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The goal of the International HapMap Project is to determine the common patterns of DNA sequence variation in the human genome
and to make this information freely available in the public domain. An international consortium is developing a map of these
patterns across the genome by determining the genotypes of one million or more sequence variants, their frequencies and the
degree of association between them, in DNA samples from populations with ancestry from parts of Africa, Asia and Europe. The
HapMap will allow the discovery of sequence variants that affect common disease, will facilitate development of diagnostic tools,
and will enhance our ability to choose targets for therapeutic intervention.

C
ommon diseases such as cardiovascular disease, cancer,
obesity, diabetes, psychiatric illnesses and inflammatory
diseases are caused by combinations of multiple genetic
and environmental factors1. Discovering these genetic
factors will provide fundamental new insights into the

pathogenesis, diagnosis and treatment of human disease. Searches
for causative variants in chromosome regions identified by linkage
analysis have been highly successful for many rare single-gene
disorders. By contrast, linkage studies have been much less success-
ful in locating genetic variants that affect common complex dis-
eases, as each variant individually contributes only modestly to
disease risk2,3. A complementary approach to identifying these
specific genetic risk factors is to search for an association between
a specific variant and a disease, by comparing a group of affected
individuals with a group of unaffected controls4. In the absence of
strong natural selection, there is likely to be a broad spectrum of
frequency of such variants, many of which are likely to be common
in the population. A number of association studies, focused on
candidate genes, regions of linkage to a disease or more large-scale
surveys, have already led to the discovery of genetic risk factors for
common diseases. Examples include type 1 diabetes (human
leukocyte antigen (HLA5), insulin6 and CTLA4 (ref. 7)), Alzheimer’s
disease (APOE)8, deep vein thrombosis (factor V)9, inflammatory
bowel disease (NOD2 (refs 10, 11) and also 5q31 (ref. 12)),
hypertriglyceridaemia (APOAV)13, type 2 diabetes (PPARG)14,15,
schizophrenia (neuregulin 1)16, asthma (ADAM33)17, stroke
(PDE4D)18 and myocardial infarction (LTA)19.

One approach to doing association studies involves testing each
putative causal variant for correlation with the disease (the ‘direct’
approach)2. To search the entire genome for disease associations
would entail the substantial expense of whole-genome sequencing
of numerous patient samples to identify the candidate variants3. At
present, this approach is limited to sequencing the functional parts
of candidate genes (selected on the basis of a previous functional or
genetic hypothesis) for potential disease-associated candidate vari-
ants. An alternative approach (the ‘indirect’ approach) has been
proposed20, whereby a set of sequence variants in the genome could
serve as genetic markers to detect association between a particular
genomic region and the disease, whether or not the markers
themselves had functional effects. The search for the causative
variants could then be limited to the regions showing association
with the disease.

Two insights from human population genetics suggest that the
indirect approach is able to capture most human sequence vari-
ation, with greater efficiency than the direct approach. First, ,90%
of sequence variation among individuals is due to common vari-
ants21. Second, most of these originally arose from single historical
mutation events, and are therefore associated with nearby variants
that were present on the ancestral chromosome on which the
mutation occurred. These associations make the indirect approach

feasible to study variants in candidate genes, chromosome regions
or across the whole genome. Prior knowledge of putative functional
variants is not required. Instead, the approach uses information
from a relatively small set of variants that capture most of
the common patterns of variation in the genome, so that any
region or gene can be tested for association with a particular disease,
with a high likelihood that such an association will be detectable if it
exists.

The aim of the International HapMap Project is to determine the
common patterns of DNA sequence variation in the human
genome, by characterizing sequence variants, their frequencies,
and correlations between them, in DNA samples from populations
with ancestry from parts of Africa, Asia and Europe. The project will
thus provide tools that will allow the indirect association approach
to be applied readily to any functional candidate gene in the
genome, to any region suggested by family-based linkage
analysis, or ultimately to the whole genome for scans for disease
risk factors.

