7. Hardie, R. M. & Watson, J. M. Mycobacterium bovis in England and Wales: past, present and future.
Epidemiol. Infect. 109, 23-33 (1992).

8. Woodroffe, R., Frost, S. D. W. & Clifton-Hadley, R. Attempts to control tuberculosis in cattle by
removing infected badgers: constraints imposed by live test sensitivity. J. Appl. Ecol. 36, 494-501 (1999).

9. Mollison, D. TB in Cattle: First Report of the Statistical Auditor on the Badger Culling Trial PB5385
(MAFF Publications, London, 2000).

. Cresswell, W. Report of the Independent Audit of Surveying and Badger Social Group Territory
Delineation Procedures in the Randomised Badger Culling Trial and MAFF’s Response PB5497 (MAFF
Publications, London, 2001).

. Kirkwood, J. K. Report of the Independent Auditor on the Humaneness of the Despatch Procedures Used in
the Randomised Badger Culling Trial and MAFF’s Response PB5325 (MAFF Publications, London, 2000).

. Ewbank, R. Report of the Second Independent Auditor on the Humaneness of Despatch Procedures Used in
the Randomised Badger Culling Trial and Defra’s Response PB8253 (Defra Publications, London, 2003).

13. Le Fevre, A. M. et al. Changes in Badger Setts Over the First Three Years of the Randomised Badger
Culling Trial (http://www.svepm.org.uk/Posters2003/poster_files/LeFevre.pdf) (2003).

. Roper, T.J. & Liips, P. Disruption of territorial behaviour in badgers Meles meles. Z. Siiugetierkunde 58,
252-255 (1993).

15. Cheeseman, C. L., Cresswell, W. J., Harris, S. & Mallinson, P. J. Comparison of dispersal and other
movements in two badger (Meles meles) populations. Mamm. Rev. 18, 51-59 (1988).

. Tuyttens, E A. M., Macdonald, D. W., Rogers, L. M., Cheeseman, C. L. & Roddam, A. W. Comparative
study on the consequences of culling badgers (Meles meles) on biometrics, population dynamics and
movement. J. Anim. Ecol. 69, 567-580 (2000).

17. Rogers, L. M. et al. Movement of badgers (Meles meles) in a high-density population: Individual,

population and disease effects. Proc. R. Soc. Lond. B 265, 1269-1276 (1998).
18. Eves, J. A. Impact of badger removal on bovine tuberculosis in east County Offaly. Ir. Vet. . 52,
199-203 (1999).

19. Griffin, J. M. in Selected Papers 1996 6-9 (Tuberculosis Investigation Unit, University College Dublin,
1996).

. King, E. J., Lovell, D. J. & Harris, S. in Advances in Vertebrate Pest Management (eds Cowan, D. P. &
Feare, C. J.) 147-161 (Filander, Fiirth, 1999).

. Doncaster, C. P. & Woodroffe, R. Den site can determine shape and size of badger territories:
implications for group-living. Oikos 66, 88—-93 (1993).

5]

N

'y

o

2

=]

2

Acknowledgements This study was funded and implemented by the Department of
Environment, Food and Rural Affairs (DEFRA). We acknowledge the contribution made by staff
of DEFRA and its associated agencies. We also wish to thank the many farmers and landowners in
the trial areas who allowed the experimental treatments to operate on their land. W. T. Johnston
helped prepare Fig. 3.

Authors’ contributions J.B., C.A.D,, D.R.C, G.G., JP.M., WLM. and R.W. constitute the
Independent Scientific Group on Cattle TB, and were jointly responsible for designing and
overseeing the study. Statistical analyses were carried out by D.R.C., C.A.D. and AM.L.E C.A.D.
and R.W. drafted the manuscript, although all authors contributed to its preparation.

Competing interests statement The authors declare that they have no competing financial
interests.

Correspondence and requests for materials should be addressed to C.A.D.
(c.donnelly@imperial.ac.uk).

