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ABSTRACT

REDUNDANCY IN COHERENT IMAGING SYSTEMS

by
Robert Warren Lewis

Chairman: Emmett N. Leith

Diffuse coherent illumination has a wide spatial bandwidth with
no dominant frequency components. This type of illumination makes
a holographic recording redundant since any small part of the holo-
gram can reconstruct the entire object field. Because of this redun-
dancy property, a diffuse holographic recording is rather insensitive
to scratches andvother system artifacts. Unfortunately, diffuse co-
herent illumination results in a multiplicative noise granularity
called laser speckle. The spectral density of laser speckle has a
significant low frequency contribution which limits both image qual-
ity and resolution. Mixed-integration processing can utilize excess
system bandwidth to suppress speckle. The statistical speckle fluc-
tuation is reduced by adding uncorrelated samples noncoherently.
This paper establishes an equivalence between noncoherent tech-
niques which continuously sample a signal's spectrum and a simple

irradiance filter.

Most optical noise suppression techniques for coherent spatial
filtering systems involve transverse displacement of the optical
signal relative to the optical axis together with noncoherent addition.
An effective moving grating method is presented for introducing

redundancy into coherent spatial filtering systems.



For holographic systems, special redundancy modulation is
needed to obtain a high quality image of a continuous-tone trans-
parency. Redundancy modulation must satisfy two constraints.
First, the modulation must be free of low frequency speckle.
Second, the spectral density of the modulation must be bandlimited
and must satisfy certain uniformity conditions. Numerical results
obtained compare the characteristics of several functions which

appear to satisfy these constraints.

Periodic functions are the most promising class of redundancy
modulation for the high density storage of continuous-tone trans-
parencies. The class of speckle-free periodic modulation proposed
by Gabor has been studied and new solutions with uniform spectral
characteristics have been determined using numerical methods.
Several methods exist for synthesizing this speckle-free inodula’;ion.
Two indirect synthesis methods are presented which require a spatial
filtering operation. The noise suppression performance of periodic
functions has been analyzed in terms of a family of redundancy pa-
rameters. Redundancy modulation with good diffraction efficiency
characteristics can be obtained by using a coarse lens array in
tandem with a periodic grating solution. Experimental results
demonstrate that the addition of a lens array can improve the noise

suppression characteristics of this class of functions.
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1
PARTIALLY COHERENT PROCESSING TECHNIQUES
TO REDUCE LASER SPECKLE

1.1. INTRODUCTION

Coherent imaging differs from noncoherent imaging sys-
tems in several important respects. A coherent system is
linear in complex amplitude, while a noncoherent system can
be described as a linear mapping of intensity or irradiance.
The lensless recording of the complex amplitude of light af-
forded by holography can be exploited for signal processing,
data storage, and many other applications. Unfortunately
coherent imaging has certain characteristics which limit its
utility in many applications. For example, if non-diffuse ob-
jects such as transparencies are imaged with a uniform beam
of coherent light, system artifacts such as a small scratch,
bubble, or dust particle introduce dark diffraction patterns at
the image plane. For diffuse objects With many random scat-
terers in a resolution cell or when imaging transparencies
backlighted with diffuse illumination from fine ground glass,
small system artifacts no longer limit image quality. How-
ever, now superimposed on the average reflectivity of the
object is a multiplicative ''noise' granularity referred to in
the literature as laser speckle [1]. It will be seen that laser
speckle limits both image quality and system resolution. It
will be demonstrated that excess system bandwidth together
with a controlled reduction in coherence can suppress optical

noise and decrease speckle modulation.



1.2. CHARACTERISTICS OF LASER SPECKLE

For diffuse objects imaged with spatial bandlimited co-
herent optical systems, a multiplicative '"'noise" granularity is
superimposed on the average reflectivity or transmittance den-
sity of the image. This granularity, known as laser speckle,
limits the resolution and image fidelity of such systems.
Speckle can be modeled as white, complex Gaussian clutter
with a zero mean [2]. Such a model is a good approximation
if large numbers of scattering centers exist in a resolution cell,
in which case linear filtering (such as low-pass filtering) results
in a zero-mean, stationary, complex Gaussian process. The
spatial power spectrum of the image amplitude is usually band-
limited and uniform. The fineness of the image speckle is
determined by its autocorrelation width, which is approximately
equal to the reciprocal of the bandwidth of the image signal am-
plitude. The (modulus)2 of the image amplitude has an expo-
nential probability density function (PDF), (1/0) exp (-u/o),
with domain 0 < u<w. This PDF has a variance 02 and a mean
m = ¢ and thus a (mean)z/variance of unity. The ratio m2/02
can be considered a signal-to-noise ratio which measures image
fidelity. It will be seen in the next section that mixed integration
can be used to increase m2/02 by decreasing the achievable
system resolution. The image irradiance at the output of a
mixed integrator is the sum of N identically distributed, uncor-
related random variables, each with an exponential distribution.

For this sum mz/cr2 = N, and the PDF is the gamma distribution

1 ( u )N_le—u/(o/N)
(¢/N)T'(N) \o/N

Wwith domain 0 < u < w.



1.3. MIXED-INTEGRATION PROCESSING

1.3.1. INTRODUCTION

Mixed integration is a method of processing a coherent
image which reduces speckle granularity but also decreases
the achievable resolution [2,3]. This processing method is
equivalent to introducing a system diversity parameter. The
method usually involves processing portions of the signal spec-
trum separately and then noncoherently summing the energy
densities of a family of images. The noncoherent summation
reduces the statistical fluctuation of the speckle. An equiv-
alence will be established between sampling portions of the
signal's spatial spectrum and sampling the coherently processed

image to accomplish the noncoherent addition.

1.3.2. DESCRIPTION OF MIXED-INTEGRATION
PROCESSING
There exist several discrete and continuous types of mixed

integration. Three types will now be considered.

Case A: Discrete Sampling in the Frequency Plane

Mixed integration can be introduced into an optical pro-
cessor by processing N equal nonoverlapping portions of a
signal's spectrum separately and then by summing N output
image irradiances noncoherently. Let s(x) be the input signal
and represent bandlimited white complex Gaussian speckle.
Since the N sections of the spectrum do not overlap, mixed-
integration processing performed in this way results in the non-
coherent addition of N independent samples. The output reso-
lution-cell width is N times the width that would be obtained

with coherent processing.



Case B: Discrete Sampling at the Image Plane

Instead of sampling the signal's spectrum to achieve N
independent additions, a mixed-integration operation can be
introduced as shown in Fig. 1-1. The signal s(x) is first
coherently processed by means of a filter with impulse re-
sponse w(x) and is then square-law envelope detected to yield
an output irradiance lf(x) Iz. The output irradiance !f(x) |2 is
filtered with a linear filter with an impulse hI(X) to yield a

(sin 7x)

final image irradiance g(x). Let w(x) = be the

impulse response of a coherent processor. Then if

N-1
hI(X) = Z 6(x - n)

n=0

the resolution-cell width will increase by a factor N. Since

sin (7
sin (mx) 4
T

the speckle has Gaussian statistics, the output irradiance for

the autocorrelation function for the speckle is

each point X, of g(x) is the sum of the irradiances of N inde-

pendent coherent image points.

2
s(x) wix) £(x) I IZ lf(x)l hl(x) g(x)
Coherent Image Final Image
Intensity Intensity

Figure 1-1. Block Diagram for a Processor
with Type B or C Mixed Integration



Case C: Continuous Sampling of the Signal Spectrum with a
Scanning Slit

Case C, which utilizes continuous sampling of the signal
spectrum, can be represented by the same block diagram as
that shown in Fig. 1-1. This type of mixed integration is im-
plemented by scanning the signal spectrum with a slit, while
integrating the output irradiance over one scan time. One scan
time is the time it takes for the slit to pass completely across
the spectral window. To simplify the derivation of the mixed-
integration transfer function, let f(x) = s(x) * w(x) represent
the coherently processed signal amplit’ud/e used as the input to
a mixed integrator, where the symbol * denotes the convolution
operator. Let h(x) be proportional to the Fourier transform of
the scanning slit, and let f\n(v) be a weighting function dependent
on the scanning position v. Then the mixed integrator has the
following form: f£(x) is the input signal, and g(x) is the average
output irradiance averaged over one scan time of the scanning

aperture. Thus

o0

g(x) = -2% 5 |a(x; v) |2iﬁ(u)dv
=0
where
0
a(x; v) = S‘ f(x - t)hv(t) dt

and where hV(t) = the impulse response for the system when
the scanning slit is centered at position v in the frequency

plane. Hence, g(x) can be written as



00 }"" ©
g(x) = g f(x - t)f(x - 7)¥ -2-1”- g hv(t)h;‘/‘('r)r?](v) dv} dt dr
! =00

-0

I

Let

;’/‘(T)r’fl(v) dv

1 0
Q. =g { non
=00
For the mixed integrator being discussed,

h (1) = h(t)e V't

and
r?](v) = constant
Then, to within a constant of proportionality
Q(t, 7) = h(t)a(r)"s(7 - t)
and

g(x) = § | £(x - t) |2|h(t)|2 dt

=00

Thus, the output of a processor using Type C mixed inte-

gration is

g(x) = | s(x) * wx)|? * | |2



where s(x) is the amplitude of the input signal to the processor.
For the discrete sampling method discussed in Case A, r/r\l(v)
takes the form

0

2 6 (v - nD)

n=-oco

where D represents the width of the scanning slit. In summary,
f(x) = s(x) * w(x) is the processor's output amplitude that has
been coherently processed over the full input signal bandwidth.
The mixed integrator that continuously samples the Fourier
transform of the signal performs a simple low-pass video fil-

tering operation on the output signal intensity of the form

g(x) = | 16 | * y(x)

where

h(x) = 'h(x) |2

¢
and h(x) is simply the Fourier transform of the scanning ap-
erture, if the usual scale factors introduced by lenses are set

equal to unity.

1.3.3. EFFECT OF MIXEIQ INTEGRATION ON THE
VARIANCE/(MEAN)® OF LASER SPECKLE

Mixed integration compresses the dynamic range of laser
speckle. For complex Gaussian speckle, mixed integrators A
and B reduce the variance/(mean)2 of the processed image
irradiance from 1 to 1/N, if N independent samples are non-
coherently added. Calculations in this section will show how
mixed integrator C affects the vzamiance/(mean)2 characteristics

of complex Gaussian speckle.



Before determining the effect of mixed integrator C on
the varizvance/(mean)2 of speckle, the power spectrum of com-
plex Gaussian speckle must be determined. Let Z(x, y) be
the output amplitude of an imaging system with a linear trans-
fer function H(fX, fy) and an input which is a stationary white
complex Gaussian random process with zero mean. Since the
statistics of Z are also Gaussian, the following theorem [ 4]

will be used to calculate the correlation function for 'Z lz.

If Zl’ Z2, 23, and Z4 are complex jointly Gaussian random

variables with zero means, then

E(Z,2.Z.2,) = E(Z,Z,)E(Z42,) + E(Z, Z,)E(Z,

1727374 172 374 4)

+ E(Z E(Z 3)
where E is the expected value operator. Let the irradiance

of the imaging system be

2
I(x, y) = | 2,(x 3|
when this theorem is used

ElIx, y)(x+t,, y+t,)] = {E[Lx, N2

+ E[ZT(xd-t Y+ t)Z (%, y)]E[Z’lk(x, NZy(x+ 1, yriy)]

1’ 2)

where t is a constant. Let the power spectrum of Z(x, y) be

SZ(fx’ fy). Then the power spectrum S, for I(x, y) is

Site 1) = (B 01 6l0, 1)+ 5,00, ) # S5-1,, -1 )



where § is the Dirac § function. Assume

2

L

S2(-f . -fy) = J’C_}H(fx, fy)

wn
—~—
s
.
-
g
1]

Then

S

2 2 2
(e £) = BEDa(t,, £)+ C(H]* * [H])

2 .
Let o, = variance of I, and u

I = E(I) = mean of I. Then

I

12 _S:c DH(fX, fy)!2 % IH(fX, fy)lz] df_ dfy

g

C[FT_I(IHIZ)]z atx = y=

2

o0
C ﬂ lH(fX, fy)|2 de dfy
- 00

Since ulz = 012 from Section 1. 2

2
] "1
C_.
M 2
SS 5] ar ar |
X yl
o _l
B 2 . 2
|8|" * |5
SI-/-tI 5(fx, fy)+ = X
(‘YS‘IH]de df
v X y
L - _
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Let the output intensity IM result from a mixed-integration

operation with impulse response hI(x, y).

= <
Iy = 1% y) *hx, y)

The power spectrum for IM is

2
S, (£, fy) = IHI, S, where H

= FT(h,)
M

I
2 . . .
Thus, the (mean)” /variance ratio for Ly is

— © 9
2 ' 2
IHI(O, )| VEOS lH(fx, fy)l dfxdfy

IJ2
4) - .
(o e

SSIHI(fX, fy)lz[’H(fx, fy),2 * ,H(fx, fy)]z]dfx dfy

-

A sample calculation for a Gaussian aperture derived

from Eq. (1) is as follows:

2 —7rf1
H(f,, 1) =H e
i=1
then
2
-uf
1% w21 L e
i=1
1

h=FT "(H)
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Let

Note that hI is scaled Ni wider than |h| 2 along the X,

coordinate.

2

| 5y |2°‘ H ©

i=1

2
-m(N.1,)

when these expressions are substituted in Eq. (1)
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Using the fact that

0 2
e—1/2(X/C) dx = C '\E_w_

=00

Then

2
M _ 2 / 2
<;—2'>-/\/VN1+1 N2+1

as N, N, = o N1N2(02//42) -1,
1.3.4. IMAGE CONTRAST
The nonlinearity introduced by recording film or by a
human observer affects the final image contrast, when an esti-
mate of the average image irradiance is sought for a small
image patch containing many resolution cells. Consider an
image patch which has an average irradiance o. If there are
many scatterers in a resolution cell, the PDF for the irradiance,

w, at a single image point is

for a coherent image, and

N-1
) 1 W [-w/(c/N)]
Pyrl™) = o/ (o/N) ©

for an image processed by mixed integration, which nonco-

herently adds N independent samples. pcoh(w) and pMI(w)
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are both zero for w < 0, and the mean of each distribution is
o. The variance-to-(rnean)2 ratio is 1 for Peoh and 1/N for
P’ These probability density functions can be found in
Ref. [5].

Let nT(w), shown in Fig. 1-2, represent the transfer
function relating w to the intensity transmittance of a positive
transparency uvsed to record a processed image. Let C be a

positive constant. Then the space-averaged irradiance W

of the light transmitted by the image transparency is

0
Wcoh = C SO pcoh(w)nT(W) dw

for the coherent image, and

0

WMI =C S(; pMI(w)nT(w) dw

for the image processed by means of mixed integration.

Figure 1-2. Intensity Transmittance of a Positive Transparency
- as a Function of the Image Irradiance
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Consider points w = o, and w = oy in Fig. 1-2. If the av-
erage irradiance of the patch is o the mean o for PDF's p oh
c
and Pyg 18 set equal to o and it is found that WMI > Wcoh'
If o is the average irradiance, WMI e An example of

this characteristic is shown in Fig. -3, in which a resolution

<W
co

chart was coherently imaged with and without mixed-integration
processing. Complex Gaussian speckle was introduced by
placing a ground glass plate against the resolution chart. The
pictures show that mixed-integration processing can improve

contrast.