Common variants responsible for disease risk will be most readily
approached by this strategy, but not all predisposing variants are
common. However, it should be noted that even a relatively
uncommon disease-associated variant can potentially be discovered
using this approach. Reflecting its historical origins, the uncommon
variant will be travelling on a chromosome that carries a charac-
teristic pattern of nearby sequence variants. In a group of people
affected by a disease, the rare variant will be enriched in frequency
compared with its frequency in a group of unaffected controls. This
observation, for example, was of considerable assistance in the
identification of the genes responsible for cystic fibrosis22 and
diastrophic dysplasia23, after linkage had pointed to the general
chromosomal region.

Below we provide a brief description of human sequence vari-
ation, and then describe the strategy and key components of the
project. These include the choice of samples and populations for
study, the process of community engagement or public consul-
tation, selection of single-nucleotide polymorphisms (SNPs), geno-
typing, data release and analysis.

Human DNA sequence variation
Any two copies of the human genome differ from one another by
approximately 0.1% of nucleotide sites (that is, one variant per
1,000 bases on average)24–27. The most common type of variant, a
SNP, is a difference between chromosomes in the base present at a
particular site in the DNA sequence (Fig. 1a). For example, some
chromosomes in a population may have a C at that site (the ‘C
allele’), whereas others have a T (the ‘Tallele’). It has been estimated
that, in the world’s human population, about 10 million sites (that
is, one variant per 300 bases on average) vary such that both alleles
are observed at a frequency of $1%, and that these 10 million
common SNPs constitute 90% of the variation in the popu-
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lation21,28. The remaining 10% is due to a vast array of variants that
are each rare in the population. The presence of particular SNP
alleles in an individual is determined by testing (‘genotyping’) a
genomic DNA sample.

Nearly every variable site results from a single historical muta-
tional event as the mutation rate is very low (of the order of 1028 per
site per generation) relative to the number of generations since the
most recent common ancestor of any two humans (of the order of
104 generations). For this reason, each new allele is initially
associated with the other alleles that happened to be present on
the particular chromosomal background on which it arose. The
specific set of alleles observed on a single chromosome, or part of a
chromosome, is called a haplotype (Fig. 1b). New haplotypes are
formed by additional mutations, or by recombination when the
maternal and paternal chromosomes exchange corresponding seg-
ments of DNA, resulting in a chromosome that is a mosaic of the
two parental haplotypes29.

The coinheritance of SNP alleles on these haplotypes leads to
associations between these alleles in the population (known as
linkage disequilibrium, LD). Because the likelihood of recombina-
tion between two SNPs increases with the distance between them, on
average such associations between SNPs decline with distance.
Many empirical studies have shown highly significant levels of
LD, and often strong associations between nearby SNPs, in the
human genome30–34. These strong associations mean that in many
chromosome regions there are only a few haplotypes, and these
account for most of the variation among people in those
regions31,35,36.

The strong associations between SNPs in a region have a practical
value: genotyping only a few, carefully chosen SNPs in the region
will provide enough information to predict much of the infor-
mation about the remainder of the common SNPs in that region. As
a result, only a few of these ‘tag’ SNPs are required to identify each of

the common haplotypes in a region35,37–39 (Fig. 1c).
As the extent of association between nearby markers varies

dramatically across the genome30–32,34,35,40, it is not efficient to use
SNPs selected at random or evenly spaced in the genome sequence.
Instead, the patterns of association must be empirically determined
for efficient selection of tag SNPs. On the basis of empirical studies,
it has been estimated that most of the information about genetic
variation represented by the 10 million common SNPs in the
population could be provided by genotyping 200,000 to 1,000,000
tag SNPs across the genome31,36,38,39. Thus, a substantial reduction in
the amount of genotyping can be obtained with little loss of
information, by using knowledge of the LD present in the genome.

For common SNPs, which tend to be older than rare SNPs, the
patterns of LD largely reflect historical recombination and demo-
graphic events41. Some recombination events occur repeatedly at
‘hotspots’30,42. The result of these processes is that current chromo-
somes are mosaics of ancestral chromosome regions29. This explains
the observations that haplotypes and patterns of LD are shared by
apparently unrelated chromosomes within a population and gen-
erally among populations43.

These observations are the conceptual and empirical foundation
for developing a haplotype map of the human genome, the
‘HapMap’. This map will describe the common patterns of vari-
ation, including associations between SNPs, and will include the tag
SNPs selected to most efficiently and comprehensively capture this
information.