Predicting distributions of
known and unknown reptile
species in Madagascar

Christopher J. Raxworthy', Enrique Martinez-Meyer’, Ned Horning',
Ronald A. Nusshaum®, Gregory E. Schneider’,
Miguel A. Ortega-Huerta” & A. Townsend Peterson*

' American Museum of Natural History, Central Park West at 79th Street,

New York, New York 10024-5192, USA

2Instituto de Biologia, Universidad Nacional Autonoma de México,

Ciudad Universitaria, Mexico City 04510, Mexico

> Museum of Zoology, University of Michigan, Ann Arbor, Michigan 48109-1079,
USA

*Natural History Museum & Biodiversity Research Center, The University of
Kansas, Lawrence, Kansas 66045-2454, USA

Despite the importance of tropical biodiversity', informative
species distributional data are seldom available for biogeogra-
phical study or setting conservation priorities>*>. Modelling
ecological niche distributions of species offers a potential solu-
ion*”7; however, the utility of old locality data from museums, and
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of more recent remotely sensed satellite data, remains poorly
explored, especially for rapidly changing tropical landscapes.
Using 29 modern data sets of environmental land coverage and
621 chameleon occurrence localities from Madagascar (historical
and recent), here we demonstrate a significant ability of our niche
models in predicting species distribution. At 11 recently inven-
toried sites, highest predictive success (85.1%) was obtained for
models based only on modern occurrence data (74.7% and 82.8%
predictive success, respectively, for pre-1978 and all data com-
bined). Notably, these models also identified three intersecting
areas of over-prediction that recently yielded seven chameleon
species new to science. We conclude that ecological niche model-
ling using recent locality records and readily available environ-
mental coverage data provides informative biogeographical data
for poorly known tropical landscapes, and offers innovative
potential for the discovery of unknown distributional areas and
unknown species.

The biota of Madagascar represents a global priority for con-
servation owing to the island’s exceptional endemic diversity and
ongoing loss of natural habitats'. However, although substantial
expansion of the national protected area network is anticipated?®,
current rates of deforestation are rapidly reducing the country’s
future conservation options®''; in some regions, urgent manage-
ment decisions will have to be made before detailed biological
survey data become available. As a result, the ability to predict
biodiversity distribution in poorly known regions of the island
offers enormous potential for conservation planning. Using an
evolutionary computing approach, we present predictive distri-
bution results for 11 chameleon species, in the first application
of satellite imagery to ecological distributional modelling for
Madagascar.

For an initial test, with 29 environmental GIS (Geographic
Information System) base layers of land cover, climate, topography
and hydrology, we used random partitions of our recent post-1988
occurrence localities for building and testing ecological niche
models for 11 chameleon species. Using 50% of the post-1988
occurrences to predict the remainder of the post-1988 data, this test
yielded impressive results: predictions were significantly better
than random for all 11 species under the ‘all models predict’ criteria
and for 9 of the 11 species under the ‘any model predicts’ criteria,
with an overall correct prediction success of 62.8% and 83.0%
respectively (Table 1).

A second set of tests included pre-1978 localities'>" for testing
models. Models based on the same random 50% of the post-1988
occurrences as described above (for predicting post-1988) were
used to predict pre-1978 occurrences. These tests produced signifi-
cant results for fewer species: 4 and 5 of the 9 species, and overall
prediction success was reduced to 33.1% and 63.8% (all models
predict and any model predicts criteria, respectively), the reduced
prediction ability probably reflecting changes in land use across
Madagascar, where recent landscape data (used for modelling) less
accurately reflect landscape conditions at the historical time of
collecting. To investigate the influence of data density, we repeated
this test with models based on 100% of the post-1988 data, and
overall results were quite similar or slightly improved (models
significant for 3 and 6 of the 9 species, 39.2% and 78.5% overall
prediction success under the all models predict and any model
predicts assumptions, *respectively). The final temporal partition
examined the utility of pre-1978 occurrence data to predict post-
1988 distributions, in spite of overall low sample sizes for model
building. Predictions resulted in significantly better than random
for 6 and 8 of the 9 species, although overall correct prediction
success was lower than the other tests (28.0% and 57.1% under the
all models predict and any model predicts criteria, respectively).