(a) Coherent Image Without Mixed Integration

Figure 1-3. Image Showing Laser Speckle
With and Without Mixed Integration
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(b) Image With Mixed Integration

Figure 1-3. Image Showing Laser Speckle
With and Without Mixed Integration (continued)



16

1.3.5. MIXED INTEGRATION USING A MOVING DIFFUSER

It was seen in Section 1. 3. 2 that mixed integration is equiv-
alent to a noncoherent spatial filtering operation. A spatially
noncoherent source can introduce this operation in holographic
image reconstruction since a lateral shift in the reference beam
source point causes a corresponding shift in the position of the
image [2]. It will be seen in Section 1. 4. 2 that reducing the
source coherence helps suppress artifact noise. An efficient
means of achieving a spatially noncoherent source using laser

light will now be given.

Consider the light distribution shown at Plane B of Fig. 1.4.

Position of
Mask m(x, y)

——— —
Coherent /

Collimated
Beam

Plane A Plane B
b d

Lens

1 Focal Length

e 1-4. Construction of a Light Source
for Mixed-Integration Processing
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Let us examine the cross correlation of the light amplitude at
two points in Plane B if the mask is moving. Let the coordinates
of Plane A be the Cartesian coordinates x and y. If a mask,

r?l(x, y), is centered at point (@, B) of Plane A, then the light

distribution at Plane B is

0 .
. -127(f x+f y)
» _ -lwt . rya _ X 'y
u(fx, fy) Ce ‘S‘S‘CII‘C(R>I’D(X o, y - B)e dx dy
=00

where

f = .}.{..g.

x Ad

f = _b.,.z

y Ad

= X2 + y2

FT[m(x)] = m({)

1, r =<1
circr =
0, otherwise

Then

2 -iwt
e -

u(fX, fy) =CR
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Defining
. ) J1(27rR fi f2'>
C(f , )z CR J
x 7y 2 92
R 7+ f
x y
Let

Swtl A -1271'(an+ny)
w(fx, fy, a, B)=e C(fX, fy) * m(fx, fy)e

,\ . . . . .
When the mask m is moved to various positions during

reconstruction or optical processing with the source formed

at Plane B, it is necessary to determine the cross correlation

R(fxl, fyl; f 515‘ W(fxl’ fyl’ o, B)
B)e AXB /

w* (fx2’ fy2’ @, B) da df

where the integration is over the Cartesian product A X B,

and A =B = (-0, . Or

>
]

= N (spatial mask period along x coordinate)

ve]
H

N (spatial mask period along y coordinate)

if the mask is periodic in each coordinate, and N is a positive

integer or N >> 1,

It is necessary to determine how far apart source points
must be for the cross correlation to be zero. By interchanging

integrals and integrating first over A X B it is found that
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00
A
R(fypr 913 Tgpr Tyo) SS C(Terr Ty1)
=00

A
+ - + -
Clmyrt g = Ig)s o1 ¥ g - 1) ]

2
| m(Eyy - Typs £ - 'Tyl)‘ aryy 47
Since 8(7’ T ,) =0 for R L 1/R, and the correla-
’ x1’ 'yl x1 yl ’

tion coefficient

RUE s 105 Tegr T50)

w/R(fxr 18 Tere LR g To95 Trgr 109)

P

is approximately zero if

2

5 2
\/(fXZ ")t -t >R

This result shows that the intensities of the images pro-
duced by source points spaced more than 2Ad/R apart on Plane
B of Fig. 1.4 add together noncoherently to form the total out-
put image irradiance. To achieve this noncoherent addition,
the image irradiance must be time averaged over some time
interval of length T. T is dependent on the time required for
the integration over A X B. In practice a spinning lens array
is a suitable choice for r';n, since lens arrays with rather narrow
circ function Speétral densities exist, and good light efficiency

can be achieved with such a diffuser. Amplitude weighting at
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Plane B can help control the source shape. Section 1.4.2 will
show the optical noise suppression characteristics of this type

of spatially noncoherent source.

1.4. OPTICAL NOISE SUPPRESSION IN OPTICAL FILTERING

1.4.1. INTRODUCTION

Unless special techniques are employed, optical noise
limits the performance of coherent optical spatial filtering sys-
tems. Because the output of a spatial filtering system is usually
square-law envelope detected, this type of system is amenable

to noncoherent noise suppression techniques.

Various methods have been used to reduce optical noise.
One method which has proved effective in processing synthetic
aperture radar data is to move the input and output films in
synchronism [6]. Optical elements with rotational symmetry
can be rotated during processing to reduce optical noise effects.
In one technique the spatial carrier frequency of a filtering sys-
tem is time varying and a spatial filter must track the transform
plane motion [7]. If the spatial source coherence is reduced,
it will be seen that optical noise can be dispersed and nonco-
herently added at the output plane. Unfortunately, decreasing
the spatial coherence causes a loss of resolution at the Fourier
transform plane of a filtering system. In Section 1.4.3 a moving
grating technique for suppressing optical noise is presented.
This technique does not reduce the resolution at either the image
or the transform plane, and in general is one of the simplest and
least expensive techniques to implement. This latter technique
gives insight into the noise suppression techniques required for

fully coherent systems which are considered in Chapter 2.
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1.4.2. REDUCTION OF THE SPATIAIL SOURCE
COHERENCE

An experiment was conducted which illustrates the fact
that reducing the spatial coherence of a source helps suppress

optical noise in spatial filtering systems. Figure 1-5 shows a

Lens £y Lens Y2

11lumination ] A

i / Filter fx xz
. / / \ ¥ /

YV | ) /

ja—— | - f f f

Image
Transparency
Fourier Transform Plane

Figure 1-5. Coherent Spatial Filtering System

typical coherent spatial filtering system. In this example, a
high-pass filter was created by placing a DC stop at the Fourier
transform plane. The input transparency to be filtered in this
example is shown in Fig. 1-6. Figure 1-7(a) shows the filtered
output image when illumination B is a coherent collimated beam.
It is seen that optical noise limits the output image quality. In-
stead of using a collimated coherent beam, consider illumination
B shown in Fig. 1-8. Here a crossed 16 cycle per mm sinu-
soidal phase grating g, was used to generate 9 equal carriers.

A spatially noncoherent source was created at Plane B using

the technique described in Section 1.3.5. Since the DC
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Figure 1-6. Original Transparency

component of the transparency now forms illumination

2, 2

- nh) (;fy - mA)

1 1 (
. x
Z Z circ
' R

n=-1 m=-1

consisting of an array of circular dots each with diameter 1 mm
at the Fourier transform plane, an array of DC stops is now
required in order to high-pass filter the input transparency.
The filtered output using this illumination is shown in Fig.
1-7(b), and clearly illustrates the fact that the system with

reduced spatial coherence gives superior performance.
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(b) An Array of Spatially Noncoherent

ourc

Figure 1-7. Filtered Image
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Laser Illumination
Beam DI B
] —Di
I

Source
Plane B

R e e e — e

Spinning

Lens Array l 1
£

Figure 1-8. Construction of an Array
of Spatially Noncoherent Sources

1.4.3. NOISE SUPPRESSION USING MOVING GRATINGS
A moving grating technique for suppressing optical noise
will now be presented. This method does not reduce the reso-

lution at the frequency plane of a spatial filtering system.
Consider Fig. 1-9 where a linear grating

001 in21rfox
g,(x) = Z a e

n=-oo

is illuminated with a collimated beam of coherent light and is
set in motion with constant velocity v in the x coordinate direction.

If the temporal frequency of the beam is f , the n-th order plane

t)
wave generated by the grating has temporal frequency ft + nvfo.
Redundancy can be introduced in an optical system such as

Fig. 1-5 by using the above property to generate multiple car-

rier illumination B. Multicarrier illumination requires that an
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ft+nvr°

_— I1lumination
B

Collimated ™
Coherent —>t '
Light fg !

B

o

Figure 1-9. Generation of Multicarrier Illumination

array of spatial filters be placed at the Fourier transform

plane of Fig. 1-5. Each carrier generated by the moving grating
has a distinct temporal frequency. With the proper choice of
recording paramet_erS, it is possible to noncoherently add the
output signal energies from each spatial carrier. Consider the
temporal frequency difference vfo for adjacent orders and let

T equal the observation or exposure time. Then if vao >> 1

or vao is an integer, the output irradiance variation due to the
presence of the grating is negligible since vaO equals the num-
ber of cycles of translation of the grating. If more than one
grating is used in tandem, care must be used to assure that
each carrier has a distinct temporal frequency. A cross grating
should be translated in a direction that is not parallel to the
lines of the grating; a direction forming a 30 degree angle with

a grating line would suffice.

Experimental results using moving grating illumination are

given in Fig. 1-10. Here the filtering experiment of Section 1.4. 2
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was repeated using the moving grating technique. In this ex-
periment, the spatially noncoherent source at source Plane B

of Fig. 1-8 was replaced with a point source. Figure 1-10(a)
shows the output of the system with a crossed phase grating
stationary in the system. Figure 1-10(b) shows the same output
when the gratings were translated during the exposure time. It
is seen that translating the gratings removes the fringes shown
in Fig. 1-10(a). By comparing Figs. 1-7(a) and 1-10(b), it is
seen that although only nine carriers were employed, the moving

grating method was quite effective in suppressing optical noise.

(a) Grating Stationary

Figure 1-10. Filtered Image
Using the Illumination of Fig., 1-9
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(b) Moving Grating

Figure 1-10. Filtered Image
Using the Illumination of Fig. 1-9 (continued)

Although it is permissible to use real amplitude gratings,
phase gratings are more desirable to efficiently utilize the
available light. The modulation provided by the moving grating
technique can also be achieved by the generation of sound waves
in a fluid gate t< produce traveling waves which propagate across
the optical channel. The moving grating technique is a simple
practical means of achieving optical ncise suppression. Since
the gratings are translated during processing, the gratings'
design requirements are reduced and the need for precise
positioning of the gratings along the optical axis is usually

eliminated.

The moving grating method was presented at the 1972 Fall
OSA meeting [8]. Closely related work by Brandt was also

presented at that meeting [9, 10].
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1.5. SUMMARY

Diffuse coherent illumination has a wide spatial bandwidth
with no dominant frequency components. This type of illumi-
nation makes a holographic recording redundant since any small
part of the hologram can reconstruct the entire object field.
This redundancy property makes a diffuse holographic recording
rather insensitive to scratches and other system artifacts. Un-
fortunately, diffuse coherent illumination results in a multipli-
cative ﬁoise granularity called laser speckle. The spectral
density of 1ase.r speckle has a significant low frequency contri-
bution which limits both image quality and resolution. Mixed-
integration processing can utilize excess system bandwidth to
suppress speckle. The statistical speckle fluctuation is reduced
by adding uncorrelated samples noncoherently. Synthetic aper-
ture radars can use both angle and temporal diversity to obtain
independent samples [3]. Temporal diversity can also be em-

ployed at optical wavelengths [11].

Optical artifact noise can be suppressed in coherent optical
filtering systems by reducing the source coherence. It is thus
advantageous that the source coherence not exceed the system
requirements. Noncoherent techniques are permissible in
coherent optical filtering systems since the output is usually
square-law envelope detected. Most noise suppression tech-
niques for such systems involve transverse displacement of the
propagating signal relative to the noise scatterers together with
noncoherent addition. Many of these techniques are costly and
difficult to implement. Others place limits on processing speed
and frequency plane resolution. A moving grating techniqt,{e was
presented which does not have the above limitations. This method
can achieve noncoherent addition by translating a grating one

grating period.
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Most noncoherent noise suppression techniques are not
useful for diffraction-limited holographic storage systems.
The remaining chapters consider redundancy modulation for
holographic systems. Mixed integration can be used to remove
high frequency residual fringes which are introduced by per-
iodic redundancy modulation. This is accomplished by using a

spatially noncoherent source for image reconstruction.



2
REDUNDANCY MODULATION
FOR COHERENT IMAGING SYSTEMS

2.1. INTRODUCTION

For the coherent optical processing systems considered
in Chapter 1, transverse displacement of the propagating
signal relative to the processing optics together with noncoher-
ent addition was effective in suppressing optical noise. For
fully coherent systems where noncoherent addition is not per-
mitted, optical noise reduction is more difficult and special
types of speckle-free redundancy modulation must be considered.
In this chapter, redundancy modulation for imaging continuous-
tone transparency signals will be investigated. This class of
signals is especially susceptible to optical noise because a
continuous-tone signal has a dominant DC frequency component.
Leith and Upatnieks showed that the self-imaging characteristics
of phase gratings are useful for generating diffuse speckle-free
illumination, and for coherently imaging a volume [12]. This

characteristic is analyzed in the next section.

2.2. THE SELF-IMAGING CHARACTERISTIC OF GRATINGS

It is well known that gratings have a self-imaging char-
acteristic. This property is sometimes referred to as the Talbot
effect [13]. Self-imaging will now be analyzed for a one-

dimensional grating.

Consider the periodic grating function

30
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with complex Fourier series coefficients

X/2 _i2mnx
_ 1 X
a *x g q(x) e dx
-X/2

If coherent collimated light is incident normal to the grating
surface, let q(x, z) be the complex light distribution a distance

z from the grating. Since q(x) is

o i27rfxx
q(x, 0) =g q(fx)e df

X
=00

where fX denotes spatial frequency, the free space transfer

function H(fx) relating q(x, z) to q(x, 0) is [14]

| (Afx> 12{” ﬂl-(xfx)z
H(fx) = rect "3 e

1ifx <1/2

where rect(x)

0 otherwise.

Since

2o .1 2 1 4
’\’1-(>fo) =1-s () - g () -, (3)

H(fx) becomes
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- 12;2 i27z2f 2 Af
Hf)=e * e % rect | =X
X 2

if fX is sufficiently small. Let fO = 1/X be the fundamental fre-

quency of the function q(x) and let 2z?xfo2 = J. Then

/ N .

{ 3 ] E‘ . eianz e127rnfox
T o 2 .

\ o} n=-N

i27z

where complex constants such as e * are ignored. IfJ =1,

a(x, z) becomes

Thus g(x, 0) has a self-imaging distance

where the same diffraction pattern forms, but is shifted trans-
versely a distance X/2 which is one-half the period of q. From

Eq. (3) the self—irpaging property requires that the approximate

inequality
4
27z [A(Nfo)_];' < T
A 8 20
or
1
z <

3 4
5A(NE )
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be satisfied. If the bandwidth BW equals 2Nf0, the above

inequality becomes

s < — 16
sy (Bw)*

The approximate number of self-imaging planes is thus

0. 4(A2f§N4 ) 1. For a grating with a 100 cycle per millimeter
bandwidth and a 0.1 millimeter period, the number of self-
imaging planes is approximately 16 if A equals 0.6328 microns.
In practice, the flatness and uniformity of a grating often limit
the number of image planes. Equation (4) can be used to deter-
mine the approximate focus sensitivity of self-imaging planes.

A self-imaging plane is in focus if

2w|Az|>\(Nfo\;2 <0.05 7

or

0.05

N2

L

IAZI <

-1
where the self-imaging distance L equals (thi) . In terms

of the bandwidth

BW = 2Nf
o}

this inequality becomes

1
A
[ < 10 M(BW)?



This is comparable with the approximate focal tolerance,

1 1
Az = +—— where BW =
27&(BW)2 A(F-number)

given for a point target in Ref. [15]. A computer program

was written which uses Eq. (2) to calculate I‘q(x, z) lz given

N i27nf x
o)

alx, 0) = Z n°

n=-N

and z. The program can be used to determine the character-
istics of a particular function g without using the above

approximations.

