Valdis V. Liepa Univ. of Michigan 22 December 1978 Interaction Applications Memos Memo 29 Current and Charge Density Measurements on Scale Model E-3A Aircraft ABSTRACT Measured data are presented for the surface current and charge densities induced on scale model E-3A (AWACS) aircraft when illuminated by a plane electromagnetic wave in a simulated free space environment. The measurements were made on 1/150 and 1/100 scale models over the frequency range 225 to 440 MHz, simulating 1.5 to 44.0 MHz full scale. The data are for 15 test points and 3 excitations chosen to complement the full-scale ATHAMAS I/ACHILLES I ground tests made at Kirtland Air Force Base. CONTENTS Section Page No. I INTRODUCTION.................................... 3 II MODELS, MEASUREMENTS AND DATA........................ 4 2.1 Models....................................... 4 2.2 Measurements...................................... 5 2.3 Data....................................... 7 FIGURES.............................................. 10 TABLES............................................... 16 DATA................................................. 19

PREFACE It is a pleasure to acknowledge the assistance of Messrs. M. Tomorski, D. Brown and F. Lenning of The Radiation Laboratory in performing the measurements, data processing and data preparation. The assistance of Mr. Gary Bedrosian of Dikewood Industries, Inc., and Mr. W. Prather of AFWL is also appreciated.

SECTION I INTRODUCTION The data presented here were obtained for the Air Force Weapons Laboratory to be used in determining the surface response extrapolation function [1] for the E-3A aircraft. The test points and excitation conditions in the scale model measurements were therefore chosen to conform to those of the full scale measurements made in the ATHANIAS I (Horizontally Polarized Dipole) and ACHILLES I (Vertically Polarized Dipole) simulators at Kirtland AFB. Surface current and charge data are presented for 15 locations or test points on the aircraft under 3 different excitation conditions. The measured quantities are the axial current component Ja' the circumferential current component Jc, and the normal electric field component En. Of the 135 measurement situations possible, 56 were initially picked out, and 43 were finally selected. The resulting data are presented in the form of amplitude and phase plots as a function of the full scale frequency, and have also been furnished to Dikewood Industries, Inc. in digital form on computer cards. 1. Carl E. Baum, "Extrapolation Techniques for Interpreting the Results of Tests in EMP Simulators in Terms of EMP Criteria," AFWL Sensor and Simulation Notes, Note 222, 1977. 3

SECTION II MODELS, MEASUREMENTS AND DATA 2.1 MODELS For the measurements two scale models of the E-3A aircraft were acquired, one coming in the form of a plastic kit (Entex No. 8522) 1/100 in scale which was then assembled, and the other as a solid plastic model (MicroWest Inc., Santa Clara, CA) 1/150 in scale. The models were reasonably good replicas of the E-3A in most particulars, but some modifications were necessary to provide adequate (electrical) simulation of the full scale aircraft. These included cutting back the fuselage to station STA:F178 to simulate the removal of the non-metallic radome (the nose of the radome is at STA:130); adding an HF'probe' to the right wing of the 1/100 scale model (the other model already had it on); and cutting off sections of the rotodome to "remove" the radome. A center section of width 78 inches (full scale) and length equal to the diameter of the rotodome was left to simulate the antenna structure. After modification in this manner, the models were given at least three coats of silver paint to make them conducting. The lengths and wingspans were then measured to determine the actual scale factors. Because neither model was a precise replica of the E-3A, the factors deduced from the fuselage and wingspan differed slightly, as indicated in Table 1. In converting measured field data to their full scale values, the fuselage 4

scale factors were used for the case of nose-on and top incidence when the electric vector was parallel to the fuselage, and the wingspan scale factors for top incidence with electric vector perpendicular to the fuselage. To permit the mounting of the sensors, holes were drilled in the model through which to pass the sensor leads. Figure 1 is a photograph of the two models after modification and painting with holes drilled in the fuselage. When a particular hole was not in use, it was covered with copper tape which shows up as a dark patch in the photograph. As the study progressed, additional holes were drilled in the wings, stabilizers, rotodome and rotodome struts, and the unused ones covered with coper tape. 2.2 MEASUREMENTS The measurements were made in the Radiation Laboratory's anechoic chamber, a facility specially designed, constructed and instrumented for surface field measurements. A block diagram of the facility is shown in Figure 2. The measurement procedures were similar to those used in previous programs [2, 3, 4], apart from changes resulting from the continued upgrading of the facility and the measurement techniques. In particular, 2. Valdis V. Liepa, "Sweep Frequency Surface Field Measurements," University of Michigan Radiation Laboratory Report No. 013378-1-F; Sensor and Simu — lation Notes, Note 210; 1975. 3. Valdis V. Liepa, "Surface Field Measurements on Scale Model EC-135 Aircraft," University of Michiqan Radiation Laboratory Report No. 014182-1-F; Interaction Application Memos, Memo 15; 1978. 1978. 4. Valdis V. Liepa, "Surface Field Measurements on Scale Model E-4 Aircraft," University of Michigan Radiation Laboratory Report No. 0141822-F; Interaction Application Memos, Memo 17; 1978.

for this program a new broadband transmitting antenna was installed which reduced the lower end of the frequency range from 450 to 225 MHz, thereby providing coverage in the three overlapping frequency ranges 225-1100, 950-2200 and 2000-4400 MHz. The currents and charges on the models were measured using miniature sensors 2-3 mm in dimension constructed from 0.5 mm diameter semi-rigid coax. Most of the current data were obtained using a surface mounted half-loop probe (SP) whose signal lead was taken from the model at a place remote from the test point and chosen to produce least interaction with the model. A few current measurements were made using an external or free space probe (FSP), but these were confined to situations where the interaction of the model and the probe lead is negligible, as in the case of the measurement of Jc at STA:F510T for top illumination with E parallel to the wings. Only the antisymmetric modes are then excited and these do not couple to the probe lead. For the charge measurements only surface mounted probes were available, and with these the mounting procedures were the same as for the surface mounted current probes. Figures 3 and 4 show the taping required for installing a surface mounted probe on a rotodome strut. Figure 5 illustrates how the use of more than one scale model can increase the range of full scale frequencies for which data can be obtained. With the measured frequency range 225-4400 MHz (approximately a 20:1 bandwidth), a 1/150 scale model will provide coverage from 1.5 to 29.3 MHz, 6

and a 1/100 model covers 2.25 to 44.0 MHz, yielding the overall coverage 1.5 to 44.0 MHz, corresponding to a 29:1 bandwidth. Measurements were made for three different excitations: Excitation 1 - Top incidence, E parallel to the fuselage Excitation 2 - Top incidence, E perpendicular to the fuselage Excitation 3 - Nose-on incidence, E vertical Figure 6 shows the excitations and the convention used for measurement of the currents. To excite the maximum currents on the rotodome antenna, the array was rotated parallel to the fuselage for excitations 1 and 3, and perpendicular to the fuselage for excitation 2. 2.3 DATA For each measurement situation the data obtained from the two models over the three frequency bands results in a data set comprising six data files for the transfer function. Due to the different number of sampling points used in each frequency band and the fact that the measurement frequencies were divided by the model scale factors to obtain the full-scale data, the sampling was different in each of the six data files. When the data was recorded, 182 points were used in Band 1 (225 - 1100 MHz), 133 in Band 2 (950 - 2200 MHz), and 144 in Band 3 (2000 - 4400 MHz). However, due to an occasional failure of the network analyzer to properly lock onto the signal at the start of a measurement, a few (perhaps a half dozen) points were sometimes omitted from a data set, resulting in fewer points 7

than listed above. The exact number of points and the frequency Covered in the processed data is given (amongst other information) in line 5 of a data file (See Table 3). For a user of the data, Figure 6 gives the directions of excitation, the polarization relative to the aircraft, and the convention adopted in specifying the circumferential and axial components, Jc and Ja respectively, of the surface current. In all cases the component Jc is perpendicular to Ja. The data presented are normalized relative to the incident field: J/Ho or En/E0 for the current and charge amplitudes respectively. The phase reference is that of the incident field at the station where the measurement was made, based on the ei't time convention. Table 2 summarizes the situations for which data have been obtained, and gives the Figure numbers where the plots for each case can be found. Each Figure number is followed by a letter S (small model, scale 1/150) or L (large model, scale 1/100) specifying the model used in the measurements. The individual (digital) data files are identified with the numbers (filename) in the upper right-hand corner of the plots. Plots of the measured current and charge data are given in the later section. In addition, the data has been furnished to Dikewood Industries, Inc. in digital form on punched cards. The format used is: Line 1 FILENAME (4A4) 2 Comments (18A4) 3 Comments (18A4) 4 TITLE used in plotting (18A4) 5 FMIN, FMAX, AMPMIN, AMPMAX, PHASEMIN, PHASEMAX, NN (4F8.3, 2F8.2, I5) 8