A third set of tests used data from pre-1978, post-1988 and both
temporal partitions combined, for building ecological niche models
that were then tested with a completely independent test data set,
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Figure 1 Ecological niche distribution models for 11 chameleon species in Madagascar.
The sum of ten best-subset models is shown, with darker shading representing greater
model agreement. Areas of over-prediction are circled. The intersecting over-prediction
regions in the west (green) and northeast (blue) have recently yielded seven new
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locally endemic chameleon species; the other area in the southeast (red) remains poorly
studied. The models are based on combined specimen locality data for all species except
F. verrucosus and F. oustaleti (post-1988 locality data only; see Methods).

Table 1 Tests of ecological niche model predictivity

Chameleon taxon Model training Proportion of Madagascar’s Number of correct Statistical
data (N) area predicted by models predictions significance
50% post-1988 predicts other 50% post-1988
Calumma brevicornis 14 0.12-0.30 6and 10 of 13 */*
Calumma gastrotaenia 17 0.15-0.29 12 and 16 of 16 */*
Calumma nasuta 27 0.40-0.63 22 and 27 of 27 */*
Calumma parsonii 14 0.09-0.32 5and 10 of 14 */%
Furcifer lateralis 42 0.52-0.77 28 and 33 of 41 */—
Furcifer pardalis 19 0.15-0.30 9and 17 of 19 */*
Furcifer oustaleti 26 0.39-0.69 15 and 21 of 26 */—
Furcifer verrucosus 34 0.16-0.28 26 and 29 of 34 7Ad
Brookesia nasus 11 0.01-0.03 6and 10 of 11 */*
Brookesia stumpffi 11 0.01-0.07 6and 7 of 11 */%
Brookesia superciliaris 11 0.06-0.17 5and 5 of 11 */*
50% post-1988 predicts all pre-1978
Calumma brevicornis 14 0.12-0.30 2and 9 of 14 —/*
Calumma gastrotaenia 17 0.15-0.29 1and 8 of 11 —/*
Calumma nasuta 27 0.40-0.63 13 and 16 of 21 */—
Calumma parsonii 14 0.09-0.32 2 and 9 of 20 —/—
Furcifer lateralis 42 0.52-0.77 13 and 21 of 25 —/—
Furcifer pardalis 19 0.15-0.30 4and 7 of 12 —/*
Brookesia nasus 11 0.01-0.03 2and 3 of 4 */*
Brookesia stumpffi ihl 0.01-0.07 2and?2of 8 */—
Brookesia superciliaris 11 0.06-0.17 4and 8 of 15 */*
All post-1988 predicts all pre-1978
Calumma brevicornis 27 0.18-0.28 5and 9 of 14 —/*
Calumma gastrotaenia 33 0.19-0.40 2and 7 of 11 —/—
Calumma nasuta 54 0.34-0.63 13 and 16 of 21 */—
Calumma parsonii 28 0.23-0.49 7 and 16 of 20 —/*
Furcifer lateralis 83 0.39-0.95 9 and 24 of 25 —/—
Furcifer pardalis 38 0.21-0.38 5and 10 of 12 —/*
Brookesia nasus 22 0.02-0.05 2and 3 of 4 */*
Brookesia stumpffi 22 0.07-0.13 2and 4 of 8 —/*
Brookesia superciliaris 22 0.13-0.28 6and 13 of 15 */*
All pre-1978 predicts all post-1988
Calumma brevicornis 14 0.18-0.29 7 and 16 of 27 —/*
Calumma gastrotaenia 11 0.10-0.32 11 and 13 of 33 */%
Calumma nasuta 21 0.19-0.22 19 and 29 of 54 7Ad
Calumma parsonii 20 0.21-0.41 7 and 23 of 28 */*
Furcifer lateralis 25 0.34-0.76 25 and 57 of 83 —/—
Furcifer pardalis 12 0.08-0.18 10 and 14 of 38 */*
Brookesia nasus 4 0.01-0.03 3and 12 of 22 */*
Brookesia stumpffi 8 0.06-0.13 1and 8 of 22 —/*
Brookesia superciliaris 15 0.13-0.21 9 and 16 of 22 */*