2.3. OPTICAL NOISE SUPPRESSION USING GRATINGS

Leith and Upatnieks considered the problem of coherently
imaging a three-dimensional object s(x, ¥, 2) such as a trans-
parent volume with various scattering centers; where the goal
was to image a desired plane of the object without incurring the
noise due to the scattering points of other planes or system
artifacts [12]. They formulated criteria for image improve-
ment and demonstrated how the self-imaging characteristic of
gratings can be used to suppress the effects of system noise

occurring throughout the system.

Consider the optical system in Fig. 2-1. If redundancy
modulation were introduced by placing a mask with complex
amplitude transmittance q(x) against s(x) at Plane B, noise
introduced by system artifacts between Planes B and C could be
suppressed. However, this would have no effect on noise effects

from artifacts to the left of Plane B. A periodic mask with some
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desirable complex amplitude transmittance q(x) can be placed

at Plane A, and Plane B can be a self-imaging plane of the
grating. Now noise effects due to grating defects and system
artifacts occurring both to the left and right of Plane B can be
attenuated. Leith and Upatnieks demonstrated that quasidiffusers
such as phase gratings offered an improvement over imagery
formed when the illumination is produced by an ordinary diffuser

such as ground glass [12,16].

Collimated Imagi
Coherent — magilng
Light > System
Plane A Plane B Image

Plane C

Figure 2-1. Coherent Imaging System

The results of an experiment which utilizes the self-
imaging characteristics of phase gratings for optical noise
suppression are now presented. The bandlimited coherent
imaging system shown in Fig. 2-1 was used to image a con-
tinuous-tone transparency. Sinusoidal crossed phase gratings

generated the redundancy modulation function

L inw x L inw y
(%, y) = -Xa e © Z ae °
ax, y e n
n=-1 =-1
wo 1
where f = — and {a_} ={i, 1, i}. The bandwidth of
o 27 n n=-1

the system was 4f0 - € for each of the Cartesian coordinates x
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y at the image Plane C. The positive constant € was just large
enough to block the second order terms of the phase grating.
Figure 2-2 shows the image with no redundancy modulation
present, Note the dark artifact diffraction pattern beneath the
spool in the upper right hand corner. Figure 2-3 shows the
speckle pattern introduced at the image plane if ground glass

is placed at Plane A, Figure 2-4 shows that only high frequency
speckle results if the crossed phase grating is placed at Plane A
and signal Plane B is a self-imaging plane. The diffuser noise
resulting from the redundancy modulation is seen to limit the
image resolution. Figures 2-1, 2-2, and 2-3 show that by
carefully choosing the redundancy modulation, optical noise can

be suppressed without introducing low frequency laser speckle.

Figure 2-2. Image Plane C without Redundancy
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Although the self-imaging characteristic of gratings pro-
vides a convenient means of generating redundancy illumination,
it is not absolutely required. If redundancy modulation with the
proper characteristics is generated by a complex mask at the
plane of the mask, the far field of a point source created with
a lens pinhole assembly can provide a clean beam for illuminating
the mask. In order to achieve a more compact system, a holo-
gram of the above illumination can be made using a point source
reference beam. If the hologram to mask distance is not too
small, the quality of the illumination reconstructed by the
hologram will not be sensitive to scratches and other artifacts
on the hologram surface. Thus many holograms for generating
redundancy modulation can be made from one high quality,

extremely clean phase grating.

2.4. CONSTRAINTS FOR REDUNDANCY MODULATION

Constraints for redundancy modulation will now be specified
and certain types of complex modulation will be considered which
satisfy these constraints. Let q(x)s(x) be the complex input
signal amplitude for a bandlimited coherent imaging system
where s(x) is the amplitude transmittance of a continuous-tone
transparency and q(x) represents complex modulation used to
increase the spatial bandwidth of the transparency. Suppose
h(x) = sinc (Wx) is the impulse response of the system, where
sinc(x) denOtes‘-Si—nm%z—X)— .

ﬁ(fx) = FT{h(x)} of the system is rect (£ /W), where FT{ - }

Then the frequency transfer function
denotes the Fourier transform operation. In order to achieve

high resolution and adequate image quality, it is nécessary that

the output image irradiance

| [a)s(x)] * hex) |?
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be free of low frequency speckle. Since s(x) has a dominant DC
frequency component, it is only necessary to place constraints on

lq(x) * h(x)l 2 to satisfy this condition.

Suppose gI(x) is the impulse response of a low-pass irradiance

filter and consider

366) = | a(x) * hx)| ? * gx)

with mean m and variance 02. Then if the image is to be free of

low frequency speckle, Condition (A) below must be satisfied.

2
m
- ¢ (4)

)

where C1 represents some minimum signal-to-noise ratio. For
best resolution, gI(x) must equal the Dirac delta function §(x).
When q(x) represents diffuse illumination from fine ground glass
and g (x) equals rect [x/(Q/W)}, m2/o2 RQfor Q >>1[2]. For

a two-dimensional system, Condition (A) requires that the linear

=

resolution be W Although plane wave illumination

iwx
q(x) = e
satisfies Condition (A), large dust diffraction patterns are super-
imposed on the reconstructed image when q(x)s(x) has a dominant
frequency component. Therefore, a second condition must be

established to assure that high redundancy and thus adequate noise

suppression is obtained.

There are two mechanisms which improve image quality when

optical noise occurs. The law of conservation of energy predicts
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that’dispersion of the noise diffraction patterns uniformly over

the image space will improve the local signal to noise ratio S/N.
Here, S/N is defined as the space average image irradiance to

the change in the average signal irradiance for a local region of
the image. A second mechanism is to demagnify or increase the
spatial bandwidth of the noiée diffraction pattern irradiance dis-
‘tribution. This decreases the area of the image affected by optical
noise and helps preserve low ffeque'ncy image detail. High fre-
quency detail has appreciable bandwidth and is less susceptible

to optical defects, but can be bbscurred if the average irradiance
in a local region is too low. It will become evident when quadratic
phase modulation is considered that although dust diffraction
patterns can be demagnified, their size cannot approach the optical
system resolution. For this reason the principal mechanism for
optical noise suppression is dispersion. In order for optical

noise to be dispersed evenly over as large an image area as pos-
sible, it is necessary to establish certain uniformity conditions

for the spectral density of q. Let

| x - x 11°
S(f. V, x )= |FT -rect< < °> a(x - Xo)j

where V represents the width of an elementary element of q.

Condition (B) requires that
Envelope of S(fx, v, xo) R rect (fX/W) (B)

or that the parameter
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W/2
S S(f , V, x)df
X o) X
) W/2
% oW
max 2
over f S S(f. -f, V, x )df
c X c o) X
aw
2

be large for all X where o« <1 and V = L.. The constant WL
is a system design parameter which is determined by certain
system constraints. In general, L is dependent on the size and

position of artifacts and the function q(x).

If q(x) is periodic with period X and L./X is greater than three

or four, then Condition (B) is satisfied if

Envelope of |FT {a(x)} |2 = rect (fX/W)

If X exceeds a certain upper bound, optical noise will not be dis-
persed uniformly at the image plane. If gq(x) is periodic and a sys-
tem artifact is several times larger than the period X, the noise
diffraction pattern will be multiply imaged with unity magnification
at the image plane. If the main lobes of the multiple noise dif-
fraction patterns do not overlap, dispersion and thus attenuation

of the noise is assured. In Chapter 3 it will be shown that if a
dust particle is in the far field relative to the image plane, overlap
will not occur if X is smaller than the diameter of the dust particle.
When many coherent overlapping patterns are formed, one cannot
always be assured that even dispersion of the optical noise will
occur. Careful examination of Fig. 2-4 shows that optical noise
introduces fringes at the image plane with the same periodicity as

q(x). This property also makes it desirable to limit the size of X.
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2.5. QUADRATIC PHASE MODULATION

2.5.1. CHARACTERISTICS

A class of phase modulation will now be considered which
under certain conditions has a rather uniform, bandlimited power
spectrum, and thus appears to satisfy Conditions (A) and (B). A

logical function g(x) to consider is a train of quadratic phase signals,

iilr-x—-z- ©
in(x) = e AXE rect (x/X) | * Z 8(x - nX) (5)

n=-o

where § denotes the Dirac delta function. The phase P(x) for

qA_(x) = elP(X) is shown in Fig. 2-5. It is well known that such a
signal has a bandlimited uniform spectral density if the space band-
width parameter Q = X/(AF) >> 10 [17,18]. If the maximum phase
variation (7Q)/4 is not too large, the modulation qA(x) can be
realized using a fly's eye lens array consisting of a train of pos-
itive or negative lenslets. It will be seen that it is advantageous to
dP(x)
dx

remove the discontinuity of where the lenslets join by de-

fining a new function

1.

.00

—

2.00

P = NORHRLga ZE0 PHASE

200 .50 1.00 1.50
X = NORMALIZED DISTANCE

Figure 2-5. Phase for qA_(x)
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[ irQ - 7rx2
qB(x) = !;_e * e AXE rect (x/X)
2
i TQ i T(x - X) ‘\ o
re Yo MF o lect (X -XX) * Z §(x - 2nX)

n=-oo

with alternating positive and negative lenslets as shown in Fig. 2-6.

HASE
1.00

S0

= NORMALJZED P

.00
L

P

200 .50 1.00 1.50 2.00
X = NORMRLIZED DISTANCE

Figure 2-6. Phase for qB(x)

Let qA (n/X) be the n-th complex Fourier series coefficient for
(x) if Ap. is periodic with period X. Figure 2-7 shows the
dependence of |qA(n/X ]2 and IFT{rect (x/X) )9, () }|
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Figure 2-7. Spectral Density of qA(x)
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The function aA_(n/X) can be expressed in terms of Fresnel

integrals. Let L = -{Q/2 + n »JZ/Q where Q = X/(AF) and define

2
T Q , 2n
XL—E [§+—Q—— —21’1}
and
2
7 | Q , 2n
Xy~3g [fv”n}

0
and
’ 2
=x
g T 2
S(x)=§ sin(§u )du
0
N
qA_(n/X) becomes

2
-1/2 i I
4, (0/X) = QJ? e @ fGxy x))

where f(xU, XL) = [C(xU) + C(xL)] - i[S(xU) + S(XL)] ifLL=<0
and f(xU, XL) = [C(XU) - C(xL)] - i[S(xU) - S(XL)] ifL=0

By taking the Fourier transform of the first convolution term in
Eq. (5) and noting that the form is similar to Fraunhofer diffraction
of a sinc function if Q@ >> 10, the envelope rect ()LFfX) is obtained
for aA(fx). This implies that qdp has Q dominant orders when Q

N . N A % N
is very large. For negative lenslets qA+(n/X) = q, (n/X) since
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A
q, is even. If qB(n/ZX) represents the n-th complex Fourier
series coefficient of qB(x), it can easily be shown using super-

position that

. TQ

1 —Z—A

2 Re <e qA_(n/ZX)} if nis even and
{

dg(n/2X)

] —

it

2 Im< e a_A_(n/ZX)j if n is odd.

Re and Im denote the real and imaginary parts respectively of a
complex number. Although Fig. 2-7 shows that , aA(n/ZX) ,2 is
almost constant for lnl < Q when Q >> 10, it is not clear that
,aB(n/2X) ’2 has this same property. It is clear that ,aB(n/2X),2 <
4, aA(n/ZX) |2 and this indicates that aB may have a sharper cut-
off than aA' As discussed earlier, the bandwidth of qu and dp is
approximately Q/X if Q is large. In order to satisfy Condition (A),
it is necessary that the bandwidth of the optical system exceed Q/X.
Since A and dp have periods of X and 2X respectively, the maxi-
mum number of dominant orders for @ >> 10 is approximately Q
and 2Q respectively. In order to consider the spectral density

uniformity of q, and q, it is helpful to define the redundanc
y A B Y

parameter
N
2
) [l
n=-N
Ry = M
max Z 2
n Patj|
j=1

N .
in27f x
for periodic bandlimited functions q(x) = Z a e ° with

n
n=-N



47

bandwidth 2Nf0. The parameter R__is directly related to Ga

M

of Condition (B) by the equation RM =G Since the optical

M-1
system must pass almost all the light diffracted by q, OF dg if
Condition (A) is to be satisfied, it is convenient to set N equal to

infinity in order to remove the dependence of R . on the system

M

\

2\

\
]
M

!

[ M
bandwidth. The parameter R , thus becomes Lmax/Z’an+ji
' n \ .
.\‘\ J = 1 v/"’ _‘!

o0
2
since Z ‘ an| equals unity. Figure 2-8 shows RM versus Q
n=-o
for q,. Note that R, must be bounded above by Q/M for Q >> 10,

since dp has Q dominant Fourier series coefficients.

160.00  200.00
33.00 41.00

120.00

25.00

80.00

REDUNDANCY PARAMETER
17.00 .

N\

R = REDUNDANCY PRRAMETER

40.00

R
9.00

0
.00

160.00  200.00 =00 40,00

40.00 2.0 120,00 8.00 16.00 .00 3.0
Q@ = SPACE BANDWIDTH PRODUCT @ = SPACE BANDWIDTH PRODUCT

(2) (b)

Figure 2-8. Redundancy Characteristics for qA(x)

The Symbols 0, &, +, Y, Z denote Rl’ R2, . R5 Respectively
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Figure 2-9 shows RM versus Q for qB(x). Since the period of ag
is 2X, R, is now bounded above by the quantity (2Q)/M. To com-

pare the redundancy characteristics of qp and g R, of Fig. 2-8

should be compared with RZM of Fig. 2-9. Figures 12\/1-8,and 2-9°
indicate that qu and 95 both have rather uniform spectral densities
for Q >>10. Although dy appears to have better spectral char-
acteristics, it will be seen that 9p results in a much higher signal

. . 2, 2
to noise ratio m”/¢” (Condition A).

. 21
2 g
2-. gib

¢

3 8

ES“ n..

5 P,

z

£ és.

58 (ad

=]

o

« &

" "
8

d:g-" :3.-
8 } + + " — & + + +  ————
*.00 40.00 80.00 120.00  180.00  200.00 =00 8.00 18.00 20.00 2.00 40.00

= SPACE BANDWIDTH PRODUCT Q = SPACE BANOWIOTH PROQUCT

(2) (b)

Figure 2-9. Redundancy Characteristics for qB(x)

The Symbols, 0, A, +, Y, Z denote Rl’ Rz, ce R5 Respectively
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Condition (A) requires that the speckle noise from q be low.
f X
=
BQ
coherent system where B = 1. In order to achieve the best redun-

N
Let h(fX) = rect < > be the frequency transfer function of the

dancy in the available system bandwidth

B should be almost unity. However, B must be greater than unity
if m? /02 of Condition (A) is to be sufficiently high. A digital com-
puter was used to examine

2 J,

3x) = la(x) *hix)| " * g (x)

of Condition (A) as a function of Q, W and the width of gI(x). Let

g.(x) = rect —
: {% (x/Q) ]

This filtering operation is easily attained if a spatially noncoherent
reference source is used to reconstruct a h/ologram. If Ais
greater than two, the filter g approximately increases the co-
herent resolution cell width by the factor A. Tables 2-1 and 2-2
give the characteristics of J(x) when g(x) equals S and qg Te-

spectively. The variables given in these Tables are defined below.