PHASE(3) 3(2F8.3, F8.2) - I.......... F(NN) AMP(NN) PHASE(NN) where NN is the number of data points in the set. Table 3 is an example of a typical data file.

ii,~~~~~~~~~~~~~l...t 8i~~~~~~~~~~~~@Y~~~~~gk~~~~~BB~~~~~$~~~~~~~:~~~:~~~~;I~~~~~:~~~~::::....... Figure4-w m.Te "odels ready for measurement.4 The ant-enna structures inthis case havebe en rot a a, textiosan ~~~Q:hv benr~ae:o x:aios nd3

ISE Sli 1.' |POWElR' rF- r:ENERATOR A1 FT!,I FER - -20 dB REFEREN(CE ~~~I iGNREALp FLOSIGNAL j I DAIGYAL FLOW I~ ANECHOTC | s k SC1 __ _ _ _ I __C DIGITAL FO DISPLAY CONTROL BUSMULTIPLEXER SOIID STATE.22-1.1 GHZ i I |TWT.94-4.4 G.1Z I Il 1 - - -I A/D CONVERTER ji r r - Ij/l IPOST PROCESSING I/ I DIGITA IA/ 1 l- I.. Pl.OTTER. UNIV. OF MICH. HP 9830A -- - — J CALCULATOR 4 COMPUTER CONTROL |SI AMDAHL 470 V/G DATA STORAGE TERMINAL - _P I AG TA. DEc TLA36 Figure 2. Block diagram of the measurement facility.

c~rD C o C" ~ "' 0 Z.Z..~, ~& -~2' -a-::D M",,.......... 0 ~" ~". 0 9. ~0' -ct-r 0 r C ~__ 4~ t, ~ rD:ii~ii?~~i~~ii~i~i~iii~~i~;...?5~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~K o~i~S Eo co C3~-. -. =~B* 0.. 0' __::i~i~liiZ ~ i~iii;::~;'r~i~iiii'':: E~~t tn ~~~~4*~3 7 < 5 0 0 0 t.tt S ~2: ct a..tV~~~~~~~~~~~~~~~~~~~~~~~~~~~~tvt~~~~~~~vt~~~~~~z.~' iy'~~~~~~~~~~~~~ -4 -Se -4 ) 4o4 4::p4Ltc>'ty. C.> 0~ c —C. 0 ~~~~~4~~~Q ~.>.y.>~~~~~~~~~~~~0.>0<y>.~;~~:::: *rJ ~ ~ ~ ~ ~ ~ ~'~.4o/&y 0 0 0 ct,, ~>,>.,PP~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~i~ii.Bi~i:i~i lp...> *>O:;::ir:.,lia:,,ai::::~r~:.,il::lill 00~ ~~~~~~~~~~~~~~~~ a::: >'44.,.:-~I~~i~>0<4>>:::~: OCctn >p 2t..0P'.~t 0 0,..~~~~~~~~~~~~~~~~~~~~~0444>$;frV~~~~~~~~~~~~~~~~~: $:-~l;tiili;4tjili;gj - S 0 0 3..>..P..5.9rli~~~li'iiiiii i t. "S C ) C - 4 >ii~P.,. ~. P.>.'< 0~~i l~0i9 4 5 2 o & > P P. ~ tX::::t 5 44: > 5 p o:::.. p.2 <.>.~: 0i 0

Figure 4. Close-up of the rotodome structure on the 1/150 model with a loop probe mounted to measure the current inside the strut. The taping on the outside was necessary to accomodate the probe lead. The antenna in this case is in a position for excitation 1 and 3 measurements. 13

Band 3 Band 1 - ~~~~~~~2000 4400 950 - 2200 225 1100 1000 2000 3000 4000 4400 1/100 SCALE 1/150 SCALE 20.0 44.0 2.25 - 11.0 6.3 - 14.7 13.3 29.3 1 7.3 I._ ~~~I I ~ I 0 10 20 30 40 47 FULL SCALE FREQUENCY (MHz) Figure 5. E-3A measurement frequency coverage.

H E H E E Ja'Ja c)k " H - *Positions of Rotodome: Excitations 1 and 3 (i) Excitation 2 (ii) Figure 6. Convention for illumination and the measured current components on AWACS. 15

TABLE 1. MODEL SCALE FACTORS Model Length Wingspan Fuselage scale Wingspan scale (radome removed) (cm) (radome removed) (cm) 1/100 44.89 43.97 1/101.12 1/101.03 (1/98.72)* 1/150 30.64 29.73 1/148.15 1/199.95 (1/145.03)* Full scale length including stabilizers 46.61 m With radome removed 45.39 m Full scale wingspan (707-320B) 44.42 m Full scale wingspan (707-320) (43.41 m)* *In determining the scaling factors, the full scale wingspan used was that for the 707-320 version instead of 707-320B, leading to the slightly incorrect scaling factors shown in parentheses in converting measured frequencies to the full scale ones. The data affected are only for excitation 2, and can be corrected by multiplying the frequencies by a factor of 0.977. 16

TABLE 2. SUMMARY OF DATA MEASURED EXCITATION 1 EXCITATION 2 EXCITATION 3 E IJ Fus. E _ Fus. Nose-On STATION LOCATION J J E J 3 E J J E a c n a c n |a c n F510T Fwd Fus. Top OlS,L 03S,L 05S,L 04S,L 02S,L 06S,L F504B Fwd Fus. Bottom 09S,L 10OS,L 08S,L 11S,L 07S,L W600T Wg Cent. Top, Left 27S,L 28S,L 25S,L 26S,L F1000T RR Fus. Top, Fwd Sts 13S,L F1200T RR Fus. Top, RR Sts 14S,L F1 070B RR Fus. Bottom F750T Fus-Wg Jct. Top 15S,L 12S,L 16S,L 43S,L F670B Fus-Wg Jct. Bottom 29S,L 39S,L 30S,L F178 Fwd Bulkhead 17S,L 18S,L W970T Wg Tip Top, Left 19S,L 20S,L 21S,L VS Vert. Stab. Side, Left 22S,L 23S,L 24S,L ROTO Top of Rotodome 31S,L 40S,L 32S,L WL372(0) Strut Center Outside, Left 33S,L 34S,L 35S,L WL372(I) Strut Center Inside, Left 36S,L 37S,L 38S,L F1310B,RBL33 RR Fus. Bottom 44S,L 41S,L 45S,L 42S,L - -,......_I i,, l l 1 i!1 - ii- ~.. _..... _.....