Models are based on chameleon locality data from pre-1978 or post-1988, the former tested with data from post-1988 and the latter tested with data from both time periods. Pairs of numbers or symbols
refer to statistics calculated for the ‘all models predict’ and ‘any model predicts’ criteria, respectively. *, significant prediction (P < 0.05); —, not significant.
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compiled from 11 other recent site inventories (42 chameleon
occurrence localities; see Methods). Here, our evaluation of pre-
dictive performance was based on correct predictions of both
presence and absence related to total predictions (Table 2): pre-
dictive success was 74.7% for pre-1978 models, 85.1% for post-1988
models and 82.8% for combined data models, with uniformly high
levels of statistical significance (P = 3.3 X 10~ ° for pre-1978,
P=1.3%10""" for post-1988, and P = 2.8 X 10 *° for combined
data models).

On the basis of these validation exercises, we conclude that
ecological niche modelling of diverse natural history museum
data can provide an excellent predictive understanding of reptile
species’ distributions, even in a region as poorly known as Mada-
gascar. Model predictivity was better when using modern data to
predict other modern data, than when using or predicting pre-1978
(historical) data. However, between temporal partitions, predic-
tions significantly better than random were recorded for all species
except Furcifer lateralis, a widely distributed species for which
statistical power was low. Most tellingly, modern and historical
museum occurrence information had significant predictive power
in indicating where species would and would not be found during
subsequent, intensive field studies. Thus, although modern data
provide the best predictivity for modelling current species distri-
bution, when modern locality data are rare or exhibit poor spatial
coverage, historical data can also provide an excellent guide for
understanding the distribution of biodiversity.
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Model predictions, when viewed in geographical space (Fig. 1),
corresponded closely with our general understanding of chameleon
distributions, except that (1) primary humid forest specialists
(Calumma, Brookesia) should be confined to surviving forest
fragments within distributional areas, and (2) models for Furcifer
pardalis, F. verrucosus, F. oustaleti and Brookesia stumpffi show three
overlapping predicted areas outside known distributional areas.
Because humid forest fragments can be identified using aerial
photography or satellite imagery’"' (in addition to verification on
the ground), the first exception has little impact on conservation
planning; instead, for deforested areas, these models provide a novel
perspective concerning the reduction in forest-specialist species’
distributions as a consequence of human colonization and environ-
mental degradation. This is particularly the case for the now almost
completely deforested Central High Plateau. For example, all four
Calumma species show a marked and previously unknown distri-
bution limit between the northern and southern parts of the plateau
(approximately 19°S), which challenges the generally accepted
assumption of a single central ecoregion biota®.

Our previous work has documented the conservative nature of
ecological niche evolution, which provides predictivity of distri-
butions for closely related species'*". For closely related allopatric
species pairs, niche conservatism is manifested as areas of over-
prediction in each species model. Of the three intersecting areas of
over-prediction mentioned above (Fig. 1), the southeastern area
(between Mahanoro, Vangaindrano and Beraketa) remains largely