2, 2
m~ /o” = the signal to noise ratio defined by Condition (A)

max{J(x)} - min{J(x)}
max {J(x)s

modulation due to speckle noise

M =100

and represents irradiance
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N
- N
n
2]
_ n=-N
RM = where 2N+1 represents the total
M
max Z N 2
n l n+J|
=1

number of orders within the bandpass of the system

N

2
ES =100 X !an' and represents the percent of the light energy
n=-N |

within the system bandpass

W = (BQ)/X is the system bandwidth and equals (2N)/X for ap
and N/X for A
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The functions qp and qp can be compared in Tables 2-1 and 2-2
for identical values of Q. Since the period of dg is 2X and the
period of CIN is X, RM should be compared with R2M in Tables
2-1 and 2-2, respectively. Note that RM is bounded above by
(2N+1)/M. The function dp has a much higher value of mz/o2
than du if entries with the same Q, B, and A values are compared.
Figures 2-10(a) and 2-11(a) show J(x)/ max [ J(x)] for entries V
and Q in Tables 2-1 and 2-2, respectively. By comparing Figs.
2-10 and 2-11 with Figs. 2-5 and 2-6, it is seen that the principal
place where diffuser noise occurs is the point at which lenslets
join. Since d—-lz-:(:-{ﬁ for dg is continuous, Fig. 2-11 shows less

speckle noise than Fig. 2-10,

8 3
=T “J;-MIVV\/W‘\_/\/\/\/\/MA
Q
4
a
=
(o] q:o
nr Tinr
1]
<
8 1 ;=8 : 4
.00 50 1.00 .00 .50 1.00

(2) (b)

Figure 2-10. (a) I(x) = J(x)/max{J(x)} for Entry V of Table 2-1,
(b) I(x) for Entry W of Table 2-1
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I(X)

<
(@)

Q
Z .
<
Q
Q ¢°
w4 Cond
. E-
i
(=] 80
100 .50 1.00 .00 .50 1.00

(a) (b)

Figure 2-11. (a) I(x) = J(x)/max{J(x)} for Entry Q of Table 2-2,
(b) I(x) for Entry R of Table 2-2

For constant mz/oz, Tables 2-1 and 2-2 show that q has
better spectral density uniformity and thus higher redundancy.
The redundancy properties of qp are excellent for Q >> 10, since

A and B are held constant, mz/o increases rapidly as Q increases.

- 2.5.2. EXPERIMENTAL RESULTS

_ Experiments were performed which show the noise reduction
chéracteristics of 9 in a coherent imaging system. TFigure 2-12
shows a coherent imaging system where the function qB(yl) was
used to introduce redundancy along the Y1 coordinate; X, Q, and A
for qB(yl) have values 0.5 mm, 142 and 0. 6328 u respectively.

Since there exists no redundancy along the x, signal coordinate,

1
two wires placed in Plane A parallel to the Vg axis introduce dark
diffraction patterns at the image plane as shown in Fig. 2-13(a).

The maximum number of cycles per mm of the signal bar pattern

is 7. However, when the two wires are placed parallel to the Xq



o6

Input Signal

a4, (y;)8(x,,y,)
Bl 1 l Lens B Plane A
Lens Image
Pinhole Plane
Laser
Beam

lfm 2K . o

Figure 2-12. Coherent Imaging System, where Lens B
has a Focal Length of 100 mm and a F-Number of 2, 3.
Two Wires each 0.23 mm in Diameter were Introduced at Plane A

axis, the wire diffraction patterns are highly attenuated as shown
in Fig. 2-13(b). Figure 2-14 shows the irradiance at the back
focal plane of Lens B. The function qB(yl) had a spatial bandwidth

of 284 cycles per mm.

Figure 2-13. (a) Image with Vertical Wires at Plane A of Fig. 2-12,
(b) Image with Two Horizontal Wires at Plane A, whose
Vertical Positions are Indicated with Arrows
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Figure 2-14. Irradiance Near the Back Focal Plane of Lens B

q, _(x,7)s(x,y) f—or—1
A=r 9 'y | _wi ﬂ’%ﬁ Image

Lens Pinhole

—
|

>

10'———»4

|
|
|
|

\\—- FT Plane
Noise Plane

Figure 2-15. Coherent Imaging System
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The optical system shown in Fig. 2-15 was used to test how
qA_(x, y) = qA“(X)qA_(y) would perform in a near Fourier trans-
form holographic storage system. Function Ap. corresponds to
entry AE of Table 2-1 and consisted of positive lenslets with
Q =9.23 and X = 0.58 mm. A high quality lens array with a Q
of 9.23 was obtained by glueing two lenticular gratings with their
lines crossed rough side to rough side with a high index Kodak
assembly cement. The bandwidth of q,. Was 15.9 cycles per mm
and the system bandwidth was 18.2 cycles per mm. Figure 2-16(a)
shows an image of a standard USAF resolution chart without any
redundancy modulation. Element number 1 of group 1 represents
two lines per mm. Figure 2-16(b) shows the same image if lens
array q, is placed against the signal transparency. Note that the
dust particle diffraction pattern which occurs at the top central
region of the picture is multiply imaged and dispersed. This phe-
nomenon will be discussed in the next section. Figure 2-17(a)
shows how the image is affected by a system artifact in the near
Fourier transform plane when the signal is illuminated with a uni-
form beam. The artifact consisted of a black letter "O" 0.8 mm
high on a transparent glass plate. Figure 2-17(b) shows the image

quality improvement when redundancy modulation Ap. is introduced.

(2) (b)

Figure 2-16. (a) Image with Uniform Illumination,
(b) Image with Quadratic Phase Modulation



99

(a)

(b)

Figure 2-17. Image of Fig. 2-16 with Artifact
at Near Fourier Transform Plane.
(a) No Redundancy, (b) Redundancy Ay

2
Figure 2-18(a) shows g FTYs(x, y)a, (% y)} g at the Fourier

transform plane of the system. Figure 2-18(b) shows both

EFT{qAE(X)}iZ and EFT{rect (X/X)QA“(X)}’ g % for Q = 9.23.

1.00

a
i

-S0

00

¥ ¥

16.00

NORMARLIZED IRRADIANCE

(a)

Figure 2-18. (a) Irradiance at FT Plane of Fig. 2-15

-8.00 .00 8.00
FREQUENCY (1/PERIOCD)

(b)

with un(x, y) Present, (b) Spectral Density

o;qum for @ = 9.23

At

16.00
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Although a lens array q, can improve the image quality, it
can be seen from entry AH of Table 2-1 that objectionable diffuser
noise occurs where the lenslets join if B is near unity. It is also
seen that R1 is only one-half the maximum limit. A new class of
redundancy modulation will be investigated in Chapter 4 which does

not have these limitations.

2.5.3. OPTICAL NOISE DISPERSION

It was seen in Fig. 2-16 that a lens array can demagnify dust
diffraction patterns. Geometrical optics or the direct corres-
pondence between the signal space and the frequency space of EIN
predicts this effect. Fig. 2-19 shows how a negative lenslet can

demagnify a dust particle diffraction pattern. Geometrical optics

Plane A Plane B
e ,— 111 Telescope

£ r-=-——"=""7"7"7"7 7]
)/Il I
N v l I
-(5_: ______ l |
. '
U+ ‘ l

e_/ '
Artifact b - Inage

With Diameter Flane
u

Figure 2-19. Coherent System Showing the Demagnification
of Artifact Noise



61

predicts that the shadow of the particle at the image plane is
ulf/(f + z)]. The number of images of the particle diffraction pat-
tern at the image plane is 6(z + f)/X or approximately (z + f)/f if

6 is small. When diffraction theory predicts that the particle dif-
fraction pattern will be significantly larger than u[f/(f + z)], the

local signal-to-noise ratio is improved. If

2u2 f

WES

it can be shown using stationary phase approximations developed

in [19] that the particle diffraction amplitude becomes

" -1/2
A | 22 f
d(x) = exp \'1k‘2; j u[l -10.65u 5 z(z + ) _

{ 2 '11

: X 2 7 . 2 2 f
exp{j-ﬂ 5 9 0.65u 11-10.65u xm:] l
; Az -
If
t?.u2 f <« 1
A z(z +f)

the width of l d(x)l 2 reduces to approximately (Az)/u. This be-
comes obvious if it is noted that the Fourier transform of the dust
particle is formed at the back focal plane of the lenslet and has a
width (z + f)/u = (z/u) if f << z; and the above inequality is re-

written as

-1

f Az
2u(z+f )(T) << 1

\
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When this condition holds and (Az)/u > X, good dispersion of the
noise will occur. If (Az)/u = X and f << z, the above inequalities

require that
Q=X/(AF) >>2 and X << (uz)/(\F)

If Q is large, the bandwidth of q, is 1/(AF) and Condition (B) is
satisfied. IFor many practical display systems, the spatial band-
width must be low, and the above inequalities cannot be met.

Figure 2-20(a) shows the irradiance at the image plane of Fig. 2-19
when randomly placed black dots on a glass slide were introduced
at Plane B. Figure 2-20(b) is the same picture when a lens array
Apy with 0. 377 X 0. 377 mm lenslets is placed at Plane A. The
values for u, z, and f were 0.323 mm, 12.5 c¢m, and 3. 35 cm,

respectively. The demagnification factor £/(f + z) was thus 0. 211

equaled 0. 558.

(a) (b)

Figure 2-20. (a) Irradiance at the Image Plane without Ap 42

(b) Image when Apy is Present
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2.6. SUMMARY

In this chapter the redundancy requirements for suppressing
optical noise in coherent systems was considered. The self-
imaging property of gratings provides a convenient but not es-
sential means for generating redundancy illumination. Constraints
were established for the redundancy modulation needed to coherently
image a continuous-tone transparency. It was seen that quadratic
phase modulation can satisfy these constraints when the space band-
width parameter Q is large. For some high density holographic
storage systems, certain imaging constraints require that Q be
small. In this case the spectral density of a lens array is no

longer uniform, and a new class of functions must be considered.



3
REDUNDANCY REQUIREMENTS
FOR HIGH DENSITY COHERENT STORAGE SYSTEMS

3.1. INTRODUCTION

Redundancy modulation for coherent imaging systems with
very narrow spatial bandwidth will now be considered. One such
system is Fourier transform holography, where a lens or con-
verging wavefront is used to form the Fourier transform of an
input signal near the hologram plane. Such a system has desir-
able properties for the high density storage of continuous-tone
transparencies. Individual points on the hologram can record
information concerning the entire image space. The storage of
continuous-tone signals presents special difficulties since the
dominant DC component of this class of signals makes the signal
especially sensitive to artifact noise. For example, a small
emulsion defect on the hologram may remove the DC portion of
the signal. Special redundancy modulation will be investigated
which can improve system performance and increase hologram
diffraction efficiency by providing more uniform illumination at the

hologram plane.

3.2. SYSTEM CONSTRAINTS

The resolution for a Fourier transform holographic system is
inversely related to the size of the hologram. If a diffraction
limited hologram with dimension D is recorded, the System reso-

lution RH is

o]
[H
ol &

64



where f and A correspond to the focal length and wavelength re-
spectively. To meet the system resolution requirements, the

hologram width must exceed some lower limit D Redundancy

modulation should not require the hologram widtkPl{ to exceed DR
by more than a small factor such as two if a holographic system
is to compete with present storage systems such as microfiche.
The resolution of the eye and constraints on the use of an output
enlarging lens place a lower bound on RH. An output enlarging
lens could increase this bound. However, the magnification of an
enlarging lens is limited for a practical system since coherent
noise suppression techniques are not effective for artifacts on an
optical surface close to an image plane. Noncoherent noise sup-
pression methods such as rotating the enlarging lens are too cum-
bersome to be helpful. Since Condition (B) of Chapter 2 limits the
period X for quadratic phase modulation, this modulation cannot
provide adequate redundancy for high density storage applications
where the space bandwidth product XW and thus the parameter Q
must be low. Consider Condition (B) for nonperiodic redundancy

modulation g(x) when the space bandwidth product VW must be small.

Since

S(f., V. x) =Le_127rfxx° sinc (VI )] * q(f)

x> 7 7o X X

should be approximately equal to rect (fX/W), the importance of the
sinc term when VW is small makes it difficult to determine a
function which satisfies Conditions (A) and (B). For periodic mod-
ulation with period X where L/X is greater than three or four,

Condition (B) is satisfied if
Envelope of ia(nfo) X rect (fX/W)

where n is an integer. Since only discrete points must be considered,
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the problem of synthesizing a function which satisfies Conditions (A)
and (B) is more tractable. The parameter XW for periodic modu-
lation represents the number of Fourier series components of q(x)

recorded by the hologram. Since periodic phase modulation

00

o(x) :Z L olDWX
n

n=-oo

requires that the number of non-zero orders be infinite and that
lanl -0 as n ~>ow, this class of functions cannot provide maximum

redundancy for systems with very limited spacial bandwidth.

3.3. BANDLIMITED PERIODIC REDUNDANCY MODULATION

To achieve high redundancy when VW << 100, consider periodic

bandlimited redundancy modulation

N .
in27f x
q(x) - Z a e © where 2N+1 < XW
n=-N

Since this means the signal information will be placed on a multi-
plicity of carriers, the effect of the spatial frequency coordinates

of each carrier on the system resolution will now be examined.

The Fourier transform of a real signal s(x) has the following

property: If

. 0 i27f x
s(f ) = s(x) e * dx

then
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This property means that the signal information can be recovered
if a hologram records the DC term and only one sideband of the
signal. Maximum resolution for a bandlimited system is achieved
if only one sideband of the signal is recorded. Consider a band-
limited system such as Fig. 1-5, with frequency transfer function
ﬁ(fx, £) = rect (1, /W) rect (£ /W). Coordinates f_and f_are the
Cartesian frequency plane coordinates. Figure 3-1 shows the
image of a USAF resolution chart when plane wave illumination
eiZﬁ(W/Z)x is incident on the signal. Since there was only single-
sideband plus DC transmission along the horizontal x coordinate,

higher frequency information was passed and the vertical bars are

better resolved than the horizontal bars.

IFFigure 3-1. Image of USAF Resolution Chart
with Single-Sideband Imaging for the Horizontal Coordinate
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To account foi' the low contrast of the vertical bars, let the real

signal

i27f x

(o]
s(x)=S S(tye * odf

be written as

s(x) =5+ 5,(x) + sl(x)*

where S, is positive real constant and

) iZyerx
sl(x) = S s(fx)e df

0+

X
For double-sideband imaging, the image irradiance is

2 2
s” * 4 Re ‘{Sl} + 430 Re{sl}

and for single-sideband imaging the image irradiance becomes

2 2 2
+ Re + +
s~ + Re {Sl} Im {sl} 2s Re{sl}
The major effects of single-sideband imaging with a bandlimited
optical system are to improve the resolution and to decrease the
image contrast. For multicarrier imaging these effects must be
averaged on an energy basis for each carrier. For example, an

average channel bandwidth <W> is defined below where Wn repre-

sents the maximum single-sideband bandwidth for each carrier and
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N in27f x
(x) = Z a_ e %
9 n
n=-N

is the multicarrier illumination.