TABLE 3. LISTING OF A TYPICAL DATA FILE:> 1 AOOS > 2 E-3A,150,lO,Q10B,8/28/78,DB:> 3 SCALE FACTOR=148.15 > 4 SAHMPLE DATA > 5 1.503 7.343 4.436 13.932 -144.50 167.90 182 > 6 1.503 4.842 98.50 1.535 4,508- 94.20 1,568 4.477 89.50 ) 7 1,600 4.457 97.80 1.632 4.436 94.60 1,665 4.688 90.60 > 8 1.697 5.140 90.00 1.729 4.645 89.30 1.761 5.117 87.40:> 9 1.794 5.395 90.50 1.826 5.272 92.30 1.858 5.741 90.50 > 10 1.890 6.683 89.70 1.923 7.194 86.10 1.955 7.379 78.20 > 11 1,987 7.516 72.80 2,019 7.691 67.60 2.052 7.464 62.40 > 12 2.084 7.362 57.00 2.116 6.839 53,30 2.149 6.546 55.00 > 13 2,181 6.501 52.40 2.213 6.966- 52.20 2.245 7.031 52.60:> 14 22278 6.950 49.40 2.310 7.194 45.10 2.342 7,379 46.20 > 15 2,374 7.228 40.70 2.407 7.396 36,00 2.439 7.379 36,10 > 16 2.471 6,982 33,90 2.503 7.178 29.10 2.536 7.211 27.90 > 17 2.568 6.592 25.80 2.600 6.442 24.50 2.632 6.546 28.90 > 18 2.665 6.577 28,40 2.697 6,730 27.30 2,729 7.178 27.90 > 19 2,762 7,194 27.00 2.794 7.516 23.90 2.826 7,656 20.80 > 20 2.858 7.745 20.00 2.891 7.691 18.00 2.923 7.980 17.70 > 21 2.955 8,166 14.50 2.987 8.110 11.70 3.020 7.907 7.50 > 22 3,052 7.998 8.20 3.084 8.054 7,70 3.116 8.072 4.30' 23 3,149 8.054 1.70 3.181 7.852 2.50 3.213 7.816 0.70 > 24 3,246 8,414 -1.40 3.278 8.054 -2.60 3.310 7.780 -5,10:> 25 3.342 7889 -5.10 3.375 8.166 -3.40 3.407 7,943 -7.10 > 26 3 439 8 356 -8; 70 3.471 8.260 -8.10 3.504 8.241 -9.60 > 27 3,536 8.630 -12.40 3.568 8.810 -12.60 3.600 8.241 -16.00 > 28 3,633 8.453 -15.20 3.665 8.790 -13.80 3,697 9.078 -14.50 > 29 33730 9.441 -18.70 3.762 9.661 -20.10 3.794 9.727 -22.00 > 30 3.826 9.908 -26.20 3.859 10,000 -29.50 3,891 9.683 -33.60 > 31 3.923 9.183 -34.40 3.955 9.204 -37.80 3.988 9.247 -36.70 > 32 4.020 9,141 -37.90 4.052 8.851 -39.90 4.084 9.594 -39.70 > 33 4.117 9.462 -39.80 4.149 9,506 -45.20 4.181 9.572 -48.40 > 34 4,213 9.550 -46.00 4.246 9,141 -49.70 4.278 10.023 -51.20:> 35 4.310 9.908 -53.20 4.343 9,290 -56.20 4.375 9.528 -59.90 36 4.407 9.795 -58.00 4.439 9,290 -62.80 4.472 9.311 -67.90 3> 7 4,504 9.247 -65.40 4.536 8.892 -66.80 4.568 9.036 -69.30 38 4.601 9.204 -71.40 4.,633 8.670 -72.10 4.665 8.770 -74.00 > 39 4.697 8.913 -74.20 4.730 9,078 -76.90 4.762 8.414 -80.10 > 40 4.794 8.531 -81.30 4.827 8.472 -80.40 4.859 8.551 -81.30 > 41 4.891 8.298 -85.70 4.923 8.433 -85.20 4.956 8.035 -84.60 > 42 4.988 8.147 -87.20 5.020 8.511 -89.20 5.052 8.395 -89.70 43 5.085 7.943 -93.30 5.117 7.816 -92.80 5,149 8,337 -91.00 > 44 5,181 7.925 -97.10 5.214 7.907 -98.10 5.246 8.017 -96,20 45 5.278 7.379 -98,70 5.311 8.072 -100.00 5.343 7.691 -99.60 > 46 5.375 7.499 -101.80 5.407 7.586 -101.70 5.440 7.925 -100.70 > 47 5.472 7,656 -103.20 5,504 7.816 -104.70 5.536 7.727 -104.50 > 48 5.569 7.925 -104,70 5.601 7.907 -107.70 5,633 8.017 -109.50 49 5.665 7.870 -109.50 5.698 7,889 -109.60 5.730 8.091 -110.30 > 50 5.762 8511 -111.50 5.794 8,337 -113.10 5.827 8.531 -116.50 > 51 5,859 8.810 -117.10 5.891 8,810 -120.10 5.924 8.590 -124.20 > 52 5.956 8,831 -125.90 5.988 8,298 -126.60 6.020 8.472 -129.40;: 53 6.053 8.531 -130.10 6.085 8.511 -131.20 6.117 8.279 -135.20 54 6.149 8.551 -136.20 6.182 8,318 -138.30 6.214 8.279 -143.10 > 55 6.246 7,998 -143.90 6.278 7.762 -144.50 6.311 11,117 44.30 5> 6 6,343 13.932 167,90 6.375 13.521 165,70 6,408 13.183 162.40 > 57 6.440 12.882 162.20 6.472 12.735 159.80 6,504 12.359 158.50 > 58 6.537 11,912 156.40 6,569 11.508 156.90 6.601 11.641 157.00 > 59 6.633 11.508 157.30 6,666 11.749 154.50 6.698 11.508 153.80 > 60 6,730 11.350 152.40 6.762 11.246 151,70 6,795 11.455 150.50 > 61 6.827 10.965 149.30 6.859 10.965 148.10 6.892 10.965 149.50 > 62 6,924 11.117 147.70 6.956 11.169 145.40 6.988 10.990 143.40 > 63 7.021 10.520 142.80 7,053 10.839 142.30 7,085 10.765 142.50 > 64 7.117 10.617 139.70 7.150 10.641 140.20 7.182 10.641 140.80 > 65 7,214 10.617 139.40 7,246 11.041 137.50 7,279 10.965 138.10 > 66 7.311 10.814 135.70 7.343 11.324 136.50 *END OF FILE 18

DATA 19

1 2. 0- - E-3R F510T JR 11 1/150 R3533,35,37:AOlS I I 4. 0 0.0 15.0 30.0 45.0 200.0 E-3R F510OT JR it 1/150 R3533,35.37; AOIS 100.0 j 0.0 -100. 0 -200.0 L 25 RPR 78 UM 0.0 15.0 30.0 45.0 FREQUENCY tMHt) Figure 01S. Axial Current at STA:F51OT, Excitation 1, 1/150 Model. 20

12.0 E-3R F510T JR ls 1/100 R3601,03.05:AOlL st&. t X:z:0 4.0 25 ARPR 78 UH 0.0 L_____ _ 0.0 15.0 30.0 45.0 200.0 E-3R F510T JR 11 1/100 R3601,03.05; AO1L ioo. L 0.0 -100.0 -200.01 25 APR 78 UM -200... 0.0 15.0 30.0 45.0 FREQUENCY (MHtll Figure O1L. Axial Current at STA:F510T, Excitation 1, 1/100 Model. 21

4.0 E-3R F510T JR 3s 1/150 R35115,39:A02S st~ ~~~~~~~o ~~~~~~~E 3.0 0 1.0 25 RPR 78 UH 0.00.0 15.0 30.0 45.0 200.0 r E-3R F510T JR 31 1/150 R3545.39; A02S 100.O0 0.0 -100.0 25 RPR 78 UH -200.0 __2 __ 2 78 U 0.0 15.0 30.0 45. 0 FREgUENCY tHHZ! Figure 02S. Axial Current at STA:F510T, Excitation 3, 1/150 Model. 22

4.. I__________- LE-3R FSIOT JR 3, 1/100 R3607.09.11:AO2L 3.0 E 3.i0 w = do I 2.0 1.0 0.0 L 25 RPR 78 UH 0.0 15.0 30.0 45.0 E-3R F5IoT JR 3 1/100 Ra s, I; 0911 A02L 25 RRR 78 UK 0.0 15.0 So.o U5.0 FREQUENCY {HH]) Figure 02L. Axial Current at STA:F510T, Excitation 3, 1/100 lodel. 23

1.0 E-3R F510T JC 11 1/150 F3547,&9,5t:A03S 0.8 I. 0.82 0.0 1 5 25 RPR 78 UM 0.0 15,0 30. 45.0 200.0 = 100.0,~~ I~ - E-SR F510T JC 1I 1/150 FR3547.49.51; A03S 0.0 -100.0 -200.0 25 RPR 78 UM 0.0 15.0 30.0 45.0 FRLEQUENCY (MHZ] Figure 03S. Circumferential Current at STA:F510T, Excitation 1, 1/150 Model. 24

i E-SR F510T JC 15 1/100 R3613.15.17:AO3L 0.8 0.6 -j 25 APR 78 UH 0.0 15.0 S0.0 45.0 200. 0 E-3R F510T JC i' 1/100 R3613. 15,17; A03L 100.0 1 0.0 -200.0 __ 25 APA 78 UM 0.0 15.0 30.0 45.0 FREOUENCY (MH!) Figure 03L. Circumferential Current at STA:F510T, Excitation 1, 1/100 Model. 25

4o0 E-3R F51OT JC 2, 1/150 R3557,55.53:A04S 3.0 0 2.0 1.0 25 RtR 78 UM 0. 0 0.0 15.0 30.0 45.0 200. 0.. _........,E-3R F510T JC 2, 1/150 R3557,55.53; A04S i00.0 0.0 0 -100.0 25 RPR 78 UH -200.0 0.0 15.0 30.0 45.0 FREQUENCY {MHX} Figure 04S. Circumferential Current at STA:F510T, Excitation 2, 1/150 Model. 26