The International HapMap Consortium
An initial meeting to discuss the scientific and ethical issues
associated with developing a human haplotype map was held in
Washington DC on 18–19 July 2001 (http://www.genome.gov/
10001665). Groups were organized to consider the ethical issues,
to develop the scientific plan and to choose the populations to

Figure 1 SNPs, haplotypes and tag SNPs. a, SNPs. Shown is a short stretch of DNA

from four versions of the same chromosome region in different people. Most of the DNA

sequence is identical in these chromosomes, but three bases are shown where

variation occurs. Each SNP has two possible alleles; the first SNP in panel a has the

alleles C and T. b, Haplotypes. A haplotype is made up of a particular combination of

alleles at nearby SNPs. Shown here are the observed genotypes for 20 SNPs that

extend across 6,000 bases of DNA. Only the variable bases are shown, including the

three SNPs that are shown in panel a. For this region, most of the chromosomes in a

population survey turn out to have haplotypes 1–4. c, Tag SNPs. Genotyping just the

three tag SNPs out of the 20 SNPs is sufficient to identify these four haplotypes

uniquely. For instance, if a particular chromosome has the pattern A–T–C at these

three tag SNPs, this pattern matches the pattern determined for haplotype 1. Note that

many chromosomes carry the common haplotypes in the population.
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include. The International HapMap Project (http://www.hapmap.
org/) was then formally initiated with a meeting in Washington DC
on 27–29 October 2002 (http://www.genome.gov/10005336). The
participating groups and funding sources are listed in Table 1.

DNA samples and populations
Human populations are the products of numerous social, historical
and demographic processes. As a result, no populations are typical,
special or sharply bounded44,45. As most common patterns of
variation can be found in any population46, no one population is
essential for inclusion in the HapMap. Nonetheless, we decided to
include several populations from different ancestral geographic
locations to ensure that the HapMap would include most of the
common variation and some of the less common variation in
different populations, and to allow examination of various hypoth-
eses about patterns of LD.

Studies of allele frequency distributions suggest that ancestral
geography is a reasonable basis for sampling human popu-
lations44,47,48. Pilot studies using samples from the Yoruba, Japanese,
Chinese and individuals with ancestry from Northern and Western
Europe have shown substantial similarity in their haplotype pat-
terns, although the frequencies of haplotypes often differ31,44. Given
these scientific findings, coupled with consideration of ethical,
social and cultural issues, these populations were approached for
inclusion in the HapMap through a process of community engage-
ment or consultation (see Box 1).

The HapMap developed with samples from these four large

populations will include a substantial amount of the genetic
variation found in all populations throughout the world. The goal
of the HapMap is medical, and the common patterns of variation
identified by the project will be useful to identify genes that
contribute to disease and drug response in many other populations.
Samples from several other populations are being collected for
studies that will examine how similar their haplotype patterns are to
those in the HapMap. If the patterns found are very different,
samples from some of these populations may be genotyped on a
large scale to make the HapMap more applicable to them. Further
follow-up studies in other populations, small and large, are likely to
be undertaken by scientists in many nations for common disease
gene discovery.

The project will study a total of 270 DNA samples: 90 samples (see
Supplementary Information, part 1) from a US Utah population
with Northern and Western European ancestry (samples collected in
1980 by the Centre d’Etude du Polymorphisme Humain (CEPH)49

and used for other human genetic maps, 30 trios of two parents and
an adult child), and new samples collected from 90 Yoruba people in
Ibadan, Nigeria (30 trios), 45 unrelated Japanese in Tokyo, Japan,
and 45 unrelated Han Chinese in Beijing, China. All donors gave
specific consent for their inclusion in the project. Population
membership was determined in ways appropriate for each culture:
for the Yoruba by asking the donor whether all four grandparents
were Yoruba, for the Han Chinese by asking the donor whether at
least three of four grandparents were Han Chinese, and for the
Japanese by self-identification. The CEPH samples are available
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from the non-profit Coriell Institute of Medical Research (http://
locus.umdnj.edu/nigms/); cell lines and DNA from the new samples
will be available from Coriell in early 2004 for future studies with
research protocols approved by appropriate ethics committees. It is
anticipated that other researchers will genotype additional SNPs in
these samples in the future, and that these data will continuously
improve the HapMap.