L (fl"n)
L

Additional complexities occur in using multicarrier illumination.
Let s(x)q(x) be the input amplitude to a coherent imaging system

with frequency transfer function

ﬁ(fx) = rect (f_/W)

where s(x) is a real input signal and q(x) represents redundancy
modulation. If the spectrum of s(x)q(x) falls completely within
the system bandpass, the square-law detected output is simply
2 2
|s(x)| % |a) |

The example discussed below illustrates the case where the band-

width of s(x)q(x) exceeds W. Consider the real signal
o *
s(x) = S, + sl(x) + sl(x)

and redundancy modulation
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consisting of two carriers at each edge of the system bandpass.

The output irradiance l [a(x)s(x)] * h(x) |2 becomes

. . 2
-iw,x 1w, x

1 "
3 (so + sl)e + (so + 8 )e

9 —i2w1x \f 9 -i2w1x
+
+ s, cos (2w1x) + 250 Re {sl(x)e Re t 8, (x)e

= l S, + sl(x)l2

The first term simply represents the output of a single-sideband
system. The second term is the fringe pattern due to q(x) weighted
by the DC component of the signal. Terms three and four repre-
sent interaction of the carriers with the signal. The last term is

+
potentially dangerous; since if sl(x) has a dominant term cel(W G)X,

a low frequency moire fringe pattern occurs at the image plane if
€ is small. This illustrates that caution is required if carriers are

placed near the edge of the system bandpass.

It was seen in Chapter 2 that the frequency distribution of the
image speckle resulting from coherent addition of the carriers
limits the system resolution. Fortunately, classes of periodic
bandlimited redundancy modulation which have no low frequency

speckle exist and are presented in Chapter 4.

3.4. NOISE SUPPRESSION ANALYSIS

The noise suppression characteristics of periodic, bandlimited
modulation will now be formulated in terms of a family of redundancy
parameters. Dispersion of artifact noise uniformily over the image

is the principle mechanism for improving the local signal-to-noise
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ratio. If the density of artifacts is too high, coherent dispérsion
can no longer improve image quality. Consider the noise re-

duction for a single isolated artifact located at Planes 1 or 2 of

Fig. 3-2.
e— 2z —> 1 : 1 Telescope
Plane 2
Collimated
Beam
D
q(x)s(x) Plane 1 FT Plane Image

Figure 3-2. Coherent Imaging System

First to be considered is the effect of artifacts at Plane 1.
Let h(x) be the impulse response of the system and 1 - n(x) repre-
sent the amplitude transmittance at Plane 1 where n(x) is zero if
no artifacts are present. The propagation phenomenon may be
regarded as a linear dispersive spatial filter [14]. For Fresnel

diffraction the impulse response p(x) for this filter is

eikz 1e—x o
p(x) = ™ e where k = ~

If z is constant, the z dependence will usually be ignored. The

output image amplitude v(x) can be written

v(x) = Vl(X) + VZ(X)
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where

v,(x) = [a(x)s(x)] * h(x)

is the signal term and
vo(x) = - [ {[a()s(x)] * p}n(x) ]* p* * h(x)

is the noise term. If q has a rather uniform spectral density, the
dispersive action of p will distribute the noise effects due to n(x)
uniformly over a wider area of the image plane. The amount of
dispersion is directly related to the distance z and the spectral

width of q. The output irradiance is

2 _ 2 ” 2
VG| = |vy|" + 2 Re {vyvi} + |v, |
If v (x) << v, (x) for all x Iv(x) |2 = lv |2 +2 Re {v.v¥*}. Al-
2 1 ’ L 1'2°°
though the redundancy modulation q(x) does not change the signal-
-to-noise ratio if the whole signal space is considered, it can

improve the local S/N over a local region Aof the image. One

measure of the local signal-to-noise ratio (S/N)A is

2
(x)| d
S\Allel X

* 2]
[2 Re {vlvz} + lv2| de

(/N =

J

A

This measure will prove convenient since it can be expressed in

terms of the redundancy parameter R If periodic redundancy

M
modulation
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N

inw x
(x) = ? ae °
! n
n=-N

is considered and only the dominant DC component S, of a

continuous-tone signal is retained, V2(X) can be simplified. The

expression
i27 l;lf x+ Z1-(nt )2
s g(x) * p(x, z) = s a e Lo A ©
o) ’ o n
n=-N
becomes
N i2m(nf x)
Lo
S a'e
)
n=-N
where
imhz(nf )2
. o
a'=a_e
n n

for Fresnel diffraction. The artifact function n(x) typically takes
the form rect (x/u) for a dust particle with dimension u, hence

v2 becomes

If u is several times larger than the period l/fo, this expression
predicts that multiple artifact diffraction patterns spaced Mfo
apart appear at the image plane. Noise suppression is deApendent

TN
2
on the sequence {lanl }> . Since the irradiance of the n-th

“n=-N
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artifact diffraction pattern is proportional to the coefficient Banl
of the plane wave that produced the image, noise suppression is

maximum if all sequence terms are equal.

Consider the case where the main lobe of the multiple dif-
fraction patterns do not overlap. FIigure 3-3 below shows this

condition for a small wire artifact when

Figure 3-3. Image of Diffraction Pattern
for a Small Wire Artifact
(WO = ZTrfo and fo = 16 cycles per mm)

If (SO/NO) is the local signal-to-noise ratio when g(x) = 1, the

local signal-to-noise for the n-th artifact diffraction pattern is
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It is necessary to maximize the minimum local signal-to-noise

ratio. This is equivalent to maximizing the parameter

N
2
LIl
Rl - n=-N
2
max {Ian’ }
n J

since

Noting that

2 2
lanl < max{lanl f

it is seen that R1 equals the maximum limit 2N+1 if all terms

‘ an‘z are equal. If the grating

which maximizes R1 can be selected from the class of functions

satisfying Condition (A) of Chapter 2, the optimization problem is
over. However, what if P multiple noise diffraction patterns over-

lap and a grating with R, = 2N+1 cannot be found? In this case it

1
it necessary to consider the redundancy parameter
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N
n=-N

J o
]

=]

The sum in the denominator is maximized over the index N for
-N=n<=N-P+1. The minimum local signal-to-noise ratio is
now RP(So/No)A’ and thus optimum redundancy is achieved if

RP is maximized.

A simple example will help illustrate the condition for no
dust diffraction overlap. If the object plane is in the far field of
a dust particle at Plane 1 of Fig. 3-2 and n(x) = rect x/u the
diffraction pattern at the object plane is sinc [ux)/ w1th main

lobe width (Az)/u. Let 6 be the propagation angle of plane wave
i2nrf x

e ° relative to the optical axis for a grating with period

X = l/fo. Then the condition for no overlap is

6z > —

since t = 6/)\ if 6 << 1, this implies
X =u

The above inequality requires that the period of the grating be
smaller than the artifact width. Thus if X is 1/5 mm, f must be

greater than or equal to 5 cycles per mm if no overlap is to occur.

If the periodicity of the multiple wire diffraction patterns

is examined in Fig. 3-3, it can be seen that the increased diffuser
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noise that occurs is due to attenuation of one of the three coef-
ficients a_y. 8, ora. The increase in the low frequéncy speckle
noise due to a noise particle will be examined quantitatively for
artifacts at Plane 2 of Fig. 3-2. This work will also be useful for
estimating the low frequency speckle introduced by artifacts at
Plane 1. Consider artifacts at Plane 2 of Fig. 3-2. For Fourier
transform holography, Plane 2 represents the hologram plane.

Let ﬁ(fx) be the Fourier transform of the impulse response h(x)

of the system. The output amplitude v(x) for amplitude trans-

mittance [1 - ﬁ(fx)] at Plane 2 is

v(x) = [a(x)s(x)] * h(x) - [q(x)s(x)] * h(x) * n(x)

£ - f
A _ P ~ x
If h(f ) = rect (f_/W) and n(f ) = rect < %

C> where a << W

and I fcl < W/2, v(x) becomes

i27f x

v(x) = W[ qg(x)s(x)] * sinc (Wx) - aW[ g(x)s(x)] * l:e sinc (an)]

Artifact noise at the Fourier transform plane affects the entire
image space. If no redundancy modulation is employed, a small
artifact could remove the DC component of the signal. Although
pei‘iodic redundancy modulation g(x) with no low frequency speckle
is determined in Chapter 4, the blockage of a spectral order of

q(x) reduces mz/cr2 of Condition (A), since low frequency speckle

is introduced at the image plane. This effect will now be formulated

in terms of the redundancy parameter R Since continuous-tone

M
signals s(x) have a dominate DC component, only g(x) need be
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considered in the following analysis. A small scratch or artifact
attenuates one or more Fourier series components of q(x). Let
(1 - B) be the attenuation factor due to such a noise term. If

in27f x
o

then

N
a0l®= ) ) ae

n, m=-N

Let qa, represent g(x) after one order a is attenuated by the

factor (1 - B). Then ©
qO(X) = q(x) * [ (x) - n(x)]
N
= Za/ - Ba
n n
n=-N °
and
' N 2
{ 2
a_(x) 2. Z a | + lBiz @
n=-N °
' N ,
-2 Z atle IBI cos [d)l(x) - ¢2(x)]
n=-N ©
where

by(x) = arg o) }
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and

¢2(x) = arg {an B}
o

o

In Chapter 4 a class of even functions q(x) with no low frequency

speckle are examined [20]. These functions have the characteristic

N 2

) e

n=-N

ol

1+ D cos (27r2NfOx)

As R1 increases, D becomes small relative to 1. For bandlimited
phase modulation such as 95 of Chapter 2, D is essentially zero.

If D <1,

N
Z an 1+ (D/2) cos (27r2NfOx)
n=-N

If gI(x) =[(2N)/X7‘ rect [ (2Nx)/X] is the impulse response of a low-
pass irradiance filter which removes the high frequency speckle

term cos (2N27rfox),

2 2 ‘an \2 ziano“Bl
|G| * gyx) = L+ 8" = - "/ XN 172
2 2
Ll L
n=-N n=-N ;

Xj[l + % cos (21r2Nfo>.<)} cos (¢1 - ¢2) }‘* g(x)

|
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For small D the expression above is bounded above by

B2, sl
R1 «/E
and from below by
lsl® sl
R,
‘thus
2 L sl
|90 * g = 1+ R =+ 260
where
| 2] sl
R1

Speckle modulation is thus very low if

25|

‘i

<< 1

If an artifact is not at the Fourier transform plane, the effective
B is often much less than one. Also, if R1 is the redundancy for
q(x), this same parameter has the value R 2 for two-dimensional

1
modulation g(x)q(y).

A limit will now be established for the magnitude of Fourier
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series coefficients of lqo !2 which are introduced by this type of
artiface noise. If

2

,ql =1+ D cos (2772Nfox)

attenuation of the complex coefficient a_ by the factor (1 - B)
o
will introduce new irradiance frequency terms of the form

!" -1
.

%% * |
— + + I
ZIk cosl27rkfox arg JLB (an an +k an -kan ) : 1
! o o 0 /)
3 J
where
3 *®
- +
Iy IBl ®n %n 4k " %n -k%n
oo o o
Since
211
2 IB lmax I a I r
n !j
I < -
k N

2
> el

n=-N

these new frequency coefficients are bounded by the inequality
.?.Ik < 4/R1

As stated in Chapter 2, the frequency of the speckle noise is never
lower than fo = l/X for periodic functions, hence it is advantageous
to keep the number of orders 2N + 1 or the space bandwidth param-

eter XW small.
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3.5. SUMMARY

This chapter has considered the redundancy requirements of
high density coherent storage systems for continuous-tone trans-
parencies. Periodic functions appear to have the best character-
istics for maximizing the redundancy in this type of system. The
noise suppression characteristics of bandlimited periodic redun-
dancy modulation were formulated in terms of a family of redun-
dancy parameters. These parameters will prove useful in Chapter
4 in determining periodic modulation with optimum redundancy
characteristics. Chapter 4 will show that uniform hologram illumi-
nation required for high diffraction efficiency in Fourier transform |
holography can be achieved by using periodic modulation in tandem
with a coarse lens array. Experimental results presented indicate

that this technique can improve noise suppression.



4
PERIODIC MODULATION
WITH OPTIMUM REDUNDANCY CHARACTERISTICS

4.1. INTRODUCTION

In Chapter 3 the redundancy requirements of high density stor-
age systems for continuous-tone transparencies were considered.
There it was shown that periodic functions are the most promising
class of redundancy modulation for systems where the space-
bandwidth product VW << 100. Periodic modulation with optimum

redundancy characteristics will now be investigated.

In order to satisfy Condition A of Chapter 2, redundancy modu-
lation g(x) should have no low frequency speckle noise. It is well
known that a grating which generates three orders can produce a
diffraction pattern which is twice as fine as the grating period [21] .
Gabor [20] generalized this property by showing that it is possible
for a grating with 2N + 1 orders to produce a fringe pattern that
is 2N times as fine as the grating period. Consider the class of

bandlimited functions

N 127mf0x
q(x) =Z ane

n=-N
having 2N + 1 orders. The irradiance

I(x) = |a00) |

thus becomes

83
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2N
I(x) = I+ 2 Z I cos (27Tnf0x - ¢n)
n=1
If
N-k
= : 3
Ck - Z anaan+k
n=-N
then
I = Ickl and ¢k = arg {ck}

where arg {*} denotes the angle of a complex number. Low fre-
quency speckle modulation is eliminated if the system of nonlinear

equations given below is satisfied.

N-k

b3 = = - -
Z anan+k 0 fork=1, 2, ..., 2N-2, 2N-1 (6)
n=-N

N
Since only relative values of the coefficients {an} are of

n=-N
interest, let ay " i. Assuming that only even functions are of
interest, a_ Ta, and the system of Egs.(6) above reduces to
2N-1 equations and 2N unknowns. This leaves one free parameter

which can be varied to maximize the redundancy parameter

N
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in order to obtain a grating with the best spectral uniformity.

The irradiance I( x) can be written as

N-1
2

I(x)= |2+ Z I anl J + 2 cos (27m2Nf x)
n=-(N-1)

Thus if q(x) has a rather uniform spectral density, it is clear that

as N —+ o that

Var {I(x)}
B2 {1}

-0  and thus q(x) - ela(x)

For fixed N, the free parameter value could be selected to make
Var {I(x)}

E® {1(x)}

case redundancy would be sacrificed in order to achieve diffraction

small rather than simply maximizing R In this

M
limited resolution performance.

4.2. GABOR'S SOLUTIONS

Gabor obtained even function solutions to equation system (6).
Noting the solution pattern that developed, he attempted to derive

a recurrence relation which would yield a higher order solution
N+1 N
sequence {a } from the solution sequence {an}
n=-(N+1) n=-N
The recurrence relation was formed by considering the new
terms introduced for equations I1 = 0 and 12 = 0 when the number
of grating orders increases from 2N+1 to 2(N+1)+1. It appeared

that to obtain a solution

{E-(Nﬂ)’ 2 B B B BN }
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from the lower order solution sequence {a_N, a-(N-‘l)’ v, aN},
it was only necessary to calculate a new DC term 2, from terms
aO and,a1 and 1et_a1 = aO a.nd__a}n_*_1 = an for n 2 1. The recurrence
relation obtained can be written as -

a 2 - |a 2

o fml T ey
20" g (7)
21m{a0a1*}

where Im{*} denotes the imaginary part of a complex number.