E-3A F5IOT JC 2: 1/100 R3619.21,23:A04L 3.0 0 - 2.0 1.0 0. 0 X "25 RAPR 78 UM 0.0 15.0 30.0 45.0 200.0 E-3R F510T JC 21 1/100 R3619.21.23; AO4L 100.0 0.0 -100.0 -200.0 25 R 78 UN 0.0 15.0 30.0 45.0 FREQUENCT (MHH] Figure 04L. Circumferential Current at STA:F510T, Excitation 2, 1/100 Model. 27

15.0, -f,_ _ E3R F51OT 0 Is 1/150 RO5S&RS757.59.63 10.0 w 0 g-'5.0 |.0 L11.RY 76 Un 200.0 T E3R F510T a 1s 1/150 R05SSR3757.59.63 0.0 -200.0 1 12 MRT 78 UN 0.0 15.0 30.0 5 FREQUENCY fMH71 Figure 05S. Charge at STA:F510T, Excitation 1, 1/150 Model. 28

15.0 E-3R F510T a0 I 1/100 R05LtR3643 45 47 10.0 0 J- 5.0 0.0 15.0 1o.0 45.0 200.0 E-3R F51OT 9 i, 1(10 R05LIR3B4 45 47 100.0 I 0.0 -100.0 11 MRY 78 UK -200.0 - R 8 0.0 15.0 30.0 45.0 FREQUENCY IMHH) Figure 05L. Charge at STA:F510T, Excitation 1, 1/100 Model. 29

U.O E3R F510T g 31 1/150 RO8SRl3S01.03.05 a o a -C 2.0 B-i 1,0 11 MAR 78 UH D0.... 0.0 0.0 15.0 30.0 45.0 200.0 I00.0 E3A F5IOT G 3; 1/150 R06SaRS801.03,05 100.0 - 0.0 -100.o0 1 -200.0 11,RY 78 UM 0.0 15.0 30.0 45.0 FflEGUENCT Y(MHXIl Figure 06S. Charge at STA:F5lOT, Excitation 3, 1/150 Model. 30

4.O E-3R F510T 9 31 1/100 RO6LaR6349 51 53 3.0 2.0 11 HRT 78 Un 0.0 0.0 15.0 30.0 45.0 200.0 E-3R F510T 0 3S 1/100 RO6LiR63Sg 51 53 100.0 0.0 -100.0 -200.0 _________________________L________ 11 RAY 78 UM 0.0 15.0 30.0 45.0 FEQUENCY INH!) Figure 06L. Charge at STA:F510T, Excitation 3, 1/100 Model. 31

4. _ _ _ _ 3.0 E3R F504B Q 3S 1/150 R07S&R3751.53 55 _-1-,, m 1.0 o.|,, 11 HMRY 78 UH 0.0 15.0 30.0 45.0 Fg EuR F500SB C 3t 1/150 Ro07dRe3751 53 55 l I 200.0 go 1.~ 15.0 30.0 45.0 FREGUENC~ (MHZ] Figure 07S. Charge at STA'F504B, Excitation 3, 1/150 Model. 32

4.0 - E-3R F504B 9 3S 1/100 A07LaRS655 57 59 3.0 s3o I 2.0 0.0 15.0 0.- o, 45.0 i E-3R F504B 9 3s I/1O0 R07L:R3655 57 59 300.0 o 200.0 t 0o~.0 _ _ __ _ _ _ __ _ _ __ _ _ _ __ _ _ __ __ 12 MRY 78 UM 0.0 15.0 30.0 45.0 FREQUENCY (MHL) Figure 07L. Charge at STA:F504B, Excitation 3, 1/100 Model. 33

12.0 E3AR F504B 0Q l 1/150 ROeSRS37K45.7,9'g 4 e.0o 0 V.0 0.0 11 AIRT 78 UM 0.0 15.0 30.0 45.0 200.0 - E3R F50gB 0 I1 1/150 R08SSR3745.47.49 100.0 74II ~~~~~~~~-200.Oi~~~~~~ 11 MAT 78 UM 0.0 15.0 30.0 45.0 FREQUENCT YMHY) Figure 08S, Charge at STA;F504B, Excitation 1, 1/150 Model. 34

1 2.0 0 E-3R F504B 0 1:1/100 R08L&R3661 63 A3701 a - it 3.0 i 0.0 0.0 15.0 30.0 45.0 200.0 - _ E-3R F50B 0 151/100 R08LtR3661 63 R3701 -200.0 i 0.0 15.0 30.0 45.0 FREQUENCY (MHZ) Figure 08L. Charge at STA:F504B, Excitation 1, 1/100 Model. 35

E3R S F504B JR 1I 1/150 R09SRt4219.21.23 5.0 0_ 2.5 100.0 E3R S F50UB [ s 1/150 ROISIRU219,21.2..0 -100.0 L *-20o. 0 L. _. 3__. ______,_____1 JUL 78 UM 0.0 15.0 O0.0 t45.0 FREQUENCY (MHZ) Figure 09S. Axial Current at STA:F504B, Excitation 1, 1/150 Model. 36

7, 5 I --- v E9S L F50tB JR 1. 11100 RO9L.RA225.27.29 5.0 _J1 en - 2. L _ _____________ __ ____. 31 JUL Uo 0.0 15.0 90.0 45. 0 200.0 - - ---- - E3 L F504B JR 1I 1/100 A09LRA4225.271,2 i 100.0 -0.0 I I!______ L_________.. 9____ ____~ 9. i __~~~~~~ _31 JUL 78 UM 0.0 15.0 30.0 45.0 FREQUENCY [MHZ) Figure 09L. Axial Current at STA:F504B, Excitation 1. 1/100 Model. 37

E-3R -750T JC 2; 1/150 R12S:R6135.37,39 I5.0 -/ o. o,__._ __ 22 SEP 78 UM 0.0 15.0 30.0 45.0 200.0 E-3R F750T JC 2; 1/150 R12S;R6135,37,39 I o.o -100.0 L -200.0 L_ ---- -- 22 SEP 78 UM 1 0.0 15.0 30.0 45.0 FREQUENCT [MHE) Figure 12S. Circumferential Current at STA:F750T, Excitation 2, 1/150 Model. 38

I0.0 - iE-3R F750T JC 2, 1/100 A12LR61I47U,49.51 =l l I 5.0 22 SEP 78 UH 0. O _ __ X _____ _ 0.0 15.0 30.0 45.0 200.0 E-3R F750T JC 2i 1/100 R12LR8147,49.51 100.0 - 0.0 -100.0 -200.0 K________________________ _____22 SEP 78 UM -200. D X 0.0 15.0 30.0 15.0 FREQUENCY (HHZ) Figure 12L. Circumferential Current at STA:F750T, Excitation 2, 1/100 Model. 39

25.0 - E3R FIO0OT JR I1 1/150 R13SSR3819,21.23 E 20.0 I 0 10.o 0.0 F..11 MRAT 78 UM o o 0.0 15.0 30.0 45.0 200.0 ESA3 FD1000T JR It 1/150 RISS1R3819,21,23 0.0 -100.0 0.0 15.0 30.0 45.0 FREQUENCY (MHZ) Figure 13S. Axial Current at STA:FlOOOT, Excitation 1, 1/150 Model. 40

2 5. 0, - - o t a -- - -_ r E3-R FlOOOT JR 1:1/100 R19LSR3727 29 31 20.0 15.0 0 10.0 5.0 11 MAY 78 UM 0.0 0.0 15.0 90.0 45.0 E3-R FlOOOT JR 111/100 R13L&R3727 29 31 10.0 -200.0 11 MAY 78 UM - 0.0 15.0 30.0 45.0 FREQUENC~ tMH) Figure 13L. Axial Current at STA:FlOOOT, Excitation 1, 1/100 Model. 41

25.0, E3SA F1200T JR It 1/150 RA13SA3825,27.29 20. 0 15.0 wt 10.0 5.0 0.0 11 MAT 78 UM 0.0 15.0 30.0 45.0 200.0 - - I -1 F1200T JR 00.0 38252729 -200.0 o [11 MAY 78UM 0.0 15.0 30.0 45.0 FREQUENCY (MHZ) Figure 14S. Axial Current at STA:F1200T, Excitation 1, 1/150 Model. 42

25.0 E3-A F1200T JR IS 1/100 RILR3733 35 37 10.0r~~~~- - t5.0 200.0 _ X -- -i 10.0 5I.0 -200.0(~~ L 11 MAY 78 UM 0.0 15.D 30.0 45.0 200.0, E3- F 1200T JR Excitation 1/100 Model.733 35 37 C30. 0.0 15.0 30.0 t45.0 FREQUENCY tMHZ7 43

