. 2).
Locality and horizon. Yanzigou and Lujiatun, Shangyuan, western
Liaoning, China; the lowest part of the Yixian Formation, probably
Early Cretaceous.
Description. The holotype skull of Liaoceratops is comparable in
size to other basal ceratopsians such as Psittacosaurus and
Chaoyangsaurus. Progressive, but incomplete, sutural closures
between skull elements suggest that it derives from a subadult
individual. The rostral appears unkeeled as in Psittacosaurus. As
in many neoceratopsians, the rostral bears lateral processes along
the buccal margin. The premaxilla forms much of the side of the
snout and extends posterodorsally to reach the prefrontal, as in
psittacosaurids and basal ornithopods. Three cylindrical premax-
illary teeth are present as in the primitive neoceratopsian
Archaeoceratops8. The snout is relatively wide in dorsal view, and
tapers abruptly, being intermediate in form between that of psitta-
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