These samples will have population and sex identifiers without
information that could link them to individual donors. As the
goal of the project is solely to identify patterns of genetic variation,
no medical or other phenotypic information will be included.
About 50% more samples were collected than will be used, so
that inclusion of a sample from any particular donor cannot be
known.

Samples of 45 unrelated individuals should be sufficient to find
99% of haplotypes with a frequency of 5% or greater in a popu-
lation. Studies of LD can use random individual samples, trios or
larger pedigrees; each design has advantages (ease of sampling) and
disadvantages (decreasing efficiency with increasing numbers of
related individuals). Analysis of existing data and computer simu-
lations suggested that unrelated individuals and trios have con-
siderable power for estimating local LD patterns. The trios will
provide useful information on the accuracy of the genotyping
platforms being used for the project.

Choice of SNPs
A high density of SNPs is needed to describe adequately the genetic
variation across the entire genome. When the project started, the
average density of markers in the public database dbSNP (http://
www.ncbi.nlm.nih.gov/SNP/)50 was approximately one every kilo-
base (2.8 million SNPs) but, given their variable distribution, many
regions had a lower density of SNPs.

Further SNPs were obtained by random shotgun sequencing
from whole-genome and whole-chromosome (flow-sorted)
libraries51, using methods developed for the initial human SNP
map52, and also by collaboration with Perlegen Sciences36 and
through the purchase of sequence traces from Applied Biosystems53

for SNP detection (see Supplementary Information, part 2). One
useful result of this search for more SNPs is the confirmation of
SNPs found previously. SNPs for which each allele has been seen
independently in two or more samples (‘double-hit’ SNPs) have a
higher average minor allele frequency than do ‘single-hit’ SNPs28.
This leads to substantial savings in assay development. On 4
November 2003, the number of SNPs (with a unique genomic
position) in dbSNP (build 118) was 5.7 million, and the number of
double-hit SNPs was over 2 million. By February of 2004, 6.8
million SNPs (with a unique genomic position) are expected to
be in dbSNP and available for the project, including 2.7 million
double-hit SNPs.

As the extent of LD and haplotypes varies by 100-fold across the
genome30–32,34,35, a hierarchical genotyping strategy has been
adopted. In an initial round of genotyping, the project aims to
genotype successfully 600,000 SNPs spaced at approximately 5-kilo-
base intervals and each with a minor allele frequency of at least 5%,
in the 270 DNA samples. Priority is being given to previously
validated SNPs, double-hit SNPs and SNPs causing amino-acid
changes (as these may alter protein function). When these geno-
typing data are produced (by mid-2004; see below for details of data
release), they will be analysed for associations between neighbour-
ing SNPs. Additional SNPs will then be genotyped in the same DNA
samples at a higher density only in regions where the associations
are weak. Further rounds of analysis and genotyping will be carried
out as required. It is expected that more than one million SNPs will
be genotyped overall. This hierarchical strategy will permit regions
of the genome with the least LD to be characterized at densities of up
to one SNP per kilobase, maximizing the characterization of regions
with associations only over short distances.

Genotyping
Each genotyping centre is responsible for genotyping all the samples
for all the selected SNPs on the chromosome regions allocated
(Table 1). Among the centres, a total of five high-throughput
genotyping technologies are being used, which will provide an
opportunity to compare their accuracy, success rate, throughput
and cost. Access to several platforms is an advantage for the project,
as a SNP assay that fails on one platform may be developed
successfully using another method in order to fill a gap in the
HapMap. All platforms will be evaluated using a common set of
performance criteria to ensure that the quality of data produced for
the project meets a uniformly high standard.