Table 2 Distribution of chameleons at 11 independent test sites

Inventory site and  C. brevicornis  C. gastrotaenia ~ C. nasuta C. parsonii F. lateralis F. pardalis  F. oustaleti F. verrucosus B. nasus B. stumpffi B. superciliaris
model data (14, 27, 41) (11,33,44) (21,54,75) (20, 28,48) (25,83,108) (12,38, 50) (52) (68) (4,22,26) (8,22,30) (15,22,37)
Berara * * *
Pre-1978 - - — — — + NA NA _ + _
Post-1988 - - + — + + + _ _ + _
Combined — — + — + + NA NA _ T _
NE Manongarivo * * * *
Pre-1978 - - — — + _ NA NA _ + _
Post-1988 + - + + + - - — — + —
Combined + - + + - NA NA — + —
Bemanevika * * * *
Pre-1978 — + — — + _ NA NA _ _ _
Post-1988 + - + + T — _ _ _ _ _
Combined + + + + + + NA NA - + -
Lohanandroranga * * *
Pre-1978 - + — — + _ NA NA _ _ _
Post-1988 + + + + + - - - - - -
Combined + + + + - + NA NA _ _ _
Tampolo * %
Pre-1978 - — — — + NA NA _ _ _
Post-1988 - - + — — _ _ _ _ _ _
Combined - — + — _ + NA NA _ _ _
Andranomay * * * * *
Pre-1978 + + + + + _ NA NA _ _ +
Post-1988 + + + + - - - - - - +
Combined + + + + 4 _ NA NA _ _ 4
Ambatovy * * * %
Pre-1978 + + + + + - NA NA - - +
Post-1988 + + + - - - - - - - +
Combined + + + — + NA NA _ _ +
Ankazomivady * * * *
Pre-1978 + + + - - - NA NA - - -
Post-1988 + - - — - _ _ _ _ _ _
Combined + + + + + — NA NA _ _ _
And./Ran. corridor * * * * * %
Pre-1978 + + + + + _ NA NA + _ +
Post-1988 + + + + + - - - + - +
Combined + + + + + _ NA NA + _ 4
Ivohibe corridor * * * * * *
Pre-1978 - - — + + — NA NA _ _ _
Post-1988 + + + + - - - - + - +
Combined + + + + - — NA NA + — +
Bemananteza *
Pre-1978 - — — — + — NA NA _ _ _
Post-1988 - - - - - - - + - - -
Combined - - - - - - NA NA — — —

The 11 sites were recently inventoried, with predictions (presence and absence) based on ecological niche models (pre-1978, post-1988, or combined occurrence data, and the ‘any model predicts’
criteria). Model sample sizes (pre-1978, post-1988, combined) are given in parentheses for each species. *, recorded present during inventory; +, predicted present; —, predicted absent; NA, not

applicable (see Methods); And./Ran., Andringitra—Ranomafana.
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unexplored, but we have recently surveyed the two other areas.
Although neither area was previously considered rich in locally
endemic Furcifer or Brookesia chameleons'>"’, the western area
(northern Bongolava Mountains, between Soalala, Maintirano
and Tsiroanomandidy) yielded an undescribed Furcifer and
an undescribed Brookesia species. The other area, in extreme
northeastern Madagascar (transitional humid/dry forests between
Daraina, Vohemar and Sambava), yielded five undescribed
Brookesia and a possible new Furcifer species. These discoveries, of
at least seven new species, sharply contrast with our results else-
where in Madagascar: more intensive surveys at sites outside these
areas of over-prediction over the same time period have produced
only two other undescribed Furcifer and Brookesia chameleons.
Hence, ecological niche modelling not only provides powerful
predictions of species’ distributions, but also offers an innovative
and predictive approach to discovering heretofore unknown popu-
lations of known or unknown species.