15.0, -- E3R F750T JR Is 1/150 R1SS3A3831.33.35 c, o =I o 6.0 3.0 11 MA 78 UM j 0.0 15.0 30.0 45.0 200.0 E38 F750T JR lI 1/150 R15SR5831,33#S5 o0.0o 11 MAR 78 UH 0.0 15.0 30.0 45.0 FREQUENCY (MH!] Figure 15S. Axial Current at STA:F750T, Excitation 1, 1/150 Model. 44

15.0 _ E3-A F750T JR 1s 1~160 R15LsR3709 11 13 12.0 2,0 g.o L == V 3.0 11 MRT 70 UM 0.0 15.0 30.0 45.0 200.0 --- E3-R F750T JR lt 1/100 RISLsRS709 11 13 100.0 0.0. I 0 0. 0I 1~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -100.0: R 0.0 15.0 30.0 45.0 FEQUENCT tMHZI Figure 15L. Axial Current at STA:F750T, Excitation 1, 1/100 Model. 45

E3R F750T J.3; 1/150 R1651R3837.39,41 I IaGE 2.0 o0.0,__ _, _ItI HRY 78 UM 0.0 15.0 30.0 45.0 400.0 - ESA F750T JAd3S 1/150 R16SIR3837.39.S41 200.0 k 1 2 0. O 1oo.o0 4 L.0 11 I RY 78 UM } 0.0 15.0 30.0 45.0 FREQUENCY (MfN.) Figure 16S. Axial Current at STA:F750T, Excitation 3, 1/150 M4odel. 46

E3S F750T.JA 3 1/100 A16LtAS715,17.19 4.0 ~ rcc 2.0 11 HAY 78 UH 0.0 0.0 15.0 30.05 400. 0 __ E3R F750T JR3, 1/100 R16LR3715.17.19 300.0 200.0 0.0 L 1 12 MAT 78 UM 0.0 1S.O 30.0 45.0 FREGUENCY (MH[l Figure 16L. Axial Current at STA:F750T, Excitation 3, 1/100 Model. 47

ij~~~~ ~~E3R F178 Q Is 1/150 R17SgA5243.,45.47 | 20.0 0o 10.0 | - 15.0 26 JUL 78 UM ).0 15.0 30.0 tS.0 2 O 0. 0_r..... r - --- --- - -- ESR F1780 Q ts 1/150 R17S:R5213.45.47? 100.01. 0.0 a I. -100.0. -200.0.. __ _-. 26 JUL 78 U_. 0.:, 0 15.0 30.0 45.0 FREGUENCY MHIZ) Figure 17S. Charge at STA:F178, Excitation 1, 1/150 Model. 48

ESA F178 0 ls 1/100 Rt17LR5301.03.05 I E 20.0 o- C1 uI 10.0 _ _ _ _ _ _ _ _ _ _ _ _28 JUL 78 UM o.o L 0.0 15.0 30.0 t5.0 200.0 - E3R F178 0 t1 1/100 R17LtR5301SS,005 e 0.0 \ -100 0. _ -200.0 - p 28 JUL 78 UN 0.0 15.0 30.0 45.0 FREOUENCT (MHZ) Figure 17L. Charge at STA:F178, Excitation 1, 1/100 Model. 49

EA F178 gQ 3 1/150 ARSSsA529,.51,53 4.0 0 1 -L.I 1.0 0.0 0.01 _____ 268 JUL 78 UH 0.0 L.__. _. *,. 0.0 15.0 30.0 45.0 200.0 I - T - F 0.0 I-200.0 L 26 JUL 78 UN 20.0..........._1___., ___ __...... 0.0 15.0 30.0 45.0 FREQUENCY tMHE) Figure 18S. Charge at STA:F178, Excitation 3, 1/150 Rlodel. 50

E39 F178 Q 3s 1/100 R18LiR5307.09.11 4. 0 s.0:,,o L 2.0 1.0 26 JUL 78 UM A 0. 0 0.0 15.0 30.0 45.0 E A F178 0 3, 1(1 0 A18L, 5307.09.11 0.0 9 200.0 -200.*0._____ __ _ 128 JUL 78 UH 0.0 15.0 30.0 45.0 FREQUENCY (MHH) Figure 18L. Charge at STA:F178, Excitation 3, 1/100 Model. 51

It. -, r..E53R W970T Q l 1/150 R135RS3,3,,945.47 12.oi.0 CIn= -.0 -200 0 ____________L._ -L_____._ 28 JUL 78 UN 0.0 15.0. 30.0 S..0 200.0o ~1.........5 3sR W970T; I, 1/ 15O Rl19S s,5343, 1, 7 0.0 i i' -p-oo.o L __-1_. ____, X _28 JUL 78 UH 0.0 11.3 22.5 33.8 45.0 FREQUENCr tMHZ] Figure l9S. Charge at STA:W970T, Excitation 1, 1/150 Model. 52

1 5. O... - - ESR N970T Qa I 1/100 R1ALsR5325.27.29 II~~~~~~ <~~~~~E 12.0 I..0 - w 0.0 3.0 _ __ 0.0 15.0 30.0 45.0 200.0 - T - *f........ Fiur IL. Chrg a SiTAW970T ERt W970T i 1, 1/100 A19LIR5S25,27,29 100.0-5 28 JUL 78 UH -200.0 ___ __.... 0.0 15.0 30.0 45.0 FREQUENCY (MH[] Figure ]9L. Charge at STA:'970T, Excitation 1, 1/100 Model. 53

25.0 r..-* — 0'r- E3R W970T O 2s 11150 R20sRA5355,57.59 20.0 L 0 C SO.O. 10. 0 [...... l31 JUL'78 UH 0.0 15.0 30.0 ~~~I \~~~~~~E - o.o 20 2~~0.0 15.0 3~~~ ~ ~~0.0 31 JUL 78 UM O.0 O-......__. _ _-,_ - _31 _ _8 U.c 0.0 15.0 S0.0 45.0 FREQUENCY tMHZ) Figure 20S. Charge at STA:W970T, Excitation 2, 1/150 Model. 54

2 5. -. r... E3R W970T 0 2s 1/100 R20LsA5337.39,41 20.0 5.0 \ 0. 10.0 5.01 0.0 15.o0 30.0 45.O ESA3 WB70T 0 28 1/100 R20LsR5337,.99, 1 200.0 100.0 150 30.0 o.o L o_.. FMEGUENCT CMHZI Figure 20L. Charge at STA:W970T, Excitation 2, 1/100 Model. 55

5.0 T —------------- -, E3R W970T 0 31 1/150 R1SRS3I594,51.53 o. o 0.0 15.0 30.0 45.0 ESA WO70T 0 3i 1/150 U21StR53'49.S1.53 100.0 0.0, 0.0 15.0 30.0 45.0 FREQUENCY (1MHY! Figure 21S. Charge at STA:W97970T, Excitation 31 1/150 RSR SSModel. t. -ioi~ -200i -- __ _ 2 t U

E3R W970T 0 3, 1/100 R 21LR5331.33S,35 3.0 UL I,-. ____ __ - 0.0 15. D3 90.0 45.0 200.0 r — - I Fiue2i. Cagea TAW7T ER i 970T i 3, 1/100 RMd1L%,5SSI.S3,S 2.0 I -0 0 L...__, 0.0 15.0 30.0 45.0 Figure 21L. Charge at STA:W970T, Excitation 3, 1/100 Model.