Solutions given by Gabor are listed below [20]. Note that a was

N
set equal to 1 instead of i.
0 N
N {a } ,| Notea =a_for {a }
n=-N n=-N
1 1 ik
2 1 ik -—;-kz
. 1.2 1, 2
3 1 ik --2-1{ -B-lk(k - 4)
. 1.2 1, 2 1, 4 2
4 1 ik "5 k -3 ik(k™ - 4) EZ(k - 24k + 16)

k is a real free parameter.

Solution sequences for N = 3 and 4 were obtained using recurrence
relation (7). If the above solution sequences are checked in Egs. (6),

3
it is found that although {an} given above satisfies Egs. (6),
4 n=-3
{an} does not. For N = 4, the frequency coefficient I, of
n=-4
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1,4 2
I, =55 (k +8k +16)

7 0 for real k

The class of solutions obtained by Gabor possess the 90 degree
phase property, arg {ana;?lﬂ} = +7/2. Although recurrence rela-
tion (7) does not yield a solution sequence for N > 3, solutions for

N >3 do exist and will be determined in Sections 4. 4 and 4.5,

Before obtaining even function solutions to Egs. (6), let us
regfess a step and consider two-dimensional redundancy modu-

lation and one-dimensional solutions where a N # a -

4.3. TWO-DIMENSIONAL REDUNDANCY MODULATION

Let x and y be Cartesian coordinates. Two-dimensional re-
dundancy modulation qz(x, y) can easily be attained by forming
the separable function qz(x, y) = q(x)q(y). The redundancy RM for
dg is then simply equal to the square of the redundancy for the
one-dimensional case. If qz(x, y) is not separable, the problem
of selecting dg such that lqz‘z has no low frequency speckle is
much more difficult. However, it is natural to ask if nonseparable
functions can be found with better redundancy characteristics than

separable functions. Consider the function

N
i} i i(nwx+mwy)
4o(Xs ¥) EZ a €

n, m=-N

Suppose a function qz(x, y) exists with the following characteristic:
All of the Fourier series coefficients of |qzl 2 are zero except the
DC term and the terms due to the interference of the two orders

d d . i
a_N, N an aN, N and the two orders a_N, N and aN’ N This
characteristic makes the spatial frequency of the diffuser noise a
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factor v2 greater than that attained with separable solutions.
Imposing this condition requires more equations than unknowns.
For example, such a condition results in 20 equations and 16
unknowns for N = 1, and 60 equations and 48 unknowns for N = 2 if
no assumptions about symmetry are made. It is therefore doubtful

that a nontrivial solution exists. Trivial solutions such as
{a_l’_l) a—l,l’ al,l, al,-l} ={1J 1, 1) l}

and all other a m = 0 can, of course, satisfy the above conditions.
If the frequency condition attained using separable functions is im-
posed for N = 1, this results in a nonlinear system of 16 equations
and 16 unknowns. If these conditions are relaxed, the number of
free parameters increases rapidly as N increases. Because of the
above difficulties, only separable functions will be considered in the
next section. Fortunately, there are also practical reasons for
considering separable functions since they are easily synthesized

by using two one-dimensional gratings in tandem with their lines

crossed.

4.4. GENERAL SOLUTIONS TO EQUATIONS (6)

Appendix I investigates general solutions to Eq. (6). It is shown
that considerable effort is required to obtain solutions for even small
values of N. For N equal to two, a two-dimensional solution space
results and a nonlinear system of equations must be solved using
numerical algorithms which require an initial guess. Fortunately,
one-dimensional even functions are easier to synthesize; and it
will be seen that with a modest cbmputer effort an even solution
sequence with R, near the maximum limit 2N+1 can be found for

N = 4,
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4.5. EVEN FUNCTION SOLUTIONS TO EQUATIONS (6)

With the even function assumption, a_ = an and the problem
of maximizing the redundancy parameter RM becomes tractable.

4.5.1. SOLUTIONS WHERE arg{ana;‘;ﬂ} = t7/2

First to be considered are the class of even function solutions,
with the 90 degree phase property arg{ anaﬁk_‘_l} = £7/2. The 90
degree phase property makes each of Egs. (6) represent the addi-
tion of collinear vectors. This together with the symmetry con-
dition a_ Ta greatly simplifies these equations. Since the solu-
tions given by Gabor are correct for N = 1, 2 and 3, these solutions
will simply be listed below. These solutions differ by a multiplic-

ative factor i from those listed earlier, since a . is set arbitrarily

N
equal to i for the new solutions to be developed in this chapter.
N
N {an} ) <where a_ =a, and arg{ana;;H} = ivr/2>
n=-N
1 {i, b N
. . 2
2 {i, b, -1 0.5bp%, .}
3 {i, b -1 0.5b_2, -0.125b (b2—4) .
* "R’ R’ R R ’

bR is a real number and represents the free parameter discussed

earlier

Solutions will now be obtained for N = 4, 5 and 6. As a shorthand

notation, let Eq. (N, k) denote equation

k

N-
Z ana;+k =0
=-N

of the 2N - 1 Egs. (6). Relation (C) is defined below in order to

n
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reduce the work required for higher order solutions. In general,

Egs. (N, 2N-1), (N, 2N-2), ... (N, N+1) are equivalent
to Egs. (1, 1), (2,2), ... (N-1, N-1)

Equations (6) will now be solved for N = 4. Using Relation (C)
4
{a } becomes
n
n=-4
{i, b, -i 0.5b_2, d
E R, k]

R R,leI,....}

All variables such as bR’ dR’ and eI are understood to be real in

the ensuing discussion.

_ 4
Eq. (4,4) = € = —deR - 0.125 bR

Eq. (4, 3) is satisfied because of symmetry conditions.

2 2 2
-— - =
Eq. (4, 2) = dR + 2deR bR € bR 0

Solving Eqgs. (4, 4) and (4, 2), d_ and e_ become

R R
) 1/2 -1/2. 3
dplbg) = (-1 2 /by + 0.5(-1 227 /)b
) 1/2,. 2 -1/2.. 4
efbp) = (1 F2 /b "+ 0.5(0.75 727 /b

The solution sequence for N = 4 is thus

. . 2 .
{i, bps -10.5bp%, dp(bp), 1eI(bR),....}
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Next to be considered, is the solution sequence

5

{fa}  ={a b c d et e dc b a
n=-95

Let the subscripts R and I denote the real part and the imaginary

part respectively of a complex sequence term. Using Relation (C),
5
{a} becomes
n
n=-95

{1, bgs -1 0.5 sz, dp, -i(bpdp +0.125 bR4), fps vvee }

Equations (5, 5), (5, 3), and (5, 1) are satisfied because of sym-

metry conditions.

4
Eq. (5, 4)=>-2(bpdp + 0.125 bp") + 2bfo

2bd +O.125b4 2

+ +
bR(RR R)dR

=0

After simplifying the above two equations, d_ and f_ can be

_ R R
obtained as a function of bR by solving the equations below.
3 2 2 2 4
- - + + 0.
dR 2deR bR (2+1.25 bR 0.125 bR )dR

3 4

6
- -1+ + =
bp (-1 +0.125b, " +bp /64) = 0

= - + - + -

2
R )

It is seen that the amount of work required to obtain a solution

increases rapidly as N increases. Finally, the solution
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N

sequence {an} will be considered for N = 6. After applying
n=-N

Relation (C), this sequence becomes

{1, bps =1 0.5 sz, dps -i(bpdy +0.125 bR4), f

After considerable work, the equations below which express the

sequence terms as functions of bR are obtained. Let

b + b +—=b_ +=bD

., 3(_8 12,3 10, 21 8 5 6
€0~ °r \ 7096 °Rr 128 "R 128 "R ~ B °R

. 4(3_ 8. 9. 6. 21. 4 2
¢, = by <6‘4‘ R T3 PR T3 PR +9.5va+1o>

i 4 2
¢y = by <§ZbR +1g bg *8.25by +29by +24>
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2
i +
Then if 2d + bp(2+bp") # 0,

2., 2 4 4[ 4]
- + - + -
f =( L5 b )dp™ +bp(2 - 0.75 by )dp + by 0.25 (5/64)bR
R 2
+ +

2dp +bp(2+ by )

=—bf-05b2(bd +0125b4)-05d2

&7 °RR™°PR VRRT R 2 %R
2

) = 0.

No solution exists if 2dR + bR(2 +b

R

It was shown in Chapter 3 that the redundancy parameter

N
2
) e
RM z n=—1\}f where M =1, 2, ...
2
mix 2 Ian+jl
j=1

is a useful measure of the spectral density uniformity of periodic

-1
functions. The parameter M = 100 I (I -1 . ) where
5 max '‘max min
I(x) = ‘q(x)‘ is a measure of the high frequency fringe modulation
term. The percent modulation A = 100 (I +1 . )_1(1 -
max min max

| Imin) equals M(2 - M)—1 for simisoidal modulation. The redundancy
parameters Rl’ RZ"" . R[N/2]+1 and the modulation parameter

M were plotted in Figs. 4-1 through 4-5 as a function of BR = bR
for each of the solutions above using a digital computer. The
redundancy and corresponding modulation characteristics are
adjacent to one another. The parameter b, was varied from -4

R
to 4 in 0,01 increment steps. The computer program which plotted
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these characteristics also determined the solution sequence
N
{an} which maximized Rl' These results are tabulated in
n=-N '
Section 4.5.3. It is not necessary to vary bR over a very large
interval in order to determine which values maximize RM. For

-N| = 1 and a_N+1 = bR’ R1 can never exceed

2N - 0. 875 if |le > 4. It is sometimes necessary to examine the

example, since la

functional dependence of the sequence coefficients in order to mini-
mize this interval, however. The K roots from solutions involving
K-th order polynomials were stored in K different storage arrays.
The discontinuities and lack of symmetry for some of these figures
is due to a cross over of roots during array assignment. Arrays
with very low redundancy were not plotted. Since the functional
relationship of the sequence coefficients reveal that R, and M are

M

even functions of bR’ negative values of b, could have been omitted.

The next section shows that it can be advaitageous not to retain the
functional relationship of the coefficients. Since Figs. 4-1 through
4-5 show that R1 is well below the maximum limit 2N + 1 for

N=2, 3, ... 6, the condition arg{ana;-';+1} = +7/2 will be removed
in order to see if R1 can be increased. It will be seen later, how-
ever, that functions with the 90 degree phase property are somewhat

easier to synthesize.
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4.5.2. GENERAL EVEN FUNCTION SOLUTIONS
Although added complexity results if the 90 degree phase
condition is not imposed, significantly higher redundancy can

be attained.

Let subscripts R and I again denote the real and imaginary

parts respectively of a complex sequence term. Again consider

N
the solution sequence {a } to Egs. (6), wherea =a and
n -n n
n=-N
1
a =i, ForN=1, if {a } ={i, b, i}, Eq. (1, 1)=>b, = 0.
-N o1 I

For N = 2, after applying Relation (C) the solution sequence be-
. . : _ 2
comes {i, bR’ c, bR’ i}, Eq. (2, 2)==>cI =-0.5 bR , and
Eq. (2, 1) @cR = 0 if bR #£0. This is the same solution as before,

since arg{ana;i‘l_l_l} = #(7/2). For N = 3 the solution sequence sim-

2

plifies to {i, b -10.5by", d, ...} if Relation (C) is employed.

R’ °R
Eq. (3, 3)=>d, = -bpcp.

the solution sequence

This result together with Eq. (3, 1) yield

3 1/2
_ 1. 1/2 2
{an} AR bpot 37 "bp(l+0.25b.")
n=-3
2 2
- - + 0.
10.5bp%-bp(1+0.5b."%)
1/2
CL1/2. 2 2
+ =
Fil bR (1 +0.25 bR ) I where a_ “a,

For N = 4, Relation (C) reduces the solution sequence to

4
I . 2 )
{an}n=_4 {i, bR’ cg -1 0.5 bR s dR - 1bRcR, €, «...}
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Appendix II explains the manner in which the remaining equations
were solved. A function labeling technique incorporated into the
computer program eliminated some very tedious algebra. A
computer search which maximized R1 resulted in a solution se-
quence with an R, of 8.49. Since R

1 1
N = 4, this is a very encouraging result. A grating with 9 orders

is bounded above by 9 when

should be quite suitable for a high density storage system since
Chapter 3 showed that the number of orders must be limited for

this type of system.

The redundancy characteristics for the principle roots to
Egs. (6) for N = 3 and 4 are given in Figs. 4-6 and 4-7. Removing
the 90 degree phase condition increased the maximum value of R1

from 4.64 to 5.3 for N = 3, and from 4.99 to 8.49 for N = 4. 'The

max {Rl}
upper bound for R1 is 2N + 1. Note that SNT 1 increased from
0.75 to 0.94 when N increased from 3 to 4. It is logical to ask if

max {Rl}

2N +1
III shows that maximizing R1 for N > 4 is a very difficult task.

will approach unity as N is further increased. Appendix

4.00

Figure 4-6. Redundancy and Modulation Characteristics for N = 3.
The Symbols 0 and A& Denote R1 and R2 Respectively.
-1

M=100(I -1 . )I
max min’ max
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Figure 4-7.
The Symbols 0, A, and + Denote Rl’ R2, and R3 Respectively.
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4.5.3. SOLUTION SUMMARY

N
Table 4-1 lists even function solutions {an} to Egs. (6)

which maximize the redundancy parameter Rl' R

Let FT{* } denote the Fourier transform operation. Figs.
4-8(a) to 4-8(g) show the coefficients |21(n/X)|2 = |an|2 and the
envelope | FT{rect(x/X)q(x)} |~2 for entries B through H of Table
4-1, Figure 4-8(h) shows the spectral density corresponding to
point BR = 1 of Fig. 4-4(c). In this examplé R1 is not maximum,

but the modulation parameter M is quite small.
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4.6. SYNTHESIS OF PERIODIC MODULATION WITH OPTIMUM
REDUNDANCY CHARACTERISTICS
The first method of synthesis to be considered is that suggested
by Gabor [20]. Here, the complex modulation q(x) is synthesized
by constructing a special filter with an amplitude transmittance

proportional to

i2wnf x
o)

Such a filter is constructed using two distinct filters with amplitude

transmittances of tl(x) and tz(x) respectively. These functions are

defined below:
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N 127rnfox
tl(x) = ,. a e
n=-N
N-1 1/2
= |2+ la‘ ]2 + 2 cos (2w2Nf x)
n o
n=-(N-1)
and
- 1P(x)
t2(x) e
where
N 121rnfO
P(x) = arg Z a e
n=-N

Two such filters in tandem produce the complex amplitude trans-
mittance q = tltz. The first filter has a real amplitude transmittance
and can be produced photographically. The second filter is a pure
phase function with a period 2N times as coarse as that of t;» and
can be produced using a ruling engine. New technologies being
developed, such as electron beam thermoplastic recorders, may
provide other means of synthesizing t2.
The self-imaging characteristics of periodic modulation make
it unnecessary to place the two filters in contact with one another.
This property should also prove useful when two such filters are
crossed at right angles to provide two-dimensional redundancy.