These findings have valuable applications for identification of
areas of endemism?, and consequently will also aid the development
of inclusive strategies for conserving regional endemism's. In
Madagascar, such a model-based evaluation of species’ distributions
in the context of existing reserves and protected corridors, coupled
with surveys targeted on areas of predicted potentially unrecognized
endemism or distribution, will provide data critical for effective
future expansion of the protected area network®. Our results also
highlight the continued importance of obtaining modern locality
data, because of their optimal predictive performance when used
with remotely sensed data. Notably, because equivalent landscape
coverage data and specimen locality data are available for most
other regions worldwide, this approach offers the potential for
providing informative distribution data, and directing surveys to
unknown populations or species, for many other poorly known and
threatened environments. d

Methods

Species occurrence data

Three suites of species occurrence information were used in our analyses: pre-1978
occurrences drawn from natural history museum specimens'>"* (130 unique

locality X species combinations; F. verrucosus and F. oustaleti excluded due to potential
taxonomic confusion), post-1988 data obtained from 1989-2002 surveys by C.J.R and
R.A.N (449 unique locality X species combinations), and independent test occurrence
data obtained from other recent herpetological inventories'’** (42 unique

locality X species combinations). Post-1988 data are vouched for by specimens deposited
at the American Museum of Natural History and the University of Michigan Museum of
Zoology. Pre-1978 locality descriptions were converted to geographical coordinates using
1:100,000 topographic maps and gazetteers.

All Madagascar chameleon species or species/subspecies complexes® for which =20
occurrence localities were available from post-1988 were included: Calumma gastrotaenia
(includes subspecies as recognized by refs 11 and 12), C. nasuta (C. fallax), C. parsonii
(C. oshaughnessyi, C. globifer) and Brookesia superciliaris (B. therezieni), where potential
synonyms are indicated in parentheses. Test data in the form of additional herpetological
inventories met the following criteria: rainy season surveys (November to April) made by
experienced herpetologists, designed to sample complete chameleon diversity, at sites
=7km from occurrence localities used in modelling. Meeting these criteria were 11 sites
that included diverse primary habitats (humid to dry forests), elevation of 0-1,700 m and
latitude of 14-23°S: Berara'’; northeast Manongarivo®; Tampolo**; Andranomay®*
Ankazomivady'®; Andringitra-Ranomafana corridor®'; Ivohibe corridor;
Bemananteza'®; and unpublished inventory data for Bemanevika Lakes (14°20" S,
48°35" E), Lohanandroranga (14°25' S, 49°09" E) and Ambatovy (18°51" S, 48°19' E)
(Raxworthy/University of Antananarivo).

Ecological and environmental coverage data

Initially, 29 GIS coverages were considered for inclusion in models. A land cover layer was
derived from 17 MODIS 1-km resolution, 16-d composite, BRDF/albedo-adjusted
reflectance images (MOD43B4) from November 2000 to November 2001. Unsupervised
classification methods created a layer with 50 classes, subsequently grouped and edited
manually into 13 land cover classes using higher resolution imagery for reference. To
summarize precipitation, we used 5" resolution data (1996-2001) from the NOAA
Climate Prediction Center Famine Early Warning System (FEWS) (http://
edcw2ks21.cr.usgs.gov/adds/): annual minimum, maximum and mean precipitation
estimates were taken from 10-d cumulative estimates provided by FEWS. Data on cloud
cover, mean temperature in January, July and annually, and precipitation in January, July
and annually were obtained from ESRI**; maximum, minimum, mean temperatures and
mean diurnal temperature range for dry season, wet season and annually for 1961-1990
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(0.5° resolution) were obtained from ref. 27 (http://ipcc-ddc.cru.uea.ac.uk/). Finally,
topographical data (elevation, slope, aspect, flow accumulation, flow direction and
tendency to pool water; 1km resolution) were obtained from the US Geological Survey
(http://edcdaac.usgs.gov/gtopo30/hydro/). All data and coverages were re-sampled to
0.01° (about 1 km) resolution. Sets of geographical coverages were reduced to an optimal
25 ecological dimensions via a process of jack-knifing inclusion of dimensions in analyses
and inspection of omission statistics®®.