Genotype quality is being assessed in three ways. First, at the
beginning of the project, all centres were assigned the same
randomly selected set of 1,500 SNPs for assay development and
genotyping in the 90 CEPH DNA samples being used for the project.
Genotyping centres produced data that were on average more than
99.2% complete and more than 99.5% accurate (as compared to the
consensus of at least two other platforms). Second, every geno-
typing experiment includes samples for internal quality checks, with
each 96-well plate containing duplicates of five different samples,
and one blank. In addition, the data from trios provide a check for
consistent mendelian inheritance of SNP alleles. For all the popu-
lations, the data from the unrelated samples provide a check that the
SNPs are in Hardy–Weinberg equilibrium (a test of genetic mating

Box 1
Community engagement, public consultation and
individual consent

As no personally identifiable information will be linked to the samples,
the risk that an individual will be harmed by a breach of privacy, or by
discrimination based on studies that use the HapMap, is minimal.
However, because tag SNPs for future disease studies will be chosen
on the basis of haplotype frequencies in the populations included in
the HapMap, the data will be identified as coming from one of the four
populations involved, and it will be possible to make comparisons
between the populations. As a result, the use of population identifiers
may create risks of discrimination or stigmatization, as might occur if a
higher frequency of a disease-associated variant were to be found in a
group and this information were then overgeneralized to all or most of
its members64. It is possible that there are other culturally specific risks
that may not be evident to outsiders65. To identify and address these
group risks, a process of community engagement, or public
consultation, was undertaken to confer with members of the
populations being approached for sample donation about the
implications of their participation in the project66,67. The goal was to
give people in the localities where donors were recruited the
opportunity to have input into the informed consent and sample
collection processes, and into such issues as how the populations
from which the samples were collected would be named. Community
engagement is not a perfect process, but it is an effort to involve
potential donors in a more extended consideration of the implications
of a research project before being asked to take part in it68.
Community engagement and individual informed consent were
conducted under the auspices of local governments and ethics
committees, taking into account local ethical standards and
international ethical guidelines. As in any cross-cultural endeavour, the
form and outcome of the processes varied from one population to
another. A Community Advisory Group is being set up for each
community to serve as a continuing liaison with the sample repository,
to ensure that future uses of the samples are consistent with the uses
described in the informed consent documents. A more detailed article
discussing ethical, social and cultural issues relevant to the project,
and describing the processes used to engage donor populations in
identifying and evaluating these issues, is in preparation.
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patterns). Although a small proportion of SNPs may fail these
checks for biological reasons, they more typically fail if a genotyping
platform makes consistent errors, such as undercalling heterozy-
gotes. Third, a sample of SNP genotypes deposited by each centre
will be selected at random and re-genotyped by other centres. These
stringent third-party evaluations of quality will ensure the
completeness and reliability of the data produced by the project.

Data release
The project is committed to rapid and complete data release, and to
ensuring that project data remain freely available in the public
domain at no cost to users. The project follows the data-release
principles of a ‘community resource project’ (http://www.wellcome.
ac.uk/en/1/awtpubrepdat.html).

All data on new SNPs, assay conditions, and allele and genotype
frequencies will be released rapidly into the public domain on the
internet at the HapMap Data Coordination Center (DCC) (http://
www.hapmap.org/) and deposited in dbSNP. Individual genotype
and haplotype data initially will be made available at the DCC under
a short-term ‘click-wrap’ licence agreement. This strategy has been
adopted to ensure that data from the project cannot be incorporated
into any restrictive patents, and will thus remain freely available in
the long term. The only condition for data access is that users must
agree not to restrict use of the data by others and to share the data
only with others who have agreed to the same condition. When
haplotypes are defined in a region, then the individual genotypes,
haplotypes and tag SNPs in that region will be publicly released to
dbSNP, where there are no licensing conditions. Project participants
have agreed that their own laboratories will access the data through
the DCC and under the click-wrap licence, ensuring that all
scientists have equal access to the data for research.

The consortium believes that SNP, genotype and haplotype data
in the absence of specific utility do not constitute appropriately
patentable inventions. Specific utility would involve, for example,
finding an association of a SNP or haplotype with a medically
important phenotype such as a disease risk or drug response. The
project does not include any phenotype association studies. How-
ever, the data-release policy does not block users from filing for
appropriate intellectual property on such associations, as long as
any ensuing patent is not used to prevent others’ access to the
HapMap data.