25. 0 E3A VS a 1, 1\150 R22SR5425,27.29 20.0 15.0o 10.0 5.0 o-.o 0 _ st1 JUL 78 UH 0.0 0.0 15.0 30.0 5. FREQUENC~ fHHZ) Figure 22S. Charge at STA VS, Excitation 1/150 Model. 58

25. 0 ------------ E3R VS 0 ls 1\100 R22LtR5437,39,UI 20.0 15.o0 5.0 0.0 15.0 30.0 45.0 200.0 -—, ESA VS 0 to 1\1 0 R22Lir5 537.39,41 0. -100.0 0.0 15.0 30.0 45.0 FMEOUENCY(MHZ) Figure 22L. Charge at STA:VS, Excitation 1, 1/100 Model. u'l ~ ~ ~ ~ ~ ~ ~ ~ ~ FEQEC ME {3: e2L. Carea T:VEcit i n1 /10 oe at.'~ ~ ~ ~ ~~~~5

E3R VS 0g 2 1i/150 R235sA5413, 15.17 Ju 2.0. 1.0._ _ _ _ _ _ _ __._ _ _ _ _ _ _ _ 0_ _ _ _ _ _; - 931 JU L 7 8 U M o. oi_. 0.0 15.0 1. 50 200.0...... —-- ----- - ESA VS 0 2s 1/150 R23SIR5413,15.17 100.0 ~~~~~~~~~~~~~~~~~~~I K0 0. 0~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ o.oL I I \ 31 JUL 78 UN Z 200. O I.0 _ _ ____ _. 0.0 15.0 30.0 15. 0 FR~EUENCT (MHZ) Figure 23S. Charge at STA:VS, Excitation 2, 1/150 Model. 60

E3R VS Q 2s 1/100 R23SLR51S19,21,23 i E 4. 0. 3.0. a I -' o I 2.0 L o.%oL..,._ __,___931 JUL 78 UM 0-.0 SO 90.0 45.0 200.0..-0. ES3R VS Q 21 I/100 R23LRS5419,21.23 100oo. 0 ii ii I 0; -100.0! -200.0_____ __ S31 JUL 78 UM 0.0 15.0 30.0 45. 0 FREQUENCY (MHZ) Figure 23L. Charge at STA:VS, Excitation 2, 1/100 Model. 61

10.0 ~ E3A VS 0 S3 1\150 AR2SsR5431.33.S5 k 7.5t', 50.0 2,5! 31 JUL 78 UM 3.0.......0 0.0 15.0 30.0 45. 200.0 ------ E3A VS 0 3S 1\150 R2%S5RS531.33.S5 0oo.o. 0.0 -100.0 31 JUL 78 UM 0.0 ls.0 30.0 45.0 FREQUENCY (MHZ) Figure 24S. Charge at STA:VS, Excitation 3, 1/150 Model. 62

"'1' PHRSE[DEG) IFLITUOE (LIM (0 PNASEDEG 00 ~~~~~~~~~~~~~~~~~~~~~~RMPLTUOE (LUN) CD PO N I En/E~ o o~~~~~~~~~~~~~~ C) CD (A 22 -J.. r C) 01 0 r"~~~~~~~~~~~~~~ 0 ~ ~ ~ ~ ~ ~ ~ ~~~~~ Q)' o C,) O~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~L F rq z 0 CDO:D,,m~~~~~~~~~~~~~~~~ 0-o r C CD -J 00 U rl P oC -~..JC -JJ o 0 0I 0

1 0. 0 or - - - 1 E-3R W600T Q 2; 1/150 R25SsR5513. 15.17 8.0 6.0 _ 0. LI. 2.0 0.10) _____21 SEP 78 UM 0.0 15.0 30.0 L5.0 200.0 -- E-3R WBO0T 0 2Z 1/150 R25SSR5513,15,17 loo.o I A 100.0 L -200.0 21 EP 78 U 0,10.0 10 021 SEP 78 UM 0.0 15.0 30,0 5.0HZ FROQUENCY (MHZl Figure 255. Charge at STA:W600T, Excitation 2, 1/150 Model. 64

100 _________- OI3 W1t -, __1 6.0 S. 0 2.0 0.0 15.0 30.0 45.0 200.0 _ ____ E-38 W600T 0 2s 1/100 R25LA5519,21.23 i i 0.0 21 SEP 78 UM -200.0 0.0 15.0 30.0 45.0 FREQUENCY (MHMZ Figure 25L. Charge at STA:W600T, Excitation 2,g 2 1/100 ModeR25L.R519,2123 65

3.0 t -, ___ _ _,_ E-3R WBOOT 0 3s 1/150 A26S;R5501,03,05 2.0 I. 1.0 ~ ~~~~~~~21 SEP 78 UN 0.0O. ____________________.... _ _-,_i 0.0 15.0 30.0 45.0 200.0 E-3R W600T 0 3, 1/150 R265tR5501,03,05 100.0' 0.0 -100.0 _-200.01 _____-_ _- __21 SEP 78 UN 0.0 15.0 30.0 L45,. FREQUENCY TMHZ) Figure 26S. Charge at STA:W600T, Excitation 3, 1/150 Model.

E-3A W600T g 3; 1/100 R26LR5507.09.11 k 2.0 - 0 1.0 0.0 - I21 SEP 78 UN 0.0 l,.O 30.0 L5.0 200.0 _, E-3R WBOOT Q 3; 1/100 R2BLIA5507.09.11 -100.0 -200.0 21 SEP 78 Um 0.0 15.0 30.0 45.0 FREQUENCY CMHZ) Figure 26L. Charge at STA:W600T, Excitation 3, 1/100 Model. 67

0.0... —... — E-3R WB00T JR ls 1/150 R27SjR5831.33.35 8.0 Z.O 2,0 21 SEP 78 UH 0.0 0.0 21 SEP 78 UM 0.0 15.0 30.0 E-3R W600T JR lo 1/150 R27SoR5651.33,35 300.0 ~ 200.0 100. 0 0.0 - - -- 21 SEP 70 UM 0.0....... 0.0 15.0 30.0 45.0 FREOUENCY (MMZ) Figure 27S. Axial Current at STA:W600T, Excitation 1, 1/150 Model.

iO.O -_... E-3A W60OT JR 1 /00 7l. ~9,s 123O 8.0 7 6.0 0 2.0 0.0. 0 =__21 sEP 7e UM 0.0 15.0 30.0 45.0 400.0.__ E-3R W600T JR 13 1/100 R27L;sR5619.21.23 ti 300.0 i E! 200.0 100.0 0 0 21 SEP 78 UM 0.0 5. 0 30.0 t5. F2REQUENCY {MHZ) Figure 27L. Axial Current at-STA:W600T, Excitation 1, 1/100 Model. 69

10.0 E-3R W600T JR 2i 1/150 R28S1R5613.15.17; 8.0 8.0..0 2.0 21 B5E 78 UM 0.0 15.0 30.0 15.0 200.0 E-3R W600T JR 21 1/150 R28SIR6813.15. 17 100.0 0.0 -100.0 -200.0 21. L.,...E 7 0.0 15.0 30.0 45.0 FREQUENCY (MHZ) Figure 28S. Axial Current at STA:W600T, Excitation 2, 1/150 Model. 70

10.0 E-3R WBOOT JR 2, 1/100 R28LsR5555.57.59 8.0 8.0 2.0 o.o. -L___ _____________________ _______ 21 SEP 78 UM 0.0 15.0 30.0 45.0 200.0 E-3R W600T JR 2, 1/100 R28LsR5555,57.59 100.0 n 0.0 1 -200.0 _______ _ 21 SEP 78 UM 0.0 15.0 30.0 I45.0 FREQGUENCY (MHL) Figure 28L. Axial Current at STA:W600T, Excitation 2, 1/100 Model. 71

E3R F670B JR 1; 1/150 R295S R5723,25.27 6.0 -! 6.0 C,0 II 4.0 2. 0 S OCT 78 UM 0.0 15.0 30.0 45.0 200.0 --------- -- IE3 F670B JR Il 1/150 R29Ss R5723,25,27 100.0 0.o 3 OCT 78 UH -200.0 o __ __ _ 0.0 15.0 30.0 45.0 FREGUENCY (MHZ) Figure 29S. Axial Current at STA:F670B, Excitation 1, 1/150 Model. 72

10.0 1 ESR F6708 JR 1; 1/100 R29Ls R5643,.45.47 8.0 i: 6.0:i o.0 2.0 3 OCT 78 UH j 0.0 15.0 s0.0 o 5. 0 200.0 ---- R F670B JR l1 1/100 R29Lo R56o3,.5,.7 1 00.0 ~~~~~~-20 ~~~~~~~~~~~0.0~ L3 OCT 78 UM 0.0 15.0 30.0 15.0 FREQUENCY (MHZI) Figure 29L. Axial Current at STA:F670B, Excitation 1, 1/100 Model. 73

C3 0 2. O_ _ -_ _ _ __._ _ _ _ _ _ _ _ _ _ _ _ _ _ _q' OCT 78 UM O.O 15.0 30.0 15.0 200.0 r _ ESA F670B JR 3S 1/150 ASOSs R572S931.33 -100.0 - 0. -200.0 L.., 0.0 15.0 30.0 5.0 FREQUENCT (MHZ) Figure 30S. Axial Current at STA:F670B, Excitation 3, 1/150 Model. 74