The phase profiles for t, representing entries B through H of Table

2
4-1 are given in Figs. 4-9(a) to 4-9(g). Computer program logic

produced a smooth curve for P(x) instead of P(x) modulo 27. The
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Fast Fourier Transform algorithm [22] was used to perform the
N i2mnf x

complex summation X a e © efficiently for a large number

n=-N
of points. Figure 4-9(h) represents the phase profile for the solution
sequence whose spectral density is shown in Fig. 4-8(h). For this
particular example, Rl is not maximum but the fringe modulation M
is only 3 percent. The triangular profile shown in Fig. 4-9(d) should

be one of the simplest to fabricate.

The second synthesis technique to be considered requires optical
spatial filtering, and is most applicable for solution sequences with

the property arg{ana;ii } = x7/2. Some special properties of this

+1

class of solutions will now be given. Consider functions of the form
N 127rnfox

q(x) = 2 a® with period X = 1/fo, and let |q(x)| = m(x)

n=-N
N
and arg{ q(x)} = P(x). If q(x) is even and {an} satisfies Eqgs. (6),
n=-N

then m(x) and P(x) are both even and m(x) has a period of length
X/(2N). Let a = fR(n) + ifI(n) and suppose P(x + X/2) = -P(x).
Since
m(x + X/2) cos [ P(x + X/2)] = m(x) cos [ P(x)]
and
m(x + X/2) sin [ P(x + X/2)] = -m(x) sin [ P(x)]

fR(n) = 0 for n odd and

fI(n) = 0 for n even or zero
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i6
It is thus clear that g(x) or e ° d(x) has the property arg{ana;:;ﬂ} =
7 /2 if 90 is a constant. Note that the phase plots in Fig. 4-9 satisfy

the equation
a(x + X/[2) = -o(x)

where

X/ 2
a(x) = P(x) - (1/X) S / P(x) dx
X/ 2

The sinusoidal phase function eIA cos(wx)

also has this 90 degree
phase propertyand canbe fabricated rather easily using photographic
bleaching techniques. Thus, some of the solutions to Egs. (6) can
be formed by using a simple discrete optical filter to properly weight

the Fourier series coefficients of a sinusoidal phase grating. As a
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iA cos (wx)

simple example, consider the function e where the constant

A is chosen so that the lower order Fourier series terms are
al(x) = -0.097+10.942 cos (wx) - 0.92 cos (2wx) - 1 0.47 cos (3wx)
The DC term of al(x) can be removed by spatial filtering to yield

2(x) = al(x) +.0.097

and hence,

|azpq\2:=o.977-ko.001 cos (2wx) - 0.02 cos (4wx) + 0.11 cos (6wx)

This particular example was achieved experimentally.

N
. . . inwx
A third method of synthesis for functions g(x) = ; a e
n=-N

with the property arg{ ana;1;+l} = iw/z becomes evident if the Fresnel

free space transfer function H(fX, fy) is examined.

Lima(f 2+t 2
x 'y

where fX and fy are spatial frequencies for the x and y coordinates
respectively of a Cartesian coordinate system. For separable functions

only a one-dimensional transfer function need be considered. For
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periodic functions with period X = 1/fo, fX = nfo and H becomes

(kg -i7r7&zf02n2
H(nfo) =e e

Now if nkzofoz = 2nJ - m/2 where J is an integer,

-ikzo
e H(nfo)

-1 if n is odd

1 if n is even or zero

The Fresnel diffraction pattern at a distance Z from g(x) becomes

1]
M 1
¥
o]
=
=
—h
O\-/
I
[y
=
™o
3
Lt
w

a(x, z )

i6
where f(x) is a real function and e ©isa complex constant. Since

f(x) is real, a filter with amplitude transmittance

_ f(x) - min {f(x)}
tx) = — 1(x)f - min {f(x)s

can be fabricated photographically. Then if an optical filter is used
to remove the bias term -min {f(x)} [max {f(x)} - min {f(x)} ]_1, the
complex modulation g(x) is achieved by imaging a plane a distance

zo from the filter.

Optical filtering noise will limit the quality of the illumination

obtained by the second and third synthesis methods.
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4.7. DIFFRACTION EFFICIENCY CONSIDERATIONS

In order to record holograms with high diffraction efficiency in
Fourier transform holography, it is necessary that | FT{q(x)} |2 be
rather uniform. This condition can be met if the solutions given in
Table 4-1 are used in tandem with a coarse lens array to obtain a
new modulation function g(x) = ql(x)qz(x); where ql(x) is a solution
to Egs. (6) such as Entry F of Table 4-1, and qz(x) is a lens array

with a period X, large enoygh to satisfy the equations given below.

2

FT{ql(X)} = z ané < fX - —XPI >

fX is a spatial frequency variable. If

FT{qZ(X)} X rect (X f )
then
2 lex
| FT{q, (x)ay(x)} | ~ rect INF1

An experiment illustrating this concept was performed using

the parameters listed below

. 2Tnx
i

_ 1 . .
ql(x) = Z ane , where {an} ={i, 1, i} and

X, =1/(16) mm

qz(x) = qA(x) of Chapter 2 where X_, = 0.58 mm and Q = 9. 28.

2
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Figures 4-10(a) and 4-10(b) show .FT{ql} 12 and iFT{qlqz} 12
respectively at the Fourier transform plane of a bandlimited coherent
imaging system. The imaging system was the same as that shown

in Fig. 3-2 and had bandwidth (4 - e)/X1 where € << 1. Figures
4-11(a) through 4-11(d) show the image plane of the system when g(x)
equals 1, qz(x), ql(x), and ql(x)qz(x) respectively. In each of these
figures, two wires were placed between the imaging system and image
plane. These two wires introduce two dark horizontal lines when

q(x) = 1. The upper and lower wires were 0.235 mm and 0.112 mm
respectively in diameter, and were placed at the respective distances

5.5 cm and 10.0 cm from the image plane.

(a) Spectral Density of a4, (b) Spectral Density of SR

Figure 4-10. Irradiance at System Fourier Transform Plane
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Figure 4-11. Irradiance at the Image Plane
with Two Wires Introduced as Artifacts
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Figures 4-11(c) and 4-11(d) show that the addition of a coarse lens
array can increase noise dispersion uniformity and thus aid the noise
suppression process if the focal length of each lenslet is small rela-
tive to the scatterer to image distance. If the period of the lens array
is chosen sufficiently large, its self-imaging distance will-be large
relative to the optical system dimensions. Geometrical optics pre-
dicts that a choice of negative lenslets for dg is sometimes necessary
to assure that d does not reduce noise suppression at some points in

the system.

4.8. INCREASING THE REDUNDANCY OF PERIODIC MODULATION
BY REDUCING THE SPECKLE FREQUENCY REQUIREMENTS
In the previous sections the low frequency speckle noise was mini-
mized by imposing Egs. (6) which require that each of the low frequency
coefficients Il’ 12, .. 'IZN-l be zero for a grating with ZN + 1 orders.
Solutions were then found which optimized the spectral density uni-

formity. It was seen that solutions with good spectral uniformity exist.

For cases where solutions with good redundancy characteristics
do not exist, it is logical to increase the dimension of the solution

space to J by requiring that only the first 2N - J of the coefficients
2N-1

{Ih} be zero, where J > 1. Of course, if J is not small relative
n=1

to 2N, the storage density of an optical system will be significantly
reduced. An alternative approach is to impose spectral uniformity by

requiring that R, equal 2N + 1. Equations (6) can then be studied to

see if J can be r;ade small. A group at RCA reported work which is
related to this latter approach [23]. They examined the Fresnel dif-
fraction pattern generated by a pinhole array. The characteristics of

a one-dimensional pinhole array are derived in Appendix IV. Computer
calculations reported in this appendix show that the redundancy char-

acteristics of a pinhole array are not optimum for high density storage

systems.



5
CONCLUSIONS

Chapter 1 investigated the limitations that laser speckle places
on the image quality and resolution of coherent imaging systems.
Mixed-integration processing which reduces the speckle fluctuation
can improve image contrast. Mixed integration can be achieved
efficiently using a spinning lens array. An important result given
in Section 1. 3.2 was the equivalence between noncoherent techniques
which continuously sample a signal's spectrum and a simple iryrad-
iance filter. This result helps clarify what performance can be
expected from various mixed integration methods. An analysis of
speckle reduction techniques led to the moving grating mefhod
which proved to be an effective means for introducing redundancy
into coherent spatial filtering systems. Since optical artifact noise
can be suppressed in coherent optical filtering systems by reducing
tﬁe source coherence, it is advantageous that the source coherence

not exceed the system requirements.

Most noncoherent noise suppression techniques are not useful
for diffraction limited holographic storage systems. In order to
coherently image continuous-tone transparencies, special types of
bandlimited redundancy modulation must be considered. Redundancy
modulation must satisfy two constraints. First, the modulation
must be free of low frequency speckle. Second, the spectral den-
sity of the modulation must be rather uniform. There gxist two
mechénisms for optical noise suppression. One mechanism is to
increase the spatial bandwidth of the noise irradiance. The prin-

ciple mechanism for noise suppression is to disperse optical noise

117
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more uniformily at the image plane. Quadratic phase modulation
has good redundancy characteristics if the space bandwidth param-
eter Q is much greater than ten. Computer results and experi-
mental evidence were presented which show the redundancy char-

acteristics of quadratic phase modulation as a function of Q.

Periodic functions are the most promising form of redundancy
modulation for the high density storage of continuous-tone transpar-
encies. The noise suppression performance of this class of functions
was analyzed in terms of a family of redundancy parameters. When
speckle-free periodic redundancy illumination is perturbed by a sys-
tem artifact, some low frequency speckle is introduced. Limits on
the low frequency speckle modulation were established which show
how speckle modulation is related to the spectral uniformity of the
redundancy illumination. Recently a system was described in the
literature which used a pinhole array filter to generate redundancy
illumination [23]. Appendix IV discusses the redundancy character-
istics of a pinhole array illumination and shows that this type of mod-
ulation is not optimum for the high density storage of continuous-tone
transparencies. A computer program developed to investigate self-
imaging characteristics on an arbitrary periodic function from its

complex Fourier series coefficients was used in this analysis.

A system of nonlinear equations must be solved in order to de-
termine periodic modulation which is free of low frequency speckle.
For the class of even function solutions obtained by Gabor, a 90
degree phase difference existed between adjacent Fourier seriés co-
efficients. The recurrence relationship given by Gabor to generate
higher order solutions is not valid for a function with more than 7
nonzero Fourier coefficients. Solutions do exist, however, and have
been calculated for functions with up to 13 nonzero orders. Numer-
ical techniques were required to solve these equations. The spectral

characteristics of the solutions considered can be predicted from
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the redundancy parameter plots. Although even function solutions
without the 90 degree phase conditioﬁ are more difficult to obtain,
more general solutions have better spectral uniformity and thus
higher redundancy. In particular, a 9 order grating defined by
entry F of Table 4-1 appears to meet quite well the redundancy re-
quirements of holographic microfiche SyStems which store con-
tinuous-tone transparencies. One method of synthesizing these
solutions is to directly fabricate a filter with the proper complex
amplitude transmittance. A computer program was developed to
plot the continuous phase function for a particular solution from its
Fourier series coefficients. For solutions with a 90 degree phase
difference between adjacent complex Fourier coefficients, two
indirect synthesis methods requiring a spatial filtering operation

were presented.

Redundancy modulation with good diffraction efficiency char-
acteristics can be obtained by using a coarse lens array in tandem
with a periodic grating solution. Experimental results demon-
strated that the addition of a lens array can improve the noise sup-

pression characteristics of this class of functions.
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APPENDIX I
GENERAL SOLUTIONS TO EQUATIONS (6)

N
Consider a solution sequence {an} to Egs. (6) of Chapter

n=-N
4 whena #a and N=1. If
-n’ “n

Egs. (6) imply that

Thus if

i6_
|ale

o
HI

the solution sequence

1 i, 260 |
{a } =<1, ‘ ale 2 ie he
n' __ !
n=-1 {

-

is obtained. When the two free parameters Ga and ' a, are set
equal to zero and one respectively, the sequence
1

{an} becomes {i, 1, i}
n=1

This particular sequence is an even function solution and can be
generated efficiently using the first three orders of a sinusoidal

phase grating [ 24].
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Next, consider a grating for N = 3, which has four nonzero

3
coefficients. If{an}n:-3 = {bl’ 0, b2’ 0, b3, 0, b4}, the maxi-
mum limit for R1 is 4. Since b2‘ can be set arbitrarily equal to 1,

equations system (6) consists of 4 equations and 6 unknowns. The
solution sequence
( g by ]
‘J - - a9 2 O’ 11 O, b 3 O’ - 9 %
1-|b |2 3 1-|b |2
3 3

for these equations has two free parameters: |b3| and arg {bS}.
It is clear that the maximum limit for R1 cannot be attained since
|b3| = 1 implies that |b1| and |b4| are equal to infinity.

Finally, consider the solution sequence {bl, by, bg, by, b5}
for N = 2. By setting b1 equal to 1 and by reducing equation

system (6) to 4 unknowns and 2 equations, this sequence becomes

b33 R 1
1, bzﬁ b3} 2 J 2 (
b¥ - b * - pbx
L by - by by - b3 |
where b2 and b3 must satisfy the complex equation
byl %, by %o
b% + b, b¥ + - =0 (8)
2 273 b -b 2 b, - b 212
(bg = by 37 Py

Suppose b2 =1+ i. After reducing Eq. (8) to a cubic equation,

the following roots are obtained:

b, = i, i(2 + 242), i(2 - 242)

One possible solution sequence is
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Laten
W

hH
1

3 Ch 1o _
o {1, 1+14, i, 1 -i, -1} where a Ib ..

The value of R1 for this sequence is 3.5. It will now be established

that no solution exists with R, equal to the maximum limit 5.

1
Suppose R, = 5. Then Ibzl = ‘bgl = 1, and the solution se-
quence becomes
{6 0 1(93-62) 193
J1 e 2 o 3 e e L
-193[ 1(63 - 292 ! -163 1(63—202)]
e (1 -e e l1-e
L

Since lb4\ and l b5l also must be unity, this requires that

=4 T
(65 - 26,) = + 3

2

It can be shown using Eq. (8) that this implies

2 cos (0, £7/3)=cos 6

2 72

and

2 sin (62 + 7/3) = sin 0,
A contradiction is now apparent since these equations imply 1 = 4.
The above examples have shown that obtaining general solutions
to Egs. (6) is difficult even if N is small. A computer search to
maximize R = must be over a two-dimensional parameter space.

M
The system of nonlinear equations differs for each point in the
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parameter space; and algorithms to solve these equations require
an initial guess. Fortunately, it will be seen that if a_ =a.a
more modest computer effort will result in a solution sequence

with R1 near the maximum limit 2N+ 1 for N = 4.



APPENDIX II
GENERAL EVEN FUNCTION SOLUTIONS FOR N = 4

The computation required for obtaining general even function

solutions to Eqgs. (6) when N = 4 is described here. Relation (C)
' 4
of Chapter 4 reduces the solution sequence {an} to
n=-4

. . 2 ) .
{i, bR, CR—10.5bR , dR-lecR, e,....}

As a shorthand notation, let Eq. (n, k) denote equaﬁon

N-k

aax* =0
Z n ntk

n=-N

of the 2N - 1 Egs. (6) of Chapter 4.