Data analysis
The project will apply existing and new methods for analysis and
display of the data. LD between pairs of markers will be calculated
using standard measures such as D 0 (ref. 54), r2 (refs 55, 56) and
others. Various methods are being evaluated to define regions of
high LD and haplotypes along chromosomes. Existing methods
include ‘sliding window’ LD profiles57,58, LD unit maps59, haplotype
blocks31,35 and estimates of meiotic recombination rates along
chromosomes35,60–62. After analysis of the LD in the first phase of
the project, regions in which there is little or no LD will be identified
and ranked for further SNP selection and genotyping. Methods to
select optimal collections of tag SNPs will be developed and
evaluated (see above). The project will thus provide views of the
data and tag SNPs that will be useful to the research community. As
all data and analysis methods will be made available, other research-
ers will also be able to analyse the data and improve the analysis
methods.

To assist optimization of SNP selection and analysis of LD and
haplotypes, a pilot study is underway to produce a dense set of
genotypes across large genomic regions. Ten 500-kilobase regions of
the genome (see Supplementary Information, part 3) will be
sequenced in 48 unrelated HapMap DNA samples (16 CEPH
(currently being sequenced), 16 Yoruba, 8 Japanese and 8 Han
Chinese). All SNPs identified, as well any additional SNPs in the
public databases, will be genotyped in all of the 270 HapMap DNA

samples, and the genotype data will be released following the
guidelines described above. This study will provide dense genotype
data for developing methods for SNP selection and for assessing the
completeness of the information extracted, to guide the later stages
of genotyping.

When the HapMap is used to examine large genomic regions,
the problem of multiple comparisons will arise from testing tens
to hundreds of thousands of SNPs and haplotypes for disease
associations. This will lead to difficulty in separating true from
false-positive results. Thus, new statistical methods, replication
studies and functional analyses of variants will be important to
confirm the findings and identify the functionally important
SNPs.

Conclusion
The goal of the International HapMap Project is to develop a
research tool that will help investigators across the globe to discover
the genetic factors that contribute to susceptibility to disease, to
protection against illness and to drug response. The HapMap will
provide an important shortcut to carry out candidate-gene, linkage-
based and genome-wide association studies, transforming an unfea-
sible strategy into a practical one. In its scope and potential
consequences, the International HapMap Project has much in
common with the Human Genome Project, which sequenced the
human genome63. Both projects have been scientifically ambitious
and technologically demanding, have involved intense international
collaboration, have been dedicated to the rapid release of data into
the public domain, and promise to have profound implications for
our understanding of human biology and human health. Whereas
the sequencing project covered the entire genome, including the
99.9% of the genome where we are all the same, the HapMap will
characterize the common patterns within the 0.1% where we differ
from each other.

For the full potential of the HapMap to be realized, several things
must occur. The technology for genotyping must become more cost
efficient, and the analysis methods must be improved. Pilot studies
with other populations must be completed to confirm that the
HapMap is generally applicable, with consideration given to
expanding the HapMap if needed so that all major world popu-
lations can derive the greatest benefit. To use the tools created by
the HapMap, later projects must establish carefully phenotyped
sets of affected and unaffected individuals for many common
diseases in a way that preserves confidentiality but retains detailed
clinical and environmental exposure data. Longitudinal cohort
studies of hundreds of thousands of individuals will also be
invaluable for assessing the genetic and environmental contri-
butions to disease.

Careful and sustained attention must also be paid to the ethical
issues that will be raised by the HapMap and the studies that will use
it. By consulting members of donor populations about the consent
process and the implications of population-specific findings before
sample collection, the project has helped to advance the ethical
standard for international population genetics research. Future
population genetics projects will continue to refine this approach.
It will be an ongoing challenge to avoid misinterpretations or
misuses of results from studies that use the HapMap. Researchers
using the HapMap should present their findings in ways that avoid
stigmatizing groups, conveying an impression of genetic determin-
ism, or attaching incorrect levels of biological significance to largely
social constructs such as race.

The HapMap holds much promise as a powerful new tool for
discovery—to enhance our understanding of the hereditary factors
involved in health and disease. Realizing its full benefits will involve
the close partnership of basic science researchers, population
geneticists, epidemiologists, clinicians, social scientists, ethicists
and the public. A
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