4.U _ _ _ _ _ i _ — __ _E3R F670B JR 3s 1/100 R3OLo R5649.51,53 3.0, t 0.0 1.0 o-200.0 ___o___ ____- __ 4 OCT 78 UM 0.0 15.0 30.0 45.0 200.0 Eigur F7030L AxialR 1/100 RSa0 Model.51 -100.0! 0.0 15 0 30.0 [5.0 FREQUENCY (MHZO

I 0.0 - E-3R ROTO a 1; 1/150 R3lS R5907.09.11 7.5 - I 5.0 2.5 ~~~~o.oL. - 15.0 30.0 ~ 21 SEP 78 UM 0.0 50'.0 15.0 30.0 45.0 200.0 E-3R ROTO Q 1s 1/150 A31Ss R5907,09,11 t. I -200.0 0 21 SEP 78 Um 0.0 15.0 30.0 45.0 FREQUENCY ([MHZ Figure 31S. Charge at STA:ROTO, Excitation 1, 1/150 Model. 76

10.0 - E-3S ROTO 0 Is 1/100 RASIL R5913s.15,17 7.5.. - 5.0 2.5 0.0 - 0.0 15.0 30.0'15.0 200.0 -- E fiDMOTO 0 Is l'100 I31Li f5913,15,17 100.0 0.0 -100.0 -200.0 _ 0. 22 SEP 78 UH 0.0 15.0 30.0 415.0 FREQUENCY (MHZ) Figure 31L. Charge at STA:ROTO, Excitation 1, 1/100 Model. 77

1 6.0._ _ —----- — _ __ __ E-3A ROTO 0 3s 1/150 R32Ss R5919.21.23 12.0 = -~ 8.0 -1,.O 22 SEP 78 UM -.0 ~,. 0.0 15.0 30.0 15.0 200.0 E-3R ROTO Q 3S 1/150 R32S R5919.21,23 100.0 0.0 -100.0 22 SeP 78 UH -200.0 2. _..2 0.0 15.0 30.0 45.0 FREQUENCY (MHZ) Figure-32S. Charge-at STA:ROTO, Excitation 3, 1/150 rodel. 78

16.0 0 E-3A ROTO 0 3s 1/100 R32Ls R5925.27,29 12.0 i S.0 O.. 0.0 0.0 15.0 30.0 45.0 200.0 - - I E-3R ROTO 0 3s 1/100 R32Ls R5925,27,29 100.0 0.0 -100.0 -200.0 22 SEP 78 Un 0.0 15.0 30.0 45.0 FREQUENCY (MHZ] Figure 32L. Charge at STA:ROTO, Excitation 3, 1/100 Model. 79

10.0 E3A WL372 (0) JR 1s 1/150 R33SS R6013. 15, 17 E 7,5 4 — = 5.0 2.5 2 SEP 70 UN O'. 0. 0.0 15.0 30.0 45.0 200.0 A E.. JR ESR H L 372t0JR Is 1/150 RS3Ss1 601S,15, 17 i i Z2OO. o 4 OCT 70.M_ 0.0 15.0 30.0 45.0 FREQUENCY (MHI] Figure 33S. Axial Current at STA:IWL372(0), Excitation 1, 1/150 Model. 80

10.0 ____ _ E3R NLS72 (O) JR lI 11/100 R3S3L R5949.51.53 7.s 4,. O.... 0.0 15.0 30.0 45.0 200.0 20.0 28 SEP 78 UM" -200.0............... 0.0 15.0 30.0 45.0 FREQUENCY (MHI) Figure 33L. Axial Current at STA:WL372( 0), Excitation, 1/100 1/10 L R odel. 81

6.0 —- - --.... E3R WL372(0: JR 2, 1/150 AR3US Rt6031.33.351 i 0 0,.5 1o.oL._ _ ___________________.~~ 2 OCT 78 UM 0.0 15.0 30.0 45.0 200 r- -- A-d — - R63 1 —.. -1 ES3R L372(0) JR 2; 1/150 RA31S R803L,335355 00oo.o 0 0. o -100.0 -200.0~ ~L2._;2 OCT 78 UM 200.0,.. _ _l Figure 34S. Axial Current-at STA:WL372(0), Excitation 2, 1/150 Model. 82

6.0 I — --- -- - E3A WL372(0) JR 2; 1/100 R34LL R6007.09.111 5I 0[ 0 1.5 0.0 _ 20 SEP 78 UM 0.0 15.0 30.0 45.0 E3A WLS72t0) JR 2, 1/100 RS34L R800708.11| 10..0.0 W,1.1 - 0.0 -1 0 0.0 -200.0 _ _ _ _ _ 20 E 7 U 0.0 15.0 30.0 45. FREQUENCY (MHZ) Figure 34L. Axial Current at STA:WL372(O), Excitation 2, 1/100 Model. 83

E3 HLL372(01 JR 3s 1/150 RA35S R8019.21.23 12.0 0 a.O 0 200.0 0to o 15o. oSO....U3. 45o 200.0 _ -.___1 -_- - _ ES3R WL72(0) JR 31 1/150 RA35St R019,21,23 100.0 In 0.. -100.0 i -200.0zoo~__________ _____ _,_ - 2 OCT 78 U, _ 0.0 15.0 30.0 l15.0 FREQUENCT (MHZ) Figure 35S. Axial Current at STA:WL372(0), Excitation 3, 1/150 Model. 84

16.0 __~ _ r — - -______ E3S WLS72(0) JR 3s 11100 R35LR5955.57.59 12.0 03 A _.0 0. 0 0.0 I -—...... 3 OCT 78 UH 0.0 15.0 30.0 45.!00.0 _-_ —- - - ES3R LS72 (O) JR 3s 1/100 R35L#R5955.57,59 -20 0.0 0.0 15.0 30.0 45.0 FREQUENCY (MHZ) Figure 35L. Axial Current at STA:WL372(0), Excitation 3, 1/100 Model. 85

6.0., r _ IESA WLS72C1) JR Is 1/150 A36SI R6l107.09. 11 _: 1.57 0o.0- L ____ ___ __ _ __ z_2 OCT 78 UN 0.0 15.0 30.0 45.0 200.0 3 WLS72(I) JR is 1/ 150 R365, R 107, 09, 11 100.0 1.51 0.0 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _2 O C T 7 8 U M. 0.0 15.0 30.0 L5. ~ FREQUENCY (MtH) Figure 36S. Axial Current at STA:WL372(I), Excitation 1, 1/150 Model. 86

6.0 w E3R WLS72(I1 JR Is 1/100 R36Ls R6037.39.41 C=0 1.5 c3 o _11 0.0 15.0 30.0 45.0,200.0 I ~ ___ __ ----— I —~ —-2 OCT 78 UH 0.0 15.0 30.0 i5FREQUENCY (MiZ) Figure 36L. Axial Current at STA:WL372(I), Excitation 1, 1/100 Model. 87

ESR WL372(I] JR 2t 1/150 R375s R6057.59.611 E I Xk 0.6.= o 0.2 58 SEPT 78 UM 0.0. - _; _...... 0.0 15 0 30.0 45. 0 200.0. ____ ESR WHL72(I1 JR 2, 1/150 RS7Ss R6057.59,61 -200.0 L.. ___ ______Y________4 OCT 78 UM 0.0 15.0 30.0 45.0 FREQUENCY (MHZ) Figure 37S. Axial Current at STA:WL372(I), Excitation 2, 1/150 M1odel. -100.0 ~ ~ ~ ~ ~ 8

0.68, _8w______-_ ___ E3R WL372[I) JR 2,'/100 R37Lg R6025.27.29i 0.6 - 0 0.2 6 SEPT 78 UM 0.0 _, 0.0 15.0 30.0 45.0 200.0 Figue,3 Aial ES WL372(I) JR 22 1/100 R37L 602 2'I' k 0.0 -100.0 4 OCT 78 UM 0.0 15.0 30.0 45.0 FREQUENC (MHZ) Figure 37L. Axial Current at STA:WL372(I), Excitation 2, 1/100 tModel. 89

0. O_ E3R WL372([I JR 3s 1/150 R3SBS R6101.03.05j 2.0 2.0A 3 OCT 78 UM o.o s.o o.o. O _..... _.5...o 0.0 15.0 30.0 45.0 200.0 200.0. -.____ _____ —-.- -. — _ - 1 E3R HL372( I JR 39 1/150 R38S R6101.03,05 100.0 j t 0.0 -100.0 2 OCT 78 UM | 0.0 15 0 30.0'5.0 FlEOUENCY (MZ1) Figure 38S. Axial Current at STA:WL372(I), Excitation 3, 1/150 riodel. 90