Eq. (4, 4)=ye = ~(bpdp + 0.5 ¢ 2 4 0.125 b5

R R R R
' 3
sz - + =
Eq. (4, 3)=3-2bpcp + 2bpep ZcR(dR+0.5bR) 0
and
2b_e_ + 2 d +05b3-b)=0
regr ¥ 2cgldg * 0.5 by R
Using € from Eq. (4, 4)
Eq. (4, 2)=>b_2(-1+ 1.5 c_ 2 +b.d_ +0.125b_") + 2b_d
q. (4, 2)=7bp "2 CR TPRYRT T R RR
+d2+2ce =0
R R R

126
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4 2
— + + 0. + 0.
Eq. (4, 1)=52bpep(1+bpdp +0.125 b, + 0.5 ¢ )

d,+0.5b 3 +2e_d_ =0

* 2cpldp r )t 2egdg

If dR = 0, it can be shown that R1

ignored in the programming described below. Assuming d

< 6, hence this case will be

R
differs from zero, the equations above reduce to the equation

The coefficients Z(n + 1) are defined in terms of the parameter
BR = bR by the algebraic steps in the subroutine COEFPN(BR, Z)

given below.

SUBROUTINE COEFPN(BR, Z)
DIMENSION Z(11)

BR2=BR*BR

BR4=BR2*BR2

BA1=BR2*(2. +BR2+0. 1875*BR4)
BA2=0. 5*BR2

AL=0.25*BR*(4. +BR2)
AL2=AL*AL

AL3=AL*AL2

C2=BR*(2.+BR2)
AC1=BR2¥(-1.+. 125%BRA4)
BCl=.5%BR2-2.

ACO0=-2, *BR*(1.+0. 5¥BR2+0. 125%BR4)
E1=3, *AL2+C2%2, *AT+AC1+BAl
E2=BA2+BCl

E12=E2+E1l

E22=E2*E2

E11=E1*El

PO=BA1*E11
P2=BA2*E11+BA1%2, *E12
P4=BA1*¥E22+2. *BA2*E12
P6=BA2*E22

F31=AL3+3. *AL*BAl
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G31=3. *AL*BA2
HO=F31+C2*%(AL2+BA1)+AL*AC]
H2=G31+C2*BA2+AL*BC1+ACO
QO=H0*H0

Q2=HO*H2%2.

Q4=-BR¥*H0%2, +H2*H2

Q6=-2. *BR*H?2

Q8=BR2

Z(1)=Q0-PO0

Z(2)=Q2-P2

Z(3)=Q4- P4

Z(4)=Q6-P6

Z(5)=Q8

RETURN

END

If the variable ZREAL denotes a positive real root of the

polynomial

4

n —
Z Zn+1w =0
n=0

then subroutine ZORDGN given below calculates the sequence
4

{a } where
n
n=-4

a = ZAR(n + 5) + iZAI(n + 5)

Choosing - 4 ZREAL instead of \|ZREAL for c, in this subroutine

would simply change the sign of a few of the sequence terms

ZAR(n) and ZAI(n).
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SUBROUTINE ZORDGN(BR, ZREAL, ZAR, ZAI, ZMOD)
DIMENSION ZAR(13), ZAI(13), ZMOD(13)
CR=SQRT(ZREAL)
BR2=BR*BR
BR4=BR2*BR2
AL=0.25*BR*(4. +BR2)
BA1=BR2*(2.+BR2+0. 1875%BR4)
BA2=0.5*BR2
DR=AL+SQRT(BA1+BA2*ZREAL)
EI=-(BR*DR+0. 5*ZREAL+BR4%*0. 125)
ER=-BR*(CR/DR)*(1l.+BR*DR+0. 5*BR2
1+0.125*BR4+0. 5*ZREAL)-CR
ZAR(1)=0
ZAR(2)=BR
ZAR(3)=CR
ZAR(4)=DR
ZAR(5)=ER
ZAI(1)=
ZAI(2
ZAX(
ZAI(
ZAI(5)=
DO 20 I=
ZAR(5+1
20  ZAI(5+1)=
DO 30 I=1,9
30 ZMOD(I)=ZAR(I)*ZAR(I) + ZAI(I)*ZAI(I)
RETURN
END

1.
0.

)
3)=-BR2%0. 5
4)=-BR*CR

5)=EI
1
)

i o

4
ZAR(5-1)
ZAI(5-1)

The main program used these subroutines to plot the re-
dundancy characteristics of solution sequences when BR was

varied from -4 to 4 in 0. 01 increment steps.

Appropriate program logic, in the form of a subroutine,
monitored all the conditions imposed in the algebraic steps above.
The solution sequence which maximized R1 was part of the output
data from the program. Finally, to assure that no errors were
made, an additional subroutine determined directly that each

sequence generated satisfied Egs. (6) of Chapter 4.



APPENDIX III
GENERAL EVEN FUNCTION SOLUTIONS FOR N =5

The difficulty in obtaining general even function solutions to
Egs. (6) for N greater than 4 is presented here. It will be shown
that iterative methods requiring an initial guess are necessary

to solve the system of nonlinear equations when N is 9.

)
After imposing Relation (C) of Chapter 4, {an} ' becomes
n=-95
2 2
: _io. . . + o,
{i, bp, eg -1 0.5bp", dp - ibpep, ep - i(bpdp + 0.5 ¢
+0.125 b %), £, + it }
. R ), R 11, .....

Egs. (5,5), (5,4),...(5,1) eventually reduce to a system of two

nonlinear equations and two unknowns. The two unknowns are CR
and dR, and the free parameter is bR'
and eR2 are functions of R and dR’ and are defined below in

order to reduce the burden of listing the two equations. Let

The variables a, 2z, eRl

- 2 4
a(bR, CR’ dR): deR+0.5 R +0.125 bR
2, 2 2 2
= -1+
z(bR, Cp dR’ a) = bR (e 1 bR cR )
+ b (2d +c2d - d,o)
RR""R R R R
2d
+a2—-—'—R(-a+0.5d 2)
bR R
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d
2 R
- + - —
eRl(bR’ CR’ dR) CR (\1 bR >

2/ 2 R
! + - — -
epo(Pps Cps dps 2) r \\‘1 bp b/ z

Then the system of two equations that must be solved provided

bR%Ois

// %2 2 \V\2 / %2 2
2/ R 3 | / 3 R
[ . + - - = [ + + -
era | PRT T by 2dp | = | ep, (2op b’ 2 -
R / R
\ N,
2 )
* “°R<'bR + 2bp +—b_>
R
. d 212
4 2\ °r%R ‘
+ : + -2 - -
bpCh <o 5bp +bpdp -2 - cp > ol
t

3 )
+0.5 +d_ |+
R 0 bR dR/' 2eRld‘R

1
N
0
=
o

2 2 2 -\
~a + 0. + 0. + 3
( a+0.5dp +0.5bgicpg * Cppy

=

2 2 3
~ — + + + +
5 CReR2 a/bReRl 20 bRCR CRdR 0.5 bR c

)



Once bR is chosen and these equations are solved, the remaining

orders can be determined from equations:

®R 7 ®R1 T ®R2
1 2 2 2
T o — - + +
fR bR< o O.5dR 0.5bR CR +CReR1
+ c_€ +0.5Db za
R°R2 R

3
= - + +
fI <bReRl + bReRz CRdR 0.5 bR CR>

Iterative methods such as Gauss-Seidel or Newton-Raphson must
be used to solve the remaining equations. Since such techniques
require an initial guess, the computer time and programming

effort to maximize R1 are very great.

The work required to maximize R,, can be reduced somewhat

M
if it is decided that the only solutions of interest are those where

RM is near the maximum limit. For example, R1 equals 2N + 1

if and only if bRZ, |c|, and |d| equal unity. Imposing this condition
cps dp) to either (£0.5Af3, £0.5) or

(0. 5'(3_, ¥ 0.5). If it is found that |f| is near 1, the values for

narrows the choice for (

(c suggested can be used as initial guesses for the iterative

d
R’ R)
techniques required to solve the two equation system. If interesting

solutions develop, b, can be varied slightly in order to maximize R

R 1
This approach should help reduce the programming effort, if
general even function solutions which maximize R

for N > 4.

L are required



APPENDIX IV
PINHOLE ARRAY CHARACTERISTICS

This appendix evaluates work performed by a group at RCA [23].
This group reported that a pinhole array with period X could gen-
erate redundancy illumination with period X/J where J is an integer.
It will be shown that this redundancy modulation is not optimum for

high density storage applications since J cannot exceed certain limits.

N
. . inwx .
Consider a grating q(x) = z a e with complex Fourier
N n=-N
coefficients {an} . . It can be shown that
n=-N
2N
2 _
IQ(X)l =1t Z 21 cos (2mnf x - ¢n)
n=1
where W = 27rf0
N-k
Ik ) Z anar‘1+k
n=-N
and
N-k !l
= Sk N
¢n arg Z anan+k (
n=-N J

133
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|
Plane Wave |
—
|
P |
Q(I,O) Q(xsz)

Figure IV-1. Plane Wave Incident on Grating q(x)

2
The Fresnel diffraction pattern |q(x, z) l will now be deter-
mined when a plane wave is incident on the grating q(x) as shown

in Fig. IV-1.

N -irAz(nf )2 .
_ b inwx
q(x, z) = X e ae

n
n=-N
N
—iﬂ?tz(nfo)
Since the new Fourier coefficients are now ane
n=-N
N-k iwszoz[nz-(n+k)2]
= A
Ik Z anan+ke
n=-N
N-k mfozz(znk)
= X
Ve ;
n=-N J
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N N
The investigators at RCA imposed the condition {an} = {1}

_ n=-N n=-N
This condition can be easily achieved experimentally using a low

duty cycle pinhole array. This means the redundancy parameter

) la )
n

R, = ————— is equal to 2N + 1 (the number of plane waves).
max { la_| }

The coefficient I. becomes

k
| -
| N-k iszo2znk
Ik= Z e
n=-N
Let
7r?tzf02 = TC
Then
z = c
2
MO

Note that if k << N and N becomes very large
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12ﬂk

% o
Ik R Z e Z 6( )
thus if ¢ = 1/J where J is a positive integer,

[ee]
Z 5(k - nd)
n:

o0
and
IkzO if k %nJ
Let
N-k 127r-k—;-
S = e
n=-N
If k #0,
1-2—”—1‘E 127rk(N ktl) -i27k T-\I-
J B J J
S \e -1 = e - e
and
sm[ 2ﬂk‘{N+—(l - R)H
I = lsl _ J 2
k sin —LS
("3)
If J =2, itis clear that I =Ofor k=1, 3, 5,... . Let N = L(J/2),

k
where L is a positive integer. Then if
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9 2N
1 1
= + ’ -
q< X, .y 5 > Iy ZIn cos (2mnf x ¢n)
0 n=1
= +
I0 2N+ 1

and

sinl:l?(l—k)}
I = if k > 0

k sin ﬂ—k-
(7)

Thus, in general, the condition I

X 0ifk # nJ does not
hold unless J = 2. It can easily be shown that J = 2 implies

53 = 1 = =
arg {ana;ﬁ_l} +7/2. For example, if N=3 and J = 2,

3
{8. } 2{'13 1: "i: 1: 'i: 1: -1}
n
n=-3
Since a_ = a and there are an odd number of sequence terms,

the condition I, = 0 if k # 2n is rather obvious. Consider the

case N = 3 where

3 3
{an} = {1}
n=-3 n=-3
Ifz =0,
5 6
m{lk}kﬂ ={1.71, 1.43, 1.14, 0.86, 0.57, 0.29}

If J=2orz=1/2, the self-imaging distance
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6
2 {1.} ={0., 1.43, 0., 0.86, 0., 0.29}

2N+ 1 k|

If J = 3 or z =0, 33, the self-imaging distance of the grating

6

2 _
SN {Ik}k=1 ={0., 0.29, 1.14, 0., 0.29, 0.29}

_ 2 _ : .
For J = 3, note that INT1 12 = 0.29 is rather large, since

1 i
Wr1 o L

Instead of demanding that R, equal the maximum limit 2N + 1,

1
0

consider a grating q(x) = rect (x/A) *Z §(x - n) where the

n=-oco

constant A < 1. The amplitude transmittance of g(x) is shown below.

-l
3
ad

Transmittance

t, = Amplitude

=

a i

—-IKL— 1 2

Figure IV-2. Amplitude Transmittance

Let RDC = 1/A be the reciprocal of the duty cycle of the function
q(x). If
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oc
INWwx .

x) = a e ' where w = 27t

q(x) z I o
n=-u«
then
a sinc 2 where sinc x = Sin 71X
x Si - =
n RDC X

This function is shown in Fig. IV-3.

-
.

sine(n/RDC)

— ‘._ RDC n

Figure IV-3. Sinc Function

If RDC is a positive integer, the number of nonzero orders
within the main lobe of the sinc function is 2 * RDC - 1. Suppose
that a low-pass optical filter is used to filter out all but the lowest:

2N + 1 orders generated by this grating. Now

N-k i27kn

Xaa*e J
k , n ntk

n=-N

—t
"
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if
1 9 2N
= + -
ql x, 5 | I0 Z ZIncos (27rnf0x ¢n)
JAL _
0 n=1

If 2N + 1 does not exceed 2 * RDC - 1, then

N N
{arg (a )} = {0}

T h=-N n=-N

and l anl decreases monitonically as lnl increases. Table IV-1
J

}  onRDC, J, and
k=1 v

the number of plane waves 2N + 1. It is seen that the condition

given below shows the dependence of {21k

Ik ~ 0 if k #nJ is more accurate if the Fourier series coefficients

are heavily weighted.
In Table IV-1
N
2
n
2]
n=-N
2
max { | a_ ' }
n

and g(x, z) has been normalized so that IO = 1.

In Table IV-1 it is shown that if RDC is adjusted so that R1
is one-half the maximum limit 2N + 1, the frequency of the diffuser

noise is about one-half the maximum limit 2Nf0.

1
Note that if Rl = 5(2N +1), (2* RDC - 1)~ 2N + 1. This
2
lan | '
implies that -0 as }n - N and thus the power spectrum
a
2]

of q is not uniform. Since RCA's actual system did not require
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a fringe pattern finer than the basic period of the pinhole array,
10 '

the coefficients {a_} used for their system were not heavily
n=-10
weighted.
A computer program which was written to evaluate the self-

imaging characteristics of gratings was used to obtain the numerical

data presented in this appendix.

Table IV-1. Pinhole Array Data

RDC (2% RDC -1) (2N+1) R J {21} forI_ =1
1 k 0
k=1
5 9 9 4,51 2 {o0., 1.63}
5 9 9 4,51 3 {0.0086, 0., 1.27}
5 9 9 4.51 4 {0.02, 0.02, 0.0096,
0.879}
5 9 9 4.51 5 {0.106, 0.023, 0.026,
' 0.216, 0.532}
5 9 9 4,51 6 {0.33, 0., 0., 0.059,
0.2933, 0.269}
5 9 9 4,51 8 {0.78, 0.03, 0.006, 0.04,
0.05, 0.11, 0.097,
0.024}
50 99 9 8.92 4 {0.001, 0.22, 0.31, 1.11}
11 21 21 9.93 9 {0.013, 0.004, 0.0029,

0.0043, 0.001, 0.0053,
0.013, 0.042, 0.86}

20 39 21 15.87 9 {0.06, 0.05, 0.004, 0.086,
0.020, 0.0034, 0.030,
0.21, 1.15}

40 79 21 19.50 9 {0.15, 0.082, 0.001,

0.087, 0.030, 0.001,
0.05, 0.261, 1.15}
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