Ecological niche modelling

We used the Genetic Algorithm for Rule-set Prediction (GARP)*?, an evolutionary
computing system that has excellent capacities for delineating ecological niches and
predicting geographical distributions of species®*. GARP niche models outline potential
ecological distributions, and as such roughly map onto Hutchinson’s fundamental niche
concept (as opposed to the realized niche space, which takes into account the limiting
effects of interactions with other species)*. GARP models were developed using a PC
desktop implementation of the program (http://www.lifemapper.org/desktopgarp/).

GARP produces sets of rules delineating ecological niches by relating known
occurrence points to a suite of GIS data layers describing the ecological landscape.
Input points are separated into training and testing samples to permit model refinement
based on independent samples of points. Simple inferential tools produce initial rules
(roughly in the form of linear combinations of coverages), which serve as seeds for search
and improvement in the genetic algorithm. Rules ‘evolve’ through an iterative process of
random rule selection, evaluation, perturbation, testing, and incorporation or rejection,
and the evolutionary process stops at convergence®’. For each taxon, we produced 100
replicate models and a best subset of 10 models was selected based on optimal
combinations of error components®: models that predicted <90% of testing points were
discarded, and (of the remaining models) the ten closest to the median predicted area were
summed to provide a best distributional prediction.

Predictive abilities of models were evaluated using pre-1978, post-1988 and combined
occurrence data, testing models with independent suites of points not included in model
building (Table 1). Because sample sizes for each species were generally small, we used
binomial tests to evaluate statistical significance of predictions®. Observed successes and
failures were compared with random expectations based on the proportional area
predicted present by the intersection of all ten or any of the ten best-subset models. For
validation of models using the independent inventory data described above, a cross-
species test using a x> 2 X 2 contingency table (1 degree of freedom) was applied.
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The induction of associative synaptic plasticity in the mamma-
lian central nervous system classically depends on coincident
presynaptic and postsynaptic activity"*. According to this prin-
ciple, associative homosynaptic long-term potentiation (LTP) of
excitatory synaptic transmission can be induced only if synaptic
release occurs during postsynaptic depolarization?. In contrast,
heterosynaptic plasticity in mammals is considered to rely on
activity-independent, non-associative processes®®. Here we
describe a novel mechanism underlying the induction of associ-
ative LTP in the lateral amygdala (LA). Simultaneous activation
of converging cortical and thalamic afferents specifically induced
associative, N-methyl-p-aspartate (NMDA)-receptor-dependent
LTP at cortical, but not at thalamic, inputs. Surprisingly, the
induction of associative LTP at cortical inputs was completely
independent of postsynaptic activity, including depolarization,
postsynaptic NMDA receptor activation or an increase in post-
synaptic Ca®>* concentration, and did not require network
activity. LTP expression was mediated by a persistent increase
in the presynaptic probability of release at cortical afferents. Our
study shows the presynaptic induction and expression of hetero-
synaptic and associative synaptic plasticity on simultaneous
activity of converging afferents. Our data indicate that input
specificity of associative LTP can be determined exclusively by
presynaptic properties.