Or. E3R WL372(l) JR 3s 1/100 R3Ls R86407,09. 11 8.0o 4.0 2c 2. 0 2 OCT 78 UM 0.0...._ _ I._......_,_0.0 15.0 90.0 45.0 200.0 -- I _ _ /_ ESA HL972(I) JR 31 1/100 A3SL A8407,09,.111 100.0 0.02 OCT 78 UM -200.0 I..... - 0.0 15.0 30.0 45.0 FF IEO.UENCY MHHZ) Figure 38L. Axial Current at STA:WL372(I), Excitation 3, 1/100 Model. 91

5.0 -, E-3A F6708 JC 21 1/150 R39S RB1, 41U,3.zL5, 2. 5 ~~~0.0 __________ ___.... _____ 22 SEF 78 UN 0.0 15. 0 30.0,5. 0 200.0 E-3R F670B JC 2; 1/150 i39SgS61Z,,Q3.l45 - 0.0 -100.0 -200.0 22 SE. 78 UN 0.0 15.0 30.0 45.0 FREQ.,flr- M Il Figure 39S. Circumferential Current at STA:F670B, Excitation 2, 1/150 Model. 92

5.0,_ ---- i — E-3R F6705 JC 2, 1/100 A39LsR6153,55.57 II E - 2.5 22 SEP 78 UH | 0.0 15.0 30.0 15.0 200.0, --- E-3R FB70B JC 21 1/100 R9LR6153 557 100.0 - 0.0 -100.0 -200. 0~ ___ —___________ ___-,_____ 22 SEP 76 UM -200.0,........... 0.0 15.0 30.0 45.0 FREQUENCYi MHH) Figure 39L. Circumferential Current at STA:F670B, Excitation 2, 1/100 Model. 93

10. 0- - E-3R ROTO JR 2, 1/150 R405RS16159.61.63 8.0 C3 0 _ _ -re 2.0 0. 0 ____ _ - 22 SEP 76 U-. 0 15.0 30.0 45.0 200.0 - E-3R ROTO JR 2s 1/1,50 R40FSR8151,61.63 100.0 0.0 - L -200. 0 _...__,_ _ __ 22 SEP 78 UH 0.0 15.0 30.0 45.0 FRE2UENCY tMHZ) Figure 40S. Axial Current at STA:ROTO, Excitation 2, 1/150 Model, 94

10.0 _ _- -- 1 - - 1 E-3R ROTO JR 2s 1/100 RO4LiR6207.09o 11 8.0 k 6.0 I. 2.0 0._0 22 SEP 78 UM 0.0 15.0 30.0 45.0 200.0 -r - E-3R ROTO JR 21 1/100 R4OL:R6207,0o9.1 100.05 0.0 -100.0 22 SEP 78 UN -200.0........... 0.0 15.0 30.0 45.0 FREQUENCY (MHZ) Figure 40L. Axial Current at STA:ROTO, Excitation 2, 1/100 Model. 95

2.0.... E-3R F1310B JC 2, 1/150 R'l1StRB231,33.35 1.5I 0.5 - 1 0.0 _ _ _O_ __________ OCT 70 UM 5 0.0 1S.O 90.0 45.0 200.0, -- ____ __ _ E-3R F13105 JC 2g 1/150 R41SR8231,33.35 100.0 E! 0.0 1 in V -100.0 I L0 __ _....__....._ _4 OCT 78 UM' ~-~0 15.0 30.0 45.0 FREOUENCY IMHE) Figure 41S. Circumferential Current at STA:F1310B, Excitation 2, 1/150 Model. 96

E-3R F1310B JC 2t 1/100 R41L;R6219,21,2 3 o 5 L ii o o.o j 1 OCT 78 UM 0.0 15.0 30.0 45.0 200.0 E-3R F1310B JC 2t 1/100 R41LIR6219,21,23 100.0 0 -100.0 i 4 OCT 78 UM 2 O O. O. _. __... __ __......._ 0.0 15.0 30.0 45.0 FREQUENCY (MHZ) Figure 41L. Circumferential Current at STA:F1310B, Excitation 2, 1/100 Mrodel. 97

ESA Fi310B 0 3s 1/150 R42Sg R6319,21,23!g k 1 = 5.0 2.5 O. O~. _._ _ _ _ _,5. 4' OCT 70 UM 2 00 15.0 300 5.C E2'siISIOB 9 St 1/150 4LL25 6319.21.23 auii 100.0 1 04 OCT 78 UM O. O__. 0.0 15.0 30.0 45.0 F.RE-UENCY (MHZ) Figure 42S. Charge at STA:F1310B, Excitation 3, 1/150 MRodel. 98

10.0 _ -_ E3 F110OB Q 3, 1/100 R42L, A6325,27,29 7.5 L 0a i -.. 5.0 2.5. 4 0. - 4 OCT 75 UM 0.0 15.0 30.0 45.0 ESA FISIOB 0 3S 1/100 R42Ls R6325.27,29 300. Z. D* 400.0 _ 100.0 o.oL _,......._ I.._ 0.0 15.0 30.0 45.0 FREQUENCY (MHZ) Figure 42L. Charge at STA:F1310B, Excitation 3, 1/100 tlodel. 99

10. 0 - -- - - - - -- --— r E3R F750T Q 3t'/150 R143Ss R6249.51.53 Li i I0.0 - - 0. 0 15.0 30.0 450. 5.0 100 0.[ 0 00 o0 L. _-, —--- _______ _ 4 OCT 78 UM 0.0 15.0 30.0 45.0 Fig re 43S. ChareatSTAE3R F750T o S3 1/150 R43Ss R62e 9,51,53!00.01 0.0 15.0 30.0.5.0 -100

10.0 --- -t-....... E3R F750T a 3, 1/100 R43Ls R6313,15.17 7.51 I^ 4 5.. 0.0 15.0 30.0 45.0 200.0 --- -- —. —-._ _ _ _ ESR F750T 0 3S 1/100 R43Ls R8313.15,17 100.0.01 I I0 00 -200.0 & _ am 4 OCT 70 UM 0.0 15.0 30.0 45.0 FREQUENCY MHZ)] Figure 43L. Charge at STA:F750T, Excitation 3, 1/100 Rodel. 101

20.0 E3R F13108 JR 1s 1/150 RqiSI R6355.57.59 15.0 1-1 0.0 5.0 2 OCT 76 UM 0.0 15.0 30.0 45.0 200.0 - - -'-!00. O -— ~ — EsP F131OB JR 1, 1/150 RqAS$ R8355.57.50 100.0; \f 0.0 -100.0 4 OCT 78 UM 0.0 15.0 30.0 45.0 FREGUENCT tMHI) Figure 44S. Axial Current at STA:F131OB, Excitation 1, 1/150 Model. 102

20.0_ ___ I E3R F13.10B JR;is 1/100 RY4L:R6337,39,41 0 A 5.0 0.0 0.0 15.0 30.0 45.0 200.0 _ — _ _t _ a ES3R FiSIOB JR i 1/100 Sr. LiR8337,39,41 100.0 0.0 -100.0 ~-200.0 L — ___ _____________ _ _ _s ~ 28 SEP 78 UH J 0.0 15.0 30.0 45.0 FREOUENCY (MHHZ Figure 44L. Axial Current at STA:F1310B, Excitation 1, 1/100 rlodel. 103

5.0 E3R F1310 JR 3s 1/150 R4SSo RB401.03,05 3.o0 2.O 1.0. 2 OCT 78 UM 0.0 -- -----... 0.0 15.0 S0.0 45.0 200.0 200.0 Q -r- - -- -r -__ E3R F310SB JR 3s 1/150 R45So AB401,03.05 i -200.0 0.0 15.0 30.0 15.0 FREOUENCY (MHZ) Figure 45S. Axial Current at STA:F1310B, Excitation 3, 1/150 Model. 104

5.0 It-J ESR F13108 JR 31 1/100 R5LgsR6343,, 5.47 4.0 3.0 4:o 0 2.0 1.0 29 SEr 78 UNH 0.0,, 0.0 15.D 30.0 45.0 200.0 - - - - - - - E3R FS1310B JR 3S 1/100 R45LtR6343.45.,'47 -100.0 i! I.L_ 4 OCT 78 UM -200.0 l... — 0.0 15.0 30.0 45.0 FREQUENCY MHH!) Figure 45L. Axial Current at STA:F1310B, Excitation 3, 1/100 Model. 105

UNIVERSITY OF MICHIGAN 3915113III1 r11111111111111159111111 71 3 9015 03483 1597