Bipolar stimulating electrodes were placed on afferent fibres from
the internal capsule (containing thalamic afferents)®'' or from the
external capsule (containing cortical afferents)'? in coronal slices
prepared from 3—4-week-old male C57BL/6] mice (Fig. 1a). Whole-
cell current-clamp recordings were obtained from projection
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neurons in the dorsolateral portion of the LA (Fig. la). Low-
frequency baseline stimulation in the presence of the GABA,
(y-aminobutyric acid) receptor antagonist picrotoxin (100 pM)
elicited monosynaptic excitatory postsynaptic potentials (EPSPs)
of similar amplitudes and slopes at both afferent inputs (thalamic,
5.6 *0.4mV, 1.07 = 0.11mVms '; cortical, 5.7 = 0.4mV,
1.04 = 0.11mV ms™'; n = 13). To mimic the physiological activity
of converging thalamic and cortical afferents during fear condition-
ing">'%, both afferents were stimulated simultaneously for 1.5s at an
average frequency of 30 Hz using two different stimulation proto-
cols containing Poisson-distributed stimuli (‘Poisson-train’; Fig. 1b;
see Methods). Simultaneous Poisson-train stimulation resulted in
the induction of LTP at cortical (151 = 10% of baseline, n = 13,
P < 0.01), but not at thalamic, afferent synapses (98 * 5%, n = 13,
P > 0.05; Fig. 1c). Inverting the two stimulation patterns to assess
stimulation protocol-specific effects did not affect the input-specific
induction of LTP at cortical input synapses (cortical, 152 * 16% of
baseline, n = 6, P < 0.05; thalamic, 106 = 12%, n = 6, P > 0.05).
The induction of LTP was associative, in that stimulation of both the
thalamic and cortical afferents was required. Stimulation of either
pathway on its own did not induce LTP at cortical afferents (cortical,
106 * 15% of baseline, n =6, P > 0.05; thalamic, 101 * 8%,
n =15, P> 0.05 Fig. 1d), or at thalamic afferents (cortical,
100 = 8% of baseline, n =7, P > 0.05; thalamic, 105 * 16%,
n=1>5, P > 0.05; see Supplementary Information), indicating that
the stimulation protocols applied were below threshold for the
induction of homosynaptic'®"* and heterosynaptic LTP at cortical
afferents.

Associative LTP in the hippocampus® and the amygdala
depends largely on the activation of NMDA receptors and an
increase in the postsynaptic Ca** concentration. Accordingly,
heterosynaptic, associative LTP (LTPy,) at cortical afferents could
not be induced in the presence of the competitive NMDA receptor
antagonist 3-((=*)-2-carboxypiperazin-4-yl)-propyl-1-phosphonic
acid (CPP) at 20 pM (control, 151 = 10% of baseline, n = 13; CPP,
88 * 8% of baseline, n =9, P > 0.05; Fig. 2a). To assess whether
NMDA receptor activation in conjunction with Poisson-train
stimulation of cortical afferents was sufficient for the induction of
LTPy4, we applied NMDA locally in the vicinity of the projection
neuron from which we were recording by using a pressure appli-
cation system. Whereas puff-application of NMDA in the absence of
cortical afferent activity did not result in the induction of LTPy,
(98 = 4% of baseline, n =5, P > 0.05; Fig. 2b), combining the
application of NMDA with Poisson-train stimulation of cortical
afferents resulted in a potentiation of cortical afferent synapses
(157 = 12% of baseline, n =4, P < 0.05; Fig. 2b). In contrast,
pairing NMDA application with Poisson-train stimulation of thala-
mic afferents did not induce LTP at thalamic afferents (99 = 10% of
baseline, n = 3, P > 0.05; Fig. 2b).

To determine whether an increase in postsynaptic Ca*" concen-
tration was required for TPy, induction we dialysed the postsyn-
aptic neuron with the Ca”t chelator BAPTA (10-50 mM).
Surprisingly, postsynaptic dialysis with BAPTA did not prevent
the induction of LTPy, (152 = 17% of baseline, n = 14,
P < 0.05; Fig. 2c). Given that activation of NMDA receptors is
required for the induction of LTPy,, this finding suggests that they
are not located on the postsynaptic neuron or, alternatively, that
they can signal in a Ca®*-independent way. To test these possibilities
we dialysed the postsynaptic cell with the NMDA receptor open-
channel blocker MK-801, and stimulated cortical and thalamic
afferents while holding the postsynaptic cell at +30mV (ref. 15).
This procedure completely blocked postsynaptic NMDA receptors
(Fig. 2d). However, even the complete blockade of postsynaptic
NMDA receptors did not interfere with the induction of LTPy,
(134 £ 9% of baseline, n = 4, P < 0.05; Fig. 2d). To test whether
Ca’" signalling was required, we next incubated the slices with
BAPTA-acetoxymethyl ester (BAPTA-AM; 50 pM), a membrane-
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